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Abstract

Several frameworks have been designed to cope with hard problems. Once a problem is
shown to be NP-hard, while designing an algorithm for it either we have to compromise in
the running time or the quality of the solution (or both). While designing algorithms in
frameworks like Approximation Algorithms and Heuristics we have to be content enough
with a compromised quality of the solution. Nevertheless, we might exploit the structure
of the input to obtain better algorithms. In the framework of Exact Exponential Time
Algorithms the objective is to reduce the exponential search space as much as possible,
though it cannot be (completely) avoided, unless some Complexity Theoretic breakdown
happens. Downey and Fellows introduced the framework of Parameterized Complexity
in early 90’s for coping with hard problems. Basically, Parameterized Complexity is a
two-dimensional generalization of “P vs. NP”, where in addition to the input size n,
one studies how relevant a secondary measurement affects the computational complexity
of problem instances. Here, the secondary measure, for instance, could be the size of
solution or some structural parameter of the input. The two-dimensional analogue of
P, is solvable within a time bound of O(f(k)nc), where n is the size of the input, k
is the parameter, f(·) is some (computable) function, and c is a constant that that is
independent on k and n. A parameterized problem is defined by specifying the input, the
parameter, and the question to be answered. Parameterized problems that can be solved
in O(f(k)nc) time are said to be fixed-parameter tractable (or in class FPT). Above FPT,
there exists a hierarchy of complexity classes, known as the W-hierarchy. Analogous to
the case for NP-hardness, which is used as an evidence that a problem is probably not
polynomial time solvable, showing that a parameterized problem is hard for one of the
classes in the W-hierarchy gives an evidence that the problem is unlikely to be in FPT.

Graph editing problems are one of the central problems in Graph Theory, and have
been extensively studied in the realm of Parameterized Complexity since its inception.
Some of the important and natural graph editing operations are vertex deletion, edge
deletion, edge addition, and edge contraction. For a family of graphs F , the F -Editing
problem takes as an input a graph G and an integer k, and the objective is to de-
cide if we can obtain a graph in F by applying at most k edit operations in G. In
fact, the F -Editing problem, where the edit operations are restricted to one of vertex
deletion, edge deletion, edge addition, or edge contraction have also received a lot of at-
tention in Parameterized Complexity. When we restrict the operations to only deletion
operation (vertex/edge deletion) then the corresponding problem is called F -Vertex

(Edge) Deletion problem. On the other hand if we only allow edge contraction
then the corresponding problem is called F -Contraction. The F-Editing prob-
lem encompasses several NP-hard problems such as Vertex Cover, Feedback ver-

tex set, Planar F-Deletion, Interval Vertex Deletion, Chordal Vertex

Deletion, Odd cycle transversal, Edge Bipartization, Tree Contraction,
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Path Contraction, Split Contraction, Clique Contraction, etc. This list is
not comprehensive but rather illustrative.

A (multi) graph G = (V,E) with an (edge) coloring col : E(G) → 2[α], is called an α-
edge-colored graph. Edge-colored graphs are fundamental in Graph Theory and have been
extensively studied in the literature, especially for alternating cycles, monochromatic
subgraphs, heterochromatic subgraphs, and partitions. A natural extension of the F -
Editing problem to edge-colored graphs is the Simultaneous (F1, . . . ,Fα)-Editing
problem. In the latter problem, we are given an α-edge-colored graph G with coloring
col : E(G) → 2[α], and the objective is to decide if using at most k edit operation in G,
for each i ∈ [α], the graph Gi after performing the edit operations is in Fi. Here, for
i ∈ [α], Gi is the graph with vertex set V (G) and edge set {e ∈ E(G) | i ∈ col(e)}.

Chordal graphs are graphs which do not contain any induced cycle on at least four
vertices. Chordal graphs and its subclasses are important classes of graphs, and have
been extensively studied both from graph theoretic and algorithmic point of view. In
the first part of the thesis, we focus on F -Editing problems to (sub) classes of chordal
graphs. In particular, we obtain the following results.

• We design an FPT algorithm and a polynomial kernel for the problem Block

Graph Vertex Deletion, which is F -(Vertex) Deletion where F is the
family of block graphs.

• We give a polynomial kernel for the problem Chordal Vertex Deletion, which
is F -Vertex Deletion where F is the family of chordal graphs. We also de-
sign an O(log2 n)-factor approximation algorithm for the problem, where n is the
number of vertices in the input graph.

• We give a polynomial kernel for the problem Interval Vertex Deletion, which
is F -Vertex Deletion where F is the family of interval graphs.

• We show that Split Contraction when parameterized by the solution size is
W[1]-hard. We also give an ETH based lower bound for the problem, when pa-
rameterized by the size of vertex cover. Furthermore, we give an FPT algorithm
parameterized by the size of vertex cover, which matches the lower bound we ob-
tain.

In the second part of the thesis, we look at Simultaneous (F1, . . . ,Fα)-Editing
problems, and obtain the following results.

• We design an FPT algorithm and a polynomial kernel for the problem Simulta-

neous Feedback Vertex Set, which is Simultaneous (F1, . . . ,Fα)-Editing
where for each i ∈ [α], Fi is the family of forests and the allowed edit opera-
tion is vertex deletion. We also show that the problem becomes W[1]-hard when
α = O(log n), where n is the number of vertices in the input graph.

• We design an FPT algorithm and a polynomial kernel for the problem Simulta-

neous Feedback Edge Set, which is Simultaneous (F1, . . . ,Fα)-Editing
where for each i ∈ [α], Fi is the family of forests and the allowed edit opera-
tion is edge deletion. We also show that the problem becomes W[1]-hard when
α = O(log n), where n is the number of vertices in the input graph. We look
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at another parameterization of the problem, which is the number of edges in the
resulting graph, and obtain an FPT algorithm for it.

• We design an FPT algorithm for the problem Simultaneous FVS/OCT, which is
Simultaneous (F1, . . . ,Fα)-Editing where for each i ∈ [α]\{1}, Fi is the family
of forests and F1 is the family of bipartite graphs. Furthermore, the allowed edit
operation is vertex deletion. We show that Simultaneous (F1, . . . ,Fα)-Editing
is W[1]-hard when F1 and F2 are the family of bipartite graphs, and the allowed
edit operation is vertex deletion.
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Chapter 1

Introduction

After decades of efforts we have not been able to obtain efficient algorithms for problems
like CNF-SAT, which is one of the classic NP-complete problem, or prove non-existence
of efficient algorithms for them. Here, by an efficient algorithm we mean the one whose
running time is bounded by a function polynomial in the size of the input instance.
This has led to one of the biggest conjecture in computer science, namely the famous
“P �= NP” conjecture. It is one of the most widely believed conjectures in computer sci-
ence. Although, there are few communities which do not believe it to be true. For coping
with NP-hardness of a problem several frameworks have been designed. These include
Heuristic Algorithms, Approximation Algorithms, Exact Exponential Algorithms, and
Parameterized Algorithms. Each of the above listed frameworks compromise either in
the quality of the solution or in the running time (or both). In the framework of Approx-
imation Algorithms usually the goal is to design a polynomial time algorithm but with a
compromise in the quality of the solution. The goal here is to prove a guarantee on the
quality of solution, i.e. it not being very far from the optimal solution. Although, for
several problems we might compromise both in running time and quality of the solution.
The heuristic based algorithms usually fail to provide provable (worst case) guarantee on
the quality of the solution, but are usually faster. In the framework of Exact Exponen-
tial time algorithm the objective is to reduce the exponential search space as much as
possible, though it cannot be (completely) avoided, unless some Complexity Theoretic
breakdown happens. Downey and Fellows introduced the framework of Parameterized
Complexity in early 90’s for dealing with hard problems. This framework measures the
computational complexity of the problem using the input size and an additional mea-
surement which is called the parameter. The most natural candidate for the parameter
is the size of the solution we are looking for. Although, in many cases we exploit the
structural properties of the input instances.

A typical input to a parameterized problem comprises of an instance x of the classi-
cal problem and an integer k called the parameter. One of the goals in Parameterized
Complexity is to design an algorithm for a parameterized problems where the expo-
nential dependence of the search space is limited by some (computable) function of the
parameter rather than the input size. That is, for a parameterized problem Π, given an
instance (x, k) decidability in time f(k)|x|c, where f(·) is some (computable) function
and c is a constant (independent of k). The parameterized problems that admit such
an algorithm are said to be fixed-parameter tractable (FPT). Another central notion in
the field is kernelization, which mathematically captures the efficiency of pre-processing
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(or data reduction) algorithm. Here, the goal is to output an equivalent instance of the
same problem whose size is bounded g(k), where k is the parameter, and g(·) is some
(computable) function. Such a pre-processing algorithm is called a kernelization algo-
rithm or a kernel. The size of the kernel is the function g(·). Usually, we are interested
in polynomial functions.

Not all parameterized problems are fixed-parameter tractable under reasonable Com-
plexity Theoretic assumptions. There exists a hierarchy of complexity classes, known as
the W-hierarchy, which captures the hardness of parameterized problems. Analogous to
the case for NP-hardness, which provides an evidence that a problem is unlikely to be
polynomial time solvable, showing that a parameterized problem is hard for one of the
classes in the W-hierarchy provides an evidence that the problem is unlikely to be in
FPT.

1.1 F-Editing problems

Given their tremendous modelling power, graphs have become an integral part of Theo-
retical Computer Science in general, and of Algorithm Design in particular. One graph
problem which encapsulates many problems of both practical and theoretical interest is
F -Editing. The input of a typical F -Editing problem for a family of graphs F , is
a graph G and an integer k, and the objective is to decide if we can obtain a graph
in F by editing at most k vertices or edges. The most natural edit operations are
vertex/ edge deletion, vertex/ edge addition, and edge contraction. In fact, the F -
Editing problem, where the edit operations are restricted to one of vertex deletion,
edge deletion, edge addition, or edge contraction have also received a lot of attention
in Parameterized Complexity. When we restrict the operations to only deletion opera-
tion (vertex/edge deletion) then the corresponding problem is called F -Vertex (Edge)

Deletion problem. On the other hand if we only allow edge contraction then the cor-
responding problem is called F -Contraction. In this thesis, we restrict ourselves to
vertex deletion, edge deletion, and edge contraction as the edit operations. A typical
problem of this class is associated with a family of graphs, F , such as edgeless graphs,
forests, cluster graphs, chordal graphs, interval graphs, bipartite graphs, split graphs,
planar graphs, etc. The F -Editing problem generalizes several NP-hard problems such
as Vertex Cover, Feedback vertex set, Planar F-Deletion, Interval Ver-

tex Deletion, Chordal Vertex Deletion, Odd cycle transversal, Edge
Bipartization, Tree Contraction, Path Contraction, Split Contraction,
Clique Contraction, etc., to name a few. The F -Editing problems are not only
mathematically and structurally challenging, but have also led to the discovery of several
important techniques in the field of Parameterized Complexity. It would be completely
appropriate to say that solutions to these problems played a central role in the growth
of the field.

F-Vertex (Edge) Deletion problems. Edit operation restricted to vertex/ edge
deletion are among the most basic problems in Graph Theory and Graph Algorithms.
Most of these problems are NP-complete [Yan78, LY80], and thus they were sub-
ject to intense study in various algorithmic paradigms to cope with their intractabil-
ity [Fuj98, LY94, FLMS12, MOR13]. These include, considering a restricted class of
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inputs, Approximation Algorithms, and Parameterized Complexity. Recently, a method-
ology for proving lower bounds on running times of algorithms for such parameterized
graph editing problems was proposed by Bliznets et al. [BCK+16]. Furthermore, a well-
known result by Cai [Cai96] states that in case F is a hereditary family of graphs with a
finite set of forbidden induced subgraphs, then the graph modification problem defined
by F and the aforementioned edit operations admits a simple FPT algorithm. We note
that the result of Cai [Cai96] also holds when edge addition is allowed (in addition to
vertex/ edge deletion).

Over the course of the last couple of years, parameterized algorithms have been de-
veloped for Chordal Vertex (Edge) Deletion [CM16], Unit Vertex (Edge)

Editing [Cao17], Interval Vertex (Edge) Deletion [CM15a, Cao16], Clus-

ter Vertex (Edge) Deletion [FKP+14], Threshold Vertex (Edge) Dele-

tion [DDLS15], Chain Vertex (Edge) Deletion [DDLS15], Trivially Perfect

Vertex (Edge) Deletion [DFPV15, DP15] and Split Vertex (Edge) Deletion

[GKK+15]. This list is not comprehensive but rather illustrative.

Also, the study of kernelization, centred on the above question, has been one of
the main areas of research in Parameterized Complexity, yielding many new impor-
tant contributions to theory. These include general results showing that certain classes
of parameterized problems have polynomial kernels, and as well as other results that
utilize advanced techniques from algebra, matroid theory and topology for data reduc-
tion [AGK+11, BFL+16, FLST10, FLMS12, GJLS15, Jan17, KLP+15, Kra12, KW14,
KW12, PPSvL14, Tho10]. The development of a framework for ruling out polynomial
kernels under certain complexity-theoretic assumptions [BDFH09, BJK13, DvM14, FS11]
has added a new dimension to the area, and strengthened its connections to classical com-
plexity theory. We refer to the following surveys [Kra14, LMS12] and the corresponding
chapters in the books [CFK+15, DF13, FG06, Nie06], for a detailed introduction to the
field of kernelization.

Some of the most well known results in kernelization are polynomial kernels
for graph deletion problems such as Feedback Vertex Set [Tho10], Odd Cy-

cle Transversal [KW14, KW12], Vertex Cover [ACF+04, CKJ01], Planar-

F-Deletion [FLMS12], and Treedepth-η-Deletion [GJLS15]. A common thread
among all these problems, with the exception of Odd Cycle Transversal, is that
the corresponding family F can be characterized by a finite set of forbidden minors that
include at least one connected planar graph. It is known that, if F is characterized by a
finite set of forbidden induced subgraphs, then the corresponding F-Vertex Deletion

problem immediately admits an FPT algorithm as well as polynomial sized kernel because
of its connection to d-Hitting Set [AK10]. However, if F is characterized by an infi-
nite set of forbidden induced subgraphs, which is the case when F is the class of chordal
graphs, chordal bipartite graphs, interval graphs, proper interval graphs and permutation
graphs, our understanding of these problems in the realm of Parameterized Complex-
ity and Kernelization, is still at a nascent stage. While Chordal Vertex Deletion

(CVD) was known to be in FPT for some time [Mar10, CM16], the parameterized com-
plexity of Interval Vertex Deletion was settled only recently [CM15a, Cao16]. The
parameterized complexity of Permutation Vertex Deletion and Chordal Bipar-

tite Vertex Deletion is still unknown. Coming to the question of polynomial kernels
for these problems, the situation is even more grim. Until recently, the only known re-
sult was a polynomial kernel for Proper Interval Vertex Deletion: Fomin et
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al. [FSV13] obtained a O(k53) sized polynomial kernel for Proper Interval Vertex

Deletion, which has recently been improved to O(k4) [KCOW16]. A dearth of fur-
ther results in this area has led to the questions of kernelization complexity of Chordal

Vertex Deletion and Interval Vertex Deletion becoming prominent open prob-
lems [CM16, CKP13, FSV13, HvtHJ+13, Mar10]. Jansen and Pilipzuck [JP17] recently
resolved one of these open questions. They showed that CVD admits a polynomial ker-
nel of size O(k161 log58 k). In this thesis we also look at an improved kernel for the CVD

problem. Towards obtaining this result we use an approximate solution to the CVD

problem. Therefore, in the following we talk about F -Vertex Deletion problems
from the view point of Approximation Algorithms.

Characterizing the graph properties, for which the corresponding vertex deletion
problems can be approximated within a bounded factor in polynomial time, is a long
standing open problem in Approximation Algorithms [Yan94]. In spite of a long history of
research, we are still far from a complete characterization. Constant factor approximation
algorithms forWeighted Vertex Cover are known since 1970s [BYE81, NJ74]. Lund
and Yannakakis observed that the vertex deletion problem for any hereditary property
with a “finite number of minimal forbidden induced subgraphs” can be approximated
within a constant ratio [LY93]. They conjectured that for every nontrivial, hereditary
property Π with an infinite forbidden set, the corresponding vertex deletion problem
cannot be approximated within a constant ratio. However, it was later shown that
Weighted Feedback Vertex Set, which doesn’t have a finite forbidden set, admits
a constant factor approximation [BBF99, BYGNR98], thus disproving their conjecture.
On the other hand a result by Yannakakis [Yan79] shows that, for a wide range of
graph properties Π, approximating the minimum number of vertices to delete in order
to obtain a connected graph with the property Π within a factor n1−ε is NP-hard. We
refer to [Yan79] for the precise list of graph properties to which this result applies to,
but it is worth mentioning the list includes the class of acyclic graphs and the class of
outerplanar graphs.

F-Contraction problems. The vast majority of papers on parameterized graph
editing problems, has so far been on edit operations that delete vertices, delete edges (or
add edges). However, in recent years, edge contraction as an edit operation has begun to
attract significant scientific attention. Edge contraction is a fundamental operation in the
theory of graph minors. Given a graph G and an integer k, F-Edge Contraction asks
if we can contract at most k edges in G so that the resulting graph belongs to the family
F . For several families of graphs F , early papers by Watanabe et al. [WAN81, WAN83]
and Asano and Hirata [AH83] showed that F-Edge Contraction is NP-complete.
In the framework of Parameterized Complexity, these problems exhibit properties that
are quite different from those of problems where we only delete or add vertices and
edges. Indeed, for these problems, the result by Cai [Cai96] does not hold. In particular,
Lokshtanov et al. [LMS13] and Cai and Guo [CG13] independently showed that if F is
either the family of P�-free graphs for some � ≥ 5 or the family of C�-free graphs for
some � ≥ 4, then F-Edge Contraction is W[2]-hard. To the best of our knowledge,
Heggernes et al. [HvtHL+14] were the first to explicitly study F-Edge Contraction

from the viewpoint of Parameterized Complexity. They showed that in case F is the
family of trees, F-Edge Contraction is in FPT but does not admit a polynomial
kernel, while in case F is the family of paths, the corresponding problem admits a
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faster algorithm and an O(k)-vertex kernel. Agrawal et al. [AKST17] considered another
parameterization for contracting to the family of trees, which is the number of leaves, �
and number of edges, k in the solution. They designed a polynomial kernel with O(k�)
vertices and also showed a matching kernel lower bound. Golovach et al. [GvtHP13]
proved that if F is the family of planar graphs, then F-Edge Contraction is in FPT.
Moreover, Cai and Guo [CG13] showed that in case F is the family of cliques, F-Edge

Contraction is solvable in time 2O(k log k) · nO(1), while in case F is the family of
chordal graphs, the problem is W[2]-hard. Heggernes et al. [HvtHLP13] developed an
FPT algorithm for the case where F is the family of bipartite graphs. Later, a faster
algorithm was proposed by Guillemot and Marx [GM13].

1.2 Simultaneous (F1, . . . ,Fα)-Editing problems

A graph G with a coloring function col : E(G) → 2[α] is called an α-edge-colored graph.
For an α-edge-colored graph G with coloring col : E(G) → 2[α], and i ∈ [α], by Gi we
denote the graph with vertex set V (G) and edge set {e ∈ E(G) | i ∈ col(e)}. As stated
by Cai and Ye [CY14], “edge-colored graphs are fundamental in Graph Theory and have
been extensively studied in the literature, especially for alternating cycles, monochro-
matic subgraphs, heterochromatic subgraphs, and partitions”. A natural extension of
the F -Editing problem to edge-colored graphs is the Simultaneous (F1, . . . ,Fα)-
Editing problem. In the latter problem, we are given an α-edge-colored graph G with
coloring col : E(G) → 2[α] and an integer k, and the objective to decide if using at most k
edit operation in G, for each i ∈ [α] the modified graph Gi belongs to the family Fi. Re-
cently, Cai and Ye [CY14] studied several problems restricted to 2-edge-colored graphs
and the edit operation being vertex deletion. In particular, they consider the Dually

Connected Induced Subgraph problem, i.e. find a set S of k vertices in G such
that both induced graphs G1[S] and G2[S] are connected, and the Dual Separator

problem, i.e. delete a set S of at most k vertices to simultaneously disconnect the graphs
G1 and G2. They show, among other results, that Dual Separator is NP-complete
and Dually Connected Induced Subgraph is W[1]-hard even when both G1 and
G2 are trees. On the positive side, they prove that Dually Connected Induced

Subgraph is solvable in time polynomial in the input size when G is a complete graph.

1.3 An Overview of the Thesis

In Chapter 2, we setup basic notations that will be used throughout the thesis. Also, we
define terminologies related to Graph Theory and Algorithms that are used in the the-
sis. Part I of the thesis gives a brief introduction to Parameterized Complexity, which
comprises of the following chapters. In Chapter 3, we formally define parameterized
problems, fixed-parameter tractable algorithms and kernelization. Furthermore, we il-
lustrate each of them with some examples. In Chapter 4, we give a brief introduction to
fixed-parameter intractability and W-hierarchy. Furthermore, we give an introduction
to ETH based lower bounds. Each of these notions are illustrated with examples.

Part II of the thesis comprises of new results on F -Editing problems. This part
comprises of the following results.
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• In Chapter 5, we consider the F-Deletion problem for the family of block graphs,
and is based on the paper [AKLS16]. We call this problemBlock Graph Vertex

Deletion (BGVD), which takes as an input a graph G and an integer k, and
the objective is to decide if there is a set S ⊆ V (G) of size at most k such that
G−S is a block graph. We design an FPT algorithm for BGVD that runs in time
O(4k|V (G)|O(1)). This improves over the previous best algorithm for the problem,
which runs in time 10knO(1) [KK17]. We also give a (vertex) kernel of size O(k4)
for the problem, which is an improvement over the previously best known (vertex)
kernel, which was of size O(k6) [KK17].

• In Chapter 6, we explore the approximability of Weighted F-Vertex Dele-

tion for several families F , and is based on the manuscript [ALM+17c]. The main
result of this chapter is O(log2 n)-factor approximation algorithm for Weighted

Chordal Vertex Deletion. On the way to this algorithm, we also obtain
a constant factor approximation algorithm for Weighted Multicut in chordal
graphs. The methodology that we develop for obtaining approximation algorithm
for Weighted Chordal Vertex Deletion is extendable to other problems as
well. Let F be a finite set of graphs that includes a planar graph. Let F = G (F )
be the family of graphs such that every graph H ∈ G (F ) does not contain a graph
from F as a minor. The vertex deletion problem corresponding to F = G (F ) is
known as the Weighted Planar F -Minor-Free Deletion (WPF -MFD).
We give a randomized O(log1.5 n)-factor (deterministic O(log2 n)-factor) approxi-
mation algorithm for WPF -MFD, for any finite F that contains a planar graph.
We remark that a different approximation algorithm for the same class of problems
with a slightly better approximation ratio of O(log n log log n) follows from recent
work in [BRU17]. Next, we give an O(log3 n)-factor approximation algorithm for
Weighted Distance Hereditary Vertex Deletion (WDHVD). This is the
vertex deletion problem corresponding to the family of distance hereditary graphs,
or equivalently graphs of rankwidth 1.

• In Chapter 7, we design a polynomial kernel for Chordal Vertex Deletion

(CVD), which is F-Deletion problem corresponding to the family of chordal
graphs. This chapter is based on the paper [ALM+17a]. The existence of a polyno-
mial kernel for CVD was a well-known open problem in the field of Parameterized
Complexity, which was resolved recently by Jansen and Pilipczuk [JP17]. They
designed a polynomial kernel for CVD of size O(k161 log58 k), and asked whether
one can design a kernel of size O(k10). While we do not completely resolve this
question, we design a significantly smaller kernel of size O(k12 log10 k).

• In Chapter 8, we design a polynomial kernel for Interval Vertex Deletion

(IVD for short), which is F-Deletion problem corresponding to the family of
interval graphs. This chapter is based on the paper [ALM+17b]. The existence
of a polynomial kernel for the problem remained a well-known open problem in
Parameterized Complexity. We settle this problem in the affirmative by exhibiting
a polynomial kernel for the problem.

• In Chapter 9, we look at the problem Split Contraction, which takes as an
input a graph G on n vertices and an integer k, and the objective is to decide
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if there is a set X ⊆ E(G) of size at most k such that G/X is a split graph.
This chapter is based on the paper [ALSZ17]. Firstly, we study the problem when
parameterized by the size a minimum vertex cover. We show that unless ETH fails,
Split Contraction parameterized by �, does not have an algorithm running in
time 2o(�

2) · nO(1). We complement this result by giving an FPT algorithm that
runs in time 2O(�2) · nO(1). Finally, we show that Split Contraction when
parameterized by the size of solution, k is W[1]-hard.

Part III of the thesis comprises of new results on Simultaneous (F1, . . . ,Fα)-
Editing problems. This part comprises of the following results.

• In Chapter 10, we consider the problem Simultaneous Feedback Vertex Set,
which takes as an input an α-colored graph G and an integer k, and the objective
is to decide if there is a set S ⊆ V (G) of size at most k such that for each i ∈ [α],
Gi−S is a forest. This chapter is based on the paper [ALMS16]. We design an FPT
algorithm running in time O�(23αk) for the problem. Moreover, the special case of
α = 2, we give a faster algorithm running in time O�(81k). We give a polynomial
kernel for the problem with O(αk3(α+1)) vertices. Finally, we show that Sim-FVS

is W[1]-hard, when parameterized by k.

• In Chapter 11, we consider the problem Simultaneous Feedback Edge Set,
which takes as an input an α-colored graph G and an integer k, and the objective
is to decide if there is a set S ⊆ E(G) of size at most k such that for each i ∈ [α],
Gi − S is a forest. This chapter is based on the paper [APSZ16]. We also show
that (unlike the vertex counterpart) for α ≤ 2 (2-edge-colored graphs) Sim-FES

is polynomial time solvable. Next, we show that for α = 3, Sim-FES is NP-hard.
The same reduction proves that the problem cannot be solved in 2o(k)nO(1) time
unless ETH fails. Also, we give an FPT algorithm for the problem that runs in
time O(2ωkα+α log k|V (G)|O(1)), where ω is the exponent in the running time of
matrix multiplication. We complement our FPT algorithm by showing that Sim-
FES is W[1]-hard when parameterized by the solution size k. We give a kernel
with O((kα)O(α)) vertices for the problem. Finally, we study the problem when
parameterized by the dual parameter, i.e. the number of remaining edges, q in
the graph. We call this problem Max-Sim-Subgraph. We design an algorithm
running in time O(2ωqα|V (G)|O(1)) for Max-Sim-Subgraph.

• In Chapter 12, we investigate the complexity of Simultaneous (F1, . . . ,Fα)-
Deletion in two settings. First, we consider the problem with F1 being the
family of all bipartite graphs and F2 = F3 = . . . = Fα being the family of all
forests. We call this problem Simultaneous FVS/OCT (Sim-FVS/OCT). We
design an FPT algorithm for Sim-FVS/OCT that runs in time O(kpoly(α,k)nO(1)).
In the second setting, we consider the Simultaneous (F1, . . . ,Fα)-Deletion

problem where F1 = . . . = Fα is the family of bipartite graphs. We call this
problem Simultaneous OCT (Sim-OCT). We show that even for α = 2, Sim-
OCT is W[1]-hard, when parameterized by the size of the solution. This chapter
is based on the paper [AKL+17].
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Chapter 2

Notations and Definitions

In this chapter, we state some basic definitions and introduce terminologies that are used
in this thesis. We also establish some of the notation that will be used throughout.

Sets and Functions

We denote the set of natural numbers, integers, rational numbers, and real numbers by
N, Z, Q, and R, respectively. For n ∈ N, by [n] we denote the set {1, 2, . . . , n}. We use
−∞ to denote an infinitesimals number (minus infinity) and use the convention that for
any n ∈ N, we have −∞ + n = −∞ and −∞ + −∞ = −∞. For a set X, by 2X we
denote the set of all subsets of X. For a set U (which we call universe or ground set),
a subset S ⊆ U , and a family of subsets F = {F1, . . . , F�} of U , we let F

∣∣
S
denote the

restriction of F to S, i.e. F
∣∣
S
= {F1 ∩ S, . . . , F� ∩ S}. For two sets X, Y , by X \ Y we

denote the set {x ∈ X | x /∈ Y }. Let f : X → Y be a function. For y ∈ Y , by f−1(y)
we denote the set {x ∈ X | f(x) = y}. For X ′ ⊆ X, by f |X ′ we denote the function
f |X ′ : X ′ → Y such that f |X ′(x) = f(x), for all x ∈ X ′. For an ordered set R = X × Y ,
a function f : R → Z, and an element r = (x, y) ∈ R, we slightly abuse the notation to
denote f(r) = f((x, y)) by f(x, y). For a set X, a weight function w : X → R, and a set
Y ⊆ X, by weight of Y we mean w(Y ) =

∑
y∈Y w(y).

Algorithms and Running time Analysis

We use standard notions from the book of Cormen et al. [CSRL01] for algorithm and
runtime related terminologies that we use in this thesis. We use poly(x1, x2, . . . , xt) to
denote (some) polynomial (but fixed) function on x1, x2, . . . , xt. To describe the running
times of our algorithms, we often use the O� notation. Given f : N → N, we define
O�(f(n)) to be O(f(n) · poly(n)), where poly(·) is some fixed polynomial function. That
is, the O� notation suppresses polynomial factors in the running time expression. We
use ω to denote the exponent in the running time of matrix multiplication, the current
best known bound for ω is < 2.373 [Wil12].

Graph Theory

We use standard terminology from the book of Diestel [Die12] for the graph related
terminologies which are not explicitly defined here. A graph G = (V,E) is a tuple,
where V is a finite non-empty set and E is a (multi) subset of V × V . Here, V is
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called the vertex set and E is the edge set of G. For a graph G, by V (G) and E(G) we
denote the vertex and edge sets of the graph G, respectively. A self-loop in G is an edge
(v, v) ∈ E(G). If an edge (u, v) appears at least twice in E then it is called a multi-edge.
The multiplicity of an element (u, v) ∈ V ×V is the number of times it appears in E(G).
This is often called multiplicity of the edge (u, v). A graph is a multi graph if contains
a self-loop or a multi-edge. A graph whose vertex set is of size n is often referred as an
n-vertex graph. For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | (v, u) ∈ E(G)},
and by NG[v] we denote the set NG(v) ∪ {v}. Furthermore, by the degree of v, namely
dG(v), we denote the cardinality of the (multi) set NG(v). Here, we use the convention
that a loop at a vertex v contributes two to the degree of v, and multi-edges contribute
to the degree which is same as its multiplicity. For a set S ⊆ V (G), NG(S) denotes the
set (∪v∈SNG(v)) \ S, and NG[S] denotes the set NG(S) ∪ S. We drop the subscript G
from above notations when the context is clear. For any non-empty subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W ]; its vertex set is W and its edge
set consists of all those edges of E(G) with both endpoints in W . For W ⊆ V (G), by
G −W we denote the graph G[V (G) \W ]. For F ⊆ E(G), the subgraph of G induced
by F is denoted by G[F ]; its vertex set is V (G) and its edge set is F . For F ⊆ E(G),
by G − F we denote the graph obtained by deleting the edges in F . For graphs G and
H, by G ∩ H, we denote the graph with vertex set as V (G) ∩ V (H) and edge set as
E(G) ∩ E(H).

For C,C ′ ⊆ V (G), we say that there is an edge between C and C ′ in G if there exists
u ∈ C and v ∈ C ′ such that (u, v) ∈ E(G). Moreover, in such cases we also say that C
and C ′ are adjacent in G. A path P = (v1, v2, . . . , v�) in a graph G is a subgraph of G,
with vertex set {v1, v2, . . . , v�} ⊆ V (G) and edge set {(vi, vi+1) | i ∈ [� − 1]} ⊆ E(G).
We refer to the path P = (v1, v2, . . . , v�) as a path between v1 and v� or a (v1, v�)-path.
The length of a path is the number of edges in it. For X, Y ⊆ V (G), an (X, Y )-path in
G is a path v1, v2, . . . , v� such that v1 ∈ X and v� ∈ Y . We say that X and Y are linked
in G if there exists an (X, Y )-path in G. We say that vertices in Y are reachable from
X if, for all y ∈ Y , there exists x ∈ X such that there is a path from x to y. A graph is
called connected if there is a path between every pair of vertices. A maximal connected
subgraph is called a connected component or a component in a graph. For a subset C of
the set of connected components in the graph G, by V (C) we denote the set ∪C∈CV (C).

A cycle C = (v1, v2, . . . , v�) in a graph G is a subgraph of G, with vertex set
{v1, v2, . . . , v�} ⊆ V (G) and edge set {(vi, v(i+1)) | i ∈ [�]} ⊆ E(G). Here, the indices in
the edges set are computed modulo �. The length of a cycle is the number of edges in it.
We note that both a double edge and a loop are cycles. For a cycle C on at least four
vertices, we say that (u, v) ∈ E(G) is a chord of C if u, v ∈ V (C) but (u, v) /∈ E(C).
A cycle C is chordless if it contains at least four vertices and has no chords. Given a
subset U ⊆ V (G), we say that U intersects a cycle C in G if U ∩ V (C) �= ∅.

For (v, u) ∈ E(G), the result of contracting the edge (v, u) in G is the graph obtained
by the following operation. We add a vertex vu� and make it adjacent to the vertices in
(N(v) ∪N(u)) \ {v, u} and delete v, u from the graph. We often call such an operation
contraction of the edge (v, u). For E′ ⊆ E(G), we denote by G/E′ the graph obtained
by contracting the edges of E′ in G. Here, we note that the order in which the edges in
E′ are contracted is insignificant.

A graph G is isomorphic to a graph H if there exists a bijective function φ : V (G) →
V (H) such that for v, u ∈ V (G), (v, u) ∈ E(G) if and only if (φ(v), φ(u)) ∈ E(H).
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A graph G is contractible to a graph H if there exists E′ ⊆ E(G) such that G/E′ is
isomorphic to H. In other words, G is contractible to H if there exists a surjective
function ϕ : V (G) → V (H) with the following properties.

• For all h, h′ ∈ V (H), (h, h′) ∈ E(H) if and only if W (h),W (h′) are adjacent in G.
Here, W (h) = {v ∈ V (G) | ϕ(v) = h}.

• For all h ∈ V (H), G[W (h)] is connected.

Let W = {W (h) | h ∈ V (H)}. Observe that W defines a partition of the vertex set
of G. We call W an H-witness structure of G. The sets in W are called witness-sets.

Given graphs G and H, H is a contraction of G if H can be obtained by a sequence
of edge contractions in G. A graph H is a minor of a G if H is the contraction of some
subgraph of G. We say that a graph G is F -minor free when F is not a minor of G.
Given a family F of graphs, we say that a graph G is F -minor free, if for all F ∈ F , F
is not a minor of G. It is well known that if H is a minor of G, then tw(H) ≤ tw(G). A
graph is planar if it is {K5, K3,3}-minor free [Die12].

Consider a graph G. A set S ⊆ V (G) is an independent set in G if for each u, v ∈ S

we have (u, v) /∈ E(G). Moreover, we call a graph an independent set if V (G) is an
independent set in G. A set S ⊆ V (G) is a clique in G if for each u, v ∈ S we have
(u, v) ∈ E(G). Moreover, we call a graph a clique if V (G) is a clique in G. For n ∈
N \ {0}, by Kn we denote the clique on n vertices. The graph G is a bipartite graph if
there is a partition A,B of V (G) such that A and B are both independent sets in G,
respectively. Moreover, it is a complete bipartite graph if for each a ∈ A and b ∈ B we
have (a, b) ∈ E(G). For m,n ∈ N\{0}, by Km,n we denote the complete bipartite graph
on m+ n vertices, where its vertex bipartition A,B have sizes m and n, respectively.

A vertex subset S ⊆ V (G) is said to cover an edge (u, v) ∈ E(G) if Y ∩ {u, v} �= ∅.
A vertex subset S ⊆ V (G) is called a vertex cover in G if it covers all the edges in G. A
minimum vertex cover is S ⊆ V (G) such that S is a vertex cover and for all S′ ⊆ V (G)
such that S′ is a vertex cover, we have |S| ≤ |S′|. A vertex subset S ⊆ V (G) is a feedback
vertex set (fvs) in G if G−S is a forest. If there is no S′ ⊂ S such that G−S′ is a forest
then S is a minimal feedback vertex set (minimal fvs) in G. A vertex subset S ⊆ V (G)
is an odd cycle transversal (oct) in G if G − S is bipartite. If there is no S′ ⊂ S such
that G−S′ is a bipartite graph then S is a minimal odd cycle transversal (minimal oct)
in G. A set U ⊆ V (G) is a module in G if for all u, u′ ∈ U and v ∈ V (G) \ U , either
both u and u′ are adjacent to v or both u and u′ are not adjacent to v. For the sake
of simplicity, we also call G[U ] a module. A set S ⊆ V (G) is called a separator in G if
the number of connected components in G − S is more than the number of connected
components in G. Given a function f : V (G) → Q and a set S ⊆ V (G), we denote
f(S) =

∑
v∈S f(v). Moreover, we say that a subset S ⊆ V (G) is a balanced separator

for G if for each connected component C in G− S, it holds that |V (C)| ≤ 2
3 |V (G)|.

A chordal graph is a graph G that has no chordless cycle as an induced subgraph.
An interal graph is a graph is the intersection graph of vertices on the real line. More
precisely, given a set of intervals I on real line, the interval graph G for I is a graph with
vertex set I and for u, v ∈ V (G), the edge (u, v) ∈ E(G) if and only if the intervals u

and v intersect in the real line. A split graph is a graph G whose vertex set V (G) can be
partitioned into two sets, A and B, such that G[A] is a clique while B is an independent
set, i.e. G[B] is an edgeless graph.
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A vertex coloring of a graph G with k ∈ N colors is a function ϕ : V (G) → [k].
For a vertex coloring, we call the sets C1, C2, . . . Ck as color classes, where Ci = {v ∈
V (G) | ϕ(v) = i} for i ∈ [k]. A vertex coloring ϕ of G is said to be proper if for each
(u, v) ∈ E(G), ϕ(u) �= ϕ(v). A harmonious coloring of a graph G is a (proper) vertex
coloring ϕ : V (G) → [k], with color classes C1, C2, . . . , Ck such that for each i ∈ [k], Ci

is an independent set in G and for all i, j ∈ [k], there is at most one edge between Ci and
Cj in G. We use the following result for computing a harmonious coloring on bounded
degree graphs.

Proposition 2.1. [CFG+17, Edw97, LM87, MX91] Given a G with the degree of each
vertex bounded by d, where d is a fixed constant. A harmonious coloring of G can be
computed in time O(nO(1)) using O(

√
n) colors with each color class having at most

O(
√
n) vertices.

An edge coloring of a graph G with k colors is a function φ : E(G) → [k]. A path P

in G is said to be a rainbow path if for all e, e′ ∈ E(P ) with e �= e′ we have φ(e) �= φ(e′).
An edge coloring is said to be a rainbow coloring if for all u, v ∈ V (G) there is a rainbow
path between u and v in G. We drop the prefix vertex and edge from vertex coloring
and edge coloring whenever the context is clear.

For a graph G, a set of edges M ⊆ E(G) is called a matching in G if each vertex in
G[M ] is either an isolated vertex or has degree exactly one in G[M ]. Furthermore, the
size of matching is |M |. A matching M ⊆ E(G) is a maximal matching if no M ′ ⊃ M is
a matching in G. A matching M ⊆ E(G) is a maximum matching if for each matching
M ′ ⊆ E(G) we have |M ′| ≤ |M |. Is is known that a maximum matching in a graph can
be computed in time O(

√
|V (G)||E(G)|) [MV80].

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all other
vertices of degree 1. Let G be a bipartite graph with vertex bipartition (A,B). A set of
edges M ⊆ E(G) is called a q-expansion of A into B if (i) every vertex of A is incident
with exactly q edges of M and (ii) exactly q|A| vertices in B are incident with edges of
M .

Lemma 2.1 (Expansion Lemma [CFK+15]). Let q be a positive integer and G be a
bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A| and there are no
isolated vertices in B. Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such
that:

(1) X has a q-expansion into Y and

(2) no vertex in Y has a neighbour outside X, i.e. N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.

Forest Decompositions. A forest decomposition of a graph G is a pair (F, β) where
F is forest, and β : V (T ) → 2V (G) is a function that satisfies the following,

(i)
⋃

v∈V (F ) β(v) = V (G),

(ii) for any edge {v, u} ∈ E(G) there is a node w ∈ V (F ) such that v, u ∈ β(w),
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(iii) and for any v ∈ V (G), the collection of nodes Tv = {u ∈ V (F ) | v ∈ β(u)} is a
subtree of F .

For v ∈ V (F ), we call β(v) the bag of v, and for the sake of clarity of presentation, we
sometimes use v and β(v) interchangeably. We refer to the vertices in V (F ) as nodes. A
tree decomposition is a forest decomposition where F is a tree. For a graph G, by tw(G)
we denote the minimum over all possible tree decompositions of G, the maximum size
of a bag minus one in that tree decomposition. A clique forest of a graph G is a forest
decomposition of G where every bag is a maximal clique in G. A path decomposition
is a forest decomposition where F is a path. A clique path of a graph G is a path
decomposition of G where every bag is a maximal clique in G.

We use the following lemmata regarding the class of chordal graphs and interval
graphs.

Proposition 2.2 ([Gol04]). A graph G is a chordal graph if and only if G has a clique
forest. Moreover, a clique forest of a chordal graph can be constructed in polynomial
time.

Proposition 2.3 ([Gol04]). A graph G is an interval graph if and only if G has a clique
path.

Edge-Colored Graphs. An α-edge-colored graph (or α-colored graph for short) is a
graph G with a coloring col : E(G) → 2[α]. For an α-edge-colored graph G and i ∈ [α],
by Gi we denote the graph with vertex set V (Gi) = V (G) and edge set E(Gi) = {e ∈
E(G) | i ∈ col(e)}. In the following, let G be an α-edge-colored graph with the coloring
function col : E(G) → [k]. For v ∈ V (G), the total degree of v is

∑
i∈[α] dGi

(v). By color

i edge (or i-color edge) we refer to an edge in E(Gi), where i ∈ [α]. A vertex v ∈ V (G)
is said to have a color i neighbor if there is an edge (v, u) in E(Gi), furthermore u is a
color i neighbor of v. We say a path or a cycle in G is monochromatic if all the edges on
the path or cycle have the same color.

An α-edge-colored graph G with coloring col : E(G) → 2[α] can also be viewed as a
tuple (V,E1, . . . , Eα), where V = V (G), and for i ∈ [α], Ei = E(Gi). This representation
is more handy for certain situations. Also, we slightly abuse the notation to denote an
α-edge-colored graph G with coloring col : E(G) → 2[α] as the tuple G = (V,E1, . . . , Eα).

For v ∈ V (G), a v-flower of order k is a set of k cycles in G whose pairwise in-
tersection is exactly {v}. If all cycles in a v-flower are monochromatic then we have a
monochromatic v-flower. An α-colored graph G is an α-forest if each Gi is a forest, for
i ∈ [α].

Linear Algebra

For a set A and X, by an operation of A onto X we mean a function f : A×X → X. For
an element (a, x) ∈ A×X by ax we denote the element f(a, x) ∈ X. For a field F with +
as the additive operation and · as the multiplicative operation, and a commutative group
(V,+) with an operation of F onto V is called a vector space over F if for all a, b ∈ F
and x, y ∈ V we have: 1) a(bx) = (ab)x, 2) a(x + y) = ax + ay, 3) (a + b)x = ax + bx,
and 4) 1 ·x = x. Here, 1 is the additive identity of the field F. If V is a vector space over
F then the elements of V are called vectors. One of the natural candidates for vector
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spaces over a field F is Fn, where n ∈ N and the function f(·) being the component-wise
multiplication. In this paper, we restrict ourselves only to such types of vector spaces.
In the following, consider a field F and a vector space V = Fn, where n ∈ N. For a
vector v = (b1, b2, . . . , bn) ∈ Fn and an integer i ∈ [n], by v[i] we denote the ith element
(or entry) of v, i.e., the element bi. For vectors v1,v2, . . . ,vt ∈ Fn, a linear combination
of them is a vector a1v1+ a2v2+ . . .+ atvt, where a1, a2, . . . , at ∈ F. A set of vectors V ′
is said to be linearly dependent if there if v ∈ V ′, and vectors v1,v2, . . . ,vt ∈ V ′ \ {v}
such that v is a linear combination of them. If V ′ is not linearly dependent then it is
linearly independent. An inclusion-wise maximal set of linearly independent vectors is
called as a basis of the vector space. It is known that for bases B,B′ of a vector space,
we have |B| = |B′|. By F2 we denote the field with exactly two elements, namely 0 and
1 with the usual addition and multiplication modulo 2 as the field operations. We refer
the reader to [Lay06] for more details.

Matroids

A pair M = (E, I), where E is a ground set and I is a family of subsets (called inde-
pendent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I,

(I2) if A′ ⊆ A and A ∈ I then A′ ∈ I, and

(I3) if A,B ∈ I and |A| < |B|, then there is e ∈ (B \ A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only
(I2) is called hereditary family. An inclusion wise maximal subset of I is called a basis
of the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have
the same size. This size is called the rank of the matroid M , and is denoted by rank(M).
We refer the reader to [Oxl06] for more details about matroids.

Representable Matroids Let A be a matrix over an arbitrary field F and let E be
the set of columns of A. For A, we define matroid M = (E, I) as follows. A set X ⊆ E is
independent (that is X ∈ I) if the corresponding columns are linearly independent over
F. The matroids that can be defined by such a construction are called linear matroids,
and if a matroid can be defined by a matrix A over a field F, then we say that the
matroid is representable over F. A matroid M = (E, I) is called representable or linear
if it is representable over some field F.

Direct Sum of Matroids Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be
t matroids with Ei ∩ Ej = ∅ for all 1 ≤ i �= j ≤ t. The direct sum M1 ⊕ · · · ⊕ Mt

is a matroid M = (E, I) with E :=
⋃t

i=1Ei and X ⊆ E is independent if and only if
X ∩ Ei ∈ Ii for all i ∈ [t]. Let Ai be the representation matrix of Mi = (Ei, Ii) over
field F. Then,

AM =

⎛
⎜⎜⎝

A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

...
...

0 0 0 · · · At

⎞
⎟⎟⎠
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is a representation matrix of M1⊕ · · ·⊕Mt. The correctness of this is proved in [Mar09,
Oxl06].

Uniform Matroid A pair M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k},
where k is some constant. This matroid is also denoted as Un,k.

Proposition 2.4 ([CFK+15, Oxl06]). Uniform matroid Un,k is representable over any
field of size strictly more than n and such a representation can be found in time polyno-
mial in n.

Graphic and Cographic Matroid Given a graphG, the graphic matroidM = (E, I)
is defined by taking the edge set E(G) as universe and F ⊆ E(G) is in I if and only if
G[F ] is a forest. Let G be a graph and η be the number of components in G. The co-
graphic matroid M = (E, I) of G is defined by taking the the edge set E(G) as universe
and F ⊆ E(G) is in I if and only if the number of connected components in G−F is η.

Proposition 2.5 ([Oxl06]). Graphic and co-graphic matroids are representable over any
field of size ≥ 2 and such a representation can be found in time polynomial in the size
of the graph.

Elongation of Matroid Let M = (E, I) be a matroid and k be an integer such that
rank(M) ≤ k ≤ |E|. A k-elongation matroid Mk of M is a matroid with the universe
as E and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k.
Observe that the rank of the matroid Mk is k.

Proposition 2.6 ([LMPS15]). Let M be a linear matroid of rank r, over a ground set
of size n, which is representable over a field F. Given a number � ≥ r, we can compute
a representation of the �-elongation of M , over the field F(X) in O(nr�) field operations
over F.

α-Matroid Parity In our algorithms we use a known algorithm for α-Matroid Par-

ity. Below we define α-Matroid Parity problem formally and state its algorithmic
result.

α-Matroid Parity Parameter: α, q
Input: A representation AM of a linear matroid M = (E, I), a partition P of E
into blocks of size α and a positive integer q.
Question: Does there exist an independent set which is a union of q blocks?

Proposition 2.7 ([LMPS15, Mar09]). There is a deterministic algorithm for α-

Matroid Parity, running in time O(2ωqα||AM ||O(1)), where ||AM || is the total number
of bits required to describe all the elements of matrix AM .

For α = 2, the problem α-Matroid Parity is called Matroid Parity. The
weighted version of this problem takes an addition input, which is a weight function
w : E → Q, and the corresponding problem is called Weighted Matroid Parity.
The problem Weighted Matroid Parity is solvable in polynomial time on linear
matroids [IK17].
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q-Representative Family. Let M = (E, I) be a matroid and B be a family com-
prising of subsets of size p of E. We say that B̂ ⊆ B is a q-representative for B if for
every set Y ⊆ E of size at most q, if there is a set X ∈ B, such that X ∩ Y = ∅ and
X ∪ Y ∈ I, then there is a set X̂ ∈ B̂ such that X̂ ∩ Y = ∅ and X̂ ∪ Y ∈ I. If B̂ ⊆ B
is a q-representative for B then we denote it by B̂ ⊆q

rep B. We use the following result
related to the computation of representative family.

Theorem 2.1 ([FLPS16]). Let M = (E, I) be a linear matroid of rank k = p + q, and
matrix AM be a representation of M over a field F. Also, let B = {B1, B2, . . . , Bt} be
a family of independent sets in E of size p. Then, there exists B̂ ⊆q

rep B (B̂ ⊆q
minrep B)

of size at most
(
p+q
p

)
. Moreover, B̂ ⊆q

rep B can be computed in at most O(
(
p+q
p

)
tpω +

t
(
p+q
p

)ω−1
) operations over F. Here, ω is the exponent in the running time of matrix

multiplication.

Definitions of Selected Problems

In the following, we give formal definitions of some problems. For all other problems
their respective definitions will be given in the relevant sections.

Vertex Cover

Input: A graph G and an integer k.
Question: Is there X ⊆ V (G) of size at most k such that, X is a vertex cover in G?

Independent Set

Input: A graph G and an integer k.
Question: Is there X ⊆ V (G) of size at least k such that, X is an independent set
in G?

Multi-Colored Clique (MCC)
Input: A graph G with a partition V1, V2, . . . , Vk of V (G).
Question: Is there X ⊆ V (G) such that, for all i ∈ [k], |X ∩ Vi| = 1 and G[X] is a
clique?

Multi-Colored Independent Set (MIS)
Input: A graph G with a partition V1, V2, . . . , Vk of V (G).
Question: Is there X ⊆ V (G) such that, for all i ∈ [k], |X ∩ Vi| = 1 and G[X] is an
independent set?

d-Hitting Set

Input: A family F of sets of size at most d over (finite) universe U and an integer
k.
Question: Is there X ⊆ U of size at least k such that, for each F ∈ F we have
F ∩X �= ∅?
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Weighted d-Hitting Set

Input: A family F of sets of size at most d over (finite) universe U and a weight
function w : U → Q.
Output: A set X ⊆ U of minimum possible weight such that, for each F ∈ F we
have F ∩X �= ∅.

Hitting Set

Input: A family F of sets over (finite) universe U and an integer k.
Question: Is there X ⊆ U of size at least k such that, for each F ∈ F we have
F ∩X �= ∅?
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Part I

Introduction to Parameterized
Complexity





Chapter 3

Fixed Parameter Tractability and
Kernelization

Imagine you are a teacher in a school, and this time you have to deal with a more com-
plicated job. You have to organize a week-long picnic. To add to the fun, you are
organizing a forest-treasure hunt. Since it is a big forest, you have kept some contingen-
cies like food and water at certain places, which students can pick up when they need.
Also, you want to make them acquainted with the terrain. Due to limited time you can
only train few students, and then assign them as team leaders for their respective teams.
Students tend to happier when all their friends are around. As you are a good teacher
you want to maximize the number of students who are happy during the trip. While
dividing students into various teams you want to partition them in a way that maxi-
mizes the number of students whose all friends are in their team. You are not only a
good teacher, but also a sagacious techie! Having given the limited time frame for divid-
ing students into various teams and your computational expertise, you want to employ
a computer to do the job for you.

The above computational scenario is captured by the problem calledHappy Vertex

Coloring. Here, you are given a friendship graph say G, where the vertex set is the
set of students, and there is an edge between two students if they are friends of each
other. Some of these vertices are colored, and this partial coloring will be denoted by
c : S → [k], where k is the number of colors used. In the above (special) scenario the
set S represents the selected students who are given special training in the forest, and k

represent the number of teams. For the (special) scenario you are dealing with, the set
of selected students are given distinct colors. A student will be considered happy if all
her/his friends are in the same team, in other word they are given the same color. The
objective is to find a coloring c̃ of student, which maximize the number of students whose
all friends belong to their team. Moreover, the coloring c̃ must be same as the coloring
c when restricted to the set S. To capture the above in the friendship graph, a vertex
v ∈ V (G) will be called happy if for all u ∈ N(v) we have c̃(u) = c̃(v). Furthermore, we
have an integer � such that when we divide students into various teams, we have at least
� student who are happy. The goal will be to compute a coloring c̃ such that c̃|S = c and
the number of happy vertices is at least �.

Having modelled the scenarios as a mathematical problem, now you want to design
an algorithm that solves the problem. As it often turn out, the problem Happy Vertex

Coloring is NP-complete, whenever k ≥ 3 [ZL15]. Observe that, although the problem



22 Fixed Parameter Tractability and Kernelization

is NP-hard, there is a brute force algorithm running in time O(knnO(1)), which tries
all possible colorings using at most k colors of a graph on n vertices. If the number of
students who participate in the forest-treasure hunt is 100 and the number of teams is 10,
then the brute force algorithm would roughly require executing 10100 instructions, which
is not possible to compute in few days using most modern laptops. Therefore, you turn
to various mechanisms for coping with NP-hardness. Some of the widely used coping
mechanisms are Approximation Algorithms, Heuristics, Exact Exponential Algorithms,
and Parameterized Algorithms. This time the coping mechanism you choose to employ
is the theory of Parameterized Complexity. Before moving on to how we employ the
theory of Parameterized Complexity to obtain better algorithms, we formally define
parameterized problems and important notions in Parameterized Complexity that are
used for dealing with NP-hard problems.

3.1 Parameterized Problems

We now move away from the “forest-treasure hunt” problem, and indulge in formal
definitions and notions in Parameterized Complexity. Later, we illustrate some of these
notions using our toy problem. Next, we move to the formal definition of parameterized
problems.

Definition 3.1. A parameterized problem Π is a subset of Σ∗ ×N, where Σ is a (fixed)
finite alphabet set. An instance of a parameterized problem is a tuple (x, k), where k is
called the parameter.

Let Π be a parameterized problem, and I = (x, k) be an instance of Π. We always
assume that x is encoded using the alphabets in Σ. For example, x could be a graph,
and a potential representation of it for Σ = {0, 1} could be the adjacency matrix. By
the size of I we mean |I| = |x|+ k. Here, we can interpret k as being encoded in unary.

Next, we look at some examples of parameterized problems. The classical problem
of Vertex Cover can be parameterized by the solution size, which is the size of vertex
cover we are looking for. Here, a tuple (G, k) is an instance of Vertex Cover, where
G is a graph and k is an integer, and the objective is to decide whether or not G admits
a vertex cover of size at most k. One of the natural parameters for parameterizing a
classical problem instance is the solution size. Moreover, one can also use some structural
properties of the input/ output as the parameter. For our example of Happy Vertex

Coloring, the potential parameters could be the number of colors, the number of happy
vertices, the number of unhappy vertices, the number of pre-colored vertices, the number
of uncolored vertices, some structural properties like maximum degree of a vertex in the
input graph, or a combinations of some of them.

Next, we move to some important notions and complexity classes for parameterized
problems.

3.2 Fixed-Parameter Tractability

A central notion in Parameterized Complexity is fixed-parameter tractability (FPT),
which is defined below.
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Definition 3.2. A parameterized problem Π ⊆ Σ∗×N is called fixed-parameter tractable
if there is an algorithm A, a computable (non-decreasing) function f : N → N, and a
constant c such that, given an instance I = (x, k) of Π, the algorithm A correctly decides
whether or not (x, k) ∈ Π in time bounded by f(k) · |I|c. The complexity class containing
all fixed-parameter tractable problems is called FPT.

In the following sections, we look at some examples of designing FPT algorithms for
parameterized problems. In Section 3.2.1, we design an FPT algorithm for the problem
called Weighted Feedback Vertex Set, which also illustrates the use of iterative
compression technique and branching in designing FPT algorithms. The technique of it-
erative compression was introduced by Reed et al. [RSV04] for designing FPT algorithm
for Odd Cycle Transversal. We will be using the technique of iterative compres-
sion and branching in later chapters in the thesis. Moreover, we use the algorithm for
Weighted Feedback Vertex Set as a blackbox in later parts of the thesis. We also
give illustrative example for some techniques which are not explicitly used in the the-
sis, but are quite useful in designing FPT algorithms. In Section 3.2.2, we illustrate an
example of designing FPT algorithm using dynamic programming over tree decomposi-
tion for Maximum Happy Vertices. Finally, in Section 3.2.3, using the example of
Subset Rainbow k-Coloring we illustrate the technique of color coding.

3.2.1 Improved algorithm for Weighted Feedback Vertex Set

The Feedback Vertex Set problem is one of the most well studied problems. Given
a graph G and an integer k, the objective is to decide whether or not there is S ⊆ V (G)
of size at most k such that G− S is a forest. Thus, S is a vertex subset that intersects
every cycle in G. In the Parameterized Complexity setting, Feedback Vertex Set

parameterized by k, has an FPT algorithm. The best known FPT algorithm runs in
time O(3.618knO(1)) [CFK+15, KP14]. The problem also admits a kernel on O(k2)
vertices [Tho10]. Another variant of Feedback Vertex Set that has been studied in
Parameterized Complexity is Weighted Feedback Vertex Set (Weighted-FVS),
where each vertex in the graph has some rational number as its weight. The problem
Weighted-FVS is formally defined below.

Weighted-FVS Parameter: k
Input: A graph G, a weight function w : V (G) → Q, and an integer k.
Output: A set S ⊆ V (G) of size at most k of minimum possible weight such that
G− S is a forest.

Weighted-FVS is known to be in FPT with an algorithm of running time
5knO(1) [CFL+08]. In this section, we obtain a faster FPT algorithm for Weighted-

FVS. We use the method of iterative compression together with branching to reduce
an instance of Weighted-FVS to an instance of Weighted-Matroid Parity. It
is known that Weighted-Matroid Parity can be solved in polynomial time [IK17].
In fact, our algorithm is very similar to the algorithm for Feedback Vertex Set

in [CFK+15, KP14].

We give an algorithm only for the disjoint variant of the problem, which we call
Disjoint Weighted-FVS. In the Disjoint Weighted-FVS, we are given a graph
G, a weight function w : V (G) → Q, an integer k, and a feedback vertex set R ⊆ V (G)
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of size k + 1. The objective is to find a set X ⊆ V (G) \ R such that X is a minimum
weighted-fvs of size at most k in G.

Before describing the algorithm for Disjoint Weighted-FVS, we briefly discuss
how we can use it to solve the problem Weighted-FVS. Fix an arbitrary ordering
(v1, v2, . . . , vn) on the vertices of G. For j ∈ [n], we let G(j) denote the subgraph of G
induced on the first j vertices. Note that when j ≤ k + 1, we can take the vertex set
of G(k+1) as a feedback vertex set in G(k+1) of size k + 1. Now suppose that for some
j > k + 1, we have constructed a minimum weighted-fvs S(j) of G(j) of size at most
k. Then, in the graph G(j+1), the set Z(j+1) = S(j) ∪ {vj+1} is an feedback vertex set
of size at most k + 1. If in fact |Z(j+1)| ≤ k we can arbitrarily add some vertices to
make its size k. In each of the cases we described, we have |Z(j+1)| = k + 1 and we
need to “compress” into a smaller solution (if it exists). To that end, we first guess
the intersection X of S(j+1) with Z(j+1). In other words, for every q ∈ {0} ∪ [k] and
every subset X of Z(j+1) of size q, we construct an instance (G′, w′, k′, R′) of Disjoint

Weighted-FVS as follows. We let G′ = G(j+1) − X, w′ = w|V (G′), R
′ = Z(j+1) \ X,

and k′ = k − q. Note that |R′| = k − q + 1, so |R′| is one larger than k′. If G′ does not
admit an Disjoint Weighted-FVS of size at most k, then of course neither does G,
and we may terminate (and declare a no instance). If on the other hand S(j+1) has been
successfully found (which is the union of X and the solution to instance (G′, w′, k′, R′)),
then we proceed to the next graph G(j+2), and so on. Finally, observe that G(n) = G,
so we eventually either find an minimum weighted-fvs of size at most k in G or conclude
that no solution of size at most k exists. We rely on the following observation for the
running time of Weighted-FVS using the algorithm for Disjoint Weighted-FVS.

Observation 1 ([CFK+15]). The existence of an algorithm for Disjoint Weighted-

FVS with running time ck · nO(1), for a constant c, implies that Weighted-FVS can
be solved in time ck+1 · nO(1).

Next, we focus on designing an algorithm for Disjoint Weighted-FVS.

Algorithm for Disjoint Weighted-FVS

Let (G,w : V (G) → Q, k, R) be an instance of Disjoint Weighted-FVS, and let
F = G−R. We call a vertex v ∈ V (F ) a nice vertex if dG(v) = 2 and both its neighbors
are in R. A vertex v ∈ V (F ) is called tent if dG(v) = 3 and all its neighbors are in R. We
only solve decision version of the problem, however the algorithm can easily be modified
to obtain a solution. We start with some simple reduction rules that preprocesses the
graph. The reduction rules are applied in the order in which they are described.

Reduction Rule 3.1. If k < 0 or k = 0 and G is not a forest, then return that
(G,w, k,R) is a no instance of Disjoint Weighted-FVS.

Reduction Rule 3.2. If k ≥ 0 and G is a forest, then return that (G,w, k,R) is a yes
instance of Disjoint Weighted-FVS.

Reduction Rule 3.3. If there is v ∈ V (G) which is of degree one, then delete v. The
resulting instance is (G− {v}, w|V (G)\{v}, k, R \ {v}).

Reduction Rule 3.4. If there is v ∈ V (F ) such that G[R∪{v}] has a cycle, then delete
v from G and degrease k by 1. The resulting instance is (G− {v}, w|V (G)\{v}, k − 1, R).
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Reduction Rule 3.5. If there is an edge of multiplicity larger than 2 in E(G), then
reduce its multiplicity to 2.

The correctness of the above reduction rules do not depend on the weights, and thus
it is similar to the one for unweighted version of Weighted-FVS, and therefore, their
safeness follows from [CFK+15].

Reduction Rule 3.6. Let x ∈ V (F ) be a leaf with the only neighbor as y in F . Also,
x has at most 2 neighbors in R. Subdivide the edge (x, y), and add the newly created
vertex x∗ to R. We define the new weight function w∗ : V (G) ∪ {x∗} → Q, as follows:
w∗(x∗) = 1 and w∗(v) = w(v), for v ∈ V (G). Let G∗ be the newly created graph after
subdivision of the edge (x, y). Our reduced instance for Disjoint Weighted-FVS is
(G∗, w∗, k, R ∪ {x∗}).

Lemma 3.1. Reduction Rule 3.6 is safe.

Proof. Let x ∈ V (F ) be a leaf with the only neighbor as y in F . Also, x has at most
2 neighbors in R. Let G∗ be the graph after subdivision of the edge (x, y) with the
newly added vertex as x∗. Furthermore, we define w∗ : V (G) ∪ {x∗} → Q, as follows:
w∗(x∗) = 1 and w∗(v) = w(v), for v ∈ V (G). We will show that G has a weighted-fvs of
size at most k and weight at most W if and only if G∗ has a weighted-fvs of size at most
k and weight at most W .

In the forward direction, let S ⊆ V (G) \ R be a weighted-fvs of G of size at most k
such that w(S) ≤ W . We will show that indeed S is a weighted-fvs in G∗ of size at most
k and w∗(S) ≤ W . We first bound the weight of S in G∗. Note that w∗(v) = w(v), for
v ∈ V (G). Therefore w∗(S) = w(S) ≤ W . We now show that S is a feedback vertex
set in G∗. Suppose not, then there is a cycle C in G∗ − S. If C does not contain x∗,
then it contains none of the edges in {(x, x∗), (x∗, y)}. This by definition implies that
C is also a cycle of G − S, which is a contradiction. On the other hand, let C contain
the vertex x∗. By construction, C must also contain both (x, x∗) and (x∗, y). However,
this means that C ′ = (C − {(x, x∗), (x∗, y)}) ∪ {(x, y)} is a cycle in G − S, which is a
contradiction. Therefore, S ⊆ V (G) \R is also a weighted-fvs in G∗.

In the reverse direction, consider a weighted-fvs S ⊆ V (G∗) \ (R ∪ {x∗}) of size at
most k and w∗(S) ≤ W . As S is a weighted-fvs disjoint from R ∪ {x∗}, x∗ /∈ S. Thus,
w(S) = w∗(S), . We now show that S is a feedback vertex set in G. Suppose not, then
there is a cycle C in G−S. If C does not contain the edge (x, y), then by construction, C
is also a cycle in G∗−S, which is a contradiction to the fact that S is a weighted-fvs of G∗.
Otherwise, C contains the edge (x, y). But then, C ′ = (C − {(x, y)}) ∪ {(x, x∗), (x∗, y)}
is a cycle G∗ − S, which is a contradiction. Hence, S must is a weighted-fvs for G.

Now, we are ready to describe the main algorithm. To measure the running time of
our algorithm for an instance I = (G,w, k,R), we define the following measure.

μ(I) = k + ρ(R)− (η + τ)

Here, ρ(R) is the number of connected components in G[R] and η, τ are the number of
nice vertices and tents in F , respectively.

Let I = (G,w, k,R) be an instance of Disjoint Weighted-FVS where none of
Reduction Rules 3.1 to 3.6 are applicable. It is clear that Reduction Rules 3.1 to 3.5
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do not increase the measure. We only need to argue about Reduction Rule 3.6, which
increases the number of vertices in R. The number of vertices in R∗ is one more than
the number of vertices in R, and thus the number of connected components in G∗[R∗]
increases by (at most) one. However, we create either a nice vertex or a tent in G∗,
therefore one of η or τ increases by 1. Hence, μ(I∗) = k+(ρ(R)+1)− (η+τ +1) ≤ μ(I).
Note that we do not increase the number of vertices in F , therefore we can apply the
Reduction Rule 3.6 at most |V (F )| times.

In Lemma 3.2, we show that if μ < 0, then (G,w, k,R) is a no instance. This will
form one of the base cases in our branching algorithm.

Lemma 3.2. For an instance I = (G,w, k,R) of Disjoint Weighted-FVS, if μ < 0,
then I is a no instance.

Proof. Suppose that I is a yes instance of Disjoint Weighted-FVS and μ < 0. Let
S be a weighted-fvs in G of size at most k, and F ′ = G − S, which is a forest. Let
N ⊆ V (G) \ R, T ⊆ V (G) \ R be the set of nice vertices and tents in V (G) \ R,
respectively. Since F ′ is a forest we have that G′ = G[(R ∪ N ∪ T ) \ S] is a forest.
In G′, we contract each of the connected components in R to a single vertex to obtain
a forest F̃ . Observe that F̃ has at most |V (F̃ )| ≤ ρ(R) + |N \ S| + |T \ S| vertices
and thus can have at most ρ(R) + |N \ S| + |T \ S| − 1 many edges. The vertices in
(N ∪ T ) \ S ⊆ V (G) \ R forms an independent set in F̃ , since they are nice vertices or
tents. The vertices in N \S and T \S have degree 2 and degree 3 in F̃ , respectively, since
their degree cannot drop while contracting the components of G[R]. Thus we obtain the
following.

2|N \ S|+ 3|T \ S| ≤ |E(F̃ )| ≤ ρ(R) + |N \ S|+ |T \ S| − 1

Therefore, |N \ S|+ |T \ S| < ρ(R). But N ∩ T = ∅, and thus we have the following.

|N |+ |T | < ρ(R) + |S| ≤ ρ(R) + k (3.1)

However, by our assumption, μ(I) = ρ(R) + k − (|N | + |T |) < 0, and thus |N | +
|T | > ρ(R) + k. This, contradicts the inequality given in Equation 3.1 contradicting our
assumption that I is a yes instance of Disjoint Weighted-FVS. This completes the
proof.

Next, we conjure all that we have developed, and give the description of the algo-
rithm for Disjoint Weighted-FVS, prove its correctness, and analyze its running
time assuming a polynomial time procedure that we explain in the next subsection.

Description of the Algorithm. Let I = (G,w, k,R) be an instance of Disjoint

Weighted-FVS. If G[R] is not a forest, then return that (G,w, k,R) is a no instance
of Disjoint Weighted-FVS. Hereafter, we will assume that G[R] is a forest. First, the
algorithm exhaustively applies the Reduction Rules 3.1 to 3.6. If at any point μ(I) < 0,
then we return that (G,w, k,R) is a no instance. For sake of clarity, we will denote the
reduced instance by (G,w, k,R). If all the vertices v ∈ V (G) \R are either nice vertices
or tents then we solve the problem in polynomial time by using Theorem 3.2. We defer
the proof of Theorem 3.2 to the following subsection, where we solve the instance using
Weighted Matroid Parity. Otherwise, we apply the following Branching rule.
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Branching Rule 3.2.1. If there is a leaf vertex v ∈ V (G) \ R, which is neither a nice
vertex nor a tent then, we branch as follows.

i) v belongs to the solution. In this branch we delete v from G and decrease k by 1.
The resulting instance is (G− {v}, w′, k − 1, R), where w′ = w|V (G)\{v}.

The measure μ decreases by at least 1.

ii) v does not belong to the solution. Note that v is neither a nice vertex nor a tent,
and none of the reduction rules are applicable. Therefore, v has at least 3 neighbors
in R. We add the vertex v to R. As a result, the number of components in G[R]
decreases by at least 2. The resulting instance is (G,w, k,R ∪ {v}).
The measure μ decreases by at least 2.

The worst case branching vector corresponding to the above branching rule is (1, 2).

Lemma 3.3. The algorithm presented is correct.

Proof. Let I = (G,w, k,R) be an instance of Disjoint Weighted-FVS. We prove the
correctness of the algorithm by induction on the measure μ = μ(I). By Lemma 3.2 when
μ < 0, then we correctly conclude that I is a no instance.

For the induction hypothesis, let us assume that the algorithm correctly decides if
the input is a yes/no instance for μ = t. We will prove it for μ = t + 1. If any of the
reduction rules are applicable, then either we correctly decide the instance or create an
equivalent instance, which follows from their safeness. If we correctly decide the instance
then the algorithm is trivially correct for μ = t + 1. Otherwise, we obtain an instance
I ′. If μ(I ′) < μ(I) (the case when Reduction Rule 3.4 is applied) then by the induction
hypothesis the algorithm correctly decides for the measure μ = t. Otherwise, we have
an instance with the same measure. If none of the reduction rules are applicable, then
we have the following cases:

• Each v ∈ V (G)\R is either a nice vertex or a tent. In this case, we solve the problem
in polynomial time, and the correctness of this step follows from Theorem 3.2.

• There is a leaf v ∈ V (G) \ R such that v is neither a nice vertex nor a tent. The
existence of such a vertex is guaranteed by the non-applicability of the reduction
rules. In this case, we apply the Branching Rule 3.2.1. The Branching Rule
is exhaustive. Moreover, at each branch the measure decreases at least by one.
Hence, by the induction hypothesis it follows that the algorithm correctly decides
whether or not I is a yes instance.

This completes the proof of correctness.

Next, we obtain an FPT algorithm for Disjoint Weighted-FVS using Lemma 3.3.

Lemma 3.4. Disjoint Weighted-FVS can be solved in time O�(2.618k).

Proof. The correctness of the algorithm follows from Lemma 3.3. All of the Reduction
rules 3.1 to 3.6 can be applied in polynomial time. Also, at each branch we spend a
polynomial amount of time. For each of the recursive calls at a branch, the measure μ

decreases at least by 1. When μ < 0, then we are able to correctly conclude that the
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given input is a no instance by Lemma 3.2. The number of leaves, and thus the size of
the branching tree is upper bounded by the solution to the following recurrence.

T (μ) ≤ T (μ− 1) + T (μ− 2)

The above recurrence solves to 1.618μ. Since at the start of the algorithm μ ≤ 2k, we
have that the number of leaves is upper bounded by O(1.6182k). Therefore, Disjoint

Weighted-FVS can be solved in time O�(2.618k).

Using Lemma 3.4 and Observation 1, we obtain the following theorem.

Theorem 3.1. Weighted-FVS has an FPT algorithm which runs in time O�(3.618k),
where n is the number of vertices in the input graph.

Algorithm for sub-cubic Disjoint Weighted-FVS

Let (G,w, k,R) be an instance of Disjoint Weighted-FVS where each vertex in
V (G)\R is either a nice vertex or a tent. An instance of the Matroid Parity problem
we create is same as that in [KP14]. In fact, what we use is the Weighted Matroid

Parity problem.
The Weighted Matroid Parity problem for the graphic matroid MH of a graph

H is defined as follows. Let H be a graph with even number of edges, i.e. |E(H)| = 2m,
where m ∈ N, and we have a partition of E(H) into pairs, say E(H) = {e11, e12} ∪
{e21, e22} ∪ · · · ∪ {em1 , em2 }. Furthermore, for each pair {ei1, ei2}, where i ∈ [m] there is a
positive (rational) weight wM({ei1, ei2}). That is, wM is a weight function on pairs. We
want to find a set I ⊆ [m] of maximum weight such that ∪i∈I{ei1, ei2} is an independent
set in MH . Equivalently, ∪i∈I{ei1, ei2} is acyclic in H. The Weighted Matroid

Parity problem is polynomial time solvable on linear matroids, and hence in graphic
matroids [IK17].

For each vertex v ∈ V (G) \ R, we arbitrarily label the edges incident to v. If v is a
nice vertex then we label it as {ev1, ev2}; otherwise if v is a tent vertex then we label it as
{ev0, ev1, ev2}. We let wM({ev1, ev2}) = w(v). Note that F = E(G[R])∪ {ev0 : v ∈ V (G) \R}
is a forest. We contract all the edges in G which are in F to obtain a (new) graph H.
In the process of contraction, we have not contracted any multiple edge or self-loops.
Also, we have E(H) =

⋃
v∈V (G)\R{ev1, ev2}. The input to the Weighted Matroid

Parity algorithm for graphical matroid is the graph H, the set of pairs {ev1, ev2} with
weight wM({ev1, ev2}), for v ∈ V (G) \R. In Lemma 3.5 we prove that finding a minimum
weighted-fvs X ⊆ V (G)\R in (G,w, k,R) is equivalent to computing a maximum weight
subset I ⊆ {{ev1, ev2} | v ∈ V (G) \ R} such that ∪v∈I{ev1, ev2} is an independent set in
MH .

Lemma 3.5. For a set I ⊆ V (G) \ R, ∪i∈I{ei1, ei2} is an independent set in MH of
maximum weight if and only if (V (G) \R) \ I is a feedback vertex set in G of minimum
weight.

Proof. By the definition of H, ∪i∈I{ei1, ei2} is an independent set in MH if and only if
F ∪ (∪i∈I{ei1, ei2}) is acyclic in G. Recall that F = E(G[R]) ∪ {ev0 : v ∈ V (G) \ R} is a
forest. Therefore, if ∪i∈I{ei1, ei2} is an independent set in MH , then G′ = G− ((V (G) \
R) \ I) is a forest. In other words, (V (G) \R) \ I is a feedback vertex set in G.
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In the reverse direction, consider I ⊆ V (G)\R such that (V (G)\R)\ I is a feedback
vertex set in G. This implies that G[I∪R] is a forest. Define F ′ =

⋃
i∈I{ei1, ei2}. Clearly,

F ′ ⊆ E(G[I∪R]). Suppose, F ′ contains a cycle in H. This means that on uncontracting
the edges in F , there is a cycle contained in G[I∪R], which is a contradiction. Therefore,
∪i∈I{ei1, ei2} is an independent set in MH .

Note that by definition of wM, wM(I) = w(I). Therefore, w((V (G) \ R) \ I) =
w(V (G))−w(R)−w(I) = w(V (G))−w(R)−wM(I). This implies that whenever wM(I)
is maximized then w((V (G) \ R) \ I) is minimized and vice-versa. This completes the
proof.

Lemma 3.5 immediately implies the following theorem.

Theorem 3.2. Let (G,w, k,R) be an instance of Disjoint Weighted-FVS. If each
v ∈ V (G) \ R is either a nice vertex or a tent, then Disjoint Weighted-FVS in
(G,w, k,R) can be solved in polynomial time.

3.2.2 Algorithm for Maximum Happy Vertices on graphs of
bounded treewidth

In this section, we design a dynamic programming based FPT algorithm for Maximum

Happy Vertices when parameterized by the treewidth of input graph and the number
of colors in the pre-coloring of a subset of vertices. The problem Maximum Happy

Vertices is formally defined below.

Maximum Happy Vertices Parameter: k, tw(G)
Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring
c : S ⊆ V (G) → [k].
Output: An integer � such that for all c̃ ∈ {ĉ | ĉ|S = c}, we have |Hc̃| ≤ �, where
Hc̃ is the set of happy vertices in G with respect to c̃. Furthermore, there exist
c̃ ∈ {ĉ | ĉ|S = c} such that |Hc̃| = �.

Let (G, k, S, c : S → [k]) be an instance of Maximum Happy Vertices, n = |V (G)|
and m = |E(G)|. Without loss of generality we assume that for each i ∈ [k], we
have c−1(i) �= ∅, otherwise we can adjust the instance appropriately by adding isolated
vertices. For each i ∈ [k], we arbitrarily choose a vertex from c−1(i), which we denote by
v�i . We let S� = {v�i | i ∈ [k]}, and S� = ({v�1}, {v�2}, . . . , {v�k}). We start by computing

a tree decomposition (T̄ , β̄) of width at most w ≤ 6 · tw(G) in time O(2O(tw(G))n),
using the algorithm of Bodlaender et al. [BDD+16]. Next, we find a more structure tree
decomposition called a nice tree decomposition, which is defined below.

Definition 3.3. A (rooted) tree decomposition (T , β) of a graph G, where T is a tree
rooted at r ∈ V(T ) and β : V (T ) → 2V (G), is called a nice tree decomposition if the
following conditions are satisfied.

1. β(r) = ∅ and β(�) = ∅ for every leaf node � in T ;

2. Every non-leaf node t of T is of one of the following type:

• Introduce node: The node t has exactly one child t′ in T and β(t) =
β(t′) ∪ {v}, where v /∈ β(t′).
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• Forget node: The node t has exactly one child t′ in T and β(t) = β(t′)\{v},
where v ∈ β(t′).

• Join node: The node t has exactly two children t1, t2 in T and β(t) = β(t1) =
β(t2).

We rely on the following lemma to compute a nice tree decomposition using the given
tree decomposition (T̄ , β̄).

Lemma 3.6 ([CFK+15, Klo94]). If a G has a tree decomposition (T , β) of width at most
w then there is a nice tree decomposition of G of width at most w. Moreover, given a tree
decomposition (T , β) of G of width at most w, in time O(w2 ·max(|V (T )|, |V (G)|)) we
can compute a nice tree decomposition of G of width at most w with at most O(w|V (G)|)
nodes.

Using Lemma 3.6 we compute a nice tree decomposition (T ′, β′) of G with the root
node as r′ and width at most w, in time O(tw(G)2n). We modify the nice tree decompo-
sition (T ′, β′) to obtain even more structured rooted tree decomposition (T , β) with root
node r = r′ as follows. We let T = T ′, and for t ∈ V (T ), we have β(t) = β′(t)∪ S�, i.e.
(T , β) is obtained from (T ′, β′) by adding all the vertices in S� to each bag of t ∈ V(T ).
Note that width of (T , β) is bounded by w + k ≤ 6 · tw(G) + k. The purpose of adding
all vertices in S� to each bag is to ensure the subgraph induced by the subtree rooted
at a node contains vertices of all k colors, which simplifies the proof. We note that
the notion of introduce node, forget node, and join node naturally extends to the tree
decomposition (T ,X ).

For a node t ∈ V (T ), by desc(t) we denote the set of nodes which are descendants
of t (including t) in T . Furthermore, for t ∈ V (T ), by Gt we denote the graph G[Vt],
where Vt = ∪t′∈desc(t)β(t′).

We now move to the description of the entries of the dynamic programming table.
Consider a node t ∈ V (T ), and an ordered partition P = (P1, P2, . . . Pk) of β(t) into k

sets. We call P a valid ordered partition if and only if for all i ∈ [k], c−1(i) ∩ β(t) ⊆ Pi.
Note that for any valid ordered partition P = (P1, P2, . . . , Pk), for all i ∈ [k], we have
Pi �= ∅. This follows from the fact that S� ⊆ β(t).

For a valid ordered partition P = (P1, P2, . . . Pk) of β(t), letH = {(Hi, Ui) | Hi�Ui =
Pi and i ∈ [k]} be a set comprising of ordered pairs, which are partitions of the sets Pis
into two sets. A tuple τ = (t,P ,H) is a valid tuple if P is a valid ordered partition. For
a valid tuple τ = (t,P ,H), a coloring cτ : V (Gt) → [k] is called a τ -good coloring if all
the following conditions are satisfied.

1. For all i ∈ [k], we have Pi ⊆ c−1
τ (i);

2. For all i ∈ [k], all the vertices in Hi are happy in Gt with respect to cτ ;

3. cτ |S∩V (Gt) = c|S∩V (Gt).

For every valid tuple τ = (t,P ,H), we have a table entry denoted by Π(τ) which
is set to an element z ∈ [|V (Gt)|] ∪ {−∞}. Intuitively, Π(τ) is set to an element
z ∈ [|V (Gt)|] ∪ {−∞} which corresponds to the maximum of the number of happy
vertices in Gt over all τ -good colorings (if it exists). Formally, the value of Π(τ) is
determined as follows.
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1. If there is no τ -good coloring of Gt then Π(τ) = −∞.

2. Otherwise, over all τ -good colorings of Gt, Π(τ) is set to the maximum of the
number of happy vertices in V (Gt) \ (∪i∈[k]Ui) of Gt over all such colorings.

Let H� be the set comprising of all H = {(Hi, Ui) | Hi � Ui = {v�i } and i ∈ [k]}.
Observe that maxH∈H� Π(r,S�,H) is exactly the number of happy vertices in G max-
imized over all colorings that extends c to a coloring of V (G). We now move to the
description on how the values of Π(·) are computed. Since we have a structured form
of tree decomposition we compute the value of each of the entries at node t ∈ V (T )
based on the entries of its children, which will be given by the recursive formula.
For leaf nodes, we compute the values directly, which corresponds to the base case
for the recursive formula. Therefore, by computing the formula in a bottom-up fash-
ion we compute the value of Π(r,S�,H), for each H ∈ H�, and hence the value
of maxH∈H� Π(r,S�,H). We now move to the description of computing Π(τ), where
τ = (t,P = (P1, . . . , Pk),H = {(Hi, Ui) | Hi � Ui = Pi and i ∈ [k]}) is a valid tuple.

Leaf node. Suppose t is a leaf node. In this case, we have β(t) = S�, and P = S�.
Note that in this case there is exactly one τ -good coloring of Gt namely, c|S� . Moreover,
we can find the set of happy vertices H, in Gt with respect to c|S� by looking at the
adjacencies between the vertices in S�. If there exist i ∈ [k] such that Hi \H �= ∅ then
we set Π(τ) = −∞. Otherwise, we set Π(τ) = |H \(∪i∈[k]Ui)|. The correctness of setting
the values as described is justified by the uniqueness of τ -good coloring in Gt.

Introduce node. Suppose t is an introduce node. Let t′ be the unique child of t in T ,
and β(t) = β(t′)∪{ṽ}, where ṽ /∈ β(t′). Furthermore, let Pi be the set containing ṽ, where
i ∈ [k]. Recall that by the properties of tree decomposition, there is no u ∈ NGt

(ṽ)\β(t),
i.e. all the neighbors of ṽ in Gt are in β(t). Let P ′ = (P1, P2, . . . , Pi \ {ṽ}, . . . , Pk), and
H′ = (H \ {(Hi, Ui)}) ∪ {(Hi \ {ṽ}, Ui \ {ṽ})}. Finally, let τ ′ = (t′,P ′,H′). Note that
τ ′ is a valid tuple. We start by considering the following simple cases where we can
immediately set the value of Π(τ).

Case 1 If ṽ ∈ Hi and there is j ∈ [k] \ {i} such that Pj ∩ NGt
(ṽ) �= ∅ then we set

Π(τ) = −∞ since for any τ -good coloring of Gt, ṽ is not a happy vertex.

Case 2 If there is j ∈ [k] \ {i} such that Hj ∩ NGt
(ṽ) �= ∅ then set Π(τ) = −∞. The

correctness of this step is justified by the fact that for any τ -good coloring cτ , a
vertex in Hj ∩NGt

(ṽ) cannot be happy in Gt with respect to cτ .

If none of the above cases are applicable then we (recursively) set the value of Π(τ)
as follows.

Π(τ) =

{
1 + Π(τ ′) if ṽ ∈ Hi;
Π(τ ′) if ṽ ∈ Ui.

(3.2)

Correctness of Equation 3.2. We prove that Equation 3.2 correctly computes the
value of Π(τ) when Case 1 and 2 are not applicable. Consider a τ -good coloring cτ of
Gt that maximizes the number of happy vertices in V (Gt) \ (∪i∈[k]Ui), and let H ⊆
V (Gt) \ (∪i∈[k]Ui) be the set of happy vertices in Gt with respect to cτ . Also, let
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cτ ′ = cτ |V (Gt′). Notice that cτ ′ is a τ ′-good coloring of Gt′ . Since Gt′ = Gt − {ṽ}
therefore, all the vertices in H \ {ṽ} are happy in Gt′ with respect to cτ ′ . This implies
that Π(τ ′) ≥ |H \ {ṽ}|. If ṽ ∈ Hi then it must hold that ṽ ∈ H since cτ is a τ -good
coloring, and hence, we have Π(τ ′) ≥ Π(τ)− 1. Otherwise, ṽ ∈ Ui, and therefore ṽ /∈ H.
This implies that Π(τ ′) ≥ Π(τ).

For the other direction consider a τ ′-good coloring of Gt′ that maximizes the number
of happy vertices in V (Gt′)\(∪i∈[k]Ui), and letH ⊆ V (Gt′)\(∪i∈[k]Ui) be the set of happy
vertices in Gt′ with respect to cτ ′ . Let cτ be a coloring of Gt such that cτ |V (Gt\{v�}) = cτ ′

and cτ (ṽ) = i. Since Case 2 is not applicable therefore, all the vertices in NGt
(ṽ)∩H must

belong to Pi. This implies that all the vertices in H are happy in Gt with respect to cτ .
Consider the case when ṽ ∈ Hi. Since Case 1 is not applicable therefore, NGt

(ṽ) ⊆ Pi.
This implies that for all u ∈ NGt

(ṽ), we have cτ (u) = cτ (ṽ). Therefore, all the vertices
in H ∪ {ṽ} are happy in Gt with respect to cτ . Moreover, cτ is a τ -good coloring of Gt.
Therefore, in this case we have that Π(τ) ≥ Π(τ ′) + 1. Next, consider the case when
ṽ ∈ Ui. Observe that cτ is a τ -good coloring of Gt. This together with the fact that all
the vertices in H are happy in Gt with respect to cτ , implies that Π(τ) ≥ Π(τ ′).

Forget node. Suppose t is a forget node. Let t′ be the unique child of t in T such that
β(t) = β(t′) \ {ṽ}, where ṽ ∈ β(t′). For i ∈ [k], let Pi = (P1, P2, . . . , Pi ∪ {ṽ}, . . . , Pk),
i.e. the ordered partition of β(t′) = β(t) ∪ {ṽ} obtained from P by adding ṽ to the set
Pi. Furthermore, for the partition (Hi, Ui) of Pi in H let Hi1 = (H\{(Hi, Ui)})∪{(Hi∪
{ṽ}, Ui)} and Hi2 = (H \ {(Hi, Ui)}) ∪ {(Hi, Ui ∪ {ṽ})}, i.e. Hi1 and Hi2 are obtained
from H by adding ṽ to the set of happy and unhappy vertices, respectively. If for some
ĩ ∈ [k], we have ṽ ∈ c−1(̃i) then we let P = {Pĩ}, otherwise we let P = {Pi | i ∈ [k]}.
We set the value of Π(τ) as follows.

Π(τ) = max
Pi∈P,j∈[2]

{Π(t′,Pi,Hij)}. (3.3)

Correctness of Equation 3.3. We proof that Equation 3.3 correctly computes the
value of Π(τ). Consider a τ -good coloring cτ of Gt that maximizes the number of happy
vertices in V (Gt)\ (∪i∈[k]Ui), and let H ⊆ V (Gt)\ (∪i∈[k]Ui) be the set of happy vertices

in Gt with respect to cτ . Let ĩ = cτ (ṽ). Furthermore, let j̃ = 1 if ṽ ∈ H and j̃ = 2,
otherwise. Consider the tuple τ ′ = (t′,Pĩ,Hĩj̃). By definition of τ ′ it holds that cτ is a

τ ′-good coloring of Gt′ = Gt. Furthermore, all the vertices in H are happy in Gt′ with
respect to cτ . This implies that Π(τ) ≤ maxPi∈P,j∈[2]{Π(t′,Pi,Hij)}.

For the other direction consider Pi ∈ P, j ∈ [2], and let the corresponding tuple be
τ ′ = (t′,Pi,Hij). Let cτ ′ be a τ ′-good coloring of Gt′ that maximizes the number of
happy vertices in V (Gt′) \ (∪(H ′

i,U
′
i)∈Hij

U ′
i), and let H ⊆ V (Gt′) \ (∪(H ′

i,U
′
i)∈Hij

U ′
i) be

the set of happy vertices in Gt′ with respect to cτ ′ . Since Gt = Gt′ , therefore all the
vertices in H are happy in Gt with respect to cτ ′ . Furthermore, by the definition of
sets P, Pi, and Hij it follows that cτ ′ is a τ -good coloring of Gt. Therefore, Π(τ) ≥
maxPi∈P,j∈[2]{Π(t′,Pi,Hij)}.
Join node. Suppose t is a join node. Let t1, t2 be the two children of t in T . Recall
that by the definition of nice tree decomposition we have β(t) = β(t1) = β(t2). We set
Π(t, w̃,P ,H) as follows.
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Π(t, w̃,P ,H) = Π(t1, w̃,P ,H) + Π(t2, w̃,P ,H)− | ∪i∈[k] Hi| (3.4)

Correctness of Equation 3.4. The proof that Equation 3.4 correctly computes Π(τ)
follows from the fact that Gt1 and Gt2 are subgraphs of Gt, and in Gt there is no edge
between a vertex in Gt1 − β(t) and a vertex in Gt2 − β(t).

This concludes the description and the correctness proof for the recursive formulas
for computing the values Π(·). We now move to the runtime analysis of the algorithm.

Runtime Analysis. Let (G, k, S, c : S → [k]) be an instance of Maximum Happy

Vertices. In time O(2O(tw(G))n), we compute a nice tree decomposition (T ′, β′) of G,
with r as the root node, and of width at most w ≤ 6 ·tw(G). Furthermore, the number of
nodes in T is bounded by O(wn). We then obtain a more structured tree decomposition
(T , β), by adding S� to each bag of β′. For each node in T we have at most kw+12k+w+1

many table entries. Here, we get a factor of kw+1 in the number of table entries instead
of kk+w+1 because for a node t ∈ T , we only consider valid ordered partition of Xt,
and therefore, we do not guess the set for vertices in Xt ∩ S. Using the recursive
formula we can compute each value of Π(·) in time O(2O(k+w log k)nO(1)). At this point
of time, we cannot guarantee the runtime which linearly depends on n because we need
to check the adjacency among vertices for setting the value of certain entries of the table,
which using the straightforward implementation will require quadratic dependence on n.
Nonetheless, we can start by computing a data structure for the graph G of treewidth
at most w in time wO(1)n that allows performing adjacency queries in time O(w) (for
instance using [BBL13] or Exercise 7.16 in [CFK+15]). Thus using this data structure we
can compute all the entries of the table in time O(2O(k+w log k)n) ∈ O(2O(k+tw(G) log k)n),
which gives us the desired running time with linear dependence on n.

Theorem 3.3. Let (G, k, S, c : S → [k]) be an instance of Maximum Happy Ver-

tices. Then in time O(2O(k+tw(G) log k)n) we can find the maximum of the number of
happy vertices over all colorings that extent c to a coloring of V (G). Here, n is the
number of vertices in G.

We note here that using the standard backtracking technique together with the fact
that we have a partition of vertices into at most k parts which extends c, we can construct
a coloring which achieves the maximum number of happy vertices.

3.2.3 FPT algorithm for Subset Rainbow k-Coloring

In this section, we design an FPT algorithm running in time O(2|S|nO(1)) for Subset

Rainbow k-Coloring, when parameterized by |S|. The problem Subset Rainbow

k-Coloring is formally defined below.

Subset Rainbow k-Coloring Parameter: |S|
Input: A graph G and a subset S ⊆ V (G)× V (G).
Output: An edge-coloring cR : E(G) → [k] such that for every (u, v) ∈ S, there is a
rainbow path between u and v in G, if it exists. Otherwise, return no.

Recall that a path P in a graph G with an edge coloring φ is said to be a rainbow path
if for all e, e′ ∈ E(P ) with e �= e′ we have φ(e) �= φ(e′). The algorithm we design is based



34 Fixed Parameter Tractability and Kernelization

on the technique of color coding, which was first introduced by Alon et al. [AYZ95]. We
first describe a randomized algorithm for Subset Rainbow k-Coloring, which we
derandomize using splitters.

The intuition behind the algorithm is as follows. Let (G,S) be an instance of Subset
Rainbow k-Coloring on n vertices and m edges. For a solution cR : E(G) → [k],
to Subset Rainbow k-Coloring in (G,S) the following holds. For each (u, v) ∈ S,
there exist a path P from u to v in G with at most k edges such that for all e, e′ ∈ E(P ),
where e �= e′ we have cR(e) �= cR(e

′). Therefore, at most k|S| edges in G seem to be
“important” for us, i.e. if we color at most k|S| edges “nicely” then we would obtain
the desired soultion. To capture this, we start by randomly coloring edges in G, hoping
that with sufficiently high probability we obtain a coloring that colors the desired set of
edges “nicely”. Once we have obtained such a “nice” coloring, we employ the algorithm
of Kowalik and Lauri [KL16] to check if there is a rainbow path for each (u, v) ∈ S. We
note that we use the algorithm given by [KL16] instead of the one by Uchizawa et al.
in [UAI+13] because the latter requires exponential space.

Algorithm Rand-SRC. Let c : E(G) → [k] be a coloring of E(G), where each
edge is colored with one of the colors in [k] uniformly and independently at random. If
for each (u, v) ∈ S, there is rainbow path between u and v in G′ with edge coloring c

then the algorithm return c as a solution to Subset Rainbow k-Coloring in (G,S).
Otherwise, it returns no. We note that for a given graph G with edge coloring c, and
vertices u and v, in time 2knO(1) time we can check if there is a rainbow path between u

and v in G′ by using the algorithm given by Corollary 5 in [KL16]. This completes the
description of the algorithm.

We now proceed to show how we can obtain an algorithm with constant success
probability.

Theorem 3.4. There is an algorithm that, given an instance (G,S) of Subset Rain-

bow k-Coloring, in time 2O(|S|k log k)nO(1) either returns no or outputs a solution to
Subset Rainbow k-Coloring in (G,S). Moreover, if the input is a yes instance of
Subset Rainbow k-Coloring, then it returns a solution with constant probability.

Proof. We start by showing that Rand-SRC runs in time 2knO(1), and given a yes in-
stance of Subset Rainbow k-Coloring, outputs a solution with probability at least
2−O(|S|k log k). Clearly, by repeating Rand-SRC 2O(|S|k log k) times, we obtain the desired
success probability and running time.

The algorithm Rand-SRC starts by coloring edges in G′ uniformly and independently
at random to obtain a coloring c : E(G′) → [k]. This step can be executed in time
O(m). Then, for each pair (u, v) ∈ S, in time 2knO(1) it checks if there is a rainbow path
between u and v in G for the edge coloring c. If for every pair in S it find a rainbow
path between them, it correctly outputs a solution. The correctness and the running
time bound of this step relies on the correctness of Corollary 5 of [KL16]. Otherwise,
Rand-SRC outputs no. Therefore, we have the desired running time bound.

Towards proving the desired success probability, assume that (G,S) is a yes instance
of Subset Rainbow k-Coloring, and cR be one of its solution. Moreover, for a pair
(u, v) ∈ S let Puv be a rainbow path in G. Here, if there are many such paths then
we arbitrarily choose one of them. Note that for each (u, v) ∈ S we have |E(P )| ≤ k.
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Consider the set ER = ∪(u,v)∈SE(Puv). We now show that the probability with which

c|ER
= cR|ER

is at least 2−O(|S|k log k). Notice that there are k|E(G)| many distinct
colourings of edges in G. Moreover, at least k|E(G)|−k|S| of these colorings satisfy the
desired property (agree with cR on edges in ER). Thus, we obtain the desired success
probability bound.

We start by defining some terminologies which will be useful in derandomization of
our algorithm (see [CFK+15, NSS95]). An (n, p, �)-splitter F , is a family of functions
from [n] to � such that for every S ⊆ [n] of size at most p there is a function f ∈ F such
that f splits S evenly. That is, for all i, j ∈ [�], |f−1(i)| and |f−1(j)| differs by at most
1. Observe that when � ≥ p then for any S ⊆ [n] of size at most p and a function f ∈ F
that splits S, we have |f−1(i) ∩ S| ≤ 1, for all i ∈ [�]. An (n, �, �)-splitter is called as
an (n, �)-perfect hash family. Moreover, for any � ≥ 1, we can construct an (n, �)-perfect
hash family of size e��O(log �) log n in time e��O(log �)n log n [NSS95].

