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Preface 

In this thesis, advanced brain imaging methods based on magnetic resonance imaging 

(MRI) were used to investigate brain structure and function in children with prenatal 

drug exposure. As the existing knowledge of possible associations between prenatal 

opioid exposure and future brain alterations was very limited, and opioid exposure 

was common in the sample recruited for the study, the main focus of the work has 

been to elucidate these associations. 

 

Pilot scan of my oldest son Jona at the age of seven. 

 

“Not everything that counts can be counted, 

and not everything that can be counted counts.” 

Albert Einstein 

 

Eivind Sirnes       Bergen, October 2017 
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Abstract 

Background: Over the last few decades brain imaging studies have made important 

contributions to our understanding of how prenatal drug exposure can impact normal 

brain development. The teratogenic potential of alcohol has been most widely 

studied, with growing evidence of structural and functional brain alterations in 

prenatally exposed children. However, the current knowledge on possible detrimental 

effects of drugs other than alcohol is still limited, and effects of prenatal opioids in 

particular, have only been explored in a few small-scale brain imaging studies. 

Aims: The overall aim was to investigate associations between prenatal drug 

exposure and later brain structure and function in children. The specific aims were to 

investigate gross anatomical brain changes after prenatal drug exposure and 

associations between prenatal opioids and morphometric and functional brain 

characteristics. 

Materials and methods: A hospital-based sample of 43 school-aged children with 

prenatal alcohol-, opioid- or polysubstance exposure and 43 sex- and age-matched 

unexposed controls underwent cerebral magnetic resonance imaging (MRI). All MRI 

scans were evaluated by an expert pediatric neuroradiologist blinded to the 

participants’ backgrounds. In children with confirmed exposure to opioids, 

volumetric brain characteristics were compared to controls. Brain activation patterns 

and performance on a working memory-selective attention task were compared 

between opioid-exposed and unexposed children using functional MRI (fMRI). 

Results: No association between prenatal drug exposure and gross structural brain 

changes was seen by means of expert visual analysis of cerebral MRI scans. Reduced 

regional brain volumes were found in prenatally opioid-exposed children compared to 

their matched controls. Functional imaging revealed impaired task performance and 

increased blood-oxygen-level-dependent (BOLD) activation in prefrontal cortical 

areas during the most cognitive demanding versions of the working memory-selective 

attention task in the opioid-exposed group as compared to unexposed controls. 

Conclusions: Cerebral MRI is probably of limited value in the clinical assessment of 

children with histories of prenatal drug exposure in a hospital setting, where 



 xi

polysubstance exposure and unspecified drug exposure is a common feature. Adverse 

effects of opioids on the developing fetal brain may explain the associations between 

prenatal opioids and brain alterations in children as seen by structural and functional 

MRI in this study. However, the sample was small and inevitably confounding factors 

were difficult to account for. Thus, further research is needed to explore the causal 

nature of these findings and to elucidate the functional consequences of the observed 

brain alterations in the opioid-exposed group. 
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1. Introduction 

1.1 Prenatal drug exposure 

1.1.1 Definition and prevalence 

The unborn child could potentially be exposed to a variety of drugs when a pregnant 

woman suffers from a substance use disorder. The term “prenatal drug exposure” 

does not have a well-established or strict definition. In this thesis “prenatal drug 

exposure” will be used to describe in utero exposure to drugs of abuse, including licit 

drugs like alcohol and nicotine, and illicit drug use (e.g., amphetamines, cocaine, 

cannabis, and opioids). Since the main-focus of the thesis is on prenatal opioid 

exposure, opioid medication given to pregnant women as part of opioid maintenance 

treatment (OMT) will also be included in the term “prenatal drug exposure”, although 

opioids in this setting should not be considered drugs of abuse. 

The exact number of children with histories of prenatal drug exposure is unknown. In 

the most recent report from the National Survey on Drug Use and Health, an annual 

survey in the United States, 4.7 % of pregnant women reported use of illicit drugs, 

13.9 % used tobacco products and 9.3% used alcohol.1 Global estimates hardly exist. 

However, taking recent global trends of drug use in the general population into 

account 2 several million children worldwide are each year most likely exposed to 

drugs in utero according to the above outlined broad definition of the term. Potential 

negative effects of such exposure should therefore be an important concern for health 

care providers, policy makers, and researchers.   

When it comes to prenatal opioid exposure, recent reports on the prevalence of 

neonatal abstinence syndrome (NAS), a common consequence of prenatal opioid 

exposure, indicate a worldwide increase in the number of children exposed to opioids 

in utero.3-5 The prevalence of opioid abuse or dependence during pregnancy was 

found to be 0.39% in a large American register study.6 In Norway 30-60 children 

(approximately 0.05–0.1% of all births) are born annually to mothers included in 
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OMT,7 while the number of children with other opioid exposures (incl. heroin) is 

unknown. 

1.1.2 Possible consequences for the child 

Historical perspectives: As a research field the delineation of child outcomes after 

prenatal drug exposure is quite new. The specific pattern of malformations, growth 

restriction and developmental delay seen after heavy prenatal alcohol exposure, now 

known as Fetal Alcohol Syndrome (FAS), was first described by Drs. Smith and 

Jones in 1973.8 However, the observation of fetal malformations associated with 

maternal alcoholism was not new. As described by Smith and Jones in their review of 

historical evidence, the link between maternal drinking and faulty development of the 

offspring could be traced all the way back to the early Greek and Roman mythology.9 

Early reports of devastating fetal effects of maternal cocaine use led to the terms 

“crack baby” and “crack kid” in the early 1970s.10 However, many of the findings 

once thought to be specific effects of in utero cocaine exposure were later shown to 

be explained by other factors like the quality of the child´s environment and exposure 

to other drugs.11 This clearly demonstrates some of the complexity in the research on 

possible effects of prenatal drug exposure. A large body of literature has 

unequivocally revealed detrimental effects of prenatal alcohol, which is now 

frequently cited as the most common preventable cause of intellectual disability.12 

However, the history of the purported “crack baby” phenomenon points out the need 

of rigorous methodological considerations to avoid jumping into conclusions about 

causal mechanisms. 

Prenatal effects - congenital anomalies: The teratogenic potential of prenatal 

alcohol is well known, with a series of facial malformations established as one of the 

hallmarks of the diagnosis of FAS.12 Gross structural abnormalities of the brain, like 

microcephaly and agenesis of the corpus callosum, have also been reported in 

children with prenatal alcohol exposure.13 Maternal smoking during pregnancy has 

been linked to increased risk of several structural malformations, but in general there 

has been a failure of replication and conflicting results.14 Prenatal cocaine exposure 
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was initially reported to be associated with increased risk for malformations, still 

these associations have not been replicated in larger, prospective, well controlled 

studies.15 Some recent studies have reported an increased risk of birth defects after 

prenatal opioid exposure.16,17 However, there is no consistent literature to support any 

causal link between prenatal exposure to cocaine, amphetamines, cannabis or opioids 

and birth defects.18-21 

Perinatal effects: Maternal use of both licit and illicit drugs has been linked to 

increased risk of a large range of adverse pregnancy outcomes, including stillbirth, 

intrauterine growth restriction, and preterm birth.22,23 However, the impact of specific 

drugs on these outcomes relative to the contribution of myriads of interconnected risk 

factors like poor prenatal care, stress, and poor maternal nutrition is unclear.24 Still, 

there is unequivocal evidence for impaired fetal growth caused by maternal tobacco 

and alcohol use during pregnancy.18,25 Prenatal cocaine exposure has also been 

associated with impaired fetal growth in several large, well-controlled studies.26,27 

Both amphetamines 19,20 and opioids 6,28,29 have been associated with low birth weight 

and preterm birth, whereas maternal marijuana was not found to be an independent 

risk factor for intrauterine growth restriction or preterm birth in a recent meta-

analysis.30 Heavy maternal cigarette smoking was shown to have a larger individual 

impact on birth weight than both alcohol and illicit drug use in a recent, prospective 

study on pregnancy outcomes and substance abuse.31 

Withdrawal symptoms in the neonate have been reported after prenatal exposure to 

several different licit and illicit drugs.32 However, the most severe symptoms clearly 

appear in the opioid-exposed neonate, commonly recognized as the  neonatal 

abstinence syndrome (NAS).33 The variable clinical manifestations of NAS involve 

excitability of the central nervous system, autonomic dysregulation, gastrointestinal, 

and respiratory symptoms.34 The occurrence and severity of NAS after prenatal 

opioid exposure has been shown highly variable, and seem to be affected by a 

complex interplay between several risk factors including exposure to non-opioid 

drugs and genetic factors affecting opioid metabolism.33,35,36 
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Although withdrawal symptoms are not commonly reported in neonates after prenatal 

exposure to psychostimulants (cocaine, amphetamines), tobacco, cannabis, or 

alcohol,18,19 neonatal or infant neurobehavioral abnormalities have been found in all 

these groups.18 Abnormalities like altered muscle tone, irritability and signs of stress 

suggesting early self-regulatory problems have been associated with prenatal 

exposure to cocaine, amphetamines, marijuana and opioids.19,37,38 Finally, prenatal 

drug exposure has been associated with increased risk of sudden infant death 

syndrome.25,39 

Long-term effects on growth and somatic health: Maternal alcohol consumption 

during pregnancy is associated with impaired childhood growth, and evidence of 

postnatal growth restriction is one of the diagnostic criteria used in guidelines for the 

diagnosis of FAS.40 While alcohol effects on early growth seem to persist through 

childhood, there has been no consistent literature to show impaired later growth after 

prenatal exposure to other drugs.15,18 However, impaired intrauterine growth may 

place these children at risk for adverse health outcomes in later life. Maternal 

smoking during pregnancy has been linked to both childhood obesity and diabetes.25 

Among other somatic health problems, an increased risk of visual problems, 

particularly strabismus and nystagmus, has been repeatedly reported after prenatal 

drug exposure.41,42 Several recent studies have pointed out a possible link between 

prenatal opioid exposure in particular and impaired visual functioning.43-46 

Long-term effects on cognition and behavior: Heavy maternal alcohol 

consumption during pregnancy is associated with neuropsychological difficulties in 

affected children ranging from subtle learning and/or behavioral problems to severe 

intellectual impairment.12,47 A variety of behavioral and cognitive difficulties, 

including deficits in visuospatial functioning, memory and learning, attention, self-

regulation, executive functioning and motor skills are commonly seen.47 There is 

convincing evidence that detrimental effects of alcohol on the developing fetal brain 

underlay these neurobehavioral problems, with proposed mechanisms of 

neurotoxicity supported by extensive animal- and cell culture research.48-50 A wide 

range of neuropsychological impairments have also been associated with prenatal 
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exposure to drugs other than alcohol, however, a far more limited number of studies 

exist to answer whether these impairments are caused by specific drugs.18,23 The 

possible neurobehavioral long-term effects of prenatal cocaine exposure have been 

investigated in several large, well-controlled, prospective studies.15 There has been no 

consistent pattern of general cognitive impairment, but even after adjustment for 

numerous confounding variables prenatal cocaine exposure has been associated with 

deficits related to attention, executive functioning, language and behavior.51-53 In 

“The Infant Development, Environment, and Lifestyle” (IDEAL) study possible long-

term effects of prenatal amphetamines were explored for the first time in a large, 

prospective cohort.19 Subtle cognitive and behavioral deficits were found in the 

amphetamine-exposed group.54,55 Tobacco and marijuana have both been associated 

with behavioral and cognitive impairments in prenatally exposed children and 

adolescents.56-58 Prenatal opioid exposure has been associated with several 

neuropsychological difficulties in children, particularly attention problems.59,60 As 

possible opioid effects on brain development in prenatally exposed children is one of 

the main topics of this thesis, studies looking specifically into neurocognitive and 

behavioral consequences of prenatal opioid exposure will be covered in some more 

detail in the next section. 

To sum up this section, extensive work has demonstrated that prenatal alcohol 

exposure causes a broad range of adverse developmental effects, commonly 

described under the umbrella term fetal alcohol spectrum disorders (FASD).12,61 In a 

recent review, The American Academy of Pediatrics stated that “There is no known 

absolutely safe quantity, frequency, type, or timing of alcohol consumption during 

pregnancy.”12 However, to what extent low to moderate alcohol intake during 

pregnancy is causal to cognitive and behavioral impairments observed in exposed 

children is still debated.62 When it comes to possible consequences for the child of 

prenatal exposure to drugs other than alcohol, the research base is more limited. 

There is growing evidence of negative effects on both short- and long-term outcomes, 

but still conclusions about causal relationships should be made with caution.18,23 In 

general more subtle, neurocognitive deficits are reported in these groups, in contrast 

to the marked impairments caused by prenatal alcohol exposure. 
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1.1.3 Prenatal opioid exposure and neuropsychological 
impairments 

Important knowledge gaps still remain regarding possible neurobehavioral, long-term 

consequences of prenatal opioid exposure. The literature is sparse, especially when it 

comes to follow-up beyond infancy and preschool age. In the following section, some 

important studies and findings to date are presented. 

Several small studies were conducted in the 70’s and 80’s, mainly on children born to 

methadone maintained mothers. As reviewed by Kaltenbach, these early studies did 

not  show any convincing opioid effect on behavioral outcomes when prenatally 

exposed children were compared to unexposed children from similar socio economic 

disadvantaged, high-risk populations.63 The important impact of postnatal social and 

environmental factors on neurodevelopment has later been emphasized in several 

studies on children born to heroin using mothers by Ornoy et al.59,64,65 In school-aged 

children general intellectual development was shown to be influenced to a large 

extent by postnatal environment, as cognitive impairment was found in children 

living in low socio economic environments, regardless of prenatal drug exposure.59 

However, high rates of attention-deficit/hyperactivity disorder (ADHD) were found 

among children with prenatal opioid exposure, also in those adopted into high socio 

economic status (SES) families.59 Similar high rates of attention problems/ADHD in 

prenatally opioid-exposed children have been reported in several more recent 

studies.60,66-68 

In the Maternal Life Style Study, a large prospective, multisite study of a high-risk 

population, prenatal opioid exposure was not associated with mental, motor, or 

behavioral deficits in infants through three years of age after controlling for birth 

weight and environmental risks, including other drug exposures.69 In 2008 Hunt et al. 

concluded that there was consistent evidence of neurodevelopmental impairment 

throughout early childhood in prenatally opioid-exposed infants in a cross-sectional 

study and review of 14 previously published studies.70 A recent systematic review 

and meta-analysis on neurobehavioral consequences of in utero opioid exposure in 

infants and preschool children showed no significant impairments for behavioral, 
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psychomotor or cognitive outcomes in exposed children compared to non-exposed 

controls.71 However, an error in data entry was uncovered after publication, and in the 

repeated, corrected analyses significant impairments with small effect sizes were 

found in opioid-exposed children for all the included neurobehavioral outcomes.72  

A national, population-based cohort of 38 children born to mothers included in OMT 

and 36 comparison children from a low-risk population have been followed from 

birth in a Norwegian, longitudinal study.73,74 Overall, scores within the normal range 

on cognitive and behavioral measures in preschool children have been reported from 

this study, but reduced cognitive performance and more behavioral problems in 

opioid-exposed children as compared to unexposed controls.75,76 The importance of 

postnatal environmental factors for child development has been demonstrated in 

several publications from this study. Maternal psychosocial stress, rather than 

prenatal exposure to OMT medications was shown to predict child behavioral 

problems,76 language-related cognitive development was linked to mother-child 

interaction,75 and impaired executive functioning in the exposed group was mainly 

associated with lower maternal employment rate and education.77 However, some 

aspects of higher cognitive functioning and subtle alterations in the attention system 

appeared influenced by prenatal opioid exposure.75,78 

There has been a lack of studies exploring possible long-term effects of prenatal 

opioid exposure in school-aged children and adolescents. In a recent population-

based, registry linkage-study, children in New South Wales, Australia who had been 

diagnosed with NAS (n = 2234) were compared to controls (n = 4330), matched for 

gestational age, gender, and SES.79 A history of NAS was strongly associated with 

poor and deteriorating high school performance. Detrimental opioid effect on the fetal 

brain was discussed by the authors as one possible contributing factor to explain 

impaired school performance.  

In Norway, a sample of children born to mothers with opioid and polysubstance 

abuse problems during pregnancy has been followed from birth to early adulthood. 

High rates of attention problems and impaired cognitive function have been reported 
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in these children, even in adoptive/foster children living in stable family situations 

from an early age, and thus with minimal postnatal risk.80,81 At age 17–21 years 

opioid- and polysubstance exposure was associated with lower cognitive abilities 

when exposed youth were compared to a non-exposed control group.82 No firm 

conclusions regarding specific opioid effects can be drawn from these studies, as 

opioid exposure was inextricably associated with other environmental risks, as 

discussed by the authors.81,82   

In summary, firm conclusions about the influence of prenatal opioids on long-term 

cognitive and behavioral development in exposed children, cannot be made based on 

the existing literature. However, subtle neurocognitive deficits and attention problems 

have been repeatedly reported in this group, and opioid induced brain changes could 

possibly contribute to some of these difficulties. 

1.1.4 Methodological challenges in clinical studies exploring 
prenatal drug effects 

An important challenge in all human studies on possible long-term developmental 

consequences of prenatal drug exposure is the complex nature of human 

development, influenced by a web of interconnected factors. Some of these factors, 

with possible impact on developmental outcomes in prenatally drug-exposed 

populations, are illustrated in Figure 1. Although complex statistical modelling can 

take into account possible mediating, moderating or confounding factors regarding 

the relationship between drug exposure and developmental outcome, several 

unknown or unmeasurable factors still remain. Randomized controlled trials could 

overcome this problem, but it would obviously be unethical and practically 

impossible to randomize prenatal drug exposure. Consequently, human studies have 

limited ability to make inferences with confidence about causal mechanisms behind 

developmental impairments observed after prenatal drug exposure. Conclusions about 

causality should not be solely made based on associations between prenatal exposures 

and later developmental outcomes. Even in the case of consistently reported 

associations across different populations, like the well-established association 

between maternal smoking during pregnancy and childhood ADHD, these 
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associations are not necessarily causal. Several recent studies have called into 

question the assumption that prenatal tobacco exposure causes ADHD.83,84 In 

summary, the potential harmful developmental effects of prenatal drug exposure must 

be evaluated in the context of other biological, psychosocial and environmental 

factors with impact on the developmental outcomes of interest. Prenatal exposure 

may represent a biological risk that could be moderated by several other influences 

like genetic factors and postnatal environmental factors, as discussed in a model for 

neurobehavioral teratology by Minnes et al.85 As long as several of these factors 

remain unknown, conclusions about specific drug effects should be interpreted with 

caution. 