We next move to the description of derandomization of the algorithm presented in
Theorem 3.4. For the sake of simplicity in explanation, we associate each e ∈ E(G) with
a unique integer, say ie in [m], and whenever we refer to e as an integer, we actually
refer to the integer ie. We start by computing an (m, k|S|)-perfect hash family F of

size ek|S|(k|S|)O(log k|S|) logm in time ek|S|(k|S|)O(log k|S|)m logm using the algorithm of
Naor et al. in [NSS95]. We will create a family of function F ′ from [m] to [k] of

size ek|S|(k|S|)O(log k|S|)kk|S| logm. Towards this, consider an f ∈ F and a partition
P = {P1, P2, . . . Pk′} of [k|S|] into k′ sets, where k′ ≤ k. We let fP to be the function
obtained from f as follows. For each i ∈ [k′] we have f−1

P (i) = ∪x∈Pi
f−1(x). For

every such pair f and P , we add the function fP to the set F ′. We will call such
an F ′ as (m, k|S|, k)-unified perfect hash family. Observe that F ′ has size at most

ek|S|(k|S|)O(log k|S|)kk|S| logm. We now describe the derandomized algorithm SRC, which
is a result of derandomization of Rand-SRC.

Algorithm SRC. Given an instance (G,S) of Subset Rainbow k-Coloring,
the algorithm start by computing an (m, k|S|, k)-unified perfect hash family F ′. If there
exists c : E(G) → [k], where c ∈ F ′ such that for each (u, v) ∈ S, there is rainbow path
between u and v in G′ with the edge coloring c then we return c as a solution to Subset

Rainbow k-Coloring in (G,S). Otherwise, we return that (G,S) is a no instance of
Subset Rainbow k-Coloring. We note that for a given graph G with edge coloring
c, and vertices u and v, in time 2knO(1) time we can check if there is a rainbow path
between u and v in G′ by using the algorithm given by Corollary 5 in [KL16]. This
completes the description of the algorithm.

Lemma 3.7. Given an instance (G, k) of Subset Rainbow k-Coloring, the al-
gorithm SRC either correctly reports that (G, k) is a no instance of Subset Rainbow

k-Coloring or returns a solution to Subset Rainbow k-Coloring in (G,S). More-
over, SRC runs in time 2O(|S|)nO(1), for every fixed k. Here, n = |V (G)|.

Proof. Suppose (G, k) is a yes instance of Subset Rainbow k-Coloring, and let
cF : E(G) → [k] be one of its solution. For (u, v) ∈ S, let Puv be a rainbow path in
G′. Furthermore, let ER = ∪(u,v)∈SE(Puv). If |ER| < k|S|, we arbitrarily add edges
in G to ER to make its size exactly k|S|. Since |ER| ≤ k|S|, there exists f ∈ F that
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splits EF . Moreover, for each i ∈ [k|S|], we have |f−1(i) ∩ EF | ≤ 1. For i ∈ [k], let
Pi = {f(e) | e ∈ EF and cF (e) = i}, and P ′ = {Pi | i ∈ [k]}. Notice that P = P ′ \ {∅}
is a partition of [k|S|] into at most k parts. Therefore, the function fP ∈ F ′. Moreover,
fP |EF

= cF |EF
. The algorithm SRC checks for each c ∈ F ′ whether c is a solution to

Subset Rainbow k-Coloring in (G,S). In particular, it checks if fP is a solution to
Subset Rainbow k-Coloring in (G,S). The correctness of this checking is given by
Corollary 5 of [KL16]. Therefore, SRC correctly concludes that (G,S) is a yes instance
of Subset Rainbow k-Coloring, and outputs a correct solution.

Given an instance (G, k) of Subset Rainbow k-Coloring, whenever it returns a
solution then indeed (G, k) is a yes instance of Subset Rainbow k-Coloring. This
is implied from Corollary 5 of [KL16].

Next, we move to the runtime analysis. The algorithm starts by computing an
(m, k|S|, k)-unified perfect hash family F ′ of size ek|S|(k|S|)O(log k|S|)kk|S| logm in time

ek|S|(k|S|)O(log k|S|) kk|S| m logm. Then, for each c ∈ F ′ it checks if for all (u, v) ∈ S,
there is a rainbow path between then in G with edge coloring c in time 2knO(1). If it
finds such a c then returns it as a solution. Otherwise, correctly reports no. Therefore,
the running time of the algorithm is bounded by 2O(S)nO(1), for every fixed k. Here, we
rely on the fact that log |S| ∈ o(

√
|S|).

Theorem 3.5. Steiner Rainbow k-Coloring admits an algorithm running in time
2O(|S|2)nO(1).

Proof. Follows from Lemma 3.7.

3.3 Slice-wise Polynomial

Some parameterized problems do not belong to the complexity class FPT under reason-
able Complexity Theoretic assumptions. An important class of parameterized problems,
which is strictly larger than FPT is the complexity class XP, which is defined below.

Definition 3.4. A parameterized problem Π ⊆ Σ∗ × N is called slice-wise polynomial
if there is an algorithm A and two computable (non-decreasing) functions f, g : N → N
such that, given an instance I = (x, k) of Π, the algorithm A correctly decides whether
or not (x, k) ∈ Π in time bounded by f(k) · |I|g(k). The complexity class containing all
slice-wise polynomial problems is called XP.

Next, we consider the example of Happy Vertex Coloring, when parameterized
by the number of happy vertices, �, and show that it is slice-wise polynomial.

3.3.1 XP algorithm for Happy Vertex Coloring

In this section, we consider the problem Happy Vertex Coloring. Consider a graph
G and a coloring c : V (G) → [k]. Recall that a vertex u ∈ V (G) is happy in G with
respect to c if for all v ∈ N(u), we have c(u) = c(v), i.e. all the neighbors of u have
color same as that of u. Furthermore, a vertex which is not happy in G with respect to
c is unhappy. Next, we formally define the problem Happy Vertex Coloring.
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Happy Vertex Coloring Parameter: k, �
Input: A graph G, integers k and �, a vertex subset S ⊆ V (G), and a (partial)
coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and the
number of happy vertices in G with respect to c̃ is at least �?

We show that Happy Vertex Coloring is slice-wise polynomial, when parame-
terized by �. Let (G, k, �, S, c : S → [k]) be an instance of Happy Vertex Coloring,
where G is a graph on n vertices. We start by guessing the set of happy vertices in
the coloring that we are looking for. Note that there are nO(�) subsets of V (G), which
are of size at least �. For each H ⊆ V (G) of size at least �, we try find a coloring c̃

such that c̃|S = c and each h ∈ H is happy with respect to c̃. Towards this, for each
H ⊆ V (G) of size at least �, we solve the following problem, which we call Revealed

Happy Vertex Coloring (RHVC).

Revealed Happy Vertex Coloring (RHVC)
Input: A graph G, an integer k, vertex subsets S,H ⊆ V (G), and a (partial)
coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and each
h ∈ H is happy with respect to c̃?

We design a polynomial time algorithm for RHVC. Using this algorithm, we obtain
an algorithm forHappy Vertex Coloring, running in time nO(�) as follows. For each
H ⊆ V (G) of size at least � we check whether or not (G, k, S,H, c) is a yes instance of
RHVC. If for any such H we have that (G, k, S,H, c) is a yes of RHVC, then clearly
(G, k, �, S, c) is a yes instance of Happy Vertex Coloring. Also, if for all H ⊆ V (G)
of size at least �, (G, k, S,H, c) is a no instance of RHVC, then (G, k, �, S, c) is a no
instance of Happy Vertex Coloring.

Next, we focus on designing a polynomial time algorithm for RHVC. We give the
algorithm Alg-RHVC (Algorithm 1) for RHVC.

Correctness and Runtime Analysis. Let I = (G, k, S,H, c) be an instance of
RHVC. We prove the correctness of Alg-RHVC by induction on |H|. The base case
of is when |H| = 0. In this case, using Step 1, we correctly conclude that I is a yes
instance of RHVC. Next, for the induction hypothesis we assume that the algorithm
correctly decides an instance whenever |H| ≤ t, where t ∈ N. We now show that the
algorithm correctly decides an instance whenever |H| = t + 1. If Step 1 or 3 are appli-
cable, then we correctly decide whether or not I is a yes instance. Hereafter, we assume
Step 1 and 3 are not applicable. This implies that N [H] ∩ S �= ∅ and for each h ∈ H,
and u, v ∈ N [h] ∩ S we have c(u) = c(v). Let h ∈ H such that N [h] ∩ S �= ∅. Since
N [h]∩ S �= ∅, therefore one of Step 5 or Step 8 is applicable. In either case, we obtain a
coloring ĉ such that any coloring c̃ that extends ĉ to a coloring of V (G), the vertex h is
happy with respect to c̃. From the above discussion it is safe to remove v from H, and
solve the instance I ′ = (G, k, S ∪ N [h], H \ {h}, ĉ), which has strictly smaller H. But
then, by induction hypothesis we correctly decide whether or not I ′ is a yes instance of
RHVC. This concludes the proof of correctness.

Next, we move to the runtime analysis of the algorithm. The measure that we use
to analyze the running time is |H|. Observe that at each step of the algorithm either
we completely resolve the instance in polynomial time, or spend polynomial time and
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Algorithm 1: Alg-RHVC

Input: A graph G, an integer k, vertex subsets S,H ⊆ V (G), and a (partial)
coloring c : S → [k].

Output: yes or no.
1 if N [H] ∩ S = ∅ then
2 return yes
3 else if for some h ∈ H we have u, v ∈ N [h] ∩ S such that c(u) �= c(v) then
4 return no
// Hereafter, we assume that N [H] ∩ S �= ∅ and for each h ∈ H, and

u, v ∈ N [h] ∩ S we have c(u) = c(v).
5 else if there is h ∈ H ∩ S then
6 Let c̃ : S ∪N(h) → [k] such that c̃|S = c and for all u ∈ N(h) we have

c̃(u) = c(h);
7 return (G, k, S ∪N(h), H \ {h}, c̃)
8 else
9 Let h ∈ H such that there is v ∈ N(h)∩ S. Furthermore, let c̃ : S ∪N [h] → [k]

such that c̃|S = c and for all u ∈ N [h] we have c̃(u) = c(v);
10 return (G, k, S ∪N [h], H \ {h}, c̃)

make a recursive call to an instance which has strictly smaller |H|. Also, |H| ≤ n, and
if H = ∅ then we (correctly) conclude that it is a yes instance of RHVC (Step 1). The
above discussion implies that the algorithm runs in time polynomial in the size of the
input graph.

3.4 Kernelization

Another central notion in Parameterized Complexity is kernelization, which mathemat-
ically captures the efficiency of a pre-processing/ data reduction algorithm. Towards
formally defining the notion of kernelization, we introduce the following definitions.

Let Π ⊆ Σ∗ × N be a parameterized problem. We say that instances I, I ′ of Π are
equivalent if I ∈ Π if and only if I ′ ∈ Π. A data reduction rule, or simply, reduction
rule, for the parameterized problem Π is a function τ : Σ∗ ×N → Σ∗ ×N, which maps
an instance I of Π to an equivalent instance I ′ of Π. Here, τ(·) is a function that is
computable in time polynomial in the size of the input instance. The property of a
reduction rule of translating an instance of Π to another equivalent instance of Π is
referred to as reduction rule being safe or safeness of the reduction rule.

A pre-processing or data reduction algorithm consecutively (and exhaustively) applies
a set of reduction rules (in some order) to output a “smaller” instance. Formally, a pre-
processing algorithm for a parameterized problem Π takes as an input an instance (x, k)
of Π, and in time polynomial in the size of the input outputs an equivalent instance (x′, k′)
of Π. To mathematically capture the notion of “smallness” of the output instance, we
employ the parameter associated with the input instance of the parameterized problem.
Towards this, we need the following definition. The output size of a pre-processing
algorithm A is a function sizeA : N → N ∪ {∞}, which is defined as follows.
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sizeA(k) = sup{|x′|+ k′ | (x′, k′) = A(x, k), x ∈ Σ∗}
In other words, we look at all possible instances of Π with parameter k, and take the

supremum of the sizes of the output given by A on them. We note that this supremum
can be infinity, which is the case when the output size is not bounded by a function of
the parameter alone. Now we are ready to state the definition of kernelization algorithm
or kernels.

Definition 3.5. A kernelization algorithm or a kernel for a parameterized problem Π is
an algorithm K, which takes as an input an instance (x, k) of Π, and in time polynomial
in |x| + k outputs an equivalent instance (x′, k′) of Π. Moreover, there is a computable
function g : N → N such that sizeK(k) ≤ g(k).

Depending on whether g(·) is a polynomial, linear or exponential function of k, the
problem is said to admit a polynomial, linear or exponential kernel. It is known that
a (decidable) parameterized problem is FPT if and only if it admits a kernel, which we
prove in Lemma 3.8.

Lemma 3.8. A decidable parameterized problem Π is in FPT if and only if it admits a
kernel.

Proof. In the forward direction, let A be an FPT algorithm for Π, which runs in time
O(f(k)|x|c) for an instance (x, k) of Π. Here, f(·) is some computable function and c is
a constant. Next, we show that Π admits a kernelization algorithm K. Let (x, k) be an
instance of Π. The kernelization algorithm K runs the algorithm A on the input (x, k)
for |x|c+1 steps. If within these many steps A return whether or not (x, k) ∈ Π then we
output a trivial yes or no kernel, which is of constant size. Otherwise, the algorithm K
outputs (x, k). Observe that since A was unable to decide the instance in time |x|c+1,
therefore we have |x|c+1 < f(k)·|x|c. This implies that |x|+k ≤ f(k)+k. This concludes
the proof of forward direction.

In the reverse direction, let K be a kernelization algorithm for Π of size g(k), and
D be a (finite time) algorithm for the problem Π. For a given instance (x, k) of Π,
we use the algorithm K on it to obtain an instance (x′, k′) such that |x′| + k′ ≤ g(k).
Then, we run the algorithm D with input (x′, k′). Since D is a finite time algorithm,
therefore the time it requires to decide (x′, k′) is bounded by f(|x′| + k′), where f(·) is
some computable function.

Due to Lemma 3.8, it is more interesting to talk about polynomial (or linear) ker-
nels. Hereafter, whenever we talk about kernels, we refer only to the polynomial (or
linear) kernels. Next, we look at some examples of designing kernelization algorithm. In
Section 3.4.1, we design a kernel for the problem of Happy Vertex Coloring, when
parameterized by k + �. In Section 3.4.2, we design a kernel for the problem Clus-

ter Vertex Deletion, which illustrates the use of Expansion Lemma in designing
kernelization algorithms.

3.4.1 Kernel for Happy Vertex Coloring

We give a polynomial kernel for the problem Happy Vertex Coloring, when param-
eterized by the number of happy vertices and the number of colors used in the coloring.
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In fact, we give a kernel for an annotated version of Happy Vertex Coloring, which
we call Annotated Happy Vertex Coloring (AHVC). The problem is formally
defined below.

Annotated Happy Vertex Coloring (AHVC) Parameter: k + �

Input: A graph G, integers k and �, a vertex subsets S, U ⊆ V (G), a (partial)
coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and
|H \ U | ≥ �, where H is the set of happy vertices in G with respect to c̃?

Observe that Happy Vertex Coloring is a special case of AHVC, where U = ∅.
Moreover, given an instance (G, k, �, S, U, c : S → [k]) of AHVC, in polynomial time
we can construct an instance (G′, k′, �, S′, c′ : S′ → [k′]) of Happy Vertex Coloring

such that |V (G′)| ∈ O(|V (G)|), k′ ∈ O(k), and |S′| ∈ O(|S|) as follows. Initially,
we have G′ = G and c′ = c. We add two (new) vertices u�, v� to V (G′), add the
edge (u�, v�) to E(G′), add u�, v� to S, and set c′(u�) = k + 1 and c′(v�) = k + 2.
Furthermore, we add the edges {(u, u�), (u, v�) | u ∈ U} to E(G′) and set k′ = k + 2. It
is easy to see that (G, k, �, S, U, c : S → [k]) is a yes instance of AHVC if and only if
(G′, k′, �, S′, c′ : S′ → [k′]) is a yes instance of Happy Vertex Coloring. Therefore,
to design a kernel for Happy Vertex Coloring with O(k2�2) vertices it is enough to
design a kernel for AHVC with O(k2�2) vertices. Hereafter, the focus will be to design
a kernel with O(k2�2) vertices for AHVC.

Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC. The kernelization algorithm
applies the following reduction rules in the order in which it is stated. Furthermore, at
each step we assume that none of the preceding reduction rules are applicable. When
none of the reduction rules are applicable we argue that we get a kernel of the desired
size.

Reduction Rule 3.7. If � ≤ 0, then return that (G, k, �, S, U, c : S → [k]) is a yes
instance of AHVC.

Observe that if � ≤ 0, then any coloring that extends c to a coloring of V (G) is a
valid solution to the instance (G, k, �, S, U, c : S → [k]) of AHVC, which implies that
Reduction Rule 3.7 is safe.

Reduction Rule 3.8. Let v ∈ V (G) \ U be a vertex such that N(v) ⊆ S, for all
u, u′ ∈ N(v) we have c(u) = c(u′), and one of the following conditions is satisfied. i)
v /∈ S; or ii) c(v) = c(u), where u ∈ N(v). Then delete v from G and decrease � by one.
The resulting instance is (G− {v}, k, �− 1, S \ {v}, U, c|S\{v} : S \ {v} → [k]).

Lemma 3.9. Reduction Rule 3.8 is safe.

Proof. Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC and v ∈ V (G) \ U be a
vertex such that N(v) ⊆ S, and for all u, u′ ∈ N(v) we have c(u) = c(u′). Furthermore,
let (G′, k, � − 1, S′, U, c′ : S′ → [k], � − 1) be the instance resulting after application of
the Reduction Rule 3.8, where G′ = G− {v}, S′ = S \ {v}, and c′ = c|S′ . The proof of
forward direction follows from the fact that G′ = G[V (G)\{v}]. In the reverse direction
let c̃′ be a coloring that extends c|S′ to a coloring of V (G′) such that the number of
happy vertices in V (G′) \ U is at least � − 1. If v ∈ S, then the coloring c̃ obtained by
extending c̃′ to a coloring of V (G) with c̃(v) = c(v) is a coloring that extends c to a
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coloring of V (G) with at least � happy vertices in V (G) \ U in G. Otherwise, we have
v /∈ S. In this case, let c̃ be the coloring obtained by extending c̃′ to a coloring of V (G)
with c̃(v) = c(u), where u ∈ NG(v). Observe that c̃ is a coloring that extends c to a
coloring of V (G), and there are at least � happy vertices in V (G) \ U in G with respect
to c̃. This concludes the proof.

Reduction Rule 3.9. Let v ∈ S \U be a vertex such that there exists u ∈ N(v)∩S with
c(v) �= c(u). Then add v to the set U . The resulting instance is (G, k, �, S, U ∪ {v}, c :
S → [k]).

The safeness of Reduction Rule 3.9 follows from the fact that a vertex v ∈ S \U with
u ∈ N(v) ∩ S such that c(v) �= c(u) can never be a happy vertex in any coloring of G
that extends c to a coloring of V (G).

Reduction Rule 3.10. Let v ∈ V (G)\U be a vertex such that there exists u, u′ ∈ N(v)∩
S with c(u) �= c(u′). Then add v to the set U . The resulting instance is (G, k, �, S, U ∪
{v}, c : S → [k]).

The safeness of Reduction Rule 3.10 follows from the fact that a vertex v with u, u′ ∈
N(v) ∩ S such that c(u) �= c(u′) can never be a happy vertex in any coloring of G that
extends c to a coloring of V (G).

Next we consider the following sets. For i ∈ [k], let Ui = {v ∈ U ∩ S | c(v) = i}, and
UR = U \ (∪i∈[k]Ui). We proceed with the following reduction rules.

Reduction Rule 3.11. If there exists i ∈ [k] such that there are distinct u, v ∈ Ui

then unify u, v in G to obtain the graph G′ with u� being the vertex resulting after
unification. Furthermore, let c′ : (S \ {u, v}) ∪ {u�} → [k] be the coloring obtained from
c with c′|S\{u,v} = c and c′(u�) = c(u). The resulting instance is (G′, k, �, (S \ {u, v}) ∪
{u�}, (U \ {u, v}) ∪ {u�}, c′ : (S \ {u, v}) ∪ {u�} → [k]).

Lemma 3.10. Reduction Rule 3.11 is safe.

Proof. Let i ∈ [k] such that there are distinct u, v ∈ Ui, and G′ be the graph obtained
from G after unifying u and v with u� being the resulting vertex after unification. Fur-
thermore, let U ′ = (U \ {u, v}) ∪ {u�}, S′ = (S \ {u, v}) ∪ {u�}, and c′ : S′ → [k]
be the coloring obtained from c with c′|S′\{u�} = c|S\{u,v} and c′(u�) = c(u). We
will show that (G, k, �, S, U, c : S → [k]) is a yes instance of AHVC if and only if
(G′, k, �, S′, U ′, c′ : S′ → [k]) is a yes instance of AHVC.

In the forward direction let (G, k, �, S, U, c : S → [k]) be a yes instance of AHVC, c̃
be one of its solutions, andH ⊆ V (G)\U be the set of happy vertices in G with respect to
c̃. Notice that we have |H| ≥ �. Let c̃′ : V (G′) → [k] be the coloring obtained from c̃ with
c̃′(u�) = c̃(u) and c̃′|V (G′)\{u�} = c̃|V (G)\{u,v}. Recall that V (G′) \ {u�} = V (G) \ {u, v},
hence c̃′ is a coloring of G′. Furthermore, we have c̃′|S′ = c′. Hence, we only need to
show that with respect to c̃′ in G′ we have at least � vertices in V (G′) \ U ′ that are
happy. Observe that H ⊆ V (G′) \ U ′. We claim that all the vertices in H are happy
in G′ with respect to c̃′, which is enough to show that (G′, k, �, S′, U ′, c′ : S′ → [k]) is a
yes instance of AHVC. Consider a vertex h ∈ H. Recall that NG′(h) \U ′ = NG(h) \U .
This together with the construction of c̃′ implies that for all w,w′ ∈ NG′(h) \ U ′ we
have c̃′(w) = c̃′(w′) = c̃′(h). For w ∈ NG′(h) ∩ U ′ if c̃′(w) �= c̃′(h) then consider the
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Figure 3.1: An illustration of partition of V (G) into various sets.

following cases. If w = u� then replacing w by u (or v) in G we have that c̃(h) �= c̃(w),
contradicting that h is a happy vertex in G with respect to c̃. On the other hand if
w �= u� then w ∈ U and in G we have that c̃(h) �= c̃(w), a contradiction. This concludes
the proof in the forward direction.

In the reverse direction let (G′, k, �, S′, U ′, c′ : S′ → [k]) be a yes instance of AHVC,
c̃′ be one of its solutions, and H ⊆ V (G′) \ U ′ be the set of happy vertices in G′ with
respect to c̃′. Notice that |H| ≥ �. Let c̃ : V (G) → [k] be the coloring obtained from c̃′
with c̃(u) = c̃(v) = c̃′(u�) and c̃|V (G)\{u,v} = c̃′|V (G′)\{u�}. Observe that we have c̃|S = c.
Hence, we only need to show that with respect to c̃ in G we have at least � vertices in
V (G)\U that are happy. Observe that H ⊆ V (G)\U . We claim that all vertices in H are
happy in G with respect to c̃, which is enough to show that (G, k, �, S, U, c : S → [k]) is a
yes instance of AHVC. Consider a vertex h ∈ H. Recall that NG(h) \U = NG′(h) \U ′.
This together with the construction of c̃ implies that for all w ∈ NG(h) \ U we have
c̃(w) = c̃(h). For w ∈ NG(h) ∩ U if c̃(w) �= c̃(h) then consider the following cases. If
w ∈ {u, v} then replacing w by u� in G′ we have that c̃′(h) �= c̃′(w), contradicting that h
is a happy vertex in G′ with respect to c̃′. On the other hand if w /∈ {u, v} then w ∈ U ′
and in G′ we have that c̃′(h) �= c̃′(w), a contradiction.

Hereafter, we assume that Reduction Rule 3.11 is not applicable and hence for each
i ∈ [k], we have |Ui| ≤ 1. Let Z = V (G) \U . For i ∈ [k], let SZ

i = {v ∈ S ∩Z | c(v) = i}
and Zi = (Z∩N(Ui∪SZ

i ))∪SZ
i (see Figure 3.1). Furthermore, we let ZR = Z\(∪i∈[k]Zi).

Observe that for i, j ∈ [k], i �= j we have Zi ∩ Zj = ∅ since Reduction Rule 3.9 and 3.10
are not applicable. Also, for each v ∈ ZR, we have N(v) ⊆ V (G) \ S. We proceed with
the following reduction rules.

Reduction Rule 3.12. If there exists i ∈ [k] such that |Zi| ≥ � then return that
(G, k, �, S, U, c : S → [k]) is a yes instance of AHVC.

Lemma 3.11. Reduction Rule 3.12 is safe.

Proof. Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC, and i ∈ [k] such that
|Zi| ≥ �. Consider the coloring c̃ : V (G) → [k] with c̃|S = c, and for all v ∈ V (G) \ S,
c̃(u) = i. We claim that c̃ is a solution to AHVC in (G, k, �, S, U, c : S → [k]), where all
the vertices in Zi are happy with respect to c̃. Note that by definition c̃ extends c to a
coloring of G therefore, we only need to show that vertices in Zi are happy in G with
respect to c̃. Consider a vertex z ∈ Zi and a vertex v ∈ N(z). By the definition of c̃ and
Zi, we have c̃(z) = i. If v ∈ S then we have c̃(v) = c(v) = i, since Reduction Rule 3.9
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and 3.10 are not applicable. If v ∈ V (G) \ S then by definition of c̃ we have c̃(v) = i.
Therefore, z is a happy vertex in G with respect to c̃. This concludes the proof.

Reduction Rule 3.13. If |ZR| ≥ � then return that (G, k, �, S, U, c : S → [k]) is a yes
instance of AHVC.

Lemma 3.12. Reduction Rule 3.13 is safe.

Proof. Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC such that |ZR| ≥ �.
Consider the coloring c̃ : V (G) → [k] with c̃|S = c, and for all v ∈ V (G) \ S, c̃(u) = 1.
We claim that c̃ is solution to AHVC in (G, k, �, S, U, c : S → [k]), where all the vertices
in ZR are happy with respect to c̃. Note that by definition c̃ extends c to a coloring of
G therefore, we only need to show that vertices in ZR are happy in G with respect to
c̃. Consider a vertex z ∈ ZR and a vertex v ∈ N(z). By the definition of c̃ we have
c̃(z) = 1. By the construction of sets ZR, we have N(z) ⊆ V (G) \ S and by definition
of c̃ it follows that c̃(v) = 1. Therefore, z is a happy vertex in G with respect to c̃. This
concludes the proof.

Notice that since Reduction Rule 3.10 is not applicable we have for each i ∈ [k],
|Ui| = 1. Furthermore, since Reduction Rule 3.12 is not applicable we have for each
i ∈ [k], |Zi| < �, and since Reduction Rule 3.13 is not applicable we have |ZR| < �.
Therefore, we have |Z ∪ (∪i∈[k]Ui)| ≤ k� + � − 1. We now move to bounding the size
of UR, which will give us the desired kernel. To bound the size of UR we employ the
following marking scheme and argue that all the unmarked vertices can be deleted.

Marking Scheme for bounding |UR|. We will denote the set of marked vertices by
M� ⊆ UR. For all u, v ∈ V (G) \ UR (not necessarily distinct) such that N(u) ∩N(v) ∩
UR �= ∅, choose an arbitrary vertex in wuv ∈ N(u)∩N(v)∩UR and add it to M�. That
is we add a vertex in UR to the marked set of vertices which is a common neighbor to
vertices u and v.

We call a vertex in UR \M� as an unmarked vertex. We now move to the reduction
rule which deletes an unmarked vertex.

Reduction Rule 3.14. If there exists u ∈ UR \M� then delete u from G. The resulting
instance is (G− {u}, k, �, S, U \ {u}, c : S → [k]).

Lemma 3.13. Reduction Rule 3.14 is safe.

Proof. Let (G, k, �, S, U, c : S → [k]) be an instance of AHVC, u ∈ UR \ M�, G′ =
G − {u}, and U ′ = U \ {u}. Recall that UR ∩ S = ∅ and therefore, u /∈ S. The
resulting instance after deletion of u in G is (G′, k, �, S, U ′, c : S → [k]). We will show
that (G, k, �, S, U, c : S → [k]) is a yes instance of AHVC if and only if (G′, k, �, S, U ′, c :
S → [k]) is a yes instance of AHVC.

In the forward direction let (G, k, �, S, U, c : S → [k]) be a yes instance of AHVC, c̃
be one of its solutions, and H ⊆ V (G)\U be the set of happy vertices in G with |H| ≥ �.
Let c̃′ : V (G′) → [k] be the coloring obtained from c̃ with c̃′ = c̃|V (G′). Notice that since
G′ = G[V (G) \ {u}], therefore it follows that all the vertices in H are happy in G′ with
respect to the coloring c̃′. This concludes the proof in the forward direction.

In the reverse direction let (G′, k, �, S, U ′, c : S → [k]) be a yes instance of AHVC,
c̃′ be one of its solutions, and H ⊆ V (G′) \ U ′ be the set of happy vertices in G′ with
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|H| ≥ �. Let c̃ : V (G) → [k] be the coloring obtained from c̃′ with c̃|V (G′) = c̃′ and
c̃(u) to be determined shortly. Since u /∈ M�, for all v, v′ ∈ N(u) ∩ Z, we have a vertex
wvv′ ∈ M� ∩ N(v) ∩ N(v′). Consider the set Hu = H ∩ N(u). If Hu = ∅, then we set
c̃(u) = 1 (or any i ∈ [k]). Otherwise, we have Hu �= ∅. Observe that for all h, h′ ∈ Hu

we have c̃′(h) = c̃′(h′). Therefore, we set c̃(u) = c̃′(h), where h ∈ Hu. The construction
of c̃ implies that all the vertices in H are happy in G with respect to c̃. This concludes
the proof.

Once Reduction Rule 3.14 is not applicable we have |UR| ≤
(|Z|

2

)
+ |Z|. Therefore,

when none of the Reduction Rules 3.7 to 3.14 are applicable, we get the desired kernel.
Hence, we obtain the following theorem.

Theorem 3.6. AHVC admits a kernel with O(k2�2) vertices, where k is the number of
colors in the coloring function and � is the desired number of happy vertices.

As a corollary to Theorem 3.6 we obtain the following.

Corollary 3.1. Happy Vertex Coloring admits a kernel of size O(k2�2), where k

is the number of colors in the coloring function and � is the desired number of happy
vertices.

3.4.2 Kernel for Cluster Vertex Deletion

In the section, we give an O(k2) vertex kernel for Cluster Vertex Deletion. A
cluster graph is a graph which is disjoint union of cliques (or a P3-free graph). The
problem Cluster Vertex Deletion is formally defined below.

Cluster Vertex Deletion Parameter: k
Input: A graph G and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S is a cluster
graph?

Using this problem, we illustrate an application of using Expansion Lemma in design-
ing kernels. We will be using Expansion Lemma in obtaining kernel for other problems
as well. First, we start by computing an approximate solution (in polynomial time) for
Cluster Vertex Deletion. Then we apply some reduction rules, and when none of
them are applicable, then we argue that we have obtained a kernel of the desired size.

Theorem 3.7. Cluster Vertex Deletion admits a factor three approximation al-
gorithm.

Proof. Let G be a graph, and OPT be the size of a minimum sized set X such that
G − X is a cluster graph. Furthermore, let S be a maximal family of sets of vertices
which form induced P3s in G such that any two members of S are pairwise (vertex)
disjoint. One can easily construct such a family S greedily in polynomial time. Let S be
the set of vertices contained in any set in S. That is, S =

⋃
O∈S O. Since any solution

to Cluster Vertex Deletion in G must contain a vertex from each set in S and
any two members of S are pairwise disjoint, we have that |SOPT ∩S| ≥ |S|. It is evident
that G− S is a cluster graph, and |S| ≤ 3OPT. This completes the proof.
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We use Theorem 3.7 to compute a set S such that G−S is a cluster graph. If |S| > 3k,
then we can safely return that (G, k) is a no instance of Cluster Vertex Deletion.
Therefore, we assume that |S| ≤ 3k. Let C be the set of connected components in G−S.
Next, we apply the following reduction rules (in the stated order, if applicable).

Reduction Rule 3.15. If k < 0 then return that (G, k) is a no instance of Cluster

Vertex Deletion.

Reduction Rule 3.16. If there is C ∈ C such that N(C) ∩ S = ∅ then remove C from
G. That is, the resulting instance is (G− V (C), k).

The safeness of Reduction Rule 3.16 follows from the fact that no minimal solution to
Cluster Vertex Deletion in (G, k) can contain a vertex from C as it is clique com-
ponent in the graph. Hereafter, we assume that Reduction Rule 3.16 is not applicbale.
This implies that for each C ∈ C, we have N(C)∩S �= ∅. Next, we construct a bipartite
graph, using which we will design a reduction rule that employs Expansion Lemma for
bounding the number of components in G− S.

Consider the bipartite graph B with vertex bipartition (S,Q), where Q is the set
containing a vertex qC for each C ∈ C. For s ∈ S and qC ∈ Q, we add the edge (s, qC) to
E(B) if and only if C ∩N(s) �= ∅. The non-applicability of Reduction Rule 3.16 implies
that no vertex in Q is an isolated vertex in B. We are now ready to describe our next
reduction rule.

Reduction Rule 3.17. If |C| ≥ 2|S| (or equivalently |Q| ≥ 2|S|) then let S′ ⊆ S and
Q′ ⊆ Q be the sets obtained by applying Expansion Lemma (Lemma 2.1) with q = 2 such
that S′ has a 2-expansion into Q′ and N(Q′) ⊆ S′. Delete vertices in S′ from G and
decrease k by |S′|. That is, the resulting instance is (G− S′, k − |S′|).
Lemma 3.14. Reduction Rule 3.17 is safe.

Proof. Consider the case when |C| ≥ 2|S|, and let S′ ⊆ S and Q′ ⊆ Q be the sets
obtained by applying Expansion Lemma (Lemma 2.1) with q = 2 such that S′ has a
2-expansion into Q′ and N(Q′) ⊆ S′. Furthermore, let G′ = G − S and k′ = k − |S′|.
We show that (G, k) is a yes instance of Cluster Vertex Deletion if and only if
(G′, k′) is a yes instance of Cluster Vertex Deletion.

In the forward direction, let (G, k) be a yes instance ofCluster Vertex Deletion,
and let X be one of its solution. Let AC = ∪qC∈Q′V (C) and X̂ = (X \AC)∪S′. We will

argue that |X̂| ≤ |X| and G − X̂ is a cluster graph. Towards this, we start by arguing
that |X ∩ (AC ∪S′)| ≥ |S′|. Let M be a 2-expansion from S′ to Q′, which exists by their
construction. For each s ∈ S′ and its two neighbors, say qC , qC′ in G[M ], either s ∈ X or
(V (C)∪V (C ′))∩X �= ∅. This follows from the fact that G[{s}∪V (C)∪V (C ′)] contains
an induced P3. This together with the disjointness of neighbors of vertices in S′ in G[M ]
implies that |X ∩ (AC ∪ S′)| ≥ |S′|. But then we have that |X̂| ≤ |X|. Next, we argue
that G− X̂ is a cluster graph. Observe that the components in C′ = {C | qC ∈ Q′} are
clique components in G − X̂. Moreover, for each C ∈ C′, we have N(C) ⊆ S′. Thus,
in G − X̂ there is no induced P3 that contains a vertex from a component in C, where
C ∈ C′. This together with the construction of X̂ and G − X being a cluster graph
implies that G − X̂ is a cluster graph. Next, consider the set X ′ = X̂ \ S′, which by
construction is of size at most k−|S′|. Clearly, G′−X ′ is a cluster graph as G′ = G−S′,
G−X̂ is a cluster graph, and X ′ = X̂ \S′. This concludes the proof of forward direction.
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In the reverse direction, let (G′, k′) be a yes instance of Cluster Vertex Dele-

tion, and let X ′ be one of its solution. Let X = X∪S′. Observe that |X| = |S′|+|X ′| ≤
k, and X is a solution to Cluster Vertex Deletion in (G, k) as G′ = G− S′.

If Reduction Rule 3.17 is not applicable then |C| < 2|S|. Next, we bound the size of
a component in C, for which we create a set of marked vertices M in G− S, and delete
the unmarked vertices in G − S. Towards this, we first construct a new graph Hs, for
each s ∈ S. Then we compute a maximum matching Ms in Hs, and either (correctly)
conclude that s belongs to every solution to Cluster Vertex Deletion in (G, k) or
add the vertices in Hs[Ms] to the marked set of vertices in G. Finally, we mark some
more vertices from each components, and then delete the remaining vertices.

Construction of Hs, where s ∈ S. Consider a vertex s ∈ S. We construct the graph
Hs as follows. The vertex set of Hs is V (G − S), and for u, v ∈ V (G − S) we add the
edge (u, v) to E(Hs) if and only if (u, v) ∈ E(G− S) and |NG(s) ∩ {u, v}| = 1. Observe
that for each (u, v) ∈ E(Hs), G[{s, u, v}] contains an induced P3. Next, we compute (in
polynomial time) a maximum matching Ms in Hs.

We are now ready to describe our next reduction rule.

Reduction Rule 3.18. If there is s ∈ S such that |Ms| ≥ k + 1, then delete s from G

and decrease k by 1. That is, the resulting instance is (G− {s}, k − 1).

Consider a vertex s ∈ S such that |Ms| ≥ k + 1. Notice that by construction of Hs

(and Ms), G contains at least k + 1 induced P3s whose pairwise (vertex) intersection is
exactly {s}. Thus, any set X of size at most k such that G−X is a cluster graph must
contain the vertex s. This implies that Reduction Rule 3.18 is safe.

If Reduction Rule 3.18 is not applicable then for each s ∈ S, we have |Ms| ≤ k.
For each s ∈ S, we add all the vertices in V (Ms) ⊆ V (G − S) to the set M of marked
vertices. Observe that till now we have added at most 2k|S| vertices to M. We let
M∗ = ∪s∈SV (Ms). Next, for each C ∈ C we add to M, as large as k + 2 vertices from
V (C) \M∗. Note that |M| ∈ O(k2). We now state our final reduction rule.

Reduction Rule 3.19. If there is C ∈ C with a vertex v ∈ V (C) \ M, then delete v

from G, That is, the resulting instance is (G− {v}, k).

Lemma 3.15. Reduction Rule 3.19 is safe.

Proof. Let C ∈ C with a vertex v ∈ V (C) \M, and G′ = G− {v}. We show that (G, k)
is a yes instance of Cluster Vertex Deletion if and only if (G′, k) is a yes instance
of Cluster Vertex Deletion.

In the forward direction, let (G, k) be a yes instance ofCluster Vertex Deletion,
and let X be one of its solution. The clearly X is a solution to Cluster Vertex

Deletion in (G′, k) as G′ = G − {v}. In the reverse direction, let (G′, k) be a yes
instance of Cluster Vertex Deletion, and let X be one of its solution. We show
that G − X is a cluster graph. Suppose not then there is an induced P3, say P in
G−X. Moreover, P must contain v as G′ −X is a cluster graph. Since v /∈ M, P is an
induced P3 containing v, and C is a clique, therefore there is at least one vertex say v∗
in (V (C) \M∗) \ (X ∪ V (P )). As v, v∗ /∈ M∗ and C is a clique, we have N [v∗] = N [v].
But then G − X[(V (P ) \ {v}) ∪ {v∗}] contains an induced P3, which contradicts that
G−X is a cluster graph.
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Note that Reduction Rules 3.15 to 3.19 are safe and can be applied in polynomial
time. When none of these reduction rules are applicable then all the vertices in G − S

are in M, which is of size at most O(k2). Also, |S| ≤ 3k. Thus, we obtain the following
theorem.

Theorem 3.8. Cluster Vertex Deletion admits a vertex kernel of size O(k2),
where k is the size of the solution.



48 Fixed Parameter Tractability and Kernelization



Chapter 4

Lower Bounds

Until now, we looked at parameterized problems which belonged to the class FPT, and
designed FPT algorithms for them with running time f(k) · nO(1), where f(·) is some
computable function, k is the parameter, and n is the size of the input instance. In this
chapter, we look at the complementary aspect of this notion. Firstly, we look at the
complexity class beyond FPT. Not all parameterized problems admit an FPT algorithm
under reasonable Complexity Theoretic assumptions. This is similar to the notion of
NP-hardness in the classical Complexity Theory. However, unlike the case of NP-hard
problems, for which there are many natural problems that are equally hard i.e. reducible
(in polynomial time) to each other, the scenario for the case of parameterized problems is
slightly different. This is captured by the notion of W-hierarchy. We discuss the notion
of fixed-parameter intractability and W-hierarchy in more details in Section 4.1

Secondly, we look at “optimality” of an FPT algorithm. Consider a parameterized
problem Π, and an FPT algorithm for it that runs in time f(k)nO(1). Ideally, we would
want the function f(·) to be as small as possible. For NP-hard problems we do not
expect f(·) to be a polynomial function, otherwise it would imply P = NP, which is
very unlikely. For many parameterized problems we devised algorithms running in time
bounded by ck

d

nO(1), where c, d ∈ N. In the second part of the chapter, we look at
a framework for proving that certain problems do not admit algorithms with running
times co(k

d)nO(1), under reasonable Complexity Theoretic assumptions.

Towards giving an introduction to a lower bound theory, rather than dwelling into the
enigma of efficient computations, we follow a pragmatic algorithm designer’s approach.
The focus will be towards giving evidences on why some problems do not admit algo-
rithms of certain running times. We prove statements of the form “If problem A does
not have an algorithm of a certain type of running time then problem B does not have
an algorithm of a certain type of running time as well”. If we have a hypothesis that the
problem B does not admit an algorithm of certain running time, then this provides an
evidence that A can not have an algorithm of certain running time.

4.1 Fixed-Parameter Intractability

The notion of fixed-parameter intractibility is the non-existence of an FPT algorithm for
a parameterized problem, under reasonable complexity theoretic assumptions. Consider
two parameterized problems Π and Γ. Suppose we (somehow) proved that if Π is not
in FPT then Γ is also not in FPT. Furthermore, we have a hypothesis that Π does not
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admit an FPT algorithm. Then this will imply that Γ cannot be in FPT unless the as-
sumed hypothesis fails. Towards proving statements like: if Π is not in FPT then Γ is
also not in FPT, we employ some kind of reductions, which we call parameterized re-
ductions (defined in Section 4.1.1). This is similar to the notion of polynomial time
reductions defined for NP-hard problems. However, there are few crucial differences.
Firstly, for showing the non-existence of an FPT algorithm we do not need the reduction
to run in polynomial time. The next (very crucial) difference is that the parameterized
reduction must somehow correlated the parameters of the instance, since we allow expo-
nential dependence in the running time on the parameter. Another difference between
parameterized reduction and polynomial time reductions is as follows. The NP-complete
problems are reducible to each other in polynomial time, which implies that all these
problems are “equally hard”. The scenario seems to be different in the case of parame-
terized problems: there seems to be different levels of hardness, and basic problems like
Clique and Hitting Set seem to occupy different levels in this hierarchy. To capture
these hardness levels, Downey and Fellows introduced the notion of W-hierarchy, a brief
introduction of which is given in Section 4.1.2.

4.1.1 Parameterized Reductions

Let us recall the notion of polynomial time reductions that are used in the NP-hardness
proofs. A polynomial time reduction (many-one) from problem A to problem B is an
algorithm that in polynomial time, given an instance x of A outputs an instance x′ of B
such that x is a yes instance of A if and only if x′ is a yes instance of B. If there is a
polynomial time reduction from problem A to B, and B is solvable in polynomial time,
then given an instance x of A we can create an equivalent instance x′ of B, and then
use the polynomial time algorithm for B to solve x′. This gives us a polynomial time
algorithm for the problem A. Next, we define an analogous notion for parameterized
problems.

Definition 4.1. Let Π,Γ ⊆ Σ∗ × N be two parameterized problems. A parameterized
reduction from Π to Γ is an algorithm, that given an instance (x, k) of Π, outputs an
instance (x′, k′) of Γ such that the following conditions are satisfied.

1. (x, k) is a yes instance of Π if and only if (x′, k′) is a yes instance of Γ,

2. k′ ≤ g(k), where g(·) is some (non-decreasing) computable function, and

3. the running time of the algorithm is bounded by f(k)|x|O(1), where f(·) is some
(non-decreasing) computable function.

We say that an instance (x, k) of Π and (x′, k′) of Γ are equivalent if (x, k) is a yes
instance of Π if and only if (x′, k′) is a yes instance of Γ. In the following lemma, we
show that parameterized reductions work as intended.

Lemma 4.1. If there is a parameterized reduction from a parameterized problem Π to a
parameterized problem Γ and Γ is in FPT, then Π is in FPT as well.

Proof. Let A be a parameterized reduction (algorithm) from Π to Γ, which given an
instance (x̃, k̃) of Π, runs in time f(k̃)|x̃|c, and outputs an equivalent (x̂, k̂) of Γ, such
that k̂ ≤ g(k). Here, c ∈ N and f(·), g(·) are (non-decreasing) computable functions.
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Also, let B be an FPT algorithm for Γ, which given an instance (x̂, k̂), runs in time
h(k̂)|x̂|d, where d ∈ N and h(·) is a (non-decreasing) computable function.

Next, consider an instance (x, k) of Π. Using A with (x, k) as input, in time f(k)|x|c
we obtain an equivalent instance (x′, k′) of Γ with k′ ≤ g(k) and |x′| ≤ f(k)|x|c. Next, we
use the algorithm B with input (x′, k′), and return the same output for the instance (x, k)
of Π. The correctness of the output follows from the equivalence of the two instances.
Moreover, since the functions f(·), g(·), and h(·) are non-decreasing it follows that the
total running time, including the time for the parameterized reduction is bounded by
f(k)|x|c + h(g(k))(f(k)|x|c)d. Thus we obtained an FPT algorithm for Π.

Next, we look at few examples of problems that are as hard as Clique.

1. Independent Set. There is an easy parameterized reduction from Clique to
Independent Set as follows. Given an instance (G, k) of Clique, the instance
(Ḡ, k) is an equivalent instance of Independent Set, where Ḡ is the graph with
V (Ḡ) = V (G) and E(Ḡ) = {(u, v) | (u, v) /∈ E(G), u �= v}. Moreover, (Ḡ, k) can
be constructed in polynomial time, and satisfies all the conditions of Definition 4.1.

2. Multi-Colored Clique. Given an instance (G, k) of Clique, we construct (in
polynomial time) an instance (G′, V1, V2, . . . , Vk) of Multi-Colored Clique as
follows. Let V (G) = {v1, v2, . . . , vn}. For i ∈ [k], we let Vi = {vij | j ∈ [n]}.
Next, for vi� ∈ Vi and vjt ∈ Vj , we add the edge (vi�, v

j
t ) to E(G′) if and only if

(v�, vt) ∈ E(G) (and � �= t). It is easy to see that indeed all the conditions of
Definition 4.1 are satisfied.

3. Multi-Colored Independent Set. Given an instance (G, k) of Clique, we
construct (in polynomial time) an instance (G′, V1, V2, . . . , Vk) of Multi-Colored

Independent Set as follows. Let V (G) = {v1, v2, . . . , vn}. For i ∈ [k], we let
Vi = {vij | j ∈ [n]}. Next, for vi� ∈ Vi and vjt ∈ Vj , we add the edge (vi�, v

j
t ) to

E(G′) if and only if (v�, vt) /∈ E(G) or � = t. It is easy to see that indeed all the
conditions of Definition 4.1 are satisfied.

4.1.2 The W-hierarchy

As mentioned earlier, NP-complete problems are equivalent to each other with respect
to polynomial time reduction, while this does not seem to be the case for parameterized
reductions. It is known that Multi-Colored Independent Set can be reduced to
Dominating Set (see, e.g. Theorem 13.9 [CFK+15]), but a reduction in the other
direction is not known. This indicates that unlike the case of NP-complete problems,
there is a hierarchy of hard parameterized problems. Towards capturing these hardness
levels, Downey and Fellows introduced the notion of W-hierarchy [DF92]. We would
not dwell into much technicalities of the W-hierarchy, since from algorithm’s designer
perspective if there is a reduction from Clique then the problem is unlikely to admit
an FPT algorithm. Towards giving a brief (informal) introduction we define Boolean
circuits.

Definition 4.2. A Boolean circuit is a directed acyclic graph where the nodes are la-
belled as follows.
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• Every node with no in-neighbors is an input node,

• Every node with exactly one in-neighbor is a negation node,

• Every node with more than one in-neighbors is either an and-node or an or-node.

Moreover, there is exactly one node with no out-neighbors, which is the output node (in
addition to being other node). The depth of a circuit is the maximum length of a path
from the input to the output node.

Observe that assigning 0/1 values to the input gate, determines the values at each
node, in an obvious way. If the output node is assigned 1 then we say that the input
assignment satisfies the circuit. By weight of an input assignment we denote the number
of input gates that are assigned 1. Similar to the notion of Circuit Satisfiability

for NP-completeness theory, here we define a parameterized version of it, which is called
Weighted Circuit Satisfiability. This takes as an input a circuit C and an integer
k, and the objective is to decide if there is a satisfying assignment of weight at most
k. Weighted Circuit Satisfiability does not seem to be in FPT, as Clique (for
example) can be easily reduced to it.

The W-hierarchy is defined by restricting Weighted Circuit Satisfiability to
various classes of circuits. For a family of circuits C, we let WCS[C] to be the problem
Weighted Circuit Satisfiability where the input circuit belongs to C. A node in
a circuit is small if it has at most 2 in-neighbors, and is large otherwise. The weft of
a circuit is the maximum number of large nodes on a path from an input node to the
output node. We denote by Ct,d the family of circuits that are of weft at most t and
depth at most d.

Definition 4.3. For t ∈ N, where t ≥ 1, a parameterized problem Π belongs to the class
W [t] if there is a parameterized reduction from WCS[Ct,d] for some d ≥ 1.

A parameterized problem Π is complete for a class W[t] if Π ∈ W[t] and there is a
parameterized reduction from every problem in W[t] to Π. It is known that the problem
Clique if W[1]-complete. This also implies that problems like Independent Set,
Multi-Colored Clique, and Multi-Colored Independent Set are W[1]-hard
from their respective parameterized reductions from Clique.

4.1.3 W[1]-hardness of Happy Vertex Coloring

We show that Happy Vertex Coloring, when parameterized by the number of happy
vertices is W[1]-hard. We give a parameterized reduction from Multi-Colored Inde-

pendent Set (MIS), which is known to be W[1]-hard [FHRV09].

Intuitively, given an instance (G, V1, V2, . . . , Vt) of MIS, for each Vi we create a vertex
selection gadget, Wi which ensures that exactly one vertex from Vi can be happy in any
valid coloring. Furthermore, the selected set of vertices from Vis form a set of happy
vertices in the instance of Happy Vertex Coloring created. We now move to the
formal description of the reduction.

Let (G, V1, V2, . . . , Vt) be an instance of MIS. We create an instance (G′, k, �, S,
c : S → [k]) of Happy Vertex Coloring as follows. Let n = |V (G)| and V (G) =
{vi | i ∈ [n]}. Initially, we have V (G′) = V (G) and E(G′) = {(u, v) ∈ E(G) | u ∈ Vi, v ∈
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Figure 4.1: Construction of vertex selection gadget.

Vj , i, j ∈ [t] and i �= j}. We now describe the vertex selection gadget Wi, for i ∈ [t] (see
Figure 4.1). For each vi ∈ V (G), we add three vertices ṽi, pi, p

′
i to V (G′), and add the

edges (vi, ṽi), (ṽi, pi), (ṽi, p
′
i), and (pi, p

′
i) to E(G′). Furthermore, we add ṽi, pi, and p′i to

S, and set c(ṽi) = i, c(pi) = n + 1, and c(p′i) = n + 2. For i ∈ [t], we add three vertices
wi, xi, x

′
i to V (G′) and add all the edges in {(u, wi) | u ∈ Vi}∪{(wi, xi), (wi, x

′
i), (xi, x

′
i)}

to E(G′). Furthermore, we add xi and x′i to S, and set c(xi) = n+ 1 and c(x′i) = n+ 2.
Here, the vertices xi and x′i are added to ensure that wi can never be a happy vertex in
any coloring of G′, and wi is added to ensure that at most one vertex from Vi can be
happy in any coloring of V (G′). We have Wi = G′[Vi∪{ṽj , pj , p′j | vj ∈ Vi}∪{wi, xi, x

′
i}].

Notice that we have S = {ṽj , pj , p′j | vj ∈ V (G)} ∪ {xi, x′i | i ∈ [t]}. Note that for each
u ∈ S, we have described the value of c(u), and we have k = n+2. Finally, we set � = t,
and the resulting instance of Happy Vertex Coloring is (G′, k, �, S, c : S → [k]).

We state some lemmata which establish certain properties of the instance (G′, k, �, S,
c : S → [k]) of Happy Vertex Coloring that we created.

Lemma 4.2. Let c̃ be a coloring that extends c to a coloring of G′, and H be the set of
happy vertices in G′ with respect c̃. Then for all u ∈ {wi | i ∈ [t]} ∪ S we have u /∈ H.

Proof. Consider wi∗ ∈ {wi | i ∈ [t]}. Recall that by construction, wi∗ has two neighbors
xi∗ and x′i∗ with c̃(xi∗) = c(x′i∗) = n + 1 and c̃(x′i∗) = c(x′i∗) = n + 2. Therefore,
wi /∈ H. For each u ∈ S, by construction we have a vertex v ∈ NG′(u) ∩ S such that
c̃(u) = c(u) �= c(v) = c̃(v), therefore u /∈ H.

Lemma 4.3. Let c̃ be a coloring that extends c to a coloring of G′, and H be the set of
happy vertices in G′ with respect c̃. Then for all i ∈ [t], we have |Vi ∩H| ≤ 1.

Proof. Consider i ∈ [t], such that |Vi∩H| > 1. Let vj , vj′ be two distinct (j �= j′) vertices
in Vi ∩H. Since vj ∈ H, and c̃(ṽj) = c(ṽj) = j, we have c̃(vj) = j. Since wi ∈ NG′(vj)
therefore, we have c̃(wi) = j. By similar arguments we have c̃(vj′) = j′ and c̃(wi) = j′.
This implies that j = j′, a contradicting.

We now state the main lemma of this section.

Lemma 4.4. (G, V1, V2, . . . , Vt) is a yes instance of MIS if and only if (G′, k, �, S,
c : S → [k]) is a yes instance of Happy Vertex Coloring.
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Proof. In the forward direction, let (G, V1, V2, . . . , Vt) be a yes instance of MIS and
X = {vi� | i ∈ [t]} be one of its solutions. We construct a solution c̃ to Happy Vertex

Coloring in (G′, k, �, S, c : S → [k]) as follows. For each u ∈ S, we let c̃(u) = c(u). For
i ∈ [t], for each v ∈ Vi, we let c̃(v) = i� and c̃(wi) = i�. This completes the description of
c̃. Notice that for each vi� ∈ X, we have that for all v ∈ NG′(vi�), c̃(v) = i�. This implies
that X ⊆ H, where H is the set of happy vertices in G′ with respect to c̃. Moreover, we
have |X| = t = �. This concludes the proof in the forward direction.

In the reverse direction, let (G′, k, �, S, c : S → [k]) be a yes instance of Happy

Vertex Coloring, c̃ be one of its solutions, and H be the set of happy vertices in
G′ with respect to c̃. We show that H is a solution to MIS in (G, V1, V2, . . . , Vt). By
construction we have V (G′) = ∪i∈[t]V (Wi). Lemma 4.2 implies that H ∩ ({wi | i ∈
[t]} ∪ S) = ∅, and Lemma 4.3 implies that for each i ∈ [t], we have |H ∩ Vi| ≤ 1. This
together with the fact that |H| ≥ � implies that for each i ∈ [t], we have |H ∩ Vi| = 1.
Therefore, we only need to show that H is an independent set in G. For i ∈ [t], let
hi� be the unique vertex in H ∩ Vi. Consider hi� , hj� ∈ H, where i, j ∈ [t] and i �= j.
Recall that hi� has a neighbor h̃i� in G′ such that c̃(h̃i�) = i�. Similarly, hj� has a
neighbor h̃j� in G′ such that c̃(h̃i�) = j�. Therefore, we have c̃(hi�) = i� and c̃(hj�) = j�,
where i� �= j�. This implies that (hi� , hj�) /∈ E(G′), and hence by construction we have
(hi� , hj�) /∈ E(G). Therefore, H is an independent set in G.

Theorem 4.1. Happy Vertex Coloring when parameterized by the number of happy
vertices is W[1]-hard.

Proof. Follows from the construction of the instance (G′, k, �, S, c : S → [k]) of Happy

Vertex Coloring for the given instance (G, V1, V2, . . . , Vt) of MIS, Lemma 4.4, and
W[1]-hardness of MIS.

4.2 ETH Based Lower Bounds

In the previous section, we looked at framework for distinguishing between parameterized
problems that admit FPT algorithms and the ones that do not. However, FPT algorithms
have a wide range of running times. Typically we would want the function f(·) in the
running time of FPT algorithm to be as small as possible. The framework that we want to
look at in this section is to show that certain types of functions are unavoidable for certain
types of parameterized problems. The framework here, will be conditioned on some
reasonable Complexity Theoretic assumptions. Unfortunately, the assumptions that we
need are stronger than FPT �= W[1], and therefore we introduce stronger complexity
theoretic assumptions.

The Exponential Time Hypothesis (ETH) states that, roughly speaking, 3-SAT does
not admit an algorithm than runs in time subexponential in the number of variables.
The ETH implies that FPT �= W[1]. Moreover, ETH can be used to prove that a problem
cannot a solved in time say, 2o(n)nO(1), or a parameterized problem does not admit an
algorithm running in time say, 2o(k)nO(1), or say, f(k)no(k). In many cases, the lower
bound we obtain in the above way match (up to small factor) to the running time of
the best known algorithm for the problem. This provides a tight understanding of the
complexity of the problem. There is also a variant of ETH called SETH, which can be
used to provide more refined lower bound results. Roughly speaking, SETH states that
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CNF-SAT cannot be solved in time O�((2 − ε)n), for any ε > 0. In this thesis, we
will not be looking at SETH based lower bounds, therefore we only introduce the ETH.
Moreover, rather than dwelling into much technicalities, we just introduce the working
definition for ETH.

The starting point of these assumptions is the hardness of CNF-SAT. For q ≥ 3,
q-SAT is NP-complete, therefore we do not expect it to be solvable in polynomial time.
However, a brute force algorithm which tries all possible assignments solves the problem,
and it runs in time O�(2n). Unfortunately, we do not know any algorithm that solves the
problem in substantially better running time. However, when the maximum number of
literals in a clause bounded by some constant, then for every q ≥ 3 there is an algorithm
that solves the problem (q-SAT) in time O�(2γ(q)n). Here, γ(q) > 0 is a constant, for
every q ≥ 3. The current research status suggests that the exponential barrier is hard
to break even for q = 3, i.e. obtaining a subexponential algorithm for 3-SAT. Next, we
state the ETH.

Conjecture 4.1 (Exponential Time Hypothesis (ETH) [IPZ01]). Let δ3 be the infimum
of set of constants c such that there is an algorithm for 3-SAT that runs in time O�(2cn).
Then δ3 > 0.

From the viewpoint of proving better lower bounds, the Sparsification Lemma [IPZ01]
gives the following theorem.

Theorem 4.2 (Sparsification Lemma [IPZ01]). Unless ETH fails, there is a constant
c > 0 such that no algorithm for 3-SAT can achieve a running time which is bounded by
O�(2c(n+m)), where n is the number of variables and m is the number of clauses in the
input instance. In particular, 3-SAT cannot be solved in time O�(2o(n+m)).

In the following section, we look at an example of proving lower bound assuming
ETH. In Section 3.2.3 we designed an algorithm for Steiner Rainbow k-Coloring

which runs in time 2O(|S|2)nO(1). In Section 4.2.1 we see that indeed the exponential
dependency on |S| in the running time of the algorithm is optimal. In this example,
we will use the trick of using harmonious coloring to obtain the result. In Chapter 9
(Section 9.1) we will see another application of using harmonious coloring for proving
ETH based lower bound.

4.2.1 Lower Bound for Steiner Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not
admit an algorithm running in time 2o(|S|

2)nO(1), unless ETH fails. Towards this we give
an appropriate reduction from k-Coloring on graphs of maximum degree 2(k − 1).
We note that k-Coloring does not admit an algorithm running in time 2o(n)nO(1)

unless ETH fails [IPZ01]. Moreover, assuming ETH, 3-Coloring does not admit an
algorithm running in time 2o(n)nO(1) on graph of maximum degree 4 [Kom15, CFG+17].
This follows from the fact that 3-Coloring does not admit such an algorithm, and
a reduction from an instance G of 3-Coloring to an equivalent instance G′ of 3-
Coloring, where G′ is a graph with maximum degree 4 with |V (G′)| ∈ O(|V (G)|)
(see Theorem 4.1 [GJ79]). In fact, we can show that k-Coloring does not admit an
algorithm running in time 2o(n)nO(1) on graph of maximum degree 2(k − 1) (folklore).
This result can be obtained (inductively) by giving a reduction from an instance G of
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(k− 1)-Coloring on graphs of degree at most 2(k− 2) to an instance of k-Coloring

on a graphs of bounded average degree (by adding global vertex), and then using an
approach similar to that in Theorem 4.1 in [GJ79] we can obtain an (equivalent) instance
of k-Coloring where the maximum degree of a vertex in the graph is bounded by
2(k − 1).

Given an instance G of k-Coloring on n vertices and degree bounded by 2(k − 1),
we start by computing a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes

such that each color class contains at most O(
√
n) vertices. A harmonious coloring can

be computed in polynomial time on bounded degree graphs using O(
√
n) colors with

each color class having at most O(
√
n) vertices [CFG+17, Edw97, LM87, MX91]. Let

C1, C2, · · · , Ct be the color classes of ϕ. Recall that for i, j ∈ [t] with i �= j there is at
most one edge between Ci and Cj in G. Moreover, Ci is an independent set in G, where
i ∈ [t]. We create an instance G′ of k-Coloring which has a harmonious coloring ϕ′
with color classes C ′

1, C
′
2, · · · , C ′

t such that for all i, j ∈ [t], i �= j we have exactly one
edge between Ci and Cj . Initially, we have G = G′ and C ′

i = Ci, for all i ∈ [t]. For
each i, j ∈ [t], i �= j such that there is no edge between Ci and Cj in G we add two new
vertices aij and aji to V (G′) and add the edge (aij , aji) to E(G′). Furthermore, we add
aij to C ′

i and aji to C ′
ji. Observe that |V (G′)| ∈ O(n), |E(G′)| ∈ O(n), and for each

i ∈ [t], |C ′
i| ∈ O(

√
n). Also, for each i, j ∈ [t], i �= j there is exactly one edge between

C ′
i and C ′

j in G′. It is easy to see that G is a yes instance of k-Coloring if and only if
G′ is a yes instance of k-Coloring.

Hereafter, we will be working with the instance G′ of k-Coloring, together with its
harmonious coloring ϕ′ with color classes C ′

1, C
′
2, · · · , C ′

t. Moreover, for i, j ∈ [t], i �= j

there is exactly one edge between C ′
i and C ′

j in G′.
We now move to the description of creating an equivalent instance (G̃, S) of Steiner

Rainbow k-Coloring, where k ≥ 3. Initially, we have V (G̃) = V (G′). For (u, v) ∈
E(G′) we add k−3 new vertices xuv1 , xuv2 , · · · , xuvk−3 to G̃ and add all the edges in the path

(u, xuv1 , · · · , xuvk−3, v) to E(G̃). Note that for k = 3 we do not any new vertex and directly

add the edge (u, v) to G̃. For each i ∈ [t] we add a vertex ci to G̃ and add all the edges
in {(ci, v) | v ∈ C ′

i} to E(G̃). Finally, we set S = {ci | i ∈ [t]}. Notice that |S| ∈ O(
√
n).

In the following lemma we establish that G′ is a yes instance of k-Coloring if and only
if (G̃, S) is a yes instance of Steiner Rainbow k-Coloring.

Lemma 4.5. G′ is a yes instance of k-Coloring if and only if (G̃, S) is a yes instance
of Steiner Rainbow k-Coloring.

Proof. In the forward direction, letG′ be a yes instance of k-Coloring, and c : V (G′) →
[k] be one of its solution. We create a coloring cR : E(G̃) → [k] as follows. For i ∈ [t]
and v ∈ C ′

i we set cR(ci, v) = c(v). For i, j ∈ [t], i �= j let u, v be the (unique)
vertices in C ′

i and C ′
j such that (u, v) ∈ E(G′). We now describe the value of cR for

edges in the path P = (u, xuv1 , · · · , xuvk−3, v). Notice that |E(P )| = k − 2 therefore, we
arbitrarily assign distinct integers in [k]\{cR(ci, u), cR(cj , v)} to cR(e), where e ∈ E(P ).
Since c is a proper coloring of G′ therefore, cR(ci, u) = c(u) �= c(v) = cR(cj , v). This
together with the definition of cR for edges in P implies that there is a rainbow path,
namely (ci, u, x

uv
1 , · · · , xuvk−3, v, cj) in G̃ between ci and cj . This concludes the proof in

the forward direction.
In the reverse direction, let (G̃, S) be a yes instance of Steiner Rainbow k-

Coloring, and cR : E(G̃) → [k] be one of its solution. We create coloring c : V (G′) →
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[k] as follows. For i ∈ [t] and v ∈ C ′
i, we let c(v) = cR(ci, v). We show that c is a solution

to k-Coloring in G′. Consider (u, v) ∈ E(G′), and let u ∈ C ′
i and v ∈ C ′

j . Note that

we have i �= j. Let P be a rainbow path between ci and cj in G̃. By the construction of
G̃, we have NG̃[ci] ∩ NG̃[cj ] = ∅. Moreover, since P is a rainbow path therefore, it can
contain at most k edges. Since NG̃(ci) = C ′

i and NG̃(cj) = C ′
j , and there is a exactly

one path with at most k − 2 edges between a vertex in C ′
i and a vertex in C ′

j , namely
(ci, u, x

uv
1 , · · · , xuvk−3, v, cj). Therefore, by construction of c together with the fact that P

is a rainbow path we have c(u) �= c(v). This concludes the proof.

Theorem 4.3. Steiner Rainbow k-Coloring does not admit an algorithm running
in time 2o(|S|

2)nO(1), unless ETH fails. Here, n is the number of vertices in the input
graph.

Proof. Follows from construction of an instance (G̃, S) with |S| ∈ O(
√
n) of Steiner

Rainbow k-Coloring for a given instance G of k-Coloring with maximum degree
at most 2(k − 2), Lemma 4.5, and existence of no algorithm running in time 2o(n)nO(1)

for k-Coloring on graphs of maximum degree 2(k − 2) (assuming ETH).
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Part II

New Results on F-Deletion
Problems





Chapter 5

Block Graphs

A graph G is known as a block graph if every maximal 2-connected component in G is
a clique. Equivalently, we can see a block graph as a graph obtained by replacing each
edge in a forest by a clique. A chordal graph is a graph which has no induced cycles of
length at least four. An equivalent characterisation of a block graph is a chordal graph
with no induced K4−e [BLS99, How81]. Here, K4−e is the graph obtained by removing
an edge from a clique on 4 vertices. The class of block graphs is the intersection of the
chordal and distance-hereditary graphs [How81].

In this chapter, we consider the problem which we call Block Graph Vertex

Deletion (BGVD). Here, as an input we are given a graph G and an integer k, and
the objective is to decide if there is a set S ⊆ V (G) of size at most k such that G− S is
a block graph. The NP-hardness of BGVD follows from [LY80].

Block Graph Vertex Deletion (BGVD) Parameter: k
Input: A graph G and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S is a block
graph?

Kim and Kwon [KK15, KK17] gave an FPT algorithm with running timeO(10k|V (G)|O(1))
for the problem. Also, they designed a kernel with O(k9) vertices [KK15], which they
improved to a kernel with O(k6) vertices [KK17]. We improve both these results via a
novel connection to the Feedback Vertex Set problem.

Our Results and Methods. We start by stating the results we obtain in this chapter
and then we explain how we obtain these results. Our two main results are:

Theorem 5.1. BGVD has an FPT algorithm running in time O(4k|V (G)|O(1)).

Theorem 5.2. BGVD has a kernel of with O(k4) vertices.

Our two theorems improve both the results in [KK17]. That is, the running time
of our FPT algorithm improves over the previous best algorithm for the problem which
runs in time 10knO(1) and the size of our kernel reduces over the previously known kernel
of size O(k6).

Our results are based on a connection between the Weighted-FVS and BGVD

problems. In particular, we show that if the input graph does not contain induced cycles
on four vertices or diamonds (K4−e), then we can construct an auxiliary bipartite graph
and solve Weighted-FVS on it. This results in a faster FPT algorithm for BGVD. In



62 Block Graphs

the algorithm that we give for the BGVD problem, as a sub-routine we use the algorithm
for the Weighted-FVS problem, which we designed in Section 3.2.1. For obtaining
a better polynomial kernel for BGVD, most of our Reduction Rules are same as those
used in [KK17]. On the way to our result we also design a factor four approximation
algorithm for BGVD.

5.1 FPT Algorithm for Block Graph Vertex Deletion

In this section, we design an FPT algorithm for the BGVD problem. First, we look
at the special case, when the input graph does not have any small obstructions. Here,
by small obstruction we mean either a D4 = K4 − e or a C4 (cycle on 4 vertices). We
show that, in this case, BGVD reduces to Weighted-FVS. Later, we solve the general
problem, using the algorithm of the special case.

5.1.1 Restricted BGVD

In this section, we solve the following special case of BGVD in FPT time.

Restricted BGVD Parameter: k
Input: A graph G, which is {D4, C4}-free and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S is a block
graph?

Let (G, k) be an instance of Restricted BGVD, and C be the set of maximal
cliques in G. We start with the following simple observation about graphs which is
{D4, C4}-free.

Lemma 5.1. For a {D4, C4}-free graph G on n vertices the following conditions hold.

• Any two maximal cliques intersect on at most one vertex.

• The number of maximal cliques in G is at most n2.

Proof. Let C1 and C2 be two distinct maximal cliques in C. Since G is D4-free, V (C1)∩
V (C2) can have at most one vertex. Thus, each edge of G belongs to exactly one maximal
clique. This gives a bound of n2 on the number of maximal cliques.

Next, we construct an auxiliary weighted bipartite graph Ĝ as follows. The graph
Ĝ is a bipartite graph with vertex set bipartition V (G) ∪ VC , where VC is the set where
we add a vertex vC corresponding to each maximal clique C ∈ C. Note that there is
a bijective correspondence between the vertices of VC and the maximal cliques in C. A
vertex v ∈ C, where C ∈ C is called a shared vertex if it is part of at least two (distinct)
maximal cliques in C. We add an edge between a vertex v ∈ V (G) and a vertex vC ∈ VC
in E(Ĝ) if and only if v is a shared vertex of C.

Lemma 5.2. Let G be a {D4, C4}-free graph, and S ⊆ V (G). The set S is a block vertex
deletion set of G if and only if Ĝ− S is acyclic.
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Proof. In the forward direction, let S be a block vertex deletion set for G. Suppose that
Ĝ− S has a cycle C. From Lemma 5.1 if follows that C is not a C4, as this corresponds
to two maximal cliques that share 2 vertices. Thus, C is an even cycle of length at least
6. Suppose C has length 6. This corresponds to maximal cliques C1, C2, C3 such that
u = C1 ∩ C2, v = C2 ∩ C3 and w = C1 ∩ C3. Since C1, C2, C3 are distinct maximal
cliques, at least one of them must have a vertex other than u, v or w. Without loss of
generality, let C1 have a vertex x /∈ {u, v, w}. Then, the set {x, u, v, w} forms a D4 in G.
However, this is not possible, as G did not have a D4 to start with. Hence, C must be
an even cycle of length at least 8. However, this corresponds to a set of maximal cliques
and external vertices such that the external vertices form an induced cycle of length at
least four. This contradicts that S was a block vertex deletion set for G. Thus, Ĝ − S

must be acyclic.

In the reverse direction, let Ĝ − S be acyclic. Suppose G − S has an induced cycle
C, of length at least four. As C is an induced cycle of length at least four, no two edges
in C can belong to the same maximal clique. For an edge (u, v) of C, let C(u,v) be the
maximal clique containing it. Also, let c(u,v) be the vertex corresponding to C(u,v) in

Ĝ. We replace the edge (u, v) in C by two edges (u, c(u,v)) and (v, c(u,v)). In this way,

we obtain an (induced) cycle C ′ in Ĝ− S, which is a contradiction. Thus, S must be a
block vertex deletion set for G.

If the input graph G is without induced C4 and D4 then Lemma 5.2 tells us that to
find block vertex deletion set of G of size at most k one can check whether there is a
feedback vertex set of size at most k for Ĝ contained in V (G). To enforce that we find
feedback vertex set for Ĝ which is completely contained in V (G) we solve an appropriate
instance of Weighted-FVS. In particular, we set the weight function w : V (Ĝ) → Q
as follows. For v ∈ V (G), w(v) = 1 and for vC ∈ VC , w(vC) = n4. Clearly, V (G) is a
feedback vertex set of Ĝ, and thus the weight of a minimum sized feedback vertex set
in Ĝ is at most n. This implies that using an algorithm for Weighted-FVS on the
instance (Ĝ, w, k) either returns a feedback vertex set contained inside V (G) or returns
that the given instance is a no instance.

Theorem 5.3. Restricted BGVD can be solved in O�(3.618k).

Proof. Let (G, k) be an instance of Restricted BGVD. We construct the instance
(Ĝ, w, k) of Weighted-FVS as described earlier. Next, we solve Weighted-FVS on
(Ĝ, w, k) using the algorithm given by Theorem 3.1 (Section 3.2.1). By Lemma 5.2 if
(Ĝ, w, k) is a no instance of Weighted-FVS, then we correctly conclude that (G, k) is
a no instance of Restricted BGVD. Otherwise, the algorithm return that (Ĝ, w, k) is
a yes instance of Restricted BGVD. Recall that by the construction of (Ĝ, w, k), for
any solution S to the weighted-fvs in it we have |S| ≤ k and w(S) ≤ k. This together
with Lemma 5.2 implies that we correctly concluded that (G, k) is a yes instance of
Restricted BGVD. The running time of the algorithm is dominated by the running
time of Weighted-FVS, and thus it is O�(3.618k). This completes the proof.
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5.1.2 Block Graph Vertex Deletion

We are now ready to describe the FPT algorithm for BGVD, and hence prove Theo-
rem 5.1. We design the algorithm for the general case with the help of the algorithm for
Restricted BGVD.

Proof of Theorem 5.1. Let (G, k) be an instance of BGVD, where G is a graph on n

vertices. Furthermore, let O be an (induced) D4 or C4 (if any) in the input graph G. For
any solution to BGVD in (G, k) must contain at least one of the vertices in O. Therefore,
we branch on the choice of these vertices, and for every vertex v ∈ O, we recursively
apply the algorithm to solve BGVD instance (G− {v}, k− 1). Observe that (G, k) is a
yes instance of BGVD if and only if for some v ∈ V (O) we have (G−{v}, k−1) is a yes
instance of BGVD. On the other hand, if G is {D4, C4}-free, then we do not make any
further recursive calls. Instead, we run the algorithm for Restricted BGVD given
by Theorem 5.3 on (G, k), and return the same output. Thus, the running time of the
algorithm is upper bounded by the following recurrence.

T (n, k) =

{
3.168k if G is {D4, C4}-free
4T (n− 1, k − 1) + nO(1) otherwise

Thus, the running time of the algorithm is upper bounded by O�(4k).

5.2 An Approximation Algorithm for BGVD

In this section, we present a (simple) approximation algorithm for BGVD. Given a graph
G, we give a block vertex deletion set S of size at most 4 · OPT, where OPT is the size
of a minimum sized block vertex deletion set for G.

Theorem 5.4. BGVD admits a factor four approximation algorithm.

Proof. Let G be an instance of BGVD and OPT be the size of a minimum sized block
vertex deletion set for G and SOPT be a minimum sized block vertex deletion set for
G. Furthermore, let Approx-WFVS be the 2-approximation algorithm given in [BBF99],
which takes as an instance (G,w : V (G) → Q), where G is a graph, and outputs a
weighted-fvs whose weight is at most twice the weight of the minimum weighted-fvs.

Let S be a maximal family of D4 and C4 such that any two members of S are pairwise
disjoint. One can easily construct such a family S greedily in polynomial time. Let S1

be the set of vertices contained in any obstruction in S. That is, S1 =
⋃

O∈S O. Since
any block vertex deletion set must contain a vertex from each obstruction in S and any
two members of S are pairwise disjoint, we have that |SOPT ∩ S1| ≥ |S|.

Let G′ = G − S1. Observe that G′ does not contain either D4 or C4 as an induced
subgraph. Next, we construct a graph Ĝ′ and a (vertex) weight function w, as described
in Section 5.1.1, where we want to solve the problem of finding a weighted-fvs. We now
employ the factor two approximation algorithm Approx-WFVS on the instance (Ĝ′, w).
This returns an weighted-fvs S2 of Ĝ′ such that w(S2) is at most twice the weight of
a minimum weighted-fvs. By our construction S2 ⊆ V (G′). Lemma 5.2 implies that
S2 is a factor two approximation for BGVD on G′. We return the set S = S1 ∪ S2

as our solution. Since SOPT − S1 is also an optimum solution for G′ we have that
|S2| ≤ 2|SOPT − S1|.
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It is evident that S is block vertex deletion set of G. To conclude the proof of the
theorem we will show that |S| ≤ 4OPT. Towards this observe the following.

|S| = |S1|+ |S2| ≤ 4|S|+ 2|SOPT − S1|
≤ 4|SOPT ∩ S1|+ 2|SOPT − S1|
≤ 4|SOPT| = 4OPT.

This completes the proof.

5.3 Improved Kernel for Block Graph Vertex Dele-

tion

In this section, we give a kernel of O(k4) vertices for BGVD. Let (G, k) be an instance
of BGVD, where G is a graph on n vertices. We start by applying some of the reduction
rules from [KK17].

Reduction Rule 5.1. If G has a component H, where H is a block graph, then remove
H from G.

Reduction Rule 5.2. If there is a vertex v ∈ V (G) such that G−{v} has a component
H, where G[{v} ∪ V (H)] is a connected block graph then, remove all the vertices in H

from G.

Reduction Rule 5.3. Let S ⊆ V (G), where each u, v ∈ S are true-twins in G. If
|S| > k + 1, then remove all the vertices from S except k + 1 vertices.

Reduction Rule 5.4. Let (t1, t2, t3, t4) be an induced path in G. For each i ∈ [3], let
Si ⊆ V (G) \ {t1, t2, t3, t4} be a clique in G such that the following holds.

• For i ∈ [3], and v ∈ Si we have NG(v) \ Si = {ti, ti+1}, and

• For each i ∈ {2, 3}, we have NG(ti) = {ti−1, ti+1} ∪ Si−1 ∪ Si.

Then remove S2 from G and contract the edge (t2, t3).

Proposition 5.1 (Proposition 3.1 [KK17]). Let G be a graph and k be an integer. For
a vertex v ∈ V (G), in O(kn3) time, we can find one of the following.

i) k + 1 pairwise vertex disjoint obstructions,

ii) k + 1 obstructions whose pairwise intersection is exactly v, or

iii) S′
v ⊆ V (G) such that |S′

v| ≤ 7k and G−S′
v has no block graph obstruction containing

v.

Reduction Rule 5.5. Let v ∈ V (G) and G′ = G− {v}. We remove the edges between
NG(v) from G′, i.e. E(G′) = E(G′) \ {(u, w) | u, w ∈ NG(v)}. In G′ if there are at least
2k + 1 vertex-disjoint NG(v)-paths in G′ then we do one of the following.
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• If G contains k + 1 vertex disjoint obstructions, then return that (G, k) is a no-
instance.

• Otherwise, delete v from G and decrease k by 1, i.e., the resulting instance is
(G− {v}, k − 1).

The Reduction rules 5.1 to 5.5 are safe and can be applied in polynomial time [KK17].
For sake of clarity we denote the reduced instance at each step by (G, k). We always
apply the lowest numbered Reduction Rule, in the order that they have been stated,
that is applicable at any point of time. Hereafter, we assume that Reduction rules 5.1
to 5.5 are not applicable.

For a vertex v ∈ V (G), by Proposition 5.1, we may find k+1 pairwise vertex-disjoint
obstructions, and we can safely conclude that the graph is a no instance. Secondly, if
we find k + 1 obstructions whose pairwise intersection is exactly v then the Reduction
rule 5.5 will be applicable. Thus, we assume that for each vertex v ∈ V (G), the third
condition of Proposition 5.1 holds. In other words, we have a set S′

v of size at most 7k
such that G − S′

v does not contain any obstruction that contains v. In fact, for each
v ∈ V (G), we can find a block vertex deletion set Sv ⊆ V (G) \ {v} of bounded size,
which does not contain v. Let A be an approximate solution of size at most 4k (if it
exists) to BGVD obtained by using the approximation algorithm for BGVD given by
Theorem 5.4. If the approximation algorithm returns a solution whose size is more than
4k, then we can trivially return that (G, k) is a no instance of BGVD. Therefore, in the
following we assume that set A exists.

Observation 2. For every vertex v ∈ V (G), we can find in polynomial time, a set
Sv ⊆ V (G) \ {v} such that |Sv| ≤ 11k and G− Sv is a block graph.

Proof. If v /∈ A, then Sv = A. Otherwise, Sv = (A \ {v})∪ S′
v, where S

′
v is the set given

by Proposition 5.1. Here, we rely on the fact that Reduction Rule 5.5 is not applicable.
Note that for each v ∈ V (G), we have |Sv| ≤ 11k and G− Sv is a block graph.

For a vertex v ∈ V (G), component degree of v is the number of connected components
in C, where C is the set of connected components in G − (Sv ∪ {v}) that have a vertex
adjacent to v. We give a reduction rule that bounds the component degree of a vertex
v ∈ V (G), using Expansion Lemma (Lemma 2.1).

For a vertex v ∈ V (G), let Cv be the set of connected components in G− (Sv ∪ {v})
that have a vertex adjacent to v. Consider a connected component C ∈ Cv such that no
vertex in V (C) is adjacent to a vertex in Sv. But then, G−{v} has a component which
is a block graph (namely, C) therefore, Reduction rule 5.2 is applicable, a contradiction
to the assumption that none of the previous reduction rules are applicable. Therefore,
for each C ∈ C there is a vertex u ∈ V (C) and s ∈ Sv such that (u, s) ∈ E(G). Let
D be a vertex set which contains a vertex d corresponding to each component D ∈ C.
Consider the bipartite graph Bv with the vertex set bipartition as (D, Sv). There is an
edge between d ∈ D and s ∈ Sv if and only if the component D corresponding to which
the vertex d was added to D has a vertex ud such that (ud, s) ∈ E(G). Next, we state
our final reduction rule.

Reduction Rule 5.6. For a vertex v ∈ V (G) if |Cv| > 33k, then we do the following.
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• Let D′ ⊆ D and S ⊆ Sv be the sets obtained after applying Lemma 2.1 with q = 3,
X = Sv and Y = D;

• For each d ∈ D′, let the component corresponding to d be D ∈ Cv. Delete all the
edges between (u, v), where u ∈ V (D);

• For each s ∈ S, add two vertex disjoint paths between v and s.

Safeness of the Reduction rule 5.6 follows from the safeness of Reduction rule 6
in [KK17].

5.3.1 Bounding the number of blocks in G− A

First, we bound the number of leaf blocks in G−A, when none of the reduction rules are
applicable. Note that G−A is a block graph as A is an approximate solution to BGVD.
For v ∈ A, let S′

v be the set obtained from Proposition 5.1 and Sv be the set obtained
from Observation 2. Let Cv be the set of connected components in G− (Sv ∪{v}) which
have a vertex adjacent to v. All the connected components in G−A which do not have
a vertex that is adjacent to v, must be adjacent to some v′ ∈ A otherwise, Reduction
rule 5.1 will be applicable. Also, all the leaf blocks in G − A must have an internal
vertex that is adjacent to some vertex in A, since the Reduction rules 5.1 and 5.2 are
not applicable. The number of leaf blocks in G− A, whose set of internal vertices have
a non-empty intersection with S′

v, is at most 7k. Therefore, it is enough to count, for
each v ∈ A, the number of leaf blocks in Cv. In Observation 3, we give a bound on the
number of leaf blocks in G− A, not containing any vertex from S′

v.

Observation 3. For v ∈ A, the number of leaf blocks in G−A not containing any vertex
from S′

v is at most the number of leaf blocks in G− (Sv ∪ {v}).

Proof. Note that for v ∈ A, Sv = (A \ {v}) ∪ S′
v. By deleting a vertex u ∈ S′

v from
G−A one of the following can happen. If u was a cut vertex in G−A, then we increase
the number of components after deleting u from G − A. By increasing the number of
components, the number of leaves cannot decrease. If u was not a cut vertex in G − A

then by deleting u the number of cut vertices can only increase. Therefore, the number
of leaf blocks after deletion of u from G−A can only increase. Hence, the claim follows.

Therefore, for each v ∈ A we count those leaf blocks in Cv which do not contain any
vertex from S′

v.

Lemma 5.3. Consider a vertex v ∈ V (G) and its corresponding set Sv. Let C be the set
of connected components in G − (Sv ∪ {v}). For each C ∈ C, there is a block B̃ in C

such that NC(v) ⊆ V (B̃).

Proof. Consider a vertex v ∈ V (G), and let C be the set of connected components in
G− (Sv ∪{v}). By the definition of Sv, for each C ∈ C, G[V (C)∪{v}] is a block graph.

If for some C ∈ C, NC(v) = ∅, then the condition is trivially satisfied for that
connected component C. Let C ∈ C be a connected component such that NC(v) �= ∅.
Let t be a vertex in NB(v), where B is a block in C. Let B′ be a block in C, where
B′ �= B and B′ has a vertex t′ ∈ V (B′) \ V (B) that is adjacent to v. Note that B,B′
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are in the same connected component C. Let P be a path with shortest path length
between t and t′.

We first argue for the case when (t, t′) /∈ E(G). In this case, the path P has at least
2 edges. We prove that we can find an obstruction, by induction on the length of the
path (number of edges). If length of path P is 2, say P = (t, u, t′). If (u, v) ∈ E(G),
then G[{t, t′, u, v}] is a D4, otherwise it is a C4, contradicting that G[V (C) ∪ {v}] is a
block graph.

Let us assume that we can find an obstruction if the path length is �. Next, we prove
it for paths of length � + 1. Let P = (t, x1, x2, . . . , x�−1, t

′), and y be the first vertex
other than t in P such that (y, v) ∈ E(G). If y = t′, then P along with v forms an
induced cycle of length at least 5, contradicting that G[V (C) ∪ {v}] is a block graph.
If y = x1, then G[{t, x1, x2, v}] either is a D4, which is the case when (x2, v) ∈ E(G),
or P̂ = (x1, x2, . . . , t

′) is a path of shorter length with at least 2 edges, and thus by
induction hypothesis has an obstruction along with v. Otherwise, y /∈ {x1, t′}, and the
path P ′ = (t, x1, . . . , y) is a path of length less than �, which has at least 2 edges with
(y, v) ∈ E(G). Therefore, by induction hypothesis there is an obstruction along with the
vertex v, contradicting that G[V (C) ∪ {v}] is a block graph.

From the above arguments it follows that if v has a neighbour t in block B in C,
then v cannot have a neighbour t′ in block B′, if the shortest path between t, t′ has at
least 2 edges.

If (t, t′) ∈ E(G), then t, t′ are contained in some block B̂. If v is adjacent to any
other vertex u not in V (B̂) then at most one of (t, u) or (t′, u) can be an edge in G, since
t, t′ and u are in different blocks (and G − (Sv ∪ {v}) is a block graph). If there is an
edge, say (t, u), then G[{t, t′, u, v}] is a D4, contradicting that G[V (C) ∪ {v}] is a block
graph. Otherwise, there is a path with at least two edges between u and t. Therefore, by
the previous arguments we can find an obstruction along with the vertex v. Therefore,
NC(v) ⊆ V (B̂) when (t, t′) ∈ E(G).

Hence, it follows that there is a block B̃ in C such that NC(v) ⊆ V (B̃).

Lemma 5.4. For every v ∈ A , the number of leaf blocks in Cv is at most O(k).

Proof. Every leaf block must have at least one internal vertex. By Lemma 5.3 we know
that neighbours of v are contained in a block of C, where C ∈ Cv. Therefore, v cannot be
adjacent to internal vertices of two leaf blocks in Cv. In other words, v can be adjacent to
vertices in at most one leaf block from Cv. But |Cv| ≤ 33k, since the Reduction rule 5.6
is not applicable. Therefore, the number of leaf blocks in G− (Sv ∪ {v}) in which v has
a neighbour is at most O(k).

Observe that in G − A, a vertex v ∈ A can be adjacent to at most O(k) leaf blocks
by Observation 3 and Lemma 5.4. Also, for a leaf block B in G − A, there must be
an internal vertex b ∈ V (B) such that b is adjacent to some vertex in Sv, since the
Reduction rule 5.2 is not applicable. Therefore, the number of leaf blocks in G − A is
bounded by O(k2).

Lemma 5.5. The number of blocks B in G−A such that the vertex set of B intersects
with the vertex set of at least three other block in G− A is O(k2).
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Proof. Consider the block forest FA of the block graph G − A. The number of blocks
in G − A is at most the number of vertices in FA. Note that the set of leaves in FA

corresponds to the set of blocks in G − A with at most one cut vertex. The number
of leaf blocks is G − A is bounded by O(k2), and therefore the number of leaves in FA

is O(k2). For a forest the number of vertices of degree at least 3 is bounded by the
number of leaves (minus 2). Therefore, the number of degree three vertices in FA is
bounded by O(k2). For a block B in G−A which has at least 3 cut vertices, the vertex
b corresponding to block B in FA will be of degree at least 3. Therefore, the number of
blocks in G− A with at least three cut vertices is bounded by O(k2).

Consider a block B in G−A such that B has exactly 2 cut vertex, but V (B) intersects
with at least three blocks in G− A. Let b be the vertex corresponding to B in FA, and
vB, uB the cut-vertices in B. At least one of vB, uB is a cut-vertex in at least two blocks
other than B, say vB is such a cut vertex. If we contract the edge (b, vB) in FA to
obtain F ′

A, then number of leaves and degree 3 vertices in F ′
A remains the same, which

is bounded by O(k2). Furthermore, the contracted vertex b∗ is of degree at least 3.
There is a bijection f between the vertices corresponding to blocks in FA and F ′

A, where
f(b) = b∗ and f(b′) = b′, for all b′ ∈ VB(FA) \ {b}, where VB(FA) is the set of vertices
corresponding to blocks in G−A. Observe that this together with the previous argument
implies that the number of blocks whose vertex set intersects with vertex set of at least
3 other blocks is bounded by O(k2).

Let L be the set of leaf blocks in G−A and T be the set of blocks in G−A such that
each block in T intersects with at least three other blocks in G − A. By Lemmas 5.4
and 5.5, we have that |L| ∈ O(k2) and |T | ∈ O(k2).

Let B be a block in G∗ = G − (Sv ∪ {v}) such that the vertex set of B has exactly
two cut vertices, intersects with exactly two blocks of G∗, and it does not intersect with
blocks in L∪T . Also, B has a vertex that is a neighbor of v. We call such blocks as nice
degree two blocks of v. If a block satisfies the above conditions for some vertex w ∈ A,
the block is called a nice degree two block. We denote the set of nice degree two blocks
by T1.

Lemma 5.6. Let G∗ = G − (Sv ∪ {v}). Then G∗ has at most O(k) nice degree two
blocks of v.

Proof. Recall that Cv is the set of connected components in G− (Sv ∪ {v}) which have
a vertex adjacent to v. From Lemma 5.3, for each of the connected component C ∈ Cv,
there is a block B̃ in C such that NC(v) ⊆ V (B̃). Consider two nice degree two blocks B
and B′ in C of v. Let b ∈ V (B) and b′ ∈ V (B′) be the vertices such that (v, b), (v, b′) ∈
E(G). Next, we consider the following cases.

• Consider the case when b �= b′. In this case, b, b′ ∈ V (B̃), where NC(v) ⊆ V (B̃)
and B̃ is a block with exactly 2 cut vertices. Consider a block B̂ in C other than
B,B′, and B̃. Notice that V (B̂) ∩ V (B̃) = ∅, and therefore, v cannot be adjacent
to any vertex in B̂. Hence, it follows that the number of blocks in C that contain
a neighbor of v is O(1).

• Next, consider the case when b = b′. In this case, b is a cut vertex in both B and
B′. Recall that B,B′ both have exactly two cut vertices and intersect exactly two
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blocks in C. Therefore, one of B,B′ must be same as B̃, say B = B̃. But B shares
cut vertices with exactly two blocks. Therefore, v can have neighbors in at most
O(1) blocks in C.

But recall that |Cv| = O(k). Hence, the claim follows.

What remains is to bound the number of blocks which have exactly two cut vertices
which are not nice degree two blocks.

Lemma 5.7. The number of blocks in G−A with exactly two cut vertices is bounded by
O(k2).

Proof. From Lemma 5.4, the number of leaf blocks in G− A is bounded by O(k2). Let
FA be the block forest of the block graph G− A. From Lemmata 5.4 and 5.5, we know
that |L ∪ T | ∈ O(k2). Also, from Lemma 5.6 the number of blocks in T1 is bounded by
O(k2).

Let P be the set of paths in FA such that the endpoints are vertices corresponding
to blocks in L ∪ T ∪ T1 and all internal block vertices do not correspond to blocks in
L∪ T ∪ T1. Note that, all internal vertices of such paths have degree exactly two in FA.
Since FA is a tree, the number of paths in P is bounded by O(k2).

Let T2 be the set of blocks in G−A which have exactly two cut vertices and are not
in T1. By definitions of FA and P , the vertex corresponding to a block B ∈ T2 must
be an internal vertex in some path of P . Consider a path PA in P . Note that FA is a
bipartite graph with the vertex bipartition as (B, VC), where B is the set of blocks in
G−A and VC is the set of cut vertices in G−A. Therefore, in P no two cut vertices in
V (G−A) can be adjacent to each other. Similarly, for b, b′ ∈ B, (b, b′) /∈ E(P ). Let S be
the sequence of blocks in the order they appear in the path PA. In S, every consecutive
blocks share a cut vertex. We remove the starting block and the end block from S. We
do this because these blocks belong to L ∪ T ∪ T1. If S has more than two blocks then,
Reduction rule 5.4 would be applicable. Therefore, the number of blocks in P can be at
most O(1).

The set of blocks in G−A with exactly two cut vertices is contained in T ∪ T1 ∪ T2.
Hence, it follows that the number of blocks with exactly 2 cut vertices in G − A is
bounded by O(k2).

Now, we have a bound on the total number of blocks in G− A.

Lemma 5.8. Consider a graph G, a positive integer k, and an approximate block vertex
deletion set A of size O(k). If none of the Reduction rules 5.1 to 5.6 are applicable then
the number of blocks in G− A is bounded by O(k2).

Proof. Follows from Lemmas 5.4, 5.5 and 5.7.
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5.3.2 Bounding the number of internal vertices in a maximal
clique of the block graph

We start by bounding the number of internal vertices in a maximal 2-connected compo-
nent of G − A. Consider a block B in G − A. We partition the set of internal vertices
VI(B) of block B into three sets namely, B,R, and I depending on the neighborhood of
A in B. We also partition the vertices in A depending on the number of vertices they
are adjacent to in B. In Lemma 5.9 we show that the number of internal vertices in a
block in G − A is upper bounded by O(k2). We do so by partitioning the vertices into
different sets and bounding each of these sets separately.

Lemma 5.9. Let (G, k) be an instance to BGVD and A be an approximate block vertex
deletion set of G of size O(k). If none of the Reduction rules 5.1 to 5.6 are applicable
then the number of internal vertices in a block B of G− A is bounded by O(k2).

Proof. Let A≤2k+1 = {v ∈ A | |NB(v)| ≤ 2k + 1} and A>2k+1 = A \ A≤2k+1. For a
vertex u ∈ VI(B), if u is adjacent to at least one of the vertices in A≤2k+1 then, we
add u to the set B. Note that the number of vertices in B is bounded by O(k2), since
each v ∈ A≤2k+1 is adjacent to at most 2k + 1 vertices in VI(B). Also, for a vertex
u ∈ VI(B) \ B, N(u) ∩ A≤2k+1 = ∅.

For each vertex u ∈ VI(B) \ B, if u is not adjacent to at least one vertex in A>2k+1

then, we add u to the set R. For v ∈ A>2k+1, let Qv be the set of vertices in VI(B) \ B
which are not adjacent to v. Note that |Qv| ≤ k otherwise, for each pair of vertices
t1, t2 ∈ NB(v) along with one vertex in Qv we get k + 1 vertex disjoint obstruction,
namely D4, intersecting only at v, which contradicts the non-applicability of Reduction
rule 5.5. Therefore, the number of vertices in R is bounded by O(k2).

Let I = VI(B) \ (B ∪ R). Note that the vertices in I induce a clique. Furthermore,
for each w ∈ I, N(w) ∩ A≤2k+1 = ∅ and N(w) ∩ A>2k+1 = A>2k+1. Therefore, each
w,w′ ∈ I are twins. In fact, I is a set of twins. If |I| > k + 1 then Reduction rule 5.3
would be applicable. Therefore, |I| ≤ k + 1. But, |VI(B)| = |B| + |R| + |I|, which is
bounded by O(k2).

We wrap up our arguments to show a O(k4) sized vertex kernel for BGVD, and
hence prove Theorem 5.2.

Proof of Theorem 5.2. Let (G, k) be an instance to BGVD and let A be an approximate
block vertex deletion set of G of size O(k). Also, assume that none of the Reduction
rules 5.1 to 5.6 are applicable. By Lemma 5.8, the number of blocks in G−A is bounded
by O(k2). From Lemma 5.9, the number of internal vertices in a block of G − A is
bounded by O(k2). Also note that the number of cut-vertices in G − A is bounded by
the number of blocks in G − A, i.e. O(k2). The number of vertices in G − A is sum
of the number of internal vertices in G − A and the number of cut vertices in G − A.
Therefore, |V (G)| = |V (G− A)|+ |A| = (O(k2) · O(k2) +O(k2)) +O(k) = O(k4).
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Chapter 6

Approximation Algorithms for
Weighted F-Vertex Deletion

In this chapter, we explore the approximability ofWeighted F-Vertex Deletion for
several families F of graphs, and design O(logO(1) n)-factor approximation algorithms
for these problems. More precisely, we look at the following results.