 

Figure 1 Examples of prenatal and postnatal factors with possible impact on 
developmental outcomes in prenatally drug-exposed children. 

Animal studies on prenatal drug exposure can control environmental and genetic risk 

factors by random assignment of exposure. Such studies have made important 

contributions to our understanding of potential drug effects, pointing out plausible 

biological causal relationships.49 However, the translational potential of animal 

research is always limited by interspecies differences. Lack of pharmacokinetic 
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reference data in animals is an important limitation,86 and animal models have limited 

ability to elucidate complex aspects of human development. 

All observational human studies exploring possible consequences of prenatal drug 

exposure are to some extent influenced by uncertain and unreliable measures of 

prenatal drug exposure. Most studies relay on some kind of maternal self-report of 

drug use during pregnancy. Information is often obtained after pregnancy, and recall 

bias could consequently be introduced. Even in prospective studies using structured 

interviews to assess drug exposure, underreporting may occur, due to the punitive 

social and legal implications of disclosure. If toxicology tests are used at birth 

(mother or infant urine toxicology screens and/or infant meconium and hair analyses), 

these tests cannot tell anything about exposure in first trimester of pregnancy, total 

exposure during pregnancy or drug dose, although these factors could be of 

importance for adverse drug effects. 

Negative drug effects on the developing fetal brain may be subtle and not easily 

recognized until later in development, when e.g. language problems and poor 

academic achievement show up. Therefore, well controlled longitudinal studies with 

appropriate, sensitive measures are needed to investigate such effects. Results from 

longitudinal neuroimaging indicate that early life factors, like birth weight, impact 

brain structure and cognition for the entire life course,87 and cerebral magnetic 

resonance imaging (MRI) stands out as a useful tool to study how prenatal factors 

impact brain development. As discussed in the next sections, a growing body of 

evidence from MRI studies has pointed out possible detrimental drug effects on the 

developing fetal brain. However, associations between prenatal drug exposure and 

later brain alterations, as seen by MRI, do not need to be causal, and several 

knowledge gaps remain, especially when it comes to possible brain alterations after 

prenatal opioid exposure. 
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1.2 Neuroimaging after prenatal drug exposure 

1.2.1 MRI-based neuroimaging 

Over the last few decades, advances in neuroimaging methods based on magnetic 

resonance imaging (MRI) have made important contributions to our understanding of 

the living growing human brain.88,89 MRI is a safe method to study the developing 

brain without the use of ionizing radiation, and thus particularly well suited for 

research purposes. Structural MRI allows for high-resolution images of the brain to 

be obtained within the time frame of a few minutes. In addition to the study of gross 

anatomy, automated computerized methods enable researchers to analyze and 

compare morphometric measures like regional volumes and cortical thickness across 

different groups and across time. Diffusion tensor imaging (DTI) is an MRI technique 

were diffusion of water molecules within the brain can be used as an indirect measure 

of white matter structure and integrity. In functional MRI (fMRI) the so called blood- 

oxygen-level-dependent (BOLD) contrast is used as an indirect measure of neuronal 

activity. The BOLD contrast is based on the paramagnetic state of deoxygenated 

hemoglobin and reflects changes in blood oxygenation detected as a change in the 

MRI signal.90 Since the first human fMRI studies were published in 1992,91,92 fMRI 

has been applied to almost every aspect of brain science, and is by far the most 

frequently used imaging technique to study human brain function.93 Overall, MRI-

based neuroimaging has been crucial for the current understanding of the normal 

brain. In addition, MRI has been a useful tool in the study of developmental changes, 

like ADHD,94,95 and brain injury, like the preterm brain.96 The knowledgebase of 

normal brain development is fast growing. However, precise growth trajectories of 

several anatomical brain measures are still incompletely understood.97 

1.2.2 MRI studies of prenatally drug-exposed children 

Neuroimaging studies have also made important contributions to our understanding 

of how prenatal drug exposure can impact normal brain development, in particular by 

elucidating the teratogenic potential of alcohol, showing both structural and 

functional brain alterations in prenatally alcohol-exposed populations.13,98 Reduction 
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of the overall brain size has been the most consistent finding in children with 

FASD.13 Several macrostructural abnormalities, like malformations of the corpus 

callosum and cerebellar atrophy, have been reported in prenatally alcohol-exposed 

children.99-101  Using advanced methods have allowed more subtle brain changes to be 

found throughout multiple brain regions.13 Specific patterns of changes have 

suggested certain structures like the basal ganglia,102 corpus callosum,103 and 

cerebellum104 to be especially vulnerable to the adverse effect of alcohol.50 The 

knowledgebase of possible brain changes in children prenatally exposed to drugs 

other than alcohol is still quite limited. Existing studies tend to be based on small 

samples with numerous confounding variables difficult to account for. However, 

there is growing evidence that prenatal exposure to tobacco, amphetamines and 

cocaine is associated with structural and functional brain changes in children.105,106 In 

the first structural MRI study on prenatally methamphetamine-exposed children, 

published in 2004, Chang et al. reported reduced subcortical brain volumes in the 

exposed group.107 After that study prenatal methamphetamine has been associated 

with reduced regional brain volumes linked to attention processing deficits,108 altered 

brain activation patterns (fMRI),109 and recently alterations in white matter 

developmental trajectories (DTI).110 For cocaine-exposed children a variety of gross 

structural abnormalities were reported in early imaging studies.106 More recent studies 

have reported subtle changes, like alterations of regional patterns of striatal 

morphology in prenatally cocaine-exposed adolescents.111 However, there have been 

some conflicting results. Avants et al.112 reported reduced caudate volumes after 

prenatal cocaine exposure, whereas no differences in caudate volumes were found 

between prenatally cocaine-exposed and control children in a sample of 40 

adolescents derived from the Maternal Life Style study.113 In two recent, well 

controlled studies with large populations (n > 100), alterations in cortical morphology 

in children with prenatal exposure to tobacco and/or marijuana were shown.114,115 

Polysubstance exposure is common in populations of prenatally drug-exposed 

children. Results from a volumetric MRI study of children with prenatal exposure to 

alcohol, tobacco, cocaine and marijuana suggested that these substances may act 

cumulatively during gestation to exert long lasting effects on brain volumes.116 The 
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dopamine-rich basal ganglia seem to be particularly vulnerable to possible harmful 

effects of prenatal exposure across several different drugs, and it has been suggested 

that drugs of abuse share a specific profile of developmental neurotoxicity.106 

Prenatal opioid exposure has been associated with reduced regional brain volumes 

and alterations in white matter tracts in preliminary studies.117,118 However, research 

on possible brain alterations after prenatal opioid exposure is scarce, and the few 

existing studies will be reviewed in more detail in the next section.  

To sum up this section, there is growing evidence for both structural and functional 

brain alterations in prenatally drug-exposed children. However, it is not clear whether 

cerebral MRI is useful in the clinical assessment of these children, as MRI findings 

ranging from gross anatomical abnormalities to subtle morphometric changes or 

normal imaging have been reported across different groups of prenatally drug-

exposed children.  

1.3 MRI studies of children with prenatal opioid exposure 

Current knowledge of possible brain changes after prenatal opioid exposure is based 

on a few small-scale samples. MRI studies investigating specifically the association 

between in utero opioid exposure and later brain changes up to December 2016 are 

summarized in Table 1. In 2007 Kahila et al. published results from a pilot study with 

cerebral MRI scans of seven neonates prenatally exposed to buprenorphine and 

several other drugs.119 Upon expert visual analyses all scans were interpreted as 

normal, and no further analyses were performed. Volumetric cerebral characteristics 

of children with prenatal opioid exposure have been explored in two previous studies. 

Walhovd et al. included 14 school-aged children born to mothers with histories of 

heroin and polysubstance abuse during pregnancy and 14 unexposed controls in a 

volumetric MRI study.117 Volume reductions in various brain measures were reported 

in the exposed group, including reduced total brain volumes. In analyses restricted to 

a subgroup of 10 children exposed to opioids, pallidum and putamen volumes 

appeared especially reduced. Analyses of cortical thickness revealed thinner cortex in 

the exposed group in the anterior cingulate and orbitofrontal cortical areas. 
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Morphometric brain alterations were to some extent related to cognitive and 

behavioral difficulties in the exposed group. The other study to explore volumetric 

characteristics of opioid-exposed children was a pilot study by Yuan et.al, where 16 

neonates, mostly born to methadone- or buprenorphine maintained mothers, were 

examined with cerebral MRI.120 Reduced total brain and basal ganglia volumes were 

found in the opioid-exposed neonates. An important limitation of that study was the 

lack of a control group. Volumes from manual segmentation of MRI scans were 

compared to published population values. Of note, the referred normal value for 

neonatal basal ganglia volume was based on a very small sample (n =12) of healthy 

term-born neonates in a study on brain maturation in preterm infants.121 Indication of 

altered structural integrity of white matter after prenatal opioid exposure has been 

reported in two small studies using DTI.118,122 

To summarize, there is circumstantial evidence that prenatal opioids can affect the 

developing fetal brain, with reports of reduced volumes, especially of the basal 

ganglia, cortical thinning, and altered white matter characteristics in prenatally 

opioid-exposed groups. Such brain changes may contribute to neuropsychological 

difficulties reported in these groups. However, firm conclusions cannot be made, due 

to small samples and effect sizes, and inevitable confounding factors difficult to 

account for. Overall, there is no compelling evidence for an increased risk of gross 

structural brain changes in opioid-exposed groups, although a link between maternal 

opioid use during pregnancy and neonatal stroke has been suggested in case 

reports.123 To date, no previous study has examined brain activation patterns 

associated with prenatal opioid exposure using fMRI. 
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Table 1 Studies examining the association between prenatal opioid exposure and 
cerebral MRI findings up to December 2016 

Study Sample Control group Main results 

Kahila et al. 
2007 119 

Infants (0-2 months) 
exposed to buprenorphine, 
all exposed to tobacco and 
benzodiazepines (n = 7) 

No All cerebral MRI scans normal 
(expert visual analysis) 

Walhovd et al. 
2007 117 

14 children (9–14 years) 
exposed to polysubstance 
abuse, subgroup of 10 
children born to mothers 
reporting heroine as their 
main drug of choice 

14 unexposed, 
healthy, 
children (9–10 
years) from a 
low-risk 
population 

No cerebral pathology found by 
visual inspection of MRI scans. 
Reduced brain volumes and 
cortical thinning in the exposed 
group. Pallidum and putamen 
especially reduced in the opioid-
exposed group (automated 
computerized segmentation) 

Walhovd et al. 
2010 122 

Same population as 
Walhovd et al. 2007 

- Altered white matter 
characteristics in the exposed 
group, also when analyses were 
restricted to the heroine-exposed 
subgroup (DTI)  

Walhovd et al. 
2012 118 

13 infants (0-2 months) 
born to methadone 
maintained mothers, 11/13 
medically treated for NAS  

7 unexposed 
controls 
(randomly 
identified from 
hospital 
delivery 
bookings) 

Higher mean diffusivity in the 
exposed group, suggesting 
altered maturation of cerebral 
connective tracts (DTI)  

Yuan et al. 
2014 120 

16 neonates with prenatal 
opioid exposure 
(methadone/ 
buprenorphine/ other 
opioids incl. heroine), most 
exposed to multiple drugs 

No All scans structurally normal 
(visual inspection). Whole brain 
and basal ganglia volumes 
reduced compared to published 
population values (manual 
segmentation) 

Abbreviations: DTI, diffusion tensor imaging; MRI, magnetic resonance imaging; 
NAS, neonatal abstinence syndrome. 
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2. Aims 

The overall aim of the study was to investigate associations between prenatal drug 

exposure and brain structure and function in school-aged children. 

The specific aims were: 

I. To investigate brain changes detectable by expert visual inspection of cerebral 

MRI scans in children with prenatal drug exposure and unexposed controls. 

 

II. To investigate brain morphology in children with prenatal opioid exposure. 

Based on prior research, we hypothesized that prenatal opioid exposure would 

be associated with reduced volumes of the basal ganglia. 

 

III. To investigate brain activation patterns in children with prenatal opioid 

exposure during a working memory-selective attention task. We hypothesized 

that prenatally opioid-exposed children would show impaired task 

performance with corresponding differences in blood-oxygen-level-dependent 

(BOLD) activation as compared with unexposed controls. 
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3. Materials and methods 

3.1 Study design 

Observational study with cross-sectional MRI data from a hospital-based population 

of prenatally drug-exposed children and unexposed controls derived from the general 

population. 

3.2 Study population 

3.2.1 Drug-exposed group 

The prenatally drug-exposed group included in the present study was derived from a 

larger group of children included in a clinical follow-up study of children referred to 

the pediatric department at Haukeland University Hospital, between 1997 and 2012, 

due to prenatal drug exposure. Children were identified as prenatally drug-exposed if 

they had been admitted to the neonatal department due to maternal drug use, in most 

cases treated for withdrawal symptoms, or if they were referred to a pediatric 

neurologist at a later age with a medical history of prenatal drug exposure and 

symptoms of attention and/or behavioral problems. A total of 70 out of these children 

were in the age range of 10–14 years and hence eligible for the chosen MRI protocol. 

Forty-three out of 70 (61%) children consented to participate. Details on 

inclusion/exclusion of drug-exposed children into the final study populations of the 

different papers are shown in Figure 2. Among the 27 nonparticipants in the MRI 

study, 19 were included in other parts of the clinical follow-up. For these children 

information about type of drug exposure and intelligence quotient (assessed by 

Wechsler Intelligence Scale for Children, fourth edition and Wechsler Preschool and 

Primary Scale of Intelligence-R) was available, and did not differ significantly from 

what was found in the participating group. 

Information regarding drug exposure was based on history without toxicology testing. 

Given the presence of heavy substance abuse, detailed information about the 
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frequency or amounts of drugs used during pregnancy was not readily available for 

all participants. However, children were only included in the study if prenatal drug 

exposure could be confirmed, either in medical records (obstetric or pediatric) or by 

information from their mother.  

 

Figure 2 Flow chart showing the inclusion/exclusion of drug-exposed groups into 
the final study populations of paper I–III.   

3.2.2 Control group 

For each drug-exposed child included in the study, the first child of the same gender 

born at Haukeland University Hospital on the same date, with a birth weight above 

3000 g, was invited to serve as the matched control. If they declined, the family of the 

next child born on the same date (or the nearest date) was approached. Forty-tree 

controls were recruited. According to questionnaires filled out by their parents, none 

of the included controls were exposed to prenatal medication or substance abuse. 

3.2.3 Population paper I 

All 43 drug-exposed and 43 unexposed controls recruited to the study were included 

in paper I. MRI scans of acceptable quality for analyses were obtained in 34 (19 
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males) drug-exposed and 40 (23 males) control children. There were 32 complete 

pairs of exposed children and controls matched 1:1 for sex and age. In two matched 

pairs, there was no measurement for the control, and for eight pairs there were 

missing MRI data for the exposed child. Mean age at scan (SD)/ range was 142 

(12.8)/ 116–163 months and 141 (13.5)/ 116–165 months in the exposed/ control 

groups respectively.  

3.2.4 Population paper II 

As the aim of paper II was to investigate possible impact of prenatal opioid exposure 

on brain morphology, only children where prenatal opioid exposure could be 

confirmed were included. Children with FASD were excluded due to the well-

established effects of alcohol on brain volumes in this group.13 After subsequent and 

appropriate exclusions, 16 prenatally opioid-exposed children with MRI images 

considered to be of acceptable quality for the volumetric analyses were included 

(Figure 2). MRI data for three of the 16 originally matched controls were missing 

(movement artifacts/ no scan). Before further image processing, these three “missing” 

controls were replaced by available sex- and age-matched controls originally 

recruited for children with FASD/children exposed to drugs other than opioids. Thus, 

the final sample for paper II consisted of 16 children with prenatal opioid exposure 

and 16 1:1 sex- and age-matched unexposed controls. 

Table 2 Sample characteristics paper II 

Variable, statistic Opioid-exposed  
(n = 16) 

Controls  
(n = 16) 

p 

Males, n (%) 9 (56) 9 (56) - 

Age at scan (months), mean (SD) 143.6 (12.2) 143.6 (12.8) - 

Head circumference (cm), mean (SD) 54.2 (1.9) 54.8 (1.7) 0.402 

ADHD, n (%) 11 (69) 1 (6) 0.002 

Birth weight (g), mean (SD) 3026 (470) 3665 (430) 0.001 

Reported NAS, n (%) 10 (63) - - 

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; NAS, neonatal abstinence 

syndrome; SD, standard deviation; p = p-values for group difference (controls vs. exposed) 

from paired t-test (continuous variables) and McNemar’s test (categorical variables). 
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3.2.5 Population paper III 

In paper III 20 children with confirmed prenatal opioid exposure, without known 

exposure to heavy maternal alcohol consumption were included (Figure 2). For these 

opioid-exposed children included, only 17 controls were successfully recruited, hence 

20 exposed children and 17 control children underwent functional MRI. Nine opioid-

exposed and five control children were excluded from analyses due to abortion of the 

fMRI-protocol by the child, head movement artifacts or dental braces distorting the 

images. Thus, the final sample for paper III consisted of 11 prenatally opioid-exposed 

children and 12 unexposed controls. Although the two study groups were primarily 

1:1 matched for sex and age, the groups were treated as independent in our analyses, 

as matching was disrupted by appropriate exclusions of more than one third of the 

participants. Response logging failed for one participant (unexposed control). As in 

scanner observational data revealed appropriate task performance, data from this 

participant was still included in the analyses of the BOLD fMRI data, while analyses 

of task performance were run with n = 11+11. 

Table 3 Sample characteristics paper III 

Variable, statistic Opioid-exposed  
(n = 11) 

Controls  
(n = 12) 

p 

Males, n (%) 6 (55) 6 (50) 0.84 

Age at scan (months), mean (SD) 146.1 (13.3) 146.0 (10.6) 0.99 

Head circumference (cm), mean (SD) 54.9 (1.4) 54.5 (1.7) 0.55 

Left handedness, n (%) 0 (0) 1 (8) 0.52 

ADHD, n (%) 7 (64) 1 (8) 0.01 

Birth weight (g), mean (SD) 2956 (520) 3545 (431) 0.01 

Reported NAS, n (%) 6 (55) - - 

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; NAS, neonatal abstinence 

syndrome; SD, standard deviation; p = p-values for group difference (controls vs. exposed) 

from independent t-test (continuous variables) and Fisher's exact test with mid-p correction 

(dichotomous variables). 
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3.3 Measures 

3.3.1 MRI data acquisition 

MRI protocol: Structural and functional images were acquired without sedation on a 

GE Signa Excite HD 3.0 Tesla (Milwaukee, WI, USA) MRI scanner at Haukeland 

University Hospital during the period of January to June 2014. The anatomical 

examination included a high-resolution, three-dimensional, T1-weighted structural 

image, collected sagittally using a fast spoiled gradient recovery sequence (Inversion 

time (TI) = 500 ms; repetition time (TR) = 8 ms; echo time (TE) = out of phase; flip 

angle 11°; 256 × 256 matrix; field of view (FOV) = 256 mm; slice thickness 1.0 mm, 

voxel size 1×1×1 mm), and an axial T2-weighted sequence (TE = 100 ms; TR = 3000 

ms; slice thickness 0.8 mm). Functional images were collected axially using an Echo 

Planar Imaging (EPI) sequence with the following parameters: TR = 3000 ms, TE = 

30 ms, flip angle 90°, 128 × 128 matrix, FOV = 220 mm, no. of slices 38, slice 

thickness 3 mm with 0.5 mm skip, voxel size 1.72 × 1.72 × 3.5 mm. Fourteen EPI 

scans per 8 blocks, arranged in a task - rest - task manner, making a total of 112 

scans, were analyzed for each of the four conditions (five initial dummy scans were 

discarded before data analysis). Total scan time was approximately 45 min. 

 

Figure 3 Scanner environment showing the LCD-goggles and response button 
used during fMRI (Illustration from pilot scan). 
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Participants were provided with ear plugs and headphones, and foam padding was 

placed around their heads to reduce noise and head movement. LCD-googles were 

used to present the task during functional imaging and a cartoon during structural 

scans. During the functional imaging the stimulus sequences were presented via the 

E-prime software (Psychology Software Tools, Inc.). The participants were instructed 

to respond to certain target stimuli by pressing a button held in their dominant hand 

(Figure 3). When the button was pressed, the response time was recorded using the E-

prime software. 

fMRI task: A combined working memory-selective attention task, previously used in 

a study of extremely preterm children.124  The task was based on two well-known 

neuropsychological tests; the n-back test for working memory 125 and the Stroop color 

word test for selective attention.126  The combination of the two tests consisted of 

visual presentations of different color-words written in conflicting ink color, 

presented one by one. The words RED, BLUE, GREEN, and YELLOW, each written 

in the three incongruent colors (e.g. red written in blue, green, or yellow) were 

presented sequentially through LCD-goggles mounted on the head coil. The words 

were written in Norwegian, the native language of all participants. The child was 

asked to respond when either the word or the ink color of the word matched the one 

presented either one- or two stimuli backwards in the presentation sequence, yielding 

four different experimental conditions (word 1-back, word 2-back, color 1-back, 

color 2-back). A schematic illustration of the stimulus set-up is given in Figure 4. The 

four experimental conditions were presented in a pseudorandom order to avoid any 

order effects. A block design with alternating ON and OFF blocks was used, with 

four ON blocks, for which a sequence of 16 stimuli were presented, and four OFF 

blocks with a blank screen in each of the four experimental conditions. In each ON 

block tree to five target stimuli were randomly presented. Each stimulus was 

presented for 2.25 s, followed by a blank interval of 0.3 s. All participants were 

introduced to the procedure through a short computer program test sampling all four 

experimental conditions, and effort was made to be sure the instructions were 

comprehended before entering the scanner. 
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Figure 4 Schematic illustration of the fMRI task presentation: In the word 1-back 
task the participants were instructed to press the response button when the written 
word presented was the same as the word presented one screen back in the 
presentation sequence. In the color 2-back task, the response was based on the ink 
color of the word being the same as the one presented two screens back in the 
presentation sequence (modified from Griffiths et al.127). 

3.3.2 Paper I: Visual evaluation of cerebral MRI scans  

The scans were evaluated by an experienced pediatric neuroradiologist who was 

blinded to the background of the participants. After exclusion of examinations with 

pronounced artifacts (movement and/or dental braces), pathology was recorded in 

terms of I) reduced volume of the cerebellum, II) reduced thickness of the corpus 

callosum, III) pathology in the basal ganglia, IV) presence and extent of dilation of 

the lateral ventricles and V) presence of focal white matter pathology. Each 

parameter was scored as being either normal or as displaying mild or moderate/severe 

pathology. The assessment of each of these parameters was subjective. In addition to 

these five MRI parameters, other pathology was recorded, but not graded. Further, an 
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additional variable, termed any pathology, was interpreted as positive if the images 

showed MRI pathology in any of the five previously mentioned parameters. 

3.3.3 Paper II: Volumetric measures from T1-weighted scans 

Examinations with pronounced artifacts due to movement and/or dental braces were 

excluded. A quality score was given to all included scans, based on the grade of 

movement artifacts, by an experienced radiologist blinded to the participants’ 

background (1 = no motion; 2 = very little; 3 = some; 4 = marked). There was no 

difference in this quality score between the two matched groups (Wilcoxon signed 

rank test: Z = −1.70; p = 0.12). The three-dimensional volumes were corrected for 

scanner gradient field non-linearities to reduce variance that could be caused by 

varying head placement within the gradient field among participants.128 Brain volume 

measures were obtained from the automated processing pipeline of FreeSurfer 

version 5.3 (http://surfer.nmr.mgh.harvard.edu/). This automated processing includes 

whole brain segmentation with automated labelling of neuroanatomical structures.129 

Total intracranial volume (ICV) was estimated according to the method described by 

Buckner et al.130 The quality of the subcortical segmentations was evaluated by use of 

a semi-automated approach (http://enigma.ini.usc.edu/). In addition, for volumes with 

the highest quality score for movement artifacts, careful visual inspection of the 

segmentations was performed. None of the inspected volumes were excluded from 

further analysis due to segmentation error. 

3.3.4 Paper III: Image processing (fMRI) 

Image processing and data analysis were performed using the SPM12 software 

package revision 6470 (Welcome Trust Center for Neuroimaging, London, UK) and 

Matlab version 9.0 (MathWorks Inc., Natick, MA). Default preprocessing routines, as 

implemented in SPM12, were followed. To adjust for variations caused by head 

movement EPI-scans in each of the four experimental conditions were realigned. 

Participants with head movement >5mm (translation) were excluded from further 

analyses. Co-registration of the T1-weighted structural scan to the mean EPI-scan in 

each of the four experimental conditions was performed, with subsequent 
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segmentation of the structural scan, providing normalization parameters used to 

normalize the EPI-scans to Montreal Neurological Institute (MNI) space (resized 

voxels 3 × 3 × 3 mm). Finally, the EPI-scans were smoothed with a Gaussian kernel 

of 8 mm. Visual inspection of all EPI-scans was performed to assure quality. Two 

participants were excluded in case of signal drop out due to dental braces. Individual 

participant first-level fixed effect analyses were performed on the ON-OFF block 

contrasts for the four experimental conditions, creating four contrast images per 

person. These images were subjected to second-level random effect analyses using 

the general linear model, as implemented in SPM12. 

3.3.5 Additional measures 

Somatic growth parameters (height, weight, and head circumference) were obtained 

prior to MRI scanning. Background and clinical characteristics were obtained from 

medical records and/or questionnaires filled in by parents or foster parents. 

3.4 Statistics 

Descriptive statistics were reported using the mean and standard deviations (SD) as 

well as counts and percentages. For demographic and clinical variables, differences 

between the 1:1 matched groups (paper I and II) were tested with the paired t-test or 

McNemar’s test, as appropriate. Otherwise, the independent t-test (continuous 

variables) or Fisher's exact test with mid-p correction131 (dichotomous variables) were 

used. All significance tests were two-sided, and a significance level of 5% was set. 

Statistical analyses were performed using IBM SPSS Statistics version 23 and Stata 

version 14.0 (Stata Corp. College Station, TX), except for the analyses of BOLD 

fMRI data that were performed using SPM12. 

3.4.1 Paper I 

For group comparisons of MRI findings, any degree of pathology in each of the five 

MRI parameters (reduced volume of the cerebellum, thinning of the corpus callosum, 

pathology in the basal ganglia, dilatation of the lateral ventricles, and presence of 
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focal white matter pathology) and the variable termed any pathology were considered 

categorical variables. Logistic regression of pathology (not normal/normal) on drug 

exposure/control using generalized estimating equations to adjust for the matching 

was performed. Risk estimations were expressed as odds ratios (OR) with 95% 

confidence intervals (CI). 

3.4.2 Paper II 

Group differences in volumetric brain measures were tested using a linear mixed 

model to take into account the dependency of observations from matched pairs.132 

Brain volumes were entered as dependent variables, with random effect of matching. 

Firstly, a hypothesis-driven analysis was performed with the volume of the basal 

ganglia as the dependent variable. Secondly, explorative analyses were performed 

with the additional brain volumes from the automated segmentation as dependent 

variables, using the same model. Estimated ICV and birth weight and were entered as 

covariates in all analyses (with the exception of the analysis of differences in ICV 

that was only adjusted for birth weight). Finally, analyses were repeated and adjusted 

for the presence of ADHD. Since there were no hypotheses of differential effects in 

the two cerebral hemispheres, the sum of the left and right volumes was used for 

paired structures.  

3.4.3 Paper III 

fMRI task performance: For each target stimuli time to correct response (0–2.25 s) 

was recorded. To allow for both response accuracy and reaction time to be modeled 

simultaneously, time to correct task response was analyzed using Cox proportional 

hazards modeling. If there was not a correct answer, the time to response was 

considered to be censored as opposed to uncensored when the correct answer was 

obtained. As each child responded to multiple target stimuli, a frailty term for child 

was included.133 Altogether 1430 observations (65 targets × 22 children) were 

included in these analyses. Results were reported using the hazard ratio (HR) with 95 

% CI. A HR > 1 is interpretable as a greater instant probability of a correct answer. 

The model was used to assess possible group differences in task performance. Other 
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variables possibly influencing task performance were difficulty level (4 different 

experimental conditions) and birth weight. All children performed the same tasks, so 

by the design experimental condition was independent of exposure group and was not 

adjusted for in the models. Birth weight may be a mediator of the possible opioid 

effect on task performance and analyses were done without and with birth weight as 

an additional covariate to study any mediating effect. Finally, interactions between 

group and respectively birth weight and difficulty level were tested. 

fMRI BOLD activation: Within-group activation patterns for the opioid-exposed 

and control groups were modeled using one-sample t-tests, and two-sample 

independent t-tests were used to determine between-group differences. To account for 

multiple comparisons a cluster-extent, random field theory based family wise error 

(FWE) corrected threshold at p < 0.05 was used to define significant activations in all 

analyses, with a primary cluster-defining threshold at p < 0.001. Anatomical location 

of significantly activated clusters was identified using Anatomical Automatic 

Labeling.134   

3.5 Ethical considerations 

The project was approved by the Regional Ethics Committee for Medical Research in 

Western Norway (REK-Vest 2010/3301). Written consent was obtained from parents 

or foster parents and Child Welfare Services, as appropriate, for all participants. 

Written consent was also obtained from all children above the age of 12 years, and 

verbal consent from participants younger than 12 years. 



 28 

4. Results 

4.1 Paper I  

Cerebral MRI scans of acceptable quality for analyses were obtained in 34/43 (79%) 

drug-exposed children and 40/43 (93%) unexposed controls. With few exceptions 

(among children of mothers in OMT and children with FASD) exposure to more than 

one drug was reported in the exposed group. Most of the drug-exposed children 

(65%) were exposed to opioids and various illicit drugs and were categorized as 

opioid- and polysubstance exposed. Twelve children (35%) with reports of heavy 

maternal alcohol use during pregnancy fulfilled the criteria for FASD and were 

categorized as alcohol-exposed.  

Expert visual analysis of MRI scans revealed similar frequencies of pathology in all 

groups (Figure 5). Overall pathological findings categorized as any pathology were 

recorded in 35% of the drug-exposed children versus 33% of the controls (OR: 1.08; 

95% CI: 0.36, 3.25). There were no statistically significant differences in the risk 

estimates of pathology in drug-exposed children compared to controls. No pathology 

was identified in the basal ganglia. Off note, reduced cerebellar volume was recorded 

in 25% of the alcohol-exposed children versus 3% of the controls. However, 

subgroups based on major drug exposure were too small for meaningful statistical 

analysis of group differences. All the pathological brain findings were categorized as 

mild, except for moderate/severe thinning of corpus callosum and ventricular 

dilatation reported in one drug-exposed child. The alcohol-exposed group had lower 

head circumference compared to controls (mean difference: 2.18 cm; 95% CI: 0.84, 

3.51; p = 0.004). Otherwise there were no statistically significant group differences in 

the somatic growth parameters. 
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Figure 5 Structural MRI findings in 34 prenatally drug-exposed children and 40 sex- 
and age-matched controls (expert visual analysis). 

4.2 Paper II  

The study population of paper II included seven children born to mothers undergoing 

OMT and nine children born to mothers with a history of heroin use during 

pregnancy. Most of these children (69%) were also exposed to one or more non-

opioid drugs. Exposure to benzodiazepines was reported in (50%), cannabis in (25%), 

amphetamines in (25%), and alcohol in (6%) opioid-exposed children. There was a 

high prevalence of ADHD in the exposed group (69%), while only one child (6%) in 

the control group was diagnosed with ADHD. All children in the exposed group 

either lived in foster care or were adopted.  

The combined volume of the basal ganglia (accumbens + caudate + putamen + 

pallidum) was reduced in the opioid-exposed group. There were no statistically 

significant group differences in global brain measures (total brain, cortical gray 

matter and cerebral white matter). The analyses adjusted for ICV and birth weight 

revealed 6.5% smaller basal ganglia (difference of 1.60 ml; 95% CI: 0.20, 3.01 ml; p 

= 0.027), 9.2% smaller caudate (difference of 0.75 ml; 95% CI: 0.03, 1.46 ml; p = 
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0.042), 7.6% smaller thalamus (difference of 1.21 ml; 95% CI: 0.10, 2.32 ml; p = 

0.035), and 10.3% smaller cerebellar white matter (difference of 3.00 ml; 95% CI: 

0.57, 5.44 ml; p = 0.018) in opioid-exposed children compared to their matched 

controls. The estimated group differences were mainly unchanged when analyses 

were adjusted for ADHD, in addition to ICV and birth weight adjustments.  

4.3 Paper III  

In the opioid-exposed group included in the final study population of paper III there 

were four children born to mothers undergoing OMT and seven children born to 

mothers using heroin during pregnancy. Additional exposure to non-opioid drugs 

(benzodiazepines, cannabis, and amphetamines) was reported in 8/11 opioid-exposed 

children. The prevalence of ADHD was 64% in the exposed group versus 8% in the 

control group. Like in paper II all opioid-exposed children included were adopted or 

lived in foster care.  

Task performance: The opioid-exposed group showed impaired task performance 

compared to controls, with an unadjusted HR of controls vs. exposed = 1.46 (95 % 

CI: 1.04 to 2.06; p = 0.030). However, this group difference was no longer significant 

when the model was adjusted for birth weight. As expected there were significant 

differences in task performance between the four difficulty levels, with slower 

responses and fewer correct answers in the more cognitive demanding 2-back tasks (p 

< 0.001). There were no significant interactions between group and respectively 

difficulty level or birth weight.  
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fMRI activation patterns: Analyses of BOLD activation patterns revealed activated 

clusters including prefrontal and parietal cortical areas in both opioid-exposed and 

control children across the four experimental conditions. In the most cognitive 

demanding conditions (color 2-back and word 2-back tasks) more widespread, diffuse 

activations were found in the exposed group (Figure 6). The between-group analyses 

showed increased activation in prefrontal cortical areas in the exposed group as 

compared to the unexposed control group in both 2-back tasks (Figure 7). One 

significant cluster in the left prefrontal cortex including left precentral gyrus and 

superior and middle frontal gyrus showed increased activation in the word 2-back 

task, whereas increased prefrontal activation in left and right middle frontal gyrus 

were found in the color 2-back condition.  

 

 
Figure 6 Within-group analyses in opioid-exposed children (n=11) and controls 
(n=12) A = word 2-back; B = color 2-back. Clusters of activation that survived 
corrections for multiple comparisons with a cluster-extent based threshold at family 
wise error (FEW) corrected p < 0.05 are shown overlaid on a single subject 
Montreal Neurological Institute template. Abbreviations: L, left; R, right. 
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Figure 7 Areas with increased activation in the opioid-exposed group. Surface 
rendering of activated clusters from between-group analyses that survived 
corrections for multiple comparisons with a cluster-extent based threshold at family 
wise error (FEW) corrected p < 0.05 on a single subject Montreal Neurological 
Institute template. Yellow = word 2-back; Red = color 2-back. Abbreviations: L, left; 
R, right. 
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5. Discussion 

Brain alterations associated with prenatal drug exposure were not seen by the means 

of simple visual analysis of cerebral MRI scans form a hospital-based population of 

school-aged children with prenatal exposure to various licit and illicit drugs and sex- 

and age-matched unexposed controls. In children prenatally exposed to opioids 

morphometric analyses revealed volume reductions of the basal ganglia and several 

other regional brain measures compared to their matched controls. Impaired task 

performance and increased BOLD activation in prefrontal cortical areas was found in 

children with prenatal opioid exposure during a combined working memory-selective 

attention task as compared with unexposed controls. 

5.1 Metodological considerations 

In the following sections strengths and limitations of the study will be discussed to 

assess the generalizability and the validity of the results. 

5.1.1 Study design 

An observational study design is an important limitation when it comes to the 

interpretation of the results, as it precludes firm conclusions about causality. The 

associations between prenatal drug exposures and later brain changes as seen by 

structural and functional MRI of our study population are not necessarily causal. 