• Let F be a finite set of graphs that includes a planar graph. Let F = G (F )
be the family of graphs such that every graph H ∈ G (F ) does not contain a
graph from F as a minor. The vertex deletion problem corresponding to F =
G (F ) is known as the Weighted Planar F -Minor-Free Deletion (WPF -

MFD). The WPF -MFD problem is a very generic problem and by selecting
different sets of forbidden minors F , one can obtain various fundamental problems
such as Weighted Vertex Cover, Weighted Feedback Vertex Set or
Weighted Treewidth η-Deletion. We look at a randomized O(log1.5 n)-
factor (deterministic O(log2 n)-factor) approximation algorithm for WPF -MFD,
for any finite F that contains a planar graph.

We remark that a different approximation algorithm for the same class of problems
with a slightly better approximation ratio of O(log n log log n) follows from recent
work of Bansal et al. [BRU17].

• We give an O(log2 n)-factor approximation algorithm for Weighted Chordal

Vertex Deletion (WCVD), the vertex deletion problem corresponding to the
family of chordal graphs. On the way to this algorithm, we also obtain a constant
factor approximation algorithm for Weighted Multicut in chordal graphs.

• We give an O(log3 n)-factor approximation algorithm for Weighted Distance

Hereditary Vertex Deletion (WDHVD). This problem is also known as
Weighted Rankwidth-1 Vertex Deletion (WR-1VD). This is the vertex
deletion problem corresponding to the family of distance hereditary graphs, or
equivalently graphs of rankwidth 1.

All the algorithms follow the same recursive scheme, that find “well structured bal-
anced separators” in the graph by exploiting the properties of the family F . In the
following, we first describe the methodology by which we design all these approximation
algorithms.



74 Approximation Algorithms for Weighted F-Vertex Deletion

Our Methods. Multicommodity max-flow min-cut theorems are a classical technique
in designing approximation algorithms, which was pioneered by Leighton and Rao in
their seminal paper [LR99]. This approach can be viewed as using balanced vertex (or
edge) separators in a graph to obtain a divide-and-conquer approximation algorithm. In
a typical application, the optimum solution S, forms a balanced separator of the graph.
Thus, the idea is to find an minimum cost balanced separator W of the graph and add
it to the solution, and then recursively solve the problem on each of the connected com-
ponents. This leads to an O(logO(1) n)-factor approximation algorithm for the problem
in question.

Our recursive scheme is a strengthening of this approach which exploits the structural
properties of the family F . Here, the optimum solution S∗ need not be a balanced
separator of the graph. Indeed, a balanced separator of the graph could be much larger
than S∗. Rather, S∗ along with a possibly large but well-structured subset of vertices
X, forms a balanced separator of the graph. We then exploit the presence of such a
balanced separator in the graph to compute an approximate solution. Consider a family
F for which Weighted F-Vertex Deletion is amenable to this approach, and let G
be an instance of this problem. Let S be the approximate solution that we will compute.
The approximation algorithm has the following steps:

1. Find a well-structured set X, such that G−X has a balanced separator W which
is not too costly.

2. Next, compute the balanced separator W of G − X using the known factor
O(

√
log n)-approximation algorithm (or deterministic O(log n)-approximation al-

gorithm) for Weighted Vertex Separators [FHL08, LR99]. Then add W into
the solution set S and recursively solve the problem on each connected component
of G− (X ∪S). Let S1, · · · , S� be the solutions returned by the recursive calls. We
add S1, · · · , S� to the solution S.

3. Finally, we add X back into the graph and consider the instance (G − S) ∪ X.
Observe that, V (G − S) can be partitioned into V ′ � X, where G[V ′] belongs
to F and X is a well-structured set. We call such instances, the special case of
Weighted F-Vertex Deletion. We apply an approximation algorithm that
exploits the structural properties of the special case to compute a solution.

Now consider the problem of finding the structure X. One way is to enumerate all the
candidates for X and then pick the one where G − X has a balanced vertex separator
of least cost — this separator plays the role of W . However, the number of candidates
for X in a graph could be too many to enumerate in polynomial time. For example,
in the case of Weighted Chordal Vertex Deletion, the set X will be a clique
in the graph, and the number of maximal cliques in a graph on n vertices could be as
many as 3

n
3 [MM65]. Hence, we cannot enumerate and test every candidate structure

in polynomial time. However, we can exploit certain structural properties of family F ,
to reduce the number of candidates for X in the graph. In our problems, we “tidy up”
the graph by removing “short obstructions” that forbid the graph from belonging to the
family F . Then one can obtain an upper bound on the number of candidate structures.
In the above example, recall that a graph G is chordal if and only if there are no induced
cycles of length 4 or more. It is known that a graph G without any induced cycle of length
4 has at most O(n2) maximal cliques [Far89]. Observe that, we can greedily compute a
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set of vertices which intersects all induced cycles of length 4 in the graph. Therefore, at
the cost of factor 4 in the approximation ratio, we can ensure that the graph has only
polynomially many maximal cliques. Hence, one can enumerate all maximal cliques in
the remaining graph [TIAS77] to test for X.

Next consider the task of solving an instance of the special case of the problem. We
again apply a recursive scheme, but now with the advantage of a much more structured
graph. By a careful modification of an LP solution to the instance, we eventually reduce it
to instances ofWeighted Multicut. In the above example, forWeighted Chordal

Vertex Deletion we obtain instances of Weighted Multicut on a chordal graph.
We follow this approach for all three problems that we study in this chapter. We believe
our recursive scheme can be applied to obtain O(logO(1) n)-approximation algorithms
for Weighted F-Vertex (Edge) Deletion corresponding to several other graph
families F .

6.1 Approximation Algorithm for WPF -MFD

In this section, we consider the problem Weighted Planar F -Minor-Free Dele-

tion. Let F be a finite set of graphs containing a planar graph. Formally, Weighted

Planar F -Minor-Free Deletion is defined as follows.

Weighted Planar F -Minor-Free Deletion (WPF -MFD)

Input: A graph G and a weight function w : V (G) → Q.
Output: Find a minimum weight subset S ⊆ V (G) such that G − S does not
contain any graph in F as a minor.

The WPF -MFD problem is a very generic problem that encompasses several known
problems. Given a graph family F , by ForbidMinor(F) we denote the family of graphs
such that G ∈ F if and only if G does not contain any graph in ForbidMinor(F) as a
minor. By the celebrated Graph Minor Theorem of Robertson and Seymour, every minor
closed family F is characterized by a finite family of forbidden minors [RS04]. That is,
ForbidMinor(F) has finite size. Indeed, the size of ForbidMinor(F) depends on the family
F . Now for a finite collection of graphs F , as above, we may define the Weighted

F -Minor-Free Deletion problem. And observe that, even though the definition of
Weighted F -Minor-Free Deletion we only consider finite sized F , this problem
actually encompasses deletion to every minor closed family of graphs. Let G be the set
of all finite (undirected) graphs, and let L be the family of all finite subsets of G . Thus,
every element F ∈ L is a finite set of graphs, and throughout the chapter we assume
that F is explicitly given. We show that when F ∈ L contains at least one planar
graph, then it is possible to obtain an O(logO(1) n)-factor approximation algorithm for
WPF -MFD.

The case where F contains a planar graph, while being considerably more restricted
than the general case, already encompasses a number of the well-studied instances of
WPF -MFD. For example, when F = {K2}, a complete graph on two vertices, this
is the Weighted Vertex Cover problem. When F = {C3}, a cycle on three ver-
tices, this is the Weighted Feedback Vertex Set problem. Another fundamental
problem, which is also a special case of WPF -MFD, is Weighted Treewidth-η

Vertex Deletion or Weighted η-Transversal. Here the task is to delete a mini-
mum weight vertex subset to obtain a graph of treewidth at most η. Since any graph of
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treewidth η excludes a (η + 1)× (η + 1) grid as a minor, we have that the set F of for-
bidden minors of treewidth η graphs contains a planar graph. Treewidth-η Vertex

Deletion plays an important role in generic efficient polynomial time approximation
schemes based on Bidimensionality theory [FLRS11, FLS12]. Among other examples
of Planar F -Minor-Free Deletion problems that can be found in the literature
on approximation and parameterized algorithms, are the cases of F being {K2,3, K4},
{K4}, {θc}, and {K3, T2}, which correspond to removing vertices to obtain an outer-
planar graph, a series-parallel graph, a diamond graph, and a graph of pathwidth 1,
respectively.

Apart from the case of Weighted Vertex Cover [BYE81, NJ74] and Weighted

Feedback Vertex Set [BBF99, BYGNR98], there was not much progress on
approximability/non-approximability of WPF -MFD until the work of Fiorini, Joret,
and Pietropaoli [FJP10], which gave a constant factor approximation algorithm for the
case of WPF -MFD where F is a diamond graph, i.e., a graph with two vertices and
three parallel edges. In 2011, Fomin et al. [FLM+16] considered Planar F -Minor-

Free Deletion (i.e. the unweighted version of WPF -MFD) in full generality and
designed a randomized (deterministic) O(log1.5 n)-factor (O(log2 n)-factor) approxima-
tion algorithm for it. Later, Fomin et al. [FLMS12] gave a randomized constant factor
approximation algorithm for Planar F -Minor-Free Deletion. The algorithm pre-
sented in this section for WPF -MFD extends this result to the weighted setting, at
the cost of increasing the approximation factor to logO(1) n.

Theorem 6.1. For every set F ∈ L , WPF -MFD admits a randomized (determinis-
tic) O(log1.5 n)-factor (O(log2 n)-factor) approximation algorithm.

In this section we prove Theorem 6.1. We can assume that the weight w(v) of each
vertex v ∈ V (G) is positive, else we can insert v into any solution. Below we state a
result from [RS86], which will be useful in the algorithm.

Proposition 6.1 ([RS86]). Let F be a finite set of graphs such that F contains a
planar graph. Then, any graph G that excludes any graph from F as a minor satisfies
tw(G) ≤ c = c(F ).

We let c = c(F ) to be the constant returned by Proposition 6.1. The approximation
algorithm for WPF -MFD comprises of two components. The first component handles
the special case where the vertex set of input graph G can be partitioned into two sets
C and X such that |C| ≤ c+ 1 and H = G[X] is an F -minor free graph. We note that
there can be edges between vertices in C and vertices in H. For these special instances,
in polynomial time we can compute the size of the optimum solution and a set realizing
it.

The second component is a recursive algorithm that solves general instances of the
problem. Here, we gradually disintegrate the general instance until it becomes an in-
stance of the special type where we can resolve it in polynomial time. More precisely,
for each guess of c + 1 sized subgraph M of G, we find a small separator S (using an
approximation algorithm) that together with M breaks the input graph into two graphs
significantly smaller than their origin. It first removes M ∪S, and solves each of the two
resulting subinstances by calling itself recursively; then, it inserts M back into the graph,
and uses the solutions it obtained from the recursive calls to construct an instance of the
special case which is then solved by the first component.
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6.1.1 Constant sized graph + F -minor free graph

We first handle the special case where the input graph G consists of a graph M of size
at most c+ 1 and an F -minor free graph H. We refer to this algorithm as Special-WP.
More precisely, along with the input graph G and the weight function w, we are also
given a graph M with at most c + 1 vertices and an F -minor free graph H such that
V (G) = V (M) ∪ V (H), where the vertex-sets V (M) and V (H) are disjoint. Note that
the edge-set E(G) may contain edges between vertices in M and vertices in H. We will
show that such instances may be solved optimally in polynomial time. We start with
the following easy observation.

Observation 4. Let G be a graph with V (G) = X � Y , such that |X| ≤ c+ 1 and G[Y ]
is an F -minor free graph. Then, the treewidth of G is at most 2c+ 1.

Lemma 6.1. Let G be a graph of treewidth t with a non-negative weight function w on
the vertices, and let F be a finite family of graphs. Then, one can compute a minimum
weight vertex set S such that G − S is F -minor free, in time f (q, t) · n, where n is the
number of vertices in G and q is a constant that depends only on F .

Proof. This follows from the fact that finding such a set S is expressible as an MSO-
optimization formula φ whose length, q, depends only on the family F [FLMS12]. Then,
by Theorem 7 [BPT92], we can compute an optimal sized set S in time f (q, t) · n.

Now, we apply the above lemma to the graph G and the family F , and obtain a
minimum weight set S such that G− S is F -minor free.

6.1.2 General graphs

We proceed to handle general instances by developing a d · log2 n-factor approximation
algorithm for WPF -MFD, Gen-WP-APPROX, thus proving the correctness of Theorem
6.1. The exact value of the constant d will be determined later.

Recursion. We define each call to our algorithm Gen-WP-APPROX to be of the form
(G′, w′), where (G′, w′) is an instance of WPF -MFD such that G′ is an induced sub-
graph of G, and we denote n′ = |V (G′)|.

Goal. For each recursive call Gen-WP-APPROX(G′, w′), we aim to prove the following.

Lemma 6.2. Gen-WP-APPROX returns a solution that is at least opt and at most d
2 ·

log2 n′ · opt. Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we prove
that Lemma 6.2 is true for the current call, we assume that the approximation factor is
bounded by d

2 · log2 n̂ · opt for any call where the size n̂ of the vertex-set of its graph is
strictly smaller than n′.

Termination. In polynomial time we can test whether G′ has a minor F ∈ F [RS95].
Furthermore, for each M ⊆ V (G) of size at most c + 1, we can check if G − M has a
minor F ∈ F . If G−M is F -minor free then we are in a special instance, where G−M

is F minor free and M is a constant sized graph. We optimally resolve this instance
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in polynomial time using the algorithm Special-WP. Since we output an optimal sized
solution in the base cases, we thus ensure that at the base case of our induction Lemma
6.2 holds.

Recursive Call. For the analysis of a recursive call, let S∗ denote a hypothetical set
that realizes the optimal solution opt of the current instance (G′, w′). Let (F, β) be a
forest decomposition of G′ − S∗ of width at most c, whose existence is guaranteed by
Proposition 6.1. Using standard arguments on forests we have the following observation.

Observation 5. There exists a node v ∈ V (F ) such that β(v) is a balanced separator
for G′ − S∗.

From Observation 5 we know that there exists a node v ∈ V (F ) such that β(v) is a
balanced separator for G′ − S∗. This together with the fact that G′ − S∗ has treewidth
at most c results in the following observation.

Observation 6. There exist a subset M ⊆ V (G′) of size at most c + 1 and a subset
S ⊆ V (G′) \M of weight at most opt such that M ∪ S is a balanced separator for G′.

This gives us a polynomial time algorithm as stated in the following lemma.

Lemma 6.3. There is a deterministic (randomized) algorithm which in polynomial-time
finds M ⊆ V (G′) of size at most c + 1 and a subset S ⊆ V (G′) \M of weight at most
q · log n′ · opt (q∗ ·

√
log n′ · opt) for some fixed constant q (q∗) such that M ∪ S is a

balanced separator for G′.

Proof. Note that we can enumerate every M ⊆ V (G′) of size at most c+1 in time O(nc).
For each such M , we can either run the randomized q∗ ·

√
log n′-factor approximation

algorithm by Feige et al. [FHL08] or the deterministic q · log n′-factor approximation
algorithm by Leighton and Rao [LR99] to find a balanced separator SM of G′−M . Here,
q and q∗ are fixed constants. By Observation 6, there is a set S in {SM | M ⊆ V (G′)
and M ≤ c + 1} such that w(S) ≤ q · log n′ · opt (w(S) ≤ q∗ ·

√
log n′ · opt). Thus, the

desired output is a pair (M,S) where M is one of the vertex subset of size at most c+1
such that SM = S.

We call the algorithm in Lemma 6.3 to obtain a pair (M,S). SinceM∪S is a balanced
separator for G′, we can partition the set of connected components of G′− (M ∪S) into
two sets, A1 and A2, such that for V1 =

⋃
A∈A1

V (A) and V2 =
⋃

A∈A2
V (A) it holds that

n1, n2 ≤ 2
3n

′ where n1 = |V1| and n2 = |V2|. We remark that we use different algorithms
for finding a balanced separator in Lemma 6.3 based on whether we are looking for a
randomized algorithm or a deterministic algorithm.

Next, we define two inputs of (the general case of) WPF -MFD: I1 = (G′[V1], w′|V1
)

and I2 = (G′[V2], w′|V2
). Let opt1 and opt2 denote the optimal solutions to I1 and I2,

respectively. Observe that since V1∩V2 = ∅, it holds that opt1+opt2 ≤ opt. We solve each
of the subinstances by recursively calling algorithm Gen-WP-APPROX. By the inductive
hypothesis, we thus obtain two sets, S1 and S2, such that G′[V1] − S1 and G′[V2] − S2

are F -minor free graphs, and w′(S1) ≤ d
2 · log

2 n1 · opt1 and w′(S2) ≤ d
2 · log

2 n2 · opt2.
We proceed by defining an input of the special case of WPF -MFD: J = (G′[(V1 ∪

V2 ∪ M) \ (S1 ∪ S2)], w
′|(V1∪V2∪M)\(S1∪S2)). Observe that G′[V1 \ S1] and G′[V2 \ S2]

are F -minor free graphs and there are no edges between vertices in V1 and vertices in
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V2 in G′ −M , and M is of constant size. Therefore, we resolve this instance by calling
algorithm Special-WP. We thus obtain a set, Ŝ, such that G′[(V1∪V2∪M)\(S1∪S2∪ Ŝ)]
is a F -minor graph, and w′(Ŝ) ≤ opt (since |(V1 ∪ V2 ∪ M) \ (S1 ∪ S2)| ≤ n′ and the
optimal solution of each of the special subinstances is at most opt).

Observe that any obstruction in G′ − S is either completely contained in G′[V1],
or completely contained in G′[V2], or it contains at least one vertex from M . This
observation, along with the fact that G′[(V1 ∪ V2 ∪M) \ (S1 ∪S2 ∪ Ŝ)] is a F -minor free
graph, implies that G′ − T is a F -minor free graph where T = S ∪ S1 ∪ S2 ∪ Ŝ. Thus,
it is now sufficient to show that w′(T ) ≤ d

2 · (log n′)2 · opt.
By the discussion above, we have that

w′(T ) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ)
≤ q · log n′ · opt+ d

2 · ((log n1)2 · opt1 + (log n2)
2 · opt2) + opt

Recall that n1, n2 ≤ 2
3n

′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T ) < q · log n′ · opt+ d
2 · (log 2

3n
′)2 · opt+ opt

< d
2 · (log n′)2 · opt+ log n′ · opt · (q + 1 + d

2 · (log 3
2)

2 − d
2 · 2 · log 3

2).

Overall, we conclude that to ensure that w′(T ) ≤ d
2 · log2 n′ · opt, it is sufficient

to ensure that q + 1 + d
2 · (log 3

2)
2 − d

2 · 2 · log 3
2 ≤ 0, which can be done by fixing

d =
2

2 log 3
2 − (log 3

2)
2
· (q + 1).

If we use the O(
√
log n)-factor approximation algorithm by Feige et al. [FHL08] for

finding a balance separator in Lemma 6.3, then we can do the analysis similar to the
deterministic case and obtain a randomized factor-O(log1.5 n)approximation algorithm
for WPF -MFD.

6.2 Approximation Algorithm for Weighted Chordal

Vertex Deletion
In this section, we look at the problem Weighted Chordal Vertex Deletion,
which is formally defined below.

Weighted Chordal Vertex Deletion (WCVD)

Input: A graph G and a weight function w : V (G) → Q.
Output: Find a minimum weight subset S ⊆ V (G) such that G − S is a chordal
graph.

Prior to the work which is presented here, only two non-trivial approximation al-
gorithms for CVD were known. The first one, by Jansen and Pilipczuk [JP17], is a
deterministic O(opt2 log opt log n)-factor approximation algorithm, and the second one,
by Agrawal et al. [ALM+17a], is a deterministic O(opt log2 n)-factor approximation algo-
rithm. The second result implies that CVD admits anO(

√
n log n)-factor approximation

algorithm.1 The focus of this section is the proof of the following theorem.

1If opt ≥ √
n/ log n, we output a greedy solution to the input graph, and otherwise we have that

opt log2 n ≤ √
n log n, hence we call the O(opt log2 n)-factor approximation algorithm.
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Theorem 6.2. CVD admits a deterministic O(log2 n)-factor approximation algorithm.

We assume that the weight w(v) of each vertex v ∈ V (G) is positive, else we can
insert v into any solution. Roughly speaking, our approximation algorithm consists of
two components. The first component handles the special case where the input graph G

consists of a clique C and a chordal graph H. Here, we also assume that the input graph
has no “short” chordless cycle. This component is comprised of a recursive algorithm
that is based on the method of divide and conquer. The algorithm keeps track of a
fractional solution x of a special form that it carefully manipulated at each recursive
call, and which is used to analyze the approximation ratio. In particular, we ensure that
x does not assign high values, and that it assigns 0 to vertices of the clique C as well as
vertices of some other cliques. To divide a problem instance into two instances, we find
a maximal clique M of the chordal graph H that breaks H into two “simpler” chordal
graphs. The clique C remains intact at each recursive call, and the maximal clique M

is also a part of both of the resulting instances. Thus, to ensure that we have simplified
the problem, we measure the complexity of instances by examining the maximum size
of an independent set of their graphs. Since the input graph has no “short” chordless
cycle, the maximum depth of the recursion tree is bounded by O(log n). Moreover,
to guarantee that we obtain instances that are independent, we incorporate multicut
constraints while ensuring that we have sufficient “budget” to satisfy them. We ensure
that these multicut constraints are associated with chordal graphs, which allows us to
utilize the algorithm we design in Section 6.3. We note that the problem Weighted

Multicut takes as an input a graph G, a weight function w : V (G) → Q, and a set
T = {(s1, t1), . . . , (sk, tk)} of k pairs in vertices of G, and the objective is to output a
minimum weight subset S ⊆ V (G) such that for any pair (si, ti) ∈ T , G − S does not
have any path between si and ti.

The second component is a recursive algorithm that solves general instances of the
problem. Initially, it easily handles “short” chordless cycles. Then, it gradually disin-
tegrates a general instance until it becomes an instance of the special form that can be
solved using the first component. More precisely, given a problem instance, the algo-
rithm divides it by finding a maximal clique M (using an exhaustive search which relies
on the guarantee that G has no “short” chordless cycle) and a small separator S (using
an approximation algorithm) that together break the input graph into two graphs sig-
nificantly smaller than their origin. It first removes M ∪ S and solves each of the two
resulting subinstances by calling itself recursively; then, it inserts M back into the graph,
and uses the solutions it obtained from the recursive calls to construct an instance of the
special case solved by the first component.

6.2.1 Clique+Chordal graph

In this subsection, we handle the special case where the input graph G consists of a
clique C and a chordal graph H. More precisely, along with the input graph G and
the weight function w, we are also given a clique C an a chordal graph H such that
V (G) = V (C)∪V (H), where the vertex-sets V (C) and V (H) are disjoint. Here, we also
assume that G has no chordless cycle on at most 48 vertices. Note that the edge-set
E(G) may contain edges between vertices in C and vertices in H. We call this special
case the Clique+Chordal special case. Our objective is to prove the following result.
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Lemma 6.4. The Clique+Chordal special case of WCVD admits an O(log n)-factor
approximation algorithm.

We assume that n ≥ 64,2 else the input instance can be solve by brute-force. Let
c be a fixed constant (to be determined). In the rest of this subsection, we design a
c · log n-factor approximation algorithm for the Clique+Chordal special case of WCVD.

Recursion. Our approximation algorithm is a recursive algorithm. We call our algo-
rithm CVD-APPROX, and define each call to be of the form (G′, w′, C,H ′,x). Here, G′
is an induced subgraph of G such that V (C) ⊆ V (G′), and H ′ is an induced subgraph
of H. The argument x is discussed below. We remark that we continue to use n to refer
to the size of the vertex-set of the input graph G rather than the current graph G′.

Arguments. While the execution of our algorithm progresses, we keep track of two
arguments: the size of a maximum independent set of the current graph G′, denoted by
α(G′), and a fractional solution x. Due to the special structure of G′, the computation
of α(G′) is simple:

Observation 7. The measure α(G′) can be computed in polynomial time.

Proof. Any maximum independent set of G′ consists of at most one vertex from C and an
independent set of H ′. It is well known that the computation of the size of a maximum
independent set of a chordal graph can be performed in polynomial time [Gol04]. Thus,
we can compute α(H ′) in polynomial time. Next, we iterate over every vertex v ∈ V (C),
and we compute αv = α(Ĥ)+1 for the graph Ĥ = H ′ \NG′(v) in polynomial time (since
Ĥ is a chordal graph). Overall, we return max{α(H ′),maxv∈V (C){αv}}.

The necessity of tracking α(G′) stems from the fact that our recursive algorithm
is based on the method of divide-and-conquer, and to ensure that when we divide the
current instance into two instances we obtain two “simpler” instances, we need to argue
that some aspect of these instances has indeed been simplified. Although this aspect
cannot be the size of the instance (since the two instances can share many common
vertices), we show that it can be the size of a maximum independent set.

A fractional solution x is a function x : V (G′) → [0,∞) such that for every chordless
cycle Q of G′ it holds that x(V (Q)) ≥ 1. An optimal fractional solution minimizes the
weight w′(x) =

∑
v∈V (G′)w

′(v) · x(v). Clearly, the solution to the instance (G′, w′) of
WCVD is at least as large as the weight of an optimal fractional solution. Although
we initially compute an optimal fractional solution x (at the initialization phase that is
described below), during the execution of our algorithm, we manipulate this solution so
it may no longer be optimal. Prior to any call to CVD-APPROX with the exception of
the first call, we ensure that x satisfies the following invariants:

• Low-Value Invariant: For any v ∈ V (G′), it holds that x(v) < ( c·log n+9
c·log n )δ · 1

c·log n .
Here, δ is the depth of the current recursive call in the recursion tree.3

• Zero-Clique Invariant: For any v ∈ V (C), it holds that x(v) = 0.

2This assumption simplifies some of the calculations ahead.
3The depth of the first call is defined to be 1.
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Goal. The depth of the recursion tree will be bounded by q ·log n for some fixed constant
q. The correctness of this claim is proved when we explain how to perform a recursive
call. For each recursive call CVD-APPROX (G′, w′, C,H ′,x) with the exception of the
first call, we aim to prove the following.

Lemma 6.5. For any δ ∈ {1, 2, . . . , q · log n}, each recursive call to CVD-APPROX of
depth δ ≥ 2 returns a solution that is at least opt and at most ( c·log n

c·log n+9)
δ−1 ·c·log(α(G′))·

w′(x). Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.

At the initialization phase, we see that in order to prove Lemma 6.4, it is sufficient
to prove Lemma 6.5.

Initialization. Initially, the graphs G′ and H ′ are simply set to be the input graphs G
and H, and the weight function w′ is simply set to be input weight function w. Moreover,
we compute an optimal fractional solution x = xinit by using the ellipsoid method. Recall
that the following claim holds.

Observation 8. The solution of the instance (G′, w′) of WCVD is lower bounded by
w′(xinit).

Thus, to prove Lemma 6.4, it is sufficient to return a solution that is at least opt and
at most c · log n · w′(x). We would like to proceed by calling our algorithm recursively.
For this purpose, we first need to ensure that x satisfies the low-value and zero-clique
invariants, to which end we use the following notation. We let h(x) = {v ∈ V (G′) |
x(v) ≥ 1/(c · log n)} denote the set of vertices to which x assigns high values. Moreover,
given a clique M in G′, we let (x\M) : V (G′) → [0,∞) denote the function that assigns
0 to any vertex in M and (1 + 3 · max

u∈V (G′)
{x(u)})x(v) to any other vertex v ∈ V (G′).

Now, to adjust x to be of the desired form both at this phase and at later recursive calls,
we rely on the two following lemmata.

Lemma 6.6. Define Ĝ = G′ − h(x), ŵ = w′|
V ( ̂G)

and x̂ = x|
V ( ̂G)

. Then, c · log n ·
w′(x̂) + w′(h(x)) ≤ c · log n · w′(x).

Proof. By the definition of h(x), it holds that w′(x̂) ≤ w′(x) − 1
c·log n · w′(h(x)). Thus,

c · log n · w′(x̂) + w′(h(x)) ≤ c · log n · w′(x).

Thus, it is safe to update G′ to G′ − h(x), w′ to w′|
V ( ̂G)

, H ′ to H ′ − h(x) and x

to x|
V ( ̂G)

, where we ensure that once we obtain a solution to the new instance, we add

w′(h(x)) to this solution and h(x) to the set realizing it.

Lemma 6.7. Given a clique M in G′, the function (x \M) is a valid fractional solution
such that w′(x \M) ≤ (1 + 3 ·maxv∈V (G′){x(v)})w′(x).

Proof. To prove that (x \M) is a valid fractional solution, let Q be some chordless cycle
in G′. We need to show that (x \ M)(V (Q)) ≥ 1. Since M is a clique, Q can contain
at most two vertices from M . Thus, since x is a valid fractional solution, it holds that
x(V (Q)\V (M)) ≥ 1−2 ·maxu∈V (G′){x(u)}. By the definition (x\M), this fact implies
that (x \ M)(V (Q)) = (x \ M)(V (Q) \ V (M)) ≥ (1 + 3 · maxu∈V (G′){x(u)})(1 − 2 ·
maxu∈V (G′){x(u)}) ≥ min{(1 + 3

c·log n)(1 − 2
c·log n), 1} = min{1 + 1/(c · log n) − 6/((c ·

log n)2), 1} ≥ 1, where the last inequality relies on the assumption n ≥ 64.
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For the proof of the second part of the claim, note that w′(x \ M) = (1 + 3 ·
maxv∈V (G′){x(v)}) w′(x|V (G′)\V (M)) ≤ (1 + 3 ·maxv∈V (G′){x(v)})w′(x).

Next, it is possible to call CVD-APPROX recursively with the fractional solution
(x\C). In the context of the low-value invariant, observe that indeed, for any v ∈ V (G′),
it now holds that (x \ C)(v) = (1 + 3 ·maxu∈V (G′){x(u)})x(v) < (1 + 3

c·log n) · 1
c·log n <

( c·log n+9
c·log n )δ · 1

c·log n for δ = 1. Similarly, by Lemma 6.7, w′(x \C) ≤ ( c·log n+9
c·log n )δ ·w′(x) for

δ = 1. It is also clear that α(G′) ≤ n. Thus, if Lemma 6.5 is true, we return a solution
that is at least opt and at most c · log n ·w(x) as desired. In other words, to prove Lemma
6.4, it is sufficient that we next focus only on the proof of Lemma 6.5. The proof of this
lemma is done by induction. When we consider some recursive call, we assume that the
solutions returned by the additional recursive calls that it performs, which are associated
with graphs G̃ such that α(G̃) ≤ 3

4α(G
′), comply with the demands of the lemma.

Termination. Once G′ becomes a chordal graph, we return 0 as our solution and ∅ as
the set that realizes it. Clearly, we thus satisfy the demands of Lemma 6.5. In fact, we
thus also ensure that the execution of our algorithm terminates once α(G′) < 24:

Lemma 6.8. If α(G′) < 24, then G′ is a chordal graph.

Proof. Suppose, by way of contradiction, that G′ is not a chordal graph. Then, it
contains a chordless cycle Q. Since G′ is an induced subgraph of G, where G is assumed
to exclude any chordless cycle on at most 48 vertices, we have that |V (Q)| > 48. Note
that if we traverse Q in some direction, and insert every second vertex on Q into a set,
excluding the last vertex in case |V (Q)| is odd, we obtain an independent set. Thus, we
have that α(G) ≥ 24, which is a contradiction.

Thus, since we will ensure that each recursive calls is associated with a graph whose
independence number is at most 3/4 the independence number of the current graph, we
have the following observation.

Observation 9. The maximum depth of the recursion tree is bounded by q · log n for
some fixed constant q.

Recursive Call. Since H ′ is a chordal graph, it admits a clique forest (Proposition 2.2).
In particular, it contains only O(n) maximal cliques, and one can find the set of these
maximal cliques in polynomial time [Gol04]. By standard arguments on trees, we deduce
that H ′ has a maximal clique M such that after we remove M from G′ we obtain two
(not necessarily connected) graphs, Ĥ1 and Ĥ2, such that α(Ĥ1), α(Ĥ2) ≤ 2

3α(H
′), and

that the clique M can be found in polynomial time. Let G1 = G′[V (Ĥ1)∪V (M)∪V (C)],
H1 = H ′[V (Ĥ1)∪V (M)], G2 = G′[V (Ĥ2)∪V (M)∪V (C)] and H2 = H ′[V (Ĥ2)∪V (M)],
and observe that α(G1), α(G2) ≤ 2

3α(G
′) + 2 ≤ 3

4α(G
′). Here, the last inequality holds

because α(G′) ≥ 24, else by Lemma 6.8, the execution should have already terminated.

We proceed by replacing x by (x\M). For the sake of clarity, we denote x∗ = (x\M).
By Lemmata 6.6 and 6.7, to prove Lemma 6.5, it is now sufficient to return a solution

that is at least opt and at most (1/(1 + 3 · (c · log n+ 9

c · log n )δ · 1

c · log n)) · (
c · log n

c · log n+ 9
)δ−1·

logα(G′) · w(x∗), along with a set that realizes it. Moreover, for any v ∈ V (G′), it
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Figure 6.1: Subinstances created by a recursive call

holds that x∗(v) < (1 + 3 · (c · log n+ 9

c · log n )δ · 1

c · log n) · (
c · log n+ 9

c · log n )δ · 1

c · log n . Note

that by Observation 9, by setting c ≥ 9q, we have that (
c · log n+ 9

c · log n )δ ≤ e < 3,

and therefore 1 + 3 · (c · log n+ 9

c · log n )δ · 1

c · log n ≤ c · log n+ 9

c · log n . In particular, to prove

Lemma 6.5, it is sufficient to return a solution that is at least opt and at most

(
c · log n

c · log n+ 9
)δ · logα(G′) · w(x∗).

Next, we define two subinstances, I1 = (G1, w|V (G1), C,H1,x
∗|V (G1)) and I2 =

(G2, w|V (G2), C,H2,x
∗|V (G2)) (see Figure 6.1). We solve each of these subinstances by

a recursive call to CVD-APPROX (by the above discussion, these calls are valid — we
satisfy the low-value and zero-clique invariants). Thus, we obtain two solutions, s1 to
I1 and s2 to I2, and two sets that realize these solutions, S1 and S2. By the inductive
hypothesis, we have the following observations.

Observation 10. S1∪S2 intersects any chordless cycle in G′ that lies entirely in either
G1 or G2.

Observation 11. Given i ∈ {1, 2}, si ≤ ( c·log n
c·log n+9)

δ · c · log(α(Gi)) · w(x∗
i ).

Moreover, since x∗(V (C) ∪ V (M)) = 0, we also have the following observation.

Observation 12. w(x∗
1) + w(x∗2) = w(x∗).

We say that a cycle of G′ is bad if it is a chordless cycle that belongs entirely to
neither G1 nor G2 (see Figure 6.2). Next, we show how to intersect bad cycles.

Bad Cycles. For any pair (v, u) of vertices v ∈ V (C) and u ∈ V (M), we let P1(v, u)
denote the set of any (simple) path P1 between v and u whose internal vertices belong
only to G1 and which does not contain a vertex v′ ∈ C and a vertex u′ ∈ M such that
(v′, u′) ∈ E(G′). Symmetrically, we let P2(v, u) denote the set of any path P2 between
v and u whose internal vertices belong only to G2 and which does not contain a vertex
v′ ∈ C and a vertex u′ ∈ M such that (v′, u′) ∈ E(G′). We note here that when
(v, u) ∈ E(G′) then P1(v, u) = P2(v, u) = ∅.

We first examine the relation between bad cycles and pairs (v, u) of vertices v ∈ V (C)
and u ∈ V (M).
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C

M

G1
G2

Q

Figure 6.2: An illustration of a bad cycle

Lemma 6.9. For any bad cycle Q there exist a pair (v, u) of vertices v ∈ V (C), u ∈
V (M), a path P1 ∈ P1(v, u) such that V (P1) ⊆ V (Q), and a path P2 ∈ P2(v, u) such
that V (P2) ⊆ V (Q).

Proof. Let Q be some bad cycle. By the definition of a bad cycle, Q must contain at
least one vertex a from H1 \ V (M) and at least one vertex b from H2 \ V (M). Since C

and M are cliques, Q can contain at most two vertices from C and at most two vertices
from M , and if it contains two vertices from C (resp. M), then these two vertices are
neighbors. Moreover, since the set V (C) ∪ V (M) contains all vertices common to G1

and G2, Q must contain at least one vertex v ∈ V (C) and at least one vertex u ∈ V (M)
with (v, u) /∈ E(G′). Overall, we conclude that the subpath of Q between v and u that
contains a belongs to P1(v, u), while the subpath of Q between v and u that contains b
belongs to P2(v, u).

In light Lemma 6.9, to intersect bad cycles, we now examine how the fractional
solution x∗ handles pairs (v, u) of vertices v ∈ V (C) and u ∈ V (M).

Lemma 6.10. For each pair (v, u) of vertices v ∈ V (C) and u ∈ V (M) with (v, u) /∈
E(G′), there exists i ∈ {1, 2} such that for any path P ∈ Pi(v, u), x

∗(V (P )) ≥ 1/2.

Proof. Suppose, by way of contradiction, that the lemma is incorrect. Thus, there exist a
pair (v, u) of vertices v ∈ V (C) and u ∈ V (M) with (v, u) /∈ E(G′), a path P1 ∈ P1(v, u)
such that x∗(V (P1)) < 1/2, and a path P2 ∈ P2(v, u) such that x∗(V (P2)) < 1/2. Since
x∗ is a valid fractional solution, we deduce that G′[V (P1) ∪ V (P2)] does not contain
any chordless cycle. Consider a shortest subpath P̂1 of P1 between a vertex a1 ∈ V (C)
and a vertex b1 ∈ V (M), and a shortest subpath P̂2 of P2 between a vertex a2 ∈ V (C)
and a vertex b2 ∈ V (M). Since neither P1 nor P2 contains any edge such that one of
its endpoints belongs to V (C) while the other endpoint belongs to V (M), we have that
|V (P̂1)|, |V (P̂2)| ≥ 3. Furthermore, since vertices common in P1 and P2 must belong to
V (C) ∪ V (M), we have that P̂1 does not contain internal vertices that belong to P̂2 or
adjacent to internal vertices on P̂2. Overall, since C and M are cliques, we deduce that
G′[V (P̂1) ∪ V (P̂2)] contains a chordless cycle. To see this, let a be the vertex closest
to b2 on P̂2 that is a neighbor of a1. Observe that a exists as a1 and a2 are neighbors,
and a �= b2. Moreover, we assume without loss of generality that if a = a2, then a2 has



86 Approximation Algorithms for Weighted F-Vertex Deletion

no neighbor on P̂1 apart from a1. Now, let b be the vertex closest to a on the subpath
of P̂2 between a and b2 that is a neighbor of b1. If b �= b2, then the vertex-sets of P̂1

and the subpath of P̂1 between a and b together induce a chordless cycle. Else, let b′
be the vertex closest to a1 on P̂1 that is a neighbor of b2. Then, the vertex-sets of the
subpath of P̂1 between a1 and b′ and the subpath of P̂1 between a and b2 together induce
a chordless cycle. Since G′[V (P̂1)∪V (P̂2)] is an induced subgraph of G′[V (P1)∪V (P2)],
we have reached a contradiction.

Given i ∈ {1, 2}, let 2x∗
i denote the fractional solution that assigns to each vertex

the value assigned by x∗i times 2. Moreover, let Ĝ1 = G1 − (V (C) ∪ V (M)) and Ĝ2 =

G2 − (V (C) ∪ V (M)). Observe that Ĝ1 and Ĝ2 are chordal graphs. Now, for every pair
(v, u) such that v ∈ V (C), u ∈ V (M), we perform the following operation. We initialize
T1(v, u) = ∅. Next, we consider every pair (v′, u′) such that v′ ∈ V (C), u′ ∈ V (M),
{v, v′} ∩ NG1

(u′) = ∅ and {u, u′} ∩ NG1
(v′) = ∅, and insert each pair in {(a, b) | a ∈

NG1
(v′)∩V (Ĝ1), b ∈ NG1

(u′)∩V (Ĝ1), Ĝ1 has a path between a and b} into T1(v, u). We
remark that the vertices in a pair in T1(v, u) are not necessarily distinct. The definition
of T2(v, u) is symmetric to the one of T1(v, u).

The following lemma translates Lemma 6.10 into an algorithm.

Lemma 6.11. For each pair (v, u) of vertices v ∈ V (C), u ∈ V (M) and (v, u) /∈ E(G′),
one can compute (in polynomial time) an index i(v, u) ∈ {1, 2} such that for any path
P ∈ Pi(v, u), 2x

∗
i (V (P )) ≥ 1.

Proof. Let (v, u) be a pair of vertices such that v ∈ V (C), u ∈ V (M) and (v, u) /∈ E(G′).
If there is i ∈ {1, 2} such that P ∈ Pi(v, u) = ∅, then we have trivially obtained the
required index which is i(v, u) = i. Otherwise, we proceed as follows. For any index
j ∈ {1, 2}, we perform the following procedure. For each pair (a, b) ∈ Ti(v, u), we use
Dijkstra’s algorithm to compute the minimum weight of a path between a and b in the
graph Ĝi where the weights are given by 2x∗i . In case for every pair (a, b) the minimum
weight is at least 1, we have found the desired index i(v, u). Moreover, by Lemma 6.10
and since for all v′ ∈ V (C) ∪ V (M) it holds that x∗

1(v
′) = x∗

2(v
′) = 0, for at least one

index j ∈ {1, 2}, the maximum weight among the minimum weights associated with the
pairs (a, b) should be at least 1 (if this value is at least 1 for both indices, we arbitrarily
decide to fix i(v, u) = 1).

At this point, we need to rely on approximate solutions to Weighted Multicut

in chordal graphs (in this context, we will employ the algorithm given by Theorem 6.5
in Section 6.3). Here, a fractional solution y is a function y : V (G′) → [0,∞) such that
for every pair (si, ti) ∈ T and any path P between si and ti, it holds that y(V (P )) ≥ 1.
An optimal fractional solution minimizes the weight w(y) =

∑
v∈V (G′)w(v) · y(v). Let

fopt denote the weight of an optimal fractional solution.

By first employing the algorithm given by Lemma 6.11, we next construct two in-
stances of Weighted Multicut. The first instance is J1 = (Ĝ1, w1, T1) and the second
instance is J2 = (Ĝ2, w2, T2), where the sets T1 and T2 are defined as follows. We initial-
ize T1 = ∅. Now, for every pair (v, u) such that v ∈ V (C), u ∈ V (M), i(v, u) = 1 and
P1(v, u) �= ∅, we insert each pair in T1(v, u) into T1. The definition of T2 is symmetric
to the one of T1.
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By Lemma 6.11 and since for all v ∈ V (C) ∪ V (M) it holds that x∗
1(v) = x∗2(v) = 0,

we deduce that 2x∗1 and 2x∗2 are valid solutions to J1 and J2, respectively. Thus, by
calling the algorithm given by Theorem 6.5 with each instance, we obtain a solution r1
to the first instance, along with a set R1 that realizes it, such that r1 ≤ 2d · w(x∗

1), and
we also obtain a solution r2 to the second instance, along with a set R2 that realizes it,
such that r2 ≤ 2d · w(x∗2), for some fixed constant d.

By Observation 10 and Lemma 6.9, we obtained a set S∗ = S1 ∪ S2 ∪ R1 ∪ R2 for
which we have the following observation.

Observation 13. S∗ intersects any chordless cycle in G′, and it holds that w(S∗) ≤
s1 + s2 + r1 + r2.

Recall that to prove Lemma 6.5 we need to show that s1+s2+r1+r2 ≤ ( c·log n
c·log n+9)

δ−1 ·
c · log(α(G′)) ·w′(x) and we have δ ≥ 2. Furthermore, we have ( c·log n

c·log n+9)
δ · c · log(α(G′)) ·

w′(x) ≤ ( c·log n
c·log n+9)

δ−1 · c · log(α(G′)) ·w′(x). This together with Lemma 6.7 implies that

it is enough to show s1 + s2 + r1 + r2 ≤ ( c·log n
c·log n+9)

δ · c · log(α(G′)) · w(x∗). Recall that
for any i ∈ {1, 2}, ri ≤ 2d ·w(x∗

i ). Thus, by Observation 11 and since for any i ∈ {1, 2},
α(Gi) ≤ 3

4α(G
′), we have that

w(S∗) ≤ (
c · log n

c · log n+ 9
)δ · c · log(3

4
α(G′)) · (w(x∗

1) + w(x∗2)) + 2d · (w(x∗
1) + w(x∗2)).

By Observation 12, we further deduce that

w∗(S∗) ≤
(
(

c · log n
c · log n+ 9

)δ · c · log(3
4
α(G′)) + 2d

)
· w(x∗).

Now, it only remains to show that ( c log n
c log n+9)

δ · c · log(34α(G′)) + 2d ≤ ( c log n
c log n+9)

δ · c ·
logα(G′), which is equivalent to 2d ≤ ( c log n

c log n+9)
δ · c · log(43). Recall that δ ≤ q · log n

(Observation 9). Thus, it is sufficient that we show that 2d ≤ ( c log n
c log n+9)

q·log n · c · log(43).
However, the term ( c log n

c log n+9)
q·log n is lower bounded by 1/e9q. In other words, it is

sufficient that we fix c ≥ 2 · e9q · d · 1/ log(43).

6.2.2 General graphs

In this subsection, we handle general instances by developing a d·log2 n-factor approxima-
tion algorithm for WCVD, Gen-CVD-APPROX, thus proving the correctness of Theorem
6.2. The exact value of the constant d ≥ max{96, 2c} is determined later.4 This algo-
rithm is based on recursion, and during its execution, we often encounter instances that
are of the form of the Clique+Chordal special case of WCVD, which will be dealt with
using the algorithm CVD-APPROX of Section 6.2.1.

Recursion. We define each call to our algorithm Gen-CVD-APPROX to be of the form
(G′, w′), where (G′, w′) is an instance of WCVD such that G′ is an induced subgraph
of G, and we denote n′ = |V (G′)|. We ensure that after the initialization phase, the

4Recall that c is the constant we fixed to ensure that the approximation ratio of CVD-APPROX is
bounded by c · log n.
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graph G′ never contains chordless cycles on at most 48 vertices. We call this invariant
the C48-free invariant. In particular, this guarantee ensures that the graph G′ always
contains only a small number of maximal cliques:

Lemma 6.12 ([Far89, TIAS77]). The number of maximal cliques of a graph G′ that has
no chordless cycles on four vertices is bounded by O(n′2), and they can be enumerated
in polynomial time using a polynomial delay algorithm.

Goal. For each recursive call Gen-CVD-APPROX(G′, w′), we aim to prove the following.

Lemma 6.13. Gen-CVD-APPROX returns a solution that is at least opt and at most
d
2 · log

2 n′ · opt. Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we
prove that Lemma 6.13 is true for the current call, we assume that the approximation
factor is bounded by d

2 · log2 n̂ · opt for any call where the size n̂ of the vertex-set of its
graph is strictly smaller than n′.

Initialization. Initially, we set (G′, w′) = (G,w). However, we need to ensure that the
C48-free invariant is satisfied. For this purpose, we update G′ as follows. First, we let
C48 denote the set of all chordless cycles on at most 48 vertices of G′. Clearly, C48 can
be computed in polynomial time and it holds that |C48| ≤ n48. Now, we construct an
instance of Weighted 48-Hitting Set, where the universe is V (G′), the family of 48-
sets is C48, and the weight function is w′. Since each chordless cycle must be intersected,
it is clear that the optimal solution to our Weighted 48-Hitting Set instance is at
most opt. By using the standard c′-approximation algorithm for Weighted c′-Hitting

Set [KT05], which is suitable for any fixed constant c′, we obtain a set S ⊆ V (G′) that
intersects all cycles in C48 and whose weight is at most 48 · opt. Having the set S, we
remove its vertices from G′. Now, the C48-free invariant is satisfied, which implies that
we can recursively call our algorithm. To the outputted solution, we add w(S) and S.
If Lemma 6.13 is true, we obtain a solution that is at most d

2 · log2 n · opt + 48 · opt ≤
d · log2 n · opt, which allows us to conclude the correctness of Theorem 6.2. We remark
that during the execution of our algorithm, we only update G′ by removing vertices from
it, and thus it will always be safe to assume that the C48-free invariant is satisfied.

Termination. Observe that due to Lemma 6.12, we can test in polynomial time whether
G′consists of a clique and a chordal graph: we examine each maximal clique of G′, and
check whether after its removal we obtain a chordal graph. Once G′ becomes such a
graph that consists of a chordal graph and a clique, we solve the instance (G′, w′) by
calling algorithm CVD-APPROX. Since c · log n′ ≤ d

2 · log
2 n′, we thus ensure that at the

base case of our induction, Lemma 6.13 holds.

Recursive Call. For the analysis of a recursive call, let S∗ denote a hypothetical set
that realizes the optimal solution opt of the current instance (G′, w′). Moreover, let
(F, β) be a clique forest of G′ − S∗, whose existence is guaranteed by Proposition 2.2.
Using standard arguments on forests, we have the following observation.

Observation 14. There exist a maximal clique M of G′ and a subset S ⊆ V (G′) \M
of weight at most opt such that M ∪ S is a balanced separator for G′.
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The following lemma translates this observation into an algorithm.

Lemma 6.14. There is a polynomial-time algorithm that finds a maximal clique M of
G′ and a subset S ⊆ V (G′) \M of weight at most q · log n′ · opt for some fixed constant
q such that M ∪ S is a balanced separator for G′.

Proof. We examine every maximal clique of G′. By Lemma 6.12, we need only consider
O(n′2) maximal cliques, and these cliques can be enumerated in polynomial time. For
each such clique M , we run the q · log n′-factor approximation algorithm by Leighton and
Rao [LR99] to find a balanced separator SM of G′ −M . Here, q is some fixed constant.
We let S denote some set of minimum weight among the sets in {SM | M is a maximal
clique of G′}. By Observation 14, w(S) ≤ q · log n′ · opt. Thus, the desired output is a
pair (M,S) where M is one of the examined maximal cliques such that SM = S.

We call the algorithm in Lemma 6.14 to obtain a pair (M,S). Since M ∪ S is
a balanced separator for G′, we can partition the set of connected components of G′ −
(M∪S) into two sets, A1 and A2, such that for V1 =

⋃
A∈A1

V (A) and V2 =
⋃

A∈A2
V (A)

it holds that n1, n2 ≤ 2
3n

′ where n1 = |V1| and n2 = |V2|. We remark that we used the
O(log n)-factor approximation algorithm by Leighton and Rao [LR99] in Lemma 6.14 to
find the balanced separator instead of the O(

√
log n)-factor approximation algorithm by

Feige et al. [FHL08], as the algorithm by Feige et al. is randomized.
Next, we define two inputs of (the general case of) WCVD: I1 = (G′[V1], w′|V1

)
and I2 = (G′[V2], w′|V2

). Let opt1 and opt2 denote the optimal solutions to I1 and I2,
respectively. Observe that since V1 ∩ V2 = ∅, it holds that opt1 + opt2 ≤ opt. We
solve each of the subinstances by recursively calling algorithm Gen-CVD-APPROX. By
the inductive hypothesis, we thus obtain two sets, S1 and S2, such that G′[V1]− S1 and
G′[V2]−S2 are chordal graphs, and w′(S1) ≤ d

2 ·log
2 n1 ·opt1 and w′(S2) ≤ d

2 ·log
2 n2 ·opt2.

We proceed by defining an input of the Clique+Chordal special case of WCVD:
J = (G′[(V1 ∪ V2 ∪M) \ (S1 ∪ S2)], w

′|(V1∪V2∪M)\(S1∪S2)). Observe that since G′[V1]− S1

and G′[V2] − S2 are chordal graphs and M is a clique, this is indeed an instance of the
Clique+Chordal special case of WCVD. We solve this instance by calling algorithm
CVD-APPROX. We thus obtain a set, Ŝ, such that G′[(V1 ∪ V2 ∪M)− (S1 ∪ S2 ∪ Ŝ)] is
a chordal graphs, and w′(Ŝ) ≤ c · log n′ · opt (since |(V1 ∪ V2 ∪M) \ (S1 ∪ S2)| ≤ n′ and
the optimal solution of each of the subinstances is at most opt).

Observe that since M is a clique and there is no edge in E(G′) between a vertex
in V1 and a vertex in V2, any chordless cycle of G′ − (S ∪ S1 ∪ S2) entirely belongs to
either G′[(V1 ∪M) \ S1] or G

′[(V2 ∪M) \ S2]. This observation, along with the fact that
G′[(V1∪V2∪M)\(S1∪S2∪Ŝ)] is a chordal graphs, implies that G′−T is a chordal graphs
where T = S∪S1∪S2∪ Ŝ. Thus, it is now sufficient to show that w′(T ) ≤ d

2 · log
2 n′ ·opt.

By the discussion above, we have that

w′(T ) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ)
≤ q · log n′ · opt+ d

2 · (log
2 n1 · opt1 + log2 n2 · opt2) + c · log n′ · opt.

Recall that n1, n2 ≤ 2
3n

′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T ) ≤ q · log n′ · opt+ d
2 · (log

2 2
3n

′) · opt+ c · log n′ · opt
≤ d

2 · log
2 n′ · opt+ (q + c− d

2 log
3
2) · log n′ · opt.
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Overall, we conclude that to ensure that w′(T ) ≤ d
2 · log2 n′ · opt, it is sufficient to

ensure that q + c− d
2 log

3
2 ≤ 0, which can be done by fixing d =

2

log 3
2

· (q + c).

6.3 Weighted Multicut in Chordal Graphs

In this section, we consider the problem Weighted Multicut on chordal graphs. In
the following, we formally define the problem Weighted Multicut.

Weighted Multicut

Input: A graph G, a weight function w : V (G) → Q and a set T =
{(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G.
Output: A minimum weight subset S ⊆ V (G) such that for any pair (si, ti) ∈ T ,
G− S does not have any path between si and ti.

For Weighted Multicut on chordal graphs, no constant-factor approximation
algorithm was previously known prior to the work that is presented here. We remark
that Weighted Multicut is NP-hard on trees [GVY96], and hence it is also NP-hard
on chordal graphs. The goal of this section is to proof the following theorem.

Theorem 6.3. Weighted Multicut admits a constant-factor approximation algo-
rithm on chordal graphs.

This algorithm is inspired by the work of Garg, Vazirani and Yannakakis on
Weighted Multicut on trees [GVY96]. Here, we carefully exploit the well-known
characterization of the class of chordal graphs as the class of graphs that admit clique
forests. We believe that this result is of independent interest. The algorithm by Garg
et al. [GVY96] is a classic primal-dual algorithm. A more recent algorithm, by Golovin
et al. [GNS06], uses total modularity to obtain a different algorithm for Multicut on
trees.

Let us denote c = 8. Recall that for Weighted Multicut, a fractional solution x is
a function x : V (G) → [0,∞) such that for every pair (s, t) ∈ T and any path P between
s and t, it holds that x(V (P )) ≥ 1. An optimal fractional solution minimizes the weight
w(x) =

∑
v∈V (G)w(v)·x(v). Let fopt denote the weight of an optimal fractional solution.

Theorem 6.3 follows from the next result, whose proof is the focus of this section.

Lemma 6.15. Given an instance of Weighted Multicut in chordal graphs, one can
find (in polynomial time) a solution that is at least opt and at most 4c · fopt, along with
a set that realizes it.

Preprocessing. By using the ellipsoid method, we may next assume that we have
optimal fractional solution x at hand. We say that x is nice if for all v ∈ V (G), there
exists i ∈ {0} ∪N such that x(v) = i

n . Let h(x) = {v ∈ V (G) | x(v) ≥ 1/c} denote the
set of vertices to which x assigns high values.

Lemma 6.16. Define a function x̂ : V (G) → [0,∞) as follows. For all v ∈ V (G),
if x(v) < 1/2n then x̂(v) = 0, and otherwise x̂(v) is the smallest value of the form
i/n, for some i ∈ N, that is at least 2x(v). Then, x̂ is a fractional solution such that
w(x̂) ≤ 4w(x).
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Proof. To show that x̂ is a fractional solution, consider some path P between s and
t such that (s, t) ∈ T . Let �′(x) = {v ∈ V (G) | x(v) < 1/2n}. We have that
x̂(V (P )) =

∑
v∈V (P )\�′(x) x̂(v) ≥ 2

∑
v∈V (P )\�′(x) x(v). Thus, to show that x̂(V (P )) ≥ 1,

it is sufficient to show that 1
2 ≤

∑
v∈V (P )\�′(x) x(v). Since x is a fractional solu-

tion, it holds that x(V (P )) =
∑

v∈V (P )∩�′(x) x(v) +
∑

v∈V (P )\�′(x) x(v) ≥ 1. Thus,

1 ≤ 1
2n |V (P ) ∩ �′(x)| +

∑
v∈V (P )\�′(x) x(v). Since |V (P ) ∩ �′(x)| ≤ n, we conclude that

1
2 ≤

∑
v∈V (P )\�′(x) x(v).

The second part of the claim follows from the observation that for all v ∈ V (G),
x̂(v) ≤ 4x(v).

Accordingly, we update x to x̂. Our preprocessing step also relies on the following
standard lemma.

Lemma 6.17. Define Ĝ = G − h(x), ŵ = w|
V ( ̂G)

and x̂ = x|
V ( ̂G)

. Then, c · w(x̂) +
w(h(x)) ≤ c · w(x).

Proof. By the definition of h(x), it holds that w(x̂) ≤ w(x)− 1
cw(h(x)). Thus, c ·w(x̂)+

w(h(x)) ≤ c · (w(x)− 1
c · w(h(x))) + w(h(x)) = c · w(x).

We thus further update G to Ĝ, w to ŵ and x to x̂, where we ensure that once we
obtain a solution to the new instance, we add w(h(x)) to this solution and h(x) to the
set realizing it. Overall, we may next focus only on the proof of the following lemma.

Lemma 6.18. Let (G,w) be an instance of Weighted Multicut in chordal graphs,
and x be a nice fractional solution such that h(x) = ∅. Then, one can find (in polynomial
time) a solution that is at least opt and at most c ·w(x), along with a set that realizes it.

The Algorithm. Since G is a chordal graph, we can first construct in polynomial time
a clique forest (F, β) of G (Proposition 2.2). Without loss of generality, we may assume
that F is a tree, else G is not a connected graph and we can handle each of its connected
components separately. Now, we arbitrarily root F at some node rF , and we arbitrarily
choose a vertex rG ∈ β(rF ). We then use Dijkstra’s algorithm to compute (in polynomial
time) for each vertex v ∈ V (G), the value d(v) = min

P∈P(v)
x(V (P )), where P(v) is the set

of paths in G between rG and v.
We define n + 1 bins: for all i ∈ {0, 1, . . . , n}, the bin Bi contains every vertex

v ∈ V (G) for which there exists j ∈ {0} ∪N such that d(v) − x(v) < ( in + 2j)1c ≤ d(v)
(i.e., 0 ≤ d(v)− ( in + 2j)1c < x(v)). Let Bi∗ , i

∗ ∈ {0, 1, . . . , n}, be a bin that minimizes
w(Bi∗). The output consists of w(Bi∗) and Bi∗ .

Approximation Factor. Given r ∈ [0, 1], let B̂r be the set that contains every vertex
v ∈ V (G) for which there exists j ∈ {0} ∪N such that 0 ≤ d(v)− (r + 2j)1c < x(v). We
start with the following claim.

Lemma 6.19. There exists r∗ ∈ [0, 1] such that w(B̂r∗) ≤ c · w(x).

Proof. For any d ≥ 0, observe that there exists exactly one j ∈ {0} ∪N for which there
exists r ∈ [0, 1] such that 0 ≤ d − (r + 2j)1c < 1

c , and denote it by j(d). Suppose that
we choose r ∈ [0, 1] uniformly at random. Consider some vertex v ∈ V (G). Then, since
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h(x) = ∅, the probability that there exists j ∈ {0} ∪N such that 0 ≤ d(v)− (r+2j)1c <

x(v) is equal to the probability that 0 ≤ d(v) − (r + 2j(d(v)))1c < x(v). Now, the
probability that 0 ≤ d(v) − (r + 2j(d(v)))1c < x(v) is equal to c · x(v). The expected

weight w(B̂r) is c ·
∑

v∈V (G) x(v) · w(v) = c · w(x). Thus, there exists r∗ ∈ [0, 1] such

that w(B̂r∗) ≤ c · w(x).

Now, the proof of the approximation factor follows from the next claim.

Lemma 6.20. There exists i ∈ {0, 1, . . . , n} such that Bi ⊆ B̂r∗.

Proof. Let i be the smallest index in {0, 1, . . . , n} such that r∗ ≤ i
n . Consider some vertex

v ∈ Bi. Then, for some j ∈ {0} ∪N, d(v)− x(v) < ( in + 2j)1c ≤ d(v). Since r∗ ≤ i
n , we

have that (r∗ + 2j)1c ≤ d(v). Since x is nice, it holds that there exists t ∈ {0} ∪N such
that d(v) − x(v) = t

n . Thus, for any p < 1
n , it holds that d(v) − x(v) < ( in + 2j − p)1c .

By the choice of i, i
n − r∗ < 1

n , and therefore d(v) − x(v) < (r∗ + 2j)1c , which implies

that v ∈ B̂r∗ .

Feasibility. We need to prove that for any pair (s, t) ∈ T , G − Bi∗ does not have any
path between s and t. Consider some path P = (v1, v2, · · · , v�) between s and t. Here,
v1 = s and v� = t. Suppose, by way of contradiction, that V (P )∩Bi∗ = ∅. Then, for all
vi ∈ V (P ), it holds that there is no j ∈ N such that 0 ≤ d(vi)− ( i

∗
n + 2j)1c < x(vi).

Let s ∈ V (F ) be the closest node to rF that satisfies β(s) ∩ V (P ) �= ∅ (since F is a
clique tree and P is a path, the node s is uniquely defined). Let v̂i be some vertex in
β(s) ∩ V (P ) �= ∅. For the sake of clarity, let us denote the subpath of P between v̂i and
v� by Q = (u1, u2, · · · , ut), where u1 = v̂i and ut = v�. Let j∗ be the smallest value in

{0} ∪N that satisfies d(u1)− x(u1) < ( i
∗
n + 2j∗)1c . Note that d(u1) < ( i

∗
n + 2j∗)1c . It is

thus well defined to let p denote the largest index in [t] such that d(up) < ( i
∗
n + 2j∗)1c .

First, suppose that p ∈ [t − 1]. We then have that ( i
∗
n + 2j∗)1c ≤ d(up+1). For all

2 ≤ i ≤ t, it holds that d(ui) ≤ d(ui−1)+x(ui). We thus obtain that d(up+1)−x(up+1) ≤
d(up) < ( i

∗
n + 2j∗)1c . This statement implies that up+1 ∈ Bi∗ , which is a contradiction.

Now, we suppose that p = t. Note that ( i
∗
n + 2j∗ − 2)1c ≤ d(u1) − x(u1) (by the

minimality of j∗), and d(ut) < ( i
∗
n + 2j∗)1c . We get that d(ut) < d(u1) − x(u1) +

2
c . In

other words, d(ut)− d(u1) + x(u1) <
2
c . Let des(s) denote the set consisting of s and its

descendants in F . Since F is a clique tree, we have that V (Q) ⊆
⋃

s′∈des(s) β(s
′). Thus,

any path from rG to ut that realizes d(ut) contains a vertex from β(s). Since there exists
a path from rG to ut that realizes d(ut), we deduce that there exists a path, Pt, from rG
to ut that realizes d(ut) and contains a vertex x ∈ NG[u1]. Let P ∗

t denote the subpath
of Pt between x and ut, and let P ∗ denote the path that starts at u1 and then traverses
P ∗
t . Then, x(V (P ∗)) ≤ x(u1) + x(V (P ∗

t )) = x(u1) + d(ut) − d(x) + x(x). Note that
d(u1) ≤ d(x)+x(u1), and therefore x(V (P ∗)) ≤ x(u1)+d(ut)− (d(u1)−x(u1))+x(x) =
x(u1) + x(x) + (d(ut)− d(u1) + x(u1)). Since h(x) = ∅ and d(ut)− d(u1) + x(u1) <

2
c ,

we get that x(V (P ∗)) < 4
c . The symmetric analysis of the subpath of P between u1 = v̂i

and v1 shows that there exists a path P ∗∗ between u1 and v1 such that x(V (P ∗∗)) < 4
c .

Overall, we get that there exists a path, P ′, between v1 = s and v� = u� = t such that
x(V (P ′)) < 8

c . Since c ≥ 8, we reach a contradiction to the assumption that x is a
fractional solution.
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6.4 Approximation Algorithm for Weighted Dis-

tance Hereditary Vertex Deletion

We apply the general scheme of designing approximation algorithm that we discussed
to another problem. A graph G is a distance hereditary graph (also called a completely
separable graph [HM90]) if the distances between vertices in every connected induced
subgraph of G are the same as in the graph G. In this section, we consider the problem
Weighted Distance Hereditary Vertex Deletion, which is formally defined
below.

Weighted Distance Hereditary Vertex Deletion (WDHVD)

Input: A graph G and a weight function w : V (G) → Q.
Output: A minimum weight subset S ⊆ V (G) such that G − S is a distance
hereditary graph.

Distance hereditary graphs were named and first studied by Hworka [How77]. How-
ever, an equivalent family of graphs was earlier studied by Olaru and Sachs [Sac70] and
shown to be perfect. It was later discovered that these graphs are precisely the graphs
of rankwidth 1 [Oum05]. Rankwidth is a graph parameter introduced by Oum and
Seymour [OS06].

As algorithms for Treewidth-η Vertex Deletion are applied as subroutines to
solve many graph problems, we believe that algorithms for Weighted Rankwidth-

η Vertex Deletion (WR-ηVD) will be useful in this respect. In particular,
Treewidth-η Vertex Deletion has been considered in designing efficient approx-
imation, kernelization and fixed parameter tractable algorithms for WPF -MFD and
its unweighted counterpart Planar F -Minor-Free Deletion [BRU17, FLM+16,
FLRS11, FLS12, FLST10]. Along similar lines, we believe that WR-ηVD and its un-
weighted counterpart will be useful in designing efficient approximation, kernelization
and fixed parameter tractable algorithms for Weighted F-Vertex Deletion where
F is characterized by a finite family of forbidden vertex minors [Oum05].

Recently, Kim and Kwon [KK16] designed an O(opt2 log n)-factor approximation al-
gorithm for Distance Hereditary Vertex Deletion (DHVD). This result implies
that DHVD admits an O(n2/3 log n)-factor approximation algorithm. In this section,
we take a step towards obtaining good approximation algorithm for WR-ηVD by de-
signing a O(logO(1) n)-factor approximation algorithm for WDHVD. In particular, the
focus of this section will be the proof of the following theorem.

Theorem 6.4. WDHVD or WR-1VD admits an O(log3 n)-factor approximation al-
gorithm.

Preliminaries. A graph G is distance hereditary if every connected induced subgraph
H of G, for all u, v ∈ V (H) the number of vertices in shortest path between u and v in
G is same as the number of vertices in shortest path between u and v in H. Another
characterization of distance hereditary graphs is the graph not containing an induced
sub-graph isomorphic to a house, a gem, a domino or an induced cycle on 5 or more
vertices (refer Figure 6.3). We refer to a house, a gem, a domino or an induced cycle
on at least 5 vertices as a DH-obstruction. A DH-obstruction on at most 48 vertices is
a small DH-obstruction. A biclique is a graph G with vertex bipartition X, Y each of
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House Gem Domino Cycle on at least
 5 vertices

Figure 6.3: Obstruction set for distance hereditary graphs

them being non-empty such that for each x ∈ X and y ∈ Y we have {x, y} ∈ E(G). We
note here that, X and Y need not be independent sets in a biclique G.

Clearly, we can assume that the weight w(v) of each vertex v ∈ V (G) is positive, else
we can insert v into any solution. Our approximation algorithm for WDHVD comprises
of two components. The first component handles the special case where the input graph
G consists of a biclique C and a distance hereditary H. Here, we also assume that the
input graph has no “small” DH-obstruction. We show that when input restricted to
these special instances WDHVD admits an O(log2 n)-factor approximation algorithm.

The second component is a recursive algorithm that solves general instances of the
problem. Initially, it easily handles “small” DH-obstruction. Then, it gradually disin-
tegrates a general instance until it becomes an instance of the special form that can be
solved in polynomial time. More precisely, given a problem instance, the algorithm di-
vides it by finding a maximal biclique M (using an exhaustive search which relies on the
guarantee that G has no “small” DH-obstruction) and a small separator S (using an ap-
proximation algorithm) that together break the input graph into two graphs significantly
smaller than their origin.

6.4.1 Biclique+ Distance Hereditary graph

In this subsection, we handle the special case where the input graph G consists of a
biclique C and a distance hereditary graph H. More precisely, along with the input
graph G and the weight function w, we are also given a biclique C and a distance
hereditary graph H such that V (G) = V (C) ∪ V (H), where the vertex-sets V (C) and
V (H) are disjoint. Here, we also assume that G has no DH-obstruction on at most 48
vertices, which means that every DH-obstructionin G is a chordless cycle of strictly more
than 48 vertices. Note that the edge-set E(G) may contain edges between vertices in C

and vertices in H. We call this special case the Biclique + Distance Hereditary special
case. Our objective is to prove the following result.

Lemma 6.21. The Biclique + Distance Hereditary special case of WDHVD admits an
O(log2 n)-factor approximation algorithm.

We assume that n ≥ 212, else the input instance can be solve by brute-force 5. Let c
be a fixed constant (to be determined later). In the rest of this subsection, we design a
c · log n-factor approximation algorithm for the Biclique + Distance Hereditary special
case of WDHVD.

Recursion. Our approximation algorithm is a recursive algorithm. We call our algo-
rithm DHD-APPROX, and define each call to be of the form (G′, w′, C,H ′,x). Here, G′

5This assumption simplifies some of the calculations ahead.
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is an induced subgraph of G such that V (C) ⊆ V (G′), and H ′ is an induced subgraph
of H. The argument x is discussed below. We remark that we continue to use n to refer
to the size of the vertex-set of the input graph G rather than the current graph G′.

Arguments. While the execution of our algorithm progresses, we keep track of two
arguments: the number of vertices in the current distance hereditary graph H ′ that are
assigned a non-zero value by x, which we denote by α(G′) and the fractional solution x.

Observation 15. The measure α(G′) can be computed in polynomial time.

A fractional solution x is a function x : V (G′) → [0,∞) such that for every chordless
cycle Q of G′ on at least 5 vertices it holds that x(V (Q)) ≥ 1. An optimal fractional so-
lution minimizes the weight w′(x) =

∑
v∈V (G′)w

′(v) · x(v). Clearly, the solution to the

instance (G′, w′) of WDHVD is at least as large as the weight of an optimal fractional
solution. Although we initially compute an optimal fractional solution x (at the initial-
ization phase that is described below), during the execution of our algorithm, we manip-
ulate this solution so it may no longer be optimal. Prior to any call to DHD-APPROX
with the exception of the first call, we ensure that x satisfies the following invariants:

• Low-Value Invariant: For any v ∈ V (G′), it holds that x(v) < 1/ log n.

• Zero-Biclique Invariant: For any v ∈ V (C), it holds that x(v) = 0.

We note that the Low-Value Invariant used here is simpler than the one used in
Section 6.2.1 since it is enough for the purpose of this section.

Goal. The depth of the recursion tree will be bounded by Δ = O(log n), where the
depth of initial call is 1. The correctness of this claim is proved when we explain how to
perform a recursive call. For each recursive call to DHD-APPROX(G′, w′, C,H ′,x), we
aim to prove the following.

Lemma 6.22. For any δ ∈ {1, 2, . . . ,Δ}, each recursive call to DHD-APPROX of depth
δ ≥ 2 returns a solution that is at least opt and at most ( log n

log n+4)
δ · c · log n · log(α(G′)) ·

w′(x). Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.

At the initialization phase, we see that in order to prove Lemma 6.21, it is sufficient
to prove Lemma 6.22.

Initialization. Initially, the graphs G′ and H ′ are simply set to be the input graphs G
and H, and the weight function w′ is simply set to be input weight function w. Moreover,
we compute an optimal fractional solution x = xinit by using the ellipsoid method. Recall
that the following claim holds.

Observation 16. The solution of the instance (G′, w′) of WDHVD is lower bounded
by w′(xinit).

Moreover, it holds that α(G′) ≤ n, and therefore to prove Lemma 6.21, it is sufficient
to return a solution that is at least opt and at most c · log n · log(α(G)) ·w(x) (along with
a subset that realizes the solution). Part of the necessity of the stronger claim given by
Lemma 6.22 will become clear at the end of the initialization phase.
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We would like to proceed by calling our algorithm recursively. For this purpose,
we first need to ensure that x satisfies the low-value and zero-biclique invariants, to
which end we use the following notation. We let h(x) = {v ∈ V (G′) | x(v) ≥ 1/ log n}
denote the set of vertices to which x assigns high values. Note that we can assume
for each v ∈ h(x), we have x(v) ≤ 1. Moreover, given a biclique M in G′, we let
(x \ M) : V (G′) → [0,∞) denote the function that assigns 0 to any vertex in M and
(1+ 4

log n)x(v) to any other vertex v ∈ V (G′). Now, to adjust x to be of the desired form
both at this phase and at later recursive calls, we rely on the following lemmata.

Lemma 6.23. Define Ĝ = G′ − h(x), ŵ = w′|
V ( ̂G)

and x̂ = x|
V ( ̂G)

. Then, c′ · log n ·
log(α(Ĝ)) · w′(x̂) + w′(h(x)) ≤ c′ · log n · log(α(G)) · w′(x), where c′ ≥ 1.

Proof. By the definition of h(x), it holds that w′(x̂) ≤ w′(x) − 1
log n · w′(h(x)). Since

Ĝ is an induced subgraph of G′, it also holds that α(Ĝ) ≤ α(G′). Thus, c′ · log n ·
log(α(Ĝ)) ·w′(x̂)+w′(h(x)) ≤ c′ · log n · log(α(G′)) · (w′(x)− 1

log n ·w′(h(x)))+w′(h(x)) ≤
c′ · log n · log(α(G)) · w′(x).

Thus, it is safe to update G′ to G′ − h(x), w′ to w′|
V ( ̂G)

, H ′ to H ′ − h(x) and x

to x|
V ( ̂G)

, where we ensure that once we obtain a solution to the new instance, we add

w′(h(x)) to this solution and h(x) to the set realizing it.

Lemma 6.24. Let Q be a chordless cycle on at least 5 vertices and M be a biclique in
G′ with vertex partitions as V (M) = M1 �M2 such that V (Q) ∩ V (M) �= ∅. Then there
is a chordless cycle Q′ on at least 5 vertices that intersects M in at most 3 vertices such
that E(Q′ \M) ⊆ E(Q \M). Furthermore, Q′ is of one of the following three types.

• Q′ ∩M is a single vertex

• Q′ ∩M is an edge in G[M ]

• Q′ ∩M is an induced path on 3 vertices in M .

Proof. Observe that no chordless cycle on 5 or more vertices may contain two vertices
from each of M1 and M2, as that would imply a chord in it. Now, if the chordless cycle
Q already satisfies the required conditions we output it as Q′.

First consider the case, when Q ∩ M contains exactly two vertices that don’t have
an edge between them. Then the two vertices, say v1, v2, are both either in M1 or in
M2. Suppose that they are both in M1 and consider some vertex u ∈ M2. Let P1 is the
longer of the two path segments of Q between v1 and v2, and note that it must length at
least 3. Then observe that G′[P1 ∪ {u, v1, v2}] contains a DH-obstruction, as v1, v2 have
different distances depending on if u is included in an induced subgraph or not. And
further, it is easy to see that this DH-obstruction contains the induced path v1, u, v2.
However, as all small obstructions have been removed from the graph, we have that Q′
is a chordless cycle in G′ on at least 5 vertices. Furthermore, Q′∩M is the induced path
(v1, u, v2), in G′ and E(Q′ \M) ⊆ E(Q \M).

Now consider the case when Q ∩ M contains exactly three vertices. Observe that
it cannot contain two vertices of M1 and one vertex of M2, or vice versa, as Q doesn’t
satisfy the required conditions. Therefore, Q ∩ M contains exactly three vertices from
M1 (or from M2), which again don’t form an induced path of length 3. So there is an
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independent set of size 2 in Q∩M , and now, as before, we can again obtain the chordless
cycle Q′ on at least 5 vertices with E(Q′ \M) ⊆ E(Q\M). Before we consider the other
cases, we have the following claim.

Claim 6.1. Let M be a biclique in G′ with vertex partition as V (M) = M1 �M2. Then
G′[M ] has no induced P4.

Proof. Let P be any induced path of length 4 in G′[M ]. Then, either V (P ) ⊆ M1 or
V (P ) ⊆ M2. Now consider any such path P in M1 and some vertex u ∈ M2. Then
G′[P ∪{u}] contains a DH-obstruction of size 5 which is a contradiction to the fact that
G′ has no small obstructions.

Next, let Q ∩M contain 4 or more vertices. Note that in this case all these vertices
are all either in M1 or in M2 since otherwise, Q would not be a chordless cycle in G′
on at least 5 vertices. Let us assume these vertices lie in M1 (other case is symmetric).
Let v1, v2, v3, · · · , v� ∈ M1 ∩ Q be the sequence of vertices obtained when we traverse
Q starting from an arbitrary vertex, where � ≥ 4. By Claim 6.1 they cannot form
an induced path on 4 vertices, i.e. G′[V (Q) ∩ M1] consists of at least two connected
components. Without loss of generality we may assume that v1 and v� are in different
components. Observe that the only possible edges between these vertices may be at most
two of the edges (v1, v2), (v2, v3), and (v3, v�). Hence, we conclude that either v1, v3 or
v2, v� are a distance of at least 3 in Q. Let us assume that v2, v� are at distance 3 or
more in Q, and the other case is symmetric and P23, P3� be the paths not containing v1
in Q between v2 and v3, and v3 and v�, respectively. Notice that for any u ∈ M2 the
graph G′[{u}∪V (P23)∪V (P3�)] contains a DH-obstruction. Since the graph is free of all
small obstruction, this DH-obstruction, denoted Q̂, must be a chordless cycle on at least
5 vertices. Furthermore this obstruction can contain at most 2 vertices from {v2, v3, v�},
as otherwise there would be a chord in it. Hence Q̂ ∩M contains strictly fewer vertices
than Q∩M . Moreover, we have E(Q̂\M) ⊆ E(Q\M). Now, by a recursive application
of this lemma to Q̂, we obtain the required Q′.

A consequence of the above lemma is that, whenever M is a biclique in G′, we may
safely ignore any DH-obstructionthat intersects M in more than 3 vertices. This leads
us to the following lemma.

Lemma 6.25. Given a biclique M in G′, the function (x \ M) is a valid fractional
solution such that w′(x \M) ≤ (1 + 4

log n)w
′(x).

Proof. To prove that (x \M) is a valid fractional solution, let Q be some chordless cycle
(not on 4 vertices) in G′. We need to show that (x \M)(V (Q)) ≥ 1. By our assumption
Q can contain at most 3 vertices from M . Thus, since x is a valid fractional solution, it
holds that x(V (Q)\V (M)) ≥ 1− 3

log n . By the definition of (x\M), this fact implies that

(x \M)(V (Q)) = (x \M)(V (Q) \V (M)) ≥ (1+ 4
log n)(1− 3

log n) = 1+ 1
log n − 12

(log n)2
≥ 1,

where the last inequality relies on the assumption n ≥ 212.

For the proof of the second part of the claim, note that w′(x \ M) = (1 + 4
log n)

w′(x|V (G′)\V (M)) ≤ (1 + 4
log n)w

′(x).

We call DHD-APPROX recursively with the fractional solution (x\C), and by Lemma
6.25, w′(x \C) ≤ (1+ 4

log n)w
′(x). If Lemma 6.22 were true, we return a solution that is
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at least opt and at most ( log n
log n+4) ·c · log n · log(α(G)) ·w(x\M) ≤ c · log n · log(α(G)) ·w(x)

as desired. In other words, to prove Lemma 6.21, it is sufficient that we next focus only
on the proof of Lemma 6.22. The proof of this lemma is done by induction. When we
consider some recursive call, we assume that the solutions returned by the additional
recursive calls that it performs, which are associated with graphs G̃ such that α(G̃) ≤
3
4α(G

′), complies with the conclusion of the lemma.

Termination. Once G′ becomes a distance hereditary graph, we return 0 as our solution
and ∅ as the set that realizes it. Clearly, we thus satisfy the demands of Lemma 6.22. In
fact, we thus also ensure that the execution of our algorithm terminates once α(G′) <
log n.

Lemma 6.26. If α(G′) < log n, then G′ is a distance hereditary graph.

Proof. Suppose that G′ is not a distance hereditary graph. Then, it contains an obstruc-
tion Q. Since x is a valid fractional solution, it holds that x(V (Q)) ≥ 1. But x satisfies
the low-value invariant therefore, it holds that x(V (Q)) < |V (Q)|/ log n. These two ob-
servations imply that |V (Q)| > log n. Furthermore, at least log n of these vertices are
assigned a non-zero value by x, i.e. α(G′) ≥ log n. Therefore, if α(G′) < log n, then G′
must be a distance hereditary graph.

The fact that, the recursive calls are made onto graphs where the distance hereditary
subgraph contains at most 3/4 the number of vertices in the current distance hereditary
subgraph, we observe the following.

Observation 17. The maximum depth of the recursion tree is bounded by q · log n for
some fixed constant q.

Recursive Call. Since H ′ is a distance hereditary graph, it has a rank-width-one
decomposition (T , φ), where T is a binary tree and φ is a bijection from V (G′) to the
leaves of T . Furthermore, rank-width of T is 1, which means that for any edge of the tree,
by deleting it, we obtain a partition of the leaves in T . This partition induces a cut of the
graph, where the set of edges crossing this cut forms a biclique M , with vertex partition
as V (M) = M1 �M2 in the graph. By standard arguments on trees, we deduce that T
has an edge that defines a partition such that after we remove the biclique edges between
M1 and M2 from G′ we obtain two (not necessarily connected) graphs, H1 and H2, such
that |V (H1)|, |V (H2)| ≤ 3

4 |V (H ′)| and M1 ⊆ H1, M2 ⊆ H2. Note that the bicliques M
and C are vertex disjoint. We proceed by replacing the fractional solution x by (x \M).
For the sake of clarity, we denote x∗ = (x \M). Let G1 = G′[V (H1) ∪ V (C) ∪ V (M)],
G2 = G′[V (H2) ∪ V (C) ∪ V (M)].

We adjust the current instance by relying on Lemma 6.23 so that x∗ satisfies the low-
value invariant (in the same manner as it is adjusted in the initialization phase). In par-
ticular, we remove h(x∗) from G′,H ′, G1, H1, G2 and H2, and we let (G∗, w∗, C,H∗,x∗),
G∗

1, H
∗
1 G∗

2 and H∗
2 denote the resulting instance and graphs. Observe that, now we

have α(G∗
1), α(G

∗
2) ≤ 3

4α(G
′). We will return a solution that is at least opt and at most

( log n
log n+4)

δ+1 ·c · log n · log(α(G′)) ·w∗(x∗), along with a set that realizes it.6 In the analysis
we will argue this it is enough for our purposes.

6Here, the coefficient ( logn
logn+4 )

δ has been replaced by the smaller coefficient ( logn
logn+4 )

δ+1.
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Next, we define two subinstances, I∗1 = (G∗
1, w

∗|V (G∗
1)
, C,H∗

1 ,x
∗|V (G∗

1)
) and I∗2 =

(G∗
2, w

∗|V (G∗
2)
, C,H∗

2 ,x
∗|V (G∗

2)
). We solve each of these subinstances by a recursive call

to DHD-APPROX, and thus we obtain two solutions of sizes, s∗1 to I∗1 and s∗2 to I∗2 , and
two sets that realize these solutions, S∗

1 and S∗
2 . By the inductive hypothesis, we have

the following observations.

Observation 18. S∗
1 ∪S∗

2 intersects any chordless cycle on at least 6 vertices in G∗ that
lies entirely in either G∗

1 or G∗
2.

Observation 19. Given i ∈ {1, 2}, s∗i ≤ ( log n
log n+4)

δ+1 · c · log n · log(α(G∗
i )) · w(x∗

i ).

Moreover, since x∗(V (C) ∪ V (M)) = 0, we also have the following observation.

Observation 20. w∗(x∗1) + w∗(x∗2) = w∗(x∗).

We say that a cycle in G∗ is bad if it is a chordless cycle not on four vertices that
belongs entirely to neither G∗

1 nor G∗
2. Next, we show how to intersect bad cycles.

Bad Cycles. Let us recall the current state of the graph G′. G′ is partitioned into a
biclique C and a distance hereditary graph H ′. Furthermore, there is a biclique M with
vertex bipartition as M1 and M2 so that deleting the edges between M1 and M2, gives
a balanced partition of H ′ into H1 and H2. Now, by Lemma 6.24, we may ignore any
chordless cycle that intersects either of the two bicliques C and M in more than three
vertices each, and this allows us to update our fractional feasible solution to x∗ = (x/M).
Then we recursively solve the instances G∗

1 and G∗
2 and remove the returned solution.

Now consider the remaining graph, and any obstructions that are left. As the graph
no longer contains small obstructions, it is clear that any remaining obstruction is a
chordless cycle on at least 6 vertices and is a bad cycle. We first examine the relation
between bad cycles and pairs (v, u) of vertices v ∈ V (C) and u ∈ V (M).

Lemma 6.27. If a bad cycle exists, then there must also be a bad cycle Q such that
Q−(M ∪C) is a union of two internally vertex disjoint and non-adjacent path-segments,
P1 and P2 such that, P1 ⊆ G1 and P2 ⊆ G2, and each of them connect a pair of vertices
in M × C.

Proof. Let Q′ be a bad cycle. Let us recall that the input graph G′ can be partitioned
into the biclique C and a distance hereditary graph H ′. Hence Q′∩C �= ∅. Furthermore,
if Q′ ∩ M = ∅, then Q′ is preserved in G′ − M . This means that Q′ is either present
in G∗

1, or in G∗
2, and hence it cannot be a bad cycle, which is a contradiction. Hence

Q′ ∩M �= ∅ as well. Finally, Q′ contains vertices from both H1 and H2, which implies
Q′ ∩G1 and Q′ ∩G2 are both non-empty as well.

Now, by applying Lemma 6.24 to Q′ and C, we obtain a bad cycle Q̂ such that Q̂∩C

is either a single vertex, or an edge or an induced path of length three. Since, M∩C = ∅,
we can again apply Lemma 6.24 to Q̂ and M , and obtain a bad cycle Q such that each
of Q ∩ C and Q ∩M is either a single vertex, or, an edge or an induced path of length
three. Hence, Q− (V (M)∪V (C)) is a pair of internally disjoint paths, whose endpoints
are in M ×C. Furthermore, one of these paths, denoted P1, is contained in G1, and the
other, denoted P2, is contained in G2.
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The above lemma (Lemma 6.27) implies that it is safe to ignore all the bad cycles
that don’t satisfy the conclusion of this lemma. We proceed to enumerate some helpful
properties of those bad cycles that satisfy the above lemma. We call P1, P2 the path
segments of the bad cycle Q.

Lemma 6.28. Suppose P1, P2 are path segments of a bad cycle Q where P1 ⊆ G1 − S∗
1

and P2 ⊆ G2−S∗
2 , where S∗

1 and S∗
2 are a solution to G∗

1 and G∗
2, respectively. Then for

any P ′
1 which is an induced path in G1 − S∗

1 with the same endpoints as P1 we have that
Q′ = G′[(Q ∩ (M ∪ C)) ∪ V (P ′

1) ∪ V (P2)] is also a bad cycle.

Proof. Observe that, P1 and P ′
1 are paths between the same endpoints in G1−S∗

1 , which
is a distance hereditary graph. Therefore, P ′

1 is an induced path of the same length as
P1. Furthermore, no vertex in P ′

1 is adjacent to a vertex in Q − P1. Hence Q′ is also a
bad cycle.

The above lemma allows us to reduce the problem of computing a solution that inter-
sects all bad-cycles, to computing a solution for an instance of Weighted Multicut.
More formally, let Q be a bad cycle with path segments P1 and P2 , the feasible frac-
tional solution x∗ assigns a total value of at least 1 to the vertices in Q. As x∗ assigns 0
to every vertex in M ∪C, we have that at least one of P1 or P2 is assigned a total value
of at least 1/2. Suppose that it were P1 then 2x∗ assigns a total value 1 to P1 in G1.
This fractional solution is a solution to the Weighted Multicut problem defined on
the pairs of vertices in C ×M , which are separated by 2x∗ in G′ (whose description is
given below).

Given i ∈ {1, 2}, let 2x∗
i denote the fractional solution that assigns to each vertex

the value assigned by x∗
i times 2. For a pair (v, u) of vertices such that v ∈ V (C) and

u ∈ V (M) we call (v, u) an important pair if there is a bad cycle Q with path segments
P1 and P2 that connects v and u. Let S∗

1 and S∗
2 be a solution to G∗

1 and G∗
2, respectively

(obtained recursively). For an important pair (v, u) we let P1(v, u) denote the set of any
(simple) path P1 between v and u whose internal vertices belong only to G1 − S∗

1 and
which does not contain any edge such that one of its endpoints belongs to V (C) while
the other endpoint belongs to V (M). Symmetrically, we let P2(v, u) denote the set of
any path P2 between v and u whose internal vertices belong only to G2 − S∗

2 and which
does not contain any edge such that one of its endpoints belongs to V (C) while the other
endpoint belongs to V (M).

Lemma 6.29. For an important pair (v, u) of vertices where v ∈ V (C) and u ∈ V (M),
in polynomial time we can compute an index i(v, u) ∈ {1, 2} such that for any path
P ∈ Pi(v, u), 2x

∗
i (V (P )) ≥ 1.

Proof. Let (v, u) be an important pair of vertices with v ∈ V (C) and u ∈ V (M). We
start by arguing that such an index exists. Assuming a contradiction, suppose there
exists P1 ∈ P1(v, u) and P2 ∈ P2(v, u) such that 2x∗

1(V (P1)) < 1 and 2x∗2(V (P2)) < 1.
Recall that we have a bad cycle bad cycle Q in G′ − (S∗

1 ∪ S∗
2) with paths segments as

P1 and P2 which connects v and u. But this implies that 2x∗(Q) < 1, contradicting that
x∗ was a feasible solution to G′ − (S∗

1 ∪ S∗
2). Therefore, such an index always exists.

For any index j ∈ {1, 2}, we use Dijkstra’s algorithm to compute the minimum weight
of a path between v and u in the graph Ĝ∗

i where the weights are given by 2x∗
i . In case

the minimum weight is at least 1, we have found the desired index i(v, u). Moreover,
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we know that for at least one index j ∈ {1, 2}, the minimum weight should be at least
1 (if the minimum weight is at least 1 for both induces, we arbitrarily decide to fix
i(v, u) = 1).

We say that an important pair (u, v) is separated in Gi, if the index assigned by
Lemma 6.29 assigns i to Pi(u, v). Now, for every important pair (v, u) such that v ∈
V (C), u ∈ V (M) and (v, u) /∈ E(G′), we perform the following operation. We check if
this pair is separated in G1, and if so, then we initialize T1(v, u) = ∅. Then for each pair
of neighbors of x of v and y of u, we add the pair (x, y) to T1(u, v). The set T2(u, v)
is similarly defined. At this point, we need to rely on approximate solutions to the
Weighted Multicut problem which is given by theorem below (Theorem 6.5).

Theorem 6.5 ([GVY96]). Given an instance of Weighted Multicut, one can find
(in polynomial time) a solution that is at least opt and at most d · log n · fopt for some
fixed constant d > 0, along with a set that realizes it.

Here, a fractional solution y is a function y : V (G) → [0,∞) such that for every pair
(si, ti) ∈ T and any path P between si and ti, it holds that y(V (P )) ≥ 1. An optimal
fractional solution minimizes the weight w(y) =

∑
v∈V (G)w(v) · y(v). Let fopt denote

the weight of an optimal fractional solution.
By employing the algorithm given by Lemma 6.29, we next construct two instances

of Weighted Multicut. The first instance is J1 = (Ĝ∗
1, w

∗
1, T1 = {T1(v, u) |

v ∈ V (C), u ∈ V (M), i(v, u) = 1, and (v, u) is an important pair}) and the sec-
ond instance is J2 = (Ĝ∗

2, w
∗
2, T2 = {T2(v, u) | v ∈ V (C), u ∈ V (M), i(v, u) =

2, and (v, u) is an important pair}). By Lemma 6.29, 2x∗
1 and 2x∗2 are valid solutions to

J1 and J2, respectively. Thus, by calling the algorithm given by Theorem 6.5 with each
instance, we obtain a solution r1 to the first instance, along with a set R1 that realizes
it, such that r1 ≤ 2d · log |V (G∗

1)| ·w∗(x∗1), and we also obtain a solution r2 to the second
instance, along with a set R2 that realizes it, such that r2 ≤ 2d · log |V (G∗

2)| · w∗(x∗2).
Now by Observation 18 and Lemma 6.27, we have obtained a set S∗ = S∗

1 ∪S∗
2 ∪R1∪R2

for which we have the following observation.

Observation 21. S∗ intersects any chordless cycle in G∗, and it holds that w∗(S∗) ≤
s∗1 + s∗2 + r1 + r2.

We start by showing that s∗1 + s∗2 + r1 + r2 + w(h(x)) ≤ ( log n
log n+4)

δ+1 · c · log n ·
log(α(G′)) · w∗(x∗). Recall that for any i ∈ {1, 2}, ri ≤ 2d · log |V (G∗

i )| · w∗(x∗i ). Thus,
by Observation 19 and since for any i ∈ {1, 2}, |V (G∗

i )| ≤ n and α(G∗
i ) ≤ 3

4α(G
′), we

have that

w∗(S∗) ≤ (
log n

log n+ 4
)δ+1·c·log n·log(3

4
α(G′))·(w∗(x∗1)+w∗(x∗2))+2d·log n·(w∗(x∗1)+w∗(x∗2)).

By Observation 20, we further deduce that

w∗(S∗) ≤
(
(

log n

log n+ 4
)δ+1 · c · log(3

4
α(G′)) + 2d

)
· log n · w∗(x∗).

Now, it only remains to show that ( log n
log n+4)

δ+1 · c · log(34α(G′))+2d ≤ ( log n
log n+4)

δ+1 · c ·
logα(G′), which is equivalent to 2d ≤ ( log n

log n+4)
δ+1 ·c·log(43). Observe that δ ≤ q ·log n−1
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for some fixed constant q. Indeed, it initially holds that α(G) ≤ n, at each recursive call,
the number of vertices assigned a non-zero value by x∗ decreases to at most a factor of 3/4
of its previous value, and the execution terminates once this value drops below (log n)/2.
Thus, it is sufficient to choose the constant c so that 2d ≤ ( log n

log n+4)
q·log n · c · log(43).

As the term ( log n
log n+4)

q·log n is lower bounded by 1/(e4q), it is sufficient that we fix c =

2 · e4q · d · 1/ log(43).
Note that 2d ≤ ( log n

log n+4)
q·log n ·c·log(43), where d ≥ 1. Therefore, ( log n

log n+4)
q·log n ·c ≥ 1.

This together with Lemma 6.23 and 6.25 implies that w′(S∗) +w′(h(x)) ≤ ( log n
log n+4)

δ · c ·
log(α(G′))w′(x), which proves Lemma 6.22.

6.4.2 General graphs

In this subsection, we handle general instances by developing a d · log2 n-factor approx-
imation algorithm for WDHVD, Gen-DHD-APPROX, thus proving the correctness of
Theorem 6.4.

The Recursive Algorithm. We define each call to our algorithm Gen-DHD-APPROX
to be of the form (G′, w′), where (G′, w′) is an instance of WDHVD such that G′ is
an induced subgraph of G, and we denote n′ = |V (G′)|. We ensure that after the
initialization phase, the graph G′ never contains a DH-obstruction on at most 50 vertices.
We call this invariant the O50-free invariant. In particular, this guarantee ensures that
the graph G′ always contains only a small number of maximal bicliques, as stated in the
following lemma.

Lemma 6.30 (Lemma 3.5 [KK16]). Let G be a graph on n vertices with no DH-
obstruction on at most 6 vertices. Then G contains at most (n3+5n)/6 maximal bicliques,
and they can be enumerated in polynomial time.

Goal. For each recursive call Gen-DHD-APPROX(G′, w′), we aim to prove the following.

Lemma 6.31. Gen-DHD-APPROX returns a solution that is at least opt and at most
d
2 · log

3 n′ · opt. Moreover, it returns a subset U ⊆ V (G′) that realizes the solution. Here
d is a constant, which will be determined later.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we
prove that Lemma 6.31 is true for the current call, we assume that the approximation
factor is bounded by d

2 · log3 n̂ · opt for any call where the size n̂ of the vertex-set of its
graph is strictly smaller than n′.

Initialization. We are given (G,w) as input, and first we need to ensure that the O50-
free invariant is satisfied. For this purpose, we update G as follows. First, we let O50

denote the set of all DH-obstruction on at most 50 vertices of G. Clearly, O50 can be
computed in polynomial time and it holds that |O50| ≤ nO(1). Now, we construct an
instance of Weighted 50-Hitting Set, where the universe is V (G), the family of all
setsof size at most 50 in O50, and the weight function is w′. Since each DH-obstruction
must be intersected, therefore, the optimal solution to our Weighted 50-Hitting

Set instance is at most opt. By using the standard c′-approximation algorithm for
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Weighted c′-Hitting Set [KT05], which is suitable for any fixed constant c′, we
obtain a set S ⊆ V (G) that intersects all the DH-obstruction in O50 and whose weight
is at most 50 · opt. Having the set S, we remove its vertices from G to obtain the graph
G′, and w′ = w|G′ . Now that the O50-free invariant is satisfied, we can call Gen-DHD-
APPROX on (G′, w′) and to the outputted solution, we add w(S) and S.

We note that during the execution of the algorithm, we update G′ only by removing
vertices from it, and thus it will always be safe to assume that the O50-free invariant is
satisfied. Now, by Lemma 6.31, we obtain a solution of weight at most d

2 · log
3 n · opt+

50 · opt ≤ d · log3 n · opt, then combined with S, it allows us to conclude the correctness
of Theorem 6.4.