Possible effect of prenatal drug exposure on brain structure and function cannot be 

distinguished from those of several known and unknown factors differing between 

the exposed and control groups, a common challenge in all observational studies of 

drug-exposed children.135 Furthermore, cross-sectional MRI data cannot provide 

exact information on the developmental course of the brain alterations seen, and 

whether these findings represent permanent changes or alterations of normal growth 

trajectories. 
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5.1.2 Study population 

The inclusion of a hospital-based population of children with prenatal drug exposure 

in the present study has implications for the generalizability of the results, as it could 

have introduced a selection bias. One would expect behavioral and/or attention 

problems to be more frequent in our hospital-based population than in the general 

population of prenatally drug-exposed children, as many of the children included in 

the study were referred to the hospital-based on these problems in addition to a 

medical history of prenatal drug exposure. If behavioral and/or attention problems are 

related to structural and/ or functional brain changes due to prenatal drug exposures, 

one would expect such brain changes to be more frequent or pronounced in a 

hospital-based population. On the other hand, we do not know for certain if some of 

the most impaired children eligible for the study refused to participate, as we have no 

information regarding neuropsychological function or type of drug exposure for eight 

out of the 27 nonparticipants in the study. Furthermore, behavioral and/or attention 

problems could be related to brain alterations that are not affected by prenatal drug 

exposure. In this case brain alterations, as seen by MRI in our study, could all be 

explained by the fact that we compare a group of children with a high prevalence of 

ADHD and related problems with a healthy low-risk group. In this case ADHD could 

be a confounder, as discussed in 5.1.5.  

The results from paper I could probably be extended to other hospital-based 

populations of prenatally drug-exposed children where polysubstance exposure and 

unspecified drug exposure is a common feature. However, extending our results from 

the opioid-exposed groups in paper II and III to other groups of children with prenatal 

opioid exposure is not without issues, as selection bias could have influenced the 

positive associations between opioid-exposure and aberrant brain structure and 

function that were found.                             

The recruitment of our unexposed control group, based on date of birth, is a strength 

of the study, compared to other methods of recruitment, like advertisements or use of 

classmates which could have also introduced selection bias. The use of 1:1 sex- and 
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age-matched controls is an important strength, in particular in paper II, since changes 

in volumetric brain measures show heterogeneous sex- and age-related trajectories, 

including curvilinear trajectories, which make these factors difficult to control in 

statistical modeling.136,137 

5.1.3 “Mapping” the risk factor: Prenatal drug exposure 

Prenatal drug exposure was assessed by history without toxicology testing. 

Information was based on drug history from the mother or medical records (obstetric 

or pediatric) for the exposed groups and questionnaires filled in by the mothers for 

the controls. This could have introduced recall bias and rater bias with potential 

underreporting, or misclassification. Although reports on maternal drug use during 

pregnancy could be biased, we find it unlikely that any child included in the study 

was misclassified as prenatally drug-exposed. In paper II and III children were only 

included if prenatal opioid exposure, from maternal use of heroin or from opioids 

given as part of OMT, could be confirmed by information form their mother or in 

medical records. We find it unlikely that any of these children were misclassified as 

opioid-exposed, as opioids were the main “drug of choice” for all the mothers of 

these children. We also find it unlikely that any child in the control group was 

misclassified as unexposed, as all mothers in this group refused any use of medication 

or substance abuse during pregnancy. However, detailed information about type, 

frequency or amount of all drugs used during pregnancy, was not readily available for 

all participants in the exposed group. In addition, our study lacked reliable 

information about prenatal smoking. Thus, information regarding additional exposure 

to non-opioid drugs in the opioid-exposed groups must be considered uncertain. This 

is an important limitation of our study, as this uncertain degree of exposure to non-

opioid drugs restricted our possibility to control potential confounding effects on the 

associations between prenatal opioids and brain alterations in our statistical modeling 

(paper II and III), as discussed in 5.1.5. 
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5.1.4 MRI measures 

In the following section the different MRI-based outcome measures will be discussed, 

focusing on the choice of measures, limitations and reliability. 

Paper I: To assess cerebral MRI in a clinical context we used expert visual 

evaluation of the MRI scans. Although more advanced methods could have revealed 

more detailed information, simple visual analysis of MRI scans still represents the 

common method used in everyday clinical practice. The evaluation was done by a 

very experienced pediatric neuroradiologist. The fact that this rater was blinded to the 

participants’ background regarding prenatal drug exposure is an important strength, 

reducing possible rater bias. Only one expert evaluating the scans may be considered 

a weakness, as substantial inter-rater differences have been reported in studies using 

visual analysis of cerebral MRI scans.138 Differences in the observers’ choice of 

threshold between normal and abnormal may explain most of this inter-rater 

variability, in studies with more than one observer. As long as this threshold between 

normal and abnormal is equal in all the groups under study, group comparisons, like 

the present study, will not be influenced by such inter-rater disagreements. However, 

our ability to compare frequencies of cerebral changes detected in the drug-exposed 

group in paper I to similar changes reported in other populations is limited. Our 

finding of MRI pathology in more than 30% of the drug-exposed and unexposed 

groups, could also call into question the appropriateness of the term “MRI pathology” 

used to describe these findings. 

Paper II: To investigate cerebral volumetric characteristics, volumetric measures 

were obtained from T1-weighted MRI scans using FreeSurfer. Volumetric measures 

from FreeSurfer have been validated against manual segmentation129 and the method 

has been widely used in previous pediatric studies.114,139,140 Head motion during MRI 

acquisition can affect the automated volumetric estimates.141 It is however, unlikely 

that head motion artifacts could explain the observed group differences in volumetric 

brain measures, as there was no significant difference between exposed and 

unexposed children in the quality score given to the MRI scans based on the grade of 
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movement artifacts. To avoid introducing rater bias, no corrections were performed 

by manual editing after the semi-automated quality control of the segmentations.  

Paper III: Prenatal opioids have been consistently associated with high rates of 

attentional problems and ADHD in exposed children,59,60,66-68,78 also in studies trying 

to account for the impact of genetic vulnerabilities and postnatal environmental 

influences.59,66 Executive dysfunction is regarded a key factor in the complex 

neuropsychology of ADHD,142 and impaired executive functions have been 

demonstrated in children with prenatal opioid exposure.77 Working memory and 

selective attention are executive functions crucial for normal cognitive function, and 

most likely implicated in the neurodevelopmental impairments reported in prenatally 

opioid-exposed children. On this basis, an executive function task combining working 

memory and selective attention was chosen.  

To investigate possible group differences in brain activation patterns related to 

working memory and selective attention we compared the BOLD task-rest contrasts 

across groups. An important limitation that applies to all BOLD fMRI studies is the 

fact that the BOLD contrast is an indirect measure of neuronal activation. Regional 

changes in cerebral blood flow detected as a change in the MRI signal by means of 

changes in blood oxygenation are used as a proxy for measuring the activity of 

neurons.93 To which extent the differences in the BOLD signal between our study 

groups represents actual differences in neuronal activation as compared to other 

possible underlying mechanisms, like altered vascularization, therefore remains 

unknown. 

The reliability of BOLD fMRI data, particularly in children, is an important issue for 

this thesis. In general, BOLD activation maps have been shown to be fundamentally 

the same in normal children older than 8 years and adults.143 Image processing and 

analysis using the SPM12 software package (or earlier versions) has been widely 

used in previous pediatric samples.127,144-146 Typical whole brain fMRI analyses using 

voxel-based methods, like the present study, include more than 50.000 voxels, 

resulting in numerous statistical tests. Consequently, corrections for multiple 
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comparisons are important in all statistical analyses of fMRI data. Cluster-extent 

based thresholding was used in the present study.147 An important advantages of this 

method include increased sensitivity to group differences in small samples, as 

compared to more stringent methods, like voxel-level corrections using the 

Bonferroni correction.147 The effectiveness of cluster-extent based thresholding to 

correct for multiple comparisons in fMRI studies has recently been called into 

question,148 but the problem of inflated false positive rates, was mainly shown for 

more liberal primary cluster defining thresholds than the one used in our study (p < 

0.001). Using a more conservative method, like voxel-wise corrections, would 

decrease the risk of Type I errors (i.e. false alarms). However, at the same time the 

risk for Type II errors (i.e. missing true effects) would increase. The small sample 

and the explorative nature of the present study could justify a focus on the avoidance 

of Type II errors, as advocated by Lieberman and Cunningham in a highly cited 

paper.149 The use of a cluster-extent based threshold to correct for multiple 

comparisons also precludes inferences about specific anatomical regions within 

significant clusters to be made with confidence.147 If an activated cluster is large, one 

can only infer that there is signal somewhere within the cluster. Consequently, 

detailed discussion and comparisons of the anatomical localization of BOLD 

activations could not be performed based on our analyses. 

Task related BOLD activation patterns in our sample included parietal and prefrontal 

cortical areas. This finding supports the reliability of our results, as activation in these 

areas has been a common finding in fMRI studies of working memory and selective 

attention.150-152 

5.1.5 Confounding 

An extraneous variable that correlates both with the independent variable (i.e. 

prenatal opioid exposure), and the dependent variable (i.e. MRI-based outcome 

measure) under investigation could be a confounder. If the statistical modeling does 

not account for the confounder, a spurious association between the dependent 

variable and the independent variable will arise. In the present study, several possible 
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confounders in the relationship between prenatal opioids and brain measures obtained 

by MRI in paper II and III should be considered. The ability to account for several of 

these confounders in our statistical modeling was restricted by the small sample sizes 

and uncomplete or non-existing measures for some factors. Important possible 

confounders are discussed in the following section. 

Genetic factors: Twin studies have shown high heritability for subcortical brain 

measures,153,154 and brain activation as seen by fMRI has been shown to be under 

substantial genetic control.155 However, specific genetic variants influencing these 

brain measures are largely unknown.155,156 Our study had no measure suitable to 

control the potential influence of genetic vulnerabilities on volumetric or functional 

brain measures.   

Socio economic disparities: There is growing evidence from neuroimaging studies 

that early adverse experiences shape the developing brain.157 Structural and functional 

brain alterations associated with increased risk for cognitive and emotional 

maladjustments have been reported in children reared in maltreating family 

environments.157 Low SES has been associated with increased BOLD response in 

prefrontal cortical areas in the context of poorer performance on an executive 

function task.158 Family income and parental education have been linked to 

differences in brain structure,159 and reduced volumes of the striatum have been 

associated with childhood maltreatment.160 However, structural alterations in the 

amygdala and hippocampus have been most widely studied in children form low SES 

backgrounds, while alterations in basal ganglia regions have not typically been 

observed.157,161 In the present study no specific measurement of SES was obtained. 

All the opioid-exposed children included in paper II and III lived in stable family 

situations (either in foster care or adopted). Nonetheless, social and environmental 

differences between our study groups could have influenced structural and/or 

functional brain measures. 

ADHD: Two thirds of the opioid-exposed children included in paper II and III were 

diagnosed with ADHD. The question as to whether ADHD could be a confounder to 
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the observed associations between prenatal opioids and aberrant brain structure and 

function is therefore crucial for the interpretation of the results. However, the answer 

to this question is not straight forward. If associations between prenatal opioids and 

structural and functional brain alterations as seen in paper II and III are causal, these 

brain alterations could be mediators of possible opioid effects on the occurrence of 

ADHD. This would imply that adjusting our analyses for ADHD could potentially 

mask these causal effects of opioids leading to reduced brain volumes or altered brain 

function. On the other hand, both inherited and non-inherited factors are shown to 

contribute to ADHD, and no single risk factor is neither necessary nor sufficient to 

explain the disorder.162,163 Reduced brain volumes have been repeatedly reported in 

children with ADHD 94,164,165 however, these brain alterations are most likely 

unrelated to prenatal drug exposure in most cases. The estimated group differences in 

brain volumes found in paper II were mainly unchanged after adjustment for ADHD 

in addition to ICV and birth weight adjustments. Decreased BOLD activation in 

prefrontal cortical areas has been a consistent finding in numerous fMRI studies on 

children with ADHD across several different cognitive tasks.95,166 Contrary to this, we 

found increased prefrontal activation in our opioid-exposed group. No adjustments 

for ADHD were made in paper III, and the sample was too small for meaningful 

statistical analysis of subgroups.  

Exposure to non-opioid drugs: Due to the uncertain degree of exposure to non-

opioid drugs and the small sample, convincing statistical adjustments for possible 

confounding effects could not be performed. Possible influence of non-opioid drugs 

on the outcome measures in paper II and III could therefore not be quantified or ruled 

out. However, no children with FASD or known prenatal exposure to heavy maternal 

alcohol use were included in the studies of opioid-exposed children. The lack of data 

on prenatal smoking is a limitation to our study. However, we find it unlikely that 

prenatal smoking could explain reduced volumes of the basal ganglia in paper II, as 

no volume reductions of deep gray matter structures were found in a recent 

prospective study including 113 children prenatally exposed to tobacco.114 Very few 

studies have examined possible effects of prenatal smoking on brain activation 
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patterns. In a study of young adults with prenatal nicotine exposure greater activity in 

several brain regions, including the middle frontal gyrus were found compared to 

non-exposed controls, despite similar performance on a working memory task.167 

However, contrary to our results in opioid-exposed children, Bennet et al. found 

reduced prefrontal BOLD response in a sample of 7 tobacco-exposed 12-year-olds 

during working memory.146 

Birth weight: The unexposed controls were only included in the study if they had a 

normal birth weight (above the 10th percentile). In accordance with previous studies 

we found significantly lower birth weights in the opioid-exposed groups compared to 

controls in paper II and III, as preterm birth and low birth weight have been 

associated with prenatal opioids in several studies.6,28,29 However, it is difficult to 

know whether to conceptualize birth weight as a confounder or as a mediator. If 

prenatal opioids have a direct, causal effect on birth weight, low birth weight could be 

a mediator of possible opioid effects on the outcome variables in paper II and III. 

Reports of lower birth weight associated with higher dose of methadone or 

buprenorphine at delivery in opioid maintained pregnant women could support 

this.29,168,169 There is also evidence from animal research to support a causal effect of 

opioids on fetal growth.170 However, there are myriads of associated risk factors, like 

poor maternal nutrition, maternal infections, and co-exposure to non-opioid drugs, 

and it is still unclear if opioids have a direct, causal effect on human fetal growth.171 

Reduced brain volumes have been found in preterm and low birth weight children.172 

Influence of birth weight on volumetric brain measures has even been shown within 

the normal birth weight range in healthy term-born children.139 In paper II birth 

weight was included as a covariate in all analyses of brain volumes. The group 

differences shown in these analyses therefore indicate effect of opioids on brain 

volumes beyond the possible effects mediated by low birth weight. However, it is 

likely that the birth weight adjustment actually removed some of the possible effect 

of opioids on brain volumes. We did not attempt to adjust the between-group analyses 

of BOLD fMRI data for birth weight. We find it unlikely that the selection of a low 

birth weight group should explain the increased prefrontal activation seen in our 

opioid-exposed group, as decreased BOLD activation has been a consistent finding in 
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fMRI studies of preterm and low birth weight groups, including one study using the 

same fMRI paradigm as the one used in the current study.127 Birth weight has also 

been associated with neuropsychological functioning, including executive 

functions.173 The group difference in task performance found in paper III was no 

longer significant after birth weight adjustment. Birth weight as a mediator of the 

possible effect of opioid exposure on task performance could explain this finding. 

5.1.6 Statistical power 

Pre-study power calculations were not performed. Overall, a small sample size may 

have reduced our power to detect significant group differences, in particular in paper 

II and III. However, the number of prenatally opioid-exposed children included in the 

analyses of structural MRI in paper II (n = 16) was comparable to number of opioid-

exposed children included in previous studies, reporting significant differences 

between opioid-exposed and unexposed groups (n = 10–16).117,120 The number of 

prenatally opioid-exposed children included in analyses of BOLD response in paper 

III (n =11) was also similar to numbers of exposed children included in previous 

fMRI studies of children with prenatal exposure to alcohol, amphetamines, and 

tobacco (n = 7–23) reporting group differences in BOLD response during working 

memory.145,146,174,175 

5.2 Discussion of the results 

5.2.1 Paper I 

Gross structural brain abnormalities after prenatal drug exposure: The 

frequency of cerebral MRI pathology, as seen by expert visual analysis of the MRI 

scans, did not differ between the prenatally drug-exposed children and the unexposed 

controls. No brain changes specific to prenatal drug exposure was revealed by the 

means of simple visual analysis of cerebral MRI scans as the exposed children and 

their controls shared the same MRI findings. Comparing these results to previous 

studies is challenging, as most studies focus on specific drug effects, most often using 

more advanced quantitative methods, like computerized volumetric analyses.105,106  
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Although subgroups based on type of drug exposure were too small for meaningful 

statistical testing of potential group differences in paper I, the drug-exposed group 

was split into alcohol-exposed and opioid- and polysubstance exposed. Similar 

frequencies of MRI pathology were found in all groups. The literature is diverging 

regarding visual analysis of cerebral MRI scans of children with prenatal alcohol 

exposure. Gross structural abnormalities in up to 100% alcohol-exposed children 

have been reported,101 while other studies report such anomalies in less than 

10%.176,177 Our findings could support brain changes in alcohol-exposed children 

being mostly subtle and not detectable on simple visual analysis of MRI scans. The 

cerebellum seems to be among brain structures especially vulnerable to the adverse 

effects of prenatal alcohol, with several studies reporting atrophy or hypoplasia.99,100 

Reduced volume of the cerebellum in 25% alcohol-exposed children in our study 

could support this. Although several gross structural brain alterations have been 

reported in children prenatally exposed to drugs other than alcohol,106,123 most studies 

on prenatal opioids, the most common drug in our sample, have reported no gross 

brain anomalies.117,119 Overall, the results from our expert visual analyses of cerebral 

MRI scans suggest that most brain changes associated with prenatal drug exposure in 

the growing body of imaging literature seem to be limited to subtle changes. 

However, subtle structural brain alterations may have important functional 

consequences. 