Termination. Observe that due to Lemma 6.30, we can test in polynomial time,
if our current graph G′ is of the special kind that can be partitioned into a biclique
and a distance hereditary graph: we examine each maximal biclique of G′, and check
whether after its removal we obtain a distance hereditary graph. Once G′ becomes such
a graph that consists of a biclique and a distance hereditary graph, we solve the in-
stance (G′, w′) by calling algorithm DHD-APPROX. Observe that this returns a solution
of value O(log2 n · opt) which is also O(log3 n · opt).

Recursive Call. Similar to the case for WCVD, instead computing a balanced sep-
arators with a maximal clique and some additional vertices, here we find a balanced
separator that comprises of a biclique and some additional, but small number of ver-
tices. Existence of such a separator is guaranteed by Lemma 6.32. From Lemma 6.30, it
follows that the graph with no DH-obstruction of size at most 50 contains at most O(n3)
maximal bicliques and they can enumerated in polynomial time. We use the weighted
variant of Lemma 3.8 from [KK16] in Lemma 6.32. The proof of Lemma 6.32 remains
exactly the same as that in Lemma 3.8 of [KK16].

Lemma 6.32 (Lemma 3.8 [KK16]). Let G′ be a connected graph on n′ vertices not
containing any DH-obstruction of size at most 50 and w : V (G) → Q be a weight
function. Then in polynomial time we can find a balanced vertex separator K �X such
that the following conditions are satisfied.

• K is a biclique in G or an empty set;

• w(X) ≤ q · log n′ · opt, where q is some fixed constant.

Here, opt is the weight of the optimum solution to WDHVD of G.

We note that we used the O(log n′)-factor approximation algorithm by Leighton and
Rao [LR99] in Lemma 6.32 to find the balanced separator, instead of the O(

√
log n′)-

factor approximation algorithm by Feige et al. [FHL08], as the algorithm by Feige et al.
is randomized. Let us also remark that if K is a biclique, then there is a bipartition of
the vertices in K into A�B, where both A and B are non-empty, which will be crucially
required in later arguments.

Next, we apply in Lemma 6.32 to (G′, w′) to obtain a pair (K,X). Since K ∪ X

is a balanced separator for G′, we can partition the set of connected components of
G′ − (M ∪ S) into two sets, A1 and A2, such that for V1 =

⋃
A∈A1

V (A) and V2 =⋃
A∈A2

V (A) it holds that n1, n2 ≤ 2
3n

′ where n1 = |V1| and n2 = |V2|. We then define
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two inputs of (the general case) WDHVD: I1 = (G′[V1], w′
V1
) and I2 = (G′[V2], w′

V2
). Let

opt1 and opt2 denote the optimal solutions to I1 and I2, respectively. Observe that since
V1 ∩ V2 = ∅, it holds that opt1 + opt2 ≤ opt. We solve each of the two sub-instances by
recursively calling algorithm Gen-DH-APPROX. By the inductive hypothesis, we obtain
two sets, S1 and S2, such that G′[V1]− S1 and G′[V2]− S2 are both distance hereditary
graphs, and w′(S1) ≤ d

2 · log
3 n1 · opt1 and w′(S2) ≤ d

2 · log
3 n2 · opt2. Now, if K were an

empty set then it is easy to see that X ∪ S1 ∪ S2 is a feasible solution to the instance
(G′, w′). Now let us bound the total weight of this subset.

w′(X ∪ S1 ∪ S2) ≤ w′(X) + w′(S1) + w′(S2)

≤ q · log n′ · opt+ d
2 · (log

3 n1 · opt1 + log3 n2 · opt2)

Recall that n1, n2 ≤ 2
3n

′ and opt1 + opt2 ≤ opt.

< q · log n′ · opt+ d
2 · log

3 2
3n

′ · opt
< d

2 · log
3 n′ · opt

The more interesting case is when K is a biclique. Then, we first remove X ∪S1∪S2

from the graph, and note that the above bound also holds for this subset of vertices. Now
observe that the graph G′′ = G′− (X ∪S1∪S2) can be partitioned into a biclique K and
a distance hereditary graph H = G[(V1 ∪V2) \ (S1 ∪S2)], along with the weight function
w′′ = w′

V (G′′). Thus we have an instance of the Biclique + Distance Hereditary Graph

spacial case of WDHVD. Furthermore, note that we retained a fractional feasible solution
x to the LP of the initial inputG′, w′, which upperbounds the value of a fractional feasible
solution x′′ to the LP of the instance G′′, w′′. We apply the algorithm DHD-APPROX on
(G′′, w′′, K,H,x′′) which outputs a solution S such that w′′(S) = w′(S) = O(log2 n ·opt).

Observe that, any obstruction in G′ \ S is either completely contained in G′[V1 \ S],
or completely contained in G′[V2 \ S] or it contains at least one vertex from K. This
observation, along with the fact thatG′[(V1∪V2∪K)\(S1∪S2∪Ŝ)] is a distance hereditary
graph, implies that G′ − T is a distance hereditary graph where T = X ∪ S1 ∪ S2 ∪ Ŝ.
Thus, it is now sufficient to show that w′(T ) ≤ d

2 · (log n′)3 ·opt. By the discussion above,

we have that DHD-APPROX returns a solution of value c log2 n · opt, where c is some
constant.

w′(T ) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ1) + w′(Ŝ2)

≤ q · log n′ · opt+ d
2 · (log

3 n1 · opt1 + log3 n2 · opt2) + c · log2 n′ · opt.

Recall that n1, n2 ≤ 2
3n

′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T ) ≤ q · log n′ · opt+ d
2 · (log

3 2
3n

′) · opt+ c · log2 n′ · opt
≤ d

2 · log
3 n′ · opt+ (c− d log 3

2) · log
2 n′ · opt.

Overall, we conclude that to ensure that w′(T ) ≤ d
2 · log3 n′ · opt, it is sufficient to

ensure that c− d log 3
2 ≤ 0, which can be done by fixing d =

c

log 3
2

.



Chapter 7

Kernel for Chordal Vertex Deletion

In this chapter, we look at the problem Chordal Vertex Deletion, which is formally
defined below.

Chordal Vertex Deletion (CVD) Parameter: k
Input: A graph G and an integer k.
Question: Does there exist a subset S ⊆ V (G) such that |S| ≤ k and G − S is a
chordal graph?

The existence of a polynomial kernel for CVD was a well-known open problem in the
field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question
affirmatively by designing a polynomial (vertex) kernel for CVD of size O(k161 log58 k),
and asked whether one can design a kernel of size O(k10) [JP17]. In this chapter, we
look at a kernel for the problem with O(k12 log10 k)vertices. In particular, the focus of
this chapter will be the proof of the following theorem.

Theorem 7.1. CVD admits a polynomial kernel of size O(k12 log10 k).

The kernelization algorithm is inspired by the O(k2)-size kernel for Feedback Ver-

tex Set (FVS), designed by Thomassé [Tho10]. The kernel for FVS consists of the
two following steps.

1. Reduce the maximum degree of the graph by using Expansion Lemma. That is,
upper bound the maximum degree Δ of the graph by O(k).

2. When the graph has maximum degree Δ, one can show that if a graph has mini-
mum degree at least 3 (which can be easily achieved for FVS) then any minimum
feedback vertex set has size O(n/Δ). This together with an upper bound on Δ
implies O(k2)-size kernel.

Recall that a graph is chordal if it does not contain any induced cycle of length
at least 4. That is, every cycle of length at least 4 has a chord. Thus, FVS is about
intersecting all cycles and CVD is about intersecting all chordless cycles. Unfortunately,
this apparent similarity stops here! Nevertheless, we are still able to exploit ideas used
in the O(k2)-size kernel for FVS. Towards this, we define the notion of independence
degree of vertices and graphs. Roughly speaking, the independence degree of a vertex v

is the size of a maximum independent set in its neighborhood (G[N(v)]). The study of
this notion is key conceptual contribution of this chapter.
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As a first step we bound the independence degree of every vertex by kO(1) – this is
similar to the first step of the kernel for FVS. Once we have bounded the independence
degree of a graph, we obtain an approximate solution M (also called modulator) and
analyze the graph G−M . The bound on the independence degree immediately implies
that the number of leaves, vertices of degree at least three and the number of maximal
degree two paths in the clique forest of G −M is bounded by kO(1). Then, using ideas
similar to those used by Marx [Mar10] to bound the size of a maximal clique while
designing the first algorithm for CVD, we reduce the size of each maximal clique in
G −M to kO(1). Finally, we use structural analysis to bound the size of each maximal
degree two path, which includes the design of a reduction rule that computes a family
of minimum cuts, and thus we obtain our final kernel. We believe that the notion
of independent degree is likely to be useful for designing algorithms for other graph
modification problems. Not only does it lead to a significant improvement, once it is
bounded, it greatly simplifies the analysis of the resulting instance.

Finally, after we obtain a kernel, we show that by reruning our entire kernelization
procedure once, we can actually reduce the size of the kernel. Since we rely on an
O(log2 n)-approximation algorithm, when we call our kernelization procedure for the
first time, we work with an approximate solution of size O(k3 log2 k); indeed, it can
be assumed that log n < k log k, else the 2O(k log k) · nO(1)-time algorithm for CVD by
Cao and Marx [CM16] solves the input instance in polynomial time. However, once
we have our first kernel, it holds that n =O(k22 log12 k). At this point, if we reuse
the approximation algorithm, we obtain an approximate solution of size O(k log2 k).
The size of the kernel depends on the size of the approximate solution; in particular,
having an approximate solution of size O(k log2 k) allows us to obtain a kernel of size
O(k12 log10 k).

An overview of the kernelization algorithm. First, in Section 7.1, we briefly state
results relating to approximate solutions for CVD, which will be relevant to following
subsections. In Section 7.2 we address annotations that will be added to the input
instance. Next, in Section 7.3, we introduce the notion of the independent degree of a
vertex, which lies at the heart of the design of our kernelization algorithm. We carefully
examine the independent degrees of vertices in our graphs, and show how these degrees
can be bounded by a small polynomial in k. In Section 7.4, we consider the clique forest
of the graph obtained by removing (from the input graph) the vertices of an approximate
solution. In particular, we demonstrate the usefulness of our notion of an independent
degree of a vertex – having bounded the independent degree of each vertex, we show that
the number of leaves in the clique forest can be bounded in a simple and elegant manner.
We also efficiently bound the size of a maximal clique. Then, in Section 7.5, we turn to
bound the length of degree-2 paths in the clique forest. This subsection is quite technical,
and its proofs are based on insights into the structure of chordal graphs and their clique
forests. In particular, we use a reduction rule which computes a collection of minimum
cuts rather than one minimum cut which overall allows us to capture the complexity of a
degree-2 path using only few vertices. In Section 7.6, we remove annotations introduced
in preceding sections. Next, in Section 7.7, we bound the size of our kernel. Finally, in
Section 7.8, we show that an alternating application of approximation and kernelization
can improve the performance of our kernelization algorithm.
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7.1 Approximation

Observe that it can be assumed that log n < k log k, else the 2O(k log k) · nO(1)-time
algorithm for CVD by Cao and Marx [CM16] solves the input instance in polynomial
time. This together with the fact that CVD admits an O(log2 n)-factor approximation
algorithm (Chapter 6, Section 6.2, Theorem 6.2), we obtain the following result.

Lemma 7.1. CVD admits an O(k2 log2 k)-factor approximation algorithm.

Throughout the chapter, we let APPROX denote a polynomial-time algorithm for
CVD that returns approximate solutions of size f(opt) for some function f . Initially, it
will denote the algorithm given by Lemma 7.1. Given an instance of CVD, we say that
an approximate solution D is redundant if for every vertex v ∈ D, D \ {v} is also an
approximate solution, that is, G − (D \ {v}) is a chordal graph. Jansen and Pilipczuk
[JP17] showed that given an approximate solution of size g(k) for some function g(·), one
can find (in polynomial time) either a vertex contained in every solution of size at most
k or a redundant approximate solution of size O(k · g(k)). Thus, we have the following
result.

Corollary 7.1 ([JP17]). Given an instance of CVD, one can find (in polynomial time)
either a vertex contained in every solution of size at most k or a redundant approximate
solution of size O(k · f(k)).

Next, we fix an instance (G, k) of CVD. By relying on APPROX and Corollary 7.1,
we may assume that we have a vertex-set D̃ ⊆ V (G) that is an approximate solution of
size f(k) and a vertex-set D ⊆ V (G) that is a redundant approximate solution of size
c · k · f(k) for some constant c independent of the input.

Given a v ∈ V (G), we say that a vertex set B ⊆ V (G) \ {v} is a v-blocker if B
intersects every chordless cycle in G. Observe that the set B must cannot contain the
vertex v. In the following section, we will also need to strengthen approximate solutions
to be v-blockers for some vertices v ∈ V (G). To this end, we will rely on the following
result.

Lemma 7.2. Given a vertex v ∈ V (G), one can find (in polynomial time) either a vertex
contained in every solution of size at most k or an approximate solution of size f(k) that
is a v-blocker.

Proof. Fix a vertex v = v0 ∈ V (G). We define the graph G′ by setting V (G′) = V (G) ∪
{v1, v2, . . . , vf(k)}, where v1, v2, . . . , vf(k) are new vertices, and E(G′) = E(G)∪{(u, vi) |
(u, v) ∈ E(G), i ∈ [f(k)]} ∪ {(vi, vj) | i �= j ∈ {0} ∪ [f(k)]}. In other words, G′ is
the graph G to which we add f(k) copies of the vertex v, which form a clique amongst
themselves and v.

We call the algorithm APPROX to obtain an approximate solution S. Since
G′[{v0, v1, . . . , vf(k)}] is a clique and for each i, j ∈ {0} ∪ [f(k)] we have N [vi] = N [vj ],
any chordless cycle in G′ contains at most one vertex from {v0, v1, . . . , vf(k)}. In partic-
ular, for any chordless cycle C in G′, by replacing vi by v0 (in case vi belongs to C), we
obtain a chordless cycle in G. Therefore, if the instance (G, k) admits a solution of size
at most k that does not contain v, then this solution is also a solution for the instance
(G′, k), which implies that the size of S should be at most f(k). Thus, we can next as-
sume that |S| ≤ f(k), else we conclude that the vertex v is contained in every solution
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of size at most k. Since the vertices v0, v1, v2, . . . , vf(k) have the same neighbor-set, if
{v0, v1, v2, . . . , vf(k)} ∩ S �= ∅, we can assume that {v0, v1, v2, . . . , vf(k)} ⊆ S, since oth-
erwise we can take S \ {v0, v1, v2, . . . , vf(k)} as our approximate solution S. Since we
assume that |S| ≤ f(k), we deduce that {v0, v1, v2, . . . , vf(k)} ∩ S = ∅. In particular, we
have that v /∈ S and therefore S is a v-blocker.

In light of Lemma 7.2, we may next assume that for every vertex v ∈ V (G), we have
a vertex-set Bv that is both a v-blocker and an approximate solution of size f(k).

7.2 Irrelevant and Mandatory Edges

During the execution of our kernelization algorithm, we mark some edges in E(G) as
irrelevant edges. At the beginning of its execution, all of the edges in E(G) are assumed
to be relevant edges. When we mark an edge as an irrelevant edge, we prove that any
solution that intersects all of the chordless cycles in G that contain only relevant edges
also intersects all of the chordless cycles in G that contain the irrelevant edge. In other
words, we prove that we can safely ignore chordless cycles that contain at least one
irrelevant edge. Observe that we cannot simply remove irrelevant edges from E(G) since
this operation may introduce new chordless cycles in G. Instead we maintain a set EI ,
which contains the edges marked as irrelevant.

We also mark some edges in E(G) as mandatory edges. We will ensure that at least
one endpoint of a mandatory edge is present in any solution of size at most k. We let
EM denote the set of mandatory edges.

In some situations, we identify a pair of non-adjacent vertices such that any solution
of size at most k must contain at least one of them. Then, we add an edge between the
vertices of the pair, and mark this edge as a mandatory edge. The correctness of this
operation follows from the observation that any chordless cycle affected by the addition of
this edge contains both vertices of the pair, and since the edge is marked as a mandatory
edge, we ensure this chordless cycle will be intersected although it may no longer exist.
Formally, we have the following reduction rule.

Reduction Rule 7.1. Given two non-adjacent vertices in G, v and u, such that at least
one of them belongs to any solution of size at most k, insert the edge (v, u) into both
E(G) and EM .

Hence from now onwards our instance is of the form (G, k, EI , EM ), and during the
execution of our kernelization algorithm, we will update the sets EI and EM . In Section
7.6, we show that we can unmark the edges in EI ∪EM , obtaining an ordinary instance
of CVD. For the sake of simplicity, when EI and EM are clear from context, we omit
them.

The Number of Mandatory Edges. If a vertex v is incident to at least k + 1
mandatory edges, it must belong any solution of size at most k. Therefore, we may
safely apply the following reduction rule.

Reduction Rule 7.2. If there exists a vertex v incident to at least k + 1 mandatory
edges, remove v from G and decrement k by 1.

After exhaustively applying the above reduction rule we have the following lemma.



7.3 Independent Degree 109

Lemma 7.3. If |EM | > k2 then the input instance is a no-instance.

Proof. After the exhaustive application of Reduction Rule 7.2, any vertex incident to a
mandatory edge is incident to at most k such edges. Therefore, any set of at most k

vertices from V (G) may intersect at most k2 mandatory edge. Since every solution of
size at most k must intersect every mandatory edge, we deduce that if |EM | > k2, the
input instance is a no-instance.

Thus, we will next assume that |EM | ≤ k2 (else Reduction Rule 7.2 applies). More-
over, we let D′ denote the set D ∪ D̃ to which we add every vertex that is an endpoint
of a vertex in EM (recall that D̃ is our approximate solution of size at most f(k) and D

is our redundant approximate solution of size O(k · f(k))). Observe that by adding ver-
tices to a redundant approximate solution, it remains a redundant approximate solution,
and therefore D′ or any other superset of D is such a solution.

7.3 Independent Degree

Given a vertex v ∈ V (G), we use the notation NR
G (v) to refer to the set containing each

vertex u ∈ NG(v) such that (v, u) does not belong to EI ∪ EM . We remark that in this
section we identify and mark some edges as irrelevant edges.

Independent Degrees. We start by introducing the notion of the independent degree
of vertices and graphs.

Definition 7.1. Given a vertex v ∈ V (G), the independent degree of v, denoted by dIG(v),
is the size of a maximum independent set in the graph G[NR

G (v)]. The independent degree
of G, denoted by ΔI

G, is the maximum independent degree of a vertex in V (G).

Fix Δ = (k + 3)f(k). The objective of this subsection is to investigate the notion of
an independent degree, ultimately proving the following result.

Lemma 7.4. One can construct (in polynomial time) an instance (G′, k′, E′
I , E

′
R) of

CVD that is equivalent to the input instance (G, k, EI , ER) and such that both k′ ≤ k

and ΔI
G′ ≤ Δ.

To this end, we may assume that we are given a vertex v ∈ V (G) such that dIG(v) >
Δ. We say that an instance (G′, k′, E′

I , E
′
M ) of CVD is better than the input instance

(G, k, EI , EM ) if k′ ≤ k, V (G′) = V (G), EI ⊆ E′
I , EM ⊆ E′

M dIG′(v) ≤ Δ and for all
u ∈ V (G′), dIG′(u) ≤ dIG(u). To prove the correctness of Lemma 7.4, it is sufficient to
prove the correctness of the following lemma.

Lemma 7.5. We can construct (in polynomial time) an instance (G′, k′, E′
I , E

′
M ) of

CVD that is better than the input instance (G, k, EI , EM ).

Indeed, to prove Lemma 7.4, one can repeatedly apply the operation given by Lemma
7.5 in the context of every vertex u ∈ V (G) such that dIG(u) > Δ. We start with a simple
result concerning independent degrees.

Lemma 7.6. Let u ∈ V (G) be a vertex such that dIG(u) ≥ |Bu|. Then, one can find (in
polynomial time) an independent set in G[NR

G (u) \Bu] of size at least dIG(u)− |Bu|.
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Proof. Since Bu is a solution, G− Bu is a chordal graph. In particular, G[NR
G (u) \ Bu]

is a chordal graph. Since chordal graphs are perfect, Maximum Independent Set

in chrodal graphs is solvable in polynomial time [Gol04]. This means that we can find
a maximum independent set in G[NR

G (u) \ Bu] in polynomial time. Since the size of
a maximum independent set in G[NR

G (u)] is at least dIG(u), the size of a maximum
independent set in G[NR

G (u)\Bu] is at least d
I
G(u)−|Bu|, which concludes the correctness

of the lemma.

Recall that for any vertex u ∈ V (G), |Bu| ≤ f(k). Thus, we have the following
corollary.

Corollary 7.2. One can find (in polynomial time) an independent set in G[NR
G (v) \Bv]

of size at least Δ− f(k).

We let I denote the independent set given by Corollary 7.2.

Independent Components. Let X = NG(v) \ (Bv ∪ I) denote the neighbor-set of v
from which we remove the vertices of the v-blocker Bv and of the independent set I.
We also let H = G − ({v} ∪ Bv ∪ X) denote the graph obtained by removing (from
G) the vertex v, the v-blocker Bv and any neighbor of v that does not belong to the
independent set I. We define the set independent components of v as the set of each
connected component of H that contains at least one vertex from I, and denote this set
by A.

For the set A, we prove the following lemmata.

Lemma 7.7. Each connected component A ∈ A contains exactly one vertex from I and
no other vertex from NG(v).

Proof. The graph H does not contain any vertex from NG(v) \ I, and therefore we only
need to prove the first part of the statement of the lemma. Fix a connected component
A ∈ A. By the definition of A, it is only necessary to prove that A cannot contain (at
least) two vertices from I. Suppose, by way of contradiction, that it contains two such
vertices, u and w. Let P denote the shortest path in A that connects u and w. Since
I is an independent set, this path contains at least two edges. Therefore, together with
the vertex v, the path P forms a chordless cycle. However, this chordless cycle contain
no vertex from Bv, which contradicts the fact that Bv is an approximate solution.

By Lemma 7.7, for each connected component A ∈ A we can let z(A) ∈ I denote the
unique neighbor of v in A. In fact, Corollary 7.2 and Lemma 7.7 imply that Δ− f(k) ≤
|A|.

Lemma 7.8. Every vertex x ∈ X that is adjacent (in G) to some vertex y ∈ V (A),
where A ∈ A, is also adjacent (in G) to the vertex z(A).

Proof. Let x ∈ X be a vertex that is adjacent (in G) to some vertex y ∈ V (A). Suppose,
by way of contradiction, that (x, z(A)) /∈ E(G). Let P denote the shortest path in A that
connects y and z(A). This path contains at least two edges. Therefore, together with
the vertex v, the path P forms a chordless cycle. However, this chordless cycle contain
no vertex from Bv, which contradicts the fact that Bv is an approximate solution.
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Figure 7.1: The relations between v, Bv, X and A.
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b  NG(V(A1))\NG(z(A1)) b’  NG(V(A5)) 

Figure 7.2: The bipartite graph Ĥ.

An illustration of the relations between v, Bv X and A is given in Figure 7.1.

The Bipartite Graph Ĥ. To decrease dIG(u), we will consider the bipartite graph

Ĥ, which is defined as follows. We define vertex-set of Ĥ by V (Ĥ) = A ∪ Bv. In this
context, we mean that each connected component A ∈ A is represented by a vertex in
V (Ĥ), and for the sake of simplicity, we use the symbol A also to refer to this vertex.
We partition Bv into two sets, Bc and Bf , where Bc contains the vertices in Bv that
are adjacent (in G) to v, while Bf contains the remaining vertices in Bv. Here, the
letters c and f stand for “close” and “far”. Having this partition, we define the edge-set
of Ĥ as follows. For every vertex b ∈ Bc and connected component A ∈ A such that
b ∈ NG(V (A)) \ NG(z(A)) (i.e., b is a neighbor of some vertex in A but not of the
vertex z(A)), insert the edge (b, A) into E(Ĥ). Moreover, for every vertex b ∈ Bf and

connected component A ∈ A such that b ∈ NG(V (A)), insert the edge (b, A) into E(Ĥ).
An illustration of the bipartite graph Ĥ is given in Figure 7.2. The motivation behind
its definition lies at the following lemma.

Lemma 7.9. The bipartite graph Ĥ satisfies the following properties.

1. Suppose that we are given an edge (b, A) ∈ E(Ĥ) such that b ∈ Bc and A ∈ A.
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Then, the graph G has a chordless cycle defined by the edges (v, b) and (v, z(A))
and a path in A.

2. Suppose that we are given edges (b, A), (b, A′) ∈ E(Ĥ) such that b ∈ Bf and A,A′ ∈
A. Then, the graph G has a chordless cycle defined by the edges (v, z(A)), (v, z(A′)),
the vertex b and paths in A and A′.

Proof. To prove the first item, let y be a vertex in NG(b) ∩ V (A), whose existence is
guaranteed by the assumption that (b, A) ∈ E(Ĥ). The desired chordless cycle can be
defined by the edges (v, b), (v, z(A)), (b, y) and the edge-set of a shortest path between
z(A) and y in A – in particular, by the definition of A and Lemma 7.7, v is not adjacent
to any vertex on this path, excluding z(A), and since (b, A) ∈ E(Ĥ), b is not adjacent
to z(A).

For the second item, choose y ∈ NG(b)∩V (A) and y′ ∈ NG(b)∩V (A′), whose existence
is guaranteed by the assumption that (b, A), (b, A′) ∈ E(Ĥ), such that the length of a
shortest path between z(A) (z(A′)) and y (resp. y′) in A (resp. A′) is minimum. Observe
that the cycle defined the edges (v, z(A)), (v, z(A′)), (y, b), (y′, b) and the shortest paths
between z(A) and y in A and z(A′) and y′ in A′, respectively, is a chordless cycle – in
particular, by the definition of A, Lemma 7.7 and since b, b′ ∈ Bf , the cycle cannot have
a chord containing v.

Isolated Vertices in Ĥ. We start investigating the bipartite graph Ĥ by examining
the isolated vertices in A that it contains. In this context, we need the two following
lemmata.

Lemma 7.10. Let A ∈ A be an isolated vertex in Ĥ, and denote z = z(A). Then,
NG(V (A)) = NG(z) \ V (A).

Proof. Since z ∈ A, it is clear that NG(z) \ V (A) ⊆ NG(V (A)). Next, we show that
NG(V (A)) ⊆ NG(z) \ V (A). To this end, consider some vertices y ∈ V (A) and u ∈
NG(y) \ V (A), and suppose, by way of contradiction, that u /∈ NG(z). Because A is a
connected component of H, it holds that u ∈ {v} ∪ Bv ∪ X. Moreover, because A is
isolated in Ĥ and yet u ∈ NG(V (A)) \ NG(z), it further holds that u ∈ X. However,
this results in a contradiction to the statement of Lemma 7.8.

Lemma 7.11. Let A ∈ A be an isolated vertex in Ĥ, and denote z = z(A). Then, G
does not have a chordless cycle that contains the edge (v, z).

Proof. Suppose, by way of contradiction, that G has a chordless cycle C that contains
the edge (v, z). The cycle C must contain an edge (y, u) such that y ∈ A and u /∈ A. By
Lemma 7.10, NG(V (A)) = NG(z)\A, and therefore (z, u) ∈ E(G). Hence, since the cycle
C is chordless, it holds that z = y, which, in turn, implies that u /∈ NG(v). We deduce
that u must belong to Bf . However, this implies that (A, u) ∈ E(Ĥ), contradicting the

assumption that A is an isolated vertex in Ĥ.

Lemma 7.11 leads us to the design of the following reduction rule.

Reduction Rule 7.3. If the graph Ĥ contains an isolated vertex A ∈ A, mark the edge
(v, z) as irrelevant.
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After an exhaustive application of this rule, we can assume that Ĥ does not contain
an isolated vertex A ∈ A.

Applying the Expansion Lemma. Next, we would like to apply Lemma 2.1 in the
context of the bipartite graph Ĥ. Since |A| ≥ Δ − f(k) ≥ (k + 2) · |Bv| and we have
already ensured that Ĥ does not contain any isolated vertex A ∈ A, this lemma implies
that we can find (in polynomial time) subsets A∗ ⊆ A and B∗ ⊆ Bv such that there
exists a (k + 2)-expansion from B∗ into A∗.

The usefulness of B∗ is stated in the following lemma.

Lemma 7.12. Any solution of size at most k to the input instance that does not contain
v contains all of the vertices in B∗.

Proof. Suppose that the input instance is a yes-instance, and suppose it has a solu-
tion S of size at most k that does not contain v. Consider some vertex b ∈ B∗. Let
A1, A2, . . . , Ak+2 be the neighbors of b in Ĥ that correspond to our (k + 2)-expansion.
For any choice of Ai and Aj , Lemma 7.9 implies that if there is no chordless cycle de-
fined by v, b and a path in Ai, then there is a chordless cycle defined by v, b, a path in
Ai and a path in Aj . Therefore, if S contains neither v nor b, it must contain at least
one vertex from each connected component Ai excluding at most one such component.
However, there are k + 2 such components, and since S does not contain v, we deduce
that it contains b. The choice of b ∈ B∗ was arbitrary, and therefore we conclude that S
contains all of the vertices in B∗.

Decreasing the Independent Degree of v. Armed with Lemma 7.12, we can apply
the following reduction rule.

Reduction Rule 7.4. For each vertex b ∈ B∗, insert the edge (b, v) into E(G) (if it is
not already present), and mark (b, v) as a mandatory edge. Moreover, mark each edge
(v, z(A)) such that A ∈ A∗ as an irrelevant edge.

Lemma 7.13. Reduction Rule 7.4 is safe.

Proof. First we claim that adding a mandatory edge between v and some b ∈ B∗ is
safe. Let G′ denote the graph obtained after applying this operation. By Lemma 7.12,
at least one vertex among v and b must be present in any solution of size at most k.
Therefore, we may mark the newly added edge (v, b) as a mandatory edge. Since this
edge is a mandatory edge, any solution of size at most k to (G′, k) will intersect any new
chordless cycle created by adding this edge as well as any chordless cycle C that exists in
G even if in G′[V (C)] is not a chordless cycle (since if G′[V (C)] is not a chordless cycle,
{v, b} ⊆ V (C)). By adding the edges one-by-one, arguing that each operation is safe
given that the preceding operation was safe, we derive the safeness of the insertion of all
of the edges in {(b, v) | b ∈ B∗} as well as the marking of these edges as mandatory.

Now, let G′ denote the graph obtained after the application of Reduction Rule 7.4.
Let us argue that it is indeed safe to ignore (in G′) any chordless cycle containing an
edge (v, z(A)) such that A ∈ A∗. To this end, consider such a chordless cycle C and a
solution S of size at most k to (G′, k). If S contains v, it clearly intersects C. Otherwise,
we have that S contains all of the vertices in B∗. Recall that by Lemma 7.7, z(A) is the
only neighbor of v in A, and by Lemma 7.8, NG(z(A))∩X = NG(V (A))∩X. Therefore,
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since the cycle C is chordless, it must contain a vertex from Bv, but then, by Lemma
2.1, we further deduce that it must contain a vertex from B∗. We thus get that C is
intersected by S.

Reduction Rule 7.4 decreases |NR
G (v)|. Moreover, as long as dRG(v) > Δ, we can

apply this rule. Thus, after an exhaustive application of this rule, it should hold that
dRG(v) ≤ Δ. Furthermore, this rule neither inserts vertices into V (G) nor unmarks edges,
and therefore we conclude that Lemma 7.5 is correct. Denote Δ′ = Δ + k. Thus, by
Reduction Rule 7.2, the size of a maximum independent set in the neighborhood of each
vertex in the graph G from which we remove irrelevant edges is bounded by Δ′.

7.4 The Clique Forest

Let F denote the clique forest associated with the chordal graphs G − D′. Towards
bounding the number of leaves in F , we need the following lemma.

Lemma 7.14. Let I be an independent set in the graph G −D′. Then, there are most
|D′| ·Δ′ relevant edges between vertices in D′ and vertices in I.

Proof. The claim follows from the observation that since ΔI
G ≤ Δ, |EM | ≤ k2 and I is

an independent set, for every vertex v ∈ D′, there are at most Δ′ relevant edges between
v and vertices in I.

We will also need the following reduction rule.

Reduction Rule 7.5. If there exists a vertex v in G − D′ such that the vertices in
NG(v) which are connected to v via relevant edges form a clique, remove the vertex v

from G.

Lemma 7.15. Reduction Rule 7.5 is safe.

Proof. The special choice of the vertex v implies that every chordless cycle containing v

must contain at least one irrelevant edge, and can therefore be ignored. We thus conclude
that it is safe to remove the vertex v from G.

The bound on the number of leaves will follow from a bound on the number of bags
containing private vertices, which are defined as follows.

Definition 7.2. A vertex v in G−D′ is a private vertex if there exists only one bag in
F that contains it.

Lemma 7.16. The number of bags in F containing private vertices is bounded by |D′|·Δ′.

Proof. Let � denote the number of bags in F containing private vertices. By the definition
of a clique forest, if we take exactly one private vertex from each bag in F , we obtain an
independent set. Therefore, the graph G contain an independent set of size at least �.
Let I denote this independent set. Observe that since each vertex in I is a private vertex,
its neighborhood in G−D′ forms a clique. Therefore, after an exhaustive application of
Reduction Rule 7.5, each vertex in I must be connected by at least one relevant edge to
a vertex in D′. By Lemma 7.14, we conclude that � ≤ |D′| ·Δ′.
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We are now ready to bound the number of leaves and nodes of degree at least 3 in
the clique forest F .

Lemma 7.17. Both the number of leaves in F and the number of nodes of degree at
least 3 in F are bounded by |D′| ·Δ′.

Proof. Observe that since every leaf in F corresponds to a maximal clique in G − D′,
it contains a private vertex. Thus, by Lemma 7.16, the number of leaves is bounded by
|D′| ·Δ′. Since in a forest, the number of nodes of degree at least 3 is bounded by the
number of leaves, we conclude that the lemma is correct.

Next, we turn to bound the size of a bag of F , to which end we prove the correctness
of the following lemma.

Lemma 7.18. In polynomial time we can produce an instance (G′, k′) equivalent to
(G, k) such that k′ ≤ k and the size of any maximal clique in G′ is bounded by κ =
c · (|D̃|3 · k + |D̃| ·Δ′ · (k + 2)3). (Here c is some constant independent of the input.)

In the following we proof Lemma 7.19, which immediately implies Lemma 7.18.

Lemma 7.19. Let (G, k) be an instance of CVD whose independent degree is bounded
Δ, and let D be a solution to this instance. Then in polynomial time we can produce an
equivalent instance (G′, k′) such that k′ ≤ k, and the size of any maximal clique in G′ is
bounded by c · (|D|3 · k + |D| ·Δ · (k + 2)3). (Here c is some constant independent of the
input.)

The proof of the above lemma is an adaptation of the work of Marx [Mar10] with a
few modifications. Specifically, the lemmata in [Mar10] construct a so called “necessary
set” of vertices with the property that one of the vertices in this set must be part of
any solution of size k. We modify these lemmas to ensure that a necessary set output
by them always has at most two vertices. Observe that such a necessary set is either a
vertex that must be part of any solution of size at most k, or a mandatory edge. We
note that Jansen and Pilipczuk [JP17] also give similar result, inspired by the results
of [Mar10]. Given a redundant approximate solution D̂, the size of a maximal clique
in G − D̂ can be bounded by O(|D̂|3k). However the present method for computing a
redundant approximate solution implies that |D̂| ≥ |D| · k, and hence Lemma 7.19 gives
a better upper-bound.

Lemma 7.20 ([JP17]). The size of each bag in the clique forest F is bounded by c·|D′|3k,
where c is some constant independent of the input.

For the rest of this subsection, we fix a maximal clique K of G−D, which contains
more than c · (|D|3 · k + |D| · Δ · (k + 2)3) vertices. We will show that we can mark a
bounded number of vertices of K so that the following holds. Let X be any set of at most
k vertices such that G−X has a chordless cycle H that contains a vertex u of K. If u is
an unmarked vertex then there is another chordless cycle H ′ in G−X that avoids u and
contains strictly fewer unmarked vertex in K. This condition implies that we can safely
ignore any chordless cycle that includes an unmarked vertex, which further implies that
it is safe to delete these vertices from the graph. We shall closely follow the notations
and proofs of [Mar10], but in light of the bound on (relevant) independent-degree of
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vertices in D, we shall modify them appropriately. For a vertex v ∈ V (G) \ D, we say
that the vertex has the label t ∈ D if v is a neighbor of t. Note that the edge (t, v) could
be relevant or irrelevant, and a vertex may have several labels depending on its set of
neighbors in D.

7.4.1 Dangerous vertices and their witnesses in K

Let us begin with the notion of dangerous vertices for the clique K in the graph.

Definition 7.3. Let v ∈ V (G)\ (D∪K) be a relevant neighbor of t ∈ D such that there
is a path P from v to u ∈ K whose internal vertices do not have the label t.

(i) The vertex v is a t-dangerous vertex for K if the vertex u does not have the label
t.

(ii) The vertex v is a t∗-dangerous vertex forK if the vertex u is also a relevant neighbor
of t and u, v are not neighbors in G.

The vertex u ∈ K is called a t-witness (t∗-witness) of v, and the path P is called a
t-witness (t∗-witness) path of v.

In [Mar10], it is shown that there are many vertices in the clique K whose deletion
does not affect any of the dangerous vertices in the following sense. We mark a bounded
number of vertices in K such that, for any subset X of vertices of size at most k, if there
is chordless cycle in G−X that passes through t, a dangerous vertex v and through some
unmarked vertex u in K, then there is another chordless cycle in G−X which contains
a marked vertex u′ and avoids u. This implies that we may ignore any chordless cycles
in G that includes an unmarked vertex of K. Note that the definition above differs from
[Mar10] in the requirement that v (and u) must be a relevant neighbor of t, since if the
edge (t, v) (or the edge (t, u)) were irrelevant then any chordless cycles that contain both
t and v (or t and u) can be safely ignored. We have the following bounds on the size of
an independent set of dangerous vertices in G.

Lemma 7.21 (Lemma 11, [Mar10]). If I is any collection of independent t-dangerous
vertices, then either |I| ≤ 6k2 or we can find a new mandatory edge in the graph, or we
can find a vertex that must be part of any solution of size at most k.

The following lemma improves upon Lemma 12 of [Mar10] by using the bound on
the independent degree of vertices in D.

Lemma 7.22 (Lemma 12, [Mar10]). If I is any collection of independent t∗-dangerous
vertices, then |I| ≤ Δ.

The following lemma shows that if Q is a clique of t-dangerous vertices we require
only k + 1 vertices as witnesses for all the vertices of Q.

Lemma 7.23 (Lemma 13 [Mar10]). Let Q be a clique of t-dangerous vertices. Then we
can mark k + 1 vertices in K such that for any set X of k vertices, if v ∈ Q has an
unmarked t-witness in K −X then it has a marked t-witness in K −X.
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In the context of the following lemma, we remark that there is a similar lemma
for cliques of t∗-dangerous vertices in [Mar10], but we give a version of it that is more
suitable for our purposes.

Lemma 7.24 (Lemma 14, [Mar10]). Let Q be a clique of t∗ dangerous vertices. Then
either we can find a vertex that must be part of any solution of size at most k, or we
can find a new mandatory edge, or else we can mark (k+2)3 vertices of K such that for
any set X of k vertices, if v ∈ Q has a unmarked t∗ witness in K −X then it also has
a marked witness K −X.

Proof. This proof is a minor modification of the proof of Lemma 14, [Mar10]. Let T be
a clique tree of G − D. Following [Mar10], we say that a vertex v covers a bag x of T
if v is contained in the bag x, and then Tv denotes the sub-clique tree of all the bags
which are covered by v. Now, since Q and K are cliques in G −D, there are two bags
x and y which contain Q and K, respectively. Consider the unique path connecting x

and y in T , and suppose that the bags on this path are numbered as x = 1, 2, . . . s = y.
Let u1, u2, . . . be vertices of K with label t, and let ai denote the smallest numbered bag
on this path that occurs in Tui , i.e. the smallest numbered bag containing ui. Similarly,
let v1, v2, . . . be the vertices of Q and let bi denote the largest numbered bag which is
contained in Tvi . It follows that Tvi and Tuj intersect if and only if aj ≤ bi, in which case
there is an edge (vi, uj) in the graph. We also assume that the collection of ai and bi are
distinct, which is easily achieved by adding additional bags along this path in T . Further
we assume that the vertices u1, u2, . . . and v1, v2, . . . are ordered so that the sequences
of ai and bj are strictly increasing.

We define a subsequence of bi and aj as follows. Let β1 = 1, and for ever j ≥ 1 let
αj be the smallest value such that aαj > bβj

. For every i ≥ 2, let βi be the smallest
value such that bβi

> aαi−1 . Observe that we obtain a strictly increasing sequence,
bβ1

< aα1 < bβ2
< aα2 . . .. Let β� be the last element of the above sequence which

corresponds to a vertex in Q.
Now, let us be a witness of a t∗-dangerous vertex vβj

. We will show that aαj is also
a witness for vβj

. Clearly, as > bβj
, which implies as ≥ aαj . Hence, the t∗-witness

path from vβj
to us passes through the bag aαj which contains uαj (see the proof of

Lemma 14, [Mar10]) . Further, aαj > bβj
implies that vβj

and aαj are not neighbors in
G. Therefore, aαj is also a witness for vβj

.
Now, suppose that � ≤ (k + 2)2. Then for each i = 1, 2, . . . , � we mark the k + 2

vertices uαi , uαi+1, . . . , uαi+k+1 (if they exist), and we will show that this set of marked
vertices contains a sufficient number of witnesses for every vertex in Q. Note that we
have marked at most (k + 2)3 vertices of K. Consider any set X of k vertices such that
a vertex vx ∈ Q has a witness path in G−X to some unmarked uy ∈ K. In other words
there is a chordless cycle in G − X which includes the vertex t, a t∗-dangerous vertex
vx and its t∗-witness uy ∈ K. Since vx and uy are non-neighbors, we have that bx < ay,
which implies that there is some j for which bx < aαj ≤ ay. If ay is not marked then
y > αj + k + 1, and hence G − X contains some bx < aαj+r < ay. Now the witness
path from vx to ay must contain a neighbor of aαj+r, which implies that aαj+r is also a
witness for vx, in G−X.

Finally, suppose that � > (k+2)2. We will show that either the vertex t must be part
of any solution of size k, or we can find a new mandatory edge in the graph. Let Pi be
a witness path from vβi

to uαi for every 1 ≤ i ≤ �. Consider the collection of chordless
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cycles H(k+2)·j for 1 ≤ j ≤ k + 1, where H(k+2)·j = (t vβ(k+2)·j P(k+2)·j uα(k+2)·j t). If all
these cycles are pairwise vertex disjoint except for the vertex t, then we have obtained a
collection of k + 1 chordless cycles with t as the only common vertex. Hence t must be
part of any solution of size at most k.

Otherwise, let H(k+2)·j and H(k+2)·j′ have a common vertex w, for some j < j′.
Then observe that w can only be an internal vertex of the paths P(k+2)·j and P(k+2)·j′ ,
and therefore it is not a neighbor of t. Since T is a tree-decomposition, this implies
that w occurs in every bag numbered between aα(k+2)·j and bβ(k+2)·j′ . Since aα(k+2)·j <

bβ(k+2)·j+1
< aα(k+2)·j+1

< . . . . . . < bβ(k+2)·j+k+1
< aα(k+2)·j+k+1

< bβ(k+2)·j′ , we have that w

occurs in every one of these bags. Observe that we obtain a collection of k+1 chordless
cycles of length 4, namely (t vβ(k+2)·j+i

w uα(k+2)·j+i
t) for i = 1, 2, . . . k + 1, such that the

vertices t and w are the only common vertices. Since t and w are non-adjacent in G, we
obtain a new mandatory edge (t, w) in G.

Since G − D is a chordal graph which contains all the dangerous vertices for K, it
follows that the graph induced by the set of all t-dangerous (t∗-dangerous) vertices forms
a chordal graph as well. Since a chordal graph is perfect, it has a clique cover of size
α, where α is the cardinality of a maximum independent set in the graph (see [Gol04]).
This gives us the following lemma, using the bound on the size of an independent set of
dangerous vertices.

Lemma 7.25 (Lemmas 15 & 16, [Mar10]). (i) Either we can find a vertex that must
be part of any solution of size at most k, or we can find a new mandatory edge, or
we can mark 6k2(k + 1) vertices in K such that for any set X of k vertices, if a
t-dangerous vertex v has a unmarked witness in K −X, then it also has a marked
witness in K −X.

(ii) Either we can find a vertex that must be part of any solution of size at most k, or
we can find a new mandatory edge, or we can mark Δ · (k+2)3 vertices in K such
that for any set X of k vertices, if a t∗-dangerous vertex has a unmarked witness
in K −X, then it also has a marked witness in K −X.

From the above lemma we conclude that, for any set X of at most k vertices, to test
if X intersects all those chordless cycles that pass through t, K and some dangerous
vertex v, it is sufficient to consider only the marked vertices of K as witnesses. However
the above lemma considers only a single vertex t ∈ D, and we must mark additional
witness vertices for each t ∈ D.

Lemma 7.26 (Lemmas 15 & 16, [Mar10]). (i) Either we can find a vertex that must
be part of any solution of size at most k, or we can find a new mandatory edge, or
we can mark |D| · 6k2(k+1) vertices in K such that for any set X of k vertices, if
a t-dangerous vertex v has a unmarked witness in K−X, then it also has a marked
witness in K −X.

(ii) Either we can find a vertex that must be part of any solution of size at most k, or
we can find a new mandatory edge, or we can mark |D| · Δ · (k + 2)3 vertices in
K such that for any set X of k vertices, if a t∗-dangerous vertex has a unmarked
witness in K −X, then it also has a marked witness in K −X.
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7.4.2 Fragments of chordless cycles intersecting K

Now we shall mark vertices for chordless cycles in G that intersect K. If H is a chordless
cycle in G, then consider F, P1, P2, . . . , Ps where F = H ∩D and P1, P2 . . . , Ps are the
paths in H −D. It follows that each Pi has exactly two labels from F on its endpoints,
and the internal vertices have no labels from F , and further these paths are pairwise
independent (i.e. there is no edge between two vertices that are in two different paths).
We call F, P1, . . . , Ps the fragments of the chordless cycle H. Since K is a clique, at
most one of these paths intersects K, which we assume to be the path P1, and further
it contains at most two vertices from K. We will show that we can mark a bounded
number of vertices in K such that for any chordless cycle H that includes an unmarked
vertex (that lies in P1), there is another chordless cycle H ′ that avoids this unmarked
vertex. Let us first consider the case when P1 just a single vertex (in K). The following
lemma is a close variant of Lemma 18, [Mar10] for this case.

Lemma 7.27 (Lemma 18, [Mar10]). Let F, P1, . . . , Ps be the fragments of H where P1

is just a single vertex that lies in K. Then either we can find a new mandatory edge, or
we can mark |D|3 ·(k+2) vertices in K such that the following holds. For any set X of k
vertices such that G−X has a chordless cycle which intersects K in an unmarked vertex,
there is another chordless cycle in G −X which does not use any unmarked vertices of
K.

Proof. Our proof of this lemma is obtained by modifying proof of Lemma 18, [Mar10].
And note that, as P1 is a single vertex, F must have at least two vertices. For every
l1, l2, l3 ∈ D, mark k+1 vertices of K which have labels l1, l2 and not l3. Hence, in total
we have marked |D|3 · (k + 1) vertices of K. Marx [Mar10] shows that this is sufficient
for the case when F has 3 or more vertices.

When F contains only two vertices l1, l2, we need to mark some additional vertices.
Let us recall that P1 is only a single vertex of K and has the labels l1, l2, and so it
follows that l1, l2 are non-neighbors. Let x be the bag in the clique tree of G \D, which
corresponds to the maximal clique K, and further assume that x is the root of this
tree-decomposition. For any chordless cycle Hi such that Hi −D = P i

1, P
i
2 where P i

1 is
a single vertex, let wi be the bag closest to x in the tree decomposition that contains a
vertex of P i

2. Note that wi �= x, as vertices of P i
1 and P i

2 have no edges between them,
and it follows that the vertices of P i

2 are contained in the sub-clique tree rooted at wi,
and furthermore none of them are present in any bag outside this sub-clique tree. We
can generate a list of these bags w1, w2, . . ., by considering every choice of P i

1, l1 and
l2 and selecting those bags of the tree decomposition that have a path from l1 to l2
with at least one internal vertex in the non-neighborhood of the choice of P i

1. Among
these bags, select wi1 , wi2 , . . . , wiq such that none of its descendants in the clique tree are
in the collection w1, w2, . . . computed above. Note that, by definition no bag selected
above is an ancestor or a descendant of another selected bag. Let Hi1 , Hi2 , . . . , Hiq be a

collection of chordless cycles such that P
ij
2 is contained in the sub-clique tree of wij , for

j = 1, 2 . . . , q. Note that the collection of P
ij
2 are pairwise vertex disjoint, and further

there are no edges between the vertices of P
ij
2 and P

ij′
2 for j �= j′. This follows from the

fact that no bag outside the sub-clique tree rooted at wij contains any vertex of P
ij
2 , and

that no bag selected in the collection of wij is an ancestor or a descendant of another.
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Consider the case when q ≤ k+1. We define the distance of a vertex v from a bag w

in the clique tree as the minimum of the distance between w and a bag x that contains
v. Then for each wij , sort the vertices of of K, which have labels l1, l2, according to the
distance from wij , and mark k+1 vertices from wij . It follows that we mark |D|2 ·(k+1)2

vertices of K. Let us argue that these marked vertices satisfy the requirements. For any
set X of at most k vertices, suppose H is a chordless cycle in G − X with fragments
F, P1, P2 where P1 is just a single vertex u ∈ K with labels l1, l2 ∈ F . Consider some
bag wi whose sub-clique tree contains the path P2, and note that wi, or some descendent
wij was selected in the above collection. Now if u was not marked for wij , l1, l2, then
any of the vertices that were marked for this tuple has a greater distance from the bags
wij (and wi) than u. Since we marked k + 1 vertices for this tuple, at least one of them
is present in K \ X and let u′ be that vertex. It follows that replacing u with u′ in H

gives us a chordless cycle in G−X.

Now, consider the case when q ≥ k + 2. The collection of paths P ij , along with l1
and l2, defines a collection of chordless cycles such that any solution of size k must pick
at least one of l1 or l2. Since l1, l2 are non-neighbors, we obtain a new mandatory edge
(l1, l2).

Further note that the total number of marked vertices is |D|3 · (k+1)+ |D|2 · (k+1)2.
Since |D| ≥ k, it follows that the total number of marked vertices is upper bounded by
|D|3 · (k + 2).

Now, the only remaining case is when the path P1 has two or more vertices. For this
case, we have the following lemma, which follows from Lemma 19 of [Mar10] where we
rely on Lemma 7.26.

Lemma 7.28 (Lemma 19, [Mar10]). Let F, P1, . . . , Ps be the fragments of a chordless
cycle H where P1 contains at least two vertices, and further at least one of those vertices
are in K. Then we can mark at most |D| · 6k2(k + 1) + |D| ·Δ · (k + 2)3 vertices in K

such that, for any set X of at most k vertices, if G−X contains a chordless cycle that
includes an unmarked vertex u ∈ K, then G − X also contains a chordless cycle that
avoids u, and it has strictly fewer unmarked vertices of K.

Combining all of the above lemmas we obtain the following.

Lemma 7.29. Let (G, k) be an instance of CVD whose independent-degree is bounded
by Δ. Let D be solution to this instance and let K be a maximal clique in G−D. Then
in polynomial time, either we can find a vertex which must be part of any solution of
size at most k, or we can find a new mandatory edge, or we can safely remove all but
c · (|D|3 · k + |D| ·Δ · (k + 2)3) vertices of K. (Here c is some constant independent of
the input.)

Proof. We apply the Lemmas 7.26, 7.27 and 7.28 to the given instance. If any of them
return a vertex that must be part of any solution of size at most k, or a new mandatory
edge then we output that vertex or edge. Otherwise, together they mark a maximum of
c′ · (|D|3 · k + |D| · Δ · (k + 2)3) vertices in K, where c′ is some constant independent
of the input. In addition, let us also mark any unmarked vertex in K which is an
endpoint of a mandatory edge in the instance. Since the total number of mandatory
edges is always bounded by k2, the total number of marked vertices in K does not
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exceed c · (|D|3 · k + |D| ·Δ · (k + 2)3), where c is again a constant independent of the
input.

Let u be any unmarked vertex in K. We will show that the instances G and G−{u}
are equivalent. Let X be any set of at most k vertices such that (G − {u}) − X is a
chordal graph. If G−X is not chordal, then there is some chordless cycle H in G−X.
If H does not contain the vertex u, then it is also present in (G − {u}) − X which is
a contradiction. On the other hand if H contains u, then by the above lemmas, we
can argue that there is some chordless cycle H ′ in G − X which avoids u (see Lemma
19, [Mar10]). Therefore H ′ is present in (G− {u})−X, which is again a contradiction.
Now, by induction, we can show that it is safe to remove all the unmarked vertices in K

from the graph.

Now we are ready to prove Lemma 7.19. Consider any maximal clique in the graph
G−D with more than c · (|D|3 · k + |D| ·Δ · (k + 2)3) vertices, and apply Lemma 7.29
to it. If it returns a vertex v that must be part of any solution of size k, we remove it
from the graph and decrease k by one. Else if it returns a mandatory edge, we add this
edge to the graph and mark it as mandatory. We can argue, as before, that both these
operations are safe. Otherwise Lemma 7.29 ensures that it is safe remove all but the
c · (|D|3 · k+ |D| ·Δ · (k+2)3) marked vertices of K. Therefore, we remove these vertices
from the graph. Observe that, each application of Lemma 7.29 either reduces k, or adds
a new mandatory edge, or reduces the number of vertices in the graph. Further, we may
add at most k2 + 1 new mandatory edges before finding a new vertex that must be part
of any solution of size k or concluding that the given instance is a No instance. Hence,
in polynomial time, either we bound the size of every maximal clique in the graph or
conclude that the given instance is a no-instance.

Observe that the size of each bag of F is bounded by the size of a maximal clique
of G −D′. Furthermore, since G −D′ is a subgraph of G, the size of a maximal clique
of G − D′ is bounded by the size of a maximal clique of G. Thus, having applied the
procedure given by Lemma 7.18, we have the following result.

Lemma 7.30. The size of any bag of F is upper bounded by κ.

7.5 The Length of Degree-2 Paths

The Family of Paths P. Let VF denote the set of each node of degree at least 3 in the
forest F as well as each node whose bag has at least one private vertex. Let P denote
the set of paths whose endpoints belong to VF and such that all of their internal nodes
do not belong to VF . Clearly, it holds that |P| ≤ |VF |. By Lemmata 7.16 and 7.17, we
have the following observation.

Observation 22. |P| ≤ 2|D′| ·Δ′.

Thus, in light of Lemma 7.30, by bounding the maximum number of nodes on each
path in P , we can bound the total number of vertices in the graph. To this end, we fix
some path P ∈ P . Moreover, we orient the path from left to right, where the choice of
the leftmost and rightmost nodes is arbitrary.

Partitioning the Path P . Next, we will partition P into more “manageable paths”.
To this end, we need the following definition.
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Definition 7.4. We say that a subpath Q of P complies with a vertex d ∈ D′ if at least
one of the following conditions holds.

1. For every two bags B and B′ on Q, both B ⊆ NG(d) and B′ ⊆ NG(d).

2. Let B1, B2, . . . , Bt denote the bags of Q ordered from left to right. Then, at least
one of the following condition holds.

(a) B1 ∩NG(d) ⊆ B2 ∩NG(d) ⊆ . . . ⊆ Bt ∩NG(d).

(b) Bt ∩NG(d) ⊆ Bt−1 ∩NG(d) ⊆ . . . ⊆ B1 ∩NG(d).

In particular, NG(d) is a subset of at least one of the two bags B1 and Bt.

We would like to find a set B of at most O(|D′|) bags on the path P such that after
their removal from P , the following lemma will be true.

Lemma 7.31. Each subpath resulting from the removal of the bags in B from P complies
with every vertex in D′.

The rest of this subsubsection concerns the proof of this lemma. To prove it, it is
sufficient to show that for each vertex d ∈ D′, we can find O(1) bags such that after
their removal from P , each of the resulting subpaths complies with d. To this end, fix
some vertex d ∈ D′.

First, we need the following lemma.

Lemma 7.32. Let u, v ∈ NG(d) \D′ be non-adjacent vertices, Bu be a bag containing u

such that no bag to its right (on P ) contains u, and Bv be a bag containing v such that
not bag to its left (on P ) contains v. Then, d is adjacent to every vertex in every bag
that lies strictly between Bu and Bv.

Proof. Let z be a vertex in a bag that lies strictly between Bu and Bv. Since this bag is
not an endpoint of the path P , z belongs to at least two bags that lie between Bu and
Bv. Denote the path between Bu and Bv by (Bu = B1, B2, B3, . . . , Bt = Bv). Let Bi be
the leftmost bag containing z, and let Bj be the rightmost bag containing z. Suppose,
by way of contradiction, that z /∈ NG(d).

We claim that there exists a path, P1, from u to z such that none of its internal
vertices belongs to Bi+1∪Bi+2 . . .∪Bv. The proof by induction on the number i. When
i = 1, we have that Bi = Bu. Then, since the vertices in Bu form a clique, the claim is
correct. Now, suppose that the claim holds for i− 1 ≥ 1, and let us prove it for i.

Since the vertices of the bag Bi form a maximal clique in the graph G − D′, and
the bag Bi does not contain private vertices, we have that Bi ⊆ Bi−1 ∪ Bi+1 and
Bi \Bi+1 ⊂ Bi−1 is non-empty. Consider a vertex w ∈ Bi \Bi+1 and observe that z and
w are adjacent in G (since both belong to Bi), and further the vertex w is not present
in Bi+1 ∪ Bi+2 . . . ∪ Bv. By induction, there is a path P from u to w whose internal
vertices do not belong to Bi ∪ Bi+1 . . . ∪ Bv. Appending the edge (w, z) to P gives us
the path P1.

Similarly, there is a path P2 from z to v such that none of its internal vertices belongs
to Bu ∪ . . . ∪ Bi−2 ∪ Bi−1. Since i < j, the paths P1 and P2 have no common vertex
except z, and there is no edge between an internal vertex of P1 and an internal vertex
of P2.
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Let P ′
1 be the subpath of P1 from u′ to z, where u′ is the last vertex in P1 adjacent

to d. Similarly, let P ′
2 be the subpath of P2 from z to v′, where v′ is the first vertex in

P2 adjacent to d. We may assume that P ′
1 and P ′

2 do not contain chords, else we can
replace P ′

1 and P ′
2 by a chordless subpath of P ′

1 and chordless subpath of P ′
2, respectively,

which will still contain u′, z and v′. The cycle (d, P ′
1, z, P

′
2, d) is a chordless cycle in G,

contradicting the fact that G− (D′ \ {d}) is a chordal graph.

We also need the following notation. Let B� be the leftmost bag on P that contains
a neighbor v� of d such that v� does not belong to any bag to the right of B�. Similarly,
let Br be the rightmost bag on P that contains a neighbor vr of d such that vr does not
belong to any bag to the left of B�.

Lemma 7.33. Let B and B′ be two bags on P that do not lie on the right of B� and
such that B lies on the left of B′. Then, it holds that B ∩NG(d) ⊆ B′ ∩NG(d).

Proof. Suppose, by way of contradiction, that B ∩NG(d) �⊆ B′ ∩NG(d). However, this
implies that B contains a neighbor v of d such that v does not belong to any bag to the
right of B, which contradicts the choice of B�.

Lemma 7.34. Let B and B′ be two bags on P that do not lie on the left of Br and such
that B lies to the right of B′. Then, it holds that B ∩NG(d) ⊆ B′ ∩NG(d).

Proof. The proof of this lemma is symmetric to the proof of Lemma 7.33.

By Lemmas 7.32–7.34, each of the subpaths resulting from the removal of B� and Br

from P complies with d. Thus, we conclude that Lemma 7.31 is correct.

Handling a Manageable Path. We now examine a subpath of P , denoted by Q,
which complies with every vertex d ∈ D′. We will devise reduction rules such that after
applying them exhaustively, the number of vertices in the union of the bags of the path
Q will be bounded by O(κ).

Let B1, B2, . . . , Bt denote the bags of Q ordered from left to right. Moreover, denote
V (Q) =

⋃t
i=1Bi and A =

⋂t
i=1Bi. We partition D′ into two sets Da and Dp, where

Da = {d ∈ D′ | V (Q) ⊆ NG(d)} and Dp = D′ \ Da. Here the letters a and p stand
for “all” and “partial”, respectively. Definition 7.4 directly implies that the following
observation is correct.

Observation 23. For every vertex d ∈ Dp, either (i) B1∩NG(d) ⊆ B2∩NG(d) ⊆ . . . ⊆
Bt∩NG(d) or (ii) Bt∩NG(d) ⊆ Bt−1∩NG(d) ⊆ . . . ⊆ B1∩NG(d). In particular, either
(i) NG(d) ∩ V (Q) ⊆ B1 or (ii) NG(d) ∩ V (Q) ⊆ Bt.

We also denote U = V (Q)\ (B1∪Bt). It is sufficient to ensure that |U | = O(κ) since
then, by Lemma 7.30, |V (Q)| = O(κ). Thus, we can next suppose that |U | > δ where
δ = 2(k + 1) + 6κ.

For each pair of non-adjacent vertices in Da, we apply Reduction Rule 7.1. The
correctness of this operation is given by the following lemma.

Lemma 7.35. Let u and v be two distinct non-adjacent vertices in Da. Then, every
solution of size at most k contains at least one of the vertices u and v.
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Proof. Since |U | > δ and the size of each bag is bounded by κ, standard arguments

on weighted paths imply that there exists i ∈ [t] such that |
⋃i

j=1Bj | > δ/2 − κ and

|
⋃t

j=i+1Bj | > δ/2 − κ; indeed, we may iteratively increase i from 1 to t until we

reach the first time where it holds that |
⋃i

j=1Bj | > δ/2 − κ, in which case it will

also hold that |
⋃t

j=i+1Bj | > δ/2 − κ. Denote U1 = U ∩ ((
⋃i−1

j=1Bj) \ (B1 ∪ Bi)) and

U2 = U ∩ ((
⋃t

j=i+2Bj) \ (Bi+1∪Bt)). Then, again since the size of each bag is bounded

by κ, it holds that |U1|, |U2| > δ/2− 3κ ≥ k+1. Moreover, by the definition of a clique
forest, U1 ∩ U2 = ∅ and there is no vertex in U1 that is adjacent to a vertex in U2.
Thus, for any pair of vertices x ∈ U1 and y ∈ U2, the subgraph induced by {u, v, x, y}
is a chordless cycle. However, any solution of size at most k can only contain at most k
vertices from U1∪U2, and thus, to intersect all of these chordless cycles, it must contain
at least one vertex among u and v.

Thus, from now on we can assume that G[Da] is a clique. However, by the definition
of A, for every vertex in A and every vertex in V (Q), there exists a bag Bi, i ∈ [t],
which contains both of them, and therefore they are adjacent. We thus deduce that the
following observation is correct.

Observation 24. Any two distinct vertices v ∈ Da∪A and u ∈ Da∪V (Q) are adjacent.

Let us now examine chordless cycles that contain vertices from U .

Lemma 7.36. Let C be a chordless cycle in G that contains some vertex u ∈ U . Then,
no vertex on V (C) belongs to Da ∪ A, and both neighbors of u in C do not belong to
D′ ∪ A.

Proof. First, by Observation 23, we have that u does not have neighbors (in G) in Dp,
and therefore both neighbors of u in C do not belong to Dp. Thus, it remains to show
that no vertex in V (C) belongs to Da ∪ A. By Observation 24, if at least one of vertex
v ∈ V (C) belongs to Da∪A, it is adjacent to u in G and it is either a neighbor of u in C

adjacent in G to the other neighbor of u in C or it is adjacent in G to both neighbors of
u in C. In any case, if at least one of vertex v ∈ V (C) belonged to Da ∪ A, the cycle C

would have contained a chord, contradicting the supposition that C is a chordless cycle.
We thus conclude that the lemma is correct.

Lemma 7.37. Let C be a chordless cycle in G that contains some vertex u ∈ U . Then,
C contains a path between a vertex in B1 \ A and a vertex in Bt \ A whose internal
vertices belong to U and one of them is u.

Proof. Since D′ is an approximate solution, the cycle C must contain at least one vertex
that does not belong to U . Thus, by Lemma 7.36, we deduce that the cycle C contains
two subpaths, each between u and a vertex in (B1 ∪Bt) \A, whose only common vertex
is u and whose internal vertices belong to U . Moreover, one of these paths must contain
an endpoint from B1 \ A and the other from Bt \ A, else the cycle C contains a chord
corresponding to the edge between these two endpoints. Therefore, by concatenating the
two paths, we obtain the desired subpath of C.

We continue our examination of chordless cycles that contain vertices from U in the
context of separators.
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Lemma 7.38. Let S be a minimal solution that contains at least one vertex from U .
Then, there exists i ∈ [t−1] such that (i) (Bi∩Bi+1)\A ⊆ S, and (ii) S∩U ⊆ Bi∩Bi+1.

Proof. Property (i). Since S is a minimal solution, G contains a chordless cycle C

with a vertex u ∈ S ∩ U and no other vertex from S. By Lemma 7.37, C contains a
path between a vertex in B1 \ A and a vertex in Bt \ A whose set of internal vertices
includes u and is a subset of U . In particular, since each bag induces a clique while C

is a chordless cycle, C contains a path P between a vertex x ∈ B1 \ A and a vertex in
y ∈ Bt\A whose set of internal vertices is a non-empty subset of V (Q)\A, and such that
(V (C) \ V (P ))∩ V (Q) = ∅. Thus, x and y are not adjacent. Moreover, by Lemma 7.36,
V (C) ∩ (Da ∪ A) = ∅. Thus, since D′ is a redundant approximate solution, C contains
a vertex d ∈ Dp.

Suppose, by way of contradiction, that there does not exist i ∈ [t − 1] such that
(Bi∩Bi+1)\A ⊆ S. Then, G has a path P ′ between x and y whose internal vertices belong
to V (Q)\(S∪A). Since (V (C)\V (P ))∩V (Q) = ∅, it holds that (V (C)\V (P ))∩V (P ′) =
∅, which implies that C contains a path between x and y whose set of internal vertices is
disjoint from the one of V (P ′). Observe that if a graph H contains a vertex a with two
non-adjacent neighbors, b and c, such that H \ {a} has a chordless path between b and c

with at least one vertex that is not a neighbor of a, then H has a chordless cycle. On the
one hand, by the definition of a clique forest, any vertex in V (G)\(V (Q)∪D′) cannot be
adjacent to both a vertex in B1 \A and a vertex in Bt \A, and it is adjacent to no vertex
in U . On the other hand, Observation 23 implies that any vertex in Dp also satisfies this
property. Thus, V (P ′) ∩ U = ∅, since any vertex in this set fits the above description of
the vertex a where H = G[(V (C) \ V (P )) ∪ V (P ′)], which is a subgraph of the chordal
graph G \ S. Without loss of generality, we have that P ′ contains a subpath p − q − r

where p, q ∈ B1 \ A and r ∈ Bt \ A. Let P ′′ denote a shortest path between p and r in
G[(V (C) \ V (P )) ∪ (V (P ′) \ {q})], which contains at least two internal vertices (since
it must contain a vertex from V (C) \ V (P ), else P ′ would have had a chord, and such
a vertex cannot be adjacent to both p and r). Every vertex on P ′′ should be adjacent
to q, else q fits the above description of the vertex a. Since P ′ is a chordless path and
(V (C) \ V (P )) ∩ V (Q) = ∅, P ′′ does not contain any vertex from B1 that is not p, and
the only vertex from Bt that is not r and which P ′′ can contain is the neighbor of r.
Overall, this implies that P ′′ contains a vertex from V (C)\V (P ) adjacent to both q and
a vertex in Bt \ A, which is a contradiction.

Property (ii). It remains to show that S ∩ U ⊆ Bi ∩ Bi+1. To this end, we consider
some arbitrary vertex u ∈ S ∩ U and show that it belongs to Bi ∩ Bi+1. Since S is a
minimal solution, G contains a chordless cycle C ′ such that V (C ′)∩S = {u}. By Lemma
7.37, C ′ contains a subpath between a vertex in B1 \ A and a vertex in Bt \ A whose
internal vertices belong to U . Thus, by the definition of a clique forest, C ′ must contain
a vertex from (Bi∩Bi+1)\A. However, we have already shown that (Bi∩Bi+1)\A ⊆ S,
and therefore it must hold that u ∈ Bi ∩Bi+1 (since otherwise we reach a contradiction
to the fact that V (C ′) ∩ S = {u}).

LetW be the family of each subsetW ⊆ (B1∪Bt)\A of size at most k for which there
exists an index i ∈ [t−1] such that W = (Bi∩Bi+1)\ (A∪U) and |(Bi∩Bi+1)∩U | ≤ k.
We can easily bound the size of the family W as follows.

Lemma 7.39. |W| ≤ 2k + 1.
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Proof. Let i be the smallest index in [t − 1] for which there exists W i ∈ W such that
W i = (Bi ∩ Bi+1) \ (A ∪ U), and let j be the largest or which there exists W j ∈ W
such that W j = (Bi ∩ Bi+1) \ (A ∪ U). Then, by the definition of a clique forest, for
every set W ∈ W it holds that W ⊆ W i ∪ W j . Furthermore, the sets in W can be
sorted by W1,W2, . . . ,W|W| such that for all r ∈ [|W| − 1], Wr+1 ∩ B1 ⊆ Wr ∩ B1 and
Wr ∩Bt ⊂ Wr+1 ∩Bt. We thus conclude that |W| ≤ 2k + 1.

We proceed by associating a separator with each set W ∈ W as follows. First, let
IW denote the set of all indices i ∈ [t−1] such that W = (Bi∩Bi+1)\ (A∪U). Now, let
iW denote an index in IW that minimizes |(Bi ∩Bi+1)∩U | (if there are several choices,
choose one arbitrarily). We further denote M =

⋃
W∈W ((BiW ∩BiW+1) ∩ U). Observe

that by Lemmata 7.30 and 7.39, |M | = O(k2). Thus, it is sufficient to argue that there
exists a vertex in U \M that can be removed from G (since as long as |U | > δ, we will
be able to find such a vertex). To this end, we will need the following lemma.

Lemma 7.40. Let u ∈ U \ M . If (G, k) is a yes-instance, then it has a solution S of
size at most k that does not contain the vertex u.

Proof. Suppose that (G, k) is a yes-instance, and let S be a solution of minimum size.
Assume that u ∈ S, else we are done. By Lemma 7.38, there exists i ∈ [t − 1] such
that (Bi ∩ Bi+1) \ A ⊆ S and S ∩ U ⊆ Bi ∩ Bi+1. Denote W = (Bi ∩ Bi+1) \ (A ∪ U).
Since |S| ≤ k and W ⊆ S, we have that W ∈ W . Denote R = (BiW ∩ BiW+1) ∩ U

and T = (Bi ∩ Bi+1) ∩ U . Since u ∈ U \ M , it holds that u /∈ R. Moreover, since
S ∩U ⊆ Bi ∩Bi+1, it holds that u ∈ T . By the definition of iW , we have that |R| ≤ |T |.
Thus, to show that the lemma is correct, it is sufficient to show that S′ = (S \ T )∪R is
a solution.

Suppose, by way of contradiction, that S′ is not a solution. Then, since S is a solution
of minimum size, there exist a chordless cycle C and a vertex v ∈ T such that v ∈ V (C)
and V (C) ∩ S′ = ∅. Since T ⊆ U , by Lemma 7.37, C contains a path between a vertex
in (B1 ∩ B2) \ A and a vertex in (Bt−1 ∩ Bt) \ A whose internal vertices belong to U .
In particular, by the definition of a clique forest, V (C) ∩ ((BiW ∩ BiW+1) \ A) �= ∅.
However, we have that (BiW ∩ BiW+1) \ A = R ∪ W ⊆ S′, which contradicts the fact
that V (C) ∩ S′ = ∅.

We are now ready to present our reduction rule.

Reduction Rule 7.6. Let u ∈ U \M . Remove the vertex u from the graph G and add
an edge between any two non-adjacent vertices in NG(u).

Lemma 7.41. Reduction Rule 7.6 is safe.

Proof. Let G′ be the graph resulting from the application of this rule. For the forward
direction, suppose that (G, k) is a yes-instance, and let S be a solution of minimum size.
By Lemma 7.40, we can assume that u /∈ S, and therefore S ⊆ V (G′). Thus, to show
that (G′, k) is a yes-instance, we need to prove that S intersects every chordless cycle in
G′. Let C be a chordless cycle in G′. Suppose that this cycle does not exist in G, else it
is clear that S intersects it. Then, C contains an edge between two vertices v, w ∈ NG(u)
that are non-adjacent in G. Observe that since C is a chordless cycle and G′[NG(u)]
is a clique, V (C) ∩ NG(u) = {v, w}. Thus, by replacing (v, w) by (v, u) and (u, w), we
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obtain a chordless cycle in G. Since S intersects this cycle and u /∈ S, it holds that S
also intersects C.

For the backward direction, suppose that (G′, k) is a yes-instance, and let S be a
solution of minimum size. To show that (G, k) is a yes-instance, it is sufficient to show
that S is also a solution to (G, k). Since V (G′) ⊆ V (G), it is clear that S ⊆ V (G). We
need to prove that S intersects every chordless cycle in G. Let C be a chordless cycle
in G. Suppose that this cycle does not exist in G′, else it is clear that S intersects it.
Furthermore, suppose that G′[V (C) \ {u}] does not contain a chordless cycle, else again
it is clear that S intersects C. We get that C contains two vertices v, w ∈ NG(u) that
are not adjacent in G. Since u ∈ U , Observation 23 and the definition of a clique forest
imply that NG(u) ⊆ V (Q)∪Da. By Observation 24, we deduce that v, w /∈ Da ∪A, and
that C contains at most one vertex from Da ∪ A (since any two vertices from Da ∪ A

are adjacent to each other and to both v and w). Since D′ is a redundant approximate
solution, C must contain a vertex p ∈ Dp. Since G′[V (C) \ {u}] does not contain a
chordless cycle, the neighbors of p on C belong to NG(u), and we can assume w.l.o.g
that these neighbors are v and w. However, since v and w are not adjacent there cannot
be a bag that contains both of them, which results in a contradiction to Observation
23.

7.6 Unmarking Irrelevant and Mandatory Edges

Recall that our instance includes a set EI of irrelevant edges and a set EM of mandatory
edges. It is clear that we can unmark each irrelevant edge (these edges were marked only
for the sake of clarity of the analysis of our kernel). However, to unmark mandatory
edge, we need the following operation.

Reduction Rule 7.7. For every mandatory edge (x, y) introduce k + 1 pairs of new
vertices, {x1, y1}, {x2, y2}, . . . , {xk+1, yk+1}, and for each pair {xi, yi} add the edges
(x, xi), (xi, yi) and (yi, y). Moreover, unmark the edge (x, y).

Lemma 7.42. Reduction Rule 7.7 is safe.

Proof. Let (G′, k, EI = ∅, E′
M ) be the instance resulting from the application of this rule.

Each edge (x, y) is contained (in G′) in k+1 cycles of size 4 which do not share vertices
other than x and y. Therefore, and solution of size at most k to (G′, k) must contain
at least one of the vertices x and y. Thus, since any chordless cycle in G is also present
in G′ and we have only unmarked the edge (x, y), we conclude that if (G′, k, EI , E

′
M ) is

a yes-instance, so is (G, k, EI , EM ). On the other hand, any solution to (G, k, EI , EM )
intersects all of the chordless cycles in G′ since each of these chordless cycles is either
present in G or contain both of the vertices x and y. Therefore, if (G, k, EI , EM ) is a
yes-instance, so is (G′, k, EI , E

′
M ).

Recall that |EM | ≤ k2. Hence, the total number of newly added vertices does not
exceed O(k3).
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7.7 The Number of Vertices in the Kernel

In this section, we obtained an approximate solution D̃ of size f(k) and a redundant
approximate solution D of size O(k · f(k)). Then, we examined the clique forest F

associated with the chordal graph G − D′ where |D′| = O(|D| + k2). To this end,
we considered a set P of degree-2 paths that together cover all of the nodes of the
forest, and showed that |P| = O(|D′| ·Δ′). Recall that Δ′ = O(k · f(k)). We removed
O(|D′|) bags, each of size κ = O(|D̃|3 · k + |D̃| · Δ′ · k3), from each path P ∈ P , and
considered each of the resulting subpaths Q. We showed the number of vertices in the
union of the bags of the path Q will be bounded by O(κ). Finally, we added O(k3) new
vertices to unmark mandatory edges. Thus, we conclude that the number of vertices in
our kernel is bounded by O(|P| · |D′| · κ) = O(|D′|2 · Δ′ · (|D̃|3 · k + |D̃| · Δ′ · k3)) =
O(f(k)3k3 · (f(k)3k + f(k)2k4)) = O(f(k)5k4 · (f(k) + k3)). Recall that by Lemma 7.1,
we can assume that f(k) = O(k3 log2 k). Thus, at this point, we obtain a kernel of size
O(k22 log12 k).

7.8 A Better Kernelization Algorithm

Finally, we present a bootstrapping trick that will exploit the nature of our approximation
algorithm to obtain a kernel of size O(k12 log10 k). Recall that at this point, where we
have already run our kernelization algorithm once, it holds that n = O(k22 log12 k).
Now, we again recall that CVD admits an O(log2 n)-factor approximation algorithm
(Chapter 6, Section 6.2, Theorem 6.2). Currently, it holds that f(k) = O(k log2 k) rather
than f(k) = O(k3 log2 k). Thus, if we rerun our kernelization procedure, obtaining a
kernel of size O(f(k)5k4 · (f(k) + k3)) (see Section 7.7), it now holds that this size is
upper bounded by O(k12 log10 k). This concludes the proof of correctness of Theorem
7.1.



Chapter 8

Kernel for Interval Vertex Deletion

In this chapter, we look at the problem Interval Vertex Deletion, which is formally
defined below.

Interval Vertex Deletion (IVD) Parameter: k
Input: A graph G and an integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S is
an interval graph?

A graph G is an interval graph if it is the intersection graph of intervals on the
real line. Due to their intriguing combinatorial properties and many applications from
diverse areas, such as industrial engineering and archeology [BBF+01, Ken69], the class
of interval graphs is perhaps one of the most studied graph classes [BLS99, Gol04].
Whether IVD admits an FPT algorithm was a long standing open problem in the area
until it was resolved by Cao and Marx [CM15a], who gave an algorithm with running
time O(10kn9). Subsequently Cao [Cao16] designed an FPT algorithm with slightly
better dependence on the parameter k, and linear dependence on the input size. Cao’s
algorithm has running time O(8k(n + m)). A natural follow up question to this work,
explicitly asked multiple times in the literature [CKP13, Jan13, JP16], is whether IVD

admits a polynomial kernel. In this chapter, we look at a polynomial kernel for IVD,
and obtain the following theorem.

Theorem 8.1. Interval Vertex Deletion admits a polynomial kernel.

An overview of the kernelization algorithm. The first ingredient of the kernel-
ization algorithm is the factor 8 polynomial time approximation algorithm for IVD by
Cao [Cao16]. We use this algorithm to obtain an approximate solution of size at most
8k, or conclude that no solution of size at most k exists. Re-running the approximation
algorithm on the graph with some of the vertices marked as “un-deletable” we then grow
this solution to a 10-redundant solution M of size O(k11). Here, 10-redundant means
that for every subset W ⊆ M of size at most 10, either M \ W is a solution or every
solution S′ of size at most k + 2 has non-empty intersection with W .

The kernelization heavily uses the characterization of interval graphs in terms of their
forbidden induced subgraphs, also called obstructions. A graph H is an obstruction to
the class of interval graphs if H is not an interval graph, and for every vertex v ∈ V (H)
we have that H −{v} is an interval graph. A graph G is an interval graph if and only if
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Figure 8.1: The set of obstructions for an interval graph.

it does not contain any obstruction as an induced subgraph. The set of obstructions to
interval graphs have been completely characterized by Lekkerkerker and Boland, [LB62].
The set of obstructions consists of the long claw, the whipping top, the net, the tent,
as well as three infinite families of graphs: the single-dagger asteroidal witness (†-AW),
the double-dagger asteroidal witnesses (‡-AW), and the cycles of length at least 4 (see
Figure 8.1).

Having a 10-redundant solution yields the following advantage. In several places we
remove a carefully chosen vertex v /∈ M from G and claim that G − {v} has a solution
of size at most k if and only if G does. One direction of the equivalence is trivial.
The interesting direction is to show that a solution X of size k to G − {v} implies the
existence of a solution of size at most k for G. The starting point for such an analysis
is to ask why X is not already a solution for G. The only possible reason is that G−X

contains an obstruction O, and O must contain v. We claim that O contains at least 11
vertices from M . Suppose not, then let W be the intersection of M and O. We know
that (G − (M \ W )) contains O, and therefore it is not an interval graph. Hence, by
10-redundancy of M , X intersects O which contradicts the choice of O. Thus, in this
analysis we only need to care about the large obstructions, and furthermore only large
obstructions whose intersection with M is large. This is crucial throughout the design
and analysis of the kernel.

We then proceed to classify the connected components of G −M based on whether
they are modules in G (a module is a set X such that all vertices in X have the same
neighbors outside X) or not. For each component C that is not a module there is an edge
(u, v) in C and a vertex w in M such that w us adjacent to u and not v. If there are at
least 2|M |+ 1 non-module components then some vertex w will be the starting point of
at least 3 different paths w, u, v on this form into three different compoenents. But this
is a long claw whose intersection with M is at most 1 vertex w. From 10-redundancy of
M it follows that w must be a part of every solution of size at most k + 5, so we might
just as well remove w and decrease the budget k by 1. Hence, the number of non-module
components is at most 2|M |+ 1, which is polynomial in k.

Since none of the obstructions have any modules on more than one vertex, and the
components of G−M are interval graphs, we have that every obstruction will intersect
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every module component in at most one vertex. From this we can deduce that every
module component can be made into a clique by adding all possible edges between the
vertices in that component. Further, there is no point in keeping more than k+1 copies
of any vertex, so we can reduce the module components to cliques of size k + 1.

We are left with the following picture: we have a 10-reduntant solution M of size
O(k11). At most O(|M |) components of G − M are not modules. These components
could be arbitrarily large. The remaining components are all modules and cliques of size
at most k + 1. Thus the module components are structured and small, but there could
be arbitrarily many of them. We are left with two tasks: reduce the number of module
components, and reduce the size of the non-module components. The two tasks can be
approached separately, and both turn out to be non-trivial. Since both tasks are quite
technically involved we only give a few highlights in this overview.

Bounding the Number of Module Components. Consider first the case when
there are no non-module components at all, and every module component is a single
vertex. In this case G −M is edgeless, so M is a vertex cover of G. The kernelization
complexity of even this very special case was asked as an open problem by Fomin et
al. [FJP14].

A key ingredient in the solution to this special case is a new bound for the setting
considered in the classic two families theorem of Bollobás [Bol65]. Suppose there are two
families A1, . . . , Am and B1, . . . , Bm over a universe U , such that every set Ai has size p,
every set Bj has size q, for every i the sets Ai and Bi are disjoint, while for every i �= j the
sets Ai and Bj intersect. The two families theorem gives an upper bound of

(
p+q
p

)
for the

size m of the family. The upper bound on m is independent of the universe size, and this
has been extensively used in the design of parameterized algorithms [FLPS16, Mar09].
Further, when p or q is a constant the bound is polynomial in p + q, and this has been
extensively used in kernelization [KW12]. In our setting neither of the sets A1, . . . , Am

nor the sets B1, . . . , Bm have constant cardinality. On the other hand we know that for
every i �= j, |Ai ∩Bj | ∈ {1, 2}. We prove that in this case, m is bounded by O(|U |2).

In the setting of kernelizing IVD parameterized by the size of a vertex cover M , the
size of the kernel is intimately linked to m for the case when A1, . . . , Am is a collection
of cliques in G[M ] while B1, . . . , Bm is a collection of induced paths. Since a clique can
only intersect an induced path in at most 2 vertices we can apply the above stated result
to obtain an O(|M |2) bound for m and (after a significant amount of additional effort,
which we skip in this overview) a polynomial bound on the kernel size.

The kernel for IVD parameterized by vertex cover quite simply translates into a
procedure that bounds the number, and therefore the total size, of module components
of G−M . We remark that, because the number of non-module components is bounded
by O(|M |), by bounding the number of module components we also bound the total
number of components of G−M .

Bounding the Size of non-Module Components. Suppose now that the number
of module components has been bounded by kO(1). We can now include all of the
module components in M , and proceed under the assumption that there are no module
components at all.

The size-reduction for non-Module components proceeds in three phases. In the first



132 Kernel for Interval Vertex Deletion

phase we bound the maximum clique size in the component. Our clique-reduction proce-
dure builds on the clique-reduction procedure of Marx [Mar10] used in the kernelizations
for Chordal Vertex Deletion (Chapter 7 and [JP17]). Both the procedure of Marx
and one in this chapter are based on an “irrelevant vertex rule”. However, the procedure
here is much more involved, because the irrelevant vertex rule needs to preserve not only
long induced cycles, but also large †-AWs and ‡-AWs.

Having reduced the maximum clique size in the component we proceed to the second
phase, where we reduce the set of vertices which appear in at least two maximal cliques
in the component. In this phase we partition the component into kO(1) “long” and
“thin” parts, and prove that an optimal solution will either not touch the part at all, or
it will cut it in two pieces using a minimum size separator. Then, provided that a part
is sufficiently large we identify an edge such that contracting this edge will not decrease
the size of a minimal separator inside this part. Contracting an edge can not increase
the size of an optimal solution, and since we did not decrease the size of the minimal
separators inside the part, contracting this edge does not decrease the size of an optimal
solution either.

After the second phase the number of vertices appearing in at least two maximal
cliques of the component is upper bounded by kO(1). In the third phase we bound
the number of remaining vertices – the ones that are private to some maximal clique
of the component. At this point we can take the set of vertices appearing in at least
two components and add them to M . This makes M grow by kO(1) vertices, but now
the large component breaks up into components whose size is no larger than that of
a maximal clique, that is kO(1). We can now re-apply the procedure for bounding the
number of components and this bounds the total number of vertices in G by kO(1). We
remark that, for technical reasons, in the actual proof phase 2 and 3 as described here
are interleaved.

Some notations. An equivalent definition of interval graphs given by Lekkerkerker
and Boland [LB62], which is used in this chapter is as follows. An interval graph is a
graph G that does not contain any of the following graphs, called obstructions, as an
induced subgraph (see Figure 8.1).

• Long Claw. A graph O such that V (O) = {t�, tr, t, c, b1, b2, b3} and E(O) =
{(t�, b1), (tr, b3), (t, b2), (c, b1), (c, b2), (c, b3)}.

• Whipping Top. A graph O such that V (O) = {t�, tr, t, c, b1, b2, b3} and E(O) =
{(t�, b1), (tr, b2), (c, t), (c, b1), (c, b2), (b3, t�), (b3, b1), (b3, c), (b3, b2), (b3, tr)}.

• †-AW. A graph O such that V (O) = {t�, tr, t, c} ∪ {b1, b2, . . . , bz}, where t� = b0
and tr = bz+1, E(O) = {(t, c), (t�, b1), (tr, bz)} ∪ {(c, bi) | i ∈ [z]} ∪ {(bi, bi+1) | i ∈
[z − 1]}, and z ≥ 2. A †-AW where z = 2 will be called a net.

• ‡-AW. A graphO such that V (O) = {t�, tr, t, c1, c2}∪{b1, b2, . . . , bz}, where t� = b0
and tr = bz+1, E(O) = {(t, c1), (t, c2), (c1, c2), (t�, b1), (tr, bz), (t�, c1), (tr, c2)} ∪
{(c, bi) | i ∈ [z]} ∪ {(bi, bi+1) | i ∈ [z− 1]}, and z ≥ 1. A ‡-AW where z = 1 will be
called a tent.

• Hole. A chordless cycles on at least four vertices.
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An obstruction O is minimal if there does not exist an obstruction O′ such that
V (O′) ⊂ V (O). In each of the first four obstructions, the vertices t�, tr, and t are called
terminals, the verices c, c1, and c2 are called centers, and the other vertices are called
base vertices. Furthermore, the vertex t is called the shallow terminal. In the cases of
AWs, the induced path on the set of base vertices is called the base of the AW and is
denoted by base(O). Moreover, we say that the induced path on the set of base vertices,
t� and tr is the extended base of the AW, which is denoted by P (O).

8.1 Computing a Redundant Solution

Let (G, k) be an instance of IVD. A subset S ⊆ V (G) such that G − S is an interval
graph is called a solution, and a solution of size at most t is also called a t-solution.
Given a family W ⊆ 2V (G), we say that a subset S ⊆ V (G) hits W if for all W ∈ W , we
have S ∩W �= ∅. A family W ⊆ 2V (G) is t-necessary if every solution of size at most t
hits W . We say that an obstruction O is covered by W if there exists W ∈ W such that
W ⊆ V (O).

Definition 8.1. Given a family W ⊆ 2V (G) and t ∈ N, a subset M ⊆ V (G) is t-
redundant with respect to W if for every obstruction O that is not covered by W , it
holds that |M ∩ V (O)| > t.

Proposition 8.1 ([Cao16]). IVD admits a polynomial-time 6-approximation algorithm,
called ApproxIVD.

The purpose of this section is to prove the following lemma. We remark that in this
statement we use the letter � rather than k to avoid confusion, as we will use this result
with � = k + 2.

Lemma 8.1. Let r ∈ N be a fixed constant, and (G, �) be an instance of IVD. In
polynomial time, it is possible to either conclude that (G, �) is a no-instance, or compute
an �-necessary family W ⊆ 2V (G) along with an (r + 1)(6�)r+1-solution M that is r-
redundant with respect to W.

Towards the proof of Lemma 8.1, let us first give a simple definition of a graph using
which we will determine whether a set of vertices should be added to W .

Definition 8.2. Let G be a graph, U ⊆ V (G) and t ∈ N. Then, copy(G,U, t) is
defined as the graph G′ on the vertex set V (G) ∪ {vi | v ∈ U, i ∈ [t]} and the edge set
E(G) ∪ {(ui, v) | (u, v) ∈ E(G), u ∈ U, i ∈ [t]} ∪ {(ui, vj) | (u, v) ∈ E(G), u, v ∈ U, i, j ∈
[t]} ∪ {(v, vi) | v ∈ U, i ∈ [t]} ∪ {(vi, vj) | v ∈ U, i, j ∈ [t], i �= j}.

Informally, copy(G,U, t) is the graph G where for every vertex u ∈ U , we add t twins
that (together with u) form a clique. Before we describe our algorithm to compute a
redundant solution, we prove three simple claims.

Lemma 8.2. Let G be a graph, U ⊆ V (G) and t ∈ N. If G is an interval graph, then
G′ = copy(G,U, t) is an interval graph as well.
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Proof. Suppose that G is an interval graph. Then, by Proposition 2.3, G admits a
clique path (P, β). Now, we define (P ′, β′) as follows: P ′ = P , and for all x ∈ V (P ′),
β′(x) = β(x) ∪ {vi | v ∈ β(x) ∩ U, i ∈ [t]}. We claim that (P ′, β′) is a clique path for
G′. By using the fact that (P, β) is a path decomposition of G, we directly have the
following properties. First, it is clear that

⋃
x∈V (P ′) β

′(x) = V (G′). Second, for any edge

e = (u, v) ∈ E(G′) such that u, v ∈ V (G), there exists xe ∈ V (P ′) such that u, v ∈ β′(xe).
Then, since for all v ∈ U and i ∈ [t], it holds that β′−1(v) = β′−1(vi), we derive that for
any edge (u′, v′) ∈ E(G′) there is a node x ∈ V (P ′) such that u′, v′ ∈ β′(x). Third, for
any v ∈ V (G), the collection of nodes P ′

v = {x ∈ V (P ′) | v ∈ β′(u)} is a subpath of P ′,
and since for any v ∈ U and i ∈ [t], it holds that β′−1(v) = β′−1(vi), we derive that
for any v′ ∈ V (G′), the collection of nodes P ′

v′ = {x ∈ V (P ′) | v′ ∈ β′(x)} is a subpath
of P ′. Now, note that for all x ∈ V (P ′), β(x) is a clique, and for all {u, v} ⊆ β(x)
(possibly u = x) and i, j ∈ [t], ui is adjacent to u, uj (if i �= j), v and vj , which implies
that β′(x) is also a clique. Hence, (P ′, β′) is indeed clique path for G′. By Proposition
2.3, we derive that G′ is an interval graph.

Lemma 8.3. Let G be a graph, U ⊆ V (G) and � ∈ N. If the algorithm ApproxIVD

returns a set A of size larger than 6� when called with G′ = copy(G,U, 6�+ 1) as input,
then {U} is �-necessary.

Proof. Suppose that ApproxIVD returns a set A of size larger than 6� when called with
G′ as input. Then, (G′, �) is a no-instance. Suppose, by way of contradiction, that {U}
is not �-necessary. Then, G has an �-solution S such that S ∩ U = ∅. In particular,
Ĝ = G − S is an interval graph such that U ⊆ V (Ĝ). However, this means that
copy(Ĝ, U, 6�+1) = G′−S, which by Lemma 8.2 implies that G′−S is an interval graph.
Thus, S is an �-solution for G′, which is a contradiction (as (G′, �) is a no-instance).

Lemma 8.4. Let G be a graph, U ⊆ V (G) and � ∈ N. If the algorithm ApproxIVD

returns a set A of size at most 6� when called with G′ = copy(G,U, 6�+1) as input, then
for every obstruction O of G, |V (O) ∩ U |+ 1 ≤ |V (O) ∩ (U ∪ (A ∩ V (G)))|.

Proof. Suppose that ApproxIVD returned a set A of size at most 6� when called with G′
as input. Let O be some obstruction of G, and denote B = V (O) ∩ U . Since |A| ≤ 6�,
for every vertex v ∈ B, we have that v ∈ V (G′) \ A or there exists i(v) = i ∈ [6�] such
that vi ∈ V (G′) \ A. Moreover, we have that the graph obtained from O by replacing
each vertex v ∈ B ∩ A by vi(v) is an obstruction (as v and vi(v) are twins). Thus, as A
is a solution for G′, there exists v ∈ V (G) \B such that v ∈ A ∩ V (O). Hence, we have
that |V (O) ∩ U |+ 1 ≤ |V (O) ∩ (U ∪ (A ∩ V (G)))|.

Now, let us describe our algorithm, RedundantIVD, to compute a redundant solution.
First, RedundantIVD initializes M0 to be the output obtained by calling the algorithm
ApproxIVD with G as input, W0 := ∅ and T0 := {(v) | v ∈ M0}. If |M0| > 6�, then
RedundantIVD concludes that (G, �) is a no-instance. Otherwise, for i = 1, 2, . . . , r (in
this order), the algorithm executes the following steps:

1. Initialize Mi := Mi−1, Wi := Wi−1 and Ti := ∅.

2. For every tuple (v0, v1, . . . , vi−1) ∈ Ti−1:
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(a) Let A be the output obtained by calling the algorithm ApproxIVD with
copy(G, {v0, v1, . . . , vi−1}, 6�+ 1) as input.

(b) If |A| > 6�, then insert {v0, v1, . . . , vi−1} into Wi.

(c) Otherwise, insert every vertex in (A∩ V (G)) \ {v0, v1, . . . , vi−1} into Mi, and
for all u ∈ (A ∩ V (G)) \ {v0, v1, . . . , vi−1}, insert (v0, v1, . . . , vi−1, u) into Ti.

Eventually, the algorithm outputs the pair (Mr,Wr).
The properties of the algorithm RedundantIVD that are relevant to us are summarized

in the two following claims, which are proved by induction and Lemmata 8.2, 8.3 and
8.4.

Lemma 8.5. Consider a call to RedundantIVD with (G, �, r) as input that did not con-
clude that (G, �) is a no-instance. For all i ∈ [r]0, the following conditions hold:

1. For any set W ∈ Wi, every solution S of size at most � satisfies W ∩ S �= ∅.

2. For any obstruction O of G that is not covered by Wi, there exists (v0, v1, . . . , vi) ∈
Ti such that {v0, v1, . . . , vi} ⊆ V (O).

Proof. The proof is by induction on i. In the base case, where i = 0, Condition 1 trivially
holds as W0 = ∅, and Condition 2 holds as M0 is a solution and T0 simply contains a
1-vertex tuple for every vertex in M0. Now, suppose that the claim is true for i− 1 ≥ 0,
and let us prove it for i.

To prove Condition 1, consider some set W ∈ Wi. If W ∈ Wi−1, then by the
inductive hypothesis, every solution of size at most � satisfies W ∩ S �= ∅. Thus, we
next suppose that W ∈ Wi \Wi−1. Then, there exists a tuple (v0, v1, . . . , vi−1) ∈ Ti−1 in
whose iteration RedundantIVD insertedW = {v0, v1, . . . , vi−1} intoWi. In that iteration,
ApproxIVD was called with copy(G,W, 6�+1) as input, and returned a set A of size larger
than 6�. Thus, by Lemma 8.3, every solution S of size at most � satisfies W ∩ S �= ∅.

To prove Condition 2, consider some obstruction O of G that is not covered
by Wi. By the inductive hypothesis and since Wi−1 ⊆ Wi, there exists a tuple
(v0, v1, . . . , vi−1) ∈ Ti−1 such that {v0, v1, . . . , vi−1} ⊆ V (O). Consider the iteration
of RedundantIVD corresponding to this tuple, and denote U = {v0, v1, . . . , vi−1}. In
that iteration, ApproxIVD was called with copy(G,U, 6� + 1) as input, and returned a
set A of size at most 6�. By Lemma 8.4, |V (O) ∩ U |+ 1 ≤ |V (O) ∩ (U ∪ (A ∩ V (G)))|.
Thus, there exists vi ∈ (A ∩ V (G)) \ U such that U ∪ {vi} ⊆ V (O). However, by the
specification of ApproxIVD, this means that there exists (v0, v1, . . . , vi) ∈ Ti such that
{v0, v1, . . . , vi} ⊆ V (O).