Feasibility of MRI examinations in prenatally drug-exposed populations: In a 

hospital-based sample of children with heterogeneous drug exposure an increased risk 

of a wide spectrum of cognitive and behavioral problems ranging from severe mental 

retardation to attention problems and hyperactivity could be expected.18 These factors 

might influence the feasibility of performing a diagnostic MRI, without the use of 

sedation or general anesthesia. Cerebral MRI scans of acceptable quality for analyses 

were obtained in 34/43 (79%) of the drug-exposed children included in our study. In 

comparable studies, MRI scans were successfully obtained in 75 – 88% prenatally 

drug-exposed children of the same age range.116,117,178 However, comparing rates of 

scanning success is difficult, due to a wide range of different imaging protocols and 

differences in inclusion- and exclusion criteria among studies of drug-exposed 
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children. Overall, cerebral MRI seems to be feasible in most children with prenatal 

drug exposure at the age of 10-14 years, despite their wide range of cognitive and 

behavioral problems. 

5.2.2 Paper II 

Volumetric characteristics of the prenatally opioid-exposed brain: Analyses 

adjusted for ICV and birth weight revealed 6.5% smaller basal ganglia in prenatally 

opioid-exposed children compared to their matched controls. Further analyses also 

showed reduced thalamus and cerebellar white matter in the exposed group.  

Largely, these results support previous neuroimaging studies on prenatally opioid-

exposed populations. Only two previous studies examined specifically the association 

between prenatal opioid exposure and volumetric brain measures in children,117,120 

both of which reported reduced basal ganglia volumes. Among the individual basal 

ganglia nuclei, only the difference in caudate volume reached statistical significance 

in our analyses. In the study by Walhovd et al. volume reduction in various brain 

measures, including total brain volume were reported in the opioid- and 

polysubstance exposed group.117 Restricting their analyses to the subgroup exposed to 

opioids, only pallidum, putamen and lateral ventricles remained significantly reduced 

after adjustment for ICV.117 In the pilot study by Yuan et.al both basal ganglia 

volumes and total brain volumes were reduced in the group of neonates exposed to 

gestational opioids.120 No measurements of individual basal ganglia nuclei were 

obtained in that study. Unequal influences of possible confounders, including 

exposure to various non-opioid drugs, could possibly explain some of the 

discrepancies between the results in previous studies and our findings. The use of a 

sex- and age-matched control group in our study should be regarded an improvement 

in methodology, compared to previous studies. The finding of reduced basal ganglia 

volumes in the exposed group was based on our primary hypothesis. Further analyses 

must be regarded explorative, and differences found in these secondary analyses 

would not survive statistical corrections for multiple comparisons. Consequently, the 

finding of reduced volume of thalamus and cerebellar white matter should be 
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interpreted with caution. However, these findings suggest more widespread, albeit 

subtle effects of prenatal opioids on brain volumes, in line with the results form 

Walhovd et al.117  

Several possible interpretations of reduced regional brain volumes in the opioid-

exposed group in paper II are plausible. As already discussed, the observed effect of 

prenatal opioids on regional brain volumes could be epiphenomena of prenatal opioid 

exposure, explained by confounding factors and selection bias. However, detrimental 

effects of opioids on the developing fetal brain could not be ruled out as an 

explanation of reduced regional brain volumes in the exposed group. An abundance 

of data from animal and cell culture studies demonstrating adverse effects of opioids 

on brain development could support this.48,179 Possible mechanisms underlying a 

reduction in neuroanatomical volumes after prenatal opioid exposure include 

increased apoptosis of neurons and glia cells,180 decreased dendrite length and 

branching,181 altered cell migration,182 reduced neurogenesis,183 and alterations of 

growth factors.184 It has been demonstrated that opioids readily cross the human 

placenta to enter the fetal bloodstream.185,186 Both opioid receptors and opioid ligands 

are expressed in the fetal brain, and there is growing evidence for the endogenous 

opioid system as a regulator of neurogenesis, with inhibitory effects of opioids.187 

Thus, interference with this system by maternal opioid use could alter the normal 

maturation process of the developing brain.  

The functional consequences of reduced regional brain volumes in the opioid-

exposed group in paper II could not be addressed by the present study. However, the 

caudate, thalamus and cerebellum are all crucial parts of the neurobiological circuits 

involved in regulation of attention.188 Subtle attentional deficits mediated by reduced 

caudate volumes have been suggested in an MRI study of prenatally 

methamphetamine-exposed children.108 It is thus tempting to speculate that changes 

in the basal ganglia as a consequence of prenatal opioid exposure could contribute to 

attention deficits in children exposed to opioids in utero. However, Walhovd et al. did 

not find any correlation between basal ganglia volumes and attention problems as 
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assessed by the Child Behavior Checklist in their sample of opioid- and 

polysubstance exposed children.117 

5.2.3 Paper III 

Working memory, selective attention and BOLD activation after prenatal opioid 

exposure: In the two most cognitive demanding versions of the working memory-

selective attention task, increased BOLD activation in prefrontal cortical areas was 

found in the opioid-exposed group as compared to controls. The exposed group 

showed impaired task performance, although these group differences lost significance 

when analyses were adjusted for birth weight. 

To our knowledge, there are no previous fMRI studies examining possible 

associations between prenatal opioid exposure and brain activation patterns. 

However, similar to our finding in the opioid-exposed group, increased prefrontal 

BOLD activation during working memory tasks has been reported in several fMRI 

studies of children with histories of heavy prenatal alcohol exposure.145,175,189,190 In 

these studies varying degrees of behavioral differences between alcohol-exposed 

children and unexposed controls have been found. Less efficient task related 

networks or compensation for other less active regions have been suggested as an 

explanation to increased activation in alcohol-exposed children.175,190 Similar 

compensatory mechanisms could possibly explain our finding of increased prefrontal 

activation in the opioid-exposed group. On the other hand, several studies have 

reported working memory deficits with corresponding lower brain activation 

including prefrontal areas in groups of children with prenatal exposure to alcohol and 

methamphetamine.109,191 In a group of adolescents with prenatal exposure to cocaine 

and/or heroin subtle attentional challenges related to a reduced BOLD activity in 

frontal and cerebellar regions were found.192 Despite the fact that most of the opioid-

exposed children included in paper III were diagnosed with ADHD (64%), increased 

prefrontal BOLD activation was found, in contrast to the prefrontal hypoactivity that 

has consistently been reported in children with ADHD.95,166 It is tempting to speculate 

that these differences could reflect different neural correlates of ADHD in opioid-
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exposed and non-exposed groups. However, our sample was too small to allow for 

comprehensive statistical analyses of subgroups, and future studies are needed to 

elucidate these possible differences. 

The opioid-exposed group performed poorer on the executive function task used in 

our experiment compared to controls. This is in line with previous reports of impaired 

executive function in children with prenatal opioid exposure.77 Although a causal link 

between prenatal opioids and ADHD is not established, increased risk of attention 

problems and ADHD has been repeatedly reported in prenatally opioid-exposed 

groups.59,60,66 It is therefore not surprising that impaired executive function was found 

in the opioid-exposed group, as most of these children were diagnosed with ADHD, 

and executive dysfunction is associated with ADHD.142 However, group differences 

in task performance were in general small, and were no longer significant after 

adjustment for birth weight.  

The relationship between BOLD activation patterns, task performance and 

neuropsychological abilities is complex, and not fully understood. Previous studies 

have suggested that those with better neuropsychological abilities required fewer 

neural recourses to perform a working memory task.193 In line with this, better task 

performance in the control group of the present study was related to decreased BOLD 

activation. 

Like in paper II, there are several inevitable confounding factors difficult to account 

for in the study sample of paper III. The observed effect of prenatal opioids on brain 

activation patterns and performance on the executive function task could therefore be 

explained as epiphenomena of prenatal opioid exposure. However, adverse effects of 

prenatal opioids on the developing fetal brain may also have influenced brain 

function in the exposed group. Results from animal and cell culture studies could 

support this. Opioids can affect several neurotransmitters in the developing brain, and 

alterations in neurotransmission could possibly interfere with cognitive development 

in areas like memory, executive function, and attention.194 In animal models both 

cognitive and behavioral effects of prenatal opioid exposure have been 
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demonstrated.195,196 The endogenous opioid system has been shown to be crucial in 

the control of oligodendrocyte function and myelination.197 Interference with this 

system by maternal opioid use could thus alter the normal myelination process. Signs 

of altered myelination have also been found in DTI studies of prenatally opioid-

exposed children.118,122  In a rat model, prenatal morphine has been shown to reduce 

both cortical thickness and the number of neurons in the developing frontal cerebral 

cortex.170 Cortical thickness after prenatal opioid exposure has only been assessed in 

one human study, wherein Walhovd et al. found thinner cortex in prefrontal areas in 

school-aged children with prenatal opioid exposure.117 In summary, several biological 

plausible mechanisms of opioid effects on the developing fetal brain may have 

contributed to the functional brain alterations found in our sample of opioid-exposed 

children. 
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6. Conclusions 

This thesis revealed no increased risk of gross structural brain abnormalities in a 

hospital-based population of children with prenatal drug exposure, as there were no 

significant group differences in the frequency of brain changes on cerebral MRI scans 

detectable by expert visual analyses between drug-exposed children and sex- and age-

matched unexposed controls. 

In prenatally drug-exposed children with confirmed exposure to opioids, from 

maternal use of heroin or opioids given as part of OMT, subtle alterations in 

volumetric brain measures and changes in brain activation patterns as seen by fMRI 

were found.  

An association between reduced basal ganglia volumes and prenatal opioid exposure 

was found, as reduced regional brain volumes, including reduced volumes of the 

basal ganglia, were found in exposed children compared to their matched controls. 

There were no group differences in global brain measures (total brain, cortical gray 

matter and cerebral white matter). The functional consequences of regional brain 

volume reductions could not be addressed by the present study.  

An association between prenatal opioid exposure and impaired executive functioning 

with corresponding aberrant BOLD activation was found. The opioid-exposed group 

showed increased BOLD activation in prefrontal cortical areas during the most 

cognitive demanding versions of a working memory-selective attention task as 

compared to unexposed controls. Increased activation in the opioid-exposed group 

could represent compensatory mechanisms to less efficient task related networks.  

However, these results should be interpreted with caution, as the sample was small, 

and several inevitable confounding factors exist. 
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7. Implications and future perspectives 

Cerebral MRI is probably of limited value in the clinical assessment of children with 

histories of prenatal drug exposure in a hospital setting, where polysubstance 

exposure and unspecified drug exposure is a common feature. Based on paper I 

cerebral MRI should therefore not be recommended as part of a routine examination 

of these children unless otherwise clinically indicated. 

Research into possible long-term effects of prenatal opioid exposure is scarce, with a 

pressing need for longitudinal follow-up studies of exposed children. MRI-based 

brain imaging should be included in future studies to elucidate potential detrimental 

opioid effects on the developing fetal brain. Adverse effects of opioids may explain 

the associations between prenatal opioid exposure and brain alterations in children as 

seen by structural and functional MRI in paper II and III. However, further research is 

needed to explore the causal nature of these findings and to elucidate the functional 

consequences of the observed brain alterations.  

First of all, replication of our findings in larger populations better suited to account 

for potential confounding factors, especially co-exposure to non-opioid drugs, would 

be of great value. Preferably, population-based studies should be performed, as 

selection bias could have influenced the results from our hospital-based population. 

Furthermore, thorough neuropsychological examinations of future study populations 

would be beneficial to investigate structure-function relationships. To explore 

associations between prenatal opioids, brain structure, brain function, and ADHD, 

future studies would benefit form including unexposed control groups both with and 

without ADHD. 

To inform clinicians about optimal treatment of pregnant women with opioid use 

disorders and their children, knowledge about potential adverse effects of opioids 

used as part of OMT on fetal brain development is needed. The samples of opioid-

exposed children included in paper II and III were too small to allow for 

comprehensive statistical analyses of subgroups, like comparing children exposed to 
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OMT medication with those exposed to heroin. Consequently, larger MRI-studies of 

children born to mothers included in OMT during pregnancy are warranted, to study 

specifically potential effects of OMT medication on fetal brain development. 

Population-based studies with longitudinal design would be best suited to investigate 

such effects. If possible, samples large enough to compare MRI measures across 

groups exposed to different dosing of OMT medication should be included. A 

possible dose-response relationship could then be explored by comparing brain 

measures in children born to mothers who taper their OMT medication and children 

born to mothers on stable or increased doses through pregnancy. 
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Background:Both animal and human studies have suggested that prenatal opioid exposuremay bedetrimental to
the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with
prenatal opioid exposure have been reported in a few studies, and such changesmay contribute to neuropsycho-
logical impairments observed in exposed children.
Aim: To investigate the association between prenatal opioid exposure and brain morphology in school-aged
children.
Study design: A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children
and matched controls.
Subjects: A hospital-based sample (n=16) of children aged 10–14 years with prenatal exposure to opioids and
1:1 sex- and age-matched unexposed controls.
Outcome measures: Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer.
Results:Volumes of the basal ganglia, thalamus, and cerebellarwhitematterwere reduced in the opioid-exposed
group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral
cortex, and cerebral white matter volumes).
Conclusions: In line with the limited findings reported in the literature to date, our study showed an association
between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the devel-
oping fetal brain may explain this association. However, further research is needed to explore the causal nature
and functional consequences of these findings.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The effects of prenatal drug exposure are difficult to determine in
clinical studies due to a web of interconnected risk factors [1]. Increased
risk of neuropsychological dysfunction, such as impaired executive
functions and attention problems, has beenwidely reported in observa-
tional studies of childrenwith prenatal opioid exposure [2–5]. However,
such studies cannot isolate the effect of prenatal opioid exposure. In
some studies, neurodevelopmental differences between exposed and

unexposed children have been explained by social and environmental
risk factors and low birth weight [3,6].

An abundance of data from animal and cell culture studies have
demonstrated adverse effects of opioids on brain development [7]. Mor-
phine has been shown to induce apoptosis in human neurons and mi-
croglia in vitro [8], and increased neural apoptosis has been linked to
deficits in learning and memory after prenatal heroin exposure in
mice [9]. In addition, decreased dendrite length and branch number in
cortical neurons, decreased cortical thickness, alteredmyelin formation,
and decreased neurogenesis have been reported after prenatal opioid
exposure in rodents [10–13]. Harlan and Song found altered survival
and/or migration of neurons in opioid-exposed rat embryos, with the
most pronounced effect in the striatum [14]. It has been demonstrated
that opioids readily cross the human placenta to enter the fetal
bloodstream [15,16]. What remains unclear is whether negative effects
of opioids on the developing human brain contribute to the neuropsy-
chological impairments observed in prenatally exposed children.
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Over the past few decades, brain imaging studies have helped im-
prove our understanding of how prenatal drug exposure can impact
normal brain development, particularly by elucidating the teratogenic
effects of alcohol [17,18]. Moreover, two longitudinal studies on adults
have suggested that opioids can induce structural brain changes [19,
20], with volumetric changes in reward- and pain-related brain regions
observed after 1 month of daily morphine administration in patients
with chronic lowback pain. Reduced volumes of the nucleus accumbens
in heroin-dependent patients and of the amygdala in prescription opi-
oid-dependent patients have also been reported in cross-sectional stud-
ies [21,22]. However, there is a paucity of brain imaging studies in
children with prenatal opioid exposure [23].

Current knowledge of possible brain changes in children with intra-
uterine exposure to opioids is based on a few small-scale samples. In a
recent pilot study, 16 neonates with prenatal opioid exposure showed
reduced total brain and basal ganglia volumes, compared to population
values [24]. Altered white matter characteristics and reduced neuroan-
atomical volumes, particularly in the pallidum and putamen, were
found in a group of ten school-aged children prenatally exposed to opi-
oids [25,26]. However, strong conclusions from these studies cannot be
drawn, due to small sample and effect sizes and also due to important
confounders that were difficult to account for.

The aim of the present studywas to investigate brainmorphology in
a sample of prenatally opioid-exposed children using magnetic reso-
nance imaging (MRI). Based on prior research, we hypothesized that
prenatal opioid exposure would be associated with reduced volumes
of the basal ganglia. Our study is the first study on prenatally opioid-ex-
posed children to include a sex- and age-matched control group, which
is an important improvement in methodology, compared to previous
studies.

2. Material and methods

2.1. Participants

2.1.1. Opioid-exposed group
This study sample was derived from a larger group of children with

prenatal drug exposure who were referred to the pediatric department

at Haukeland University Hospital in Bergen, Norway, between 1997 and
2012. Children were identified as prenatally drug-exposed if they had
been admitted to the neonatal department due to maternal drug use,
inmost cases treated forwithdrawal symptoms, or if theywere referred
to a pediatric neurologist at a later agewith amedical history of prenatal
drug exposure and symptoms of attention and/or behavioral problems.
A total of 70 children, aged 10–14 years, with prenatal exposure to
alcohol, illicit drugs, or opioids given as part of opioid maintenance
treatment (OMT) were invited to undergo an MRI examination, as pre-
viously described [27]. For the present study cases where exposure to
opioids was not confirmed, whether from heroin abuse or from opioids
given as part of OMT, were excluded. Children with fetal alcohol spec-
trum disorders (FASD) were also excluded due to the well-established
effects of alcohol on brain volumes in this group [18]. Details on inclu-
sion/exclusion are given in Fig. 1. Of the initial 43 children who
consented to participate and underwentMRI scanning, after subsequent
and appropriate exclusions, 16 prenatally opioid-exposed childrenwith
MRI images considered to be of acceptable quality were included. Nine
of these 16 children had been admitted to the neonatal department
due to maternal drug use, and seven had been referred to a pediatric
neurologist at a later age. Reports from earlier follow-up of these 16
children showed average intelligence quotient (IQ) scores [mean
107.7, standard deviation (SD) 13.6, range 82–130], as assessed by
Wechsler Intelligence Scale for Children, fourth edition and Wechsler
Preschool and Primary Scale of Intelligence-R.

2.1.2. Matched control group
For each drug-exposed child included in the study, the first child of

the same gender born at Haukeland University Hospital on the same
date,with a birthweight above the10th percentile (≥3000 g),was invit-
ed to serve as the matched control. If they declined, the next child born
on the same date (or the nearest date) was contacted. According to
questionnaires filled out by their mothers, none of the included controls
were exposed to prenatal medication or substance abuse. Since MRI
data for three of the 16 originallymatched controlsweremissing, before
further image processing, these three “missing” controls were replaced
by available sex- and age-matched controls originally recruited in a sim-
ilar manner for children with FASD/children exposed to drugs other

Fig. 1. Flow chart showing the inclusion/exclusion of prenatally opioid-exposed children.
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than opioids. Thus, the final sample for this study consisted of 16 chil-
dren exposed to opioids in utero and 16 sex- and age-matched controls.