Observation 25. Consider a call to RedundantIVD with (G, �, r) as input that did not

conclude that (G, �) is a no-instance. For all i ∈ [r]0, |Mi| ≤
∑i

j=0(6�)
j+1, |Ti| ≤ (6�)i+1

and every tuple in Ti consists of distinct vertices.
Proof. The proof is by induction on i. In the base case, where i = 0, the correctness
follows as ApproxIVD returned a set of size at most 6�. Now, suppose that the claim
is true for i − 1 ≥ 0, and let us prove it for i. By the specification of the algorithm
and inductive hypothesis, we have that |Mi| ≤ |Mi−1| + 6�|Ti−1| ≤

∑i+1
j=1(6�)

j and

|Ti| ≤ 6�|Ti−1| ≤ (6�)i+1. Moreover, by the inductive hypothesis, for every tuple in Ti,
the first i vertices are distinct, and by the specification of ApproxIVD, the last vertex is
not equal to any of them.
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By the specification of RedundantIVD, as a corollary to Lemma 8.5 and Observation
25, we directly obtain the following result.

Corollary 8.1. Consider a call to RedundantIVD with (G, �, r) as input that did not
conclude that (G, �) is a no-instance. For all i ∈ [r]0, Wi is an �-necessary and Mi is a∑i

j=0(6�)
j+1-solution that is i-redundant with respect to Wi.

Clearly, RedundantIVD runs in polynomial time (as r is a fixed constant), and by the
correctness of ApproxIVD, if it concludes that (G, �) is a no-instance then this decision
is correct. Thus, since

∑r
i=0(6�)

r+1 ≤ (r + 1)(6�)r+1, the correctness of Lemma 8.1
now directly follows as a special case of Corollary 8.1. In light of Lemma 8.1, from
now on, we suppose that we have a (k + 2)-necessary family W ⊆ 2V (G) along with
a (r + 1)(6(k + 2))r+1-solution M that is r-redundant with respect to W for r = 9.
Let us note that, any obstruction in G that is not covered by W intersects M in at
least 10-vertices. We have the following reduction rule that follows immediately from
Lemma 8.5.

Reduction Rule 8.1. Let v be a vertex such that {v} ∈ W. Then output the instance
(G− {v}, k − 1).

Going forward, we will assume that the above reduction rule is not applicable. Then
observe that any set in W has at least 2 vertices. Let E+ = {(m1,m2) | {m1,m2} ∈
W , (m1,m2) /∈ E(G)}. Let G+ be the graph obtained by adding the edges of E+ to the
graph G. Observe that V (G+) = V (G) and G+−M = G−M . Furthermore, if S is any
solution in G of cardinality k+ 2, then G+ − S = G− S i.e. S is a solution in G+. And
conversely, if S is a solution in G+ such that S hits all sets in W , then G+ − S = G− S

i.e. S is a solution in G. The graph G+ helpful in obtaining certain structural properties
of the graph G−M .

8.2 Handling Module Components

Identification of Module Components. Let C denote the set of connected compo-
nents of G−M . Moreover, we let D denote the set of connected components in C that
are modules, and D = C \ D.

Reduction Rule 8.2. Suppose that there exist v ∈ M and a set A ⊆ D of size k + 3
such that for each D ∈ A, there exist u, w ∈ V (D) such that u ∈ NG(v) and w /∈ NG(v).
Then, output the instance (G− {v}, k − 1).

Lemma 8.6. Reduction Rule 8.2 is safe.

Proof. In one direction, suppose that (G, k) is a yes-instance, and let S be a k-solution
for G. Since |A| ≥ k + 3, there exist three components D1, D2, D2 ∈ D such that
S ∩ (V (D1) ∪ V (D2) ∪ V (D3)) = ∅. However, the subgraph of G induced by the vertex
set consisting of v, together with a neighbor and non-neighbor of v in Di for all i ∈ [3],
is a long claw. Thus, as G− S is an interval graph, we derive that v ∈ S, and therefore
S \ {v} is a (k − 1)-solution for G− {v}.

In the other direction, it is clear that if (G−{v}, k− 1) is a yes-instance, then (G, k)
is a yes-instance.
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Observation 26. After the exhaustive application of Reduction Rule 8.2, |D| ≤ (k +
2)|M |.

Proof. After the exhaustive application of Reduction Rule 8.2, every vertex in M has at
most k+2 connected components in C where it has both a neighbor and a non-neighbor.
Since for a connected component in D that is not a module, there must exist a vertex in
M that has both a neighbor and a non-neighbor in that component, we conclude that
the observation is correct.

The purpose of the rest of this section would be to bound the total number of vertices
in all module components. The arguments used to derive this bound will also be necessary
at a later stage of our kernelization algorithm, and hence we present our goal in the form
of a more general statement:

Lemma 8.7. Let M̂ ⊆ V (G), and Ĉ be some set of connected components of G−(M∪M̂)
that are modules. In polynomial time, it is possible to either output an instance (G′, k)
equivalent to (G, k) where G′ is a strict subgraph of G, or to compute a subset B ⊆ V (Ĉ)
of size at most 4(k+1)2|M ∪ M̂ |6, such that for any subset S ⊆ V (G) of size at most k,
the following property holds: If there exists an obstruction O for G that is not covered
by W and such that V (O) ∩ S = ∅, there exists an obstruction O′ for G such that
V (O′) ∩ S = ∅ and V (O′) ∩ (V (Ĉ) \B) = ∅.

Let us now show that having Lemma 8.7 at hand, we can indeed bound the total
number of vertices in all module components.

Reduction Rule 8.3. Let X be the output of the algorithm in Lemma 8.7 when called
with M̂ = ∅ and Ĉ = D. If X is an instance (G′, k), then output X. Otherwise, X is a
set B ⊆ V (D), and we output the instance (G−{v}, k), where v is an arbitrarily chosen
vertex from V (D) \B.

By using Lemma 8.7, we derive the safeness of Reduction Rule 8.3.

Lemma 8.8. Reduction Rule 8.7 is safe.

Proof. If X is an instance (G′, k), then Lemma 8.7 directly implies that the rule is safe.
Thus, we next suppose that X = B. In one direction, it is clear that if (G, k) is a
yes-instance, then (G− {v}, k) is a yes-instance as well.

In the other direction, suppose that (G − {v}, k) is a yes-instance. Let S be a k-
solution for G − {v}. We claim that S is also a k-solution for G. Suppose, by way of
contradiction, that this claim is false. Then, there exists an obstruction O for G−S. As
S ∪{v} is a (k+1)-solution for G and W is (k+2)-necessary, we have that S ∪{v} hits
W . Since v /∈ M and W ⊆ 2M , we derive that S hits W . Thus, since O is an obstruction
for G−S, we deduce that O is not covered by W . Hence, by Lemma 8.7, there exists an
obstruction O′ for G such that V (O′) ∩ S = ∅ and V (O′) ∩ (V (D̂) \ B) = ∅. However,
as v ∈ V (D) \B, this implies that O′ is also an obstruction for (G− {v})− S, which is
a contradiction as S is a k-solution for G− {v}.

Due to Reduction Rule 8.3, we have the following result.

Observation 27. After the exhaustive application of Reduction Rule 8.3, |V (D)| ≤
4(k + 1)2|M |6.
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We now turn to prove Lemma 8.7. In what follows, M̂ and Ĉ are as stated in this
lemma. We denote M ′ = M ∪ M̂ . Note that since M is 9-redundant with respect to W ,
we have that M ′ is also 9-redundant with respect to W .

Structure of Obstructions Intersecting Module Components. We first consider
the neighborhoods of non-adjacent vertices in M ′.

Lemma 8.9. Let u, v ∈ V (G) such that (u, v) /∈ E(G) and no (non-empty) subset of
{u, v} belongs to W. Then, G[(NG(u) ∩NG(v)) \M ′] is a clique.

Proof. Suppose, by way of contradiction, that G[NG(u) ∩ NG(v) \ M ′] is not a clique.
Then, there exist two vertices x, y ∈ NG(u) ∩ NG(v) \M ′ that are not neighbors in G.
Note that O = G[{u, v, x, y}] is a hole, and that M ∩ V (O) ⊆ {u, v}. Moreover, O is
not covered by W (as no subset of {u, v} belongs to W). Since M is 9-redundant, this
means that |M ∩ V (O)| > 9, which is a contradiction.

Let us now state a proposition by Cao and Marx [CM15b].

Proposition 8.2 ([CM15b]). Let C be a module in G and O be a minimal obstruction.
If |V (O)| > 4, then either V (O) ⊆ V (C) or |V (O) ∩ V (C)| ≤ 1.

By Proposition 8.2, we directly obtain the following lemma.

Lemma 8.10. Let C be a module such that V (C) ∩ M ′ = ∅, and let O be a minimal
obstruction that is not covered by W. Then, |V (O) ∩ V (C)| ≤ 1.

Proof. SinceO be an obstruction that is not covered byW , it holds that |M ′∩V (O)| > 9.
In particular, as V (C)∩M ′ = ∅, we have that |V (O)| > 4 and V (O)\V (C) �= ∅. Then, as
C is a module andO is minimal, by Proposition 8.2, we have that |V (O)∩V (C)| ≤ 1.

Reducing the Size of Module Components. To ensure we have only small module
components, we apply the following rule.

Reduction Rule 8.4. Suppose that there exists C ∈ Ĉ such that |V (C)| > k+1. Then,
output the instance (G− {v}, k), where v is an arbitrarily chosen vertex of C.

Lemma 8.11. Reduction Rule 8.4 is safe.

Proof. In one direction, it is clear that if (G, k) is a yes-instance, then (G− {v}, k) is a
yes-instance as well.

In the other direction, suppose that (G − {v}, k) is a yes-instance. Let S be a k-
solution for G − {v}. We claim that S is also a k-solution for G. Suppose, by way of
contradiction, that this claim is false. Then, there exists a minimal obstruction O for
G− S. As S ∪ {v} is a (k + 1)-solution for G and W is (k + 2)-necessary, we have that
S∪{v} hits W . Since v /∈ M and W ⊆ 2M , we derive that S hits W . Thus, since O is an
obstruction for G− S, we deduce that O is not covered by W . Hence, by Lemma 8.10,
|V (O)∩ V (C)| ≤ 1. Thus, V (O)∩ V (C) = {v}. Then, as C is a module, for any vertex
u ∈ V (C), it holds that G[(V (O) \ {v}) ∪ {u}] is an obstruction. Since |V (C)| > k + 1,
we have that V (C)\(S∪{v}) �= ∅. However, this implies that there exists an obstruction
O′ for (G− {v})− S, which is a contradiction as S is a k-solution for G− {v}.
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Preliminary Marking Scheme. By Lemma 8.9, for all u, v ∈ M ′ such that (u, v) /∈
E(G) and no subset of {u, v} belongs to W , there exists at most one C ∈ Ĉ, denoted by
Cuv, such that NG(u) ∩NG(v) ∩ V (C) �= ∅. Accordingly, denote C� = {Cuv ∈ Ĉ | u, v ∈
M ′, (u, v) /∈ E(G), no subset of {u, v} belongs to W}. Moreover, denote A� = V (C�).
Clearly, we have the following observation.

Let us recall the graph G+ that is obtained from G by adding a new edge for each
set of cardinality 2 in W .

Observation 28. For any vertex v ∈ V (Ĉ \ C�), NG(v)∩M ′ is a clique in G+. Further,
NG(v) is a clique in G+.

Furthermore, due to Reduction Rule 8.4, we have the following observation.

Observation 29. The size of A� is upper bounded by (k + 1)|M ′|2.

Lemma 8.12. Let C ∈ Ĉ \ C�, and O be a minimal obstruction that is not covered by
W such that V (O) ∩ V (C) �= ∅. Then, |V (O) ∩ V (C)| = 1 and O is an AW where the
vertex in V (O) ∩ V (C) is a terminal.

Proof. Suppose not, and consider a vertex v for which the lemma doesn’t hold. First,
as C is a module, from Lemma 8.10 we deduce that |V (O) ∩ V (C)| = 1. Furthermore,
as O is not covered by W , we have that |V (O)| > 9. In particular, this means that
O is neither a long claw nor a whipping top. Now, observe that for every vertex v on
a chordless cycle, it holds that the neighborhood of v on that chordless cycles is not a
clique. Moreover, for every vertex v on an AW that is not a terminal of that AW, it holds
that the neighborhood of v on that AW is not a clique. Therefore, N(v) ∩O contains
a pair of non-adjacent vertices x, y. Now, by Observation 28, we have that NG(v) is a
clique in G+, i.e. (x, y) ∈ E(G+). Hence, it follows that x, y ∈ O ∩M and {x, y} ∈ W .
But then O is covered by W , which is a contradiction. Hence the lemma holds.

Marking Scheme to Handle Non-Shallow Terminals. For every two subsets
X, Y ⊆ M ′ such that |X| ≤ 2 and |Y | ≤ 2, denote AX,Y = {v ∈ V (Ĉ \ C�) | X ⊆
NG(v), Y ∩ NG(v) = ∅}. Now, if |AX,Y | ≤ k + 1, then define A′

X,Y = AX,Y , and oth-
erwise let A′

X,Y be an arbitrarily chosen subset of size k + 1 of AX,Y . Let us denote

A′ =
⋃

X,Y A′
X,Y , where X, Y range over all subsets X, Y ⊆ M ′ such that |X| = 2 and

|Y | ≤ 2.

Let us first observe that |A′| is small.

Observation 30. The size of A′ is upper bounded by (k + 1)|M ′|4.

Now, let us verify that we have a set of vertices that is sufficient to “handle” non-
shallow terminals.

Lemma 8.13. Let C ∈ Ĉ \C�, v ∈ V (C)\A′, and O be a minimal obstruction that is not
covered by W such that v ∈ V (O). If O is not an AW where v is the shallow terminal,
then there exists a set Â ⊆ A′ of size k+1 such that for each u ∈ Â, G[(V (O)\{v})∪{u}]
is an obstruction.
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Proof. First, by Lemma 8.12, we have that O is an AW such that V (O) ∩ V (C) =
{v} and v is a terminal of O. Let us also note that NG(v) ⊆ M ′ ∪ C and therefore
NG(v) ∩ V (O) ⊆ M ′. Suppose that v is not the shallow terminal of O. Then, we have
that v is either t� or tr, where we denote the vertex set of O as in the definition of an AW.
Without loss of generality, suppose that v = t�. Let us consider two cases, depending on
whether O is a †-AW or a ‡-AW.

• Suppose that O is a †-AW. By the construction of A′, there exists a subset Â ⊆ A′
of k+1 vertices such that for each u ∈ Â, u is adjacent to b1, and u is not adjacent
to b2 and c. Notice that b1 ∈ M ′ as (b1, v) ∈ E(G). Furthermore b1 is not adjacent
to any vertex on O besides v, c and b2. For all u ∈ Q, by Observation 28 and since
NG(u) ⊆ V (C) ∪ M ′, we have that u is not adjacent to any vertex on O − {v}
besides b1. Hence, for any vertex u ∈ Q, G[(V (O) \ {v}) ∪ {u}] is also a †-AW.

• Suppose that O is a ‡-AW. By the construction of A′, there exists a subset Q ⊆ A′
of (k + 1) vertices u ∈ A′ such that u is adjacent to both c1 and b1, and u is
adjacent to neither c2 nor b2. Notice that c1, b1 ∈ M ′ and that b1 is not adjacent
to any vertex on O besides v, c1, c2 and b2. For all u ∈ Q, by Observation 28 and
since NG(u) ⊆ V (C)∪M ′, we have that u is not adjacent to any vertex on O−{v}
besides c1 and b1. Hence, for any vertex u ∈ Q, G[(V (O) \ {v}) ∪ {u}] is also a
‡-AW.

In both cases, we derived the desired claim, and thus the proof is complete.

Marking Scheme to Handle Shallow Terminals. Before we present our marking
scheme, let us explicitly state the following observation, which follows from Observa-
tion 28 in the same manner as Lemma 8.12. We require the following notation. We say
that the a path P is covered by W if there is a set W ∈ W such that W ⊆ V (P ).

Observation 31. Let P be an induced path in G[V (G) \ V (C)] for some C ∈ Ĉ \ C�
such that P is not covered by W. For all v ∈ V (C), |NG(v) ∩ V (P )| ≤ 2, and if
|NG(v) ∩ V (P )| = 2, then the two vertices in NG(v) ∩ V (P ) are adjacent on P .

Proof. Since P is an induced path in G that is not covered by W , it follows from the
definition of G+ that P is an induced path in G+ as well. And clearly, the statement
holds in G+ by Observation 28. Now the claim follows by the observation that G[P∪v] =
G+[P ∪ v].

DenoteN = M ′∪A�∪A′. For all (not necessarily distinct) vertices c1, c2 ∈ M ′, denote
A{c1,c2} = {v ∈ V (Ĉ)\(A�∪A′) | {c1, c2} ⊆ NG(v)}. Moreover, let us arbitrarily order N
and E(G[N ]) as follows: N = {v1, v2, . . . , v|N |} and E(G[N ]) = {e1, e2, . . . , e|E(G[N ])|}.
Next, with every vertex u ∈ V (Ĉ)\(A�∪A′), we associate two binary vectors that capture
the relations between u and the vertices in N : (i) vinc(u) = (b1, b2, . . . , b|N |), where for
all i ∈ [|N |], bi = 1 if and only if vi ∈ NG(u); (ii) einc(u) = (b1, b2, . . . , b|E(G[N ])|), where
for all i ∈ [|E(G[N ])|], bi = 1 if and only if u is adjacent to both endpoints of ei. In
addition, we define inc(u) as the vector that is the concatenation of vinc(u) and einc(u),
to which we add 1 at the end. Formally, inc(u) is a binary vector with |N |+|E(G[N ])|+1
entries, where for all i ∈ [|N |], the ith entry of inc(u) equals the ith entry of vinc(u), for
all i ∈ [|E(G[N ])| + |N |] \ [|N |], the ith entry of inc(u) equals the (i − |N |)th entry of
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einc(u), and the last entry of inc(u) is 1. These incidence vectors are associated with the
vector space Fq

2 for q = |N |+ |E(G[N ])|+ 1, and all calculations related to these vector
are performed accordingly.

Next, for all (not necessarily distinct) vertices c1, c2 ∈ M ′, we have the following
marking scheme. First, we define the multiset V{c1,c2} as {inc(u) | u ∈ A{c1,c2}} (more
precisely, the number of occurrences of a vector in V{c1,c2} equals the number of vertices

u ∈ A{c1,c2} such that inc(u) equals that vector). Initialize V̂0
{c1,c2} = ∅. Now, for

i = 1, 2, . . . , k+1, compute some basis Bi
{c1,c2} for the vector subspace V{c1,c2} \ V̂i−1

{c1,c2}
(with respect to Fq

2),
1 and denote V̂i

{c1,c2} = V̂i−1
{c1,c2}∪Bi

{c1,c2}. For every occurrence of a

vector v ∈ V̂k+1
{c1,c2}, we arbitrarily choose a unique vertex u ∈ A{c1,c2} such that inc(u) =

v and denote it by uv (the existence of sufficiently many such distinct vertices directly

follows from the definition of V{c1,c2}). Denote Â{c1,c2} = {uv | v ∈ V̂k+1
{c1,c2}}, and note

that Â{c1,c2} is a set (rather than a multiset). Finally, we denote Â =
⋃

c1,c2∈M ′ Â{c1,c2}
(here, union refers to sets, that is, every vertex occurs in Â once even if it belongs to
more than one set of the form Â{c1,c2}). Let us first observe that |Â| is small.

Lemma 8.14. The size of Â is upper bounded by (k + 1)|M ′|2|N |2 ≤ 2(k + 1)2|M ′|6.

Proof. To show that |Â| ≤ (k+1)|M ′|2|N |2, it is sufficient to show that for all c1, c2 ∈ M ′,
|Â{c1,c2}| ≤ (k + 1)|N |2. To this end, consider some c1, c2 ∈ M ′. Now, observe that the

number of entries of the vectors in V{c1,c2} is q = |N |+|E(G[N ])|+1 ≤ |N |+ |N |(|N |−1)
2 +

1 ≤ |N |2 (assuming |N | > 1). Hence, every basis of V{c1,c2} (or a subset of V{c1,c2}) is of
size at most |N |2. As V{c1,c2} is a multiset that is the union of (k+1) bases of V{c1,c2} (or
subsets of V{c1,c2}), we have that |V{c1,c2}| ≤ (k + 1)|N |2. Since |V{c1,c2}| = |Â{c1,c2}|,
the proof is complete.

Now, let us verify that we have a set of vertices that is sufficient to “handle” shallow
terminals. For this purpose, we need the following notation. Given a pair (X, Y ), where
X ⊆ N and Y ⊆ E(G[N ]), and a vertex u ∈ V (Ĉ) \ (A� ∪A′), we define incX,Y (u) to be
the vector inc(u) where all entries associated with vertices and edges that do not belong
to X∪Y are changed to 0. Formally, incX,Y (u) is a binary vector with |N |+|E(G[N ])|+1
entries, where for all i ∈ [|N |], the ith entry of inc(u) equals the ith entry of vinc(u) if
vi ∈ X and to 0 otherwise, for all i ∈ [|E(G[N ])|+ |N |] \ [|N |], the ith entry of incX,Y (u)
equals the (i−|N |)th entry of einc(u) if ei−|N | ∈ Y and to 0 otherwise, and the last entry

of incX,Y (u) is 1. Furthermore, for an induced path P in G− (V (Ĉ) \ (A� ∪ A′)) and a
vertex u ∈ V (Ĉ) \ (A� ∪ A′), we denote incP (u) = incX,Y (u) where X = V (P ) ∩N and
Y = E(P ) ∩ E(G[N ]). Moreover, recall that given a vector v and an entry index i, v[i]
denotes the ith entry of v.

Lemma 8.15. Let P be an induced path in G[V (G) \ V (C)] for some C ∈ Ĉ \ C� such
that P is not covered by W. For all u ∈ V (C),

∑q
i=1 inc

P (u)[i] = 1 mod 2 if and only
if NG(u) ∩ V (P ) = ∅.

1Here, note that the subtraction concerns multisets. In particular, if an element occurs x times in a
multiset X, and y times in a multiset Y ⊆ X, then it occurs x− y times in X \ Y .
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Proof. Consider some vertex u ∈ V (C). If NG(u) ∩ V (P ) = ∅, then all of the entries
of incP (u) equal 0, except for the last entry which equals 1. Then,

∑q
i=1 inc

P (u)[i] = 1
mod 2. Now, suppose that NG(u)∩V (P ) �= ∅. Then, by Observation, 31, |NG(u)∩V (P )|
is either 1 or 2, and if it is 2, then the two vertices in NG(u) ∩ V (P ) are adjacent on
P . Furthermore, observe that that as V (P ) ∩ V (C) = ∅, we have that NG(u) ∩ V (P ) ⊆
M ′. Thus, in case |NG(u) ∩ V (P )| = 1, then there exists exactly one entry in incP (u)
that equals 1 apart from the last entry, which is the entry corresponding to the vertex
in NG(u) ∩ V (P ). Moreover, in case |NG(u) ∩ V (P )| = 2, then there exist exactly
three entries in incP (u) that equal 1 apart from the last entry, which are two entries
corresponding to the two vertices in NG(u) ∩ V (P ) and the entry corresponding to the
edge between these two vertices. In both cases, we derive that

∑q
i=1 inc

P (u)[i] = 0
mod 2 as desired.

Lemma 8.16. Let w ∈ V (Ĉ) \ (A� ∪ A′ ∪ Â), and O be an AW that is not covered by
W such that V (O) ∩ (V (Ĉ) \ (A� ∪ A′ ∪ Â)) = {w}. Let {c1, c2} be the set of centers of
O, where if O is a †-AW then c1 = c2. If w is the shallow terminal of O, then for all
i ∈ [k+1], there exists v ∈ Bi

{c1,c2} such that G[(V (O) \ {w})∪ {uv}] is an obstruction.

Proof. Suppose that w is the shallow terminal of O, and consider some i ∈ [k + 1]. Let

us first argue that there exists an occurrence of inc(w) in V{c1,c2} \ V̂i−1
{c1,c2}. To this end,

note that as w is the shallow terminal of O, it is adjacent to c1 and c2, and therefore
w ∈ A{c1,c2}. Moreover, because w /∈ Â, there exists an occurrence of inc(w) that

does not belong to Vk+1
{c1,c2}, which overall implies that there indeed exists an occurrence

of inc(w) in V{c1,c2} \ V̂i−1
{c1,c2}. Thus, since Bi

{c1,c2} is a basis for V{c1,c2} \ V̂i−1
{c1,c2},

there exist vectors v1,v2, . . . ,vt for some t ∈ N (in particular, t ≥ 1) and coefficients
λ1 = λ2 = . . . = λt = 1 (as the coefficient are from field F2, they are necessarily 1) such
that λ1v1 + λ2v2 + · · ·+ λtvt = inc(w) over Fq

2, that is, v1 + v2 + · · ·+ vt = inc(w) over
Fq
2.
Denote ui = uvi for all i ∈ [t]. Then, inc(u1) + inc(u2) + · · · + inc(ut) = inc(w)

over Fq
2. In particular, incP (u1) + incP (u2) + · · · + incP (ut) = incP (w) over Fq

2, where

P is the extended base of O. (Note that since V (O) ∩ (V (Ĉ) \ (A� ∪ A′ ∪ Â)) = {w},
the extended base is completely contained in G[V (G) \ (V (Ĉ) \ (A� ∪ A′ ∪ Â))], and
furthermore P is not covered by W by the premise of the lemma.) This implies
that

∑t
i=1

∑q
j=1 inc

P (ui)[j] =
∑q

j=1 inc
P (w)[j] mod 2. By Lemma 8.15 and because

NG(w)∩V (P ) = ∅ (as w is the shallow terminal ofO), we have that
∑q

j=1 inc
P (w)[j] = 1

mod 2. Thus,
∑t

i=1

∑q
j=1 inc

P (ui)[j] = 1 mod 2. This implies that there exists i ∈ [t]

such that
∑q

j=1 inc
P (ui)[j] = 1 mod 2. However, by Lemma 8.15, this means that

NG(ui) ∩ V (P ) = ∅. Moreover, we have that ui ∈ A{c1,c2}, else ui could not have been

associated with vi ∈ Bi
{c1,c2} (note that here vi refers to a specific occurrence of a vector).

Hence, G[(V (O) \ {w}) ∪ {ui}] is an AW. This completes the proof.

As a direct corollary to Lemma 8.14 we have the following result.

Corollary 8.2. Let w ∈ V (Ĉ)\ (A�∪A′∪ Â), and O be an AW that is not covered by W
such that V (O)∩ (V (Ĉ) \ (A� ∪A′ ∪ Â)) = {w}. If w is the shallow terminal of O, then
there exists a set Ã ⊆ Â of size k + 1 such that for each u ∈ Ã, G[(V (O) \ {w}) ∪ {u}]
is an obstruction.
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Proof of Lemma 8.7. We are now ready to conclude the proof of Lemma 8.7. For
this purpose, first note that if the condition of Reduction Rule 8.4 applies, then we are
clearly done, as in the case we output an instance (G′, k) equivalent to (G, k) whereG′ is a
strict subgraph of G. Thus, we next suppose that this rule has been applied exhaustively.
Then, our output is the set B = A�∪A′∪ Â. By Observations 30 and 30, and by Lemma
8.14, we have that |B| ≤ |A�|+ |A′|+ |Â| ≤ (k+1)|M ′|2+(k+1)|M ′|4+2(k+1)2|M ′|6 ≤
4(k + 1)2|M ′|6 as desired.

Let S ⊆ V (G) be some arbitrary set of size at most k. We claim that the following
property holds: If there exists an obstruction O for G that is not covered by W and
such that V (O) ∩ S = ∅, there exists an obstruction O′ for G such that V (O′) ∩ S = ∅
and V (O′) ∩ (V (Ĉ) \ B) = ∅. Clearly, if there does not exist any obstruction O for
G that is not covered by W and such that V (O) ∩ S = ∅, then our proof is complete.
Hence, we next suppose that such an obstruction exists, and we let O′ be such a minimal
obstruction that minimizes V (O′) ∩ (V (Ĉ) \ B). We claim that for this obstruction O′,
it holds that V (O′)∩ (V (Ĉ) \B) = ∅, which would complete the proof. Suppose, by way
of contradiction, that this claim is false. Then, as V (C�) ⊆ B, there exists C ∈ Ĉ \ C�
and v ∈ V (C) such that v ∈ V (O′). By Lemma 8.12, |V (O) ∩ V (C)| = 1 and O′ is an
AW where v is a terminal.

Let us first suppose that v is not the shallow terminal of O′. Then, by Lemma 8.13,
there exist (k + 1) vertices u ∈ A′ such that G[(V (O′) \ {v}) ∪ {u}] is an obstruction.
However, as |S| ≤ k, this means that there exists u ∈ A′ \S such that G[(V (O′) \ {v})∪
{u}] is an obstruction. As A′ ⊆ B and G[(V (O′) \ {v}) ∪ {u}] has fewer vertices from
V (Ĉ) \B than O′, we have reached a contradiction to the choice of O.

As the choice of v was arbitrary, we derive that V (O′)∩ (V (Ĉ) \B) contains exactly
one vertex, which we denote by w, that is the shallow terminal of O′. In this case, by
Corollary 8.2, there exist (k + 1) vertices u ∈ Â such that G[(V (O) \ {w}) ∪ {u}] is
an obstruction. However, as |S| ≤ k, this means that there exists u ∈ Â \ S such that
G[(V (O′) \ {w})∪ {u}] is an obstruction. As Â ⊆ B and G[(V (O′) \ {w})∪ {u}] has no
vertices from V (Ĉ) \ B, we have again reached a contradiction to the choice of O. This
completes the proof.

8.3 Bounding the Maximum Size of a Clique

Let η = 210 · 4(k + 5)
(|M |
10

)
. Let (P, β) be a clique-path of G[V (D)], V (P) =

{x1, x2, . . . , xt}, and for i ∈ [t] we have Bi = β(xi). Furthermore, let β(P) = ∪t
i=1β(xi).

Let Bi be a bag such that |Bi| > η. Towards bounding the size of Bi we mark some of
vertices in Bi, and delete all the unmarked vertices in Bi from G. Next, we move to the
description of the marking scheme.

Marking Scheme. Towards defining the marking scheme we introduce the following
function. For i ∈ [t], we define two functions namely, idi�, id

i
r : Bi → [t]. Intuitively,

these functions denote how far or close a vertex appears in bags that are in left and right
direction from the bag Bi. For a vertex v ∈ Bi, id

i
�(v) is the smallest integer x ∈ [t] such

that v ∈ Bx, and idir(v) is the largest integer y ∈ [t] such that v ∈ By. We now move to
the description of creating the set Hi ⊆ Bi, of marked vertices. A frame F = (X, Y ) in
G is a tuple such that X ⊆ M of size at most 10 and Y ⊆ X. A vertex v ∈ V (G) is said
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to fit a frame F = (X, Y ) if N(v) ∩X = Y . For each frame F in G we create four sets

LF,i
f , LF,i

c , RF,i
f , RF,i

c ⊆ Bi of marked vertices each of size as large as k+5 (and add these
vertices to Hi) as follows.

• We create the set LF,i
f by marking as large as k + 5 vertices in Bi with (at most)

k + 5 lowest values of idi� among the unmarked vertices which fit the frame F.

• We create the set LF,i
c by marking as large as k + 5 vertices in Bi with (at most)

k + 5 highest values of idi� among the unmarked vertices which fit the frame F.

• We create the set RF,i
f by marking as large as k + 5 vertices in Bi with (at most)

k + 5 highest values of idir among the unmarked vertices which fit the frame F.

• We create the set RF,i
c by marking as large as k + 5 vertices in Bi with (at most)

k + 5 lowest values of idir among the unmarked vertices which fit the frame F.

We denote the set of marked vertices by Hi. Notice that |Hi| ≤ 210 · 4(k + 5)
(|M |
10

)
.

Next, we argue that an unmarked vertex is irrelevant, and hence can be deleted from G.

Reduction Rule 8.5. Let v be a vertex in Bi \Hi. Delete v from G i.e., the resulting
instance is (G− {v}, k).

Lemma 8.17. Reduction Rule 8.5 is safe.

Before proving Lemma 8.17, we prove the bound that we can obtain on the size of
Bi, where i ∈ [t] using it.

Theorem 8.2. If Reduction Rule 8.5 is not applicable then for each i ∈ [t] we have
|Bi| ≤ η.

Proof. Follows from safeness of Reduction Rule 8.5 (Lemma 8.17) and |Hi| ≤ 210 · 4(k+
5)
(|M |
10

)
= η, where i ∈ [t].

In the remainder of this section we focus on the proof of Lemma 8.17. Let v be a
vertex in Bi \Hi and G′ = G−{v}. We will show that (G, k) is a yes instance of IVD if
and only if (G′, k) is a yes instance of IVD. In the forward direction, let S be a solution
to IVD in (G, k). Since G \S is an interval graph implies that all its induced subgraphs
are also interval graphs. Hence, it follows that S is a solution to IVD in (G′, k).

In the reverse direction, let S be a solution to IVD in (G′, k). We will show that G\S
is an interval graph. Suppose not, then there must be an obstruction in G\S containing
v. Here, all the obstructions in G \ S are guaranteed to contain v because otherwise the
obstruction is also present in G′ \ S, which contradicts that S is a solution to IVD in
(G′, k). This implies that S ∪ {v} is a (k + 1)-Solution for G. Recall that W is (k + 1)-
necessary, therefore S∪{v} hits W . Since v /∈ M and W ⊆ 2M , we derive that S hits W .
But then any construction in G\S is not covered by W since v /∈ M . This together with
the fact that M is a 9-redundant modulator implies that for an obstruction O′ in G \ S
we have |V (O′)∩M | ≥ 10. Consider an obstruction O containing v in G \S which is of
minimum possible size, and over all such minimum sized obstructions, O maximizes the
number of vertices from Bi. Note that |V (O′) ∩M | ≥ 10, therefore O must be a cycle,
a †-AW, or a ‡-AW on at least 10 vertices. Next, we consider cases depending on which
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type of obstruction O is, and the role that v plays in O. In each of these cases our goal
will be either to construct a smaller sized obstruction, an obstruction not containing v,
or an obstruction which has same number of vertices as O but has more vertices from
Bi than O has from Bi. In case each case this will contradict the choice of O.

Before proceeding further, let us observe the following. Consider a frame F = (X, Y )
and let w ∈ N(v) such that either w ∈ Y or w ∈ V (G) \M . In the first case, it follows

from the definitions that LF,i
f ∪RF,i

f ⊆ N(w). In the second case, as both v and w lie in the

clique-path P and v is an unmarked vertex, at least one of LF,i
f ⊆ N(w) or RF,i

f ⊆ N(w)

holds. Similarly, if w /∈ N(v) and w ∈ Y , then (LF,i
c ∪RF,i

c )∩N(w) = ∅. Else if w /∈ N(v)

and w ∈ V (G)−M , then at least one of LF,i
c ∩N(w) = ∅ or RF,i

c ∩N(w) = ∅ holds.

O is a cycle

Let us first note that |V (O) ∩ Bi| ≤ 2. Let x, y be the neighbors of v in O, and
note that they lie in M ∪ β(P). Furthermore, let M̂ = M ∩ V (O), M ′ ⊆ M̂ of size
3 such that M̂ ∩ {x, y} ⊆ M ′, and F = (M ′,M ′ ∩ {x, y}). Next, consider the sets

Lf = LF,i
f \ (S ∪ V (O)) and Rf = RF,i

f \ (S ∪ V (O)). Since |S| ≤ k, v /∈ Hi, and Bi is

a clique therefore, Lf , Rf �= ∅. Let z ∈ M ′ \ {x, y}, which exists since |M ′| = 3. Now
suppose that there is v∗ ∈ Lf ∪ Rf such that (v∗, x), (v∗, y) ∈ E(G) then we claim that
we can obtain a cycle on at least four vertices not containing v in G \ S. Since v∗ fits
F, therefore (v∗, z) /∈ E(G). Consider the paths Pxz and Pyz from x to z and y to z in
O− {v}, respectively. Furthermore, let x∗ and y∗ be the last vertices in paths Pxz and
Pyz which are adjacent to v∗. Note that x∗ and y∗ exists since (x, v∗), (y, v∗) ∈ E(G).
But then the path from x∗ to y∗ in O along with v∗ forms an induced cycle on at least
4 vertices in G \ S which does not contain v.

Hence, we assume that any vertex in Lf ∪Rf is adjacent at most one of x, y. More-
over, by the construction of Lf and Rr we have that, either Lf ⊆ N(x) and Rf ⊆ N(y),
or Rf ⊆ N(x) and Lf ⊆ N(y), must hold. Suppose that Lf ⊆ N(x) and Rf ⊆ N(y)
(the other case is symmetric). Consider vertices u∗ ∈ Lf and v∗ ∈ Rf . Note that
(u∗, x), (v∗, y), (u∗, v∗) ∈ E(G) and (u∗, y), (v∗, x), (u∗, z), (v∗, z) /∈ E(G). Consider the
paths Pxz and Pyz from x to z and y to z in O − {v}, respectively. Let x∗ be the last
vertex in the path Pxz such that N(x∗) ∩ {u∗, v∗} �= ∅. Similarly, let y∗ be the last ver-
tex in the path Pyz such that N(y∗)∩{u∗, v∗} �= ∅. Let Px∗z and Pzy∗ be the paths from
x∗ to z and z to y∗ in O− {v}, respectively. But then G[V (Px∗z) ∪ V (Pzy∗) ∪ {u∗, v∗}]
contains a cycle on at least 4 vertices.

From now onwards we may assume that there are no chordless cycles in G \ S. Now
we consider the case when O is an AW.

O is a †-AW
Let O comprise of the base path base(O) = (b1, b2, . . . , bz), base terminals t�, tr, shallow
terminal t, and centre c. Furthermore, let P (O) = (t�, b1, b2, . . . , bz, tr), and let b0 =
t�, and bz+1 = tr. Let M̂ = M ∩ V (O), M ′ be a subset of M̂ of size 8 such that
M̂ ∩ {c, t, t�, tr, b1, b2, bz−1, bz} ⊆ M ′, and F = (M ′,M ′ ∩ N(v)). Next, we define the
following sets, such that the vertices contained in them which will be used to either
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v

b1 bzb2 bz−1t� tr

v∗

b3

†-AW.S.2

†-AW.S.3.A

v

bzbz−1t� tr

v∗

be be+1be−1

†-AW.S.1

v

b1 bzb2 bz−1t� tr

v∗

†-AW.S.3.B

c

v

b1 bzb2 bz−1t� tr

v∗

be be+1be−1bs−1 bs+1bs

c

b1

c

b2

c

Figure 8.2: Construction of an obstruction when O is †-AW and v = t.

construct an obstruction not containing v, or an obstruction containing v but with
(strictly) smaller size, or an obstruction with same number of vertices asO but containing

strictly more vertices from Bi thanO. Let Lf = LF,i
f \(S∪V (O)), Lc = LF,i

c \(S∪V (O)),

Rf = RF,i
f \ (S ∪V (O)), and Rc = RF,i

c \ (S ∪V (O)). Notice that |V (O)∩Bi| ≤ 4, since
no obstruction contains a clique of size 5 and G[Bi] is a clique. This together with the
fact that v /∈ Hi and |S| ≤ k implies that Lf , Lc, Rf , Rc �= ∅. Next, we consider cases
depending on the role that v plays in the obstruction O.

Suppose v is the shallow terminal. In this case, (v, c) ∈ E(G) therefore, Lf ⊆
N(c) or Rf ⊆ N(c) must hold. Consider the case when Lf ⊆ N(c) (the other case is
symmetric), and let v∗ be a vertex in Lf . Next, we consider the following cases based
on the neighborhood of v∗ in O. (see Figure 8.2).

Case †-AW.S.1. |N(v∗) ∩ V (P (O))| = 0. In this case, G[(V (O) \ {v}) ∪ {v∗}] is
a †-AW in G′ \ S.

Case †-AW.S.2 If |N(v∗)∩V (P (O))| = 1. If (v∗, t�) ∈ E(G) then G[{v∗, c, t�, b1}]
is a C4, which contradicts that O is the smallest obstruction in G \ S contain-
ing v. Analogous argument can be given when (v∗, tr) ∈ E(G). Therefore, we
assume that N(v∗) ∩ V (P (O)) = {bi}, where i ∈ [z]. If i ∈ [z] \ {1, z} then
G[{v∗, c, bi, bi−1, bi−2, bi+1, bi+2}] is a long claw in G \ S. If none of the above cases are
applicable then N(v∗)∩V (P (O)) ∈ {{b1}, {bz}}. Suppose that N(v∗)∩V (P (O)) = {b1}
(the other case is symmetric) then G[{c, v, v∗, b1, b2, b3, t�}] is a whipping top in G \ S.

Case †-AW.S.3 |N(v∗) ∩ V (P (O))| ≥ 2. If neighbors of v∗ are not consecutive in
the path P (O) then we can obtain an induced cycle on at least 4 vertices in G[{v∗} ∪
V (P (O))], therefore we assume that the neighbors of v∗ in P (O) are consecutive. By
the construction of F and v∗ we know that there are at least 9 vertices in P (O) which
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Figure 8.3: Construction of an obstruction when O is †-AW and v = c.

are non-adjacent to v∗. This also implies that |{t�, tr} ∩ N(v∗)| ≤ 1. Without loss of
generality we assume that (v∗, tr) /∈ E(G). Next, we consider the following cases based
on whether or not (v∗, t�) ∈ E(G).

A) (v∗, t�) ∈ E(G). In this case, there exists e ∈ [z − 2] such that be ∈ N(v∗) and
be+1 /∈ N(v∗). Let V ′ = {v, v∗, c, t�} ∪ {b1, b2, . . . , be, be+1}. Observe that G[V ′] is
a ‡-AW with |V ′| < |V (O)|, a contradiction to the choice of O.

B) (v∗, t�) /∈ E(G). Let bs and be be the first and last vertices in P (O) which are
adjacent to v∗, respectively. Notice that s �= e (since |N(v∗) ∩ V (P (O))| ≥ 2),
and {bs, bs+1, . . . be, be+1} ⊂ {b1, b2, . . . bz} (strict subset). Let V ′ = {v, v∗} ∪
{bs−1, bs, bs+1, . . . , be, be+1}. Observe that |V ′| < |V (O)|, and G[V ′] is a †-AW.

Suppose v is the centre. In this case, (t�, v), (tr, v) /∈ E(G). Since v /∈ Hi and each
vertex in Lc ∪ Rc fits the frame F, one of the following holds. (1) N(t�) ∩ Lc = ∅ and
N(tr) ∩ Rc = ∅; (2) N(tr) ∩ Lc = ∅ and N(t�) ∩ Rc = ∅; (3) N(t�) ∩ Lc = ∅ and
N(tr)∩Lc = ∅; (4) N(t�)∩Rc = ∅ and N(tr)∩Rc = ∅. Consider a vertex v∗ ∈ Lc∪Rc,
and let bs and be be the first and the last vertices in the path P (O) which are adjacent
to v∗, respectively. The existence and distinctness of bs, be follows from the fact that
|N(v∗)∩V (base(O))| ≥ 7, which is implied from M being a 9-redundant modulator and
v∗ fitting the frame F. The neighbors of v∗ in P (O) must be consecutive, otherwise we
can obtain an induced cycle of length at least 4, which does not contain v. We further
consider sub-cases based on whether or not the following two criterions are satisfied (see
Figure 8.3).

1. t ∈ N(v∗);

2. N(v∗) ∩ {t�, tr} = ∅.
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Case †-AW.C.1. t /∈ N(v∗). If {t�, tr} ⊆ N(v∗) then G[{v∗, t�, b1, v, bz, tr, t}] is a
whipping top. Therefore, we can assume that |{t�, tr} ⊆ N(v∗)| ≤ 1. Let V ′ = (V (O) \
{bs+1, bs+2, . . . , be−1})∪{v∗}. Notice that |V ′| < |V (O)| since |N(v∗)∩V (base(O))| ≥ 7
and neighbors of v∗ are consecutive. Moreover, G[V ′] is an (induced) †-AW or a net,
which is of strictly smaller size than O, contradicting the choice of O. Here, we crucially
rely on the fact that |N(v∗) ∩ {t�, tr}| ≤ 1.

Case †-AW.C.2. t ∈ N(v∗) and N(v∗)∩{t�, tr} = ∅. In this case, G[{v∗, t, bs−1, bs,

bs+1, . . . , be, be−1}] forms an (induced) †-AW in G \ S which does not contain v.

If Cases †-AW.C.1 and †-AW.C.2 are not applicable then for each u ∈ Lc ∪ Rc we
have t ∈ N(u) and N(u) ∩ {t�, tr} �= ∅. Furthermore, v /∈ Hi, (t�, v), (tr, v) /∈ E(G),
each vertex in Lc ∪ Rc fits the frame F. Therefore, one of the following must holds. 1)
N(t�) ∩ Lc = ∅ and N(tr) ∩ Rc = ∅; 2) N(tr) ∩ Lc = ∅ and N(t�) ∩ Rc = ∅. Thus for
each u ∈ Lc ∪ Rc we have |N(u) ∩ {t�, tr}| = 1. We assume that N(t�) ∩ Lc = ∅ and
N(tr) ∩ Rc = ∅ (the other case is symmetric). Next, we consider a vertex u∗ ∈ Lc and
a vertex v∗ ∈ Rc. Notice that (by the above discussion) t ∈ N(u∗) ∩N(v∗), t� /∈ N(u∗),
tr ∈ N(u∗), tr /∈ N(v∗), and t� ∈ N(v∗). Also, since u∗, v∗ ∈ Bi we have (u

∗, v∗) ∈ E(G).
We now consider the remaining case.

Case †-AW.C.3. t ∈ N(v�)∩N(vr), N(v�)∩{t�, tr} �= ∅, and N(vr)∩{t�, tr} �= ∅.
We consider the following sub-cases.

A) If u∗ and v∗ have no common neighbor in P (O) thenG[{u∗, v∗}∪V (P (O))] contains
an (induced) cycle on at least 4 vertices.

B) Otherwise, u∗ and v∗ have at least one common neighbor in P (O). Let bp and bq be
the first and the last common neighbors of u∗ and v∗ in P (O), respectively. Notice
that bp−1 ∈ N(v∗) and bp−1 /∈ N(u∗). This follows from the fact that t�, bq ∈ N(v∗),
neighbors of v∗ are consecutive vertices in P (O), t� /∈ N(u∗), and p is the first
common neighbor of u∗ and v∗ in P (O). Similarly, we can argue that bq+1 ∈ N(u∗)
and bq+1 /∈ N(v∗). Consider the set V ′ = {t, v∗, u∗} ∪ {bp−1, bp, . . . , bq, bq+1}.
Notice that G[V ′] is a ‡-AW or a tent which does not contain v.

Suppose v is one of the base terminals. We consider the case when v = t�. By
a symmetric argument we can handle the case when v = tr. If c /∈ β(P) then for each
u ∈ Lc ∪ Rc we have (u, c) /∈ E(G) as it fits the frame F and N(u) \ (M ∪ β(P)) =
N(v) \ (M ∪ β(P)). Otherwise c ∈ β(P), and then at least one of Lc ∩ N(c) = ∅ or
Rc ∩N(c) = ∅ holds. Let Xc ∈ {Lc, Rc} be a set such that Xc ∩N(c) = ∅. Similarly, if
b1 /∈ β(P) then for each u ∈ Lf ∪ Rf we have (u, b1) ∈ E(G) as it fits the frame F and
N(u) \ (M ∪ β(P)) = N(v) \ (M ∪ β(P)). Otherwise, b1 ∈ β(P), and then at least one
of Lf ⊆ N(b1) or Rf ⊆ N(b1) holds. Let Yf ∈ {Lf , Rf} be a set such that Yf ⊆ N(b1).
Next, we consider cases based on whether or not b1 ∈ Bi (see Figure 8.4).

Case †-AW.T.1. b1 ∈ Bi. Consider a vertex u∗ ∈ Xc. Note that (u∗, b1) ∈ E(G)
since b1 ∈ Bi, and (u∗, c) /∈ E(G) by the choice of u∗. Also, (u∗, t) /∈ E(G) otherwise,
G[{t, c, b1, u∗}] is cycle on 4 vertices in G \ S. Recall that u∗ fits the frame F (and
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Figure 8.4: Construction of an obstruction when O is †-AW and v = t�.

(b1, u
∗) ∈ E(G)), therefore there exists be such that be ∈ N(u∗) and be+1 /∈ N(u∗),

where e ∈ [z] (possibly e = 1). This together with the fact that neighbors of u∗ in
P (O) are consecutive (otherwise, we obtain an induced cycle on at least 4 vertices not
containing v) implies that (u∗, tr) /∈ E(G). But then G[{t, c, u∗} ∪ {be, be+1, . . . , bz, tr}]
is a †-AW (or a net) which does not contain v.

Case †-AW.T.2. b1 /∈ Bi. Consider a vertex v∗ ∈ Yf ∪ {u ∈ Xc | (u, b1) ∈ E(G)},
and the following cases based on its neighborhood in O.

A) (v∗, c) /∈ E(G). In this case, (v∗, t) /∈ E(G), otherwise G[{v∗, t, c, b1}] is a cycle on
4 vertices. Recall that v∗ fits the frame F, therefore there are at least 7 vertices
in P (O) which are non-adjacent to v∗. This together with the fact that (b1, v

∗) ∈
E(G) implies that there exists e ∈ [z − 1] such that be ∈ N(v∗) and be+1 /∈ N(v∗).
But then G[V ′] is a †-AW not containing v in G \ S, where V ′ = {t, c, v∗, tr} ∪
{be, be+1, . . . , bz}.

B) (v∗, c) ∈ E(G). We further consider the following cases.

i) There exists e ∈ [z] \ {1} such that (v∗, be) ∈ N(v∗) and (v∗, be+1) /∈ N(v∗).
Observe that since M is a 9-redundant modulator and v∗ fits the frame F, therefore
e < z. Consider the following cases based on whether or not (t, v∗) ∈ E(G).

a) (t, v∗) /∈ E(G). Let V ′ = {t, c, v∗, v, tr} ∪ {be, be+1, . . . , bz}. Observe that
G[V ′] is a †-AW in G\S. Furthermore, either |V ′| < |V (O)| or |V ′| = |V (O)|
and |V ′ ∩Bi| > |V (O)∩Bi|. Here, we rely on the fact that b1 /∈ Bi. In either
case we obtain a contradiction to the choice of O.

b) (t, v∗) ∈ E(G). Let V ′ = {t, c, v∗, v} ∪ {b1, b2, . . . , be, be+1}. Observe that
G[V ′] is a ‡-AW in G \ S and |V ′| < |V (O)|, which contradicts the choice of
O.



150 Kernel for Interval Vertex Deletion

†-AW.B.1.A

t

t�

v∗

v bzb2 bz−1 trbe−1 be+1

c

be be+2

†-AW.B.1.B

t

t�

v∗

v bzb2 bz−1 trbe−1 be+1

c

be be+2

†-AW.B.2.A

t

t�

v∗

v bzb2 bz−1 tr

c

†-AW.B.2.B

t

t� v bzb2 trbe−1 be+1

c

be be+2

u∗

t

t� v bzb2 trbe−1 be+1

c

be be+2

u∗

†-AW.B.2.C

v∗

t

t�

v∗

v bzb2 bz−1 trbe+1

c

be be+2

†-AW.B.1.C

t

t�

v∗

v bzb2 bz−1 tr

c

†-AW.B.3.A

Figure 8.5: Construction of an obstruction when O is †-AW and v = b1.

ii) Otherwise, if i) does not hold then the only neighbors of v∗ in P (O) are b1 and
v. Consider the following cases based on whether or not (t, v∗) ∈ E(G).

a) (t, v∗) ∈ E(G). In this case, G[{v, v∗, t, c, b1, b2}] is a tent.

b) (t, v∗) /∈ E(G). We consider a vertex in u∗ ∈ Xc to obtain the desired
obstruction. Notice that (b1, u

∗) /∈ E(G) as Case †-AW.T.2.A is not ap-
plicable. Furthermore, (bj , u

∗) /∈ E(G), for each j ∈ [z] \ {1}, otherwise
G[{v, u∗}∪ {b1, b2, . . . bj}] will contain an induced cycle on at least 4 vertices,
which is an obstruction containing v with strictly less number of vertices than
O. Let V ′ = (V (O) \ {v}) ∪ {v∗, u∗}. Observe that G[V ′] is a †-AW which
does not contain v.

Suppose v is either b1 or bz. Suppose v = b1 (the other case is symmetric). If
t� /∈ β(P) then for each u ∈ Lf ∪ Rf we have (u, t�) ∈ E(G) as it fits the frame F and
N(u) \ (M ∪ β(P)) = N(v) \ (M ∪ β(P)). Otherwise, t� ∈ β(P), and then at least one
of Lf ⊆ N(t�) or Rf ⊆ N(t�) holds. Let Xf ∈ {Lf , Rf} be a set such that Xf ⊆ N(t�).
Similarly, if b2 /∈ β(P) then for each u ∈ Lf ∪ Rf we have (u, b2) ∈ E(G) as it fits the
frame F and N(u) \ (M ∪ β(P)) = N(v) \ (M ∪ β(P)). Otherwise, b2 ∈ β(P), and then
at least one of Lf ⊆ N(b2) or Rf ⊆ N(b2) holds. Let Yf ∈ {Lf , Rf} be a set such
that Yf ⊆ N(b2). Next, we consider cases depending on the neighborhood of vertices in
Xf ∪ Yf in O (see Figure 8.5).
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Case †-AW.B.1. There is a vertex v∗ ∈ Xf ∪Yf such that {t�, b2} ⊆ N(v∗). There
exists e ≤ z − 2 such that be ∈ N(v∗) and be+1 /∈ N(v∗). This follows from the fact
that (v∗, b2) ∈ E(G) and v∗ fits the frame F. Next, we consider the sub-cases based on
whether or not (v∗, c), (v∗, t) ∈ E(G).

A) (v∗, c) ∈ E(G), (v∗, t) /∈ E(G). Let V ′ = {t, c, v∗, t�, tr} ∪ {be, be+1, . . . , bz}. Ob-
serve that G[V ′] is a †-AW which does not contain v.

B) (v∗, c) ∈ E(G), (v∗, t) ∈ E(G). Let V ′ = {t, c, v∗, v, t�} ∪ {b2, b3, . . . , be, be+1}.
Observe that G[V ′] is a ‡-AW which has strictly fewer vertices than O.

C) (v∗, c) /∈ E(G). Notice that in this case (v∗, t) /∈ E(G), otherwise G[{v∗, t, c, b2}] is
an induced cycle on 4 vertices. Let V ′ = {t, c, v∗, tr} ∪ {be, be+1, . . . , bz}. Observe
that G[V ′] is an induced †-AW which does not contain v.

Case †-AW.B.2. Suppose that for every u ∈ Xf ∪Yf we have (u, c) ∈ E(G). Since
Case †-AW.B.1 is not applicable, we can assume that for each u ∈ Xf ∪ Yf we have
{t�, b2} �⊆ N(u). By the construction of Xf and Yf we know that for each u ∈ Xf ∪ Yf
we have {t�, b2} ∩ N(u) �= ∅, and Xf , Yf �= ∅. Consider a vertex v∗ ∈ Xf and a vertex
u∗ ∈ Yf . We have that (v∗, c), (u∗, c), (v∗, t�), (u∗, b2) ∈ E(G) and (v∗, b2), (u∗, t�) /∈
E(G). Next, we consider cases based on whether or not t adjacent to v∗ and u∗.

A) (t, v∗) ∈ E(G). Recall that b2 /∈ N(v∗) and t�, t, c ∈ N(v∗). But then
G[{c, v, v∗, b2, t�, t}] is a tent in G \ S.

B) (t, u∗) ∈ E(G). There exists e ∈ [z − 2] such that be ∈ N(u∗) and be+1 /∈ N(u∗).
This follows from the fact that (u∗, b2) ∈ E(G) and u∗ fits the frame F. Let
V ′ = {b2, b3, . . . , be, be+1} ∪ {t, u∗, t�, v}. Then G[V ′] is a †-AW in G \ S which has
strictly fewer vertices than O.

C) (t, v∗), (t, u∗) /∈ E(G). We start by arguing that v∗ cannot be adjacent to bj , where
j ∈ [z] \ {1}. For j = 2 it follows from the choice of v∗. Next consider the smallest
j > 2 such that (v∗, bj) ∈ E(G). Then G[{v, v∗} ∪ {b2, b3, . . . , bj}] is an induced
cycle on at least 4 vertices, which has strictly less number of vertices than O.
Therefore, we assume that the only neighbor of v∗ in P (O) are v and t�. Next, we
argue about neighbors of u∗ in P (O). There exists e ∈ [z−2] such that be ∈ N(u∗)
and be+1 /∈ N(u∗). This follows from the fact that (u∗, b2) ∈ E(G) and u∗ fits the
frame F. Let V ′ = {t, c, t�, tr, v∗, u∗} ∪ {be, be+1, . . . , bz}. Observe that G[V ′] is a
†-AW in G \ S which does not contain v.

Case †-AW.B.3. Suppose that there is u ∈ Xf ∪ Yf such that (u, c) /∈ E(G), and
for all u ∈ Xf ∪ Yf we have {t�, b2} �⊆ N(u). Consider vertices v∗ ∈ Xf and u∗ ∈ Yf ,
and the following sub-cases.

A) Consider the case when (v∗, c) /∈ E(G). This implies that (v∗, t) /∈ E(G), otherwise
G[v∗, c, t, v] is a cycle on 4 vertices. Notice that t� /∈ Bi, which follows from
the fact that Yf �= ∅ as for each u ∈ Yf we have (u, b2) ∈ E(G) and therefore
(u, t�) /∈ E(G). Also, v∗ is not adjacent to any bj , where j ≥ 2, since the neighbors
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Figure 8.6: Construction of an obstruction when O is †-AW and v = bj, where j ∈
[z − 1] \ {1}.

of v∗ in P (O) must be consecutive, (v∗, t�) ∈ E(G), and (v∗, b2) /∈ E(G). But then
G[(V (O) \ {t�}) ∪ {v∗}] is a †-AW with same number of vertices as O but with
more vertices from Bi.

B) Consider the case when (u∗, c) /∈ E(G). Since Case †-AW.B.3.A is not applicable
we can assume that (v∗, c) ∈ E(G). Observe that G[{c, v∗, u∗, b2}] is a cycle on 4
vertices. Here, we rely on the fact that (v∗, b2) /∈ E(G).

Suppose that v is a base vertex bj, where j ∈ [z] \ {1, z}. Let Xf ∈ {Lf , Rf}
be a set such that Xf ⊆ N(bj−1) and Yf ∈ {Lf , Rf} be a set such that Yf ⊆ N(bj+1).
Next, we consider cases based on neighborhood in O of vertices in sets Xf and Yf (see
Figure 8.6).

Case †-AW.J.1. If there is v∗ ∈ Xf ∪ Yf such that (v∗, c) /∈ E(G). Note that,
as (v∗, c) /∈ E(G), we have (v∗, t) /∈ E(G), otherwise G[{v, v∗, c, t}] is a cycle on 4
vertices. Notice that all the neighbors of v∗ on P (O) must be consecutive, and one
of (a) {t�, b1} ∩ N(v∗) = ∅ or (b) {tr, bz} ∩ N(v∗) = ∅ must hold. Suppose that
{tr, bz} ∩ N(v∗) = ∅ (the other case is symmetric). Let e ∈ [z − 1] such that be is
the last vertex in P (O) which is adjacent to v∗, which exists since tr, bz /∈ N(v∗). We
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note that e could possibly be equal to j. Let V ′ = {t, c, v∗, tr} ∪ {be, be+1, . . . , bz}. Ob-
serve that |V ′| < |V (O)| since j ∈ [z]\{1, z}. Moreover, G[V ′] is a †-AW in G\S, which
contradicts the choice of O.

Note that if Case †-AW.J.1 is not applicable then for each u ∈ Xf ∪ Yf we have
(u, c) ∈ E(G). Next, we consider cases based on whether or not the following conditions
are satisfied for a vertex u ∈ Xf ∪ Yf .

1. (u, t) ∈ E(G);

2. {bj−1, bj+1} ⊆ N(u).

Case †-AW.J.2 If there is v∗ ∈ Xf ∪ Yf such that (v∗, t) ∈ E(G). Since M is a
9-redundant modulator, one of {b1, b2, t�}∩N(v∗) = ∅ or {bz−1, bz, tr}∩N(v∗) = ∅ must
hold. Suppose {bz−1, bz, tr}∩N(v∗) = ∅ holds (the other case is symmetric). We further
consider the following sub-cases based on whether or not t� ∈ N(v∗).

A) t� /∈ N(v∗). Let s ∈ [j] such that bs is the first vertex in P (O) which is adjacent
to v∗, which exists since (t�, v

∗) /∈ E(G) and (v∗, v) ∈ E(G). Also, let e ∈ [z − 2]
such that be is the last vertex in P (O) which is adjacent to v∗, which exists since
(tr, v

∗), (bz, v∗), (bz−1, v
∗) /∈ E(G) and (v∗, v) ∈ E(G). Notice that s �= e since by

the construction of the sets Xf and Yf we have that v∗ is incident to v and at
least one of the vertices in {bj−1, bj+1}. Let V ′ = {t, v∗} ∪ {bs−1, bs, . . . , be, be+1}.
Observe that G[V ′] is a †-AW in G\S. Moreover, |V ′| < |V (O)| since tr, c, bz /∈ V ′
and V ′ ⊆ V (O) ∪ {v∗}.

B) t� ∈ N(v∗). Let e ∈ [z−2] such that be is the last vertex in P (O) which is adjacent
to v∗, which exists since (tr, v

∗), (bz, v∗), (bz−1, v
∗) /∈ E(G) and (v∗, v) ∈ E(G). Let

V ′ = {t, v∗, c, t�} ∪ {b1, b2, . . . , be, be+1}. Observe that G[V ′] is a ‡-AW in G \ S.
Moreover, |V ′| < |V (O)| since tr, bz /∈ V ′ and V ′ ⊆ V (O) ∪ {v∗}.

Case †-AW.J.3. If there is v∗ ∈ Xf ∪ Yf such that (v∗, t) /∈ E(G) and
{bj−1, bj+1} ⊆ N(v∗). Notice that all the neighbors of v∗ on P (O) must be consec-
utive, and there exists at least three vertices on P (O) that are non-adjacent to v∗, which
follows from M being a 9-redundant modulator. Therefore, one of {t�, b1} ∩ N(v∗) = ∅
or {tr, bz} ∩ N(v∗) = ∅ must holds. Suppose that {tr, bz} ∩ N(v∗) = ∅ (other case is
symmetric). Let e ∈ [z − 1] such that be is the last vertex in P (O) which is adjacent
to v∗, which exists since tr, bz /∈ N(v∗). Also, let s ∈ [z − 1] ∪ {0} be the lowest in-
teger such that (v∗, bs) ∈ E(G) (bs could possibly be same as bj−1 or b0 = t�). Let
V ′ = {t, c, v∗, t�, tr} ∪ {b1, b2, . . . , bs} ∪ {be, be+1, . . . , bz}. Observe that |V ′| < |V (O)|
since j ∈ [z − 1] \ {1}. Moreover, G[V ′] is an induced †-AW in G \ S, which does not
contain v.

Case †-AW.J.4 For all u ∈ Xf ∪ Yf we have (v∗, t) /∈ E(G), and {bj−1, bj+1} �⊆
N(v∗). Since Cases †-AW.J.1, †-AW.J.2, and †-AW.J.3 are not applicable then (together
with the construction of Xf and Yf ) for each u ∈ Xf ∪Yf we have (u, c) ∈ E(G), (u, t) /∈
E(G), and |N(u)∩ {bj−1, bj+1}| = 1. Next, consider a vertex u∗ ∈ Xf and v∗ ∈ Yf . Let
s ∈ [j − 1] ∪ {0} such that bs is the first vertex in P (O) which is adjacent to u∗, which
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Figure 8.7: Construction of an obstruction when O is ‡-AW and v = t.

exists since (u∗, bj−1) ∈ E(G). Also, let e ∈ [z−1] such that be is the last vertex in P (O)
which is adjacent to v∗, which exists since (tr, v

∗), (bz, v∗) /∈ E(G) and (v∗, bj+1) ∈ E(G).
Notice that s �= e. Let V ′ = {t, c, v∗, u∗}∪{t�, b1, b2, bs−1, bs}∪{be, be+1, . . . , bz}. Observe
that G[V ′] is a †-AW in G \ S which does not contain v.

O is a ‡-AW
Let O comprise of the base path base(O) = (b1, b2, . . . , bz) with terminals t�, tr, shallow
terminal t, and centres c1, c2. Furthermore, let P (O) = (t�, b1, b2, . . . , bz, tr), b0 = t�,
and bz+1 = tr. Let M̂ = M ∩ V (O), M ′ be a subset of M̂ of size 9 such that M̂ ∩
{c1, c2, t, t�, tr, b1, b2, bz−1, bz} ⊆ M ′, and F = (M ′,M ′∩N(v)). Next, we define sets, the
vertices from which will be used to either construct an obstruction not containing v, an
obstruction containing v but with (strictly) smaller size, or and an obstruction with same

number of vertices asO but containing more vertices from Bi. Let Lf = LF,i
f \(S∪V (O)),

Lc = LF,i
c \ (S∪V (O)), Rf = RF,i

f \ (S∪V (O)), and Rc = RF,i
c \ (S∪V (O)). Notice that

|V (O) ∩ Bi| ≤ 4, since no obstruction contains a clique of size 5 and G[Bi] is a clique.
This together with the fact that v /∈ Hi and |S| ≤ k implies that Lf , Lc, Rf , Rc �= ∅.
Next, we consider cases depending on the role that v plays in O.

Suppose that v is the shallow terminal. For a vertex u ∈ Lf ∪ Rf we have
{c1, c2} ∩ N(u) �= ∅. This follows from the fact that v /∈ Hi and (v, c1), (v, c2) ∈ E(G).
Next, consider the following cases depending on the neighborhood in O of vertices in
Lf ∪Rf (see Figure 8.7).

Case ‡-AW.S.1. There is v∗ ∈ Lf ∪ Rf such that c1, c2 ∈ N(v∗). We further
consider sub-cases based on other neighbors (if any) of v∗ in O.

A) |N(v∗) ∩ V (P (O))| = 0. In this case, G[(V (O) \ {v}) ∪ {v∗}] is a ‡-AW in G \ S.
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B) If |N(v∗) ∩ V (P (O))| = 1. If (v∗, t�) ∈ E(G) then G[{v∗, c2, t�, b1}] is a cycle on
4 vertices. Analogous argument can be given when (v∗, tr) ∈ E(G). Therefore,
we assume that N(v∗) ∩ V (P (O)) = {bi}, where i ∈ [z]. If i ∈ [z] \ {1, z} then
G[{v∗, v, bi, bi−1, bi−2, bi+1, bi+2}] is a long claw in G \ S. If none of the above
cases are applicable then N(v∗)∩ V (P (O)) is {b1} or {bz}. Suppose that N(v∗)∩
V (P (O)) = {b1} (the other case is symmetric) then G[{c2, v, v∗, b1, b2, b3, t�}] is a
whipping top in G \ S.

C) |N(v∗) ∩ V (P (O))| ≥ 2. If neighbors of v∗ are not consecutive in the path P (O)
then we can obtain an induced cycle on at least 4 vertices in G[{v∗} ∪ V (P (O))],
therefore we assume that the neighbors of v∗ in P (O) are consecutive. By the
construction of F and v∗ we know that there are at least 3 vertices in P (O) which
are non-adjacent to v∗. This also implies that |{t�, tr} ∩N(v∗)| ≤ 1. Without loss
of generality we assume that (v∗, tr) /∈ E(G). Next, we consider the following cases
based on whether or not (v∗, t�) ∈ E(G).

i) (v∗, t�) ∈ E(G). In this case, there exists e ∈ [z − 2] such that be ∈ N(v∗) and
be+1 /∈ N(v∗). Let V ′ = {v, v∗, c2, t�} ∪ {b1, b2, . . . , be, be+1}. Observe that G[V ′] is
a ‡-AW with |V ′| < |V (O)|.
ii) (v∗, t�) /∈ E(G). Let bs and be be the first and the last vertex in P (O)
which are adjacent to v∗, respectively. Notice that s �= e (since |N(v∗) ∩
V (P (O))| ≥ 2), and {bs, bs+1, · · · be, be+1} ⊂ {b1, b2, . . . bz}. Let V ′ = {v, v∗} ∪
{bs−1, bs, bs+1, . . . , be, be+1}. Observe that |V ′| < |V (O)|, and G[V ′] is a †-AW.

Case ‡-AW.S.2. For all u ∈ Lf ∪ Rf we have |{c1, c2} ∩ N(v∗)| = 1. Observe
that either Lf ⊆ N(c1) and Rf ⊆ N(c2) or Rf ⊆ N(c1) and Lf ⊆ N(c2) holds.
Suppose Lf ⊆ N(c1) and Rf ⊆ N(c2) (the other case is symmetric). Next, consider a
vertex u∗ ∈ Lf and a vertex v∗ ∈ Rf . Since Case ‡-AW.S.1 is not applicable we have
(u∗, c1), (v∗, c2) ∈ E(G) and (u∗, c2), (v∗, c1) /∈ E(G). Moreover, u∗, v∗ ∈ Bi therefore,
(u∗, v∗) ∈ E(G). But then G[{u∗, v∗, c1, c2}] is a cycle on 4 vertices.

Suppose v is one of the centres. Suppose v = c1 (the other case is symmetric).
Since v /∈ Hi, (tr, v) /∈ E(G), and each vertex in Lc ∪ Rc fits the frame F, one of
N(tr) ∩ Lc = ∅ or N(tr) ∩ Rc = ∅ must hold. Consider the case when N(tr) ∩ Lc = ∅
(the other case is symmetric), and a vertex v∗ ∈ Lc. Let bs and be be the first and
the last vertex in the path P (O) which are adjacent to v∗, respectively. The existence
and distinctness of bs, be follows from the fact that |N(v∗) ∩ V (base(O))| ≥ 4, which is
implied by M being a 9-redundant modulator and v∗ fitting the frame F. Also, e ≤ z

since (v∗, tr) /∈ E(G). The neighbors of v∗ in P (O) must be consecutive, otherwise we
can obtain an induced cycle of length at least 4 which does not contain v. We further
consider sub-cases based on whether or not t, c2 ∈ N(v∗) (see Figure 8.8).

Case ‡-AW.C.1. t, c2 /∈ N(v∗). Let V ′ = {v∗, v, c2, t, tr} ∪ {be, be+1, . . . , bz}. No-
tice that |V ′| < |V (O)| since |N(v∗) ∩ V (base(O))| ≥ 4| and neighbors of v∗ are con-
secutive. Moreover, G[V ′] is a ‡-AW or a tent, which is of strictly smaller size than O,
contradicting the choice of O. Here, we crucially rely on the fact that tr /∈ N(v∗).
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Figure 8.8: Construction of an obstruction when O is ‡-AW and v = c1.

Case ‡-AW.C.2. t /∈ N(v∗) and c2 ∈ N(v∗). Let V ′ = (V (O)\{bs+1, bs+2, . . . , be−2

,be−1}) ∪ {v∗}. Notice that |V ′| < |V (O)|, and G[V ′] is a ‡-AW.

Case ‡-AW.C.3. t ∈ N(v∗) and c2 /∈ N(v∗). Recall that N(v∗)∩{b1, b2, . . . , bz} �=
∅. Consider a vertex bj ∈ N(v∗) ∩ {b1, b2, . . . , bz}. The graph G[{v∗, t, c2, bj}] is a cycle
on 4 vertices.

Case ‡-AW.C.4. t ∈ N(v∗) and c2 ∈ N(v∗). In this case we consider the following
sub-cases based on whether or not (t�, v

∗) ∈ E(G).

A) (t�, v
∗) /∈ E(G). Let V ′ = {t, v∗, t�} ∪ {bs−1, bs, . . . , be, be+1}. Observe that G[V ′]

is a †-AW in G \ S which does not contain v.

B) (t�, v
∗) ∈ E(G). Let V ′ = {t, v∗, c2, t�} ∪ {b1, b2, . . . , be, be+1}. Observe that G[V ′]

is a ‡-AW in G \ S which does not contain v.

Suppose v is one of the base terminals. We consider the case when v = t�. By
a symmetric argument we can handle the case when v = tr. If c2 /∈ β(P) then for each
u ∈ Lc ∪ Rc we have (u, c2) /∈ E(G) as it fits the frame F and N(u) \ (M ∪ β(P)) =
N(v) \ (M ∪ β(P)). Otherwise, c2 ∈ β(P), and then at least one of Lc ∩ N(c2) = ∅ or
Rc ∩N(c2) = ∅ holds. Let Xc ∈ {Lc, Rc} be a set such that Xc ∩N(c2) = ∅. Similarly,
if b1 /∈ β(P) then for each u ∈ Lf ∪Rf we have (u, b1) ∈ E(G) as it fits the frame F and
N(u) \ (M ∪ β(P)) = N(v) \ (M ∪ β(P)). Otherwise, b1 ∈ β(P), and then at least one
of Lf ⊆ N(b1) or Rf ⊆ N(b1) holds. Let Yf ∈ {Lf , Rf} be a set such that Yf ⊆ N(b1).
Next, we consider cases based on whether or not b1 ∈ Bi (see Figure 8.9).

Case ‡-AW.T.1. b1 ∈ Bi. Consider a vertex v∗ ∈ Xc. Note that (b1, v
∗) ∈ E(G)

since b1 ∈ Bi, and (v∗, c2) /∈ E(G), by the choice of v∗. Also, (v∗, t) /∈ E(G) otherwise,
G[{t, c2, b1, v∗}] is a cycle on 4 vertices in G \ S. Recall that v∗ fits the frame F (and
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Figure 8.9: Construction of an obstruction when O is ‡-AW and v = t�.

(b1, v
∗) ∈ E(G)), therefore there exists e ∈ [z−2] such that be ∈ N(v∗) and be+1 /∈ N(v∗).

This together with the fact that neighbors of v∗ in P (O) are consecutive (otherwise, we
obtain an induced cycle on at least 4 vertices not containing v) implies that (v∗, tr) /∈
E(G). Next, we consider cases based on whether or not (v∗, c1) ∈ E(G).

A) (v∗, c1) ∈ E(G). Let V ′ = {t, c1, c2, v∗, tr} ∪ {be, be+1, . . . , bz}. Observe that G[V ′]
is a ‡-AW in G \ S not containing v.

B) (v∗, c1) /∈ E(G). Let V ′ = {t, c1, v∗, tr} ∪ {be, be+1, . . . , bz}. Observe that G[V ′] is
a †-AW in G \ S not containing v.

Case ‡-AW.T.2. b1 /∈ Bi. Consider a vertex v∗ ∈ Yf ∪ {u ∈ Xc | (u, b1) ∈ E(G)},
and the following cases based on its neighborhood in O.

A) (v∗, c2) /∈ E(G). Notice that this case is the same as Case ‡-AW.T.1, therefore we
can obtain a desired obstruction in the same manner.

B) (v∗, c1) /∈ E(G). Observe that (v∗, t) �∈ E(G), otherwise G[{v∗, b1, c1, t}] is a
cycle on 4 vertices in G \ S. Now, we can obtain an obstruction as in the Case
‡-AW.T.1.B.

C) (v∗, c1), (v∗, c2) ∈ E(G). We further consider the following cases based on neigh-
borhood of v∗ in P (O).
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i) There exists e ∈ [z] \ {1} such that (v∗, be) ∈ N(v∗) and (v∗, be+1) /∈ N(v∗).
Observe that since M is a 9-redundant modulator and v∗ fits the frame F, therefore
e < z − 1. Consider the following cases based on whether or not (t, v∗) ∈ E(G).

a) (t, v∗) /∈ E(G). Let V ′ = {t, c1, c2, v∗, v, tr} ∪ {be, be+1, . . . , bz}. Observe that
G[V ′] is a ‡-AW in G\S. Furthermore, either |V ′| < |V (O)| or |V ′| = |V (O)|
and |V ′ ∩Bi| > |V (O)∩Bi|. Here, we rely on the fact that b1 /∈ Bi. In either
case we obtain a contradiction to the choice of O.

b) (t, v∗) ∈ E(G). Let V ′ = {t, v∗, c2, v} ∪ {b1, b2, . . . , be, be+1}. Observe that
G[V ′] is a ‡-AW in G \ S and |V ′| < |V (O)|.

ii) If i) does not hold then the only neighbors of v∗ in P (O) are b1 and v. Consider
the following cases based on whether or not (t, v∗) ∈ E(G).

a) (t, v∗) ∈ E(G). In this case, G[{v, v∗, t, c2, b1, b2}] is a tent.

b) (t, v∗) /∈ E(G). We consider a vertex u∗ ∈ Xc to obtain the desired obstruc-
tion. Recall that from the construction of Xc we have (u∗, c2) /∈ E(G). This
further implies that (u∗, t) /∈ E(G), otherwise G[{u∗, v∗, c2, t}] is a cycle on
4 vertices. Moreover, we assume that (u∗, b1) /∈ E(G), otherwise u∗ satisfies
the premise of Case ‡-AW.T.2.A. Also, (u∗, bj) /∈ E(G), for each j ∈ [z] \ {1},
otherwise G[{v, u∗} ∪ {b1, b2, · · · bj}] will contain an induced cycle on at least
4 vertices, which is an obstruction containing v with strictly less number of
vertices than O. Next, we consider the following cases depending on whether
or not (u∗, c1) ∈ E(G).

α) (u∗, c1) /∈ E(G). Let V ′ = {t, c1, u∗, v∗, tr} ∪ {b1, b2, . . . , bz}. Observe that
G[V ′] is a †-AW in G \ S, which does not contain v.

β) (u∗, c1) ∈ E(G). Let V ′ = {t, c1, c2, u∗, v∗, tr} ∪ {b1, b2, . . . , bz}. Observe
that G[V ′] is a ‡-AW in G \ S, which does not contain v.

Suppose v is b1 or bz. Suppose v = b1 (the other case is symmetric). If t� /∈ β(P) then
for each u ∈ Lf∪Rf we have (u, t�) ∈ E(G) as it fits the frame F and N(u)\(M∪β(P)) =
N(v) \ (M ∪ β(P)). Otherwise, t� ∈ β(P), and then at least one of Lf ⊆ N(t�) or
Rf ⊆ N(t�) holds. Let Xf ∈ {Lf , Rf} be a set such that Xf ⊆ N(t�). Similarly, if
b2 /∈ β(P) then for each u ∈ Lf ∪ Rf we have (u, b2) ∈ E(G) as it fits the frame F and
N(u) \ (M ∪ β(P)) = N(v) \ (M ∪ β(P)). Otherwise, b2 ∈ β(P), and then at least one
of Lf ⊆ N(b2) or Rf ⊆ N(b2) holds. Let Yf ∈ {Lf , Rf} be a set such that Yf ⊆ N(b2).
Next, we consider cases depending on the neighborhood of vertices in Xf ∪ Yf in O (see
Figure 8.10).

Case ‡-AW.B.1. There is v∗ ∈ Xf ∪ Yf such that {t�, b2} ⊆ N(v∗). There exists
e ∈ [z − 2] such that be ∈ N(v∗) and be+1 /∈ N(v∗). This follows from the fact that
(v∗, b2) ∈ E(G) and v∗ fits the frame F. Next, we consider the sub-cases based on
whether or not (v∗, c1), (v∗, c2), (v∗, t) ∈ E(G).

A) (v∗, c2) ∈ E(G), (v∗, t) ∈ E(G). Let V ′ = {t, c2, v∗, t�} ∪ {b1, b2, · · · , be, be+1}.
Observe that G[V ′] is a ‡-AW such that |V ′| < |V (O)|.
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Figure 8.10: Construction of an obstruction when O is ‡-AW and v = b1.

If Case ‡-AW.B.1.A is not-applicable then (v∗, c2) /∈ E(G) or (v∗, t) /∈ E(G) must
hold.

B) (v∗, t) /∈ E(G). We consider the following cases.

i) (v∗, c1) /∈ E(G). Let V ′ = {t, c, v∗, tr} ∪ {be, be+1, . . . bz}. Observe that G[V ′] is
a †-AW not containing v.

ii) (v∗, c1) ∈ E(G). Let V ′ = {t, c1, c2, v∗, tr, t�} ∪ {be, be+1 . . . bz}. Observe that
G[V ′] contains a ‡-AW not containing v, that is present in G \ S.

C) (v∗, c2) /∈ E(G). Since Case ‡-AW.B.1.B is not applicable we can assume that
(v∗, t) ∈ E(G). But then G[{v∗, b2, c2, t}] is a cycle on 4 vertices.

Case †-AW.B.2. For all u ∈ Xf ∪ Yf we have {t�, b2} �⊆ N(u). Further, by the
construction of Xf and Yf we know that for each u ∈ Xf ∪Yf we have {t�, b2}∩N(u) �=
∅, and Xf , Yf �= ∅. Hence, for any pair of vertices u∗ ∈ Xf and v∗ ∈ Yf , we have
that (u∗, t�), (v∗, b2) ∈ E(G) and (u∗, b2), (v∗, t�) /∈ E(G) (since Case ‡-AW.B.1 is not
applicable). Next, we consider cases based on whether or not t, c2 are adjacent to vertices
in Xf ∪ Yf .

A) Consider the case when there is v∗ ∈ Xf ∪ Yf such that (v∗, c1) /∈ E(G). In this
case, (v∗, t) /∈ E(G), otherwise we obtain an induced cycle G[{v∗, v, c1, t}] on 4
vertices. Let e ∈ [z − 2] such that be is the last vertex in base(O) that is adjacent
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to v∗. Let V ′ = {t, c1, v∗, tr} ∪ {be, be+1, . . . , bz}. Notice that G[V ′] is a †-AW that
has fewer vertices than O as we exclude c2 and t� and include v∗.

Hereafter, we assume that for each u ∈ Xf ∪ Yf we have (u, c1) ∈ E(G).

B) Consider the case when there is v∗ ∈ Xf ∪ Yf such that (v∗, c2) /∈ E(G). In
this case, (v∗, t) /∈ E(G), otherwise G[v∗, t, c2, v] is a cycle on 4 vertices. Let
e ∈ [z − 2] such that be is the last vertex in base(O) that is adjacent to v∗. Let
V ′ = {t, c1, c2, v∗, tr} ∪ {be, be+1, . . . , bz}. Notice that G[V ′] is a ‡-AW that has
either fewer vertices than O or has same number of vertices as O but has more
vertices from Bi. Here, we rely on the fact that t� /∈ Bi, which is ensured by the
fact that Yf �= ∅ and Yf ∩N(t�) = ∅.

Hereafter, we will assume that for each u ∈ Xf ∪ Yf we have c1, c2 ∈ N(u).

C) If there is u∗ ∈ Xf such that (u∗, t) ∈ E(G). Recall that, (u∗, t�) ∈ E(G) and
(u∗, b2) �∈ E(G). In this case, G[{t, u∗, c2, t�, v, b2}] is a tent.

D) If there is v∗ ∈ Yf such that (v∗, t) ∈ E(G). Recall that, (v∗, b2) ∈ E(G) and
(v∗, t�) �∈ E(G). Let e ∈ [z − 2] such that be is the last vertex in base(O) that
is adjacent to v∗. Note that e ≥ 2 as v∗ ∈ Yf . Let V ′ = {t, v∗, t�, be+1} ∪
{v, b3, . . . , be}. Observe that G[V ′] is a †-AW in G \ S with strictly fewer vertices
than O, as we exclude c1, c2 and include v∗.

E) Consider a vertex u∗ ∈ Xf and a vertex v∗ ∈ Yf . Since all the previous cases are not
applicable, therefore (u∗, c1), (u∗, c2), (v∗, c1), (v∗, c2) ∈ E(G), and (u∗, t), (v∗, t) /∈
E(G). Recall that neighbors of u∗, v∗ in P (O) are consecutive. Furthermore,
(v∗, t�) �∈ E(G) and there is no bj adjacent to u∗, where j ≥ 2. Let e ∈ [z − 2]
such that be is the last neighbor of v

∗ in P (O). Now, let V ′ = {t�, u∗, v∗, c1, c2, t}∪
{be, be+1, · · · , bz}. Observe that G[V ′] is a ‡-AW in G \ S which does not contain
v.

Suppose v = bj, where j ∈ [z] \ {1, z}. Let Xf ∈ {Lf , Rf} be a set such that
Xf ⊆ N(bj−1) and Yf ∈ {Lf , Rf} be a set such that Yf ⊆ N(bj+1). Since M is a 9-
redundant modulator, N({tr, bz, bz−1})∩(Xf ∪Yf ) = ∅ or N({t�, b1, b2})∩(Xf ∪Yf ) = ∅.
We assume that N({tr, bz, bz−1})∩(Xf ∪Yf ) = ∅ (the other case is symmetric). Next, we
consider cases based on neighborhood inO of vertices in setsXf , and Yf (see Figure 8.11).

Case ‡-AW.J.1. If there is v∗ ∈ Xf ∪ Yf such that (v∗, c1) /∈ E(G). Note that if
(v∗, c1) /∈ E(G) then (v∗, t) /∈ E(G), otherwise G[{v, v∗, c1, t}] is a cycle on 4 vertices.
Also, the neighbors of v∗ in P (O) must be consecutive. Let e ∈ [z − 2] such that be is
the last vertex in P (O) which is adjacent to v∗, which exists since tr, bz, bz−1 /∈ N(v∗).
Let V ′ = {t, c1, v∗, tr} ∪ {be, be+1, . . . , bz}. Observe that G[V ′] is a †-AW with strictly
fewer vertices than O.
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Figure 8.11: Construction of an obstruction when O is ‡-AW and v = bj, where j ∈
[z − 1] \ {1}.

Case ‡-AW.J.2. If there is v∗ ∈ Xf ∪ Yf such that (v∗, c2) /∈ E(G). Since
Case ‡-AW.J.1 is not applicable we can assume that (v∗, c1) ∈ E(G). Note that if
(v∗, c2) /∈ E(G) then (v∗, t) /∈ E(G), otherwise G[{v, v∗, c2, t}] is a cycle on 4 vertices.
Also, the neighbors of v∗ in P (O) must be consecutive. Let e ∈ [z − 2] such that be is
the last vertex in P (O) which is adjacent to v∗, which exists since tr, bz, bz−1 /∈ N(v∗).
Let V ′ = {t, c1, c2, v∗, tr}∪{be, be+1, . . . , bz}. Observe that G[V ′] is a ‡-AW with strictly
fewer vertices than O.

Note that if Cases ‡-AW.J.1 and ‡-AW.J.2 are not applicable then for each u ∈ Xf∪Yf
we have (u, c1), (u, c2) ∈ E(G). The cases we consider next are based on whether or not
the following conditions are satisfied for a vertex u ∈ Xf ∪ Yf .

1. (u, t) ∈ E(G);

2. {bj−1, bj+1} ⊆ N(u).

Case ‡-AW.J.3. If there is v∗ ∈ Xf ∪ Yf such that (v∗, t) ∈ E(G). We further
consider the following sub-cases based on whether or not t� ∈ N(v∗).

A) t� �∈ N(v∗). Let s ∈ [j] such that bs is the first vertex in P (O) which is adjacent
to v∗, which exists since (t�, v

∗) /∈ E(G) and (v∗, v) ∈ E(G). Also, let e ∈ [z − 2]
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such that be is the last vertex in P (O) which is adjacent to v∗, which exists since
(tr, v

∗), (bz, v∗), (bz−1, v
∗) /∈ E(G) and (v∗, v) ∈ E(G). Notice that s �= e since by

the construction of the sets Xf and Yf we have that v∗ is incident to v and at
least one of the vertices in {bj−1, bj+1}. Let V ′ = {t, v∗} ∪ {bs−1, bs, . . . , be, be+1}.
Observe that G[V ′] is a †-AW in G \ S with |V ′| < |V (O)|.

B) t� ∈ N(v∗). Let e ∈ [z−2] such that be is the last vertex in P (O) which is adjacent
to v∗, which exists since (tr, v

∗), (bz, v∗), (bz−1, v
∗) /∈ E(G) and (v∗, v) ∈ E(G). Let

V ′ = {t, v∗, c2, t�}∪{b1, b2, . . . , be, be+1} is a ‡-AW inG\S. Moreover, |V ′| < |V (O)|
since tr, bz /∈ V ′ and V ′ ⊆ V (O) ∪ {v∗}.

Case †-AW.J.4. If there is v∗ ∈ Xf ∪ Yf such that (v∗, t) /∈ E(G) and
{bj−1, bj+1} ⊆ N(v∗). Notice that all the neighbors of v∗ on P (O) must be consec-
utive, and there exists at least three vertices on P (O) that are non-adjacent to v∗, which
follows from M being a 9-redundant modulator. Also, we have {tr, bz, bz−1}∩N(v∗) = ∅.
Let e ∈ [z − 2] such that be is the last vertex in P (O) which is adjacent to v∗,
which exists since tr, bz, bz−1 /∈ N(v∗). Also, let s ∈ [z − 1] ∪ {0} be the lowest in-
teger such that (v∗, bs) ∈ E(G) (bs could possibly be same as bj−1 or b0 = t�). Let
V ′ = {t, c1, c2, v∗, tr}∪ {b1, b2, . . . , bs}∪ {be, be+1, . . . , bz}. Observe that G[V ′] is a ‡-AW
in G \ S which does not contain v.

Case †-AW.J.5. For all u ∈ Xf ∪ Yf we have c1, c2 ∈ N(u), (u, t) /∈ E(G), and
{bj−1, bj+1} �⊆ N(u). Notice that by the construction of Xf and Yf we have for each
u ∈ Xf ∪ Yf , |N(u) ∩ {bj−1, bj+1}| = 1. Next, consider a vertex u∗ ∈ Xf and v∗ ∈ Yf .
Let s ∈ [j−1]∪{0} such that bs is the first vertex in P (O) which is adjacent to u∗, which
exists since (u∗, bj−1) ∈ E(G). Also, let e ∈ [z−1] such that be is the last vertex in P (O)
which is adjacent to v∗, which exists since (tr, v

∗), (bz, v∗) /∈ E(G) and (v∗, bj+1) ∈ E(G).
Notice that s �= e. Let V ′ = {t, c1, c2, v∗, u∗} ∪ {t�, b1, b2, bs−1, bs} ∪ {be, be+1, . . . , bz}.
Observe that G[V ′] is a ‡-AW in G \ S which does not contain v.

8.4 Bounding the Length of a Clique Path

Let us now turn to the problem of bounding the sizes of non-module components. The
approach mimics the one presented in Chapter 7 (also, [ALM+17a, JP17], but requires
additional structural observations corresponding to interval graphs and it’s obstructions
[BLS99, Gol04]. Each non-module component is a clique path in G−M , where M is a 9-
redundant modulator. Let K be a clique path of a non-module component C. Note that
there is a vertex in M that has a neighbor as well as a non-neighbor in C. In this section
we consider the problem of reducing the number of bags in a clique path K. We assume
that any bag Bi in the clique path K has at most η = 210 · 4(k + 5)

(|M |
10

)
vertices. We

will devise a collection of “marking schemes” that mark some polynomial in k number
of bags in K, such that the obstructions are “well behaved” in the region between any
two consecutive marked bags are. In particular, our marking schemes ensure that if any
obstruction intersects an unmarked region of the clique-path, then the intersection is an
induced path. Then, we design reduction rules that “preserve” a minimum separator of
the unmarked region. More precisely, we identify an irrelevant vertex or an irrelevant
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edge, and then delete it or contract it in the graph. The correctness of these reduction
rules follow from the structural properties ensured by the marking schemes.

Let us recall the graph G+ that is obtained from G by adding a new edge for each set
of cardinality 2 in W . Note that the new edges in G+ have both endpoints in M . This
graph will be helpful in obtaining structural properties of the graph G. In particular,
the structural properties of any obstructions that is not covered W , hold in both G+

and G. Let us also note the following. Recall that M is a 9-redundant solution, and we
have a (k+ 2)-necessary family W ⊆ 2V (G), such that any solution of size at most k+ 2
must hit every set in W . In the following, whenever we consider a set Z of k+2 or fewer
vertices and the obstructions in G − Z, we will also assume that Z is a hitting set for
W . We call such a set Z a good set. We will justify this assumption when we present
our reduction rules and prove their correctness. In particular, we will show that any
“candidate solution” for G, that is obtained from a solution to the “reduced instance”
will always be a good set. Let us recall that all obstructions in G on up to 10 vertices
are present in W and therefore they are hit by the good set Z. Hence, we may assume
that any obstruction, O, in G − Z is either a chord-less cycle, or an †-AW or a ‡-AW
such that |O ∩M | ≥ 10.

Let us now define a few notations that will be required in this section. Note that
these notations apply to K as well as any sub-clique-path of K. We fix an ordering of
the bags in the clique path K from left to right. or two bags B�, Br in K by K[B�, Br] we
denote the sub-clique path in K between B� and Br (including B� and Br). We say that
a vertex v ∈ K is a marked vertex if there is a marked bag that contains it, otherwise it
is an unmarked vertex. We say that two marked bags B,B′ are consecutive if K[B,B′]
contains no marked bags other than B and B′. We say that two bags of a clique path
are adjacent if there is no other bag that lies between them. Notice that for a bag B in
a clique path, B−1 and B+1 denote the adjacent bags of B, on the left and no the right,
respectively.

8.4.1 Partition into manageable-clique paths

In this section, we partition a clique path K into a collection of so called “manageable-
clique paths”, that are well structured with respect to the modulator M . We shall
construct a collection of bags, denoted by K(M), based on the edges between K and
M and mark the bags in K(M). Let us initialize K(M) as the collection containing the
two end bags of K.

Let us begin with the following property of interval graphs.

Observation 32. Let H be an interval graph and let H ′ be the graph obtained by one of
the following operations.

(a) For v ∈ V (H), H ′ = H − {v} or

(b) For (u, v) ∈ E(H), H ′ = H/(u, v).

Then H ′ is an interval graph. Furthermore the size of any clique in H ′ is upper-bounded
by the size of a maximum clique in H.

The above observation follows from the definition of interval graphs and their interval
representation [Gol04]. In particular, statement (b) follows from the observation that an
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interval representation of H/(u, v) can be obtained by taking an interval representation
of H and “merging” the intervals of u and v.

Now consider a vertex m ∈ M and the let Hm be the bipartite graph with vertex
bipartition N(m) ∩ K and N(m) ∩ K, where u ∈ N(m) ∩ K and v ∈ N(m) ∩ K are
adjacent in Hm if and only if (u, v) ∈ E(G). Here, N(m) = V (G) \ N(m). Next, we
prove the following lemma about the graph Hm.

Lemma 8.18. For m ∈ M , let Ym be a maximum matching in Hm. Then |Ym| ≤ 2η.

Proof. Consider the case when |Ym| > 2η, otherwise the claim trivially holds. Let K̃ be
the graph obtained from K by contracting each edge (u, v) in Ym, and let uv∗ be the
vertex resulting after its contraction. Next, let K ′ be the graph K̃[{uv∗ | (u, v) ∈ Ym}].
We note that the definition of K ′ relies on the fact that Ym is a matching in Hm. From
the construction of K ′ and Observation 32 it follows that K ′ is an interval graph on
|Ym| vertices. Furthermore, the size of a maximal clique in K ′ is bounded by η. Interval
graphs are perfect graphs, and on a perfect graph G we know that ω(G)α(G) ≥ |V (G)|,
where ω(G) and α(G) are the cardinalities of maximum clique and maximum independent
set in G, respectively [Lov72] (or Theorem 3.3 [Gol04]). This implies that there is an
independent set in K ′ of size greater than |Ym|/η > 2. Consider an independent set of
size 3 in K ′, and the corresponding edges of the matching Ym in K. It follows that these
three edges and the vertex m form a long-claw in G+. However, this contradicts the fact
that M is a 9-redundant solution and each set in W has at least 2 vertices.

For each each m ∈ M , we compute a maximum matching Ym in the graph Hm. Then
for each edge in Ym we pick a bag in K that contains this edge and add it to K(M).
Let us observe that we add at most 2η|M | bags to K(M). Before proceeding further, we
add some more bags to K(M) that gives us some additional structural properties. For
notational convenience, we introduce the graph G+, which is obtained from G by adding
the edge (m1,m2), for each m1,m2 ∈ M such that (m1,m2) /∈ E(G) and {m1,m2} ∈ W .
Next, we state the following observation, which will be useful in designing one of our
marking schemes for bags in the clique path.

Observation 33. Let m1 and m2 be a pair of (distinct) vertices in M such that
(m1,m2) /∈ E(G+). Then (N(m1) ∩N(m2)) \M is a clique in G+.

The above observation follows from the fact that if there were a non-adjacent pair
of vertices v1 and v2 in the common neighborhood of m1 and m2, then we would have
a cycle of length 4, that intersects M in only two vertices. Therefore, either {m1,m2}
is in W and hence, they must be adjacent in G+, or we contradict the fact that M is a
9-redundant modulator. It follows that there is a bag in K that contains the common
neighborhood of m1 and m2 whenever they are not adjacent in G+. We add a collection
of up to |M |2 bags to K(M), each containing the common neighborhood of a pair of
non-adjacent vertices in M in G+. This gives us the following marking scheme.

Marking Scheme I. We mark all bags in K(M).

Observe that we have marked at most 2η|M |+ |M |2 + 2 < 4η|M | bags of K in

the above marking scheme. Here, we use the fact that η ≥ |M |. Next, we state an
observation that will be useful later.
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Observation 34. If v ∈ K such that there is no bag in K(M) that contains v, then
NG+(v) ∩M (= NG(v) ∩M) is a clique in G+.

Let B�, Br ∈ K(M) be two consecutive marked bags in K. Now, consider the graph
K[B�, Br]− (B� ∪Br), and observe that it may have several connected components. For
the sake of brevity, we call these connected components the components of K[B�, Br].
We extend this definition to say that an induced subgraph of K is a component of K if it
is a component of K[B�, Br] for some pair of consecutive marked bags B�, Br in K. Note
that each component of K is also a clique path. These components have the following
property.

Lemma 8.19. Let X be a component of K. Then any m ∈ M is adjacent to, either all
vertices in X (in both G and G+), or none of them.