2.2. Prenatal drug exposure

Information about drug exposure was based on history, but given
the presence of heavy substance abuse, detailed information about the
frequency or amount of opioids used and the type of other drugs used
during pregnancy was not readily available. However, children were
only included in the study if prenatal opioid exposure could be con-
firmed, either in medical records (obstetric or pediatric) or by informa-
tion from their mother.

2.3. MRI data acquisition

MRI scanning was performed, without sedation, using a GE Signa
Exite HD 3.0 Tesla (Milwaukee,WI, USA)MRI scanner. TheMRI protocol
included a sagittal T1-weighted, three-dimensional (3D) fast spoiled
gradient recovery sequence (TI = 500 ms; TE = out of phase; slice
thickness 1.0 mm; scan time 10:34 min) and an axial T2-weighted se-
quence (TE = 100 ms; TR = 3000 ms; slice thickness 0.8 mm; scan
time 5:40 min).

2.4. Evaluation of magnetic resonance images: structural measures

All MRI scans (both T1- and T2-weighted) were inspected by an ex-
perienced pediatric neuroradiologist. Nomajor structural abnormalities
were found [27]. Scans with pronounced artifacts due to movement
and/or dental braces were excluded, as shown in Fig. 1. Of note, even
minimal headmotions duringMRI acquisition can affect the automated
volumetric estimates and may lead to underestimation [28]. A quality
score was given to all included scans, based on the grade of movement
artifacts, by an experienced radiologist blinded to the participants' back-
ground (1=nomotion; 2= very little; 3= some; 4=marked). There
was no difference in the quality score between the twomatched groups
(Wilcoxon signed rank test: Z=−1.70; exact p value= 0.12). In addi-
tion, T1 3D volumes were corrected for scanner gradient field non-line-
arities to reduce variance that could be caused by varying head
placement within the gradient field among participants [29]. Brain vol-
ume measures were obtained from the automated processing pipeline
of FreeSurfer (version 5.3; http://surfer.nmr.mgh.harvard.edu/). This
automated processing includes segmentation of the subcortical white
matter and deep gray matter volumetric structures and automated
parcellation of the cerebral cortex [30,31]. Total intracranial volume
(ICV) was estimated according to the method described by Buckner et
al. [32]. Volumetric measures from FreeSurfer have been validated
against manual segmentation and the method has been widely used
in previous pediatric studies [30,33–36]. The quality of the subcortical
segmentations was evaluated by use of a semi-automated approach
(http://enigma.ini.usc.edu/). In addition, for volumes with the highest
quality score for movement artifacts, careful visual inspection of the
segmentations was performed. None of our study cases were excluded
from analysis due to segmentation error.

2.5. Additional measures

Somatic growth parameters (height, weight, and head circumfer-
ence) were obtained prior to MRI scanning. Background and clinical
characteristics were obtained from medical records and/or question-
naires filled out by parents or foster parents.

2.6. Statistical analyses

Descriptive statistics were reported using the mean and standard
deviations (SD). For demographic and clinical variables, differences be-
tween the 1:1 matched groups were tested with the paired t-test or

McNemar's test, as appropriate. Group differences in volumetric brain
measures were tested using a linear mixed model to take into account
the dependency of observations frommatched pairs [37]. Brain volumes
were entered as dependent variables, with random effect of matching.
Firstly, a hypothesis-driven analysis was performed with the volume
of the basal ganglia as the dependent variable. Secondly, explorative
analyses were performed with the additional brain volumes from the
automated segmentation as dependent variables, using the same
model. Birth weight and estimated ICV were entered as covariates in
all analyses (with the exception of the analysis of differences in ICV
thatwas only adjusted for birthweight). Finally, analyseswere repeated
and adjusted for thepresence of attention-deficit/hyperactivity disorder
(ADHD). Since there were no hypotheses of differential effects in the
two cerebral hemispheres, the sum of the left and right volumes was
used for paired structures. All significance tests were two-sided, and a
significance level of 5% was set. Statistical analyses were performed
using IBM SPSS Statistics version 23.

2.7. Ethics

The project was approved by the Regional Ethics Committee for
Medical Research in Western Norway (REK-Vest 2010/3301). Written
consent was obtained from parents or foster parents and Child Welfare
Services, as appropriate, for all participants. Written consent was also
obtained from all children above the age of 12 years, and verbal consent
from participants younger than 12 years.

3. Results

3.1. Sample characteristics

Demographic and clinical characteristics of the study sample are
shown in Table 1. Somatic growth parameters obtained prior to MRI
scanning, including head circumference, did not differ between the
two groups. Birth weight was lower in the opioid-exposed group.
Therewas a high prevalence of ADHD in the exposed group (69%), com-
pared to the control group (6%). All opioid-exposed children included in
the study either lived in foster care or were adopted. Seven children in
the exposed group were born to mothers undergoing OMT, whereas
nine children were born to mothers with a history of heroin abuse dur-
ing pregnancy. Prenatal exposure to drugs other than opioids was re-
ported in 11 of 16 (69%) opioid-exposed children: benzodiazepines in
eight (50%), cannabis in four (25%), amphetamines in four (25%), and al-
cohol in one (6%). Ten children in the exposed group were reported to
have symptoms of neonatal abstinence syndrome (NAS), of whom
seven had been medically treated for these symptoms.

3.2. Neuroanatomical volumes

Brain volumes obtained from automated segmentation and results
from linear mixed model analyses, used to test differences in brain vol-
umes between the two groups, are shown in Table 2. The combined vol-
ume of the basal ganglia (accumbens + caudate + putamen +
pallidum) was significantly reduced in the opioid-exposed group in the
analysis adjusted for estimated ICV and birth weight. Among the individ-
ual basal ganglia nuclei, only the difference in caudate volume reached
statistical significance. Furthermore, the volumes of the thalamus and cer-
ebellar white matter were reduced, whereas there were no differences in
ICV or global brain measures (total brain, cerebral cortex, cerebral white
matter volumes). Relative to controls, exposed children had 6.5% smaller
basal ganglia, 9.2% smaller caudate, 7.6% smaller thalamus, and 10.3%
smaller cerebellar white matter (differences calculated from estimated
marginal means). Fig. 2 shows individual differences in basal ganglia vol-
umes for the 16matchedpairs of exposed children and controls. Of note, a
smaller volume in the exposed child was found in 13 of the 16 matched
pairs. When analyses were adjusted for ADHD, in addition to ICV and
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birth weight adjustments, statistically significant group differences were
found in volumes of the basal ganglia (p = 0.023), thalamus (p =
0.019), and cerebellar white matter (p= 0.019), whereas the difference
in caudate volume lost statistical significance using this model (p =
0.056). Estimated group differences were marginally larger after this ad-
justment, with reduced volumes in the exposed group, but with wider
95% confidence intervals (data not shown). We attempted to control for
the presence of poly-drug exposure in our sample. The opioid-exposed
group was split into two: (I) children without reported exposure to
drugs other than opioids (n= 5) and (II) children with additional expo-
sure to one or more non-opioid drugs (n = 11). We obtained estimated
group differences in the expected direction, with smaller volumes for
the basal ganglia, caudate nucleus, thalamus, and cerebellar whitematter
in both exposed groups, as compared to controls, but these group differ-
ences were not statistically significant. Details about these analyses and
results are shown in Supplementary Table 1.

4. Discussion

Results from this study support our hypothesis for an association be-
tween reduced basal ganglia volumes and prenatal opioid exposure, as
analyses adjusted for ICV and birth weight revealed 6.5% smaller basal
ganglia in exposed children, compared to their matched controls.
Furthermore, results showing reduced thalamus and cerebellar white
matter volumes observed in the exposed group also suggestmorewide-
spread, albeit subtle, group differences.

Although evidence for structural brain changes in children prenatal-
ly exposed to substance abuse is accumulating [17], only two previous

studies examined specifically the association between prenatal opioid
exposure and volumetric brain measures in children [24,25], both of
which reported reduced basal ganglia volumes. A third study included
preschool children born to women using opioid and/or poly-drugs
who were hospitalized and detoxified during pregnancy. No significant
neuroanatomical differences were found between these children and a
non-risk comparison group [38], although the authors speculated that
reduced drug exposure as a result of detoxification could have influ-
enced the neuroanatomical volumes. Only one of these previous studies
included school-aged children born to mothers with opioid dependen-
cy. In this study Walhovd et al. reported a volume reduction in various
brain measures, including total brain volume in the opioid-exposed
group [25]. After adjustment for ICV, only the pallidum, putamen, and
lateral ventricle volumes remained significantly reduced. Unequal influ-
ence of possible confounders that are difficult to account for in such
small samples, including exposure to various other drugs, could possibly
explain some of the discrepancies between the results from these stud-
ies and our findings.

Possible mechanisms underlying a reduction in neuroanatomical
volumes after prenatal opioid exposure, as suggested by cell culture
and animal studies, include increased apoptosis of neurons and glia
cells, decreased dendrite length and branching, altered cell migration,
and reduced neurogenesis [8,10,13,14]. Both opioid receptors and
opioid ligands are expressed in the fetal brain, and there is growing ev-
idence for the endogenous opioid system as a regulator of neurogenesis,
with inhibitory effects of opioids [39]. Findings from a recent study, in
which μ-opioid receptor knockout mice displayed regional increases in
the graymatter, could support this [40]. The endogenous opioid system

Table 1
Sample characteristics for 16 prenatally opioid-exposed children and their sex- and age-matched controls.

Exposed group (n = 16) Control group (n = 16)

Variable, statistic Range Range p

Males, n (%) 9 (56) n/a 9 (56) n/a –
Age at scan (months), mean (SD) 143.6 (12.2) 116–160 143.6 (12.8) 116–160 –
Birth weight (g), mean (SD) 3026 (470) 2330–4010 3665 (430) 3070–4380 0.001
Head circumference (cm), mean (SD) 54.2 (1.9) 49.0–57.0 54.8 (1.7) 51.5–58.2 0.402
Height (cm), mean (SD) 151 (12.1) 121–169 150 (9.3) 130–167 0.811
Weight (kg), mean (SD) 41.2 (11.5) 22.8–64.5 45.4 (10.7) 29.3–68.8 0.223
ADHD, n (%) 11 (69) n/a 1 (6) n/a 0.002

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; n/a, not applicable; SD, standard deviation; p= p values for groupdifference (controls vs. exposed) frompaired t-test (con-
tinuous variables) and McNemar's test (categorical variables).

Table 2
Brain volumes with estimated group differences in 16 prenatally opioid-exposed children and 1:1 sex- and age-matched controls.

Exposed group (n = 16) Control group (n = 16)

Volume (ml)a) Mean SD Range Mean SD Range Mean differenceb) 95% CI p

ICV 1521.48 148.23 [1119.48, 1726.12] 1525.41 128.54 [1322.62, 1713.91] −80.32 (−208.62, 47.98) 0.207
Total brain 1203.23 126.69 [886.75, 1350.00] 1250.09 97.13 [1085.32, 1427.09] 24.66 (−22.10, 71.43) 0.285
Cerebral cortex 558.55 62.35 [441.66, 24.93] 585.78 44.50 [515.10, 660.73] 11.50 (−22.52, 45.52) 0.488
Cerebral WM 428.55 58.62 [276.70, 520.68] 437.35 46.34 [353.08, 522.48] −0.78 (−23.50, 21.94) 0.944
Basal gangliac) 23.10 2.40 [19.46, 27.19] 24.77 2.64 [19.72, 29.57] 1.60 (0.20, 3.01) 0.027
Accumbens 1.25 0.20 [0.94, 1.63] 1.40 0.25 [1.06, 1.85] 0.05 (−0.13, 0.23) 0.539
Caudate 7.40 1.16 [5.58, 10.13] 8.08 0.99 [6.41, 9.90] 0.75 (0.03, 1.46) 0.042
Putamen 11.40 1.36 [9.48, 13.53] 12.16 1.36 [9.51, 14.85] 0.82 (−0.14, 1.77) 0.090
Pallidum 3.06 0.41 [2.35, 3.71] 3.13 0.46 [2.16, 4.08] 0.18 (−0.15, 0.51) 0.274
Thalamus 14.71 1.95 [10.88, 16.98] 15.73 1.57 [13.78, 19.02] 1.21 (0.10, 2.32) 0.035
Hippocampus 8.35 0.93 [5.72, 9.65] 8.98 0.76 [7.44, 10.39] 0.51 (−0.07, 1.09) 0.079
Amygdala 2.95 0.35 [2.35, 3.59] 3.26 0.41 [2.50, 4.40] 0.20 (−0.11, 0.52) 0.196
Brainstem 19.01 2.67 [14.21, 22.92] 19.49 1.47 [16.57, 21.87] 0.53 (−0.63, 1.70) 0.353
Cerebellar WM 26.39 2.77 [20.85, 33.21] 28.82 3.22 [23.10, 34.13] 3.00 (0.57, 5.44) 0.018
Cerebellar cortex 119.11 11.10 [95.59, 140.00] 121.88 9.25 [107.59, 142.09] 1.98 (−4.62, 8.59) 0.536
Lateral ventricles 8.53 4.79 [2.48, 15.55] 9.39 5.61 [2.53, 24.04] 1.85 (−2.35, 6.05) 0.368
3rd ventricle 0.76 0.27 [0.30, 1.37] 0.84 0.32 [0.48, 1.60] 0.02 (−0.25, 0.29) 0.891
4th ventricle 1.42 0.65 [0.64, 3.12] 1.67 0.66 [0.97, 3.30] 0.15 (−0.49, 0.79) 0.636

Abbreviations: CI, confidence interval; ICV, intracranial volume; SD, standard deviation; WM, white matter; a) for paired structures total volumes (left + right) are shown; b) estimated
mean difference between the groups (positive values indicate a smaller volume in the exposed group) with 95% CI and p values (bold: p b 0.05) from linear mixed model analyses, with
brain volume as dependent variable, matched pairs as random effect variable, and ICV and birth weight as covariates; c) basal ganglia = accumbens + caudate + putamen+ pallidum.
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has also been shown to be crucial in the control of oligodendrocyte func-
tion and myelination, and interference with this system by maternal
opioid use could alter the normal maturation process of the developing
brain [11].

Although via differentmechanisms, all drugs of abuse increase dopa-
mine release in the nucleus accumbens [41]. Alterations of dopaminer-
gic systems in the fetal brain could consequently be induced by all these
drugs, and dopamine has been shown to play an important role in nor-
mal brain development [42]. The dopamine-rich basal ganglia seem to
be among the brain structures particularly vulnerable to the adverse ef-
fects of prenatal alcohol exposure [18,34,35]. Prenatal exposure to both
amphetamine and cocaine has been associatedwith reduced volumes of
basal ganglia nuclei in children [43,44]. Results from a volumetric MRI
study in children with intrauterine exposure to cocaine, alcohol, tobac-
co, andmarijuana suggested that these drugsmay act cumulatively dur-
ing gestation to exert long-lasting effects on brain volumes [45]. Taken
together with our results, all these findings suggest that several drugs
of abuse share a specific profile of neurotoxicity during brain
development.

Previous studies have described an association between maternal
opioid abuse and dependency and an increased risk of premature
birth and impaired fetal growth [46,47]. Reduced brain volumes have
been reported in children born prematurely/with low birth weight
and in term-born children with intrauterine growth restriction [48,
49]. Even in healthy term-born children, an association between birth
weight and morphometric brain characteristics has been shown [36].
Interestingly, our results indicate effects of opioids on brain volumes be-
yond the possible effects mediated by low birth weight, as birth weight
was included as a covariate in our analyses.

Whether reduced regional brain volumes in opioid-exposed chil-
dren relate to neuropsychological impairments could not be addressed
by the present study. However, the basal ganglia, previously considered
to have largely motor functions, seem to be important for a wide range
of cognitive and behavioral functions [50]. The caudate, thalamus, and
cerebellum are all crucial parts of the neurobiological circuits involved
in regulating attention [51]. In youthwith prenatal alcohol exposure, re-
duced volumes of the caudate nuclei have been shown to predict de-
creased cognitive control and verbal learning performance, and
smaller basal ganglia volumes have been associated with lower IQ
scores in patients with FASD [35,52]. Subtle attentional deficits mediat-
ed by reduced caudate volumes have been suggested in children with

prenatal exposure to methamphetamine [43]. In our study, given that
the exposed group had average IQ scores, we believe an association be-
tween reduced basal ganglia volumes in this group and a clinically sig-
nificant decrease in general cognitive abilities would be unlikely.
However, possible associations with more subtle neurocognitive im-
pairments and attention deficits should be investigated in future
studies.

An important strength of our study is the inclusion of a sex- and age-
matched control group, since changes in volumetric brain measures
show heterogeneous sex- and age-related trajectories, including curvi-
linear trajectories, whichmake these factors difficult to control in statis-
tical modeling [53]. Another strength is the recruitment of controls
based on the time of birth, compared to other methods of control re-
cruitment, including the use of advertisements or recruiting classmates
which could introduce potential selection bias.

A limitation of our study is that our cross-sectional design precludes
firm conclusions about causality, even if a causal relationship between
prenatal opioid exposure and reduced brain volumes is plausible. The
effect of prenatal opioid exposure cannot be distinguished from those
of several known and unknown factors differing between the exposed
and control groups. Some of the most obvious factors include genetic
vulnerabilities and psychosocial and lifestyle factors associated with
maternal substance abuse. Twin studies have shown high heritability
for subcortical brain measures [54]. However, part of the variance in
these measures also seems to be explained by environmental influ-
ences. Both parental education and family income have been linked to
differences in brain structure [55], and childhood maltreatment has
been associated with altered brain morphology, including reduced vol-
umes of the striatum [56]. In our study sample, all opioid-exposed chil-
dren lived in stable family situations (either in foster care or adopted).
Nonetheless, social and environmental differences between our study
groups could possibly explain some of the observed differences in
brain volumes. Future studies would benefit from including control
groups better matched for factors like living conditions, family income,
and parental education.