Proof. Note that for any m ∈ M , NG(m)∩X = NG+(m)∩X, therefore, it is enough to
argue in the graph G. Suppose the claim is not true, then choose anm ∈ M for which the
claim is false. Then m has both a neighbor and a non-neighbor in X in G. Hence, there
is an edge e ∈ X such that one endpoint of e lies in NG(m)∩K and the other-endpoint
lies in NG(m) ∩ K, i.e. e ∈ Hm. Furthermore, by construction, both these endpoints
are disjoint from the vertices of the matching Ym in Hm. Therefore Ym ∪ {e} is also a
matching in Hm. However, this is a contradiction as Ym is a maximum matching in Hm.
This concludes the proof.

Let us fix a pair of consecutive marked bags B�, Br and consider the components of
K[B�, Br]. Note that the above lemma may be stated as follows. Any component of
K[B�, Br] is a “module with respect to M”. The following lemma shows that all but at
most 4η of these components are actually modules in the graph G+ (and G as well).

Lemma 8.20. All but at most 4η of the components of K[B�, Br] are modules in the
graph G+ (and G).

Proof. Let us recall that G+−M = G−M . LetX be a component ofK[B�, Br]. Observe
that for any vertex v ∈ B� ∪ Br there are at most two components such that v has a
neighbor and a non-neighbor in the component. Indeed, if this were not the case then we
obtain a long-claw in K ⊆ G+ −M , which is a contradiction. Now recall that there are
at most 2η vertices in B�∪Br. Hence it follows that all but at most 4η components have
the following property. Each vertex v ∈ B�∪Br is adjacent to, either every vertex of the
component, or none of them. Finally, observe that the neighborhood of any component
X is a subset ofM∪B�∪Br. Hence, it follows from the above arguments and Lemma 8.19
that all but at most 4η connected components of K[B�, Br]− (B� ∪ Br) are modules in
G+ (and G as well).

Let us note another useful property of these components.

Observation 35. Let X be a component of K[B�, Br]. Then there is a sub-clique path
KX of K[B�, Br] such that X ⊆ V (KX) ⊆ X ∪ B� ∪ Br. Furthermore, if X and Y are
two distinct components of K, then KX and KY have no common bags.

Proof. Since X is a connected graph and K is a tree-decomposition, it follows from the
definitions that the collection of bags of K, such that each bag contains a vertex of
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X, forms a sub-clique path KX of K. Furthermore, as X is a connected component
of K[B�, Br] − (B� ∪ Br), it follows that KX is a sub-clique path of K[B�, Br] and
X ⊆ V (KX) ⊆ X ∪ B� ∪ Br. Also note that KX doesn’t contain the bags B� and Br,
this will be useful for proving the second part of the claim.

Next, consider another component Y of K, and the following cases depending on
whether or not Y is a component of K[B�, Br].

• Y is a component of K[Bp, Bq] where K[Bp, Bq] is distinct from K[B�, Br]. Recall
that Bp and Bq are consecutive marked bags. Similarly, B� and Br are marked
bags. Let KX and KY be the sub-clique paths returned by first part of the claim.
Then X ⊆ KX ⊆ X ∪ B� ∪ Br and KX does not contain the bags B� and Br.
Similarly, Y ⊆ KY ⊆ Y ∪ Bp ∪ Bq and KY does not contain the bags Bp and Bq.
This together with the distinctness of K[Bp, Bq] where K[Bp, Bq] implies that KX

and KY have no bags in common.

• Next suppose that Y were another component of K[B�, Br], and let KY be the
corresponding sub-clique path of K[B�, Br]. If there is a bag B that lies in both
KX and KY , then as B is a clique, there is a pair of vertices u ∈ X ∩ B and
v ∈ Y ∩B that are adjacent to each other. But this is a contradiction.

This concludes the proof.

Recall that the components of each K[B�, Br] can be divided into two groups, those
that are modules in G and the rest. We will first consider the problem of reducing these
module components.

Module components of K

Let us now consider the problem of reducing the total number of vertices in a module
component of K. Consider a pair of consecutive marked bags B�, Br in K and the
number of vertices in the module components of K[B�, Br]. Let Ĉ be the collection
of connected components in K[B�, Br] − (B� ∪ Br) that are modules in G. Note that
|M ∪B�∪Br| ≤ |M |+2η. Now we may apply Lemma 8.7 for M̂ = B�∪Br and obtain a
subset B of V (Ĉ) of size 4(k+2)2(|M |+2η)6 such that the following holds. If S ⊆ V (G)
of size at most k and O is an obstruction in G−S that is not covered by W , then there is
another obstruction O′ in G−S such that O′ ∩ (V (Ĉ) \B) = ∅. This gives the following
reduction rule.

Reduction Rule 8.6. Suppose v ∈ V (Ĉ) \B, then delete v from the graph G.

Lemma 8.21. Reduction rule 8.6 is safe.

Proof. Let v ∈ V (Ĉ) \ B, and G′ = G− {v}. We will show that (G, k) is a yes-instance
of IVD if and only if (G′, k) is a yes-instance of IVD. Moreover, any solution S to IVD

in (G, k) (or (G′, k)) is a hitting set for W .
In the forward direction, let S be a solution to IVD in (G, k). By the definition of

W , S ∩M (⊆ V (G′)) hits each set in W . Moreover, as G′ − S is an induced subgraph
of G− S, it follows from Observation 32 that S is a solution to IVD in (G′, k).

In the reverse direction, let S be a solution to IVD in (G′, k) and S = S′∪{v}. Since
G′ − S′ is same as the graph G− S, therefore it follows that G− S is an interval graph.
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Moreover, as |S| ≤ k + 1, it hits each set in W , which is (k + 2)-necessary. But since
v /∈ M , it follows that S′ hits each set in W . Next, we want to show that S′ is a solution
to IVD in (G, k). Suppose not, then consider an obstruction O in G− S′. Notice that
O is not covered by W . But then, from Lemma 8.7, there is an obstruction O′ in G−S′
that is disjoint from V (Ĉ) \ B which is not covered by W , and hence it doesn’t contain
the vertex v. Therefore, O′ is also an obstruction in (G− {v})− S′ = G′ − S′, which is
a contradiction. This concludes the proof.

By the above reduction rule, we may assume the total number of vertices in V (Ĉ)
is bounded by 4(k + 2)2(|M | + 2η)6. Note that any bag in K that contains a vertex
of V (Ĉ) is a subset of V (Ĉ) ∪ B� ∪ Br. Therefore, there are at most |V (Ĉ)| bags in K

that contain a vertex of V (Ĉ). Finally, observe that there are at most 4η|M | pairs of
consecutive marked bags in K. Applying the above reduction rule for every such pair,
we obtain the following. There are at most 4(k + 2)2(|M | + 2η)6 · 4η|M | vertices in K

that lie in the union of all module components. Let C(K) denote the above collection of
vertices.

Marking Scheme II: We mark all bags in K that contain a vertex from C(K).

Note that using Marking Scheme II, at most 4(k + 2)2(|M |+ 2η)6 · 4η|M | bags in
K have been marked.

Obtaining Manageable-Clique-Paths

Now we consider the non-module components of K. We now mark some more bags in K

that will partition them into sub-clique path with additional structural properties. We
will call these sub-clique paths so obtained, manageable-clique paths. We initialize an

empty-collection K̂(M). For each non-module component X of K[B�, Br] that contains
an unmarked vertex, where B�, Br are consecutive marked bags in K(M); for each pair
of adjacent bags B,B′ in KX such that B ∩B� � B′ ∩B� or B ∩Br � B′ ∩Br, we add

B,B′ to K̂(M). Note that we add up to 4η bags to K̂(M) for each component X of K,

and therefore we have added at most 4η · 4η · 4η|M | = 64η3|M | bags to K̂(M). This
bound follows from Marking Scheme I, Lemma 8.20, and the above discussion.

Marking Scheme III: We mark all bags in K̂(M).

Note that we marked at most 64η3|M | bags using the above marking scheme. We
now further partition K using the bags marked in the above scheme. For a sub-clique
path KX (returned by Observation 35) of a component X of K[B�, Br], and two consec-

utive marked bags Bp, Bq ∈ K̂(M) in KX , the sub-clique path KX [Bp, Bq] is a (B�, Br)-
manageable clique path (or simple a manageable clique path). Next, we derive the fol-
lowing property.

Observation 36. Let X be a component of K[B�, Br], where B� and Br are marked
consecutive bags in K(M). Furthermore, let KX be the sub-clique path of K returned by
Observation 35 for X. Let Bp, Bq ∈ K(M) be a pair of consecutive marked bags in KX
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such that KX [Bp, Bq] contains an unmarked vertex. Then for any bag B in KX [Bp, Bq]
we have Bp ∩B� = B ∩B� = Bq ∩B� and Bp ∩Br = B ∩ Br = Bq ∩Br.

Let us derive a few properties of the manageable-clique paths. Consider a (B�, Br)-
manageable clique path Q, and let CQ = B� ∩ Br. We have the following observation,
that follows from the construction of Q (together with the Marking Scheme I) and
Observation 34.

Observation 37. Any vertex m ∈ M is adjacent to either all vertices in V (Q) \ CQ in
the graph G+ (and G as well), or none of them. Furthermore, N(V (Q) \ CQ) ∩M is a
clique in G+.

Let us define MA = M ∩ N(Q \ CQ), and MP = M \MA. Let us observe that, by
construction, N(MP ) ∩Q ⊆ CQ. Let us note that there may be a vertex v ∈ CQ and a
vertex m ∈ MA such that (v,m) /∈ E(G).

Observation 38. Let v ∈ CQ and m ∈ MA be a pair of non-adjacent vertices. Then Q

is a clique in G+ (and G).

Proof. Let us consider these vertices in the graph G. Observe that every vertex in
CQ ∪MA is adjacent to every vertex in Q \ CQ in the graph G. Therefore, if there is a
pair of non-adjacent vertices u, w ∈ Q\CQ, then we obtain a cycle on 4 vertices, namely,
C = (u, v, w,m) in G which intersects the 9-redundant solution M in only one vertex,
which is m. This implies C is covered by W . Since V (C) ∩ M = {m}, this implies
that {m} ∈ W . This contradicts that each set in W is of size at least 2. Therefore, we
conclude that Q is a clique in G.

Hence, we may assume that Q is not a clique, and then we have the following obser-
vation.

Observation 39. Suppose Q is not a clique. Then for any v ∈ V (Q) and m ∈ MA, we
have (v,m) ∈ E(G) (and E(G+)). Furthermore, each vertex in MA ∪ CQ is adjacent to
all vertices in V (Q) ∪MA in G+.

Proof. The first part follows from Observation 37, definition of MA, and Observation 38.
Also, by construction CQ is a clique that is contained in every bag of Q in G, and
G − M = G+ − M . Therefore, we next argue that MA is a clique in G+. Suppose
not, then there are m1,m2 ∈ MA such that (m1,m2) /∈ E(G+). By our assumption
there exists u, v ∈ V (Q) such that (u, v) /∈ E(G) (and hence (u, v) /∈ E(G+)). But
then, C = (m1, u,m2, v) is an induced cycle on 4 vertices in G which intersects the
9-redundant solution M in 2 vertices. This implies that C is covered by W . Since each
set in W is of size at least 2, therefore we have that {m1,m2} ∈ W . This contradicts
that (m1,m2) /∈ E(G+). This concludes the proof.

8.4.2 Manageable clique paths

We start by recalling the number of manageable clique paths, which is bounded by
64η3|M |. Thus, if a manageable clique path is a clique in G, then we add it to the set

of marked bags. By doing this we add at most 64η3|M | bags to K̂(M). Hereafter, we
deal with only those manageable clique paths that are not cliques in G. Next, consider
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a manageable clique path Q = K[B�, Br], where B� and Br are its first and last bags,
respectively. Also, let CQ = B� ∩ Br and QI = V (Q) \ (B� ∪ Br). Observe that all
vertices in QI are unmarked. Let MA = M ∩N(V (Q) \CQ), and MP = M \MA. Note
that from Observation 39 it follows that MA is adjacent to every vertex in Q, while
N(MP ) ∩ V (Q) ⊆ CQ. Finally, from the definition of MA and Observation 37 we have
that MA is a clique in G+.

We will devise a sequence of marking schemes, that mark a bounded number of bags
in Q, such that the obstructions are well-behaved with respect to the marked bags. We
have the following definition for AW.

Definition 8.3. An AW O is called Q-manageable if all terminals in O ∩ Q appear in
marked bags.

More precisely, our goal is to mark a bounded number of bags in Q so that, for any
set S of k+2 or fewer vertices, if there is an AW O in G−S, then there must be another
AW O that is Q-manageable. Let BQ be the set of marked bags in Q, and initially it
contains only B� and Br, which are its first and last bags, respectively.

We have the following lemma (Lemma 8.22) that characterizes the intersection be-
tween a manageable clique path Q and an induced path P in G. Let us note the this
lemma holds for any sub-clique path Q′ of Q when we define the associated vertex sets
B′
�, B

′
r, Q

′
I and C ′

Q accordingly. Note that the setsMA and MP remain unchanged for Q′.
We present the proof of this lemma for the clique path Q only, but the same arguments
will hold for Q′.

Lemma 8.22. Let P = (v1, v2, . . . , vt) be an induced path in G+ such that (V (P ) \
{v1, vt})∩QI �= ∅, V (P )∩MA = ∅ and V (P )∩ (V (G) \QI) �= ∅. Then V (P )∩CQ = ∅.
Furthermore, if v1, vt /∈ QI , then PQ = P [V (P ) ∩ V (Q)] is an induced path in G+ from
a vertex in B� \ CQ to a vertex in Br \ CQ such that PQ − (B� ∪Br) is an induced path
contained in QI .

Proof. Consider a vertex v ∈ (V (P ) ∩ QI) \ {v1, vt}, and let v−1 and v+1 be its two
neighbors in P . Observe that, as NG+(v) ⊆ V (Q)∪MA and V (P )∩MA = ∅, the vertices
v−1 and v+1 must belong to V (Q). Furthermore, CQ is a clique and for any w ∈ CQ

we have NG+(v) ⊆ NG+(w) as Q is not a clique in G+ (Observation 39). Therefore,
V (P )∩CQ = ∅, as otherwise we obtain a chord in the induced path P between a vertex
w ∈ V (P ) ∩ CQ and one of v−1 or v+1. This concludes the proof of first part of the
lemma.

Now we prove the second part of the lemma. Consider the set PQ = V (P )∩V (Q), and
let vs ∈ PQ be a vertex with lowest possible index in P that belongs to the set QI . Note
that s ∈ [t] \ {1, t} by our assumption that v1, vt /∈ QI and (V (P ) ∩ QI) \ {v1, vt} �= ∅.
Let ve (possibly same as vs) be the vertex with highest index in P which belongs to
QI such that for each i ∈ {s, s + 1, . . . , e}, vi ∈ QI . By our assumption we have that
e ∈ [t] \ {1, t}. Next, we consider the vertices vs−1 and ve+1. From the construction
of vs−1 and ve+1, the assumption that V (P ) ∩MA = ∅, and first part of the lemma it
follows that vs−1, ve+1 /∈ QI ∪MA ∪ CQ. Moreover, (vs−1, vs), (ve, ve+1) ∈ E(G+), and
for v∗ ∈ {vs, ve}, we have NG+(v∗) ⊆ V (Q)∪MA. Therefore, vs−1, ve+1 ∈ (B�∪Br)\CQ.
Without loss of generality, we assume that vs−1 ∈ B� \ CQ. But then ve+1 /∈ B� \ CQ,
otherwise we have a chord (vs−1, ve+1) in P . This implies that ve+1 ∈ Br\CQ. Therefore,
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P ′ = P [{vs−1, vs, . . . , ve+1}] is an induced path from a vertex in B� \ CQ to a vertex in
Br \CQ. Notice that vs−1−i, where i ≥ 2 cannot belong to B�, otherwise there will be a
chord in P . We note that vs−2 could possibly belong to B�\CQ but not to CQ. Similarly,
we can show that ve+1+i, where i ≥ 2 cannot belong to Br, while ve+2 could possible
belong to Br \ CQ but not to CQ. Let s

∗ ∈ {s− 1, s− 2} be the lowest index such that
vs∗ ∈ V (P ) ∩ (B� \ CQ) and e∗ ∈ {e + 1, e + 2} be the highest index such that ve

∗ ∈
V (P ) ∩ (Br \ CQ). Observe that if vs−2, ve+2 /∈ QI , then P ∗ = P [{vs∗ , vs∗+1, . . . , ve∗}]
is an induced path from a vertex in B� \ CQ to a vertex in Br \ CQ. Thus to prove the
lemma it is enough to show that vi /∈ QI , where i ∈ [s−2]∪{e+2, e+3, . . . , t}. Suppose
not, then there is an integer i∗ ∈ [s− 2] ∪ {e+ 2, e+ 3, . . . , t} such that vi∗ ∈ QI . Since
vi∗ ∈ QI , it must hold that vi∗ belong to a bag, say B∗ in Q which is different from
B� and Br. Recall that P ′ is a sub-path of P from vs−1 ∈ B� \ CQ to ve+1 ∈ Br \ CQ.
Therefore, P ′ intersects every bag in the manageable clique path Q. In particular, it
contains a vertex say, v∗ from B∗, which is different from vi∗ . But then (v∗, vi∗) ∈ E(G+)
is a chord in the induced path P , which is a contradiction. This concludes the proof of
the lemma.

Observation 40. Let v ∈ V (Q) \ CQ. Then v not a center vertex of any AW in G+

that is not covered by W.

Proof. Let O be an AW in G+ that is not covered by W , and suppose that v is a
center vertex of O. Then v must be adjacent to all vertices of base(O). As M is an
9-redundant modulator, there are at least 5 vertices of M in base(O), and therefore there
are vertices m1,m2 ∈ M such that (m1,m2) /∈ E(G+), (m1, v), (m2, v) ∈ E(G+) and
(m1,m2) ∈ E(G+). This follows from the fact that v ∈ V (Q) \ CQ, NG(v) ∩M ⊆ MA,
and MA is a clique in G+ (Observation 37). But this contradicts that O is an obstruction
in G+.

Let O be an AW (not covered by W) in G+, and let P (O) denote the induced path
(t�, base(O), tr). We have the following notion of distance of a vertex in Q from the end
bags B� and Br. We use this notion in marking bags that satisfy certain properties and
are closest to the endpoints of Q. Recall that we have an ordering of the bags from left
to right, where B� is the leftmost bag and Br is the rightmost bag in Q.

Definition 8.4. Let v ∈ QI . The distance between v and B� is defined as the number
of bags between between B� and the right-most bag in Q that contains v. The distance
between v and Br is defined as the number of bags between between Br and the left-most
bag in Q that contains v.

Next, we consider the following cases based the intersection O and QI ∪MA.

base(O) ∩QI = ∅ or P (O) ∩MA �= ∅
Let us recall a few facts. O is an AW in G+ that is not covered by W . Q is a man-
ageable clique path which is not a clique in G (and hence in G+). The sets MA, B�,
Br are cliques in G+, and they separate QI from the rest of the graph in G+ (and G

as well). Furthermore, every vertex of MA is adjacent to all vertices in V (Q) ∪ MA in
G+ (Observation 39). The vertices of V (Q) \ CQ, and in particular QI , cannot be the
center vertices of any AW in G+ that is not covered by W (Observation 40). Therefore,
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the vertices of QI are either base vertices or terminals of such an AW. We now have the
following easy observation.

Observation 41. Let A be a clique in the graph and let O be an AW. Then |A∩O| ≤ 4.

From Observation 41 it follows that |O ∩ (MA ∪ B� ∪ Br)| ≤ 12. Let c1, c2 be the
center vertices of O (in case of †-AW, c = c1 = c2). Now suppose that base(O)∩QI = ∅.
Then O ∩ QI ⊆ {t�, tr, t}. Next, suppose that there is a vertex m ∈ base(O) ∩ MA.
Then observe that |O ∩ QI | ≤ 2, otherwise m ∈ base(O) will be adjacent to 3 vertices
of O \ {c1, c2}. Hence, |O ∩ QI | ≤ 2. In summary, O ∩ (V (Q) ∪MA) is a graph on at
most 15 vertices, where up to 12 of these vertices are in MA ∪ B� ∪ Br and up to 3 of
these vertices are in QI . This gives rise to the following marking scheme.

Marking Scheme IV: For each graph R on at most 15 vertices, a partition of V (R)
into RB and RI , where |RB| ≤ 12, and X ⊆ MA ∪ B� ∪ Br such that G+[X] is iso-
morphic to R[RB] consider the following. For each tuple X = (X,X1, X2, X3) where
X1 ∪ X2 ∪ X3 ⊆ X, let AR,X be a family consisting of all subsets Y ⊆ QI , where
Y = {yi | i ∈ [|Y |]} such that (i) G+[Y ] is isomorphic to R[RI ], (ii) G

+[X ∪ Y ] is iso-
morphic to R, and (iii) NG+(yi) ∩X = Xi for i ∈ [|Y |]. Notice that sets in AR,X are of
same size say, y∗ ≤ 3. Next, consider the matroid M = (U, I), where U = V (G+) and
I = {U ′ ⊆ U | |U ′| ≤ y∗ + k + 2}. Notice that M is a uniform matroid, and therefore
is representable over a field of size at least y∗ + k + 2 [Oxl06]. Thus, using Theorem 2.1

we obtain a k + 2-representable family ÂR,X ⊆k+2
rep AR,X . For every vertex contained in

some set in ÂR,X , we mark a bag in Q that contains this vertex.

We observe that there are at most O(1) choices for the graph R and it’s partition

into RB and RI . Then there are at most
(|MA∪B�∪Br|

≤12

)
choices for X, and O(1) choices

for the tuple X for each X. The collection AR,X contains at most
(|QS∪QP |

≤3

)
graphs.

Now by Theorem 2.1 there are at most O((k + 2)3) sets in ÂR,X and each set contains

y∗ ≤ 3 vertices. Hence, overall we mark at most O((2η + |M |)12(k + 2)3) bags in Q.

Lemma 8.23. Let S be a good set of size at most k + 2, and O be an AW in G+ − S

such that base(O) ∩ QI = ∅ or P (O) ∩ MA �= ∅. Then there is an AW O′ in G+ − S

such that O′ is Q-manageable. Furthermore, O′ −QI = O−QI .

Proof. As S is a good set of size at most k + 2, it hits all sets in W . Therefore, the
obstruction O in G+ − S contains at least 10 vertices of M . Now consider the graph
R = O ∩ Q. Let X = V (R) ∩ (MA ∪ B� ∪ Br) and Y = V (R) ∩ QI . From the
previous discussions it follows that V (R), X and Y contain at most 15, 12 and 3 vertices,
respectively. Let Y = {yi | i ∈ [|Y |]}. LetXi denote the setX∩NG+(yi) for i ∈ [|Y |], and
∅ otherwise. Let X = (X,X1, X2, X3). Notice that Y ∈ AR,X . Thus, from Theorem 2.1

there is a set Y ′ ∈ ÂR,X , where Y ′ = {y′i | i ∈ [|Y |]}, such that (i) G+[Y ′] is isomorphic to
G+[Y ], (ii) G+[X ∪Y ′] is isomorphic to R, and (iii) NG+(y′i)∩X = Xi for i ∈ [|Y |]. Now
observe that O′ = (O− Y )∪ Y ′ is isomorphic to O. Hence O′ is an AW in G+−S such
that all vertices of O from Q appear in marked bags of Q. Hence, O′ is Q-manageable.
Finally observe that, by construction, O′ − QI = O − QI . This concludes the proof of
the lemma.
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In the following subsection, we consider the problem of obtaining Q-manageable
obstructions when base(O) ∩QI �= ∅ and P (O) ∩MA = ∅. Let us also note, in the rest
of this subsection, we treat the bags marked by Marking Scheme IV as unmarked and
only consider the bags marked by Marking Schemes I,II and III as marked.

base(O) ∩QI �= ∅ and P (O) ∩MA = ∅
We start with the following observations, which will be useful later. We let c1 and c2 to
be the centers of O. For the case when O is a †-AW, we let c = c1 = c2.

Observation 42. If base(O) ∩QI �= ∅, then c1, c2 ∈ CQ ∪MA.

Proof. Let v ∈ base(O) ∩ QI . Observe that NG+(v) ⊆ V (Q) ∪ MA, and no vertex of
V (Q) \ CQ can be a center vertex of an AW in G+ (Observation 40). As c1, c2 must be
in NG+(v), therefore we have that c1, c2 ∈ MA ∪ CQ.

Observation 43. If base(O)∩QI �= ∅, then t�, tr /∈ V (Q)∪MA. Furthermore, base(O)∩
(CQ ∪MA) = ∅ and t /∈ CQ ∪MA.

Proof. From Observation 42, base(O)∩QI �= ∅ implies that c1, c2 ∈ CQ ∪MA. Observa-
tion 39 implies that any vertex of CQ ∪MA is adjacent to every vertex in V (Q) in G+.
Also, MA is a clique in G+. If t� ∈ V (Q) ∪ MA, then we have the edge (t�, c2) in O,
which is a contradiction. Hence we have that t� /∈ V (Q). An analogous argument can
be given to show that tr /∈ V (Q).

Next, suppose that w ∈ base(O)∩(CQ∪MA), and by assumption that P (O)∩MA = ∅
we have w �∈ MA. Hence w ∈ CQ, and by Observation 39 w is adjacent (in G+) to every
vertex in V (Q)∪MA. Let v ∈ base(O)∩QI and u be the neighbor of v in P (O), which
is different than w. Recall that NG+(v) ⊆ V (Q) ∪MA, therefore, u ∈ V (Q) ∪MA. But
then, P (O)[{v, u, w}] is a cycle on 3 vertices, contradicting that P (O) is an induced
path. Finally, if t ∈ CQ ∪MA, then (t, v) ∈ E(G+), which is a contradiction.

It follows from Observation 43 that, ifO is an obstruction such that base(O)∩QI �= ∅
and P (O)∩MA = ∅, then we have the following. Both endpoints of P (O), i.e. the base
terminals of O, lie outside Q. Therefore, by Lemma 8.22 we obtain the following.

Lemma 8.24. If base(O) ∩ QI �= ∅ and P (O) ∩MA = ∅, then PQ = O ∩ (Q − CQ) is
an induced path between a vertex in B� \ CQ and Br \ CQ, and PQ ⊆ base(O).

This leads us to the following observation.

Observation 44. If base(O) ∩QI �= ∅ and P (O) ∩MA = ∅. Then t /∈ V (Q) ∪MA.

The next lemma follows directly from the above results and the definition of Q-
manageable obstructions.

Lemma 8.25. Let S be a good set of at most k+2 vertices. Let O be an AW in G+−S

such that base(O)∩QI �= ∅ and P (O)∩MA = ∅. Then O is a Q-manageable obstruction.
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8.4.3 Nice-clique paths and nice obstructions

We now consider a pair of consecutive marked bags in K that were marked by the
Marking Schemes I to IV. In particular, for each manageable clique path Q′ we mark a
collection of bags in Q′ via Marking Scheme IV, that partition Q into sub-clique paths
which are called nice-clique paths. Formally, a nice-clique path is a sub-clique path
K[B�, Br] such that B� and Br are consecutive marked bags. We note that a nice-
clique path is not a clique, since it contains at least two distinct bags of K. Further,
any nice-clique path is contained in a manageable-clique path, and therefore it also has
the properties of a manageable-clique path. Now, for any nice-clique path Q, that is
contained in a manageable-clique path Q′, we define the sets B�, Br, QI , CQ, MA and
MP in the same way as before. Let us note that the sets MA and MP remain the same
for both Q and Q′, by Observation 39 for the manageable-clique path Q′. Furthermore,
C ′
Q ⊆ CQ, since Q is a sub-clique-path of Q′.

Definition 8.5. An obstruction O is called nice, if for every nice-clique path Q, and
X = V (O) ∩ (V (Q) \ CQ) either X ⊆ B� ∪ Br, or O[X] is an induced path between a
vertex in B� \ CQ and a vertex in Br \ CQ, such that (V (O) ∩ V (Q)) \ (B� ∪Br) ⊆ QI .

The following lemma shows that a chordless cycle is always a nice obstruction.

Lemma 8.26. Let S be a good set of size at most k + 2 and let O be a chordless cycle
in G+ − S. Then O is a nice obstruction.

Proof. By definition, S hits all set in W , and therefore |M ∩O| ≥ 10. Let us consider a
nice-clique path Q and suppose that X = V (O)∩ (V (Q) \CQ) �⊆ B� ∪Br, i.e. there is a
vertex v ∈ X ∩QI . Therefore, there is a pair of (distinct) vertices m1,m2 ∈ M such that
the path segment P betweenm1 andm2 inO contains the vertex v and V (O)\V (P ) �= ∅.
Let P ∗ be the sub-path of P that contains v and exactly two vertices from M which are
its end vertices. Note that P ∗ exists, and could possibly be same as P . Furthermore,
P ∗ is an induced path in G+. Let P ∗ be the path from m∗

1 ∈ M to m∗
2 ∈ M . Next,

we argue that m∗
1,m

∗
2 /∈ MA. As MA is a clique (Q is not a clique and Observation 39)

and P ∗ is an induced path in G+ − S, at least one of m∗
1 /∈ MA or m∗

2 /∈ MA holds.
Next, suppose that m∗

1 ∈ MA, m
∗
2 ∈ MP (the other case is symmetric), and therefore

(v,m∗
2) /∈ E(G+). Observe that v has no neighbor outside V (Q) ∪MA and m1 ∈ MA is

adjacent to all vertices in V (Q) ∪MA (Observation 39). Now let u be the neighbor of v
in the sub-path of P ∗ from v to m2. Observe that u ∈ V (Q), and therefore we obtain
a chord (m1, u) in P ∗, which is a contradiction. Therefore, m∗

1,m
∗
2 /∈ MA, and thus

we have that V (P ∗) ∩ MA = ∅. Observe that P ∗ satisfies the premise of Lemma 8.22,
as the endpoints of P ∗ lie outside V (Q), it contains an internal vertex from QI , and
V (P ) ∩ MA = ∅. Therefore, P ∗ ∩ Q is an induced path from a vertex in B� \ CQ to a
vertex in Br \CQ such that P ∗− (B� ∪Br) is an induced path contained in QI . Finally,
as this argument holds for every nice-clique path Q, the lemma follows.

Lemma 8.27. Let S be a good set of size at most k + 2 such that G+ − S has an
obstruction O (that is not covered by W). Then there is a nice obstruction O′ in G+−S

(that is not covered by W).

Proof. As S is a good set of size at most k+2, it hits all sets in W . Therefore, O contains
at least 10 vertices from M . If O is a chordless cycle, then by Lemma 8.26, it is a nice
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obstruction. Otherwise O is an AW, and suppose that it is not a nice obstruction. LetO′
be an obstruction in G+ − S that is Q′-manageable for every manageable-path Q′. It is
obtained by iteratively applying Lemma 8.23 or Lemma 8.25 for every manageable-clique
path Q′, depending on the sets base(O)∩Q′

I and P (O)∩MA. Note that, each application
of these lemmas modifies the obstruction only within the corresponding manageable-
clique path.

We claim that O′ is a nice obstruction in G+ − S. Consider a nice-clique path
Q = Q′[Bi, Bj ] (i.e. it is nice-clique path that is contained in the manageable-clique path
Q′, and it the sub-clique path between a pair of consecutive marked bags Bi, Bj in Q′).
We must show that V (O′)∩(V (Q)\CQ) is either a subset of Bi∪Bj , or an induced path
between a vertex in Bi\CQ and a vertex in Bj\CQ such that (V (O)∩V (Q))\(B�∪Br) ⊆
QI . Here, CQ = Bi ∩ Bj . We note that the partition of M into MA and MP that be
obtain with respect to Q′ is same as the partition that we obtain with respect to Q.
Thus we deal with the partition of M into MA and MP which is defined by Q′. First
suppose that either base(O)∩Q′

I �= ∅ or P (O)∩MA = ∅. Then, as O is Q′-manageable
by Lemma 8.23, it follows that V (O)∩ (V (Q′) \C ′

Q) is always contained in marked bags
of Q′. Therefore V (O) ∩ (V (Q) \ CQ) ⊆ Bi ∪Bj .

Otherwise, base(O) ∩ Q′
I �= ∅ and P (O) ∩MA = ∅. Then by Lemma 8.25, O′ is Q-

manageable for the manageable-clique path Q′. Therefore, from Lemma 8.24 we know
that P = O′∩(Q′−CQ′) is an induced path from a vertex in B′

�\CQ′ to a vertex inB′
r\CQ′ ,

where B′
� and B′

r are the first and the last bags of Q′ respectively, and C ′
Q = B′

� ∩ B′
r.

Observe that P visits every bag in Q = Q′[Bi, Bj ]. Moreover, P ⊆ base(O′) and by
Observation 42 {c1, c2} ⊆ C ′

Q∪MA. And Observation 43 implies that t�, tr /∈ V (Q′) (the
endpoints of P (O)). Also note that C ′

Q ⊆ CQ by definition. Now, if V (P )∩(V (Q)\CQ) ⊆
Bi ∪ Bj , then O′ is Q-nice. Otherwise, V (P ) ∩ QI �= ∅. Now observe that the path
P (O) and Q satisfy the following conditions: (i) P (O) contains has an internal vertex
from QI , (ii) V (P (O)) ∩ MA = ∅, (iii) V (P (O)) ∩ (V (G+) \ QI) �= ∅ and (iv) the
endpoints of P (O) lie outside QI . Thus, P (O) satisfies the premise of Lemma 8.22.
Therefore, P (O) ∩ (Q \ CQ) is an induced path from a vertex in Bi \ CQ to a vertex in
Bj \ CQ such that (V (P (O′)) ∩ V (Q)) \ (Bi ∪ Bj) ⊆ QI . Hence V (O′) ∩ (V (Q) \ CQ)
is an induced path between a vertex in Bi \ CQ and a vertex in Bj \ CQ such that
(V (O) ∩ V (Q)) \ (B� ∪Br) ⊆ QI . Thus, O is Q-nice. This concludes the proof.

Let us remark that the proof of Lemma 8.27, Definition 8.5 and earlier results show
the following corollary.

Corollary 8.3. If O is a nice obstruction in G+ that is not covered by W, then for any
nice-clique path Q, O ∩Q is either a subset of B� ∪Br, or O ∩ (Q− CQ) is an induced
path between a vertex in B� \ CQ and a vertex in Br \ CQ that contains a vertex of QI .
Furthermore, in the second case and when O is an AW, V (O) ∩ (CQ ∪MA) = {c1, c2},
and (V (O)∩V (Q)) \ (B� ∪Br) is an induced path in QI which is a sub-path of base(O).
Here, B� and Br are the first and last bags of Q, respectively.

Let us note that the induced path V (O) ∩ (V (Q) \ CQ), in the above corollary, is
disjoint from CQ. Furthermore, this path lies in P (O) wheneverO is an AW. This follows
from the proof of Lemma 8.27. We will require a strengthening of the above corollary
that allows us to “replace” the path P = O ∩ (Q − CQ) in O with another path P ′
between the endpoint bags of Q and obtain a new obstruction. To obtain this property,
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we need to further partition a nice-clique path by marking the following collection of
bags.

Marking Scheme V. For every nice-clique path Q with endpoint bags B�, Br, mark
every pair of adjacent bags B,B′ in Q such that B∩B� � B′∩B�, or B∩Br � B′∩Br.

Clearly, we mark at most 4η bags for each nice-clique path Q. Recall that we have at
most 64η3|M | manageable-clique paths and for each manageable-clique path we marked
at most O((2η + |M |)12(k + 2)3) bags using Marking Scheme IV. Hence, in Marking

Scheme V we mark at most O(η16|M |k3) bags. Here, we rely on the fact that η > |M |.

Observation 45. Let Bi, Bj be a pair of consecutive marked bags in a nice-clique path
Q. Then for every B ∈ Q[Bi, Bj ], we have Bi ∩B� = B ∩B� = Bj ∩B�, and Bi ∩Br =
B ∩Br = Bj ∩Br. Here, B� and Br are endpoint bags of Q.

Let us review the structural results we have obtained till now. Let O be a nice AW
in G which is not covered by W . Then O is also a nice AW in G+. Observe that the
converse holds as well, i.e. if O is a nice AW in G+ then it is a nice AW in G. Next, the
terminal vertices and center vertices of O either lie in marked bags in K, or lie in the
modulator M , or lie outside K (from Definition 8.5, Lemma 8.26 and Lemma 8.27). Let
Q be a nice-clique path such that O ∩ (Q−CQ) is an induced path P between a vertex
in B� \ CQ and a vertex in Br \ CQ that contains a vertex in Q − (B� ∪ Br). Here, B�

and Br are endpoint bags of Q. Note that the vertices in Q − (B� ∪ Br) are unmarked
vertices up till Marking Scheme IV, and therefore it lies in base(O). From our arguments
in Lemma 8.27, we have the following properties. As P contains an unmarked vertex
(up till Marking Scheme IV), base(O) ∩QI �= ∅ and P (O) ∩MA = ∅. The vertices of P
lie in P (O). Furthermore, the internal vertices of P lie in base(O) and P − (B� ∪Br) is
an induced path contained in QI . The centers c1, c2 of O lie in CQ ∪MA. The shallow
terminal t of O lies outside V (Q) as P visits every bag in Q. Consider any pair of
consecutive marked bags Bi, Bj in Q under Marking Scheme V. Let Qij denote the sub-
clique path Q[Bi, Bj ], and let Cij denote the set Bi∩Bj . Consider the path Pij = P ∩Qij

and suppose that Pij contains a vertex in Qij −Cij . Then, as Pij is an induced path, it
is disjoint from Cij , which is part of every bag of Qij . Therefore, Pij contains no vertex
in B�∪Br (since Qij∩(B�∪Br) ⊆ Cij). In other words Pij ⊆ QI . Furthermore, as every
vertex of Pij is an internal vertex of P ⊆ P (O), we have Pij ⊆ base(O). Let u ∈ Bi

and v ∈ Bj be the endpoints of Pij . Now, let P ′
ij be another induced path between u

and v in Q[Bi, Bj ]−Cij , and observe that P ′
ij ⊆ QI . Let us note that when O is a nice

chordless cycle, we define the paths P , Pij and P ′
ij in a similar manner. We then have

the following lemma.

Lemma 8.28. There is a nice obstruction O′ which is not covered by W such that
O′ ⊆ (O− Pij) ∪ P ′

ij.

Proof. Since every vertex of P ′
ij lies in QI , the neighborhood of these vertices is contained

in V (Q)∪MA. Recall that P = O∩(Q−CQ) is an induced path from a vertex say, x ∈ B�

to a vertex say, y ∈ Br that contains a vertex in Q− (B� ∪Br) and P ⊆ base(O). By xo
and yo we denote the neighbors of x and y in P , respectively. Let P ′ be an induced path
between x and y in G[(V (P )\V (Pij))∪V (P ′

ij)]. Also, letO
′ = G[(V (O)\V (P ))∪V (P ′)],
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and xc and yc be the neighbors of x and y in P ′, respectively. Notice that all the internal
vertices of P ′ except possibly xc and yc are contained in QI . Moreover, if xc /∈ QI

then xc ∈ B� and hence xc = xo, which follows from Observation 45 and the fact that
Pij , P

′
ij do not contain any vertex from B� ∪ Br. Similarly, if yc /∈ QI then yc ∈ Br

and yc = yo. Let T = (NP ′ [x] ∩ B�) ∪ (NP ′ [y] ∩ Br). The above discussion implies
that Pf = G[(V (P (O)) \ V (P )) ∪ V (P ′)] is an induced path from t� to tr. Here, t� and
tr are the base terminals of O if O is an AW, and otherwise O is a chordless cycle in
which case t� and tr are neighbors of x and y, respectively in O which are different from
their neighbors in P . Notice that for each w ∈ V (P ′) \ T we have N(w) ⊆ V (Q) ∪MA.
Therefore, from the above discussions, if O is a chordless cycle then O′ is a chordless
cycle on at least 4 vertices. Here, we rely on the fact that there are at least 10 vertices
from M in O and they all lie in MP . Next, consider the case when O is an AW. Notice
that as P contains a vertex in Qij − Cij , therefore the centers c1, c2 of O belong to
CQ ∪ MA (see Observation 40). This implies that each vertex in P ′ is adjacent to c1
and c2. Finally, recall that there are at least 4 vertices in O−Q, as M is a 9-redundant
solution and O is not covered by W . Now it follows that O′ = O − P ∪ P ′ is also an
obstruction. In each of the cases, by construction we have that O′ is Q-nice and is not
covered by W . Moreover, O−V (Q) = O′−V (Q). Therefore, it follows that O is a nice
obstruction which is not covered by W .

In the following, by a separator, we mean a Bi\Cij and Bj \Cij separator in Qij−Cij .
Let us note that any such separator in G is also a separator in G+, and vice-versa. We
apply the above lemma (Lemma 8.28) to derive the fact that any minimal solution either
does not intersect V (Qij)\Cij or contains a separator. Furthermore, we can replace this
separator with any other separator and the resulting set is also a solution. For a set
S ⊆ V (G), by Sij we denote the set S ∩ (V (Qij) \ Cij).

Lemma 8.29. Let S be a solution of size at most k+2 in G (or G+) such that it contains
a vertex in V (Qij)\Cij. Then either Sij is a separator, or else S \Sij is also a solution.
Furthermore, if Sij is a separator then for any separator S∗

ij such that S∗ = (S\Sij)∪S∗
ij

has size at most k + 2, the set S∗ is also a solution.

Proof. First suppose that Sij is not a separator. As S is a solution of size at most k+ 2
in G, it hits all the sets in W . Hence G−S = G+−S, i.e. S is a solution in G+. By our
assumptions, S does not separate Bi \ Cij and Bj \ Cij in Qij − Cij . Let S′ = S \ Sij .
If S′ is not a solution, there is an obstruction O′ in the graph G− S′, and note that O′
contains a vertex of S \ S′ ⊆ V (Qij) \ Cij . Since M ∩ S = M ∩ S′, it follows that S′
also hits all the sets in W . Hence, |O′ ∩M | ≥ 10 and O′ is an obstruction in G+ − S′.
Therefore by Lemma 8.27, we obtain a nice obstruction O in G+ − S′, which is also
present in G − S′. Here, we rely on the fact that G+ − S′ = G − S′ which is implied
by the fact that S′ is a hitting set for W . Now we consider the obstruction O′ in the
graph G+. Clearly, O also contains a vertex in S \ S′, and by Corollary 8.3, it follows
that O ∩ (Q − CQ) is a path P between a vertex of B� \ CQ and a vertex of Br \ CQ

that is disjoint from CQ. Let Pij = P ∩ Qij and note that Pij contains a vertex of
S \ S′ ⊆ V (Qij) \ Cij . Let u ∈ Bi and v ∈ Bj be the endpoints Pij . Since Sij is not a
separator, there is an induced path P ′

ij between u and v in Qij−Cij that is disjoint from
S. Here, we rely on the fact that B� and Br are cliques. Now, by Lemma 8.28, we have
an obstruction O′′ ⊆ G[(V (O) \ V (Pij)) ∪ V (P ′

ij) that is not covered by W in G+ (and
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G), and by construction it is disjoint from S. But this is a contradiction. Therefore S′
must also be a solution.

Now suppose that Sij is a separator. We now argue that if S∗
ij is another separator,

such that S∗ = (S \ Sij) ∪ S∗
ij has size at most k + 2, then S∗ is also a solution.

Suppose not, then we can argue that there is a nice obstruction O in G − S∗, such
that it contains a vertex of Sij ⊆ V (Qij) \ Cij . Then, as before, we obtain a path Pij

in G[V (O) ∩ (V (Qij) \ Cij)] between a vertex in Bi \ Cij and a vertex in Bj \ Cij in
Qij − Cij . But this contradicts the fact that S∗

ij is a separator. Therefore S∗ is also a
solution.

Corollary 8.4. (i) If S is a minimal solution in G (or G+) and |S| ≤ k + 2, then Sij

is either a minimal separator or ∅.
(ii) If S is an optimum solution in G (or G+) and |S| ≤ k + 2, then Sij is either a

minimum separator or ∅.

For each pair of consecutive bags Bi, Bj , let us select a minimum sized separator S∗
ij .

Then we have the following lemma which follows from the proof of Lemma 8.29.

Lemma 8.30. Let S be any minimal solution to the instance G (or G+) of size at most
k+2. Then there is a solution S′ of cardinality at most |S| such that S′ ∩ (V (Qij) \Cij)
is either the empty set or S∗

ij.

We call the solutions of the above form good solutions. Let us recall the following
fact about interval graphs and their clique-path decomposition. In a clique path, any
separator is intersection of two adjacent bags. Observe that, by definition S∗

ij ∪ Cij is a
separator in Q (and more generally in K). We now have the following marking rule.

Marking Scheme VI. For each pair of consecutive marked bags Bi, Bj in Q, mark a
pair of bags B,B′ ∈ Qij such that B ∩B′ = S∗

ij ∪ Cij .

Following this marking scheme, we consider the problem of reducing the set of un-
marked vertices in Qij , where Q is a nice-clique path and Bi, Bj are two consecutive
marked bags.

Lemma 8.31. Let v be an unmarked vertex in Qij such that v is contained in only one
bag. Then (G, k) is a yes instance of IVD if and only if (G− {v}, k) is a yes instance
of IVD.

Proof. In the forward direction, let S be a solution in G of size at most k. Clearly, S is
a solution in G−{v} as well. Now we consider the reverse direction. Let S be a solution
of size at most k in G − {v} and suppose that it is not a solution in G. Observe that
S ∪ {v} is a solution in G of cardinality at most k + 1, and therefore it hits each set
in W . Hence G − (S ∪ {v}) = G+ − (S ∪ {v}) and S ∪ {v} is also a solution in G+.
Further observe that, as v /∈ M , we have that S hits every set in W . This implies that
G − S = G+ − S. Now consider an obstruction O in G − S, and clearly it includes v.
It follows that the obstruction O is also present in G+ − S, and furthermore V (O) ∩M

contains at least 10 vertices asO is not covered byW . Let us considerO in the graph G+

along with the good set S. Observe that N(v) ⊆ B ∪MA, where B is the (unique) bag
containing v, and (B ∪MA) \S is a clique in G+−S (using Observation 39). Therefore,
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O is not a chordless cycle, and hence O is an AW. Now, by Lemma 8.27, there is a
nice obstruction O′ in G+ − S, and note that all terminals of O′ lie in marked bags. If
v ∈ O′, then as v is an unmarked vertex, by Observation 40 and Corollary 8.3, v lies in
base(O) and therefore N(v) must contain a pair of non-adjacent vertices. But this is a
contradiction. Hence, v is not part of the obstruction O′. This implies that that O′ is
an obstruction in G+ − (S ∪ {v}) (and in G − (S ∪ {v}) as well). But then O′ is also
present in (G−{v})−S, which is also a contradiction. Hence, S must also be a solution
in G. This concludes the proof of this lemma.

The above lemma gives the following reduction rule.

Reduction Rule 8.7. Let Q be a nice-clique path, and let Bi, Bj a pair of consecutive
marked bags. Then pick a unmarked vertex in Q[Bi, Bj ] that is contained in only one
bag, and delete it from the graph G. The resulting instance is (G− {v}, k).

If the above reduction rule is not applicable, then there are no unmarked vertices in
any nice-clique path Q that are contained in only one bag. Then observe that for any
bag unmarked B in Q we have B = (B ∩ B−1) ∪ (B ∩ B+1). Let us now consider the
remaining of the unmarked vertices in Qij .

Lemma 8.32. Let Qij contain an unmarked vertex. Then there is an edge (u, v) such
that at least one of its endpoint is an unmarked vertex, and there is only one bag in Qij

that contains this edge.

Proof. Let us traverse in Q[Bi, Bj ] from Bi, and let B be the first bag in Qij that
contains an unmarked vertex. Let us partition the bag B into three parts as follows,
B2 = B−1 ∩ B+1 ⊆ B, B1 = (B ∩ B−1) \ B2 and B3 = B ∩ B+1 \ B2. Note that,
B ∩ B−1 = B1 ∪ B2, and B ∩ B+1 = B2 ∩ B3. Furthermore, if B1 = ∅ then B =
B2 ∪ B3 ⊆ B+1, which is a contradiction as B is a maximal clique in the clique path
Q, and hence B �⊆ B+1. Therefore B1 �= ∅, and similarly B3 �= ∅. Now consider an
unmarked vertex u ∈ B and observe that u ∈ B3. Next we choose a vertex v ∈ B1 and
clearly it is distinct from u. Furthermore, as v /∈ B+1 and u /∈ B−1, we have that the
edge (u, v) is present only in B.

In the following, we select an edge e = (u, v) given by the above lemma (Lemma 8.32),
that lies in Qij for some pair of consecutive marked bags Bi, Bj in the nice-clique path
Q. We call such an edge an irrelevant edge. Note that, by construction, u, v /∈ Cij and
therefore they belong to QI .

Lemma 8.33. Let (u, v) be an irrelevant edge in Qij. Then there is no minimal separator
of Bi \ Cij and Bj \ Cij in Qij − Cij that contains both u and v.

Proof. Recall that Qij −Cij is a clique path (possibly disconnected) with endpoint bags
Bi −Cij and Bj −Cij . Therefore every minimal separator of these endpoint bags is the
intersection of a pair of adjacent bags in Qij − Cij . If both u and v were in a minimal-
separator, then the edge (u, v) appears in at least two bags, which is a contradiction.
Therefore, there is no minimal separator that contains both u and v.

Observation 46. A minimal solution of size at most k + 2 in G (or G+) contains at
most one of u and v, where (u, v) is an irrelevant edge.
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Proof. Let S be a minimal solution in G that contains both of u and v. As before, we
conclude that S is also a solution in G+. Then, as S contains a vertex of V (Qij) \ Cij ,
by Corollary 8.4 we have Sij = S ∩ (V (Qij) \ Cij) is a minimal separator. Now, by our
assumptions, Sij contains both u and v, whereas by Lemma 8.33, no minimal separator
can contain both these vertices. This is a contradiction.

Let us also recall that G+ is a super-graph obtained by adding additional edges in
M for sets of size 2 in W . Therefore, any induced subgraph of G+ that is not covered
W is present in G and vice-versa. In particular, any edge in G+ whose end-points don’t
form a set of W , is also present in G.

Lemma 8.34. Let e = (u, v) be an irrelevant edge in Qij −Cij, where u is an unmarked
vertex. Then (G, k) is a yes instance of IVD if and only if (G/e, k) is a yes instance of
IVD.

Proof. Let z∗ denote the vertex obtained by contracting the irrelevant edge e = (u, v).
Let S be a solution of size k in G. Observe that, we can assume S is a minimal solution,
and therefore it does not contain both u and v. Let S′ = (S \ {u, v})∪ {z∗} whenever S
contains at least one of u, v and S′ = S otherwise. In the first case, observe that G/e−S′
is isomorphic to G − (S ∪ {u, v}). And in the second case G/e − S′ is isomorphic to
(G − S)/e. As interval graphs are closed under edge-contractions and vertex deletions
(Observation 32), we have that S′ is a solution in G/e of size at most k.

Now suppose that S′ is a solution of size at most k in G/e. We have two cases
depending on whether or not z∗ ∈ S′. First consider the case when z∗ ∈ S′. Then
S = (S′ \ {z∗}) ∪ {u, v} is a solution of size k + 1 in G, as G − S is isomorphic to
G/e − S′. Now, as S is a solution of size at most k + 1, it must hit each set in W .
Therefore, G+ − S = G − S, i.e. S is a solution in G+. Furthermore S \ {u, v} hits
each set in W , as u, v /∈ M . Let us now consider the graph G+ and the good set (also
a solution) S of size at most k + 1 in it. Observe that S contains an unmarked vertex
in Qij (since u, v ∈ Qij). Therefore by Lemma 8.29, it follows that either there is a
strict subset S′′ of S that is also a solution, or Sij = S ∩ (V (Qij) \Cij) is a separator of
Bi \Cij and Bj \Cij in Qij −Cij . In the first case, we obtain a solution S+ = S′′ in G+

of size at most k. In the second case, observe that Sij cannot be a minimal separator,
as that will contradict Lemma 8.33. Therefore, as u, v ∈ Sij , there is a strict subset
S′
ij that includes at most one of u an v, which is also separator. Then by Lemma 8.29,

S∗ = (S \ Sij) ∪ S′
ij is also a solution in G+, and note that it has size at most k. Hence

we have obtained a solution S∗ in G+ of size at most k. Further observe that S∗ hits
every set in W . Therefore G+ − S∗ = G − S∗, i.e. S∗ is a solution of size at most k in
G.

Now consider the case when z∗ /∈ S′. In this case, let S = S′ ∪ {u, v}, and observe
that it has size k + 2. As G− S is isomorphic to G/e− (S′ ∪ {z∗}), we have that S is a
solution in G. As W is a (k+2)-necessary set, S hits each set in W , which then implies
that S′ hits each set in W . Therefore G−S′ = G+ −S′. Also note that S′ is a good set
in G+ of cardinality at most k. Now we claim that S′ is a solution of cardinality k in G.
Suppose not and let there be an obstruction O′ in G− S′. As S′ hits W , we have that
O′ is not covered by W and O′ ∩M contains at least 10 vertices. Further note that O′
is also present in the graph G+ − S′. Now consider the graph G+, the obstruction O′
and the good set S′. By Lemma 8.27, there is a nice obstruction O in G+−S′ and note



180 Kernel for Interval Vertex Deletion

that is not covered by W . Also note that, since G− S′ = G+ − S′ and V (O) ∩ S′ = ∅,
the properties of O derived in G+ also hold in G.

First suppose that V (O)∩{u, v} = ∅. Then clearly O is present in G/e, and further-
more it is disjoint from S′. This is a contradiction. Next, suppose that V (O) ∩ {u, v}
is one of u or v. We claim that G/e[(V (O) \ {u, v}) ∪ {z∗}] contains an obstruc-
tion. Now consider the obstruction O in the graph G+ and the good set S′. And
note that O is not covered by W . As u, v ∈ V (Qij) \ Cij , they lie in QI . Therefore
N(u) ∪N(v) ⊆ V (Q) ∪MA, and hence u, v have no neighbors in V (O) \ (V (Q) ∪MA).
Now, as P = O ∩ (Q− CQ) contains a vertex from QI , by Corollary 8.3, P must be an
induced path between a vertex in B�\CQ and a vertex in Br \CQ such that P−(B�∪Br)
is an induced path contained in QI . Let us also note that P must contain at least 3
vertices. Now we have two following cases.

• Consider the case when O is a chordless cycle in G+ (and G as well). As O is a
nice obstruction we have |V (O) ∩M | ≥ 10. And as P contains at least 3 vertices,
V (O) ∩MA = ∅ (using Observation 39). Hence (N(u) ∪N(v)) ∩ (V (O) ∩M) = ∅
in G+ (and G as well). Now we can conclude that G/e[(V (O) \ {u, v}) ∪ {z∗}]
contains a chordless cycle, by considering a vertex m ∈ V (O) ∩ M and the two
induced paths between m and z∗ in G/e[(V (O) \ {u, v}) ∪ {z∗}].

• Next, we consider the case when O is an AW in G+ (and G as well). As O is a
nice obstruction that contains a vertex from QI , it follows that P ⊆ P (O) and
P ∩ QI ⊆ base(O) (see the proof of Lemma 8.27, Lemma 8.28 and Lemma 8.24).
Note that {u, v} ∩ P ⊂ base(O). Furthermore, P (O) ∩ MA = ∅, as P contains
at least 3 vertices and any vertex in MA is adjacent to every vertex in Q (using
Observation 39). Also note that the shallow terminal t lies outside Q, as P visits
every bag in Q (using Corollary 8.3). Hence, V (O) ∩ (V (Q) ∪ MA) = V (P ) ∪
{c1, c2}. Therefore (N(u) ∪ N(v)) ∩ V (O) ⊆ V (P ) ∪ {c1, c2} in G+ (and G as
well). Furthermore {c1, c2} ⊆ CQ ∪MA (see the proof of Lemma 8.27). And since
|base(O) ∩M | ≥ 5, we have that P is a strict subset of P (O). Therefore, (N(u) ∪
N(v)) ∩ (V (O) \ {c1, c2}) is a strict subset of V (P (O)) and u, v ∈ N(c1) ∩N(c2).
Hence G/e[(V (P (O)) \ {u, v})∪ {z∗}] contains an induced path from t� to tr with
at least 6 internal vertices, where t� and tr are base terminals of O. Now it follows
that G/e[(V (O) \ {u, v}) ∪ {z∗}] contains an AW of the same type as O. Further
observe that this obstruction lies in G/e− S′, which is a contradiction.

Now we consider the case that both u, v are present in O. We claim that O/e is
an obstruction in G/e. Indeed, if O is a chordless cycle, then as it contains at least
10 vertices in M , it follows that O/e is also a chordless cycle on at least 9 vertices.
Otherwise, O is a nice AW. Now, recall that u is an unmarked vertex in Qij ⊆ Q

and observe that the vertex u lies in QI . Let P = O ∩ (Q − CQ) and observe that
P ∩ QI �= ∅. Therefore, by Corollary 8.3, we have that P is an induced path between
a vertex in B� \ CQ and a vertex in Br \ CQ, such that P − (B� ∪ Br) is an induced
path contained in QI . Let Pij = P ∩ Qij and observe that it contains the edge (u, v).
Furthermore, Pij∩(B�∪Br) = ∅ by the construction of Qij (from the marking schemes).
Therefore all vertices in Pij , and in particular the vertices u and v, must be internal
vertices of P (O), i.e. they are in base(O) (see the proof of Lemma 8.27). Finally, recall
that base(O) contains at least 5 vertices of M . Therefore, P (O)/e is an induced path on
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at least 6 vertices between t� and tr. Hence, it follows that O/e is an AW of the same
type as O, and further it is present in G/e. Finally observe that O/e is an obstruction
in G/e that is disjoint from S′. This is a contradiction.

Having obtained a contradiction in all cases, we must conclude that S′ is a solution
in G, and recall that it has size at most k. This concludes the proof of this lemma.

The above lemma (Lemma 8.34) gives us the following reduction rule.

Reduction Rule 8.8. Let (u, v) be an irrelevant edge in Qij − Cij where u is an un-
marked vertex. Then contract the edge (u, v) in the graph G. The resulting instance is
(G/e, k).

By Reduction Rule 8.8, we may assume that there are no unmarked vertices in Qij .
Then applying this reduction rule over all pairs of consecutive marked bags in every
nice-clique path, we conclude that all vertices in the clique path K are marked. Finally,
we apply the above marking schemes and reduction rules for every clique path in G−M ,
and conclude that all the vertices in G −M are marked. We now proceed to bounding
the number of vertices in the graph.

8.5 The Number of Vertices in the Kernel

Suppose that none of the reduction rules apply to the given instance. Then we obtain
the following bound on the number of vertices in G. First recall that |M | = O(k10),
and the total number of vertices in the module components of G − M is bounded by
O(k3|M |6) = O(k63). Now let us bound the number of vertices in the non-module
components of G −M . There are at most O(|M |) such components, and each of them
is a clique-path. Consider one such component K. Recall that, the size of any clique
in G − M is upper bounded by η = O(k|M |10) = O(k101). Now, in Marking Scheme
I, we mark at most O(η|M |) bags in K. Then for each pair of consecutive marked
bags in K, Marking Scheme II and III, which consider two disjoint cases, together mark
O(η7|M |k2) + O(η3|M |) bags in K. Note that the bags marked by Marking Scheme
II lie in module components of K. Next, for each pair of consecutive marked bags in
Marking Scheme I and III, gives us O(η3|M |) manageable clique paths in K. For each
manageable clique path we mark O(k3η12) bags to partition it into nice clique paths.
Hence, Marking Scheme IV marks a total ofO(η15|M |k3) bags inK. Then again, for each
pair of consecutive marked bags, Marking Scheme V marks O(η) bags. Hence the total
number of marked bags in G−M is O(|M |η16k3) = O(k1629). Finally, Marking Scheme
VI marks only 2 bags for each pair of consecutive marked bags in Marking Scheme V.
Therefore, the total number of marked bags in K is O(η7|M |k2) + O(η16|M |k3) which
is O(η16|M |k3) = O(k1629). Now, we can bound the total number of vertices in the
clique path K as O(k1629) ·O(η) = O(k1730). Finally, we can bound the total number of
vertices contained in non-module components of G−M as O(k1730) ·O(|M |) = O(k1740).
Clearly, this is also an upper bound on the total number of vertices in G.
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Chapter 9

Split Contraction

In this chapter, we look at the problem of contracting a given graph to a split graph.
Recall that a split graph is a graph whose vertex set can be partitioned into two sets, A
and B, such that A is a clique while B is an independent set in the graph. The problem
we study is called Split Contraction, which is formally defined below.

Split Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist X ⊆ E(G) such that G/X is a split graph and |X| ≤ k?

It seemed plausible that Split Contraction, like F-Edge Contraction where
F is the family of cliques, is solvable in time 2O(k log k) · nO(1). From the proposed
algorithm for the problem [GC15] it seems like the bottleneck of the problem is captured
by graphs having small vertex covers. Interestingly, the first result in this chapter,
given in Section 9.1, proves that it is unlikely to overcome the difficulty imposed by
such graphs. In particular, we show that unless the ETH fails, Split Contraction

parameterized by �, the size of a minimum vertex cover of the input graph, does not have
an algorithm running in time 2o(�

2) · nO(1). Here, n denotes the number of vertices in
the input graph. To the best of our knowledge, under the Exponential Time Hypothesis
(ETH) [IPZ01, CFK+15], this is the first tight lower bound of this form for problems
parameterized by the vertex cover number of the input graph. Lately, there has been
increasing scientific interest in the examination of lower bounds of forms other than
2o(s) · nO(1) for some parameters s. For example, lower bounds that are “slightly super-
exponential”, i.e. of the form 2o(s log s) ·nO(1) for various parameters s, have been studied

in [LMS11]. Cygan et al. [CPP16] obtained a lower bound of the form 22
o(k) · nO(1),

where k is the solution size, for the Edge Clique Cover problem. Very recently,

Marx and Mitsoue [MM16] have further obtained lower bounds of the forms 22
o(w) ·nO(1)

and 22
2o(w)

·nO(1), where w is the treewidth of the input graph, for choosability problems.
In order to derive the lower bound result when parameterized by size of vertex cover, we
make use of a partitioning of the vertex set V (G) into sets C1, . . . , Ct, which is obtained
by using harmonious coloring. Recall that in Chapter 4 (Section 4.2.1) we illustrated
usage of such a partitioning in deriving lower bound results.

In Section 9.2 we prove the Split Contraction is W[1]-hard when parmeterized
by the size of a solution. We find this result surprising: one might a priori expect
that “contraction to split graphs” should be easy as split graphs have structures that
seem relatively simple. Indeed, many NP-hard problems admit simple polynomial-time
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algorithms if restricted to split graphs. Consequently, this result can also be viewed
as a strong evidence of the inherent complexity of the edit operation which contracts
edges. Furthermore, some of the ideas underlying the constructions of this reduction,
such as the exploitation of properties of a special case of the Perfect Code problem
to analyze budget constraints involving edge contractions, might be used to establish
other W[1]-hard results for problems of similar flavors.

We design a (standalone) FPT algorithm for Split Contraction that runs in

time 2O(�2) · nO(1), where � is the size of the minimum vertex cover in the input graph
(Section 9.3). This matches the lower bound result that we prove.

9.1 Lower Bound for Split-Contraction Parameter-

ized by Vertex Cover

In this section, we show that unless the ETH fails, Split Contraction does not admit
an algorithm running in time 2o(�

2)nO(1), where � is the size of a minimum vertex cover
of the input graph G on n vertices.

To obtain our lower bound, we give an appropriate reduction from Vertex Cover

on sub-cubic graphs. For this we utilize the fact that Vertex Cover on sub-
cubic graphs does not have an algorithm running in time 2o(n)nO(1) unless the ETH
fails [IPZ01, Kom15]. For the ease of presentation we split the reduction into two steps.
The first step comprises of reducing a special case of Vertex Cover on sub-cubic
graphs, which we call Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)
to Split Contraction. In the second step we show that there does not exist an algo-
rithm running in time 2o(n)nO(1) for Sub-Cubic PVC. We remark that the reduction
from Vertex Cover on sub-cubic graphs (Sub-Cubic VC) to Sub-Cubic PVC is a
Turing reduction.

9.1.1 Reduction from Sub-Cubic Partitioned Vertex Cover to
Split Contraction

In this section, we give a reduction from Sub-Cubic Partitioned Vertex Cover

to Split Contraction. Next, we formally define Sub-Cubic Partitioned Vertex

Cover.

Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)
Input: A sub-cubic graph G, an integer t, for each i ∈ [t], an integer ki ≥ 0, a
partition P = {C1, . . . , Ct} of V (G) such that t ∈ O(

√
|V (G)|) and for all i ∈ [t],

Ci is an independent set and |Ci| ∈ O(
√

|V (G)|). Furthermore, for i, j ∈ [t], i �= j,
|E(G[Ci ∪ Cj ]) ∩ E(G)| = 1.
Question: Does G have a vertex cover X such that for all i ∈ [t], |X ∩ Ci| ≤ ki?

We first explain (informally) the ideas behind our reduction. Let X be a hypothetical
vertex cover we are looking for. Recall that we assume the ETH holds and thus we are
allowed to use 2o(n)nO(1) time to obtain our reduction. We will use this freedom to design
our reduction and to construct an instance (G′, k′) of Split Contraction. For i ∈ [t],
in V (G′), we have a vertex corresponding to each possible intersection of X with Ci on
at most ki vertices. Furthermore, we have a vertex ci ∈ V (G′) corresponding to each
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Figure 9.1: Reduction from Sub-Cubic PVC to Split Contraction.

Ci, for i ∈ [t]. We want to make sure that for each (u, v) ∈ E(G), we choose an edge
in E(G′) (in the solution to Split Contraction) that is incident to a vertex which
corresponds to a subset containing one of u or v and one of ci or cj . Furthermore, we
want to force these selected vertices to be contracted to the clique side in the resulting
split graph. We crucially exploit the fact that there is exactly one edge between every
Ci, Cj pair, where i, j ∈ [t], i �= j. Finally, we will add a clique, say Γ, of size 3t and
make each of its vertices adjacent to many pendant vertices, which ensures that after
contracting the solution edges, the vertices of Γ remain in the clique side. We will assign
appropriate adjacencies between the vertices of Γ and ci, for i ∈ [t]. This will guide us in
selecting edges for the solution of the contraction problem. We now move to the formal
description of the construction used in the reduction.

Construction. Let (G,P = {C1, C2, . . . , Ct}, k1, . . . , kt) be an instance of Sub-Cubic

PVC and n = |V (G)|. We create an instance of Split Contraction (G′, k′) as
follows. For i ∈ [t], let Si = {vY | Y ⊆ Ci and |Y | ≤ ki}. That is, Si comprises of
vertices corresponding to subsets of Ci of size at most ki. For each i ∈ [t], we add
five vertices bi, ci, xi, yi, zi to V (G′). The vertices {xi, yi, zi | i ∈ [t]} induce a clique
(on 3t vertices) in G′. We add the edges (bi, sY ), (ci, sY ), (xi, sY ), (yi, sY ), (zi, sY ) for all
sY ∈ Si to E(G′). For i, j ∈ [t], i �= j, we add the edges (ci, xj), (ci, yj), (ci, zj) to E(G′).
For i, j ∈ [t], i �= j and sY ∈ Sj , we add the edge (ci, sY ) in E(G′) if and only if Y covers
the unique edge between Ci and Cj . For all i ∈ [t], we add 4t + 2 pendant vertices, b′ij ,
j ∈ [4t + 2], to bi. Similarly, for all i ∈ [t], we add 4t + 2 pendant vertices c′ij , x

′i
j , y

′i
j ,

and z′ij , j ∈ [4t+ 2], to ci, xi, yi and zi, respectively. The pendant vertices are added in
order to make sure that the vertices resulting after the contraction of their witness sets
belong to the clique side. This completes the construction of the graph G′. Observe that
{bi, ci, xi, yi, zi | i ∈ [t]} forms a minimum vertex cover of G′ of size 5t. Finally, we set
k′ = 2t. The resulting instance of Split Contraction is (G′, k′). We refer the reader
to Figure 9.1 for an illustration of the construction.

In the next few lemmata (Lemmata 9.1 to 9.6) we prove certain properties of the
instance (G′, k′) of Split Contraction. This will be helpful later for establishing the
equivalence between the original instance (G,P = {C1, C2, . . . , Ct}, k1, . . . , kt) of Sub-
Cubic PVC and the instance (G′, k′) of Split Contraction. In Lemmas 9.1 to 9.6 we
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will use the following notations. We use T to denote a solution to Split Contraction

in (G′, k′) and H = G′/T with Ĉ, Î being a partition of V (H) inducing a clique and an
independent set, respectively, in H. We let ϕ : V (G′) → V (H) be the surjective function
defining the contractibility of G′ to H, and W be the H-witness structure of G′.

Lemma 9.1. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
v ∈ {bi, ci, xi, yi, zi | i ∈ [t]}, we have ϕ(v) ∈ Ĉ.

Proof. Consider v ∈ {bi, ci, xi, yi, zi | i ∈ [t]}. Recall that there are 4t + 2 = 2k′ + 2
pendant vertices v′ij , for j ∈ [2k′ + 2] adjacent to v. At most k′ edges in {(v′ij , v) | j ∈
[2k′ + 2]} can belong to T . Therefore, there exist j1, j2 ∈ [2k′ + 2], j1 �= j2 such that no
edge incident to v′ij1 or v

′i
j2
is in T . In other words, for h1 = ϕ(v′ij1) and h2 = ϕ(v′ij2), W (h1)

and W (h2) are singleton sets. Since W is a H-witness structure of G′, (h1, h2) /∈ E(H).
Therefore, at least one of h1, h2 belongs to Î, say h1 ∈ Î. This implies that ϕ(v) ∈ Ĉ.

Lemma 9.2. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
i ∈ [t], there exists sYi

∈ Si such that (bi, sYi
) ∈ T .

Proof. Towards a contradiction assume that there is i ∈ [t] such that for all sY ∈ Si,
(bi, sY ) /∈ T . Recall that NG′(bi) = Si ∪ {b′ij | j ∈ [4t + 2]}. Let h = ϕ(bi) and
A = {bj , cj , xj , yj , zj | j ∈ [t], j �= i}. There exists v ∈ A such that |W (h′)| = 1, where
h′ = ϕ(v). This follows from the fact that at most 2k′ = 4t vertices in A can be incident
to an edge in T , although |A| = 5(t− 1) > 4t, as t can be assumed to be larger than 6,
else the graph has constantly many edges and we can solve the problem in polynomial
time. From Lemma 9.1 it follows that (h, h′) ∈ E(H), but W (h),W (h′) are not adjacent
in G′, contradicting that W is an H-witness structure of G′. Hence the claim follows.

For each i ∈ [t], we arbitrarily choose a vertex s�Yi
∈ Si such that (bi, s

�
Yi
) ∈ T . The

existence of such a vertex is guaranteed by Lemma 9.2.

Lemma 9.3. Let (G′, k′) be a yes instance of Split Contraction and (bi, s
�
Yi
) ∈ T

for i ∈ [t]. Then, for hi = ϕ(s�Yi
), we have |W (hi)| ≥ 3. Furthermore, there is an edge

in T incident to bi or s�Yi
other than (bi, s

�
Yi
).

Proof. Suppose there exists i ∈ [t], hi = ϕ(s�Yi
) such that |W (hi)| < 3. Recall that

|W (hi)| ≥ 2, since bi ∈ W (hi). Let A = {xj , yj , zj | j ∈ [t], j �= i}. From Lemma 9.2, it
follows that for each j ∈ [t], there is an edge (bj , s

�
Yj
) ∈ T , therefore the number of edges in

T incident to a vertex in A is bounded by k′−t = t. But |A| = 3t−3 > 2t, therefore, there
exists a ∈ A such that for ha = ϕ(a), |W (ha)| = 1. From Lemma 9.1, (hi, ha) ∈ E(H),
therefore W (hi) and W (ha) must be adjacent in G′. But a /∈ N({bi, s�Yi

}), hence W (hi)
and W (ha) are not adjacent in G′, contradicting that W is an H-witness structure of G′.

Since |W (hi)| ≥ 3 and G[W (hi)] is connected, at least one of s
�
Yi
, bi must be adjacent

to an edge in T which is not (s�Yi
, bi).

Lemma 9.4. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
i ∈ [t], we have |W (hi)| ≥ 2 where hi = ϕ(ci).

Proof. Towards a contradiction assume that there exists i ∈ [t], hi = ϕ(ci), such that
|W (hi)| < 2. Let A = {cj | j ∈ [t], j �= i} ∪ {xi, yi, zi}. From Lemma 9.2 it follows that
the edge (bj , s

�
Yj
) ∈ T , for each j ∈ [t]. By Lemma 9.3 it follows that there is an edge in
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T that is adjacent to exactly one of {bj , s�Yj
} in T , for all j ∈ [t]. Therefore, at most t

vertices in A can be incident to an edge in T , while |A| = t+ 2. This implies that there
exists a ∈ A, ha = ϕ(a) such that |W (ha)| = 1. Observe that none of the vertices in A

are adjacent to ci in G′. Therefore, it follows that W (hi),W (ha) are not adjacent in G′.
But Lemma 9.1 implies that (hi, ha) ∈ E(H), a contradiction to W being an H-witness
structure of G′.

Lemma 9.5. Let (G′, k′) be a yes instance of Split Contraction and (bi, s
�
Yi
) ∈ T

for i ∈ [t]. Then, for each i ∈ [t], we have |W (hi)| = 3 where hi = ϕ(s�Yi
).

Proof. For i ∈ [t], let hi = ϕ(s�Yi
). From Lemma 9.3 we know that |W (hi)| ≥ 3. Let

C = {ci | i ∈ [t]} and S = {{bi, s�Yi
} | i ∈ [t]}. From Lemmata 9.3 and 9.4 it follows

that each c ∈ C must be incident to an edge in T and each S ∈ S must have a vertex
which is incident to an edge in T with the other endpoint not in S. Since |C| = |S| = t

and (bi, s
�
Yi
) ∈ T , for all i ∈ [t], there are at most t edges in T that are incident to a

vertex in C and a vertex in S ∈ S. Therefore, each c ∈ C is incident to exactly one
edge in T . Similarly, each S ∈ S is incident to exactly one edge with one endpoint in
S and the other not in S. This implies that exactly one vertex c ∈ C belongs to W (hi)
for i ∈ [t], and c does not belong to W (hj), where i �= j, i, j ∈ [t]. Also note that none
of the vertices in {xi, yi, zi | i ∈ [t]} can be incident to an edge in T . Similarly, none of
the vertices in {b′ij , c′ij , x′ij , y′ij , z′ij | i ∈ [t], j ∈ [4t + 2]} can be incident to an edge in T .
Hence, we get that |W (hi)| = 3, concluding the proof.

Lemma 9.6. Let (G′, k′) be a yes instance of Split Contraction and (bi, s
�
Yi
) ∈ T

for i ∈ [t]. Then, for all i ∈ [t], we have ci ∈ W (hi) where hi = ϕ(s�Yi
).

Proof. Suppose for some i ∈ [t], ci /∈ W (hi) where hi = ϕ(s�Yi
). From Lemmata 9.3, 9.4

and k′ = 2t, it follows that there exists some j ∈ [t] such that ci ∈ W (hj), where
hj = ϕ(s�Yj

). By our assumption, j �= i. From Lemma 9.5 we know that |W (hj)| = 3,

therefore W (hj) = {bj , s�Yj
, ci}. Moreover, by Lemmata 9.4 and 9.5 and since k′ = 2t,

|W (xi)| = 1. However, we then get thatW (hj),W (xi) are not adjacent in G′. By Lemma
9.1, we obtain a contradiction to the assumption that W is an H-witness structure of
G′. This completes the proof.

We are now ready to prove the main equivalence lemma of this section.

Lemma 9.7. (G,P = {C1, C2, . . . , Ct}, k1, . . . , kt) is a yes instance of Sub-Cubic

PVC if and only if (G′, k′) is a yes instance of Split Contraction.

Proof. In the forward direction, let Y be a vertex cover in G such that for each i ∈ [t],
|Y ∩ Ci| ≤ ki. For i ∈ [t], we let Yi = Y ∩ Ci. Let T = {(bi, sYi

), (ci, sYi
) | i ∈ [t]}. Let

H = G′/T , ϕ : V (G′) → V (H) be the underlying surjective map andW be theH-witness
structure of G′. To show that T is a solution to Split Contraction in (G′, k′), it is
enough to show that H is a split graph. Let I = ∪i∈[t](Si\{sYi

})∪{b′ij , c′ij , x′ij , y′ij , z′ij | i ∈
[t], j ∈ [4t + 2]}. Recall that for each v ∈ I, |W (ϕ(v))| = 1. Furthermore, for v, v′ ∈ I,
(v, v′) /∈ E(G′). Hence, it follows that Î = {ϕ(v) | v ∈ I} induces an independent set in
H. Let C1 = {xi, yi, zi | i ∈ [t]}. Recall that G′[C1] is a clique and from the construction
of T , |W (ϕ(c))| = 1 for all c ∈ C1. Therefore, Ĉ1 = {ϕ(c) | c ∈ C1} induces a clique in
H. Let C2 = {sYi

| i ∈ [t]}, hi = ϕ(sYi
) for i ∈ [t], and Ĉ2 = {hi | i ∈ [t]}. From the
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construction of T , we have W (hi) = {bi, ci, sYi
} for all i ∈ [t]. Observe that for c1 ∈ Ĉ1

and c2 ∈ Ĉ2, W (c1),W (c2) are adjacent in G′, therefore, (c1, c2) ∈ E(H). Consider
hi, hj ∈ Ĉ2, where i, j ∈ [t], i �= j. Recall W (hi) = {bi, sYi

, ci} and W (hj) = {bj , sYj
, cj}.

Since Y is a vertex cover, at least one of Yi or Yj covers the unique edge between Ci and
Cj in G, say Yi covers the edge between Ci and Cj . But then (sYi

, cj) ∈ E(G′), therefore
(hi, hj) ∈ E(H). The above argument implies that Ĉ = Ĉ1 ∪ Ĉ2 induces a clique in H.
Furthermore, V (H) = Î ∪ Ĉ. This implies that H is a split graph.

In the reverse direction, let T be a solution to Split Contraction in (G′, k′).
Let H = G′/T , ϕ : V (G′) → V (H) be the underlying surjective map and W be the
H-witness structure of G′. From Lemma 9.2, it follows that for all i ∈ [t], there exists
sYi

∈ Si such that (bi, sYi
) ∈ T . For i ∈ [t], let Yi be the set such that (bi, sYi

) ∈ T .
We let Y = ∪i∈[t]Yi. For i ∈ [t], from the definition of the vertices in Si, it follows that
|Y ∩ Ci| ≤ ki. We will show that Y is a vertex cover in G. Towards a contradiction
assume that there exists i, j ∈ [t], i �= j, such that Y does not cover the unique edge
between Ci and Cj . From Lemmas 9.2 and 9.6 it follows that W (hi) = {bi, sYi

, ci} and
W (hj) = {bj , sYj

, cj}, where hi = ϕ(sYi
) and hj = ϕ(sYj

). From Lemma 9.1 it follows
that (hi, hj) ∈ E(H). Therefore, W (hi) and W (hj) are adjacent in G′. Recall that
NG′(bi) ∩ W (hj) = ∅, NG′(bj) ∩ W (hi) = ∅, (ci, cj), (sYi

, sYj
) /∈ E(G′). Therefore, at

least one of (ci, sYj
), (cj , sYi

) must belong to E(G′), say (ci, sYj
) ∈ E(G′). But then by

construction it follows that Yj ⊆ Y covers the unique edge between Ci and Cj in G, a
contradiction. This completes the proof.

We are now ready to prove the main theorem of this section.

Theorem 9.1. Unless the ETH fails, Split Contraction parameterized by �, the size
of a minimum vertex cover of the input graph, does not have an algorithm running in
time 2o(�

2) · nO(1). Here, n denotes the number of vertices in the input graph.

Proof. Towards a contradiction assume that there is an algorithm A for Split Con-

traction, parameterized by �, the size of a minimum vertex cover, running in time
2o(�

2)nO(1). Let (G,P = {C1, C2, . . . , Ct}, k1, . . . , kt) be an instance of Sub-Cubic

PVC. We create an instance (G′, k′) of Split Contraction as described in the Con-
struction, running in time 2o(n) · nO(1), where n = |V (G)|. Recall that in the instance
created, the size of a minimum vertex cover is � = 5t = O(

√
n). Then we use algorithm

A for deciding if (G′, k′) is a yes instance of Split Contraction and return the same
answer for Sub-Cubic PVC on (G,P , k1, . . . , kt). The correctness of the answer re-
turned follows from Lemma 9.7. But then we can decide whether (G,P , k1, . . . , kt) is a
yes instance of Sub-Cubic PVC in time 2o(n) · nO(1), which contradicts ETH assuming
Theorem 9.2. This concludes the proof.

9.1.2 Reduction from Sub-Cubic VC to Sub-Cubic PVC

Finally, to complete our proof we show that Sub-Cubic PVC on graphs with n vertices
can not be solved in time 2o(n)nO(1) unless the ETH fails. In this section, we give a
Turing reduction from Sub-Cubic VC to Sub-Cubic PVC that will imply our desired
assertion.

Let (G, k) be an instance of Sub-Cubic VC and n = |V (G)|. We first create a new
instance (G′, k′) of Sub-Cubic VC satisfying certain properties. We start by computing
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(in polynomial time) a harmonious coloring of G using t ∈ O(
√
n) color classes such that

each color class contains at most O(
√
n) vertices using Proposition 2.1. Let C1, . . . , Ct

be the color classes. Recall that between each pair of the color classes, Ci, Cj for i, j ∈ [t],
i �= j, we have at most one edge. If for some i, j ∈ [t], i �= j, there is no edge between a
vertex in Ci and a vertex in Cj , then we add a new vertex xij in Ci and a new vertex
xji in Cj and add the edge (xij , xji). Observe that we add a matching corresponding to
a missing edge between a pair of color classes. In this process we can add at most t− 1
new vertices to a color class Ci, for i ∈ [t]. Therefore, the number of vertices in Ci for
i ∈ [t] after addition of new vertices is also bounded by O(

√
n). We denote the resulting

graph by G′ with partition of vertices C1, . . . , Ct (including the newly added vertices,
if any). Observe that the number of vertices n′ in G′ is at most O(n). Let m be the
number of matching edges added in G to obtain G′ and let k′ = k +m. It is easy to see
that (G, k) is a yes instance of Sub-Cubic VC if and only if (G′, k′) is a yes instance
of Sub-Cubic VC.

We will now be working with the instance (G′, k′) of Sub-Cubic VC with the par-
tition of vertices C1, . . . , Ct obtained by extending the color classes of the harmonious
coloring of G we started with. We guess the size of the intersection of the vertex cover in
G′ with each Ci, for i ∈ [t]. That is, for i ∈ [t], we guess an integer 0 ≤ k′i ≤ min(|Ci|, k′),
such that

∑
i∈[t] k

′
i = k′. Finally, we let (G′,P = {C1, . . . , Ct}, k′1, . . . , k′t) be an instance

of Sub-Cubic PVC. Notice that G′ and P satisfies all the requirements for it to be an in-
stance of Sub-Cubic PVC. It is easy to see that (G′, k′) is a yes instance of Sub-Cubic

VC if and only if for some guess of ki, for i ∈ [t], (G′,P = {C1, . . . , Ct}, k′1, . . . , k′t) is a
yes instance of Sub-Cubic PVC. This finishes the reduction from Sub-Cubic VC to
Sub-Cubic PVC.

Theorem 9.2. Unless the ETH fails, Sub-Cubic PVC does not admit an algorithm
running in time 2o(n) · nO(1). Here, n is the number of vertices in the input graph.

Proof. Towards a contradiction assume that there is an algorithm A for Sub-Cubic

PVC running in time 2o(n) · nO(1). Let (G, k) be an instance of Sub-Cubic VC. We
apply the above mentioned reduction to create an instance (G′, k′) of Sub-Cubic VC

with vertex partitions C1, . . . , Ct such that t ∈ O(
√
n) and |Ci| ∈ O(

√
n), for all i ∈ [t].

Furthermore, there is exactly one edge between Ci, Cj , for i, j ∈ [t], i �= j, and Ci induces
an independent set in G′. For each guess 0 ≤ k′i ≤ min(|Ci|, k′) of the size of intersection
of vertex cover with Ci, for i ∈ [t], we solve the instance (G′,P , k′1, . . . , k

′
t). By the

exhaustiveness of the guesses of the size of intersection for each partition, (G′, k′) is a
yes instance of Sub-Cubic VC if and only if for some guess k′1, . . . , k

′
t, (G

′,P , k′1, . . . , k
′
t)

is a yes instance of Sub-Cubic PVC. We emphasize the fact that the number of guesses

we make is bounded by
√
n
O(

√
n)

= 2o(n), since |Ci| ∈ O(
√
n) and t ∈ O(

√
n). But then

we have an algorithm for Sub-Cubic VC running in time 2o(n) ·nO(1), contradicting the
ETH. This concludes the proof.

9.2 W[1]-hardness of Split Contraction

In this section, we show that Split Contraction parameterized by the solution size
is W[1]-hard. Towards this we first define an intermediate problem from which we give
the desired reduction.
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Special Red-Blue Perfect Code (SRBPC) Parameter: k
Input: A bipartite graph G with vertex set V (G) partitioned into R (red set) and
B (blue set). Furthermore, R is partitioned (disjoint) into R1 �R2 � . . .�Rk and for
all r, r′ ∈ R, dG(r) = dG(r

′). That is, every vertex in R has same degree, say d.
Question: Does there exist X ⊆ R, such that for all b ∈ B, |N(b) ∩X| = 1 and for
all i ∈ [k], |Ri ∩X| = 1?

SRBPC is a variant of Perfect Code which is known to be W[1]-hard [DF95]. We
postpone the W[1]-hardness proof of SRBPC to Section 9.2.2 and first give a param-
eterized reduction from SRBPC to Split Contraction, showing that Split Con-

traction is W[1]-hard.

9.2.1 Reduction from SRBPC to Split Contraction

Let (G,R = R1�, R2 � . . . � Rk,B) be an instance of SRBPC. We will assume that
|B| = dk, otherwise, the instance is a trivial no instance of SRBPC. For technical
reasons we assume that |B| = � > 4k (and hence d > 4). Such an assumption is
valid because otherwise, the problem is FPT. Indeed, if |B| = � ≤ 4k then for every
partition P1, . . . , Pk of B into k parts such that each part is non-empty, we first guess a
permutation π on k elements and then for every i ∈ [k], we check whether there exists a
vertex rπ(i) ∈ Rπ(i) that dominates exactly all the vertices in Pi (and none in other parts

Pj , j �= i). Clearly, all this can be done in time 2O(k log k)nO(1). Furthermore, we also
assume that k ≥ 2, else the problem is solvable in polynomial time. Now we give the
desired reduction. We construct an instance (G′, k′) of Split Contraction as follows.
Initially, V (G′) = R ∪ B and E(G′) = E(G). For all b, b′ ∈ B, b �= b′, we add the edge
(b, b′) to E(G′). That is, we transform B into a clique. Let t = 2k + 2. For each bi ∈ B,
we add a set of t vertices yi1, . . . , y

i
t each adjacent to bi in G′. We add a vertex s adjacent

to every vertex r ∈ R in G′. Also, we add a set of t vertices q1, . . . , qt each adjacent to
s in G′. For each i ∈ [k], we add a vertex xi adjacent to each vertex r ∈ Ri. Finally,
for all i ∈ [k], we add a set of t vertices wi

1, . . . , w
i
t adjacent to xi in G′. We set the new

parameter k′ to be 2k. This completes the description of the reduction. We refer the
reader to Figure 9.2 for an illustration of the reduction.

In the next four lemmata (Lemmata 9.8 to 9.11) we prove certain structural properties
of the instance (G′, k′) of Split Contraction. These will later be used in showing
that (G,R = R1�, R2� . . .�Rk,B) is a yes instance of SRBPC if and only if (G′, k′) is a
yes instance of Split Contraction. For the next four lemmata, we let S be a solution
to Split Contraction in (G′, k′) and H = G′/S with Ĉ, Î being a partition of V (H)
inducing a clique and an independent set, respectively, in H. Let ϕ : V (G) → V (H)
denote the function defining the contractibility of G to H, and W be the H-witness
structure of G.

Lemma 9.8. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
v ∈ ({s} ∪ B ∪ {xi | i ∈ [k]}), we have ϕ(v) ∈ Ĉ.

Proof. We only give an argument for the vertex s. The argument for vertices in B∪{xi |
i ∈ [k]} is analogous and thus omitted. Recall that there are t pendant vertices q1, . . . , qt
adjacent to s, where t = 2k + 2. At most 2k < t edges in {(qi, s) | i ∈ [t]} can belong to
S. Therefore, there exist j1, j2 ∈ [t], j1 �= j2 such that no edge incident to qj1 or qj2 is
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Figure 9.2: W[1]-hardness of Split Contraction.

in S. In other words, for h1 = ϕ(qj1) and h2 = ϕ(qj2), W (h1) and W (h2) are singleton
sets. Since W is a H-witness structure of G′, (h1, h2) /∈ E(H). Therefore, at least one
of h1, h2 belongs to Î, say h1 ∈ Î. This implies that ϕ(s) ∈ Ĉ.

Lemma 9.9. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
i ∈ [k], there exists ri ∈ Ri such that (xi, ri) ∈ S.

Proof. Towards a contradiction assume that for some i ∈ [k] and hi = ϕ(r�i ), |W (hi)| < 3.
From our assumption that (xi, r

�
i ) ∈ S we have that xi ∈ W (hi). Also, note that there

is a set B′ ⊆ B of at least � − 2k vertices such that for hb = ϕ(b), |W (hb)| = 1. This
follows from the fact that at most 2k vertices in B can be incident to an edge in S. Let
B̂ = B′ \N(r�i ). We claim that |B̂| ≥ �− 2k − d > 0. Towards the claim observe that if
(G,R,B) is a yes instance of SRBPC then � = dk. The last assertion follows from the
fact that every vertex in R has degree exactly d and we are seeking a solution X ⊆ R,
such that for all b ∈ B, |N(b) ∩ X| = 1 and for all i ∈ [k], |Ri ∩ X| = 1. That is, the
set X is of size k and it partitions B. This implies that d > 4, since � = dk > 4k. Thus,
combining this with the fact that k ≥ 2 we have that |B̂| ≥ �−2k−d = (d−2)k−d > 0.
This completes the claim. Since the size of |W (hi)| < 3 and it contains xi and r�i we

have that W (hi) = {xi, r�i }. Now, consider b̂ ∈ B̂ with ĥ = ϕ(b̂). Observe that W (hi)

and W (ĥ) are not adjacent in G, however since xi ∈ W (hi) Lemma 9.8 implies that
hi ∈ Ĉ. But then (ĥ, hi) ∈ E(H), a contradiction. This implies that for all i ∈ [k] and
hi = ϕ(r�i ) we have |W (hi)| ≥ 3. However, since hi, ĥ ∈ Ĉ there must be a vertex in

W (hi) that is adjacent to a vertex in W (ĥ). But since W (ĥ) = {b̂}, W (hi) must contain
a vertex that is adjacent to b̂. But, none of the vertices in {wi

1, · · · , wi
t} are adjacent to

b̂. Thus, W (hi) must contain a vertex that is adjacent to either xi or r
�
i but not to any

of the vertices in {wi
1, · · · , wi

t}. Let such a vertex be zi and let it be adjacent to r�i (or
xi). Since a solution to (G′, k′) can be formed by taking spanning trees of each of the
witness sets, we can assume that S contains a spanning tree of W (hi) that contains the
edge ei = (zi, r

�
i ) (or ei = (zi, xi)) and e�i . This completes the proof of the lemma.

For each i ∈ [k] we arbitrarily choose a vertex r�i ∈ Ri such that e�i = (xi, r
�
i ) ∈ S.

The existence of such a vertex is guaranteed by Lemma 9.9.
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Lemma 9.10. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
i ∈ [k] and hi = ϕ(r�i ), we have |W (hi)| ≥ 3. Furthermore, there is an edge ei �= e�i in S

incident to exactly one of xi, r
�
i and not incident to the vertices in {wi

1, . . . , w
i
t}.

Proof. Towards a contradiction assume that for some i ∈ [k] and hi = ϕ(r�i ), |W (hi)| < 3.
From our assumption that (xi, r

�
i ) ∈ S we have that xi ∈ W (hi). Also, note that there

is a set B′ ⊆ B of at least � − 2k vertices such that for hb = ϕ(b), |W (hb)| = 1. This
follows from the fact that at most 2k vertices in B can be incident to an edge in S. Let
B̂ = B′ \ N(r�i ). We claim that |B̂| ≥ � − 2k − d > 0. Towards the claim observe that
if (G, k) is a yes instance of SRBPC then � = dk. The last assertion follows from the
fact that every vertex in R has degree exactly d and we are seeking a solution X ⊆ R,
such that for all b ∈ B, |N(b) ∩ X| = 1 and for all i ∈ [k], |Ri ∩ X| = 1. That is, the
set X is of size k and it partitions B. This implies that d > 4, since � = dk > 4k. Thus,
combining this with the fact that k ≥ 2 we have that |B̂| ≥ �−2k−d = (d−2)k−d > 0.
This completes the claim. Since the size of |W (hi)| < 3 and it contains xi and r�i we

have that W (hi) = {xi, r�i }. Now, consider b̂ ∈ B̂ with ĥ = ϕ(b). Observe that W (hi)

and W (ĥ) are not adjacent in G, however since xi ∈ W (hi) Lemma 9.8 implies that
hi ∈ Ĉ. But then (ĥ, hi) ∈ E(H), a contradiction. This implies that for all i ∈ [k] and
hi = ϕ(r�i ) we have |W (hi)| ≥ 3. However, since hi, ĥ ∈ Ĉ there must be a vertex in

W (hi) that is adjacent to a vertex in W (ĥ). But since W (ĥ) = {b̂}, W (hi) must contain
a vertex that is adjacent to b̂. But, none of the vertices in {wi

1, · · · , wi
t} are adjacent

to b̂. Thus, W (hi) must contain a vertex that is adjacent to either xi or r
�
i but not to

any of the vertices in {wi
1, · · · , wi

t}. Let such a vertex be zi and let it be adjacent to r�i
(or xi). Since an optimal solution to (G′, k′) can be formed by taking spanning trees of
each of the witness sets, we can assume that S contains a spanning tree of W (hi) that
contains the edge ei = (zi, r

�
i ) (or ei = (zi, xi)) and e�i . This completes the proof of the

lemma.

From Lemma 9.9 we know that for each i ∈ [k], we have r�i ∈ Ri such that (xi, r
�
i ) ∈ S.

Similarly, from Lemma 9.10 we know that, for each i ∈ [k], there is an edge incident
to one of xi, ri other than e�i = (xi, r

�
i ) in every solution. Recall that for i, j ∈ [k],

i �= j none of xi, ri is adjacent to xj , rj . Hence, it follows that we have already used up
our budget of k′ = 2k by forcing certain types of edges to be in S. Finally, we prove
Lemma 9.11 that forces even more structure on the witness sets.

Lemma 9.11. Let (G′, k′) be a yes instance of Split Contraction. Then, for all
i ∈ [k], r�i ∈ W (ϕ(s)).

Proof. Let hs = ϕ(s) and R̂ = {r�i | i ∈ [k], r�i ∈ W (hs)}. For a contradiction assume

that |R̂| < k, otherwise the claim trivially holds. By Lemma 9.9, for each i ∈ [k], e�i =

(xi, r
�
i ) ∈ S. This implies that for all r�i ∈ R̂, xi ∈ W (hs) and hence |W (hs)| ≥ 2|R̂|+1.

From Lemma 9.10 we know that there exists an edge ei �= e�i ∈ S incident to either xi or
r�i and not incident to any vertex in {wi

1, . . . , w
i
t}. Thus, every edge in S is incident to

either xi or r
�
i . This implies that for every vertex z ∈ {q1, . . . , qt}∪{yj1, . . . , y

j
t | j ∈ [�]},

|W (ϕ(z))| = 1. Now we show that there exists a vertex in B that is not adjacent to
any vertex in W (hs). We start proving the claim that S does not contain an edge
of the form (r�i , bj), where i ∈ [k] and bj ∈ B. Suppose not, then consider the sets

R̂b = {r�i ∈ R̂ | (r�i , b) ∈ S, b ∈ B} and B̂ = {b ∈ B | (r�i , b) ∈ S, i ∈ [k]}. By our
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assumption we have |R̂b| = q > 0. Moreover, for each b ∈ B̂, we have ϕ(s) and ϕ(b) are
adjacent in H and |B̂| ≤ q. Observe that |W (ϕ(s))∩R| ≤ k− q, and W (ϕ(s))∩ R̂b = ∅.
From Lemma 9.8, ϕ(s) must be adjacent in H to each ϕ(b), where b ∈ B. Since degree
of each vertex in R is d therefore, ϕ(s) can be adjacent in H to at most d(k− q) vertices
ϕ(b), where b ∈ B \ B̂. As d > 4, there is a vertex b ∈ B \ B̂ such that ϕ(s) and ϕ(b)
are non-adjacent in H, which is not possible. This concludes the proof of the claim.
The claim allows us to assume that the only vertices in W (hs) that can be adjacent
to a vertex in B are in R̂. However, every vertex in R̂ has exactly d neighbours in B.
This together with the fact that |B| = � = dk > d|R̂| implies that there exists a subset
B′ of size d(k − |R̂|) such that none of these vertices are adjacent to any vertex in R̂.
However, at most (k − |R̂|) vertices in B′ can be incident to an edge in S. This implies
that there exists a vertex b ∈ B′ with h = ϕ(b) such that it is not incident to any edge
in S and thus |W (h)| = 1. But then we can conclude that W (h) and W (hs) are not
adjacent in G′. However, by Lemma 9.8 we know that hs, h ∈ Ĉ and thus there is an
edge (h = ϕ(b), hs) ∈ E(H ′), a contradiction. This contradicts our assumption that
|R̂| < k and gives us the desired result.

We are now ready to prove the equivalence between the instance (G,R,B) of SRBPC

and the instance (G′, k′) of Split Contraction.

Lemma 9.12. (G,R = R1 � . . . � Rk,B) is a yes instance of SRBPC if and only if
(G′, k′) is a yes instance of Split Contraction.

Proof. In the forward direction, let Z = {ri | ri ∈ Ri, i ∈ [k]} ⊆ R be a solution to
SRBPCin (G,R,B). Let Z ′ = {(ri, xi), (ri, s) | i ∈ [k]}. Observe that |Z ′| = 2k. Let
T = {ri, xi | i ∈ [k]}. We define the following surjective function ϕ : V (G′) → V (G′)\T .
If v ∈ T ∪ {s} then ϕ(v) = s, else ϕ(v) = v. Observe that G′[W (s)] is connected and
for all v ∈ V (G′) \ (T ∪ {s}), W (v) is a singleton set. Consider the graph H with
V (H) = V (G′) \ T and (v, u) ∈ E(H) if and only if ϕ−1(v), ϕ−1(u) are adjacent in G′.
Note that the graphs G′/Z ′ and H are isomorphic, therefore we prove that H is a split
graph. Let Ĉ = {ϕ(v) | B ∪ {s}} and Î = V (H) \ Ĉ. For v, u ∈ Î, ϕ−1(v) = {v} and
ϕ−1(u) = {u} and {v}, {u} are non-adjacent in G′. Therefore, (v, u) /∈ E(H). This
proves that Î is an independent set in H. For b, b′ ∈ B ⊂ Ĉ, (b, b′) ∈ E(G′), therefore
(ϕ(v), ϕ(u)) ∈ E(H). Since Z is a solution to SRBPCin (G,R,B), for b ∈ B, there
exists ri ∈ Z such that (b, ri) ∈ E(G′), therefore, W (s) and b are adjacent in G′. Hence,
(ϕ(s), ϕ(b)) ∈ E(H ′). This finishes the proof that Ĉ induces a clique in H and that H
is a split graph.

In the reverse direction, let S be a solution to (G′, k′) of Split Contraction, and
denote H = G′/S. Let W be the H-witness structure of G, ϕ be the associated surjective
function and hs = ϕ(s). From Lemmas 9.9 and 9.11 it follows that for all i ∈ [k], there
exists r�i ∈ Ri such that (xi, r

�
i ) ∈ S and r�i , xi ∈ W (hs). Let Z = {r�i | i ∈ [k]}. We will

show that Z is a solution to SRBPC in (G,R,B). Since |W (hs)| ≥ k′ + 1 = 2k + 1, it
holds that for all v ∈ V (H)\{hs}, |W (v)| = 1. This implies that for all b ∈ B, b /∈ W (hs).
Also observe that since xi ∈ W (hs) for all i ∈ [k] and |W (hs)| = k′+1 = 2k+1, we have
that |W (hs)∩Ri| = 1. This implies that |Z| = k and |Z∩Ri| = 1, for all i ∈ [k]. To show
that Z is indeed a solution, it is enough to show that for all bj ∈ B, |Z ∩ N(bj)| = 1.
Towards a contradiction, assume there exists bj ∈ B such that |Z ∩ N(bj)| �= 1. Let
hbj = ϕ(bj). We consider the following two cases.
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• If |Z ∩ NG′(bj)| < 1. Recall that W (hbj) = {bj}. Further, NG′(bj) ⊆ R ∪
{yj1, . . . , y

j
t }, Z = W (hs) ∩ R and by our assumption Z ∩ NG′(bj) = ∅. But

then W (hs) and W (hbj) are not adjacent in G′. However, Lemma 9.8 implies that
(hs, hbj) ∈ E(H), contradicting our assumption that |Z ∩N(bj)| < 1.

• If |Z ∩NG′(bj)| > 1, then there exists j, j′ ∈ [k], j �= j′ such that r�j , r
�
j′ ∈ NG′(b).

Then it follows that |∪i∈[k]N(r�i )| < � = dk. But then there exists b′ ∈ B such that
W (ϕ(b′)) and W (hs) are non-adjacent in G′, contradicting that (ϕ(b′), hs) ∈ E(H)
from Lemma 9.8.

This completes the proof.

Next, we prove the main theorem of this section.

Theorem 9.3. Split Contraction is W[1]-hard when parmeterized by the size of a
solution.

Proof. Proof follows from construction, Lemma 9.12 and the W[1]-hardness of SRBPC

(Theorem 9.4).

9.2.2 W[1]-hardness of Special Red-Blue Perfect Code

In this section, we show that SRBPC is W[1]-hard, when parameterized by the solution
size. We give a reduction from Multi-Colored Clique (MCC) to SRBPC. Recall
that MCC takes as an input a graph G with a partition V1, V2, . . . , Vk of V (G), and the
objective is to check if there a set X ⊆ V (G) such that for each i ∈ [k], |X ∩ Vi| = 1
and G[X] is a clique. It is known that MCC is W[1]-hard when parameterized by
k [FHRV09].

The intuitive description of the reduction we are going to construct below is as
follows. Let (G, V1, . . . , Vk) of be an instance of MCC. We will often refer to the sets Vi
as color classes. For each color class we create a vertex selection gadget. Then we have
edge selection gadgets which ensure that between every pair of color classes an edge is
selected. The vertex selection gadget ensures that the vertex chosen is same as the one
incident to the edge chosen by the edge selection gadget. Finally, we have a coherence
gadget which ensures that all the edges that are incident to a color class are incident to
the same vertex in this color class.

For technical reasons we will assume that the number of vertices in G is 2t, for some
t ∈ N. Note that this can be easily achieved by adding dummy vertices to an arbitrary
color class with no edge incident to them. This results in at most doubling of the number
of vertices in the graph. For our purposes, we also assign a unique t-bit-string to each
vertex v ∈ V (G). Next, we move to the description of the instance (G′,R,B) of SRBPC

that we create.

Edge Selection Gadget. For i, j ∈ [k], i �= j, we create an edge selection gadget Eij

as follows. For each edge (u, v) ∈ E(G), such that u ∈ Vi and v ∈ Vj , we add a vertex
euv to Eij . We emphasize the fact that Eij and Eji denote the same set. Similarly, for
an edge (u, v) ∈ E(G), the vertices evu and euv are the same vertex. The symmetry in
the indices/subscripts holds only for the edge selection gadgets.
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Figure 9.3: Illustration of edges between Vertex Selection Gadget, Coherence Gadget for
i = 1, and Edge Selection Gadget.

For the description of the vertex selection and coherence gadgets we will need the
following notation. For i ∈ [k], the set Ti = {j ∈ [k] | j �= i} has a natural total ordering
ρi, specifically the order given by the relation < defined on N. Therefore, by ρi(j) we
denote the position of j in the total ordering of Ti (1st position is denoted by 1). We will
slightly abuse the notation and drop the subscript i from ρi whenever it is clear from
the context.

Vertex Selection Gadget. For each color class i ∈ [k] we have a vertex selection gadget
Si. For i ∈ [k], Si consists of k−1 sets of vertices Si,ρ(j), where j ∈ [k]\{i}. Here, Si,ρ(j)

is a set of 2t vertices denoted by x
i,ρ(j)
0 , x

i,ρ(j)
1 , . . . , x

i,ρ(j)
t−1 , y

i,ρ(j)
0 , y

i,ρ(j)
1 , . . . , y

i,ρ(j)
t−1 . The

intuition behind the construction of the set Si,ρ(j) is to encode the bit representation
of the vertices in Vi. The size of Si,ρ(j) is twice the size of the bit-representation for
achieving the degree constraints of the vertices in the instance of SRBPC to be created.

Coherence Gadget. Consider i ∈ [k] and j ∈ [k]\{i}. We have a set Ci,ρ(j) containing
copies of vertices in Vi, i.e. |Ci,ρ(j)| = |Vi|. For a vertex v ∈ Vi, its copy in Ci,ρ(j) is

denoted by c
i,ρ(j)
v . Also, we have a set Ai,ρ(j) containing a vertex a

i,ρ(j)
� , for each � ∈ [t].

The set Ai,ρ(j) is added only to ensure some degree constraints in the construction. For
each u ∈ Ai,ρ(j) and v ∈ Ci,ρ(j), we add the edge (u, v) to E(G′), i.e., G′[Ai,ρ(j) ∪Ci,ρ(j)]
is a complete bipartite graph. By Ai we denote the set ∪j∈[k]\{i}Ai,ρ(j).

We now move to the description of the edges between vertex selection, edge selection
and coherence gadgets. We refer the reader to Figure 9.3 for an illustration of the
reduction.

Edges between gadgets. Let i, j ∈ [k], i �= j, and u ∈ Vi, v ∈ Vj such that (u, v) ∈
E(G). Recall that corresponding to the edge (u, v), we have a vertex euv in Eij (which
is same as Eji). Let b0b1 . . . bt−1 be the unique bit-string assigned to u. We add an edge

between x
i,ρ(j)
� ∈ Si,ρ(j) and euv in G′ if and only if b� = 1, here � ∈ {0, . . . , t − 1}.

Similarly, we add an edge between y
i,ρ(j)
� ∈ Si,ρ(j) and euv in G′ if and only if b� = 0;

here, � ∈ {0, . . . , t− 1}. Refer to Figure 9.4 for a pictorial illustration.

We now describe the edges between Ci,ρ(j) and Si,ρ(j). We will assume modulo k-
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Si,ρ(j)
Vi Vj

u v

Eij
euv

x
i,ρ(j)
0 x

i,ρ(j)
1 x

i,ρ(j)
t−1 y

i,ρ(j)
t−1y

i,ρ(j)
1y

i,ρ(j)
0

Figure 9.4: Edges between Eij and Sij, assuming the bit-string associated with v has
b0 = 1 and b� = 0 for all � ∈ [t− 1].

arithmetics for the computation of indices. We note that the notation ρ is used only for
ease in specification and modulo index computation to work properly. For i, j ∈ [k], i �= j

and v ∈ Vi, there is a vertex c
i,ρ(j)
v ∈ Ci,ρ(j). Let b0b1 . . . bt−1 be the unique bit-string

assigned to v. We add an edge between x
i,ρ(j)
� ∈ Si,ρ(j) and c

i,ρ(j)
v in G′ if and only if

b� = 0, here � ∈ {0, . . . , t − 1}. Similarly, we add an edge between y
i,ρ(j)+1
� ∈ Si,ρ(j)+1

and c
i,ρ(j)
v in G′ if and only if b� = 1, here � ∈ {0, . . . , t−1}. This finishes the description

of the graph G′.
Now we move on to partitioning the vertices in V (G′) into two sets R and B. Then

we further partition R. For i, j ∈ [k], i �= j we add all the vertices in Ci,ρ(j) and Eij to
R. All the remaining vertices are added to the set B. The set R is partitioned into Eij

and Ci,ρ(j), where i �= j. Observe that since Eij = Eji for all i �= j we have k(k−1)+
(
k
2

)
parts of R and the degree of each vertex in R is 2t. This completes the description of
the instance (G′,R,B) of SRBPC.

Next, we prove some lemmata that will help us in establishing the equivalence between
the two instances.

Lemma 9.13. Let (G′,R,B) be a yes instance of SRBPC and R be one of its solution.
If for some i, j ∈ [k], i �= j, u ∈ Vi, v ∈ Vj we have euv ∈ R then the following holds.

• c
i,ρ(j)
u , c

i,ρ(j)−1
u ∈ R.

• c
j,ρ(i)
v , c

j,ρ(i)−1
v ∈ R.

Proof. We give proof only for the first part of the lemma. The second one follows from
an analogous argument. Consider i, j ∈ [k], i �= j, u ∈ Vi, v ∈ Vj , such that euv ∈ R. Let
b̄u = b0b1 . . . bt−1 be the unique bit-string assigned to u. Observe that all the vertices

x
i,ρ(j)
� with b� = 1, for � ∈ {0, . . . , t − 1} are adjacent to euv. Since R is a solution, it

must contain a vertex from Ci,ρ(j). Let the unique vertex in R∩Ci,ρ(j) be c
i,ρ(j)
w . Suppose

w �= u. Consider the difference in the bit-string representation b̄w, of w and b̄u. Since
w �= u, b̄w and b̄u differs in at least one position, let the first such position be q. If bq = 1

(qth bit in b̄u) then qth bit in b̄w is 0. But then, x
i,ρ(j)
q is adjacent to two vertices, namely

euv and c
i,ρ(j)
w , contradicting that R is a solution. If bq = 0, then x

i,ρ(j)
q is not adjacent

to euv and c
i,ρ(j)
u . Recall that N(x

i,ρ(j)
q ) ⊆ Eij ∪Ci,ρ(j). Hence, x

i,ρ(j)
q is non-adjacent to

any vertex in R, a contradiction. Therefore, u = w and c
i,ρ(j)
u ∈ R. A similar argument

can be given for proving c
i,ρ(j)−1
u ∈ R. This completes the proof.
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Lemma 9.14. Let (G′,R,B) be a yes instance of SRBPC and R be a solution. If for

some i, j ∈ [k], i �= j and u ∈ Vi we have c
i,ρ(j)
u ∈ R then there exists some v ∈ Vj such

that euv ∈ R.

Proof. Towards a contradiction assume that for some i, j ∈ [k], i �= j and u ∈ Vi we have

c
i,ρ(j)
u ∈ R and for all v ∈ Vj , euv /∈ R. Let b̄u = b0b1 . . . bt−1 be the unique bit-string

assigned to u. For all � ∈ {0, . . . , t − 1} such that b� = 0, x
i,ρ(j)
� is adjacent to c

i,ρ(j)
u .

Since R is a solution it must contain a vertex ewz ∈ Eij , where w ∈ Vi and z ∈ Vj . By

assumption w �= u. But by Lemma 9.13, c
i,ρ(j)
w ∈ R, contradicting that |R∩Ci,ρ(j)| = 1.

This implies that w = u.

Lemma 9.15. Let (G′,R,B) be a yes instance of SRBPC and R be a solution. If for

some i, j ∈ [k], i �= j and u ∈ Vi we have c
i,ρ(j)
u ∈ R then for all � ∈ [k] \ {i} we have

c
i,ρ(�)
u ∈ R.

Proof. Follows from Lemmas 9.13 and 9.14.

Lemma 9.16. (G, k) is a yes instance of MCC if and only if (G′,R,B) is a yes instance
of SRBPC.

Proof. In the forward direction, let V = {vi | i ∈ [k]} be a solution to MCC for
(G, V1, . . . , Vk). Let b̄i be the unique bit-string assigned to vi, for i ∈ [k]. Also, we let

R = {ci,ρ(j)vi | i, j ∈ [k], i �= j} ∪ {evivj | i, j ∈ [k], i �= j}. Observe that |R ∩ Cij | = 1,
for all i, j ∈ [k], i �= j. Similarly, |R ∩ Eij | = 1, for all i, j ∈ [k], i �= j. Recall that
B = V (G′) \ R = (∪i∈[k]Si) ∪ (∪i∈[k]Ai). Here, for i ∈ [k], we have Si = ∪j∈[k]\{i}Si,ρ(j)

and Ai = ∪j∈[k]\{i}Ai,ρ(j). Observe that for each i ∈ [k], each vertex in Ai is adjacent
to exactly one vertex in R. Next, we show that for i, j ∈ [k], i �= j, each vertex in Si,ρ(j)

is adjacent to exactly one vertex in R. Recall that Si,ρ(j) is adjacent only to vertices

in Ci,ρ(j), Ci,ρ(j)−1 and Eij . Consider a vertex x
i,ρ(j)
� ∈ Si,ρ(j), for � ∈ {0, . . . , t − 1}.

Assume that �th bit of b̄i is 1. This implies that x
i,ρ(j)
� is adjacent to evivj and not

adjacent to c
i,ρ(j)
vi . Also, x

i,ρ(j)
� is non-adjacent to any other vertex in R. Hence it follows

that |R∩N(x
i,ρ(j)
vi )| = 1. An analogous argument can be given for the case when �th bit

of b̄i is 0. Furthermore, we can give a symmetric argument for a vertex y
i,ρ(j)
� ∈ Si,ρ(j),

where � ∈ {0, . . . , t− 1}. This finishes the proof of the forward direction.
In the reverse direction, let R be a solution to SRBPC for (G′,R,B). Note that for

i, j ∈ [k], i �= j, |R ∩ Eij | = 1 and |R ∩ Ci,ρ(j)| = 1. Let X = {v ∈ V (G) | ci,ρ(j)v ∈ R}.
It follows from Lemma 9.15 that for all i ∈ [k], |X ∩ Vi| = 1. Consider u, v ∈ X, where

u ∈ Vi, v ∈ Vj and i �= j. From Lemma 9.15 for all � ∈ [k], i �= � we have c
i,ρ(�)
u ∈ R and

for all �′ ∈ [k], j �= �′ we have c
j,ρ(�′)
u ∈ R. This together with Lemma 9.14 imply that

euv ∈ R. Hence (u, v) ∈ E(G). Since choice of u, v was arbitrary, it implies that G[X] is
a clique.

We are now ready to prove the main theorem of this section.

Theorem 9.4. SRBPC when parameterized by the number of parts in R is W[1]-hard.

Proof. Follows from construction of the instance (G′,R,B) of SRBPC for the given
instance (G, k) of MCC, Lemma 9.16, and W[1]-hardness of MCC.
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9.3 FPT Algorithm for Split Contraction Parame-

terized by Vertex Cover

In this section, we give an FPT algorithm for Split Contraction when parameterized
by the size of a minimum vertex cover. In Section 9.3.1, we give an algorithm running
in time 2O(�2) ·nO(1) for Split Contraction parameterized by �, the size of minimum
vertex cover, when the input graph is connected. In this section we use the algorithm
for solving Split Contraction parameterized by the size of a minimum vertex cover
on connected graphs to solve Split Contraction on general graphs.

Let (G, k) be an instance of Split Contraction and C1, . . . , Ct be the set of
connected components of G. Observe that except for one connected component in G,
every other component must be contracted to a single vertex, since all the vertices in
these components must be part of the independent set. Also, note that for contracting
a component to a single vertex we need to contract a spanning tree in it. Therefore, for
each i ∈ [t] let ki = k −

∑
j∈[t]\{i} |V (Cj)− 1| and solve the instance (Ci, ki). If for any

i ∈ [t] the algorithm returns a yes instance then we return that (G, k) is a yes instance,
otherwise return that (G, k) is a no instance. The correctness of the above algorithm
relies on the correctness of the algorithm for connected graphs and thus results in the
following theorem.

Theorem 9.5. Split Contraction admits an algorithm running in time 2O(�2) ·nO(1),
where � is the size of the minimum vertex cover of the input graph.

9.3.1 Algorithm for Split Contraction on connected graphs

In this section, we give an FPT algorithm for Split Contraction parameterized by
the size of a minimum vertex cover when the input graph is a connected. Let (G, k)
be an instance of Split Contraction, where G is a connected graph. We start by
computing a minimum sized vertex cover S in G. Computing a minimum vertex cover
in a graph can be done in time 1.2738� · nO(1), where � is the size of a minimum vertex
cover in the graph [CKX10]. We first prove the following Lemma which will be useful
for the algorithm.

Lemma 9.17. Let G be a connected graph, S be a minimum vertex cover in G and
K ⊆ E(G) be a set of minimum size such that G/K is a split graph, then |K| < 2|S|.

Proof. Let T be a dfs-tree of G and LT denote the set of leaves in T . It is well known
that V (T ) \LT is a connected vertex cover in G and |V (T ) \LT | ≤ 2|S| [Sav82]. Let ET

be the edges in T that are non-adjacent to vertices in LT . Observe that G/ET is a split
graph. Thus, |K| ≤ |ET | < |V (T ) \ LT | ≤ 2|S|.

Let I = V (G) \ S. Since S is a vertex cover, I is an independent set in G. We define
an equivalence relation R among the vertices in I based on their neighborhood in S.
Basically, u, v ∈ I belong to the same equivalence class if and only if N(u) = N(v). Let
I1, . . . , It be the equivalence classes of R. Note that t ≤ 2|S|. We apply the following
reduction rules exhaustively.

Reduction Rule 9.1. If k ≥ 2|S|, then return that (G, k) is a yes instance.
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Lemma 9.18. Reduction Rule 9.1 is safe.

Proof. The proof follows from Lemma 9.17.

Reduction Rule 9.2. For j ∈ [t], if there is an equivalence class Ij, such that |Ij | >
2k + 2, then delete an arbitrary vertex v ∈ Ij from G. That is, the resulting instance is
(G− {v}, k).

Lemma 9.19. Reduction Rule 9.2 is safe.

Proof. Let (G, k) be an instance of Split Contraction. Furthermore, for some j ∈ [t]
we have |Ij | > 2k+2 and let v ∈ Ij and let (G′ = G−{v}, k). In the forward direction,
letX be a solution to (G, k), W be theH = G/X-witness structure of G with ϕ being the
underlying surjective function. If no edge in X is incident to v, then X is also a solution
in (G′, k) as G′/X is an induced subgraph of G/X. Let Xv ⊆ X be those edges which
are incident to v. There is a vertex v′ ∈ Ij that is not adjacent to any edge in X since
|Ij | > 2k + 2. Let Xv′ = {(u, v′) | (u, v) ∈ Xv}, i.e., Xv′ is the set of edges obtained by
replacing v by v′ in Xv. Note that such a replacement is possible because N(v) = N(v′).
Let X ′ = (X \Xv) ∪Xv′ . Clearly, the size of |X ′| ≤ |X| ≤ k. We define the surjective
function ϕ′ : V (G′) → V (H) \ {ϕ(v′)} as follows. For u ∈ V (G′), u �= v′, ϕ′(u) = ϕ(u)
and ϕ′(v′) = ϕ(v) (recall, ϕ(v) �= ϕ(v′)). For h ∈ V (H)\{ϕ(v′)} we let W ′(h) = ϕ−1(h).
Let H ′ to be the graph with V (H ′) = V (H)\{ϕ(v′)} and (h1, h2) ∈ E(H ′) if and only if
W ′(h1) and W ′(h2) are adjacent in G′. Since, |W (ϕ(v′))| = 1 we have that for any vertex
h ∈ V (H ′) \ {ϕ′v′}, W ′(h) = W (h) and W ′(ϕ′(v′)) = (W (ϕ(v)) \ {v}) ∪ {v′}. Observe
that since NG(v) = NG(v

′), we have that for all h ∈ V (H ′), G′[W (h)] is connected, and
hence it follows that G′ is contractible to H ′. Furthermore, to show that G′/X ′ is a
split graph, it is enough to show that H ′ is a split graph. Since NG(v) = NG(v

′), the
graphs H, H ′ differs only in the vertex ϕ(v′) ∈ V (H) (ϕ(v′) /∈ V (H ′)). But any induced
subgraph of a split graph, is a split graph, hence it follows that H ′ is a split graph.

In the reverse direction, let X be a solution to Split Contraction in (G′, k),
H = G′/X and ϕ,W be the underlying surjective function and H-witness structure of
G′, respectively. Observe that X can be incident to at most 2k vertices in Ij , therefore
there are vertices u, u′ ∈ V (G′) ∩ Ij , u �= u′ which are not incident to any edge in X

i.e. |W (ϕ(u))| = |W (ϕ(u′)| = 1. Let C′ and I ′ be the clique and independent set
respectively in H. Note that at least one of ϕ(u), ϕ(u′) belongs to I ′, say ϕ(u) ∈ I ′. We
define the surjective function ϕv : V (G) → V (H) ∪ {v} as follows. For x ∈ V (G) \ {v},
ϕv(x) = ϕ(x) and ϕ(v) = v. Let Hv be the graph with vertex set V (H) ∪ {v} and
(h, h′) ∈ E(Hv) if and only if Wv(h) and Wv(h

′) are adjacent in G. Notice that ϕv

satisfies all the properties for it to define the contractibility of G to Hv. Recall that
N(v) = N(u). But then I ′ ∪ {v} is an independent set and C′ is a clique, partitioning
the vertices of Hv, therefore Hv is a split graph. But notice that indeed Hv = G/X,
hence the claim follows.

Given an instance (G, k) to Split Contraction, we apply Reduction Rules 9.1
and 9.2 until no longer applicable. For simplicity we denote the resulting instance where
none of the reduction rules are applicable by (G, k) itself. Observe that the number of
vertices in G is upper bounded by (2k+2) ·2�+� ≤ (4�+2) ·2�+� = 2O(�), where � = |S|.
This follows from the fact that the reduction rules are not applicable and Lemma 9.17.
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Observe that the number of vertices in G that are incident to an edge in the solution
is bounded by 2k. We guess X ⊆ V (G) of size at most 2k, which is incident to at
least one edge in the solution. Note that the number of such guesses is upper bounded

by
(
2O(�)

2�

)
= 2O(�2). The number of edges in G[X] is bounded by O(�2). For each

E′ ⊆ E(G[X]) of size at most k, we check if G/E′ is a split graph. If for all X ⊆ V (G) of
size at most 2k and E′ ⊆ E(G[X]), G/E′ is not a split graph then we return that (G, k) is
a no instance, otherwise we return that (G, k) is a yes instance of Split Contraction.

Correctness and running time analysis. Given an instance (G, k), where G is a
connected graph on n vertices, the algorithm starts by computing a minimum sized
vertex cover S in G and an equivalence relation based on the neighborhood in G. The
time required for this step of the algorithm is bounded by O(1.2738� · nO(1)), where
� = |S| [CKX10]. The algorithm then applies one of the reduction rule, if applicable.
The reduction rules can be applied in polynomial time and their safeness follows from
Lemma 9.18 and 9.19. When none of the reduction rules are applicable then the algorithm
solves the instance in a brute force way and here its correctness is immediate. In the
brute force step the algorithm guess a subset X ⊆ V (G) of size at most 2k which are
incident to an edge in the solution. The number of such subsets is bounded by 2O(�·k),
which in turn is bounded by 2O(�2). For the guessed subset X, the algorithm tries for
all possible sets of edges E′ of size at most k in E(G[X]). The number of such edge

subsets is upper bounded by 2O(k log k) which is bounded by 2O(�2). Checking if G/E′
is a split graph takes linear time [Gol04]. Hence, the total running time is bounded by

1.2738� · nO(1) + 2O(�2) · 2O(�2) · nO(1) = 2O(�2) · nO(1).

Theorem 9.6. Split Contraction on connected graphs admits an algorithm running
in time 2O(�2) · nO(1), where � is the size of a minimum vertex cover of the input graph.
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Chapter 10

Simultaneous Feedback Vertex Set

For an α-edge-colored graph G, an α-simultaneous feedback vertex set (or α-simfvs for
short) is a set S ⊆ V (G) such that Gi − S is a forest for each i ∈ [α]. In this chapter,
we look at the problem Simultaneous Feedback Vertex Set, which is formally
defined below.

Simultaneous Feedback Vertex Set (Sim-FVS) Parameter: k and α

Input: Given an α-edge-colored graph G = (V,E1, . . . , Eα) and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that for each i ∈ [α],
Gi − S is a forest?

We show that, like its classical counterpart (α = 1), Sim-FVS parameterized by k

is in FPT and admits a polynomial kernel, for any fixed constant α. In particular, we
obtain the following results.

• An FPT algorithm running in O�(23αk) time. For the special case of α = 2,
we give a faster algorithm running in O�(81k) time. Using a completely different
approach, Ye [Ye15] independently (and simultaneously) gave an algorithm running
in O�(kαk) time for the general case and an algorithm running in O�(ck) time,
c > 81, for the case α = 2.

• For every constant α, we obtain a kernel with O(αk3(α+1)) vertices.

• The running time of our algorithm implies that Sim-FVS is FPT even when α ∈
o(log n). We complement this positive result by showing that for α ∈ O(log n),
where n is the number of vertices in the input graph, Sim-FVS is W[1]-hard.

Our algorithms and kernel build on the tools and methods developed for Feedback
Vertex Set [CFK+15]. However, we need to develop both new branching rules as well
as new reduction rules. The main reason why our results do not follow directly from
earlier work on FVS is the following. Many (if not all) parameterized algorithms, as
well as kernelization algorithms, developed for the FVS problem [CFK+15] exploit the
fact that vertices of degree two or less in the input graph are, in some sense, irrelevant.
In other words, vertices of degree one or zero cannot participate in any cycle and every
cycle containing any degree-two vertex must contain both of its neighbors. Hence, if
this degree-two vertex is part of a feedback vertex set then it can be replaced by either
one of its neighbors. Unfortunately (or fortunately for us), this property does not hold
for the Sim-FVS problem, even when α = 2. For instance, if a vertex is incident to
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edges of color 1 and two edges of color 2, it might in fact be participating in two distinct
cycles. Hence, it is not possible to neglect (or shortcut) this vertex in any graph induced
on edges of one color. As we shall see, most of the new algorithmic techniques that
we present deal with vertices of exactly this type. Although very tightly related to one
another, we show that there are subtle and interesting differences separating the FVS

problem from the Sim-FVS problem, even for α = 2.

In Section 10.1, we present an algorithm solving the Sim-FVS problem, parameter-
ized by solution size k, in O�(23αk) time. Our algorithm follows the iterative compression
paradigm introduced by Reed et al. [RSV04] combined with new reduction and branch-
ing rules. Our main new branching rule can be described as follows: Given a maximal
degree-two path in some Gi, i ∈ [α], we branch depending on whether there is a ver-
tex from this path participating in an α-simultaneous feedback vertex set or not. In the
branch where we guess that a solution contains a vertex from this path, we construct a
color i cycle which is isolated from the rest of the graph. In the other branch, we are able
to follow known strategies by “simulating” the classical FVS problem. Observe that we
can never have more than k isolated cycles of the same color. Hence, by incorporat-
ing this fact into our measure we are guaranteed to make “progress” in both branches.
For the base case, each Gi is a disjoint union of cycles (though not G) and to find an
α-simultaneous feedback vertex set for G we cast the remaining problem as an instance
of Hitting Set parameterized by the size of the family. For α = 2, we can instead use
an algorithm for finding maximum matchings in an auxiliary graph. Using this fact we
give a faster, O�(81k) time, algorithm for the case α = 2.

In Section 10.2, we tackle the question of kernelization and present a polynomial
kernel for the problem, for constant α. Our kernel has O(αk3(α+1)) vertices and requires
new insights into the possible structures induced by those special vertices discussed
above. In particular, we enumerate all maximal degree-two paths in eachGi after deleting
a feedback vertex set in Gi and study how such paths interact with each other. Using
marking techniques, we are able to “unwind” long degree-two paths by making a private
copy of each unmarked vertices for each color class. This unwinding leads to “normal”
degree-two paths on which classical reduction rules can be applied, and hence we obtain
the desired kernel.

Finally, we consider the dependence between α and both the size of our kernel and the
running time of our algorithm in Section 10.3. We show that even for α ∈ O(log n), where
n is the number of vertices in the input graph, Sim-FVS becomes W[1]-hard. We show
hardness via a new problem of independent interest which we denote by Partitioned

Hitting Set. Partitioned Hitting Set is a special variant of the well-known Hit-

ting Set problem. Recall that in the Hitting Set problem, we are given a universe U ,
a family F = {f1, f2, . . .} of subsets of U , and an integer k, and the goal is to “hit” every
set in F using at most k elements from U . Formally, the goal is to determine whether
there exists U ⊆ U such that |U | ≤ k and U ∩ f �= ∅, for all f ∈ F . The input to the
Partitioned Hitting Set problem consists of a tuple (U ,F = F1∪ . . .∪Fα, k), where
each Fi, i ∈ [α], is a collection of subsets of the finite universe U , k is a positive integer,
and all the sets within a family Fi, i ∈ [α], are pairwise disjoint. As in the Hitting Set

problem, the goal is to determine whether there exists a subset U of U of cardinality at
most k such that for every f ∈ F = F1 ∪ . . . ∪ Fα, f ∩ U is nonempty. We show that
Partitioned Hitting Set is W[1]-hard for α ∈ O(log |U||F|) via a reduction from
Partitioned Subgraph Isomorphism, and we show that Sim-FVS is W[1]-hard for
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α ∈ O(log n) via a reduction from Partitioned Hitting Set with α ∈ O(log |U||F|).
Along the way, we also show, using a somewhat simpler reduction from Hitting Set,
that Sim-FVS is W[2]-hard for α ∈ O(n).

10.1 FPT Algorithm for Simultaneous Feedback Ver-

tex Set

We give an algorithm for the Sim-FVS problem using the method of iterative compres-
sion [RSV04, CFK+15]. We briefly describe the general scheme of iterative compression
and then focus on an algorithm for solving the disjoint version of Sim-FVS. We refer
the reader to [RSV04, CFK+15] for more details. In the Disjoint Sim-FVS problem,
we are given an α-colored graph G = (V,E1, . . . , Eα), an integer k, and an α-simfvs W
in G of size k+ 1. The objective is to find an α-simfvs S ⊆ V (G) \W of size at most k,
or correctly conclude the non-existence of such an α-simfvs.

Let (G = (V,E1, . . . , Eα), k) be an instance of Sim-FVS. We fix an arbitrary ordering
(v1, v2, . . . , vn) on the vertices of G. For j ∈ [n], we let G(j) denote the subgraph of G
induced on the first j vertices. Note that when j = k, we can take the vertex set of
G(k) as an α-simfvs in G(k) of size k. Now suppose that for some j > k, we have
constructed an α-simfvs S(j) of G(j) of size at most k. Then, in the graph G(j+1), the set
Z(j+1) = S(j) ∪ {vj+1} is an α-simfvs of size at most k + 1. If in fact |Z(j+1)| ≤ k then
we are done, i.e. we let S(j+1) = Z(j+1) and proceed to the next iteration. Otherwise,
|Z(j+1)| = k+1 and we need to “compress” into a smaller solution (if it exists). To that
end, we first guess the intersection X of S(j+1) with Z(j+1). In other words, for every
q ∈ {0}∪ [k] and every subset X of Z(j+1) of size q, we construct an instance (G′,W ′, k′)
of Disjoint Sim-FVS as follows. We let G′ = G(j+1) − X, W ′ = Z(j+1) \ X, and
k′ = k−q. Note that |W ′| = k−q+1, so |W ′| is one larger than k′. If G′ does not admit
an α-simfvs of size at most k, then of course neither does G, and we may terminate (and
declare a no-instance). If on the other hand S(j+1) has been successfully found (which
is the union of X and the solution to instance (G′,W ′, k′)), then we proceed to the
next graph G(j+2), and so on. Finally, observe that G(n) = G, so we eventually either
find an α-simfvs of size at most k in G or conclude that no solution exists. A simple
calculation shows that the existence of an algorithm running in ck · nO(1) time for the
disjoint variant implies that Sim-FVS can be solved in time (1 + c)k · nO(1) [CFK+15].
In the next section we describe such an algorithm for Disjoint Sim-FVS.

10.1.1 Algorithm for Disjoint Sim-FVS

Let (G = (V,E1, . . . , Eα),W, k) be an instance of Disjoint Sim-FVS, and F = G−W .
We start with some simple reduction rules that clean up the graph. Whenever some
reduction rule applies, we apply the lowest-numbered applicable rule.

Reduction Rule 10.1. Delete isolated vertices.

Reduction Rule 10.2. If there is a vertex v which has only one neighbor u in Gi, for
some i ∈ [α], then delete the edge (v, u) from Ei.
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Algorithm 2: Disjoint Sim-FVS

Input: G = (V,E1, E2, . . . , Eα), W , k, and C = {C1, . . . , Cα}
Output: yes or no.

1 Apply Sim-FVS R.1 to Sim-FVS R.5 exhaustively;
2 if k < 0 or for any i ∈ [α], |Ci| > k then
3 return no
4 while for some i ∈ [α], Gi[V (Fi) ∪ V (Wi)] is not a forest do
5 find a cordate vertex vc of highest index in some tree of Fi;
6 Let uc, wc be the vertices in tree T i

vc with a neighbor u, w respectively in Wi;
7 Let P = (uc, x1, . . . , xt, vc) and P ′ = (vc, y1, . . . , yt′ , wc) be the paths in Fi from

uc to vc and vc to wc, respectively;
8 G1 = (G− {vc},W, k − 1,C), Add G1 to G;
9 if V ′ = V (P ) \ {vc} �= ∅ then

10 Ci = Ci ∪ {(uc, x1, . . . , xt)};
11 G2 = (G− V ′,W, k − 1,C), Add G2 to G;

12 if V ′ = V (P ′) \ {vc} �= ∅ then
13 Ci = Ci ∪ {(y1, . . . , yt′ , wc)};
14 G3 = (G− V ′,W, k − 1,C), Add G3 to G;

15 if u, w are in the same component of Wi then
16 return

∨
G∈GDisjoint Sim-FVS(G)

17 else
18 return (

∨
G∈GDisjoint Sim-FVS(G)) ∨ Disjoint

Sim-FVS(G− (V (P ) ∪ V (P ′)),W ∪ V (P ) ∪ V (P ′), k,C)
19 end

20 end
// Solve the remaining instance using the hitting set problem

21 For i ∈ [α] let V (Ci) = ∪C∈CiV (C), U = ∪i∈[α]V (Ci);
22 F = ∪i∈[α]Ci;
23 Find a hitting set U = Hitting Set(F ,U);
24 if |U | ≤ k then
25 return yes
26 return no

Reduction Rule 10.3. If there is a vertex v ∈ V (G) with exactly two neighbors u, w

(the total degree of v is two), delete edges (v, u) and (v, w) from Ei and add an edge
(u, w) to Ei, where i is the color of edges (v, u) and (v, w). Note that after Reduction
Rule 10.2 has been applied, both edges (v, u) and (v, w) must be of the same color.

Reduction Rule 10.4. If for some i ∈ [α] there is an edge of multiplicity larger than
two in Ei, reduce its multiplicity to two.

Reduction Rule 10.5. If there is a vertex v with a self-loop, then add v to the solution
set, delete v (and all edges incident on v) from the graph and decrease k by 1.

The safeness of reduction rule 10.1 is immediate (as isolated vertices do not partici-
pate in any cycle). The safeness of Reduction Rule 10.4 follows from the fact that edges
of multiplicity greater than two do not influence the set of feasible solutions. Safeness
of Reduction Rule 10.5 follows from the fact that any vertex with a self-loop must be
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present in every solution. Note that all of the above reduction rules can be applied in
polynomial time. Moreover, after exhaustively applying all rules, the resulting graph G

satisfies the following properties:

(P1) G contains no self-loops;
(P2) Every edge in Gi, for i ∈ [α], is of multiplicity at most two;
(P3) Every vertex in G has either degree zero or degree at least two in each Gi, for
i ∈ [α];
(P4) The total degree of every vertex in G is at least three.

Lemma 10.1. Reduction rule 10.2 is safe.

Proof. Let G be an α-colored graph and v be a vertex whose only neighbor in Gi is u,
for some i ∈ [α]. Consider the α-colored graph G′ with vertex set V (G) and edge sets
Ei(G

′) = Ei(G) \ {(v, u)} and Ej(G
′) = Ej(G), for j ∈ [α] \ {i}. We show that G has

an α-simfvs of size at most k if and only if G′ has an α-simfvs of size at most k.

In the forward direction, consider an α-simfvs S inG of size at most k. SinceG′
j = Gj ,

S intersects all the cycles in G′
j , j ∈ [α]\{i}. Note that in Gi, there is no cycle containing

the edge (u, v) as v is a degree-one vertex in Gi. Hence, all the cycles in Gi are also
cycles in G′

i. S intersects all cycles in Gi and, in particular, S intersects all cycles in G′
i.

Therefore, S is an α-simfvs in G′ of size at most k.

For the reverse direction, consider an α-simfvs S in G′ of size at most k. If S is not
an α-simfvs of G then there is a cycle C in some Gt, for t ∈ [α]. Note that C cannot be
a cycle in Gj as Gj = G′

j , for j ∈ [α]\{i}. Therefore C must be a cycle in Gi. The cycle
C must contain the edge (v, u), as this is the only edge in Gi which is not an edge in G′

i.
But v is a degree-one vertex in Gi, so it cannot be part of any cycle in Gi, contradicting
the existence of cycle C. Thus S is an α-simfvs of G of size at most k.

Lemma 10.2. Reduction rule 10.3 is safe.

Proof. Consider an α-colored graph G. Let v be a vertex in V (G) such that v has
total degree 2 and let u, w be the neighbors of v in Gi, where u �= w and i ∈ [α].
Consider the α-colored graph G′ with vertex set V (G) and edge sets Ei(G

′) = (Ei(G) \
{(v, u), (v, w)}) ∪ {(u, w)} and Ej(G

′) = Ej(G), for j ∈ [α] \ {i}. We show that G has
an α-simfvs of size at most k if and only if G′ has an α-simfvs of size at most k.

In the forward direction, let S be an α-simfvs in G of size at most k. Suppose S is
not an α-simfvs of G′. Then, there is a cycle C in G′

t, for some t ∈ [α]. Note that C

cannot be a cycle in G′
j as G′

j = Gj , for j ∈ [α] \ {i}. Therefore C must be a cycle in
G′

i. All the cycles C
′ not containing the edge (u, w) are also cycles in Gi and therefore S

must contain some vertex from C ′. It follows that C must contain the edge (u, w). Note
that the edges (E(C) \ {(u, w)}) ∪ {(v, u), (w, v)} form a cycle in Gi. Therefore S must
contain a vertex from V (C) ∪ {v}. We consider the following cases:

• Case 1: v /∈ S. In this case, S must contains a vertex from V (C). Hence, S is an
α-simfvs in G′.

• Case 2: v ∈ S. Let S′ = (S \ {v}) ∪ {u}. Any cycle C ′ containing v in Gi must
contain u and w (since dGi

(v) = 2). But S′ intersects all such cycles C ′, as u ∈ S′.
Therefore S′ is an α-simfvs of G′ of size at most k.
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In the reverse direction, consider an α-simfvs S of G′. S intersects all cycles in Gj , since
Gj = G′

j , for j ∈ [α] \ {i}. All cycles in Gi not containing v are also cycles in G′
i and

therefore S intersects all such cycles. A cycle C in Gi containing v must contain u and w

(v is a degree-two vertex in Gi). Note that (E(C) \ {(v, u), (v, w)}) ∪ {(u, w)} is a cycle
in G′

i and S, being an α-simfvs in G′, must contain a vertex from V (C) \ {v}. Therefore
S ∩ V (C) �= ∅, so S intersects cycle C in G′

i. Hence S an α-simfvs in G′.

Algorithm. We give an algorithm for the decision version of the Disjoint Sim-FVS

problem, which only verifies whether a solution exists or not. Such an algorithm can be
easily modified to find an actual solution. Let (G,W, k) be an instance of the problem,
where G is an α-colored graph. If G[W ] is not an α-forest then we can safely return that
(G,W, k) is a no-instance. This follows from the fact that we are looking for an α-simfvs
in G which is disjoint from W . Recall that, in the “compression” step of the iterative
compression routine, we always “guess” the intersection of S(j+1) with Z(j+1). Hence,
we assume that G[W ] is an α-forest in what follows. Whenever any of our Reduction
Rules 10.1 to 10.5 apply, the algorithm exhaustively does so (in order). If at any point
in our algorithm the parameter k drops below zero, then the resulting instance is again
a no-instance.

Recall that initially F = G−W is an α-forest, as W is an α-simfvs. We will consider
each forest Fi, for i ∈ [α], separately (where Fi is the color i graph of the α-forest F ).
For i ∈ [α], we let Wi = (W,Ei(G[W ])) and ηi be the number of components in Wi.
Some of the branching rules that we apply create special vertex-disjoint cycles. We will
maintain this set of special cycles in Ci, for each i, and we let C = {C1, . . . , Cα}. Initially,
Ci = ∅. Each cycle that we add to Ci will be vertex disjoint from cycles previously added
to Ci. Hence, if at any point |Ci| > k, for any i ∈ [α], then we can stop exploring the
corresponding branch. Moreover, whenever we “guess” that some vertex v must belong
to a solution, we also traverse the family C and remove any cycles containing v. For the
running time analysis of our algorithm we will consider the following measure:

μ = μ(G,W, k,C) = αk + (
∑
i∈[α]

ηi)− (
∑
i∈[α]

|Ci|)

The input to our algorithm consists of a tuple (G,W, k,C). For clarity, we will denote
a reduced input by (G,W, k,C) (the one where reduction rules do not apply).

We root each tree in Fi at some arbitrary vertex. Assign an index t to each vertex
v in the forest Fi, which is the distance of v from the root of the tree it belongs to (the
root is assigned index zero). A vertex v in Fi is called cordate if one of the following
holds:

• v is a leaf (or degree-zero vertex) in Fi with at least two color i neighbors in Wi.

• The subtree T i
v rooted at v contains two vertices u and w which have at least one

color i neighbor in Wi (v can be equal to u or w).

Lemma 10.3. For i ∈ [α], let vc be a cordate vertex of highest index in some tree
of the forest Fi and let T i

vc denote the subtree rooted at vc. Furthermore, let uc be
one of the vertices in T i

vc such that uc has a neighbor in Wi. Then, in the path P =
(uc, x1, . . . , xt, vc) (t could be equal to zero) between uc and vc the vertices x1, . . . , xt are
degree-two vertices in Gi.
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Figure 10.1: Branching in Case 1.a

Proof. If uc = vc or t = 0 then there is nothing to prove. Otherwise, let P =
(uc, x1, . . . , xt, vc) be the path from vc to uc, where t ≥ 1. In P , if there is a vertex
x (other than uc and vc) which has an edge of color i to a vertex in Wi, then x is a cor-
date vertex of higher index, contradicting the choice of vc. Also, if there is a vertex x

in P other than vc and uc of degree at least three in Fi, the subtree rooted at x has at
least two leaves, and all the leaves have a color-i neighbor in Wi. Therefore, x is a cor-
date vertex and has a higher index than vc, contradicting the choice of vc. It follows
that x1, . . . , xt (if they exist) are degree-two vertices in Gi.

We consider the following cases depending on whether there is a cordate vertex in Fi

or not.

• Case 1: There is a cordate vertex in Fi. Let vc be a cordate vertex with the highest
index in some tree in Fi and let the two vertices with neighbors in Wi be uc and
wc (vc can be equal to uc or wc). Let P = (uc, x1, x2, . . . , xt, vc) and P ′ = (vc,
y1, y2, . . . , yt′ , wc) be the unique paths in Fi from uc to vc and from vc to wc,
respectively. Let Pv = (uc, x1, . . . , xt, vc, y1, . . . , yt′ , wc) be the unique path in Fi

from uc to wc. Consider the following sub-cases:

– Case 1.a: uc and wc have neighbors in the same component of Wi. In this
case one of the vertices from path Pv must be in the solution (Figure 10.1).
We branch as follows:

∗ vc belongs to the solution. We delete vc from G and decrease k by 1. In
this branch, μ decreases by α. When vc does not belong to the solution,
then at least one vertex from uc, x1, x2, . . . , xt or y1, y2, . . . , yt′ , wc must
be in the solution. But note that these are vertices of degree at most
two in Gi by Lemma 10.3. So with respect to color i, it does not matter
which vertex is chosen in the solution. The only issue comes from some
color j cycle, where j �= i, in which choosing a particular vertex from
uc, x1, . . . , xt or y1, y2, . . . , yt′ , wc would be more beneficial. We consider
the following two cases.

∗ One of the vertices from uc, x1, x2, . . . , xt is in the solution. In this case,
we add an edge (uc, xt) (or (uc, uc) when uc and vc are adjacent) to Gi

and delete the edge (xt, vc) from Gi. This creates a cycle C in Gi −W ,
which is itself a component in Gi −W . We remove the edges in C from
Gi and add the cycle C to Ci. We will be handling these sets of cycles
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independently. In this case |Ci| increases by 1, so the measure μ decreases
by 1.

∗ One of the vertices from y1, y2, . . . , yt, wc is in the solution. In this case
we add an edge (y1, wc) to Gi and delete the edge (vc, y1) from Gi. This
creates a cycle C in Gi −W as a component. We add C to Ci and delete
edges in C from Gi−W . In this branch |Ci| increases by 1, so the measure
μ decreases by 1. The resulting branching vector is (α, 1, 1).

– Case 1.b: uc and wc do not have neighbors in the same component. We branch
as follows (Figure 10.2):

∗ vc belongs to the solution. We delete vc from G and decrease k by 1. In
this branch μ decreases by α.

∗ One of the vertices from uc, x1, x2, . . . , xt is in the solution. In this case,
we add an edge (uc, xt) to Gi and delete the edge (xt, vc) from Gi. This
creates a cycle C in Gi −W as a component. As in Case 1, we add C to
Ci and delete edges in C from Gi−W . |Ci| increases by 1, so the measure
μ decreases by 1.

∗ One of the vertices from y1, y2, . . . , yt, wc is in the solution. In this case,
we add an edge (y1, wc) to Gi and delete the edge (vc, y1) from Gi. This
creates a cycle C in Gi −W as a component. We add C to Ci and delete
edges in C from Gi−W . In this branch |Ci| increases by 1, so the measure
μ decreases by 1.

∗ No vertex from path Pv is in the solution. In this case, we add the vertices
in Pv to W , the resulting instance is (G−Pv,W ∪Pv, k). The number of
components in Wi decreases and we get a drop of 1 in ηi, so μ decreases
by 1. Note that if G[W ∪ Pv] is not acyclic we can safely ignore this
branch. The resulting branching vector is (α, 1, 1, 1).

• Case 2: There is no cordate vertex in Fi. Let F be a family of sets containing
a set fC = V (C) for each C ∈ ∪α

i=1Ci and let U = ∪α
i=1(∪C∈Ci

V (C)). Note that
|F| ≤ αk. We find a subset U ⊆ U (if it exists) which hits all the sets in F , such
that |U | ≤ k.

Note that in Case 1, if the cordate vertex vc is a leaf, then uc = wc = vc. Therefore,
from Case 1.a we are left with one branching rule. Similarly, we are left with the first



10.1 FPT Algorithm for Simultaneous Feedback Vertex Set 211

and the last branching rules for Case 1.b. If vc is not a leaf but vc is equal to uc or
wc, say vc = wc, then for both Case 1.a and Case 1.b we do not have to consider the
third branch. Finally, when none of the reduction or branching rules apply, we solve the
problem by invoking an algorithm for the Hitting Set problem as a subroutine.

Lemma 10.4. The presented algorithm for Disjoint Sim-FVS is correct.

Proof. Consider an input (G,W, k,C) to the algorithm for Disjoint Sim-FVS, where
G is an α-colored graph, W is an α-simfvs of size k + 1, k is an integer, and C =
{C1, C2, . . . , Cα}. Let μ = μ(G,W, k,C) be the measure as defined earlier. We prove the
correctness of the algorithm by induction on the measure μ. The base case occurs when
one of the following holds:

• k < 0,

• for some i ∈ [α], |Ci| > k, or

• μ ≤ 0.

If k < 0, then we can safely conclude that G is a no-instance. If for some i ∈ [α] we have
|Ci| > k, then we need to pick at least one vertex from each of the vertex-disjoint cycles
in Ci and there are at least k + 1 of them. Our algorithm correctly concludes that the
graph is also a no-instance in such cases. If μ = αk + (

∑α
i=1 ηi)− (

∑α
i=1|Ci|) ≤ 0 then

αk ≤
∑α

i=1|Ci|. But for each i ∈ [α], we have |Ci| ≤ k. Therefore αk ≤
∑α

i=1|Ci| ≤ αk,∑α
i=1|Ci| = αk, and |Ci| = k, for all i ∈ [α]. This implies that for each i ∈ [α], Gi[V (Fi)∪

V (Wi)] must be acyclic. Assume otherwise. Then, for some i ∈ [α], Gi[V (Fi) ∪ V (Wi)]
contains a cycle which is vertex disjoint from the k cycles in Ci. Therefore, at least k+1
vertices are needed to intersect these cycles and we again have a no-instance. Recall
that when a new vertex v is added to the solution set we delete all those cycles in ∪α

i=1Ci
which contain v.

We are now left with cycles in ∪α
i=1Ci. Intersecting a cycle C ∈ ∪α

i=1Ci is equivalent
to hitting the set V (C). Hence, we construct a family F consisting of a set fC = V (C)
for each C ∈ ∪α

i=1Ci and we let U = ∪α
i=1(∪C∈Ci

V (C)). Note that |F| ≤ αk. If we
can find a subset U ⊆ U which hits all the sets in F , such that |U | ≤ k, then U is the
required solution. Otherwise, we have a no-instance. It is known that the Hitting Set

problem parameterized by the size of the family F is fixed-parameter tractable and can
be solved in O�(2|F|) time [CFK+15]. In particular, we can find an optimum hitting set
U ⊆ U , hitting all the sets in F . Therefore, we have a subset of vertices that intersects
all the cycles in Ci, for i ∈ [α].

Putting it all together, at a base case, our algorithm correctly decides whether or not
(G,W, k,C) is a yes-instance. For the induction hypothesis, assume that the algorithm
correctly decides an instance for μ ≤ t. Now consider the case μ = t + 1. If some
reduction rule applies then we create an equivalent instance (since all reduction rules are
safe). Therefore, either we get an equivalent instance with the same measure or we get
an equivalent instance with μ ≤ t (the case when Reduction Rule 10.5 is applied). In
the latter case, by the induction hypothesis, our algorithm correctly decides the instance
where μ ≤ t. In the former case, we apply one of the branching rules. Each branching
rule is exhaustive and covers all possible cases. In addition, the measure decreases at each
branch by at least one. Therefore, by the induction hypothesis, the algorithm correctly
decides whether or not the input is a yes-instance.
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Lemma 10.5. Disjoint Sim-FVS is solvable in time O�(22αk).

Proof. Reduction Rules 10.1 to 10.5 can be applied in time polynomial in the input size.
Also, at each branch we spend a polynomial amount of time. For each of the recursive
calls at a branch, the measure μ decreases at least by 1. When μ ≤ 0, then we are able to
solve the remaining instance in time O(2αk) or correctly conclude that the corresponding
branch cannot lead to a solution. At the start of the algorithm μ ≤ 2αk. Therefore, the
height of the search tree is bounded by 2αk. The worst-case branching vector for the
algorithm is (α, 1, 1, 1). The recurrence relation for the worst case branching vector is:
T (μ) ≤ T (μ− α) + 3T (μ− 1) ≤ T (μ− 2) + 3T (μ− 1), since α ≥ 2. The running time
corresponding to the above recurrence relation is 3.3032αk. At each branch we spend a
polynomial amount of time but we might require O(2αk) time for solving the base case.
Therefore, the running time of the algorithm is O�(2αk · 3.3032αk) = O�(22αk).

Theorem 10.1. Simultaneous Feedback Vertex Set is solvable in time O�(23αk).

10.1.2 Faster algorithm for Sim-FVS with α = 2

We improve the running time of the FPT algorithm for Sim-FVS when α = 2. Given
two sets of disjoint cycles C1 and C2 and a set V = ∪C∈C1∪C2

V (C), we want to find a
subset H ⊆ V such that H contains at least one vertex from V (C), for each C ∈ C1∪C2.
We construct a bipartite graph GM as follows. We set V (GM ) = {c1x | Cx ∈ C1} ∪ {c2y |
Cy ∈ C2}. In other words, we create one vertex for each cycle in C1 ∪ C2. We add an
edge between c1x and c2y if and only if V (Cx) ∩ V (Cy) �= ∅. Note that for i ∈ [2] and
C,C ′ ∈ Ci, V (C) ∩ V (C ′) = ∅. In Lemma 10.6, we show that finding a matching M in
GM , such that |M | + |V (GM ) \ V (M)| ≤ k, corresponds to finding a set H of size at
most k, such that H contains at least one vertex from each cycle C ∈ C1 ∪ C2.

Lemma 10.6. For i ∈ [2], let Ci be a set of vertex-disjoint cycles, i.e. for each C,C ′ ∈
Ci, C �= C ′ implies V (C) ∩ V (C ′) = ∅. Let F = {V (C) | C ∈ C1 ∪ C2} and U =
∪C∈C1∪C2

V (C). There exists a vertex subset H ⊆ ∪C∈C1∪C2
V (C) of size k such that

H ∩ V (C) �= ∅, for each C ∈ C1 ∪ C2, if and only if GM has a matching M , such that
|M |+ |V (GM ) \ V (M)| ≤ k.

Proof. For the forward direction, consider a minimal vertex subset H ⊆ V (C1) ∪ V (C2)
of size at most k such that for each C ∈ C1∪C2, H∩V (C) �= ∅. Note that a vertex h ∈ H

can be present in at most one cycle from Ci, for i ∈ [2], since Ci is a set of vertex-disjoint
cycles. Therefore, h can be present in at most 2 cycles from C1 ∪ C2. If h is present in
2 cycles, say Cx ∈ C1 and Cy ∈ C2, then in GM we must have an edge between c1x and
c2y (since h belongs to both Cx and Cy). We include the edge (c1x, c

2
y) in the matching

M . If h belongs to only one cycle, say Ci
z ∈ C1 ∪ C2, then we include vertex ciz in a set

I. Note that (V (GM ) \ V (M)) ⊆ I. For each h ∈ H, we either add a matching edge or
add a vertex to I. Therefore |M |+ |V (GM ) \ V (M)| ≤ |M |+ |I| ≤ k.

In the reverse direction, consider a matching M such that |M |+|V (GM )\V (M)| ≤ k.
We construct a set H of size at most k containing a vertex from each cycle in C1 ∪ C2.
For each edge (c1x, c

2
y) in the matching, where Cx ∈ C1 and Cy ∈ C2, there is a vertex h

that belongs to both V (Cx) and V (Cy). Include h in H. For each ciz ∈ V (GM ) \ V (M),
add an arbitrary vertex v ∈ V (Cz) to H. Note that |H| ≤ k, since for each matching
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edge and each unmatched vertex we added one vertex to H. Moreover, for each cycle
C ∈ C1 ∪ C2, its corresponding vertex in GM is either part of the matching or is an
unmatched vertex; in both cases there is a vertex in H that belongs to C. Therefore,
H is a subset of size at most k which contains at least one vertex from each cycle in
C1 ∪ C2.

Note that a matchingM in GM minimizing |M |+|V (GM )\V (M)| is one of maximum
size. Therefore, at the base case, we compute a maximum matching of the corresponding
graph GM , which is a polynomial-time solvable problem, and return an optimal solution
for intersecting all cycles in C1∪C2. Moreover, if we set μ = 2k+(η1/2+η2/2)−(|C1|+|C2|),
then the worst case branching vector is (2, 1, 1, 1/2). Corresponding to this worst case
branching vector, the running time of the algorithm is O�(81k).

Theorem 10.2. Simultaneous Feedback Vertex Set is solvable in time O�(81k)
when α = 2.

10.2 Kernel for Simultaneous Feedback Vertex Set

In this section, we give a kernel with O(αk3(α+1)) vertices for Sim-FVS. Let (G, k) be
an instance of Sim-FVS, where G is an α-colored graph and k is a positive integer. We
assume that Reduction Rules 10.1 to 10.5 have been exhaustively applied. The kernel-
ization algorithm then proceeds in two stages. In stage one, we bound the maximum
degree of G. In the second stage, we present new reduction rules to deal with degree-two
vertices and, conclude a bound on the total number of vertices.

To bound the total degree of each vertex v ∈ V (G), we bound the degree of v in
Gi, for i ∈ [α]. To do so, we need the Expansion Lemma [CFK+15] as well as the
2-approximation algorithm for the classical Feedback Vertex Set problem [BBF99].

10.2.1 Bounding the degree of vertices in Gi

We now describe reduction rules that allow us to bound the maximum degree of a vertex
v ∈ V (G).

Lemma 10.7 (Lemma 6.8 [MRRS12]). Let G be an undirected (multi) graph and x be
a vertex of G without a loop. Then in polynomial time we can either decide that (G, k)
is a no-instance of Feedback Vertex Set or check whether there is an x-flower of
order k+1, or find a set of vertices Z ⊆ V (G)\{x} of size at most 3k intersecting every
cycle in G, i.e. Z is a feedback vertex set of G.

The next proposition easily follows from Lemma 10.7.

Proposition 10.1. Let G be an undirected α-colored multigraph and x be a vertex without
a loop in Gi, for some i ∈ [α]. Then in polynomial time we can either decide that (G, k)
is a no-instance of Sim-FVS or check whether there is an x-flower of order k+1 in Gi,
or find a set of vertices Z ⊆ V (G) \ {x} of size at most 3k intersecting every cycle in
Gi.

After applying Reduction Rules 10.1 to 10.5 exhaustively, we know that the degree
of a vertex in each Gi is either 0 or at least 2 and no vertex has a self-loop. Now consider



214 Simultaneous Feedback Vertex Set

a vertex v whose degree in Gi is more than 3k(k + 4). By Proposition 10.1, we know
that one of three cases must apply:

(1) (G, k) is a no-instance of Sim-FVS,

(2) we can find (in polynomial time) a v-flower of order k + 1 in Gi, or

(3) we can find (in polynomial time) a set Hv ⊆ V (Gi) of size at most 3k such that
v /∈ Hv and Gi −Hv is a forest.

The following reduction rule allows us to deal with case (2). The safeness of the rule
follows from the fact that if v in not included in the solution then we need to have at
least k + 1 vertices in the solution.

Reduction Rule 10.6. For i ∈ [α], if Gi has a vertex v such that there is a v-flower
of order at least k + 1 in Gi, then delete v from G and decrease k by 1. The resulting
instance is (G− {v}, k − 1).

When in case (3), we bound the degree of v as follows. Consider the graph G′
i =

Gi − (Hv ∪ {v} ∪ V i
0 ), where V

i
0 is the set of degree-zero vertices in Gi. Let D be the set

of components in the graph G′
i which have a vertex adjacent to v. Note that each D ∈ D

is a tree and v cannot have two neighbors in D, since Hv is a feedback vertex set in Gi.
We will now argue that each component D ∈ D has a vertex u such that u is adjacent
to a vertex in Hv. Suppose for a contradiction that there is a component D ∈ D such
that D has no vertex which is adjacent to a vertex in Hv. D∪{v} is a tree with at least
2 vertices, so D has a vertex w, such that w is a degree-one vertex in Gi, contradicting
the fact that each vertex in Gi is either of degree zero or of degree at least two.

After exhaustive application of Reduction Rule 10.4, every pair of vertices in Gi can
have at most two edges between them. In particular, there can be at most two edges
between h ∈ Hv and v. If the degree of v in Gi is more than 3k(k+4), then the number
of components |D| in G′

i is more than 3k(k + 2), since |Hv| ≤ 3k.
Consider the bipartite graph B, with bipartition (Hv, Q), where Q has a vertex qD

corresponding to each component D ∈ D. We add an edge between h ∈ Hv and qD ∈ Q

to E(B) if and only if D has a vertex d which is adjacent to h in Gi.

Reduction Rule 10.7. Let v be a vertex of degree at least 3k(k + 4) in Gi, for some
i ∈ [α], and let Hv be a feedback vertex set in Gi not containing v and of size at most
3k.

• Let Q′ ⊆ Q and H ⊆ Hv be the sets of vertices obtained after applying Lemma 2.1
with q = k + 2, A = Hv, and B = Q, such that H has a (k + 2)-expansion into Q′
in B;

• Delete all the edges (d, v) in Gi, where d ∈ V (D) and qD ∈ Q′;

• Add double edges between v and h in Gi, for all h ∈ H (unless such edges already
exist).

By Lemma 2.1 and Proposition 10.1, Reduction Rule 10.7 can be applied in time
polynomial in the input size.
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Lemma 10.8. Reduction Rule 10.7 is safe.

Proof. Let G be an α-colored graph where Reduction Rules 10.1 to 10.6 do not apply.
Let v be a vertex of degree more than 3k(k + 4) in Gi, for i ∈ [α]. Let H ⊆ Hv, Q

′ ⊆ Q

be the sets defined above and let G′ be the instance obtained after an application of
Reduction Rule 10.7. We show that G has an α-simfvs of size at most k if and only if
G′ has an α-simfvs of size at most k. We need the following claim.

Claim 10.1. Any k-sized α-simfvs S of G or G′ either contains v or contains all the
vertices in H.

Proof. Since there exists a cycle (double edge) between v and every vertex h ∈ H in G′
i,

it easily follows that either v or all vertices in H must be in any solution for G′.
Consider the case of G. We assume v /∈ S and there is a vertex h ∈ H such that

h /∈ S. Note that H has a (k + 2)-expansion into Q′ in B, therefore h is the center of a
(k+2)-star in B[H∪Q′]. Let Qh be the set of neighbors of h in B[H∪Q′] (|Qh| ≥ k+2).
For each qD, qD′ ∈ Qh, their corresponding components D,D′ ∈ D form a cycle with
v and h. If both h and v are not in S, then we need to pick at least k + 1 vertices to
intersect the cycles formed by D, D′, h, and v, for each qD, qD′ ∈ Q′. Therefore, H ⊆ S,
as needed.

In the forward direction, consider an α-simfvs S of size at most k in G. For j ∈
[α] \ {i}, G′

j = Gj and therefore S intersects all the cycles in G′
j . By the previous claim,

we can assume that either v ∈ S or H ⊆ S. In both cases, S intersects all the new cycles
created in G′

i by adding double edges between v and h ∈ H. Moreover, apart from the
double edges between v and h ∈ H, all the cycles in G′

i are also cycles in Gi, therefore
S intersects all those cycles in G′

i. It follows that S is an α-simfvs in G′.
In the reverse direction, consider an α-simfvs S in G′ of size at most k. Note that

for j ∈ [α] \ {i}, G′
j = Gj . Therefore S intersects all the cycles in Gj . By the previous

claim, at least one of the following must hold: (1) v ∈ S or (2) H ⊆ S. Suppose that
(1) v ∈ S holds. Since G′

i −{v} = Gi −{v}, S \ {v} intersects all the cycles in G′
i −{v}

and Gi − {v}. Therefore S intersects all the cycles in Gi and S is an α-simfvs in G. In
case (2), i.e. when v �∈ S but H ⊆ S, any cycle in G which does not intersect with S

is also a cycle in G′ (since such a cycle does not intersect with H and the only deleted
edges from G′ belong to cycles passing through H). In other words, S \H intersects all
cycles in both G′

i −H and Gi −H and, consequently, S is an α-simfvs in G.

After exhaustively applying Reduction Rules 10.1 to 10.7, the degree of a vertex
v ∈ V (Gi) is at most 3k(k + 4)− 1 in Gi, for each i ∈ [α].

10.2.2 Bounding the number of vertices in G

Having bounded the maximum total degree of a vertex in G, we now focus on bounding
the number of vertices in the entire graph. To do so, we first compute an approximate
solution for the Sim-FVS instance using the polynomial-time 2-approximation algorithm
of Bafna et al. [BBF99] for the Feedback Vertex Set problem in undirected graphs.
In particular, we compute a 2-approximate solution Si in Gi, for i ∈ [α]. We let S =
∪i∈[α]Si. Note that S is an α-simfvs in G and has size at most 2α|SOPT |, where |SOPT |
is an optimal α-simfvs in G. For i ∈ [α], let Fi = Gi − Si, and let T i

≤1, T
i
2, and T i

≥3, be
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(a)

(b)

Figure 10.3: Unravelling two paths with five common vertices (a) to obtain two paths
with one common vertex (b).

the sets of vertices in Fi having degree at most one in Fi, degree exactly two in Fi, and
degree greater than two in Fi, respectively.

Later, we shall prove that bounding the maximum degree in G is sufficient for bound-
ing the sizes of T i

≤1 and T i
≥3, for all i ∈ [α]. We now focus on bounding the size of T i

2

which, for each i ∈ [α], corresponds to a set of degree-two paths. In other words, for a
fixed i, the graph induced in Fi by the vertices in T i

2, i.e. Fi[T
i
2], is a set of vertex-disjoint

paths. We say a set of distinct vertices {v1, . . . , v�} in T i
2 forms a maximal degree-two

path if (vj , vj+1) is an edge in Gi, for all j ∈ [� − 1], and all vertices {v1, . . . , v�} have
degree exactly two in Gi.

We enumerate all the maximal degree-two paths in Gi − Si, for i ∈ [α]. Let this
set of paths in Gi − Si be Pi = {P i

1, P
i
2, . . . , P

i
ni
}, where ni is the number of maximal

degree-two paths in Gi − Si. We introduce a special symbol φ and add φ to each set Pi,
for i ∈ [α]. The special symbol will be used later to indicate that no path is chosen from
the set Pi.

Let S = P1 × P2 × · · · × Pα be the set of all tuples of maximal degree-two paths
of different colors. For τ ∈ S, j ∈ [α], j(τ) denotes the element from the set Pj in the
tuple τ , i.e. for τ = (Q1, φ, . . . , Qj , . . . , Qα), j(τ) = Qj (for example 2(τ) = φ).

For a maximal degree-two path P i
j ∈ Pi and τ ∈ S, we define Intercept(P i

j , τ) = ∅
if P i

j �= i(τ). Otherwise, we define Intercept(P i
j , τ) = {v ∈ V (P i

j ) | for all t ∈ [α], if

t(τ) �= φ then v ∈ V (t(τ))}. Stated differently, Intercept(P i
j , τ) is either the empty set

or is the set of vertices which are present in all the paths in the tuple τ (of course a φ

entry does not contribute to this set).
We define the notion of unravelling a path P i

j ∈ Pi from all other paths of different

colors in τ ∈ S at a vertex u ∈ Intercept(P i
j , τ) by creating a separate copy of u for

each path. Formally, for a path P i
j ∈ Pi, τ ∈ S, and a vertex u ∈ Intercept(P i

j , τ),

the Unravel(P i
j , τ, u) operation does the following. For each t ∈ [α] with t(τ) �= φ, let

xt and yt be the unique neighbors of u on path t(τ) (and also in Gi). Create a vertex
ut(τ) for the path t(τ), delete the edges (xt, u) and (u, yt) from Gt and add the edges
(xt, ut(τ)) and (ut(τ), yt) in Gt. Figure 10.3 illustrates the unravel operation for two paths
of different colors.
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Reduction Rule 10.8. For a path P i
j ∈ Pi, τ ∈ S, if |Intercept(P i

j , τ)| > 1, then for a

vertex u ∈ Intercept(P i
j , τ), Unravel(P

i
j , τ, u).

Lemma 10.9. Reduction rule 10.8 is safe.

Proof. Let G be an α-colored graph and Si be a 2-approximate feedback vertex set
in Gi, for i ∈ [α]. Let Pi be the set of maximal degree-two paths in Gi − Si and
S = P1 × P2 × · · · × Pα. For a path P i

j ∈ Pi, τ ∈ S, |Intercept(P i
j , τ)| > 1, and u ∈

Intercept(P i
j , τ), let G

′ be the α-colored graph obtained after applying Unravel(P i
j , τ, u) in

G. We show that G has an α-simfvs of size at most k, if and only if G′ has an α-simfvs of
size at most k.

In the forward direction, consider an α-simfvs S in G of size at most k. Let x be a
vertex in Intercept(P i

j , τ) \ {u}. We define S′ = S if u �∈ S and S′ = (S \ {u}) ∪ {x}
otherwise. A cycle C in the graph G′

t not containing ut(τ), where ut(τ) is the copy of u
created for path t(τ), τ ∈ S, and t ∈ [α], is also a cycle in Gt. Therefore S′ intersects
C. Let Pt be the path in Pt containing u, for t ∈ [α]. Note that in Pi, there is exactly
one maximal degree-two path containing u and all the cycles in Gt containing u must
contain Pt. All the cycles in G′

t containing ut(τ) must contain x, since ut(τ) is the private
copy of u for the degree-two path t(τ) containing x. We consider the following cases
depending on whether u belongs to S or not.

• u ∈ S: A cycle C in G′
t, t ∈ [α], containing ut(τ) also contains x. Therefore S′

intersects C.

• u /∈ S: Corresponding to a cycle C in G′
t, t ∈ [α], containing ut(τ), there is a cycle

C ′ on vertices (V (C)∪{u})\{ut(τ)} in Gt. But S is an α-simfvs in G and therefore
both S and S′ must contain a vertex y ∈ V (C ′) \ {u}.

In the reverse direction, let S be an α-simfvs in G′. We define S′ = S if {ul(τ)|ul(τ) ∈
S, 1 ≤ l ≤ α} ∩ S �= ∅ and S′ = (S \ {ul(τ)|ul(τ) ∈ S, 1 ≤ l ≤ α}) ∪ {u} otherwise. All
the cycles in Gt not containing u are the cycles in G′

t not containing ut(τ). Therefore S′
intersects all those cycles. We consider the following cases depending on whether there
is some t′ ∈ [α] for which ut′(τ) belongs to S or not.

• For all t′ ∈ [α], ut′(τ) /∈ S. Let C be a cycle in Gt containing u, for t ∈ [α]. Note
that G′

t has a cycle C ′ corresponding to C, with V (C ′) = (V (C) \ {u}) ∪ {ut(τ)}.
S intersects C ′, therefore both S and S′ have a vertex y ∈ V (C ′) \ {ut(τ)}. Since
y ∈ V (C), S′ intersects the cycle C in Gt.

• For some t′ ∈ [α], ut′(τ) ∈ S. Note that S′ intersects all the cycles in Gt containing
u, for t ∈ [α]. Moreover, the only purpose of ut′(τ) being in S is to intersect a
cycle C ′ in G′

t containing ut′(τ). However, the corresponding cycle in Gt can be
intersected by a single vertex, namely u. Therefore, S′ is an α-simfvs in G.

This completes the proof.

Theorem 10.3. Sim-FVS admits a kernel on O(αk3(α+1)) vertices.

Proof. Consider an α-colored graph G on which Reduction Rules 10.1 to 10.8 have been
exhaustively applied. Note that all of our reduction rules are safe. Reduction Rules 10.1
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to 10.5 can clearly be applied in time polynomial in |V (G)| and k (for constant α). The
fact that we can apply Reduction Rules 10.6 and 10.7 in polynomial time (for constant
α) follows from Lemma 2.1 and Proposition 10.1. Moreover, observe that Reduction
Rules 10.1 to 10.7 strictly decrease either the number of vertices or the number of edges
in the graph, and therefore can only be applied a polynomial number of times. As
for Reduction Rule 10.8, we shall show in what follows that the number of maximal
degree-two paths is bounded by kO(α) (assuming Reduction Rules 10.1 to 10.7 have been
exhaustively applied), and we can enumerate all of them in polynomial time (for constant
α). Even though Reduction Rule 10.8 increases the number of vertices in the graph,
such vertices will always have degree exactly two in the graph, and will subsequently
be removed. Every application of Reduction Rule 10.8 decreases the number of vertices
sharing the same set of maximal degree-two paths (and no reduction rule increases the
number of such vertices). Hence, It remains to bound the number of vertices.

For i ∈ [α], the degree of a vertex v ∈ V (Gi) is either 0 or at least 2 in Gi. In what
follows, we do not count the vertices of degree 0 in Gi while counting the vertices in Gi;
since the total degree of a vertex v ∈ V (G) is at least three, there is some j ∈ [α] such
that the degree of v ∈ V (Gj) is at least 2.

Let Si be a 2-approximate feedback vertex set in Gi, for i ∈ [α]. Note that S = ∪α
i=1Si

is a 2α-approximate α-simfvs in G. Let Fi = Gi − Si, and let T i
≤1, T

i
2, and T i

≥3, be the
sets of vertices in Fi having degree at most one in Fi, degree exactly two in Fi, and degree
greater than two in Fi, respectively. The degree of each vertex v ∈ V (Gi) is bounded by
O(k2) in Gi, for i ∈ [α]. In particular, the degree of each s ∈ S is bounded by O(k2) in
Gi. Moreover, each vertex v ∈ T i

≤1 has degree at least 2 in Gi, and therefore must be

adjacent to some vertex in S. It follows that |T i
≤1| ∈ O(k3).

In a tree, the number t of vertices of degree at least three is bounded by �− 2, where
� is the number of leaves. Hence, |T i

≥3| ∈ O(k3). Also, in a tree, the number of maximal
degree-two paths is bounded by t+ l. Consequently, the number of degree-two paths in
Gi − Si is in O(k3). Moreover, no two maximal degree-two paths in a tree intersect.

Note that there are at most O(k3) maximal degree-two paths in Pi, for i ∈ [α], and
therefore |S| = O(k3α). After exhaustive application of Reduction Rule 10.8, for each
path P i

j ∈ Pi, i ∈ [α], and τ ∈ S, there is at most one vertex in Intercept(P i
j , τ). Also

note that after exhaustive application of Reduction Rules 10.1 to 10.7, the total degree of
a vertex in G is at least 3. Therefore, there can be at mostO(k3α) vertices in a degree-two
path P i

j ∈ Pi. Furthermore, there are at most O(k3) degree-two maximal paths in Gi,

for i ∈ [α]. It follows that |T i
2| ∈ O(k3(α+1)) and |V (Gi)| ≤ |T i

≤1|+ |T i
2|+ |T i

≥3|+ |Si| =
O(k3) +O(k3(α+1)) +O(k3) + 2k ∈ O(k3(α+1)). Therefore, the number of vertices in G

is in O(αk3(α+1)).

10.3 Hardness Results

In this section, we show that Sim-FVS is W[1]-hard when α ∈ O(log n), where n is
the number of vertices in the input graph. We give a reduction from a special version
of the Hitting Set (HS) problem, which we denote by Partitioned Hitting Set

(PHS). We believe this version of Hitting Set to be of independent interest with
possible applications for showing hardness results of similar flavor. We prove W[1]-
hardness of Partitioned Hitting Set by a reduction from a restricted version of the
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Figure 10.4: The graphG before contracting all edges colored zero for U = {u1, u2, u3, u4}
and F = {{u1, u2}, {u2, u3}, {u2, u4}}.

Partitioned Subgraph Isomorphism (PSI) problem.
Before we delve into the details, we start with a simpler reduction from Hitting

Set showing that Sim-FVS is W[2]-hard when α ∈ O(n). The reduction closely follows
that of Lokshtanov [Lok08] for dealing with the Wheel-Free Deletion problem.
Intuitively, starting with an instance (U ,F , k) of HS, we first construct a graph G on
2|U||F| vertices consisting of |F| vertex-disjoint cycles. Then, we use |F| colors to
uniquely map each set to a separate cycle; carefully connecting these cycles together
guarantees equivalence of both instances.

Theorem 10.4. Sim-FVS parameterized by solution size is W[2]-hard when α ∈ O(n).

Proof. Given an instance (U ,F , k) of Hitting Set, we let U = {u1, . . . , u|U|} and
F = {f1, . . . , f|F|}. We assume, without loss of generality, that each element in U
belongs to at least one set in F . For each fi ∈ F , i ∈ [|F|], we create a vertex-disjoint
cycle Ci on 2|U| vertices and assign all its edges color i. We let V (Ci) = {ci1, ci2, . . . , ci2|U|}
and we define β(i, uj) = ci2j−1, for i ∈ [|F|] and j ∈ [|U|]. In other words, every odd-
numbered vertex of Ci is mapped to an element in U . Now for every element uj ∈ U ,
j ∈ [|U|], we create a vertex vj , we let γ(uj) = {ci2j−1 | i ∈ [|F|] ∧ uj ∈ fi}, and we
add an edge (of some special color, say zero) between vj and every vertex in γ(uj) (see
Figure 10.4).

To finalize the reduction, we contract all the edges colored zero to obtain an instance
(G, k) of Sim-FVS. Note that |V (G)| = |E(G)| ≤ 2|U||F| and the total number of used
colors is |F|. Moreover, after contracting all 0-colored edges, |γ(uj)| = 1 for all uj ∈ U .
Claim 10.2. If F admits a hitting set of size at most k then G admits an |F|-simfvs of
size at most k.

Proof. Let X = {ui1 , . . . , uik} be such a hitting set. We construct a vertex set Y =
{γ(ui1), . . ., γ(uik)}. If Y is not an |F|-simfvs of G then G[V (G) \ Y ] must contain
some cycle where all edges are assigned the same color. By construction, every set in F
corresponds to a uniquely colored cycle in G. Hence, the contraction operations applied
to obtain G cannot create new monochromatic cycles, i.e. every cycle inG which does not
correspond to a set from F must include edges of at least two different colors. Therefore,
if G[V (G) \ Y ] contains some monochromatic cycle then X cannot be a hitting set of
F .
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Claim 10.3. If G admits an |F|-simfvs of size at most k then F admits a hitting set of
size at most k.

Proof. Let X = {vi1 , . . . , vik} be such an |F|-simfvs. First, note that if some vertex in
X does not correspond to an element in U , then we can safely replace that vertex with
one that does (since any such vertex belongs to exactly one monochromatic cycle). We
construct a set Y = {ui1 , . . . , uik}. If there exists a set fi ∈ F such that Y ∩ fi = ∅
then, by construction, there exists an i-colored cycle Ci in G such that X ∩ V (Ci) = ∅,
a contradiction.

Combining the previous two claims with the fact that our reduction runs in time
polynomial in |U|, |F|, and k, completes the proof of the lemma.

Notice that the proof of Theorem 10.4 crucially relies on the fact that each cycle
is “uniquely identified” by a separate color. In order to get around this limitation and
prove W[1]-hardness for α ∈ O(log n) we need, in some sense, to group separate sets of
a Hitting Set instance into O(log(|U||F|)) families such that sets inside each family
are pairwise disjoint. By doing so, we can modify the proof of Theorem 10.4 to identify
all sets inside a family using the same color, for a total of O(log n) colors (instead of
O(n)). Next, we formally state the problems Partitioned Hitting Set (PHS) and
Partitioned Subgraph Isomorphism (PSI).

Partitioned Hitting Set (PHS) Parameter: k
Input: A tuple (U ,F = F1∪ . . .∪Fα, k), where Fi, i ∈ [α], is a collection of subsets
of the finite universe U and k is a positive integer. Moreover, all the sets within a
family Fi, for i ∈ [α], are pairwise disjoint.
Question: Is there a set X ⊆ U of size at most k such that for every f ∈ F =
F1 ∪ . . . ∪ Fα, we have f ∩X �= ∅?

Partitioned Subgraph Isomorphism (PSI) Parameter: k = |E(G)|
Input: A graph H, a graph G with V (G) = {g1, . . . , g�}, and a coloring function
col : V (H) → [�].
Question: Is there an injection inj : V (G) → V (H) such that for every i ∈ [�],
col(inj(gi)) = i and for every (gi, gj) ∈ E(G), (inj(gi), inj(gj)) ∈ E(H)?

Theorem 10.5 ([GM09, Mar07]). Partitioned Subgraph Isomorphism parame-
terized by |E(G)| is W[1]-hard, even when the smaller graph G is connected and has

maximum degree three. Moreover, the problem cannot be solved in time f(k)no(
k

log k
),

where f is an arbitrary function, n = |V (H)|, and k = |E(G)|, unless ETH fails.

Wemake a few simplifying assumptions: For an instance of Partitioned Subgraph

Isomorphism, we let Hi denote the subgraph of H induced on vertices colored i. We
assume that |V (Hi)| = 2t, for i ∈ [�] and t some positive integer; adding isolated
vertices to each set is enough to guarantee this size constraint. Moreover, we assume
that whenever there is no edge (gi, gj) ∈ E(G), then there are no edges between V (Hi)
and V (Hj) in H (see Figure 10.5 for an example of an instance). Note that the PSI

problem asks for a “colorful” subgraph of H isomorphic to G such that one vertex from
Hi is mapped to the vertex gi, i ∈ [�]. Therefore, it is also safe to assume that Hi, i ∈ [�],
is edgeless.
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Figure 10.5: An instance of the PSI problem.

Theorem 10.6. Partitioned Hitting Set parameterized by solution size is W[1]-
hard when α ∈ O(log(|U||F|)). Moreover, the problem cannot be solved in time

f(k)no(
k

log k
), where f is an arbitrary function, n = |U|, and k is the required solution

size, unless ETH fails.

Proof. Given an instance (H,G, col, � = |V (G)|, k = |E(G)|) of PSI, where G has max-
imum degree three, we reduce it into an instance (U ,F = F1 ∪ . . . ∪ Fα, k

′ = k + �) of
PHS, where α = 16 log 2t+1 = 16t+1, Fi, i ∈ [α], is a collection of subsets of the finite
universe U , and all the sets within a family Fi are pairwise disjoint.

We start by constructing the universe U . For each vertex hij ∈ V (Hi), i ∈ [�] and

0 ≤ j ≤ 2t − 1, we create an element vij . For each edge (hi1j1 , h
i2
j2
) ∈ E(H), we create

an element ei1,i2j1,j2
where j1 is the index of the vertex in Hi1 , j2 is the index of the vertex

in Hi2 , i1, i2 ∈ [�], and 0 ≤ j1, j2 ≤ 2t − 1. Note that |U| = |V (H)| + |E(H)| =
�2t + |E(H)| < 4t2�2.

We now create “selector gadgets” between elements corresponding to vertices and
elements corresponding to edges. For every ordered pair (x, y), where x, y ∈ [�], such
that there exists an edge between Hx and Hy in H (or equivalently there exists an edge
(gx, gy) in G), we create 2t sets. We denote half of those sets by Ux,y,p and the order half
by Dx,y,p, where p ∈ [t]. Let Ux denote the set of all elements corresponding to vertices in
Hx and let Ux,y (x and y unordered in Ux,y) denote the set of all elements corresponding
to edges between vertices in Hx and vertices Hy. We let bit(i)[p], 0 ≤ i ≤ 2t − 1 and
p ∈ [t], be the pth bit in the bit representation of i (where position p = 1 holds the most
significant bit). For each vxi ∈ Ux and for all p from 1 to t, if bit(i)[p] = 0 we add vxi to
set Dx,y,p and we add vxi to set Ux,y,p otherwise. For each ex,yi,j ∈ Ux,y and for all p from

1 to t, if bit(i)[p] = 0 we add ex,yi,j to set Ux,y,p and we add ex,yi,j to set Dx,y,p otherwise.

Recall that for ex,yi,j , i corresponds to the index of element vxi ∈ Ux.

Finally, for each x, where x ∈ [�], we add the set Qx = Ux, and for each (unordered)
pair x,y such that (gx, gy) ∈ E(G) we add the set Qx,y = Ux,y. Put differently, a set Qx

contains all elements corresponding to vertices in Hx and a set Qx,y contains all elements
corresponding to edges between Hx and Hy. The role of these � + k sets is simply to
force a solution to pick at least one element from every Ux and one element from every
Uy,z, x, y, z ∈ [�]. Note that we have a total of 4t|E(G)| + |E(G)| + � < 4t�2 + �2 + �

sets and therefore 16t+ 1 ∈ O(log(|U||F|)). We set k′ = |V (G)|+ |E(G)| = �+ k. This
completes the construction. An example of the construction for the instance given in
Figure 10.5 is provided in Figure 10.6.
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Figure 10.6: Parts of the reduction for the PSI instance from Figure 10.5. Rounded
rectangles represents subsets of the universe and circles (and ellipses) represent sets in
the family.

Claim 10.4. In the resulting instance (U ,F = F1∪ . . .∪Fα, k
′ = k+ �), α = 16 log 2t+

1 = 16t+ 1.

Proof. First, we note that all sets Qx and Qy,z, x, y, z ∈ [�], are pairwise disjoint. Hence,
we can group all these sets into a single partition. We now prove that 16t is enough to
partition the remaining sets.

Since G has maximum degree three, we know by Vizing’s theorem [Viz64] that G

admits a proper 4-edge-coloring, i.e. no two edges incident on the same vertex receive
the same color. Let us fix such a 4-edge-coloring and denote it by β : E(G) → {1, 2, 3, 4}.
Recall that for every ordered pair (x, y), where x, y ∈ [�], we define two groups of sets
Ux,y,p and Dx,y,p, p ∈ [t]. Given any set Xx,y,p, X ∈ {U,D}, we define the partition to
which Xx,y,p belongs as part(X, x, y, p) = (β(gx, gy), p, {U,D}, {x < y, x > y}). In other
words, we have a total of 16t partitions depending on the color of the edge (gx, gy) in G,
the position p, whether X = U or X = D, and whether x < y or x > y (recall that we
assume x �= y).

Since β is a proper 4-coloring of the edges of G, we know that if two sets belong to
the same partition they must be of the form Xx1,y1,p and Xx2,y2,p, where X ∈ {U,D},
x1 �= x2, y1 �= y2, β(gx1 , gy1) = β(gx2 , gy2), x1 < y1 (x1 > y1), and x2 < y2 (x2 > y2). It
follows from our construction that Xx1,y1,p∩Xx2,y2,p = ∅; Xx1,y2,p only contains elements
from Ux1 ∪Ux1,y1 , Xx2,y2,p only contains elements from Ux2 ∪Ux2,y2 , and (Ux1 ∪Ux1,y1) ∩
(Ux2 ∪ Ux2,y2) is empty.

Claim 10.5. The resulting instance (U ,F = F1 ∪ . . .∪Fα, k
′ = k+ �) admits no hitting

set of size k′ − 1.
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Proof. If there exists a hitting set S of size k′ − 1, then either (1) there exists Ux, where
x ∈ [�], such that S ∩ Ux = ∅ or (2) there exists Uy,z, where y, z ∈ [�], such that
S ∩ Uy,z = ∅. In case (1), we are left with a set Qx which is not hit by S. Similarly, for
case (2), there exists a set Qy,z which is not hit by S. In both cases we get a contradiction
as we assumed S to be a hitting set, as needed.

Claim 10.6. Any hitting set of size k′ of the resulting instance (U ,F = F1∪. . .∪Fα, k
′ =

k + �) must pick exactly one element from each set Ux, where x ∈ [�], and exactly one
element from each set Uy,z, where y, z ∈ [�]. Moreover, for every ordered pair (x, y), for
x, y ∈ [�], a hitting set of size k′ must pick vxi ∈ Ux and ex,yi,j ∈ Ux,y, 0 ≤ i, j ≤ 2t − 1. In

other words, the vertex hxi ∈ V (H) is incident to the edge (hxi , h
y
j ) ∈ E(H).

Proof. The first part of the claim follows from the previous claim combined with the
fact that k′ = k+ �. For the second part, assume that there exists a hitting set S of size
k′ such that for some ordered pair, (x, y), S includes vxi1 ∈ Ux and ex,yi2,j

∈ Ux,y, where
i1 �= i2. Since i1 �= i2, then bit(i1)[p] �= bit(i2)[p] for at least one position p. For that
position, we know that vxi1 and ex,yi2,j

must both belong to only one of Ux,y,p or Dx,y,p.

Hence, either Ux,y,p or Dx,y,p is not hit by vxi1 and ex,yi2,j
when i1 �= i2.

Claim 10.7. If (H,G, col, � = |V (G)|, k = |E(G)|), where G has maximum degree three,
is a yes-instance of PSI then (U ,F = F1 ∪ . . . ∪ Fα, k

′ = k + �) is a yes-instance of
PHS.

Proof. Let S, a subgraph of H, denote the solution graph and let V (S) = {h1i1 , . . . , h�i�}.
We claim that S′ = {v1i1 , . . . , v�i�} ∪ {ex,yj1,j2

| (gx, gy) ∈ E(G) ∧ j1, j2 ∈ {i1, . . . , i�}} is a
hitting set of F . That is, the hitting set picks � elements corresponding to the � vertices
in S (or G) and k elements corresponding to the k edges in G.

Clearly, all sets Qx and Qy,z, for x, y, z ∈ [�], are hit since we pick one element from
each. We now show that all sets Ux,y,p and Dx,y,p, x, y ∈ [�] and p ∈ [t], are also hit.
Assume, without loss of generality, that for fixed x, y, and p, some set Ux,y,p is not hit.
Let vxi1 ∈ Ux be the element we picked from Ux and let ex,yi2,j

be the element we picked
from Ux,y. If Ux,y,p is not hit, it must be the case that i1 �= i2 which, by the previous
claim, is not possible.

Claim 10.8. If (U ,F = F1 ∪ . . . ∪ Fα, k
′ = k + �) is a yes-instance of PHS then

(H,G, col, � = |V (G)|, k = |E(G)|) is a yes-instance of PSI.

Proof. Let S = {v1i1 , . . . , v�i�} ∪ {ex,yj1,j2
|(gx, gy) ∈ E(G)∧ j1, j2 ∈ {i1, . . . , i�}} be a hitting

set of F . Note that we can safely assume that the hitting set picks such elements since
it has to hit all sets Qx and Qy,z, for x, y, z ∈ [�]. We claim that the subgraph S′ of H
with vertex set V (S′) = {h1i1 , . . . , h�i�} is a solution to the PSI instance.

By construction, there is an injection inj : V (G) → V (S′) such that for every i ∈ [�],
col(inj(gi)) = i. In fact, S′ contains exactly one vertex for each color i ∈ [�]. Assume
that there exists an edge (gi, gj) ∈ E(G) such that (inj(gi), inj(gj)) �∈ E(S′). This
implies that there exists two vertices hxi , h

y
j ∈ V (S′) such that (hxi , h

y
j ) �∈ E(S′). But

we know that there exists at least one edge, say (hxi′ , h
y
j′), between vertices in Hx and

vertices in Hy (from our assumptions). Since i′ �= i, j′ �= j, vxi , v
y
j ∈ S, and ex,yi,j �∈ S, it

follows that S cannot be a hitting set of F as at least one set in Ux,y,p ∪Dx,y,p and one
set in Uy,x,p ∪Dy,x,p is not hit by S, a contradiction.
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This completes the proof of the theorem.

We are now ready to state the main result of this section. The proof of Theorem 10.7
follows the same steps as the proof of Theorem 10.4 with one exception, i.e we reduce
from Partitioned Hitting Set with α ∈ O(log(|U||F|)) and useO(log(|U||F|)) colors
instead of |F|.

Theorem 10.7. Sim-FVS parameterized by solution size is W[1]-hard when α ∈
O(log n).

Proof. Given an instance (U ,F = F1 ∪ . . . ∪ Fα, k) of PHS, we let U = {u1, . . . , u|U|}
and Fi = {f i1, . . . , f i|Fi|}, where i ∈ [α]. We assume, without loss of generality, that each

element in U belongs to at least one set in F .
For each f ij ∈ Fi, where i ∈ [α] and j ∈ [|Fi|], we create a vertex-disjoint cycle Ci

j

on 2|U| vertices and assign all its edges color i. We let V (Ci
j) = {ci,j1 , . . . , ci,j

2|U|} and we

define β(i, j, up) = ci,j2p−1, where i ∈ [α], j ∈ [|Fi|], and p ∈ [|U|]. In other words, every

odd-numbered vertex of Ci
j is mapped to an element in U . Now for every element up ∈ U ,

where p ∈ [|U|], we create a vertex vp, we let γ(up) = {ci,j2p−1 | i ∈ [α]∧j ∈ [|Fi|]∧up ∈ f ij},
and we add an edge (of some special color, say 0) between vp and every vertex in γ(up).
To finalize the reduction, we contract all the edges colored 0 to obtain an instance (G, k)
of Sim-FVS. Note that |V (G)| = |E(G)| = 2|U||F| and the total number of used colors
is α. Moreover, after contracting all special edges, |γ(up)| = 1 for all up ∈ U .
Claim 10.9. If F admits a hitting set of size at most k then G admits an α-simfvs of
size at most k.

Proof. Let X = {up1 , . . . , upk} be such a hitting set. We construct a vertex set Y =
{γ(up1), . . ., γ(upk)}. If Y is not an α-simfvs of G then G[V (G) \ Y ] must contain some
monochromatic cycle. By construction, only sets from the same family Fi, for i ∈ [α],
correspond to cycles assigned the same color in G. But since we started with an instance
of PHS, no two such sets intersect. Hence, the contraction operations applied to obtain
G cannot create new monochromatic cycles. Therefore, if G[V (G) \ Y ] contains some
monochromatic cycle then X cannot be a hitting set of F .

Claim 10.10. If G admits an α-simfvs of size at most k then F admits a hitting set of
size at most k.

Proof. Let X = {vp1 , . . . , vpk} be such an α-simfvs. First, note that if some vertex in
X does not correspond to an element in U , then we can safely replace that vertex with
one that does (since any such vertex belongs to exactly one monochromatic cycle). We
construct a set Y = {up1 , . . . , upk}. If there exists a set f ij ∈ Fi such that Y ∩ f ij = ∅
then, by construction, there exists an i-colored cycle Ci in G such that X ∩ V (Ci) = ∅,
a contradiction.

Combining the previous two claims with the fact that our reduction runs in time
polynomial in |U|, |F|, and k, completes the proof of the theorem.



Chapter 11

Simultaneous Feedback Edge Set

In this chapter, we consider the edge variant, namely, Simultaneous Feedback Edge

Set (Sim-FES for short) of the problem Simultaneous Feedback Vertex Set. It
is more convenient (and logical) to view an α-edge-colored graph as a graph with a
coloring function col : E(G) → 2[α]. Therefore, in this chapter, we use this notation
for an α-edge-colored graphs. A feedback edge set in a graph G is S ⊆ E(G) such that
G−S is a forest. For a graph G with a coloring function col : E(G) → 2[α], simultaneous
feedback edge set is a subset S ⊆ E(G) such that Gi − S is a forest for all i ∈ [α]. Here,
Gi = (V (G), Ei), where Ei = {e ∈ E(G) | i ∈ col(e)}. Next, we define the Sim-FES

problem formally defined below.

Simultaneous Feedback Edge Set (Sim-FES) Parameter: k and α

Input: An α-edge-colored graph G with coloring col : E(G) → 2[α] and an integer
k.
Question: Is there a simultaneous feedback edge set of cardinality at most k in G?

Unlike the vertex variant of the problem, when α = 1, the problem is equivalent to
finding a maximal spanning forest, and hence is polynomial time solvable. In Section 11.1
we design an FPT algorithm for Sim-FES by reducing to α-Matroid Parity on direct
sum of elongated co-graphic matroids of Gi, i ∈ [α] (see Chapter 2 for definitions related
to matroids). This algorithm runs in time O(2ωkα+α log knO(1)). We also show that
(unlike the vertex counterpart) for α = 2 (2-edge-colored graphs) Sim-FES is polynomial
time solvable. This follows from the polynomial time algorithm for theMatroid parity

problem. In Section 11.2 we show that for α = 3, Sim-FES is NP-hard. Towards this,
we give a reduction from the Vertex Cover in cubic graphs which is known to be NP-
hard [Moh01]. Furthermore, the same reduction shows that the problem cannot be solved
in 2o(k)nO(1) time unless ETH fails. We complement our FPT algorithms by showing
that Sim-FES is W[1]-hard when parameterized by the solution size k (Section 11.3).
When α = O(|V (G)|), we give a parameter preserving reduction from the Hitting Set

problem, a well known W[2]-hard problem parameterized by the solution size [CFK+15].
However, Sim-FES remains W[1]-hard even when α = O(log(|V (G)|)). We show this by
giving a parameter preserving reduction from Partitioned Hitting Set problem, a
variant of the Hitting set problem, which is W[1]-hard parameterized by the solution
size (see Chapter 10, Section 10.3). In Section 11.4, we give a kernel with O((kα)O(α))
vertices. Towards this we apply some of the standard preprocessing rules for obtaining
kernel for Feedback Vertex Set and use the approach similar to the one used for
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designing kernelization algorithm for Sim-FVS. In Section 11.5 we give an FPT algorithm
for the problem, when parameterized by the dual parameter. Formally, this problem is
defined as follows.