When studying a hospital-based population, one might expect chil-
dren with the most severe cognitive and behavioral problems to be se-
lected. If these problemswere related to structural brain changes due to
prenatal opioid exposure, one would expect a higher frequency of such
brain changes in a hospital-based population. Therefore, extending our
results to other groups of children with prenatal opioid exposure is
notwithout issues, as it is possible selection biasmight have contributed
to the observed differences.

Reduction in basal ganglia volumes has been a consistent finding in
childrenwith ADHD [57,58]. This could raise the question of whether all
the differences observed in our study could be explained by the fact that
we compared a group of children with a high prevalence of ADHD and
its related problems with a healthy, low-risk control group. However,
estimated group differencesweremainly unchanged in our analyses ad-
justed for ADHD. Although ADHD is highly heritable [59], several non-
inherited factors, including prenatal substance abuse, have also been
implicated as risk factors [60]. A recent study including opioid-depen-
dent parents and their children reported higher rates of ADHD among
the children than among their parents [61]. Higher rates of ADHD
among children born to opioid-dependent mothers, compared with
children of opioid-dependent fathers, suggested that prenatal opioid ex-
posuremight lead to an increase in the rate and severity of ADHD [61]. It
is tempting to speculate that changes in the basal ganglia as a conse-
quence of prenatal opioid exposure contribute to ADHD and its related
problems in children exposed to opioids in utero. This would imply
that adjusting for ADHD could potentially mask this causal effect of opi-
oids leading to reduced basal ganglia volumes. In future research, inclu-
sion of unexposed control groups both with and without ADHD,
together with neuropsychological assessment, would help to elucidate
the associations between basal ganglia volumes, ADHD, and prenatal
opioid exposure.

Fig. 2. Individual differences in basal ganglia volumes from1:1matched controls for the 16
prenatally opioid-exposed children, shown as % of control values. A negative value
indicates a smaller volume in an exposed child. All basal ganglia volumes were
normalized to the intracranial volumes.
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Like in previous studies, most opioid-exposed children in our study
sample were exposed to multiple drugs. As information about drug ex-
posure was based on history without toxicological testing, the amount
of polysubstance exposure is likely to be underestimated [62]. The pos-
sibility to control for exposure to drugs other than opioids in our statis-
tical modeling was restricted by the small sample and the uncertain
degree of exposure to non-opioid drugs. Therefore, possible influence
of drugs other than opioids cannot be ruled out. However, in our
study, only children with confirmed exposure to opioids were included
and childrenwith FASDwere excluded. In addition, our study lacked re-
liable data for prenatal smoking. A recent prospective study including
113 children prenatally exposed to tobacco demonstrated an associa-
tion between prenatal smoking and altered brainmorphology, although
volumes of deep gray matter structures were not reduced, compared to
controls, after adjustment for total brain volume [33].

Finally a small sample size may have reduced our power to detect
significant differences, and the samplewas too small for comprehensive
statistical analyses of subgroups (e.g. children to mothers undergoing
OMT). The finding of reduced basal ganglia volumes in the exposed
group was based on our primary hypothesis. Other group differences
should be interpreted with caution, as differences found in these sec-
ondary analyses would not survive statistical corrections for multiple
comparisons.

5. Conclusion

In linewith the limitedfindings reported in the literature to date, our
study demonstrated an association between prenatal opioid exposure
and reduced regional brain volumes in children. Adverse effects of opi-
oids on the developing fetal brain may explain this association. This
could have implications for how opioid-dependent pregnant women
should be treated in the best interests of both the mother and her un-
born child. However, further research is needed to explore the causal
nature of this association and to elucidate the functional consequences
of the observed brain alterations.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.earlhumdev.2017.01.009.
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ABSTRACT  

 

Background: Opioid induced cerebral changes may contribute to neuropsychological 

difficulties, like attention problems, frequently reported in prenatally opioid-exposed 

children. Reduced regional brain volumes have been shown after prenatal opioid exposure, 

but no study to date has explored the possible impact of prenatal opioids on brain activation 

patterns. 

Methods: A hospital-based sample of prenatally opioid-exposed school-aged children (n = 

11) and unexposed controls (n = 12) underwent functional Magnetic Resonance Imaging 

(fMRI) during a combined working memory-selective attention task. Within-group- and 

between-group analyses of blood-oxygen-level-dependent (BOLD) activation were 

performed using the SPM12 software package and group differences in task performance 

were analyzed using Cox proportional hazards modeling. 

Results: Overall, similar patterns of task related parietal and prefrontal BOLD activations 

were found in both groups. The opioid-exposed group showed impaired task performance, 

and during the most cognitive demanding versions of the working memory-selective attention 

task, increased activation in prefrontal cortical areas was found in the opioid-exposed group 

compared to controls. 

Conclusion: Our findings suggest that prenatal opioids affect later brain function, visible 

through changes in BOLD activation patterns. However, results should be considered 

preliminary until replicated in larger samples better suited to control for potential 

confounding factors.  
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Introduction 

Recent studies on the prevalence of neonatal abstinence syndrome (NAS), a common 

consequence of prenatal opioid exposure, indicate a worldwide increase in the number of 

children exposed to opioids in utero (1). Consequences of prenatal opioid exposure beyond 

NAS are still debated (2,3) and the research base is scarce, especially when it comes to 

possible long term effects (4). A web of interconnected risk factors complicates the 

interpretation of repeatedly reported suboptimal neurocognitive outcomes in prenatally 

opioid-exposed children (5-7). 

Both cognitive and behavioral effects of prenatal opioid exposure have been 

demonstrated in animal models (8). Possible mechanisms underlying altered brain function, 

as suggested by cell culture and animal studies, include increased apoptosis of neurons and 

glia cells (9), altered neuronal differentiation (10), and altered myelination (11). Both opioid 

receptors and opioid ligands are expressed in the fetal brain, and there is growing evidence of 

the endogenous opioid system as a regulator of neurogenesis, with inhibitory effects of 

opioids (12). Opioids can affect several neurotransmitters in the developing brain, and 

alterations in neurotransmission could possibly interfere with cognitive development in areas 

like memory, executive function, and attention (13). However, it is still unclear whether 

negative effects of opioids on the developing fetal brain contribute to the neuropsychological 

impairments observed in prenatally exposed children. 

Results from a recent longitudinal brain imaging study suggested that several early 

life factors have an impact on brain and cognition for the entire life course (14). 

Neuroimaging studies have made important contributions to our understanding of how 

prenatal drug exposures can affect normal brain development, and evidence of brain 

structures and patterns of functional activation being altered in exposed children is 

accumulating (15). However, very few studies have investigated possible brain alterations 
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after prenatal opioid exposure. Structural brain changes in opioid-exposed children have been 

reported in a few small-scale samples, including one report on ten children born to mothers 

with histories of heroin abuse during pregnancy that showed subtle alterations in structures 

involved in frontal-striatal circuitry (16). Confounding factors difficult to account for in such 

small samples preclude firm conclusions, but some of the changes could still be linked to 

attentional difficulties in the exposed group (16). To date, no studies have examined possible 

effects of prenatal opioid exposure on brain activation patterns. 

The aim of the present study was to investigate brain activation patterns in school-

aged children with prenatal opioid exposure using functional magnetic resonance imaging 

(fMRI). In children with prenatal drug exposure very high rates of attention-

deficit/hyperactivity disorder (ADHD) have been reported, regardless of the type of drug 

exposure (17), and  increased risk of attention problems and ADHD has been widely reported 

in prenatally opioid-exposed groups (7,18,19). Associations between attention problems and 

prenatal opioid exposure have also been found in studies trying to account for the impact of 

genetic vulnerabilities and postnatal environmental influences (7,18). Executive dysfunction 

is regarded a key factor in the complex neuropsychology of ADHD (20), and impaired 

executive functions have been demonstrated in children with prenatal opioid exposure (21). 

In the present study, a task combining working memory and selective attention was chosen. 

These are executive functions crucial for normal cognitive function, and most likely 

implicated in the neurodevelopmental impairments reported in prenatally opioid-exposed 

children. We hypothesized that prenatally opioid-exposed children would show impaired task 

performance with corresponding differences in blood-oxygen-level-dependent (BOLD) 

activation as compared with unexposed controls. 

 

Methods 
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Participants 

The opioid-exposed group was derived from a larger group of children with prenatal 

drug exposure referred to the pediatric department at Haukeland University Hospital in 

Bergen, Norway, between 1997 and 2012. A total of 70 children, aged 10–14 years, identified 

as prenatally drug-exposed, were invited to undergo an MRI examination, as previously 

described (22). Children were identified as prenatally drug-exposed if they had been admitted 

to the neonatal department due to maternal drug use, in most cases treated for withdrawal 

symptoms, or if they were referred to a pediatric neurologist at a later age with a medical 

history of prenatal drug exposure and symptoms of attention and/or behavioral problems. 

Among the initial 43 children who agreed to participate, 20 children were exposed to opioids, 

either from heroin abuse or from opioids given as part of opioid maintenance treatment 

(OMT), and were therefore included in the present study. Information regarding exposure 

was based on history, but given the presence of heavy substance abuse, detailed information 

about the frequency or amounts of opioids and the type of other drugs used during pregnancy 

was not readily available. However, children were only included in the study if prenatal 

opioid exposure could be confirmed, either in medical records (obstetric or pediatric) or by 

information from their mother.  

Sex- and age-matched unexposed controls were recruited based on date of birth as 

described in a previously published article (22). For the 20 opioid-exposed children included, 

only 17 controls were successfully recruited, hence 20 exposed children and 17 control 

children underwent MRI-scanning. Eight children (five opioid-exposed and three controls) 

were excluded from analyses due to abortion of the fMRI-protocol by the child. In addition, 

scans from two opioid-exposed children and two controls had to be excluded due to head 

movement artifacts (> 5 mm translation in any of the four experimental conditions) and scans 

from two opioid-exposed children were excluded due to dental braces distorting the images. 
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Thus, the final sample for this study consisted of 11 prenatally opioid-exposed children and 

12 unexposed controls. Response logging failed for one participant (unexposed control) 

during fMRI. As in scanner observational data revealed appropriate task performance, data 

from this participant was still included in the analyses of the BOLD fMRI data, while 

analyses of task performance were run with n = 11+11. 

All structural images were inspected by an experienced pediatric neuroradiologist. No 

major structural abnormalities were found. Somatic growth parameters (height, weight, and 

head circumference) were obtained prior to MRI scanning. Background and clinical 

characteristics were obtained from medical records and/or questionnaires filled in by parents 

or foster parents. Reports from earlier follow-up of the 11 children in the opioid-exposed 

group showed mean intelligence quotient (IQ) score of 110.6 (SD: 13.9, median: 111, range: 

82–130), as assessed by Wechsler Intelligence Scale for Children, fourth edition and 

Wechsler Preschool and Primary Scale of Intelligence-R. 

The project was approved by the Regional Ethics Committee for Medical Research in 

Western Norway (REK-Vest 2010/3301). Written consent was obtained from parents or 

foster parents and Child Welfare Services, as appropriate, for all participants. Written consent 

was also obtained from all children above the age of 12 years, and verbal consent from 

participants younger than 12 years. 

 

fMRI-task 

A working memory-selective attention task combining the n-back task and the Stroop 

color word task was used (23,24). The protocol of the present study has been used earlier by 

our group in a study on extremely preterm children. See ref. (25) for the complete description 

of the procedure. In short, the words RED, BLUE, GREEN, and YELLOW, each written in 

the three incongruent colors (e.g. red written in blue, green, or yellow) were presented 
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sequentially through LCD goggles mounted on the head coil. The participants were asked to 

press a response key when either the word or the ink color of the word matched the one 

presented either 1- or 2-stimuli backwards in the presentation sequence, yielding four 

different experimental conditions (word 1-back, word 2-back, color 1-back, color 2-back). 

These four experimental conditions were presented in a pseudorandom order to avoid any 

order effects. A block design with alternating ON and OFF blocks was used, with four ON 

blocks and four OFF blocks in each of the four conditions. In each ON block, three to five 

target stimuli were randomly presented within a sequence of 16 stimuli in total, each 

presented for 2250 ms. All participants were introduced to the procedure through a short 

computer program test sampling all four research conditions, and effort was made to be sure 

the instructions were comprehended before entering the scanner. 

 

MRI data acquisition 

Structural and functional images were acquired on a GE Signa Excite HD 3.0 Tesla 

(Milwaukee, WI, USA) MRI scanner. A high-resolution three-dimensional T1-weighted 

structural image was collected sagittally for co-registration with functional data using a fast 

spoiled gradient recovery sequence (TR = 8 ms; TE = out of phase; FA 11°; 256 × 256 

matrix; FOV = 256 mm; slice thickness 1.0 mm). Functional images were collected axially 

using an Echo Planar Imaging (EPI) sequence with the following parameters: TR = 3000 ms, 

TE = 30 ms, FA 90°, 128 × 128 matrix, FOV = 220 mm, no. of slices 38, slice thickness 3 

mm with 0.5 mm skip, voxel size 1.72 × 1.72 × 3.5 mm. Fourteen EPI scans per 8 blocks, 

arranged in a task - rest - task manner, making a total of 112 scans, were analyzed for each of 

the four conditions (five initial dummy scans were discarded before data analysis). Total scan 

time was approximately 45 min. 
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Data analysis 

Sample characteristics and task performance 

For descriptive statistics, the mean and SD is reported, as well as counts and 

percentages. Although the two study groups were primarily 1:1 matched for sex and age, the 

groups were treated as independent in our analyses, as matching was disrupted by appropriate 

exclusions of more than one third of the participants as described in the “Participants” 

section. Comparisons of continuous variables and dichotomous variables between groups 

were done with Gosset’s independent t-test and Fisher’s exact mid-p test respectively. During 

fMRI, the participants were instructed to respond to certain target stimuli, and time to correct 

answer was recorded. To allow for both response accuracy and reaction time to be modeled 

simultaneously, time to correct task response was analyzed using the Cox proportional 

hazards model. For each target stimuli, time to correct answer was registered, with maximal 

response time (2250 ms) registered if a correct response was not obtained. If there was not a 

correct answer, the time to response was considered to be censored as opposed to uncensored 

when the correct answer was obtained. Altogether 1430 observations were included in these 

analyses (65 target stimuli × 22 children). As each child responded to multiple target stimuli a 

frailty term for child was included. Primary exposure of interest was a group variable coded 0 

for opioid-exposed children and 1 for controls. The results are reported using the hazard ratio 

(HR) with 95 % CI, e.g. a HR > 1 means a greater instant probability of a correct answer for a 

control than an exposed child. Other variables possibly influencing task performance were 

difficulty level (4 different experimental conditions) and birth weight. All children performed 

the same tasks, so by the design experimental condition was independent of exposure group 

and was not adjusted for in the models. Birth weight may be a mediator of the effect of 

exposure on task performance and analyses were done without and with birth weight as an 

additional covariate to study any mediating effect. Interactions between group and 



9 
 

respectively birth weight and difficulty level were tested. All significance tests were two-

sided, and a significance level of 5 % was set. Analyses were performed using IBM SPSS 

Statistics version 23 and Stata version 14.0 (Stata Corp. College Station, TX). 

 

fMRI-data 

Image processing and data analysis were performed using the SPM12 software 

package revision 6470 (Welcome Trust Center for Neuroimaging, London, UK) and Matlab 

version 9.0 (MathWorks Inc., Natick, MA). Default preprocessing routines, as implemented 

in SPM12, were followed for realignment of EPI-scans and co-registration of the T1-

weighted structural scan to the mean EPI-scan in each of the four experimental conditions. 

Subsequent segmentation of the structural scan was performed, providing normalization 

parameters used to normalize the EPI-scans to Montreal Neurological Institute (MNI) space 

(resized voxels 3 × 3 × 3 mm). Finally, the EPI-scans were smoothed with a Gaussian kernel 

of 8 mm. Visual inspection of all EPI-scans was performed to assure quality.  

Individual participant first-level fixed effect analyses were performed on the ON-OFF 

block contrasts for the four experimental conditions, creating four contrast images per person. 

These images were subjected to second-level random effect analyses using the general linear 

model, as implemented in SPM12. Within-group activation patterns for the opioid exposed 

and control groups were modeled using one-sample t-tests, and two-sample independent t-

tests were used to determine between-group differences. To account for multiple comparisons 

a cluster-extent, random field theory based family wise error (FWE) corrected threshold at p 

< 0.05 was used to define significant activations in all analyses, with a primary cluster-

defining threshold at p < 0.001. Anatomical location of significantly activated clusters was 

identified using Anatomical Automatic Labeling (26). 
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Results 

Sample characteristics 

Demographic and clinical characteristics of the 11 prenatally opioid-exposed children 

and the 12 unexposed controls included in the final sample are shown in Table 1. Of note, 

there was a high prevalence of ADHD in the exposed group (64 %), compared to the control 

group (8 %). All opioid-exposed children included in the study either lived in foster care or 

were adopted. Four children in the exposed group were born to mothers undergoing OMT, 

whereas seven children were born to mothers with a history of heroin abuse during 

pregnancy. Prenatal exposure to drugs other than opioids was reported in 8 of 11 (72 %) 

opioid-exposed children: benzodiazepines in six (55 %), cannabis in three (27 %), and 

amphetamines in three (27 %). Six children in the exposed group were described with 

symptoms of NAS in the newborn period. 

 

Task performance 

Results from Cox proportional hazards models, used to analyze task performance, are 

presented in Table 2. The opioid-exposed group responded slower with fewer correct answers 

than the control group, as shown in Figure 1, with an unadjusted hazard ratio (HR) of control 

vs. exposed = 1.46 (95 % CI: 1.04 to 2.06; p = 0.030). Adjusting the model for birth weight 

revealed no significant group difference (HR = 1.29; 95 % CI: 0.90 to 1.83; p = 0.164). 

Children with birth weight in the range 3000 – 4000 g performed better with faster correct 

responses compared to children in the lowest birth weight group (< 2500 g). No significant 

interaction between group and birth weight was found. As expected, there were significant 

differences between the four experimental conditions (p < 0.001), with lowest ratio of correct 

responses in the more cognitive demanding 2-back tasks (Table 2). However, the interaction 

between group and difficulty level (experimental condition) was not significant (p = 0.170). 
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fMRI activation patterns 

 Overall, the within-group analyses showed similar, bilateral prefrontal and parietal 

areas of BOLD activation in both groups, but more widespread, diffuse activation in the 

exposed group in the more cognitive demanding conditions (word 2-back and color 2-back 

tasks). In the exposed group, only one large cluster, expanding widespread, bilateral cortical 

areas survived corrections for multiple comparisons in each of these 2-back tasks. Figure 2 

shows within-group activation patterns for all four tasks (word 1-back, word 2-back, color 1-

back, and color 2-back) for the two groups. The corresponding MNI coordinates for peak 

voxel activations for the significant clusters are listed in Table 3. 

 Results from the between-group analyses revealed increased activation in the exposed 

group in both 2-back conditions, whereas there were no significant group differences in the 

easier 1-back conditions. There were no areas where the control group showed increased 

activation relative to exposed children in any of the four experimental conditions (control 

minus exposed contrasts). In Figure 3 clusters with significant group differences are shown, 

with corresponding peak voxel activations listed in Table 4. In the word 2-back condition one 

significant cluster in the left prefrontal cortex including left precentral gyrus and superior and 

middle frontal gyrus showed increased activation in the exposed group. Increased bilateral 

prefrontal activations in the exposed group were found in two clusters including left and right 

middle frontal gyrus in the color 2-back condition. 

 

Discussion 

Results from this first fMRI study on prenatally opioid-exposed children showed 

increased BOLD activation in prefrontal cortical areas in the exposed group as compared to 

unexposed controls during the most cognitive demanding versions of a working memory-
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selective attention task. In both groups, task related activation patterns included parietal and 

prefrontal cortical areas previously shown to be important in working memory and selective 

attention tasks (23,27,28), a finding that supports the validity of our results. The opioid-

exposed group showed impaired task performance, but this group difference was no longer 

significant when analyses were adjusted for birth weight. 

Aberrant brain activation patterns in children have been reported in fMRI studies 

exploring possible effects of maternal use of alcohol, cocaine, amphetamines, and tobacco on 

the developing fetal brain (15,29). However, to date, no study has examined specifically if 

prenatal opioid exposure affects brain activation patterns. In studies on prenatally drug-

exposed children, heavy prenatal alcohol exposure has been most widely reported, also when 

it comes to brain imaging studies (15). Several of these studies have shown increased 

prefrontal BOLD response in alcohol-exposed groups during working memory tasks, but with 

varying degrees of behavioral differences (30,31). Less efficient task related networks or 

compensation for other less active regions have been suggested as an explanation to these 

findings in alcohol-exposed children (30,31). Similar compensatory mechanisms could 

possibly explain our finding of increased prefrontal activation in the opioid-exposed group. 

On the other hand, Astley et al. (32) found significant working memory deficits in children 

with fetal alcohol spectrum disorders (FASD) with corresponding lower brain activation in 

extended prefrontal and parietal regions, particularly on the most cognitive demanding tasks. 

The authors have discussed a possible “ceiling effect”, where the capacity of compensatory 

mechanisms to less efficient networks is surpassed, as an explanation to the inability of the 

FASD group to increase activity in response to increasing cognitive load (32). Impaired 

behavioral performance on a working memory task with corresponding decreased prefrontal 

activation has also been reported in children exposed to methamphetamine (33). In young 

adults with histories of prenatal marijuana exposure fMRI studies have shown increased brain 
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activation across several different executive function tasks, but unlike our findings in opioid-

exposed children, this increased activation has been consistently located in posterior brain 

regions (34).  

Decreased activation in prefrontal cortical areas has been a consistent finding in 

numerous fMRI studies on children with ADHD across several different cognitive tasks (35). 

Contrary to this, we found increased prefrontal activation in our opioid-exposed group, 

despite the fact that most of these children were also diagnosed with ADHD (64 %). It is 

therefore tempting to speculate that these differences could reflect different neural correlates 

of ADHD in opioid-exposed and non-exposed groups. However, our sample was too small to 

allow for comprehensive statistical analyses of subgroups, and future studies including 

control groups with and without ADHD would be needed to elucidate these possible 

differences. 

Consistent with earlier reports of impaired executive function in children with 

prenatal opioid exposure (21), the exposed group in the present study performed poorer on 

the executive function task compared to controls, with slower response and fewer correct 

answers. However, the group difference found in the unadjusted model was no longer 

significant when analyses were adjusted for birth weight. Birth weight as a mediator of the 

possible effect of opioid exposure on task performance could explain this finding. The 

exposed group in the present study had significantly lower birth weight compared to controls, 

and prenatal opioid exposure has been associated with increased risk of preterm birth and low 

birth weight (2). However, there are myriads of associated risk factors, and it is still unclear if 

opioids have a direct, causal effect on these birth outcomes (3). It is therefore difficult to 

know as to whether birth weight should be conceptualized as a mediator or a confounder. A 

larger sample size or a more cognitive demanding task (e.g. a 3-back task) could possibly 

reveal more convincing group differences in task performance. However, previous studies 
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(25), in scanner observations, and pilot scans performed prior to our study, have indicated 

that the 2-back tasks used were quite difficult for children in the chosen age range.  

An abundance of data from animal and cell culture studies have demonstrated adverse 

effects of opioids on brain development that could possibly underlay altered brain activation 

patterns in prenatally exposed children (9-11). Interestingly both animal and human data have 

demonstrated reduced thickness of frontal cortical areas after prenatal opioid exposure 

(16,36).  In animal models, the endogenous opioid system has been shown to be crucial in the 

control of oligodendrocyte function and myelination (11), and interference with this system 

by maternal opioid use could alter the normal maturation process of the developing brain. 

There is also circumstantial evidence suggesting that opioids can alter myelination in 

prenatally exposed children (37). Incomplete myelination may result in poorer conduction 

efficiency and thus less efficient neural function in related networks.  

There are several limitations to the present study. The results should therefore be 

considered preliminary and conclusions made with caution. First of all, an observational 

study design precludes firm conclusions about causality to be made, even if a causal 

relationship between prenatal opioid exposure and altered BOLD activation is plausible. The 

possible effect of prenatal opioid exposure on brain development cannot be distinguished 

from those of several known and unknown factors differing between the exposed and control 

groups, a challenge in all studies on drug-exposed children. Some of the most obvious factors 

include genetic vulnerabilities and psychosocial and lifestyle factors associated with maternal 

substance abuse. The impact of many of these factors on brain activation patterns is largely 

unknown. However, some factors, like parental socio-economic status, have been associated 

with altered BOLD activation, including increased prefrontal activation found in 

socioeconomic disadvantaged children (38). In our study sample, all opioid-exposed children 

lived in stable family situations (either in foster care or adopted). Nonetheless, social and 
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environmental differences between our study groups could influence some of the observed 

differences. Future studies would benefit from including control groups better matched for 

factors like living conditions, family income, and parental education.  

A small sample size may have reduced our power to detect significant, but subtle 

group differences, and the ability to account for possible confounders. Most children in the 

opioid-exposed group in our study were exposed to multiple drugs. Information regarding 

exposure to non-opioid drugs was based on history without toxicology testing, and exposure 

may thus have been underestimated. Due to this uncertain degree of exposure and the small 

sample size, we were not able to control for exposure to non-opioid drugs in our statistical 

modeling. Therefore, possible influence of drugs other than opioids cannot be ruled out. 

However, only children with confirmed exposure to opioids and no children with known 

exposure to heavy maternal alcohol consumption were included. In addition, our study lacked 

reliable data for prenatal smoking. Very few studies have examined possible effects of 

prenatal tobacco using fMRI. Contrary to our findings, Bennett et al. (29) found greater 

prefrontal activation in their unexposed control group whereas tobacco-exposed children 

showed greater activation in inferior parietal regions during an n-back working memory task.  

Due to the small sample size and the risk of masking possible opioid effects that were 

mediated by low birth weight, we did not attempt to adjust the between-group analyses of 

BOLD fMRI data for birth weight. However, we find it unlikely that the selection of a low 

birth weight group should explain the increased prefrontal activation seen in our opioid-

exposed group, as decreased BOLD activation has been a consistent finding in fMRI studies 

of preterm and low birth weight groups, including one study using the same fMRI paradigm 

as the one used in the current study (25).  

The use of a cluster-extent based threshold to correct for multiple comparisons in our 

study precludes inferences about specific anatomical regions within significant clusters to be 
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made with confidence (39). Even with a primary cluster defining threshold of p < 0.001, 

some of the activated clusters were large, spanning several anatomical regions. The 

anatomical labels for peak-voxel activation listed in tables should therefore be interpreted 

with caution, as one cannot infer that all these peaks were truly activated, but only that there 

was significant signal somewhere within each cluster. Detailed discussion and comparisons 

of the anatomical localization of BOLD activations could therefore not be performed based 

on our results. However, our main finding of increased activation in the exposed group was 

restricted to relatively small clusters that could be localized in prefrontal cortical areas with 

confidence. The effectiveness of cluster-extent based thresholding to correct for multiple 

comparisons in fMRI studies has recently been called into question (40), but the problem of 

inflated false positive rates, was mainly shown for more liberal primary cluster defining 

thresholds than the one used in the present study (p < 0.001). To investigate differences in 

activation patterns in greater detail, larger samples, allowing for voxel-vise correction 

methods are needed.  

The generalizability of our results is also limited, as the hospital-based sample of 

prenatally opioid-exposed children included in the study represents a subset of the exposed 

population. However, the signs of opioid effects on brain function in our sample warrants 

further research, and if possible population-based samples should be included in future 

studies. 

Finally, it should be acknowledged that fMRI use level of oxygenated blood as a 

proxy for measuring the activity of neurons. The extent to which differences in the BOLD 

signal between our study groups represents actual differences in neuronal activation as 

compared to other possible underlying mechanisms, like altered vascularization, remains 

unknown.  
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Conclusion 

Our findings suggest that prenatal opioid exposure affect brain activation patterns 

during a working memory-selective attention task. Increased prefrontal activation in the 

exposed group in the most cognitive demanding tasks could represent compensatory 

mechanisms to less efficient task related networks. However, results should be considered 

preliminary until replicated in larger samples better suited to explore subtle differences and 

account for potential confounding factors. 
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Figure legends 

 

Figure 1 Proportion of items not answered correctly in the working memory-selective 

attention task for 11 prenatally opioid-exposed children and 11 control children combined for 

four experimental conditions as estimated by a Cox proportional hazards model with frailty to 

account for dependency between multiple answers from the same child. Altogether 1430 

tasks were analysed showing higher proportion of items not answered correctly in the 

exposed group (p = 0.030). 

 

Figure 2 Within-group BOLD activation patterns for the opioid-exposed group (n = 11) and 

the unexposed control group (n = 12) separated by the four experimental conditions. Surface 

renderings of activated clusters that survived corrections for multiple comparisons with a 

cluster-extent based threshold at FWE corrected p < 0.05. Abbreviations: BOLD, blood-

oxygen-level-dependent; FWE, family-wise error; L, left; R, right. 

 

Figure 3 Surface renderings of group differences in BOLD activation for the two most 

cognitive demanding experimental conditions with cluster-wise corrections for multiple 

comparisons (FWE corrected; p < 0.05). (a) color 2-back, (b) word 2-back. In both these 

conditions the opioid-exposed group (n = 11) showed increased BOLD activation relative to 

unexposed controls (n = 12) Abbreviations: BOLD, blood-oxygen-level-dependent; FWE, 

family-wise error; L, left; R, right. 
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Table 1 Sample characteristics for 11 prenatally opioid-exposed children and 12 unexposed controls  

 

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; n/a, not applicable; p = p values for group difference (controls vs. exposed) from 

independent t-test (continuous variables) and Fisher's exact test with mid-p correction (dichotomous variables).  

 Exposed group (n = 11) Control group (n = 12)  

Variable, statistic Range  Range p 

Males, n (%) 6 (55) n/a 6 (50) n/a 0.842 

Age at scan (months),  mean (SD) 146.1 (13.3) 116–160 146.0 (10.6) 123–160 0.986 

Head circumference  (cm),  mean (SD) 54.9 (1.4) 52.5–57.0 54.5 (1.7) 51.5–58.2 0.547 

Height (cm),  mean (SD) 153 (11.8) 127–169 150 (9.3) 130–167 0.560 

Weight (kg),  mean (SD) 43.9 (11.7) 22.8–64.5 43.4 (10.0) 29.3–68.8 0.906 

Left handedness, n (%) 0 (0) n/a 1 (8.3) n/a 0.522 

ADHD, n (%) 7 (64) n/a 1 (8.3) n/a 0.009 

Birth weight (g),  mean (SD) 2956 (520) 2300–4010 3545 (431) 3040–4200 0.007 



Table 2 Results from Cox regression of time to correct response on a working memory-selective attention task in 11 prenatally opioid-exposed 

children and 11 unexposed controls 

   Unadjusted models Adjusted for birth weightb)  

Variable Category  HRa) 95% CI p HRa) 95% CI p

Group Opioid-exposed  1.00 Reference 0.030 1.00 Reference 0.164

 Controls  1.46 (1.04, 2.06) 1.29 (0.90, 1.83)

Birth weight group 2000 – 2500g  1.00 Reference 0.002 1.00 Reference 0.010

 2500 – 3000g  1.50 (0.81, 2.77) 1.50 (0.83, 2.70)

 3000 – 3500g  1.87 (1.20, 2.90) 1.62 (1.02, 2.57)

 3500 – 4000g  2.43 (1.40, 4.21) 1.89 (1.00, 3.56)

 4000 – 4500g  1.04 (0.60, 1.80) 0.87 (0.48, 1.55)

Difficulty level Color 1-back  1.00 Reference < 0.001 n/i 

 Word 1-back  0.81 (0.70, 0.94) n/i 

 Color 2-back  0.34 (0.28, 0.40) n/i 

 Word 2-back  0.39 (0.33, 0.46) n/i 

Abbreviations: HR, hazard ratio; CI, confidence interval; p = p-value for the variable from likelihood ratio test; n/i, not included; a) Estimated HR 

(instant probability of a correct answer) from Cox regression using a frailty model to account for dependency between multiple answers from the 

same participant; b) All children performed the same tasks, so by the design difficulty level was independent of exposure group and was not 

adjusted for in the model.  



Table 3 Within-group analyses: Peak voxel descriptions for BOLD activation in significant clusters from whole brain analyses in 11 prenatally opioid-

exposed children and 12 unexposed controls 

Task Group Anatomical areaa Cluster sizeb Peak Tc Peak coordinates (MNI)

    x y z

Color 1-back Opioid-exposed R Inferior occipital gyrus 329 4.80 33 -88 -7

  L Superior parietal gyrus 182 4.64 -27 -64 47

  L Inferior occipital gyrus 230 4.38 -30 -88 -7

  L Supplementary motor area 146 4.09 -3 14 50

  R Angular gyrus 133 3.73 39 -64 50

 Controls L Fusiform gyrus 163 4.43 -42 -82 -16

  L Precentral gyrus 99 3.89 -39 2 32

  R Middle occipital gyrus 106 3.74 39 -88 -1

Word 1-back Opioid-exposed R Middle frontal gyrus 1503 5.40 45 44 20

  L Parahippocampal gyrus 2985 4.99 -33 -43 -1

  R Inferior occipital gyrus 84 4.82 33 -88 -4

  R Cerebellum 162 4.30 33 -79 -25

  L Precentral gyrus 98 3.73 -48 11 32

 Controls R Lingual gyrus 311 5.35 24 -91 -16

  L Fusiform gyrus 583 4.67 -36 -85 -16

  L Middle frontal gyrus 1388 4.60 -48 17 35

  R Middle frontal gyrus 919 4.22 39 44 8

  R Inferior parietal gyrus 312 4.14 51 -49 41

Color 2-back Opioid-exposed R Middle frontal gyrus 19057 5.93 36 56 17

 Controls L Middle frontal gyrus 4939 5.21 -48 17 38

  L Superior occipital gyrus 778 5.17 -18 -64 38

  R Fusiform gyrus 137 4.59 48 -31 -16

  R Precuneus 848 4.50 30 -52 29

  R Cerebellum 123 4.12 39 -76 -28

  L Thalamus 81 3.71 -12 -13 8

  L Cerebellum 149 3.71 -45 -70 -28

  R Thalamus 119 3.70 12 -10 11

Word 2-back Opioid-exposed R Superior frontal gyrus, dorsolateral 17891 5.47 27 17 50

 Controls R Angular gyrus 788 4.87 33 -61 47

  R Lingual gyrus 273 4.74 24 -88 -16

  R Inferior frontal gyrus, triangular part 1082 4.62 39 29 23

  L Inferior parietal gyrus 454 4.61 -30 -70 41

  L Fusiform gyrus 331 4.23 -39 -73 -16

  L Precentral gyrus 228 4.02 -45 5 29

  L Supplementary motor area 218 4.00 3 20 50

 



Abbreviations: BOLD, blood-oxygen-level-dependent; L, left; MNI, Montreal Neurological Institute; R, right; a) Local maxima labeling from 

Anatomical Automatic Labeling (AAL); b) Cluster size in voxels (3 × 3 × 3 mm), only clusters that survived correction for multiple comparisons with a 

cluster-extent based threshold at family wise error (FEW) corrected p < 0.05 are shown; c) t-values from one-sample t-tests. 



Table 4 Between-group analyses: Peak voxel descriptions for BOLD activation in clusters with significant group differences between 11 prenatally 

opioid-exposed children and 12 unexposed controls 

Task Contrast Anatomical areaa Cluster sizeb Peak Tc Peak coordinates (MNI)

    x y z

Color 2-back Opioid-exposed > Controls L Middle frontal gyrus 277 5.78 -33 38 23

  R Middle frontal gyrus 186 5.17 33 41 17

Word 2-back Opioid-exposed > Controls L Precentral gyrus 148 5.00 -39 -4 53

 

Abbreviations: BOLD, blood-oxygen-level-dependent; L, left; MNI, Montreal Neurological Institute; R, right; a) Local maxima labeling from 

Anatomical Automatic Labeling  (AAL); b) Cluster size in voxels (3 × 3 × 3 mm), only clusters that survived correction for multiple comparisons with 

a cluster-extent based threshold at family wise error (FEW) corrected p < 0.05 are shown; c) t-values from independent t-tests. 
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