Max-Sim Acyclic-Subgraph (Max-Sim-Subgraph) Parameter: q

Input: An α-edge-colored graph G with coloring col : E(G) → 2[α] and an integer q.
Question: Is there a subset F ⊆ E(G) such that |F | ≥ q and for each i ∈ [α], the
graph Gi[F ] is acyclic?

For solving Max-Sim-Subgraph we reduce it to an equivalent instance of the α-

Matroid Parity problem. As an immediate corollary we get an exact algorithm for
Sim-FES running in time O(2ωnα

2

nO(1)).

11.1 FPTAlgorithm for Simultaneous Feedback Edge

Set

In this section, we design an algorithm for Sim-FES by giving a reduction to α-Matroid

Parity on the direct sum of elongated co-graphic matroids associated with graphs
restricted to different color classes.

We describe our algorithm, Algo-SimFES, for Sim-FES. Let (G, col : E(G) → 2[α], k)
be an input instance to Sim-FES, where |V (G)| = n. Let ηi be the number of connected
components in Gi. To make Gi acyclic we need to delete at least |E(Gi)| − n+ ηi edges
from Gi. Therefore, if there is i ∈ [α] such that |E(Gi)| − n+ ηi > k, then Algo-SimFES
returns no. We let ki = |E(Gi)| − n + ηi. Observe that for i ∈ [α], 0 ≤ ki ≤ k. We
need to delete at least ki edges from E(Gi) to make Gi acyclic. Therefore, the algorithm
Alg-SimFES for each i ∈ [α], guesses k′i, where ki ≤ k′i ≤ k and computes a solution S

of Sim-FES such that |S ∩ E(Gi)| = k′i. Let Mi = (Ei, Ii) be the k′i-elongation of the
co-graphic matroid associated with Gi.

Proposition 11.1. Let G be a graph with η connected components and M be an r-
elongation of the co-graphic matroid associated with G, where r ≥ |E(G)| − |V (G)|+ η.
Then B ⊆ E(G) is a basis of M if and only if the subgraph G−B is acyclic and |B| = r.

Proof. In the forward direction let B ⊆ E(G) be a basis of M . By Definition of M it
follows that |B| = r and B contains a basis Bc of the co-graphic matroid of G. Suppose
G − B has a cycle. This implies that G − Bc has a cycle. But then, there is an edge
e ∈ E(G− Bc) whose removal from G− Bc does not increase the number of connected
components in G− Bc. This contradicts that Bc was a basis in the co-graphic matroid
of G.

In the reverse direction let B ⊆ E(G) such that |B| = r and G − B is acyclic.
Consider a inclusion wise maximal subset B′ ⊆ B such that the number of connected
components in G− B′ is η. Observe that G− B′ does not contain a cycle since G− B

is acyclic and B′ is inclusion wise maximal. Therefore, it follows that B′ is a basis in
the co-graphic matroid of G. But then B contains a basis of the co-graphic matroid of
G and |B| = r, therefore B is a basis in M .

By Proposition 11.1, for any basis Fi in Mi, Gi − Fi is acyclic. Therefore, our
objective is to compute F ⊆ E(G) such that |F | = k and the elements of F restricted
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Algorithm 3: Pseudocode of Algo-SimFES

Input: An α-edge-colored graph G with coloring col : E(G) → 2[α] and an
integer k.

Output: yes or no.
1 Let ηi be the number of connected components in Gi for each i ∈ [α]
2 ki := |E(Gi)| − n+ ηi for all i ∈ [α]
3 if there exists i ∈ [α] such that ki > k then
4 return no

5 for (k′
1, . . . , k

′
α) ∈ ([k] ∪ {0})α such that ki ≤ k′

i for all i ∈ [α] do
6 Let Mi be the k′

i-elongation of the co-graphic matroid associated with Gi.
7 Let Mα+1 = Uτ,k′ over the gound set Fake(G), where, k′ =

∑
i∈[α](k − k′

i).

8 Let M :=
⊕

i∈[α+1] Mi.

9 For each e ∈ E(G), let Copies(e) be the block of elements of M .
10 if there is an independent set of M composed of k blocks then
11 return yes

12 return no

to the elements of Mi form a basis for all i ∈ [α]. For this we will construct an instance
of α-Matroid Parity as follows. For each e ∈ E(G) and i ∈ col(e), we use ei to
denote the corresponding element in Mi. For each e ∈ E(G), by Original(e) we denote
the set of elements {ej | j ∈ col(e)}. For each edge e ∈ E(G), we define Fake(e) =
{ej | j ∈ [α] − col(e)}. Finally, for each edge e ∈ E(G), by Copies(e) we denote the set
Original(e)∪ Fake(e). Let Fake(G) =

⋃
e∈E(G) Fake(e). Furthermore, let τ = |Fake(G)| =∑

e∈E(G) |Fake(e)| and k′ =
∑

i∈[α](k − k′i). Let Mα+1 = (Eα+1, Iα+1) be a uniform

matroid over the ground set Fake(G). That is, Mα+1 = Uτ,k′ . By Propositions 2.4 to
Proposition 2.6 we know that Mis are representable over Fp(X), where p > max(τ, 2)
is a prime number and their representation can be computed in polynomial time. Let
Ai be the linear representation of Mi for all i ∈ [α + 1]. Notice that Ei ∩ Ej = ∅
for all 1 ≤ i �= j ≤ α + 1. Let M denote the direct sum M1 ⊕ · · · ⊕ Mα+1 with its
representation matrix being AM . Note that the ground set of M is

⋃
e∈E(G) Copies(e).

Now we define an instance of α-Matroid Parity, which is the linear representation
AM of M and the partition of ground set into Copies(e), e ∈ E(G). Notice that for all
e ∈ E(G), |Copies(e)| = α. Also for each i ∈ [α], rank(Mi) = k′i and rank(Mα+1) = k′ =∑

i∈[α](k − k′i). This implies that rank(M) = αk.

Now Algo-SimFES outputs yes if there is a basis (an independent set of cardinality
αk) of M which is a union of k blocks in M and otherwise outputs no. Algo-SimFES uses
the algorithm mentioned in Proposition 2.7 to check whether there is an independent set
of M , composed of blocks. A pseudocode of Algo-SimFES can be found in Algorithm 3.

Lemma 11.1. Algo-SimFES is correct.

Proof. Let (G, col : E(G) → 2[α], k) be a yes instance of Sim-FES and let F ⊆ E(G),
where |F | = k be a solution of (G, col : E(G) → 2[α], k). Let ki = |E(Gi)| − n + ηi,
where ηi is the number of connected components in Gi, for all i ∈ [α]. For all i ∈ [α],
let k′i = |F ∩ E(Gi)|. Since F is a solution, ki ≤ k′i for all i ∈ [α]. This implies that
Algo-SimFES will not execute Step 4. Consider the for loop for the choice (k′1, . . . , k

′
α).
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We claim that the columns corresponding to S =
⋃

e∈F Copies(e) form a basis in M

and it is union of k blocks. Note that |S| = αk by construction. For all i ∈ [α], let
F i = {ei | e ∈ F, i ∈ col(e)}, which is subset of ground set of Mi. By Proposition 11.1,
for all i ∈ [α], F i is a basis for Mi. This takes care of all the edges in ∪e∈FOriginal(e).
Now let S∗ = S − ∪i∈[α]F i = ∪e∈FFake(e). Observe that |S∗| =

∑
i∈[α](k − k′i) = k′.

Also, S∗ is a subset of ground set of Uτ,k′ and thus is a basis since |S∗| = k′. Hence S is
a basis of M . Note that S is the union of blocks corresponding to e ∈ F and hence is
union of k blocks. Therefore, Algo-SimFES will output yes.

In the reverse direction suppose Algo-SimFES outputs yes. This implies that there is
a basis, say S, that is the union of k blocks. By construction S corresponds to union
of the sets Copies(e) for some k edges in G. Let these edges be F = {e1, . . . , ek}. We
claim that F is a solution of (G, k, col : E(G) → 2[α]). Clearly |F | = k. Since S is
a basis of M , for each i ∈ [α], B(i) = S ∩ {ei | e ∈ E(Gi)} is a basis in Mi. Let
F (i) = {e | ei ∈ B(i)} ⊆ F . Since B(i) is a basis of Mi, by Proposition 11.1, Gi − F (i)
is an acyclic graph.

Lemma 11.2. Algo-SimFES runs in deterministic time O(2ωkα+α log k|V (G)|O(1)).

Proof. The for loop runs (k + 1)α times. The step 10 uses the algorithm mentioned
in Proposition 2.7, which takes time O(2ωkα||AM ||O(1)) = O(2ωkα|V (G)|O(1)). All
other steps in the algorithm takes polynomial time. Thus, the total running time is
O(2ωkα+α log k|V (G)|O(1)).

Since α-Matroid Parity for α = 2 can be solved in polynomial time [Lov80]
algorithm Algo-SimFES runs in polynomial time for α = 2. This gives us the following
theorem.

Theorem 11.1. Sim-FES is in FPT and when α = 2 Sim-FES is in P.

11.2 Hardness Results

In this section, we show that when α = 3, Sim-FES is NP-Hard. Furthermore, from
our reduction we conclude that it is unlikely that Sim-FES admits a subexponential-
time algorithm. We give a reduction from Vertex Cover (VC) in cubic graphs to
the special case of Sim-FES where α = 3. Let (G, k) be an instance of VC in cu-
bic graphs, which asks whether the graph G has a vertex cover of size at most k.
We assume without loss of generality that k ≤ |V (G)|. It is known that VC in cu-
bic graphs is NP-hard [Moh01] and unless the ETH fails, it cannot be solved in time
O�(2o(|V (G)|+|E(G)|)) [Kom15]. Thus, to prove that when α = 3, it is unlikely that Sim-
FES admits a parameterized subexponential time algorithm (an algorithm of running
time O�(2o(k))), it is sufficient to construct (in polynomial time) an instance of the form
(G′, col′ : E′ → 2[3], k′ = O(|V (G)| + |E(G)|)) of Sim-FES that is equivalent to (G, k).
Refer Figure 11.1 for an illustration of the construction.

To construct (G′, k′, col′ : E(G′) → 2[3]), we first construct an instance (Ĝ, k̂) of VC
in subcubic graphs which is equivalent to (G, k). We set

V (Ĝ) = V (G) ∪ (
⋃

(v,u)∈E(G)

{xv,u, xu,v}), and
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E(Ĝ) = {(xv,u, xu,v) | (v, u) ∈ E(G)} ∪ (
⋃

(v,u)∈E(G)

{(v, xv,u), (u, xu,v)}).

That is, the graph Ĝ is obtained from the graph G by subdividing each edge in E(G)
twice.

Lemma 11.3. G has a vertex cover of size k if and only if Ĝ has a vertex cover of size
k̂ = k + |E(G)|

Proof. In the forward direction, let S be a vertex cover in G. We will construct a vertex
cover Ŝ in Ĝ of size at most k + |E(G)|. Consider an edge (v, u) ∈ E(G). If both u, v

belongs to S, then we arbitrarily add one of the vertices from {xv,u, xu,v} to Ŝ. If exactly

one vertex in {v, u} belongs to S, say v ∈ S then, we add xu,v to Ŝ. If u ∈ S, then we

add xv,u to Ŝ. Clearly, Ŝ is a vertex cover in Ĝ and is of size at most k + |E(G)|.
In the reverse direction, given a vertex cover in Ĝ. For each (v, u) ∈ E(G) such

that both xv,u and xu,v are in the vertex cover, we can replace xu,v by u, and then, by
removing all of the remaining vertices of the form xv,u (whose number is exactly |E(G)|),
we obtain a vertex cover of G.

Observe that in Ĝ every path between two degree-3 vertices contains an edge of the
form (xv,u, xu,v). Thus, the following procedure results in a partition (M1,M2,M3) of

E(Ĝ) such that for all i ∈ [3], (v, u) ∈ Mi and (v′, u′) ∈ Mi \ {(v, u)}, it holds that
{v, u} ∩ {v′, u′} = ∅. Initially, M1 = M2 = M3 = ∅. For each degree-3 vertex v, let
(v, x), (v, y) and (v, z) be the edges containing v. We insert (v, x) into M1, (v, y) into
M2, and (v, z) into M3 (the choice of which edge is inserted into which set is arbitrary).
Finally, we insert each edge of the form (xv,u, xu,v) into a set Mi that contains neither
(v, xv,u) nor (u, xu,v).

We are now ready to construct the instance (G′, col′ : E(G′) → 2[3], k′). Let V (G′) =
V (Ĝ) ∪ V �, where V � = {v� | v ∈ V (Ĝ)} contains a copy v� of each vertex v in V (Ĝ).
The set E(G′) and coloring col′ are constructed as follows. For each vertex v ∈ V (Ĝ),
add an edge (v, v�) into E(G′) and its color-set is {1, 2, 3}. For each i ∈ [3] and for
each (v, u) ∈ Mi, add the edges (v, u) and (v�, u�) into E(G′) and its color-set is {i}.
We set k′ = k̂. Clearly, the instance (G′, col′ : E(G′) → 2[3], k′) can be constructed in
polynomial time, and it holds that k′ = O(|V (G)|+ |E(G)|).

Lemma 11.4 proves that (Ĝ, k̂) is a yes instance of VC if and only if (G′, col′ :
E(G′) → 2[3], k′) is a yes instance of Sim-FES. Observe that because of the above
mentioned property of the partition (M1,M2,M3) of E(Ĝ), we ensure that in G′, no
vertex participates in two (or more) monochromatic cycles that have the same color.
By construction, each monochromatic cycle in G′ is of the form (v, v�, u�, u, v), where
(v, u) ∈ E(Ĝ), and for each edge (v, u) ∈ E(G′), where either v, u ∈ V (Ĝ) or v, u ∈ V �,
G′ contains exactly one monochromatic cycle of this form.

Lemma 11.4. (Ĝ, k̂) is a yes instance of VC if and only if (G′, col′ : E(G′) → 2[3], k′)
is a yes instance of Sim-FES.

Proof. In the forward direction, let U be a vertex cover in Ĝ of size at most k̂. Define
Q as the set of edges {(v, v�) | v ∈ U} ⊆ E(G′). We claim that Q is a solution to

(G′, col′ : E(G′) → 2[3], k′). Since |Q| = |U |, it holds that |Q| ≤ k̂ = k′. Now, consider a
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Input (partial) Output (partial)

Figure 11.1: The construction given in the proof of Theorem 11.2.

monochromatic cycle in G′. Recall that such a cycle is of the form (v, v�, u�, u, v), where
(v, u) ∈ E(Ĝ). Since U is a vertex cover of Ĝ, it holds that U ∩{v, u} �= ∅, which implies
that Q ∩ {(v, v�), (u, u�)} �= ∅.

In the reverse direction, let Q be a solution to (G′, col′, k′). Recall that for each
edge (v, u) ∈ E(G′), where either v, u ∈ V (Ĝ) or v, u ∈ V �, G′ contains exactly one
monochromatic cycle of this form. Therefore, if Q contains an edge of the form (v, u)
or of the form (v�, u�), such an edge can be replaced by the edge (v, v�). Thus, we can
assume that Q only contains edges of the form (v, v�). Define U as the set of vertices

{v | (v, v�) ∈ Q} ⊆ V (Ĝ). We claim that U is a vertex cover of Ĝ of size at most k̂.

Since |U | ≤ |Q|, it holds that |U | ≤ k̂. Now, recall that for each edge (v, u) ∈ E(Ĝ),
G′ contains a monochromatic cycle of the form (v, v�, u�, u, v). Since Q is a solution to
(G′, col′, k′), it holds that Q∩{(v, v�), (u, u�)} �= ∅, which implies that U∩{v, u} �= ∅.

We get the following theorem and its proof follows from Lemma 11.3 and Lemma 11.4.

Theorem 11.2. Sim-FES where α = 3 is NP-hard. Furthermore, unless the ETH fails,
Sim-FES when α = 3 cannot be solved in time O∗(2o(k)).

11.3 Tight Lower Bounds for Simultaneous Feed-

back Edge Set

We show that Sim-FES parameterized by k is W[2]-hard hard when α = O(|V (G)|) and
W[1]-hard hard when α = O(log(|V (G)|)). The approach we follow is similar to the one
presented in Chapter 10.

11.3.1 W[2]-hardness of Sim-FES when α = O(|V (G)|)
We give a reduction from Hitting Set (HS) problem to Sim-FES where α =
O(|V (G)|). Let (U = {u1, . . . , u|U |},F = {F1, . . . , F|F|}, k) be an instance of HS, where

F ⊆ 2U , which asks whether there exists a subset S ⊆ U of size at most k such that
for all F ∈ F , S ∩ F �= ∅. It is known that HS parameterized by k is W[2]-hard (see,
e.g., [CFK+15]). Thus, to prove the result, it is sufficient to construct (in polynomial
time) an instance of the form (G, col : E(G) → 2[α], k) of Sim-FES that is equivalent to
(U,F , k), where α = O(|V (G)|). We construct a graph G such that V (G) = O(|U ||F|)
and the number of colors used will be α = |F|. The intuitive idea is to have one edge
per element in the universe which is colored with all the indices of sets in the family F
that contains the element and for each Fi ∈ F creating a unique monochromatic cycle
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with color i which passes through all the edges corresponding to the elements it contain.
We explain the reduction formally in the next paragraph.

Without loss of generality we assume that each set in F contains at least two ele-
ments from U . The instance (G, col : E(G) → 2[α], k) is constructed as follows. Ini-
tially, V (G) = E(G) = ∅. For each element ui ∈ U , insert two new vertices into
V (G), vi and wi, add the edge (vi, wi) into E(G) and let {j | Fj ∈ F , ui ∈ Fj}
be its color-set. Now, for all 1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that
ui, uj ∈ Ft and {ui+1, . . . , uj−1} ∩ Ft = ∅, perform the following operation: add a
new vertex into V (G), si,j,t, add the edges (wi, si,j,t) and (si,j,t, vj) into E(G) and let
their color-set be {t}. Moreover, for each 1 ≤ t ≤ |F|, let ui and uj be the ele-
ments with the largest and smallest index contained in Ft, respectively, and perform the
following operation: add a new vertex into V (G), si,j,t, add the edges (wi, si,j,t) and
(si,j,t, vj) into E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||F|)
and that α = |F|. Therefore, α = O(|V (G)|). It remains to show that the instances
(G, col, k) and (U,F , k) are equivalent. By construction, each monochromatic cycle
in G is of the form (vi1 , wi1 , si1,i2,t, vi2 , wi2 , si2,i3,t, . . . , vi|Ft| , wi|Ft| , si|Ft|,i1,t, vi1), where
{ui1 , ui2 , . . . , ui|Ft|} = Ft ∈ F , and for each set Ft ∈ F , G contains exactly one such
monochromatic cycle.

Lemma 11.5. (U,F , k) is a yes instance of HS if and only if (G, col : E(G) → 2[α], k)
is a yes instance of Sim-FES.

Proof. In the forward direction, let S be a solution to (U,F , k). Define Q as the set
of edges {{vi, wi} : ui ∈ S} ⊆ E(G). We claim that Q is a solution to (G, k, col).
Since |Q| = |S|, it holds that |Q| ≤ k. Now, consider a monochromatic cycle C in
G. Recall that this cycle is of the form vi1 − wi1 − si1,i2,t − vi2 − wi2 − si2,i3,t − · · · −
vi|Ft| − wi|Ft| − si|Ft|,i1,t − vi1 , where {ui1 , ui2 , . . . , ui|Ft|} = Ft ∈ F . In particular, observe
that {{vi, wi} : ui ∈ Ft} ⊆ E(C). Since S is is a hitting set of F , it holds that
S ∩ Ft �= ∅. This implies that Q ∩ {{vi, wi} : ui ∈ Ft} �= ∅, and therefore Q is a solution
of (G, col : E(G) → 2[α], k).

In the reverse direction, let Q be a solution to (G, col : E(G) → 2[α], k). By the form
of each monochromatic cycle in G, if Q contains an edge that includes a vertex of the form
si,j,t, such an edge can be replaced by the edge {vi, wi}. Thus, we can assume that Q only
contains edges of the form {vi, wi}. Define S as the set of elements {ui : {vi, wi} ∈ Q} ⊆
U . We claim that S is a solution to (U,F , k). Since |S| ≤ |Q|, it holds that |S| ≤ k. Now,
recall that for each set {ui1 , ui2 , . . . , ui|Ft|} = Ft ∈ F , G contains a monochromatic cycle
of the form vi1 −wi1 −si1,i2,t−vi2 −wi2 −si2,i3,t−· · ·−vi|Ft| −wi|Ft| −si|Ft|,i1,t−vi1 . Since

Q is a solution of (G, k, col : E(G) → 2[α]), it holds that Q ∩ {{vi, wi} : ui ∈ Ft} �= ∅.
This implies that S ∩ Ft �= ∅.

Theorem 11.3. Sim-FES parameterized by k, when α = O(|V (G)|), is W[2]-hard.

11.3.2 W[1]-hardness of Sim-FES when α = O(log |V (G)|)
We modify the reduction given in the proof of Theorem 11.3 to show that when α =
O(log |V (G)|), Sim-FES is W[1]-hard with respect to the parameter k. This result
implies that the dependency on α of our O((2O(α))knO(1))-time algorithm for Sim-FES
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is optimal in the sense that it is unlikely that there exists an O((2o(α))knO(1))-time
algorithm for this problem.

We give a reduction from Partitioned Hitting Set (PHS), to Sim-FES where α =
O(log |V (G)|). Recall that an input of PHS consists of a universe U , a collection F =
{F1,F2, . . . ,F|F|}, where each Fi is a family of disjoint subsets of U , and an integer
k. The goal is to decide the existence of a set S ⊆ U of size at most k such that for
all f ∈ (

⋃
i∈[|F|]Fi), S ∩ f �= ∅. The special case of PHS where |F| = O(log(|U | ·

|(∪i∈[|F|]Fi)|)) is W[1]-hard when parameterized by k (see Chapter 10, Section 10.3).
Thus, to prove the theorem, it is sufficient to construct (in polynomial time) an instance
of the form (G, col : E(G) → 2[α], k) of Sim-FES that is equivalent to (U,F , k), where
α = O(log |V (G)|). The construction of the graph G is exactly similar to the one in
Theorem 11.3. But instead of creating a unique monochromatic cycle with a color i for
each fi ∈ ∪i∈[|F|]Fi, for each Fi ∈ F we create |Fi| vertex disjoint cycles of same color i.
Since for each Fi ∈ F the sets in Fi are pairwise disjoint, the correctness is guaranteed.
Formal description of the reduction is given below.

Without loss of generality we assume that each set in ∪i∈[|F|]Fi contains at least

two elements from U . The instance (G, col : E(G) → 2[α], k) is constructed as follows.
Initially, V (G) = E(G) = ∅. For each element ui ∈ U , insert two new vertices vi and wi

into V (G), and add the edge (vi, wi) to E(G) with its color-set being {j | Fj ∈ F , ui ∈
(∪F∈Fj

F )}. Now, for all 1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that there
exists f ∈ Ft satisfying ui, uj ∈ f and {ui+1, . . . , uj−1} ∩ f = ∅, perform the following
operation: add a new vertex si,j,t into V (G), add the edges {wi, si,j,t} and {si,j,t, vj}
into E(G) with both of its color-set being {t}. Moreover, for each 1 ≤ t ≤ |F| and
f ∈ Ft, let ui and uj be the elements with the largest and smallest index contained in f ,
respectively, we perform the following operation: add a new vertex into V (G), si,j,t, add
the edges {wi, si,j,t} and {si,j,t, vj} into E(G), and let their color-set be {t}. Observe that
|V (G)| = O(|U ||(∪i∈[|F|]Fi)|) and that α = |F|. Since |F| = O(log(|U | · |(∪i∈[|F|]Fi)|)),
we have that α = O(log |V (G)|). Since the sets in each family Fi are disjoint, the
construction implies that each monochromatic cycle in G is of the form vi1 − wi1 −
si1,i2,t−vi2 −wi2 −si2,i3,t−· · ·−vi|f | −wi|f | −si|f |,i1,t−vi1 , where {ui1 , ui2 , . . . , ui|Ft|} = f

for a set f ∈ Ft ∈ F , and for each set f ∈ Ft ∈ F , G contains a monochromatic cycle
of this form. By using the arguments similar to one in the proof of Lemma 11.5, we get
that the instances (G, col : E(G) → 2[α], k) and (U,F , k) are equivalent. Hence we get
the following theorem.

Theorem 11.4. Sim-FES parameterized by k, when α = O(log |V (G)|) is W[1]-hard.

11.4 Kernel for Simultaneous Feedback Edge Set

In this section, we give a kernel for Sim-FES with O((kα)O(α)) vertices. We start by
applying preprocessing rules similar in spirit to the ones used to obtain a kernel for
Feedback Vertex Set, but it requires subtle differences due to the fact that we
handle a problem where edges rather than vertices are deleted, as well as the fact that
the edges are colored (in particular, each edge in Sim-FES has a color-set, while each
vertex in Sim-FVS is uncolored). We obtain an approximate solution by computing a
spanning tree per color. We rely on the approximate solution to bound the number of
vertices whose degree in certain subgraphs of G is not equal to 2. Then, the number of the
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remaining vertices is bounded by adapting the approach we followed for the Sim-FVS

problem.

Let (G, col : E(G) → 2[α], k) be an instance of Sim-FES. It is easy to verify that
the following reduction rules are correct when applied exhaustively in the order in which
they are listed. We note that the resulting instance can contain multiple edges.

Reduction Rule 11.1. If k < 0, return that (G, col : E(G) → 2[α], k) is a no instance.

Reduction Rule 11.2. If for all i ∈ [α], Gi is acyclic, return that (G, col : E(G) →
2[α], k) is a yes instance.

Reduction Rule 11.3. If there is a self-loop at a vertex v ∈ V (G), then remove v from
G and decrement k by 1.

Reduction Rule 11.4. If there exists an isolated vertex in G, then remove it.

Reduction Rule 11.5. If there exists i ∈ [α] and an edge whose color-set contains i

but it does not participate in any cycle in Gi, remove i from its color-set. If the color-set
becomes empty, remove the edge.

Reduction Rule 11.6. If there exists i ∈ [α] and a vertex v of degree exactly two in
G, remove v and connect its two neighbors by an edge whose color-set is the same as the
color-set of the two edges incident to v (we prove in Lemma 11.6 that the color set of
two edges are same).

Lemma 11.6. Reduction Rule 11.6 is safe.

Proof. Let G be a graph with coloring function col : E(G) → 2[α]. Let v be a vertex in
V (G) such that v has total degree 2 in G. We have applied Reduction Rules 11.1 to 11.5
exhaustively (in that order). Therefore, when Reduction Rule 11.6 is applied, the edges
incident to v have the same color-set say i, since otherwise Reduction Rule 11.5 would
be applicable. Let u, w be the neighbors of v in Gi, where i ∈ [α]. Consider the graph G′
with vertex set as V (G)\{v} and edge set as E(G′) = (E(G)\{(v, u), (v, w)})∪{(u, w)}
and coloring function col′ such that col′(u, w) = col(u, w) ∪ {i} and for all other edges
e ∈ E(G′) \ {(u, w)}, col′(e) = col(e). We show that (G, col, k) is a yes instance of
Sim-FES if and only if (G′, col′, k) is a yes instance of Sim-FES.

In the forward direction, let S be a solution to Sim-FES in G of size at most k.
Suppose S is not a solution in G′. Then, there is a cycle C in G′

t, for some t ∈ [α]. Note
that C cannot be a cycle in G′

j as G
′
j = Gj , for j ∈ [α]\{i}. Therefore C must be a cycle

in G′
i. All the cycles C

′ not containing the edge (u, w) are also cycles in Gi and therefore
S must contain some edge from C ′. It follows that C must contain the edge (u, w). Note
that the edges (E(C) \ {(u, w)}) ∪ {(v, u), (w, v)} form a cycle in Gi. Therefore S must
contain an edge from E(C) ∪ {(v, u), (w, v)}. We consider the following cases:

• Case 1: (v, u), (w, v) /∈ S. In this case, S must contains an edge from E(C) \
{(u, w)}. Hence, S is a solution in G′.

• Case 2: At least one of (v, u), (w, v) belongs to S, say (v, u) ∈ S. Let S′ =
(S \ {(v, u)}) ∪ {(u, w)}. Observe that S′ intersects all cycles in G′

i. Therefore S′
is a solution in G′ of size at most k.
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In the reverse direction, consider a solution S to Sim-FES in G′. If S is a solution
in G we have a proof of the claim. Therefore, we assume that S is not a solution in G.
S intersects all cycles in Gj , since Gj = G′

j , for all j ∈ [α] \ {i}. All cycles in Gi not
containing v are also cycles in G′

i and therefore S intersects all such cycles.

A cycle in Gi containing v must contain u and w (v is a degree-two vertex in Gi).
We assume that there is a cycle C containing v in G such that S does not intersect
C (otherwise S is a solution in G). Note that in G′

i we added an edge (u, w) and we
keep multi-edges. Corresponding to each copy of (u, w) we have a cycle in G′ with edges
(E(C) \ {(v, u), (v, w)}) ∪ {(u, w)}. Therefore, S must contain all copies of (u, w). We
create a solution S′ by replacing a copy (with same color as (v, u)) of (u, w) ∈ S by
(v, u). We claim that S′ is a solution in G. S′ intersects all the cycles in G containing
v. Observe that all cycles in G not containing v are also cycles in G′ and they do not
contain the deleted copy of the edge (u, w) from S. Therefore, they are intersected by
S′. Therefore, S′ is a solution in G of size at most k.

We apply Reduction Rule 11.1 to 11.6 exhaustively (in that order). The safeness of
Reduction Rules 11.1 to 11.5 are easy to see. Lemma 11.6 proves the safeness Reduction
Rule 11.6. After this, we follow the approach similar to that in Sim-FVS to bound the
size of the instance, which gives us the following theorem.

Theorem 11.5. Sim-FES admits a kernel with (kα)O(α) vertices.

Proof. Let (G, col : E(G) → 2[α], k) be an instance of Sim-FES where none of the
reduction rules are applicable. For each graph Gi, we compute a spanning forest, Fi,
maximizing |E(Fi)|. Let Xi = E(Gi) \ E(Fi). If |Xi| > k, the instance is a no-instance.
Thus, we can assume that for each i ∈ [α], Xi contains at most k edges. Let X = ∪α

i=1Xi

denote the union of the sets Xi. Clearly, |X| ≤ kα. Let U denote the subset of V (G)
that contains the vertices incident to at least one edge in X. Since Reduction Rule 11.5
is not applicable, therefore |U | ≤ 2kα. Thus, the number of leaves in each Gi − X is
bounded by 2kα. Accordingly, the number of vertices in each Gi − X whose degree is
at least 3 is bounded by 2kα. It remains to bound the number of vertices that are not
incident to any edge in X and whose degree in each Gi is 0 or 2 (their degree in G is
at least 3). Let T be the set of vertices in G which is either a leaf or a degree 3 vertex
in some Gi, for i ∈ [α]. Denote the set of vertices which are not in T , not incident to
any edge in X and whose degree in Gi is 2 by Di. Let Pi denote the set of paths in Gi,
for i ∈ [α], whose internal vertices belong to Di and whose first and last vertices do not
belong to Di. Moreover, let D = ∪α

i=1Di and P = ∪α
i=1Pi. Observe that for i ∈ [α],

|Pi| ≤ 4kα and |P| ≤ 4kα2.

To obtain the desired kernel, it remains to show that |D| = O((kα)O(α)). For each
edge e ∈ E(G), let P [e] be the set of paths in P to which e belongs. Each edge belongs
to at most one path in each Pi, for any i ∈ [α]. For each v ∈ D, by E(v) we denote the
set of edges incident to v in G. Observe that each vertex in D is incident to at most 2α
edges. For each vertex v ∈ D, there are at most (4kα+1)α options of choosing to which
paths in P the vertex v belongs. Note that here the extra additive one is to include the
case when a vertex does not belong to any path in a color class. the edges incident to
v. Thus, if |D| ≥ 3(4kα+1)α, Thus, there exists a constant c such that if |D| > (kα)cα,
then D contains (at least) three vertices, r, s and t, such that for all q, p ∈ {r, s, t}, there
is a bijection f : E(q) → E(p) such that P [e] = P [f(e)] for all e ∈ E(q). In particular,
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if |D| > (kα)cα, then D contains two non-adjacent vertices, v and u, such that there is
a bijection f : E(v) → E(u) satisfying P [e] = P [f(e)] for all e ∈ E(v). In this case, it
is not necessary insert any edge e ∈ E(v) into a solution, since it has the same affect as
inserting the edge f(e). Thus, we can remove the vertex v, and for each two neighbors
of v, x and y, and for each color i ∈ [α] such that i ∈ col({v, x}) ∩ col({v, y}), we insert
an edge (x, y) whose color-set is {i}. After an exhaustive application of this operation
(as well as Reduction Rules 11.1 to 11.6), we obtain the desired bound on |D|, which
concludes the proof of Theorem 11.5.

11.5 Max-Sim Acyclic-Subgraph

In this section, we design an algorithm for Max-Sim Acyclic-Subgraph. Let (G, col :
E(G) → 2[α], q) be an input to Max-Sim-Subgraph. A set F ⊆ E(G) such that for
all i ∈ [α], G[Fi] is acyclic is called simultaneous forest. Here, Fi = {e ∈ F | i ∈ col(e)},
denotes the subset of edges of F which has the integer i in its image when the function
col is applied to it. We will solve Max-Sim-Subgraph by reducing to an equivalent
instance of the α-Matroid Parity problem and then using the algorithm for the same.

We start by giving a construction that reduces the Max-Sim-Subgraph to α-

Matroid Parity. Let (G, col : E(G) → 2[α], q) be an input to Max-Sim-Subgraph.
Given, (G, col : E(G) → 2[α], q), for i ∈ [α], recall that by Gi we denote the graph with
the vertex set V (Gi) = V (G) and the edge set E(Gi) = {ei | e ∈ E(G) and i ∈ col(e)}.
For each edge e ∈ E(G), we will have its distinct copy in Gi if i ∈ col(e). Thus, for each
edge e ∈ E(G), by Original(e) we denote the set of edges {ej |j ∈ col(e)}. On the other
hand for each edge e ∈ E(G), by Fake(e) we denote the set of edges {ej |j ∈ [α]−col(e)}.
Finally, for each edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e).
Let Mi = (Ei, Ii) denote the graphic matroid on Gi. That is, edges of Gi forms the uni-
verse Ei and Ii contains, S ⊆ E(Gi) such that Gi[S] forms a forest. By Proposition 2.5
we know that graphic matroids are representable over any field and given a graph G one
can find the corresponding representation matrix in time polynomial in |V (G)|. Let Ai

denote the linear representation of Mi. That is, Ai is a matrix over F2, where the set
of columns of Ai are denoted by E(Gi). In particular, Ai has dimension d × |E(Gi)|,
where d = rank(Mi). A set X ⊆ E(Gi) is independent (that is X ∈ Ii) if and only if
the corresponding columns are linearly independent over F2. Let Fake(G) denote the
set of edges in

⋃
e∈E(G) Fake(e). Furthermore, let τ = |Fake(G)| =

∑
e∈E(G) |Fake(e)|.

Let Mα+1 be the uniform matroid over Fake(G) of rank τ . That is, Eα+1 = Fake(G)
and Mα+1 = Uτ,τ . Let Iτ denote the identity matrix of dimension τ × τ . Observe that,
Aα+1 = Iτ denotes the linear representation of Mα+1 over F2. Notice that Ei ∩ Ej = ∅
for all 1 ≤ i �= j ≤ α + 1. Let M denote the direct sum of M1 ⊕ · · · ⊕ Mα+1 with its
representation matrix being AM .

Now we are ready to define an instance of α-Matroid Parity. The ground set is
the columns of AM , which is indexed by edges in

⋃
e∈E(G) Copies(e). Furthermore, the

ground set is partitioned into Copies(e), e ∈ E(G), which are called blocks. The main
technical lemma of this section on which the whole algorithm is based is the following.

Lemma 11.7. Let (G, col : E(G) → 2[α], q) be an instance of Max-Sim-Subgraph.
Then G has a simultaneous forest of size q if and only if (AM ,

⊎
e∈E(G) Copies(e), q) is a
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yes instance of α-Matroid Parity. Furthermore, given (G, col : E(G) → 2[α], q) we
can obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) in polynomial time.

Proof. We first show the forward direction of the proof. Let F be a simultaneous forest
of size q. Then we claim that the columns corresponding to S =

⋃
e∈F Copies(e) form an

independent set in M and furthermore, it is the union of q blocks. That is, we need to
show that the columns corresponding to S =

⋃
e∈F Copies(e) are linearly independent in

AM over F2. By the definition of direct sum and its linear representation, it reduces to
showing that F is linearly independent if and only if F ∩Ei ∈ Ii for all i ≤ α+1. Since
F is a simultaneous forest of size q, we have that G[Fi], Fi = {e ∈ F | i ∈ col(e)}, is a
forest. Hence, this implies that F i = {ei | e ∈ Fi} forms a forest in Gi. This takes care
of all the edges in ∪e∈FOriginal(e). Now let S∗ = S − ∪i∈[α]F i = ∪e∈FFake(e) = Fα+1.
However, S∗ is a subset of Uτ,τ and thus is an independent set since |S∗| ≤ τ . This
completes the proof of the forward direction.

Now we show the reverse direction of the proof. Since, (AM ,
⊎

e∈E(G) Copies(e), q) is
a yes instance of α-Matroid Parity, there exists an independent set, say S, that is the
union of q blocks. By construction S corresponds to union of the sets Copies(e) for some q
edges in G. Let these edges be F = {e1, . . . , eq}. We claim that F is a simultaneous forest
of size q. Towards this, we need to show that G[Fi], where Fi = {e ∈ F | i ∈ col(e)}, is
a forest. This happens if and only if F i = {ei | e ∈ Fi} forms a forest in Gi. However,
we know that the columns corresponding to Fi are linearly independent in Mi and in
particular in Ai – the linear representation of graphic matroid of Gi. This shows that Fi

forms a forest in Gi and hence G[Fi] is a forest. This completes the equivalence proof.
Finally, it easily follows from the discussion preceding the lemma that given (G, col :

E(G) → 2[α], q) we can obtain an instance (AM ,
⊎

e∈E(G) Copies(e), q) in time polynomial

in |V (G)|. This completes the proof of the lemma.

We will use the polynomial time reduction provided in Lemma 11.7 to get the desired
FPT algorithm for Max-Sim-Subgraph. Towards this will use the following FPT result
regarding α-Matroid Parity for our FPT as well as for an exact exponential time
algorithm.

Given an instance (G, col : E(G) → 2[α], q) of Max-Sim-Subgraph we first apply
Lemma 11.7 and obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) of α-Matroid Parity

and then apply Proposition 2.7 to obtain the following result.

Theorem 11.6. Max-Sim-Subgraph can be solved in time O(2ωqα|V (G)|O(1)).

Let (G, col : E(G) → 2[α], q) be an instance of Max-Sim-Subgraph. Observe that
q is upper bounded by α(|V (G)| − 1). Thus, as a corollary to Theorem 11.6 we get an
exact algorithm for finding the largest sized simultaneous acyclic subgraph, running in
time O(2ωnα

2 |V (G)|O(1)).



Chapter 12

Simultaneous FVS/OCT

In this chapter, we investigate the complexity of Simultaneous (F1, . . . ,Fα)-Deletion

in two settings. First, we consider the problem with F1 being the family of all bipartite
graphs and F2 = F3 = . . . = Fα being the family of all forests. We call this problem
Simultaneous FVS/OCT (or Sim-FVS/OCT for short) and define it as follows.

Simultaneous FVS/OCT (Sim-FVS/OCT) Parameter: k and α

Input: An α-edge-colored graph G = (V,E1, . . . , Eα) and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G1 − S is a bipartite
graph and G2 − S, . . ., Gα − S are acyclic?

We call a solution S to the Sim-FVS/OCT problem a sim-fvs-oct. We design an
algorithm that, given an instance (G = (V,E1, . . . , Eα), k) of Sim-FVS/OCT, runs in
time O�(kpoly(α,k)) and either computes a sim-fvs-oct in G of size at most k or correctly
concludes that such a set does not exist.

In the second setting, we consider the Simultaneous (F1, . . . ,Fα)-Deletion prob-
lem where F1 = . . . = Fα is the family of all bipartite graphs. We call this problem
Simultaneous OCT (or Sim-OCT for short) and define it as follows.

Simultaneous OCT (Sim-OCT) Parameter: k and α

Input: An α-edge-colored graph G = (V,E1, . . . , Eα) and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that Gi − S is bipartite,
for each i ∈ [α]?

We refer to a solution S to the Sim-OCT problem as a sim-oct. In this chapter,
our second (and rather surprising) result is a negative answer to an open question of
Agrawal et al. [ALMS16]. We show that, even for α = 2, the problem Sim-OCT is W[1]-
hard. To prove this result, we first reduce the well-known Multi-Colored Clique

problem [FHRV09] to an auxiliary problem we call Simultaneous Cut (or Sim-Cut).
Sim-Cut is a natural generalization of the classical (s, t)-Cut problem to edge-colored
graphs. Finally, we show that Sim-Cut can be reduced to Sim-OCT. Notice that W[1]-
hardness of Sim-OCT implies that Simultaneous (F1, . . . ,Fα)-Deletion problem
with at least two of the families being the family of bipartite graphs is W[1]-hard.

Overview of the algorithm. Note that for any fixed k and α, our algorithm for
solving the Sim-FVS/OCT problem runs in polynomial time. The said algorithm can
be broken down into four stages, three of which are reductions to auxiliary problems.
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Initially, as was first proposed by Ye [Ye15], we use the notion of compact representations
of feedback vertex sets (see Section 12.1 for formal definitions) to reduce Sim-FVS/OCT

into 2O(αk) instances of the Colorful OCT problem, which is formally defined as
follows. We note that, in any reduced instance, � will be bounded above by αk.

Colorful OCT Parameter: k and �

Input: A graph G, integers k and �, and a grouping P of the vertices of G into (not
necessarily distinct) sets {P1, . . . , P�}.
Question: Is there a set S ⊆ V (G) of size at most k such that G− S is a bipartite
graph and S ∩ Pi �= ∅, for each i ∈ [�]?

Intuitively, compact representations give us a partition of a vertex subset of the
graph into sets such that picking one vertex from each part is “guaranteed” to constitute
a feedback vertex set of each graph Gi, 2 ≤ i ≤ α. As such, we are able to encode
the feedback vertex set “side” of the Sim-FVS/OCT problem (via the reduction) as
colors on the vertices (i.e. different sets in P represent different colors for each vertex)
and focus on a “colored” variant of Odd Cycle Transversal. Naturally, the second
stage is to solve the Colorful OCT problem within the claimed running time. To
do so, we reduce an instance of Colorful OCT to an instance of the compression
variant of the problem, i.e. Colorful OCT Compression. This problem assumes
an odd cycle transversal of size at most k as part of the input. Note that finding an
odd cycle transversal of size at most k in a graph can be accomplished using the fixed-
parameter tractable algorithms for Odd Cycle Transversal parameterized by the
solution size [IOY14, RS14], both of which run in O�(2O(k)) time.

Colorful OCT Compression Parameter: k and �

Input: A graph G, integers k and �, a grouping P of the vertices of G into (not
necessarily distinct) sets {P1, . . . , P�}, and a set O ⊆ V (G) of size at most k such
that G−O is bipartite.
Question: Is there a set S ⊆ V of size at most k such that G − S is a bipartite
graph and S ∩ Pi �= ∅, for each i ∈ [�]?

Now, to solve an instance of Colorful OCT Compression, we reduce it into 2O(k)

instances of yet another problem, namely Colorful Separator. This reduction is in
many ways similar to the iterative compression algorithm for solving the Odd Cycle

Transversal problem [CFK+15, GGH+06, RSV04].

Colorful Separator Parameter: k and �

Input: A graph G, integers k and �, a grouping P of the vertices of G into (not
necessarily distinct) sets {P1, . . . , P�}, and vertices s and t in V (G).
Question: Is there an (s,t)-separator S ⊆ V (G) \ {s, t} such that |S| ≤ k and
S ∩ Pi �= ∅, for each i ∈ [�]?

Finally, and arguably the most technical part of the algorithm, is to show how to
solve an instance of Colorful Separator. We will in fact solve a much more gen-
eral problem, which we define in Section 12.3. Our two main ingredients are a dynamic
programming routine and a generalization of the concept of important separators, which
has been recently defined to design parameterized algorithms for several “cut” prob-
lems [GRS17, LR12, LRS16]. We note that an alternative algorithm for solving Col-
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orful Separator can be obtained by applying the treewidth reduction result of Marx
et al. [MOR13]. However, a “simple” application of this result would give an algorithm
with a worse running time (double exponential).

12.1 Preliminaries

For a graph G and setX ⊆ V (G), we refer to a partition (A,B) ofX as a valid bipartition
of G[X] if G[A] and G[B] are both edgeless graphs. We refer to a valid bipartition of
V (G) as a valid bipartition of the graph G.

Definition 12.1. Let G be a graph and X and Y be disjoint subsets of V (G). A vertex
set S disjoint from X ∪ Y is called an (X,Y )-separator if there is no (X, Y )-path in
G − S. We denote by RG(X,S) the set of vertices of G − S reachable from vertices of
X via paths and by NRG(X,S) the set of vertices of G− S not reachable from vertices
of X.

We remark that it is not necessary that Y and N(X) be disjoint in the above defini-
tion. If these sets do intersect, then there is no (X,Y )-separator in the graph.

Definition 12.2. [GGH+06] A compact representation of a set S of minimal feedback
vertex sets of a graph G is a collection C of pairwise disjoint subsets of V (G) such that
choosing exactly one vertex from every set in C results in a minimal feedback vertex set
for G that is in S.

Lemma 12.1. [GGH+06] The set of all minimal feedback vertex sets of size at most k
can be represented by a collection of compact representations of size 2O(k). Furthermore,
given a graph G = (V,E) and a feedback vertex set F for G of size k + 1, we can
enumerate the compact representations of all minimal feedback vertex sets for G having
size at most k in O�(2O(k)) time.

12.2 From Simultaneous FVS/OCT to Colorful OCT

We first describe how to reduce an instance of Sim-FVS/OCT to 2O(αk) instances of
Colorful OCT. Note that since both Feedback Vertex Set [LRS16] and Odd

Cycle Transversal [RS14, IOY14] can be solved in O�(2O(k)) time, we assume that,
along with an instance (G = (V,E1, . . . , Eα), k), we are given sets O,F2, . . . , Fα ⊆ V (G)
each of size at most k such that G1 − O is a bipartite graph and Gi − Fi, 2 ≤ i ≤ α, is
acyclic (as otherwise we can safely conclude that the given instance is a no-instance).

Lemma 12.2. There is an algorithm that, given an instance (G = (V,E1, . . . , Eα), k)
of Sim-FVS/OCT, runs in time O�(2O(αk)) and returns a set of 2O(αk) instances of
Colorful OCT such that the original instance is a yes-instance if and only if at least
one of the returned instances is a yes-instance.

Proof. Armed with the sets Fi which are of size at most k, we apply the algorithm of
Lemma 12.1 to each graph Gi, 2 ≤ i ≤ α, to obtain a set of compact representations
Ci = {C1i , C2i , . . .}, 2 ≤ i ≤ α. Note that each Ci is of size 2O(k) and each Cji is of size
at most k. The said algorithm runs in O�(2O(k)) time for each graph Gi. For each tuple
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{Cj22 , . . . , Cjαα } ∈ C2 × . . . × Cα, we construct an instance (G′,P , k′, �) of Colorful

OCT as follows. We let G′ = (V,E1), k
′ = k, and � =

∑
i∈[α] |C

j
i | ≤ αk.

For each C ∈ {Cj22 , . . . , Cjαα } and for each set C ∈ C, we add a set P ∈ P and we let
P = C. In other words, all vertices in C are added to P . Observe that |C| ≤ k. Since
each Ci is of size 2

O(k), it is easy to verify that the number of instances is in fact 2O(αk).
We now prove the correctness of the algorithm.

Assume that (G = (V,E1, . . . , Eα), k) is a yes-instance, and let S be a solution of
size at most k. Note that S need not be a minimal fvs in Gi, 2 ≤ i ≤ α. However, for
each i ∈ {2, . . . , α}, there exists a set S′ ⊆ S such that S′ is a minimal fvs for Gi. Hence,
by Definition 12.2 and Lemma 12.1, for every i ∈ {2, . . . , α}, there exists a Cji ∈ Ci such

that for all C ∈ Cji we have S′ ∩C �= ∅. Since we enumerate all compact representations
and create one instance for each, we know that at least one instance (G′,P , k′, �) of
Colorful OCT will correspond to the correct choice. The fact that S is a solution for
(G′,P , k′, �) follows from the fact that S contains a minimal oct for G1.

For the other direction, let S′ be a solution for an instance (G′,P , k′, �) of Colorful

OCT. Since S′ is of size at most k, it is clearly an oct for G1. Moreover, since S′ must
intersect every P ∈ P , it follows from the definition of compact representations and our
construction that S′ is an fvs for Gi, 2 ≤ i ≤ α, as needed.

We now focus on solving an instance (G,P , k, �) of Colorful OCT. Recall that we
also have access to the set O which is an oct of G of size at most k. Our next step is to
reduce (G,P , k, �) to an instance (G,P , O, k, �) of Colorful OCT Compression. The
correctness of this reduction is immediate. The final piece in our sequence of reductions
is to reduce (G,P , O, k, �) to 2O(k) instances of Colorful Separator. Before we state
our final reduction, we need the following.

Definition 12.3. Let G be a graph, let O be an oct of G, let X ⊆ O, let Q = (L,R)
be a valid bipartition of G−O, and let W = (A,B) be a partition of X. We define the
graph GX

Q,W as the graph obtained from G as follows. Add two new vertices s and t,
make s adjacent to all vertices in (N(A) ∩ L) ∪ (N(B) ∩R), and make t adjacent to all
vertices in (N(A) ∩R) ∪ (N(B) ∩ L). Finally, delete X.

Proposition 12.1. [CFK+15] Let G be a graph, let X be an oct of G, and let Q be a
valid bipartition of G−X. Then the following statements hold.

(i) Let Y be an oct of G, Z = X \ Y , let G′ = G − (X ∩ Y ), and let Q′ = Q
∣∣
V (G′)

.

Then, there is a partition Z = (Z1, Z2) of Z such that Y \X is an (s, t)-separator
in G′Z

Q′,Z .

(ii) Let Z ⊆ X, let G′ = G− Z, and let Q′ = Q
∣∣
V (G′)

. Let B be a valid bipartition of

X \ Z. If Y is an (s, t)-separator in the graph G
′X\Z
Q′,B , then Y ∪ Z is an oct of G.

Lemma 12.3. There is an algorithm that, given an instance (G,P , O, k, �) of Color-

ful OCT Compression, runs in time O�(2O(k)) and returns a set of 2O(k) instances
of Colorful Separator such that the original instance is a yes-instance if and only
if at least one of the returned instances is a yes-instance.
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Proof. First, we let Q be an arbitrary valid bipartition of G− O. Next, for each of the
at most 3k partitions of O into three sets X, Y , and Z, we make sure that the following
conditions hold. We check that O = X ∪ Y ∪ Z, G[X] and G[Y ] are edgeless ((X, Y )
is a valid bipartition of O \ Z), and P �⊆ X ∪ Y , for any P ∈ P . If all conditions
hold, we construct an instance (G′X∪Y

Q′,W ,P ′, s, t, k′, �′) of Colorful Separator where
G′ = G − Z, Q′ is the bipartition of G − O restricted to V (G′), W is the partition
(X, Y ), and the graph G′X∪Y

Q,W is obtained from G′ by adding vertices s and t and deleting
X ∪ Y (see Definition 12.3). We set k′ = k − |Z|. It remains to show how to construct
P ′ = {P ′

1, . . . , P
′
�′} from P = {P1, . . . , P�}. Let P ′′ be the subset of P consisting of all

sets P ∈ P such that P ∩ Z �= ∅. For every P ∈ P \ P ′′, we assign a unique index
j ∈ [|P \ P ′′|] and set P ′

j = P . It follows that �′ ≤ �.

We now claim that the given instance (G,P , O, k, �) is a yes-instance of Color-

ful OCT Compression if and only if at least one of the constructed 3k instances
(G′X∪Y

Q′,W ,P ′, s, t, k − |Z|, �′) is a yes-instance of Colorful Separator. We first argue
the forward direction. Suppose that (G,P , O, k, �) is a yes-instance of Colorful OCT

Compression. Let S ⊆ V (G) denote a set of vertices of size at most k such that G−S is
bipartite and S∩P �= ∅, for each P ∈ P . Let Z = S∩O and P ′′ = {P ∈ P | P ∩Z �= ∅}.
Then, from statement (i) of Proposition 12.1, there is a partition R of O \ S into sets

X and Y such that S \ O is an (s, t)-separator in the graph G
′O\S
Q′,R, where G′ = G− Z.

Moreover, for each P ∈ P \ P ′′, (S \ O) ∩ P �= ∅. Therefore, (G
′O\S
Q′,R,P ′, s, t, k − |Z|, �′)

is a yes-instance of Colorful Separator.

For the reverse direction, suppose that there is a partition of O into sets X, Y , and Z

such that (G′X∪Y
Q′,W ,P ′, s, t, k−|Z|, �′) is a yes-instance of Colorful Separator. Then,

let Y be a corresponding solution. That is, Y is an (s, t)-separator in G′X∪Y
Q′,W of size at

most k− |Z|, where G′ = G−Z. By the second statement of Proposition 12.1, Y ∪Z is
an oct of G of size at most k. Moreover, for each P ∈ P , either Z ∩P �= ∅ or Y ∩P �= ∅.
Hence, (G,P , O, k, �) is a yes-instance of Colorful OCT Compression.

To summarize, given an instance (G = (V,E1, . . . , Eα), k) of Sim-FVS/OCT, we
first compute an odd cycle transversal of G1 and a feedback vertex set of Gi, i ∈ [α]\{1},
in O�(2O(k)) time. Then, we generate 2O(αk) instances of Colorful OCT, of the form
(G,P , k, � ≤ αk), in O�(2O(αk)) time. Each instance of Colorful OCT is converted
into an instance (G,P , O, k, �) of Colorful OCT Compression in polynomial time.
Finally, for each instance of Colorful OCT Compression we generate 2O(k) in-
stances of Colorful Separator, with parameters k and � ≤ αk, in O�(2O(k)) time.
Lemmas 12.2 and 12.3 together imply that if we can solve an instance of Colorful

Separator in O�(kpoly(α,k)) time then the algorithm for Sim-FVS/OCT follows. We
describe such an algorithm in the next section.

12.3 FPT Algorithm for Finding Colorful Separators

We in fact give an algorithm for a more general problem, which we call Colorful

Multiway Cut (or CMWC for short). Before we proceed, we need a few definitions.

Definition 12.4. Given a graph G, a set T ⊆ V (G), and a partition T of T into
(pairwise disjoint) sets {T1, . . . , Tr}, we say that S ⊆ V (G) \T is a T -multiway cut if, in
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G− S, no vertex in Ti \ S can reach a vertex in Tj \ S, for all i, j ∈ [r], such that i �= j.
We say that T is an edge-free partition of T if there are no edges (u, v) in G[T ] where u

and v belong to different sets of T .

Given a grouping {P1, . . ., P�} of the vertices of a graph G, we define a partial
coloring function col : V (G) → 2[�]. That is, we have i ∈ col(v) if and only if v ∈ Pi,
for some i ∈ [�]. In this context, for a set C ⊆ [�], a subset S of vertices of G is called
C-colorful if, for each i ∈ C, there is a vertex v in S such that i ∈ col(v). For a subset

S ⊆ V (G), we denote by col(S) the set {j | v ∈ S ∩ (
⋃�

i=1 Pi) ∧ j ∈ col(v)}, i.e. the set
of colors appearing in S. The CMWC can now be defined as follows.

Colorful Multiway Cut (CMWC) Parameter: k, |T |, and �

Input: A graph G, a set T ⊆ V (G), a partition T of T into (pairwise disjoint) sets
{T1, . . . , Tr}, a grouping P of V (G) into (not necessarily distinct) sets {P1, . . . , P�},
a set C ⊆ [�], and an integer k.
Question: Is there a set S ⊆ V (G) \ T such that |S| ≤ k, S is a T -multiway cut in
G, and S is C-colorful?

12.3.1 Setting up the algorithm

Let (G, T, T ,P , C, k) be an instance of CMWC. We start by stating a few simple re-
duction rules (which are applied in the order they are stated).

Reduction Rule 12.1. If k < 0 then return that (G, T, T ,P , C, k) is a no-instance.

Reduction Rule 12.2. If k = 0 and ∅ is a solution to (G, T, T ,P , C, k) then return
that (G, T, T ,P , C, k) is yes-instance. If k = 0 and ∅ is not a solution then return no.

Reduction Rule 12.3. If there exists i ∈ C such that Pi ⊆ T then return no.

Reduction Rule 12.4. If there exists i ∈ C such that Pi ∩ T �= ∅ then set Pi = Pi \ T .

Reduction Rule 12.5. If there exists i ∈ C such that Pi = ∅ then return no.

Reduction Rule 12.6. If T is not an edge-free partition then return no.

It is easy to see that Reduction Rules 12.1 to 12.6 are safe and can be applied in poly-
nomial time. When k > 0 and ∅ is a T -multiway cut, we can solve the corresponding
instance in time O�(2O(�)). The following observation describes how.

Observation 47. Let I = (G, T, T ,P , C, k) be an instance of Colorful Multiway

Cut. If k > 0 and ∅ is a T -multiway cut then I can be solved in O(2O(�)n2) time, where
n = |V (G)|.

Proof. If k > 0 and ∅ is a T -multiway cut then we are left with the problem of finding
a set S ⊆ V (G) \ T of size at most k such that S ∩ Pi �= ∅, for each i ∈ C. Hence,
we construct a family F consisting of a set fPi

= Pi for each for each i ∈ C and we let
U = ∪i∈CPi. Note that |F| ≤ � ≤ αk and |U| ≤ |V (G)|. Since Reduction Rules 12.3
to 12.5 are not applicable, for each i ∈ C, we have fPi

�= ∅ and fPi
∩ T = ∅. If we can

find a subset U ⊆ U which intersects all the sets in F , such that |U | ≤ k, then U is
the required solution. Otherwise, we have a no-instance. It is known that the Hitting
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Q0 Qq+1

Q1 Q2 Q3

Figure 12.1: An illustration of a tight separator sequence.

Set problem parameterized by the size of the family F is fixed-parameter tractable and
can be solved in O(2O(|F|)|U|2) time [CFK+15]. In particular, we can find an optimum
hitting set U ⊆ U , hitting all the sets in F . Therefore, we have a subset of vertices that
intersects all sets Pi, for i ∈ C.

Before proceeding with the description of the algorithm, we first recall the notion
of tight separator sequences introduced in [LR12]. However, the definition and struc-
tural lemmas regarding tight separator sequences used in this paper are from [LRS16].
Note that although [LRS16] contains Definition 12.5 and Lemma 12.4 in terms of di-
rected graphs, the same holds true for undirected graphs because one can represent any
undirected graph as a directed graph by adding bidirectional edges between every pair
of adjacent vertices.

Definition 12.5. Let X and Y be two subsets of V (G) and let k ∈ N. A tight (X,Y )-
reachability sequence of order k is an ordered collection H = {H0, H1, . . . , Hq, Hq+1} of
sets in V (G) satisfying the following properties:

• X ⊆ Hi ⊆ V (G) \N [Y ] for any 0 ≤ i ≤ q;

• X = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hq ⊂ Hq+1 = V (G) \ Y ;

• Hi is reachable from X in G[Hi] and every vertex in N(Hi) can reach Y in G−Hi

(implying that N(Hi) is a minimal (X,Y )-separator in G);

• |N(Hi)| ≤ k for every 1 ≤ i ≤ q;

• N(Hi) ∩N(Hj) = ∅ for all 1 ≤ i, j ≤ q and i �= j;

• For any 0 ≤ i ≤ q − 1, there is no (X,Y )-separator S of size at most k where
S ⊆ Hi+1 \N [Hi] or S ∩N [Hq] = ∅ or S ⊆ H1.

We let Q0 = X, Qi = N(Hi), for 1 ≤ i ≤ q, Qq+1 = Y , and Q = {Q0, Q1, . . . , Qq, Qq+1}.
We call Q a tight (X,Y )-separator sequence of order k.

Lemma 12.4. (see [LRS16]) There is an algorithm that, given a graph G on n vertices
and m edges, subsets X, Y ⊆ V (G) and k ∈ N, runs in time O(k2nm) and either correctly
concludes that there is no (X,Y )-separator of size at most k in G or returns the sets
H0, H1, H2 \ H1, . . . , Hq \ Hq−1, Hq+1 \ Hq corresponding to a tight (X,Y )-reachability
sequence H = {H0, H1, . . . , Hq, Hq+1} of order k.

See Figure 12.1 for an illustration of a tight (X, Y )-separator sequence. Our algorithm
will be a combination of dynamic programming over the sets Qi, 0 ≤ i ≤ q + 1, and



244 Simultaneous FVS/OCT

H1

H2

H3

Hq

Hq+1

Z1

Z2

Z3

Zq

Zq+1

T2

T3

Tr

T4

S1 S2 S3 Sq

Q0 = T1

Q1 Q2 Q3 Qq
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Figure 12.2: An illustration of the division of a solution S into various sets.

recursive calls for solving “smaller” instances of the same problem. Below we state some
observations that help understand the structure of a solution and are crucial for achieving
the stated running time.

Observation 48. Let (G, T, T ,P , C, k) be an instance of Colorful Multiway Cut

and let T1 be a set in T which is linked to some set in T \ {T1}. Moreover, let H =
{H0, H1, . . ., Hq, Hq+1} be a tight (T1,T \ T1)-reachability sequence of order k and
let Q = {Q0, Q1, . . . , Qq, Qq+1} be the corresponding tight separator sequence. Assume
(G, T , T , P, C, k) is a yes-instance and let S be one of its solution. Then, S can be
partitioned into the following (pairwise-disjoint) sets (see Figure 12.2).

• Z1 = S ∩ (H1 \Q0).

• Si = S ∩Qi for 1 ≤ i ≤ q.

• Zi = (S ∩ (Hi \N [Hi−1])) \Qq+1 for 2 ≤ i ≤ q + 1.

We invoke the last property of tight separator sequences to obtain the following bound.

Observation 49. |Zi| ≤ k − 1 for each i ∈ [q + 1].

Observation 49 is crucial as it allows us to apply our algorithm on sub-instances with a
strictly smaller parameter.

To keep the presentation clean, we shall define two routines ALG1 and ALG2.
ALG1 (Algorithm 4) delegates most of the “heavy lifting” to ALG2. That is, ALG1
simply checks if any of the reduction rules are applicable and solves the instance if
it corresponds to one of the base cases. When this is not the case, ALG1 proceeds
by computing a tight separator sequence and calls ALG2. Note that we can safely
return false when the algorithm fails to construct such a sequence (Lines 7 and 8 of
Algorithm 4). We now move to the description of ALG2, which takes as additional
input the newly constructed tight separator sequence. Roughly speaking, ALG2 will
recursively solve a “large” number of instances restricted to graphs that “reside” between
two consecutive separators of a separator sequence. The number of instances will be
bounded by the number of possible “interactions” between the two consecutive separators
and a hypothetical solution. However, due to Observation 49, each one of those recursive
calls can be made with a strictly smaller value of k. Having solved all such instances
(and stored the outcomes in tables), ALG2 then proceeds using a dynamic programming
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Algorithm 4: Pseudocode for ALG1

Input: A graph G, a set T ⊆ V (G), a partition T of T into (pairwise disjoint)
sets {T1, . . . , Tr}, a grouping P of V (G) into (not necessarily distinct) sets
{P1, . . . , P�}, a set C ⊆ [�], and an integer k.

Output: yes or no.
1 Apply all reduction rules (in order) and returnyes or no appropriately (if
applicable).

2 if k > 0 and ∅ is a T -multiway cut then
3 return yes or no appropriately (Observation 47)

4 Let T1 ∈ T such that T1 is linked to some Tj ∈ T , where j �= 1.
5 Let H = {H0, H1, . . . , Hq, Hq+1} be a (T1,T \ T1)-reachability sequence of order k;
6 Let Q = {Q0, Q1, . . . , Qq, Qq+1} be the corresponding (T1,T \ T1)-separator
sequence;

7 if Q = ∅ then
8 return no;

9 return ALG2(G, T, T ,P , C, k,Q);
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Hi−1

Hi

Hq+1

T \ {T1}

T1

T2

T3
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T4

H1

H2

Hi−1

Hi

Hq+1

T \ {T1}

T1

T2

T3

Tr

T4

Gi Ĝi

Figure 12.3: An illustration of graphs in Definition 12.6.

routine which computes the answer in a left-to-right manner, i.e. starting from Q0 all
the way to Qq+1. We now give a formal description.

Definition 12.6. For a graph G and a tight separator sequence Q = {Q0, Q1, . . . , Qq,

Qq+1}, we let Gi = G−RG(Qq+1, Qi), i.e. the graph obtained after removing the vertices

that are reachable from Qq+1 after deleting Qi, and we let Ĝi = Gi − (V (Gi−1) \Qi−1)
(see Figure 12.3).

For each graph Gi, i ∈ [q + 1], we maintain a table Γi, where each entry is indexed
by a tuple (X,A, C, p). For each graph Ĝi, i ∈ [q + 1], we maintain a table Λi, where
each entry is indexed by a tuple (L,R,B, Ĉ, p̂). The tuples are described below.

• X ⊆ Qi \ T and L ⊆ Qi−1 \ T and R ⊆ Qi \ T ;

• A is an edge-free partition of (Qi ∪Q0) \X;

• B is an edge-free partition of (Qi−1 ∪Qi) \ (L ∪R);

• C, Ĉ ⊆ [�] and p ≤ k − |X| and p̂ ≤ k − |L ∪ R| if L ∪ R �= ∅ and p̂ ≤ k − 1,
otherwise.
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Figure 12.4: An illustration of compatible tuples.

Definition 12.7. For a tuple τ = (X,A, C, p), we denote by Iτ the instance (Gi −
X, (Qi∪Q0)\X,A,P

∣∣
V (Gi−X)

, C, p) of CMWC. Similarly, for a tuple τ = (L,R,B, Ĉ, p̂),

we denote by Iτ the instance (Ĝi− (L∪R), (Qi−1∪Qi)\ (L∪R),B,P
∣∣
V (Gi−(L∪R))

, Ĉ, p̂)

of CMWC. Finally, we define Γi(τ) (or Λi(τ))= yes if and only if Iτ is a yes-instance
of CMWC.

Definition 12.8. Given three tuples τ1 = (X,A, C, p), τ2 = (L,R,B, Ĉ, p̂), and τ3 =

(X ′,A′, C ′
, p′), we say that they are compatible if all of the following conditions hold (see

Figure 12.4).

• τ1 ∈ Γi and τ2 ∈ Λi and τ3 ∈ Γi−1, where i ∈ [q + 1];

• X ′ = L and X = R;

• A
∣∣
Qi\X = B

∣∣
Qi\R and B

∣∣
Qi−1\L = A′∣∣

Qi−1\X ′ and A
∣∣
Q0

= A′∣∣
Q0
;

• p′ + p̂+ |L| ≤ p and C
′ ∪ Ĉ ∪ col(L) = C.

The complete description of ALG2 is given in Algorithm 5. Initially, we set all table
entries to no (Lines 1 and 2). Then, for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} and for each possible

tuple (L,R,B, Ĉ, p̂) ∈ Λi, we solve the corresponding CMWC instance I = (Ĝi − (L ∪
R), (Qi−1 ∪Qi) \ (L∪R),B,P

∣∣
V (Gi−(L∪R))

, p̂). That is, we set Λi(L,R,B, Ĉ, p̂) if I is a

yes-instance (Lines 3 to 8). Having computed all those values, we then proceed to filling
table Γ1. Since G0 is a subgraph of G1, and G1 = Ĝ1, we simply set Γ1(X,A, C, p) =
Λ1(∅, X,A, C, p) (for all tuples). This is justified by the fact that a solution is not allowed
to delete any vertex in Q0. To complete table Γi, i > 1, we simply use the following:

Γi(X,A, C, p) =
∨

[Γi−1(X
′,A′, C ′

, p′) ∧ Λi(L,R,B, Ĉ, p̂)],

where tuples (X,A, C, p), (X ′,A′, C ′
, p′), and (L,R,B, Ĉ, p̂) are compatible. Finally,

ALG2 returns yes whenever there exists a tuple Γq+1(∅, T , C, p) = yes (for some p ≤ k).

12.3.2 Correctness and runtime analysis

We are now ready to prove our main structural lemma which reduces the computation
of the entries in Γi (when i > 1) to those in Γi−1 and Λi. The lemma is proved in a
purely existential setting and serves as the proof of correctness of the algorithm.
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Algorithm 5: Pseudocode for ALG2

Input: (G, T, T ,P , C, k,Q)
Output: yes or no.

1 Initialize all entries in Γi to no, for i ∈ [q + 1];
2 Initialize all entries in Λi to no, for i ∈ [q + 1];

3 for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} do
4 for each L ⊆ Qi−1 \ T and each each R ⊆ Qi \ T do
5 for each edge-free partition B of (Qi−1 ∪Qi) \ (L ∪R) do

6 for each Ĉ ⊆ [�] and each 0 ≤ p̂ ≤ k −max{1, |L ∪R|} do

7 I = (Ĝi − (L ∪R), (Qi−1 ∪Qi) \ (L ∪R),B,P
∣∣
V (Gi−(L∪R))

, p̂);

8 Λi(L,R,B, Ĉ, p̂) = ALG1(I);

9 Copy table entries for Γ1, i.e. Γ1(X,A, C, p) = Λ1(∅, X,A, C, p);
10 for each Gi ∈ {G2, . . . , Gq+1} (in order) do
11 for each X ⊆ Qi \ T do
12 for each edge-free partition A of (Qi ∪Q0) \X do
13 for each C ⊆ [�] and each 0 ≤ p ≤ k − |X| do
14 τ1 = (X,A, C, p);

15 for each tuple τ2 = (L,R,B, Ĉ, p̂) ∈ Λi do

16 for each tuple τ3 = (X ′,A′, C
′
, p′) ∈ Γi−1 do

17 if τ1, τ2, and τ3 are compatible then
18 Γi(τ1) = Γi(τ1) ∨ [Γi−1(τ3) ∧ Λi(τ2)];

19 if Γq+1(∅, T , C, p) = yes (for some p ≤ k) then
20 return yes ;

21 return no;

Lemma 12.5. For any i ∈ [q + 1] and tuple τ1 = (X,A, C1, p1) ∈ Γi, Iτ1 is a yes-
instance if and only if there is a tuple τ2 = (L,R,B, C2, p2) ∈ Λi and a tuple τ3 =
(X ′,A′, C3, p3) ∈ Γi−1 such that Iτ2 and Iτ3 are both yes-instances and all three tuples
are compatible.

Proof. We begin with the forward direction. Suppose that Iτ1 is a yes-instance. Then, it
must be the case that there is a C1-colorful set Sτ1 ⊆ V (Gi) \X of size at most p1 such
that Sτ1 is an A-multiway cut in Gi. We define sets Sτ2 = Sτ1∩(V (Ĝi)\(Qi−1∪Qi)) and
Sτ3 = Sτ1 ∩ (V (Gi−1) \Qi−1) (see Figure 12.5). We will now define tuples τ2 and τ3. Let
C2 = col(Sτ2), C3 = col(Sτ3), p2 = |Sτ2 |, p3 = |Sτ3 |, X ′ = L = Sτ1 ∩ Qi−1 and R = X.
Furthermore, we let C be the equivalence class defined on the vertex sets of connected
components in Gi − (Sτ1 ∪X). We set B = C|(Qi−1∪Qi)\L and A′ = C|Q0∪Qi−1

. Finally,
we set τ2 = (L,R,B, C2, p2) and τ3 = (X ′,A′, C3, p3). We will now argue that Sτ2 and
Sτ3 are solutions for Iτ2 and Iτ3 , respectively. For two distinct sets B,B′ ∈ B we have no
path between them in Gτ2 − Sτ2 since they belong to different connected components in
Gi−(Sτ1∪X), Ĝi is a subgraph of Gi, Qi−1 is a (Q0, Qi)-separator, and by the definition
of B. This proves that Sτ2 is a solution for Iτ2 . An analogous argument can be given for
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Figure 12.5: An illustration of the proof of Lemma 12.5.

Sτ3 being a solution for Iτ3 . This completes the argument in the forward direction.

In the reverse direction, suppose that there are τ2 = (L,R,B, C2, p2) ∈ Λi and
τ3 = (X ′,A′, C3, p3) ∈ Γi−1 compatible with τ1 ∈ Γi such that Iτ3 and Iτ2 are yes-
instances. Let Sτ2 and Sτ3 be solutions for the respective instances.

We claim that Sτ1 = Sτ2 ∪Sτ3 ∪L is a solution for Iτ1 . Notice that p1 ≤ p2+ p3+ |L|
and C1 = C2 ∪ C3 ∪ col(L) (we have R = X). We need to show that Sτ1 is an A-
multiway cut in Gi − X. Targeting a contradiction, suppose there are distinct sets
A1, A2 ∈ A such that A1 and A2 are linked. Then, there exists a path P from a1 ∈ A1

to a vertex a2 ∈ A2. Consider the following ordered sequence of vertices x1, x2, . . . , xt in
V (P ) ∩ (Q0 ∪Qi−1 ∪Qi) obtained from P , i.e. by the order in which they appear in P .
Notice that each of the subpaths Pj from (xj , xj+1) of P , for j ∈ [t − 1], is completely

contained in one of Ĝi − Sτ2 or Gi−1 − Sτ3 . But this implies that there exists B ∈ B
such that {xj | j ∈ [t]} ∩ (Qi−1 ∪ Qi) ⊆ B. Similarly, there exists A′ ∈ A′ such that
{xj | j ∈ [t]} ∩ (Q0 ∪ Qi−1) ⊆ A′. But since τ1, τ2, and τ3 are compatible therefore, a1
and a2 must belong to the same set in A, contradicting the choice of a1 and a2. This
concludes the proof.

The above lemma proves the correctness of our algorithm since we set Γi(τ1) to be
yes precisely when there are τ2 and τ3 such that Γi−1(τ2) = Λi(τ3) = yes. Finally, we
prove the claimed running time bound.

Theorem 12.1. Colorful Multiway Cut can be solved in O�((k+ t)O(kt+k3)2O(�k))
time, where t = |T |.

Proof. Let n = |V (G)|, m = |E(G)|, t = |T |, and T(n, t, �, k) denote the “local” time
taken by our algorithm to solve an instance (G, T , T , P , C, k) of Colorful Multiway

Cut. By local, we mean the time taken ignoring all recursive calls. At the base case, the
algorithm correctly decides the instance in O(2O(�)n2) time (Observation 47). Hence,
at the base case we have T(n, t, �, k) = O(2O(�)n2). Otherwise, we have T(n, t, �, k) ≤
O(k2nm) + O(n(t + k)t+k2k2�), where O(k2nm) is the time taken to construct a tight
separator sequence (Lemma 12.4) and O(n(t+ k)t+k2k2�) is the time taken to compute
all table entries Γi, for i ∈ [q + 1] ∪ {0}. Stated differently, O((t + k)t+k2k2�) is the
size of the largest table. The correctness of this step follows from Lemma 12.5 and the
description of our two subroutines ALG1 and ALG2.

Now consider the recursion tree. We let Nd denote a node in this tree at depth d.
Note that the depth of our recursion tree is at most k; since k decreases by at least
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one in every recursive call (Observation 49 and Definition 12.7). Consider any node Nd

in the recursion tree with associated measures (n′, t′, �′, k′), i.e. Nd = (n′, t′, �′, k′). We
have n′ ≤ n, k′ ≤ k, �′ ≤ �, and t′ ≤ max(2k, t + k2) ≤ t + 2k + k2 (since t is either 2k
or increases by at most k when computing Γq+1 and the depth of our recursion tree is
at most k). Moreover, if we sum n′ for all nodes at depth d in the recursion tree we get∑

Nd
n′ ≤ (

∑
Nd−1

n′)O((t+ 3k + k2)t+3k+k2

2k2�) (since t′ ≤ t+ 2k + k2). Therefore, at
the deepest level, i.e. level k, we get:∑

Nk

n′ ≤ n · O(((t+ 3k + k2)t+3k+k2

2k2�)k) = n · O((t+ 3k + k2)kt+3k2+k3

2k
2

2k�).

Replacing for n in T(n, t, �, k), we get:

T(n, t, �, k) ≤ (k + t)O(kt+k3)2O(�k)nO(1).

Multiplying by the number of nodes in the recursion tree, which is bounded by O((k +

t)O(kt+k3)2O(�k)nO(1)), we get the desired running time.

Combining Theorem 12.1 with our series of reductions from Section 12.2, we have
obtain the following corollary (Corollary 12.1).

Corollary 12.1. Sim-FVS/OCT can be solved in O�(kpoly(α,k)) time.

Proof. Recall that Lemmas 12.2 and 12.3 together imply that if we can solve an instance
of Colorful Separator inO�(kpoly(α,k)) time then the algorithm for Sim-FVS/OCT

follows. Any instance of Colorful Separator can be reduced to an instance of
Colorful Multiway Cut with |T | = 2. From Theorem 12.1, such an instance can

be solved in time O�(kO(k3)2O(αk)).

12.4 W[1]-hardness of Simultaneous OCT

In this section, we show that Sim-OCT is W[1]-hard. For notational convenience, we
shall use a different encoding of α-edge-colored graphs. Given a graph G with vertex
set V (G) and edge set E(G), we define a coloring function col(e) ⊆ 2[α]. In particular,
when α = 2, we have col(e) ⊆ 2[2]. We start by establishing W[1]-hardness of Sim-Cut.
In Section 12.4.1 we show that Sim-Cut is W[1]-hard, even for α = 2, by giving a
parameterized reduction from Multi-Colored Clique. In Section 12.4.2 we give a
parameterized reduction from Sim-Cut to Sim-OCT for the same value of α and hence
establish the W[1]-hardness of Sim-OCT for α = 2. We note that this also implies
W[1]-hardness of Sim-OCT for all α ≥ 2.

12.4.1 W[1]-hardness of Simultaneous Cut

The Simultaneous Cut (or Sim-Cut for short) problem is formally defined below.

Simultaneous Cut (Sim-Cut) Parameter: k and α

Input: A graph G, two vertices s, t ∈ V (G), an integer k, and a coloring function
col : E(G) → 2[α].
Question: Is there X ⊆ V (G) \ {s, t} of size at most k such that, for all i ∈ [α],
Gi − X has no (s,t)-paths? Here, for i ∈ [α], Gi = (V (G), Ei), where Ei = {e ∈
E(G) | i ∈ col(e)}.
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We give a parameterized reduction from Multi-Colored Clique which is known
to be W[1]-hard [FHRV09]. Given an instance (G, V1, V2, . . . , Vk) of Multi-Colored

Clique, we proceed by creating an instance (G′, s, t, k′, col′ : E(G′) → 2{1,2}) of Sim-
Cut such that (G, V1, V2, . . ., Vk) is a yes-instance of Multi-Colored Clique if and
only if (G′, s, t, k′, col′ : E(G′) → 2{1,2}) is a yes-instance of Sim-Cut. Without loss of
generality we assume that for each i, j ∈ [k] we have |Vi| = |Vj |, which can easily be
achieved (in polynomial time) by adding isolated vertices.

The intuitive description of the parameterized reduction is as follows. Let (G, V1, V2,

. . . , Vk) be an instance of Multi-Colored Clique. Since |Vi| = |Vj |, for all i, j ∈ [k],
we assume that |Vi| = |Vj | = n. Furthermore, we assume that for every i, j ∈ [k],
i �= j, there is at least one edge between Vi and Vj , otherwise, the instance is a trivial
no-instance of Multi-Colored Clique and our reduction will simply output a trivial
no-instance of Sim-Cut with α = 2. For each i ∈ [k] we assume an arbitrary (but fixed)
ordering on the vertices in Vi. For each i ∈ [k], we will have a vertex selection gadget Si

that will be responsible for selecting a vertex in Vi. To achieve this, Si will have k − 1
copies of each vertex in Vi, so that each vertex in Vi has a copy corresponding to every
j ∈ [k] \ {i}. For each j ∈ [k] \ {i}, we have an (s,t)-path with all edges having color 1.
Each path contains exactly one copy of every vertex in Vi. Furthermore, these vertices
appear in the order given by the ordering we already fixed on the vertices of Vi (see
Figure 12.6).

The jth copy of the vertex set Vi will be used to ensure that there is an edge between
the selected vertex in Vi and a vertex in Vj . The copies of any single vertex will form
an (s,t)-separator of size k − 1. Furthermore, the size of minimum (s,t)-separator in
Si will be k − 1 and there will be exactly n distinct minimum separator each of which
will correspond to a set comprising of k − 1 copies of a vertex in Vi. By construction of
the gadget and by setting budget constraints appropriately we will ensure that we must
select a vertex from each of the k− 1 copies of Vi, for each i ∈ [k] and the selected k− 1
vertices correspond to copies of the same vertex, i.e. we select a minimum separator.
This will ensure that we have selected exactly one vertex from each Vi, for i ∈ [k].

For i, j ∈ [k], i �= j, we will have edge selection gadgets Eij which will ensure that
there is an edge selected between Vi and Vj , and the selected edge is incident to the vertex
selected from the vertex selection gadget. Finally, we will have a compatibility gadget
which will ensure that the edges selected by Eij and Eji correspond to the same edge in
G. We need to differentiate between gadgets Eij and Eji for technical reasons that will
become clear later. We will now move to the formal description of the reduction.

Construction. Initially, V (G′) = ∅ and E(G′) = ∅. We add two special vertices s
and t to V (G′), which are the vertices we want to separate, and which will be common
to all the gadgets. For i ∈ [k] we let vij be the jth vertex in Vi. We now formally describe
the construction of the various gadgets. We note that the gadgets are not necessarily
vertex or edge disjoint (in addition to intersection with {s, t}).

Vertex Selection Gadget. For each i ∈ [k] we have a vertex selection gadget Si

defined as follows. For each j ∈ [k] \ {i}, Si contains vertices in Vij = {vij1, vij2, . . . , vijn}
(refer to Figure 12.6). Here, the vertices vij1, v

i
j2, . . . , v

i
jn corresponds to one copy of the

vertices vi1, v
i
2, . . . , v

i
n in Vi. Note that for j, j′ ∈ [k] \ {i} vertices vij�, v

i
j′� correspond to
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Figure 12.6: Vertex selection gadget with red color denoting color 1.

Vj

vi1

vi2

vi3

vi4

vj1

vj2

vj3

s tevi
1v

j
1

evi
1v

j
2
evi

1v
j
3

evi
2v

j
3

evi
2v

j
2

evi
3v

j
1

evi
4v

j
3

Vij
vij1 vij2

Vi

vij3 vij4

Kij
1 Kij

2 Kij
3 Kij

4 Kij
5

Figure 12.7: An illustration of an edge selection gadget with blue color denoting color 2.

copies of the same vertex, namely vi� ∈ Vi. For i ∈ [k] and � ∈ [n], we let V i
� = {vij� | j ∈

[k] \ {i}}, i.e. V i
� denotes the set comprising of k − 1 copies of the vertex vi� ∈ Vi. For

i ∈ [k], � ∈ [n − 1], and for each u ∈ V i
� and u′ ∈ V i

�+1 we add the edge (u, u′) ∈ E(G′)
and set col′((u, u′)) = {1}. Note that G′[V i

� ∪ V i
�+1] is a complete bipartite graph with

all edges having the color 1 in their color set. For i ∈ [k], u ∈ V i
1 we add the edge

(s, u) ∈ E(G′) and set col′((s, u)) = {1}. Similarly, for i ∈ [k], u ∈ V i
n we add the edge

(u, t) ∈ E(G′) and set col′((u, t)) = {1}.

Edge Selection Gadget. For i ∈ [k] and j ∈ [k] \ {i} the edge selection gadget
Eij is constructed as follows. The vertex set of Eij contains a vertex euu′ , for each edge
(u, u′) ∈ E(G) with u ∈ Vi and u′ ∈ Vj . We refer the reader to Figure 12.7 for an
illustration. We note here that Eij and Eji denote distinct gadgets. For � ∈ [n], we let

Eij
� = {evi�u′ | u′ ∈ Vj , (v

i
�, u) ∈ E(G)}, i.e. Eij

� contains vertices corresponding to those

edges between Vi and Vj that are incident to the vertex vi� ∈ Vi. We let Eij = ∪�∈[n]E
ij
� .

For � ∈ [n] and each u ∈ Eij
� , we add the edge (u, vij�) to Eij . We add an induced path

P ij
� on the vertices in Eij

� (where the vertices appear in the natural order implied by the

ordering of the vertices in Vj) and add these edges to E ij
� . For each edge e ∈ E(P ij

� ), we

let col′(e) = {2}. For � ∈ [n+1], we let Kij
� denote a K3,3 (complete bipartite graph with

3 vertices on both side) with vertex bipartition ({pij� , q
ij
� , r

ij
� }, {p̄

ij
� , q̄

ij
� , r̄

ij
� }) and add it

to Eij . We will refer to Kij
� s as barrier blocks of Eij . Finally, we join s, t and Eij

� , for
� ∈ [n] using the barrier blocks. This is done as follows.

For � ∈ [n], let aij� , bij� be the first and the last vertex respectively, in the path
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Figure 12.8: An illustration of edge compatibility gadget with red color denoting color
1 and i < j.

P ij
� . We add the edges (aij� , p̄

ij
� ), (a

ij
� , q̄

ij
� ), (a

ij
� , r̄

ij
� ) and (bij� , p

ij
�+1), (b

ij
� , q

ij
�+1), (b

ij
� , r

ij
�+1)

to E(Eij). Also, for � ∈ [n], we add the edges (vij�, p̄
ij
� ), (v

i
j�, q̄

ij
� ), (v

i
j�, r̄

ij
� ) and

(vij�, p
ij
�+1), (v

i
j�, q

ij
�+1), (v

i
j�, r

ij
�+1) to E(Eij). In addition, we add the edges (s, pij1 ), (s, q

ij
1 ),

(s, r̄ij1 ), (p̄
ij
n+1, t), (q̄

ij
n+1, t), (r̄

ij
n+1, t) to Eij . For each e ∈ E(Eij), we set col′(e) = {2}.

This completes the description of the edge selection gadget.

Edge Compatibility Gadget. This gadget is used to ensure that the edge selected
by Eij and Eji corresponds to the same edge of G. For i, j ∈ [k], i < j, the edge
compatibility gadget Cij is constructed as described below. Basically, Cij comprises of
a set of edges between vertices in Eij and vertices in Eji. Recall that Eij and Eji

contains vertices corresponding to the same edges, namely the edges between Vi and
Vj in G. Hence, we can think of Eji as a set comprising of a copy of the vertices in
Eij . We fix a lexicographic ordering on vertices in Eij which we obtain as follows. For
evia,vjx , evib,v

j
y
∈ Eij , evia,vjx < evib,v

j
y
if (i) a < b or (ii) a = b and x < y. We denote the

ordering of vertices in Eij by eij1 , e
ij
2 , . . . , e

ij
m. Refer to Figure 12.8 for an illustration.

Note this also fixes an ordering of vertices in Eji which we denote by eji1 , e
ji
2 , . . . , e

ji
m.

Here, m is the number of edges between Vi and Vj in G. For � ∈ [m − 1], we add the

edges (eij� , e
ij
�+1), (e

ij
� , e

ji
�+1), (e

ji
� , e

ij
�+1), (e

ji
� , e

ji
�+1) to Cij . That is we add all the edges in

the bipartition between each consecutive pair of vertices in the ordered sets Eij and

Eji. We add edges (s, eij1 ), (s, e
ji
1 )(e

ij
m, t), (ejim, t) to Cij . For each edge e ∈ Cij , we set

col′(e) = {1}. We note here that in case we have created multiple edges say e, e′ between
vertices u, v then we delete e′ and set col′(e) := col′(e) ∪ col′(e′).

We finally set k′ = k(k− 1)+2
(
k
2

)
. In the following we prove certain lemmata which

will be helpful in establishing the equivalence between the given instance of Multi-

Colored Clique and the created instance of Sim-Cut. We denote the graph con-
structed above as G′ with the coloring function on the edge set being col′. For i ∈ [2], by
G′

i we denote the graph with vertex set V (G′) and edge set Ei = {e ∈ E(G′) | i ∈ col′(e)}.
Lemma 12.6. For i ∈ [n], consider the graph Ĝi = G′

1[V (Si)]. The minimum (s,t)-
separator in Ĝi has size k−1. Furthermore, F = {V i

� | � ∈ [n]} is the set of all minimum

sized (s,t)-separators in Ĝi.

Proof. We start by showing that for any (s,t)-separator X ′ in Ĝi, there exists � ∈ [n]
such that V i

� ⊆ X ′. Suppose not, then there exists an (s,t)-separator X, in Ĝi such
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that for all � ∈ [n], V i
� �⊆ X. This in turn implies that for all � ∈ [n], there exists

v∗� ∈ V i
� such that v∗� /∈ X. Recall that from construction (s, v∗1), (v

∗
n, t) ∈ E(Ĝi) and for

all � ∈ [n − 1], (v∗� , v
∗
�+1) ∈ E(Ĝi). This implies that there is an (s,t)-path in Ĝi − X,

namely P = s, v∗1, v
∗
2, . . . , v

∗
n, t, contradicting that X is an (s,t)-separator in Ĝi. Since

for any (s,t)-separator X ′ in Ĝi, there exists � ∈ [n] such that V i
� ⊆ X ′, this implies that

the size of minimum (s,t)-separator in Ĝi is at least k − 1 and F = {V i
� | � ∈ [n]} is the

set of all minimum sized (s,t)-separators in Ĝi.

Lemma 12.7. For i, j ∈ [n] and i �= j, consider the graph Ĝij = G′
1[V (Eij) ∪ V (Eji) ∪

{s, t}]. The minimum (s,t)-separator in Ĝij has size 2. Furthermore, F = {{eij� , e
ji
� } |

� ∈ [m]} is the set of all minimum sized (s,t)-separators in Ĝij. Here, m is the number
of edges between Vi and Vj in G.

Proof. We start by showing that for any (s,t)-separator X ′ in Ĝij , there exists � ∈ [m]

such that eij� , e
ji
� ∈ X ′. Suppose not, then there exists an (s,t)-separator X, in Ĝij

such that for all � ∈ [m] there exits ê� ∈ {eij� , e
ji
� } such that ê� /∈ X ′. Recall that from

construction (s, ê1), (êm, t) ∈ E(Ĝij) and for all � ∈ [m − 1], (ê�, ê�+1) ∈ E(Ĝij). This
implies that there is an (s,t)-path in Ĝij−X, namely P = s, ê1, ê2, . . . , ên, t, contradicting
that X is an (s,t)-separator in Ĝij . Since for any (s,t)-separator X ′ in Ĝij , there exists

� ∈ [m] such that {eij� , e
ji
� } ⊆ X ′, this implies that the size of minimum (s,t)-separator

in Ĝij is at least 2 and F = {{eij� , e
ji
� } | � ∈ [m]} is the set of all minimum sized

(s,t)-separators in Ĝij .

Lemma 12.8. For i, j ∈ [n] and i �= j, consider the graph Ĝij = G′
2[V (Eij)]. The

minimum (s,t)-separator in Ĝij has size 2. For � ∈ [n], let F� = {{e, vij�} | e ∈ Eij
� }.

Then, F = ∪�∈[n]F� is the set of all minimum sized (s,t)-separators in Ĝij.

Proof. We start by showing that for any (s,t)-separator X ′ of size at most 2 in Ĝij ,

there exists � ∈ [n], e ∈ Eij
� such that vij�, e ∈ X ′. Suppose not. Then there exists an

(s,t)-separator X, in Ĝij of size at most 2, such that for all � ∈ [n], either vij� /∈ X or

Eij
� ∩ X = ∅. Since |X| ≤ 2, for every barrier block Kij

� , for � ∈ [n + 1], there exists

p∗� ∈ {pij� , q
ij
� , r

ij
� } \X and p̄∗� ∈ {p̄ij� , q̄

ij
� , r̄

ij
� } \X. For each � ∈ [n], we now define a path

P� as follows. If v
i
j� /∈ X then P� = p̄∗� , v

i
j�, p

∗
�+1, otherwise P� = p̄∗� , E

ij
� , p∗�+1, where the

path is defined with respect to the ordering of vertices of Eij
� used in the construction

of the edge selection gadget. But then, P = s, p∗1, p̄
∗
1, P

ij
1 , p∗2, P

ij
2 , . . . , p∗nP

ij
n , p̄∗n+1, t is an

(s,t)-path in Ĝij −X, contradicting the assumption that X is an (s,t)-separator in Ĝij .

Furthermore, it follows from the construction that for all � ∈ [n], e ∈ Eij
� , {vij�, e} is an

(s,t)-separator in Ĝij . This concludes the proof.

Lemma 12.9. (G, V1, V2, . . . , Vk) is a yes-instance of Multi-Colored Clique if and
only if (G′, s, t, k′, col′ : E(G′) → 2{1,2}) is a yes-instance of Sim-OCT.

Proof. In the forward direction suppose that (G, V1, V2, . . . , Vk) is a yes-instance of
Multi-Colored Clique and let X = {vi�i ∈ Vi | i ∈ [k]} be a set such that

G[X] is a clique. We note here that for i ∈ [k], vi�i is the �ith vertex in Vi. Let

Y = {euv, evu | u, v ∈ X} and X ′ = (∪i∈[k]V i
�i
) ∪ Y . We will show that X ′ is a solution
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to Sim-Cut in (G′, s, t, k′, col′ : E(G′) → 2{1,2}). Note that |X ′| = k′ = k(k− 1) + 2
(
k
2

)
.

Therefore, we only need to show that G′
1 −X ′ and G′

2 −X ′ have no (s,t)-paths, respec-
tively.

We first show that G′
1−X ′ has no (s,t)-paths. Consider the set Z = {V (Si) \ {s, t} |

i ∈ [k]} ∪ {Eij | i, j ∈ [k], i �= j}. Observe that for any two distinct sets A,B ∈ Z,
A ∩ B = ∅, and for any a ∈ A and b ∈ B, (a, b) /∈ E(G′

1). Hence any (s,t)-separator
in G′

1 is the union of (s,t)-separators in G′
1[A ∪ {s, t}], for A ∈ Z. But then from

the construction of the set X ′, Lemma 12.6 and Lemma 12.7 it follows that X ′ is an
(s,t)-separator in G′

1.
We will now show that G′

2 −X ′ has no (s,t)-paths. Consider the set Z ′ = {V (Eij) \
{s, t} | i, j ∈ [k], i �= j}. For any two distinct sets A′, B′ ∈ Z ′, A′ ∩ B′ = ∅, and for any
a′ ∈ A′ and b′ ∈ B′, (a′, b′) /∈ E(G′

2). Hence any (s,t)-separator in G′
2 is the union of

(s,t)-separators in G′
2[A

′∪{s, t}], for A′ ∈ Z ′. But then from the construction of the set
X ′ and Lemma 12.8 it follows that X ′ is an (s,t)-separator in G′

2. This concludes the
proof in the forward direction.

In the reverse direction, let (G′, s, t, k′, col′ : E(G′) → 2{1,2}) be a yes-instance of
Sim-OCT and X ′ be one of its solution. Since X ′ is a solution, therefore, G′

1 −X ′ and
G′

2−X ′ have no (s,t)-paths. Consider the set Z = {V (Si)\{s, t} | i ∈ [k]}∪{Eij | i, j ∈
[k], i �= j}. Observe that for any two distinct sets A,B ∈ Z, A ∩ B = ∅, and for any
a ∈ A and b ∈ B, (a, b) /∈ E(G′

1). Hence, any (s,t)-separator in G′
1 is the union of (s,t)-

separator in G′
1[A∪{s, t}], for A ∈ Z. This together with Lemma 12.6, Lemma 12.7 and

the definition of k′ implies that for each A ∈ Z, we must pick a minimum sized separator
(s,t)-separator in G′

1[A ∪ {s, t}]. Any minimum sized (s,t)-separator in G′
1[V (Si)] must

belong to Fv = {V i
� | � ∈ [n]}. We let X = {vi�i | i ∈ [k], V i

�i
⊆ X ′}. We will show

that X is a solution to Multi-Colored Clique in (G, V1, V2, . . . , Vk). It is easy to see
that |X ∩ Vi| = 1. We need to show that G[X] is a clique. Consider vi�i , v

j
�j
∈ X, where

i, j ∈ [k], i < j and suppose (vi�i , v
j
�j
) /∈ E(G). Lemma 12.8 (together with construction

of k′) implies that for some e ∈ Eij
�i
, e ∈ X ′ and for some e′ ∈ Eji

�j
, e′ ∈ X ′. Moreover,

Lemma 12.8 implies that {e, e′} ∈ F = {{eij� , e
ji
� } | � ∈ [m]}. But this implies that

(vi�i , v
j
�j
) ∈ E(G). This concludes the proof.

Theorem 12.2 follows from combining Lemma 12.9 and the W[1]-hardness of Multi-

Colored Clique.

Theorem 12.2. For all α ≥ 2, Sim-Cut is W[1]-hard when parameterized by k. Here,
α is the number of colors in the coloring function of the edge set.

12.4.2 From Simultaneous Cut to Simultaneous OCT

In this section, we give a parameterized reduction from Sim-Cut to Sim-OCT. Roughly
speaking, given an instance (G, s, t, k, col : E(G) → 2[α]) of Sim-Cut we create an
instance (G′, k′, col′ : E(G′) → 2[α]) of Sim-OCT by subdividing edges in G and adding
k + 1 vertex disjoint (s,t)-paths on 2 vertices. Furthermore, we create k + 1 duplicates
(also known as false twins) of s and t. The objective behind these operations is the
conversion of (s,t)-paths in G to odd-cycles in G′. Moreover, all the odd cycles in G′ will
be shown to correspond to an (s′, t′)-path (subdivided), where s′ and t′ are false twins
of s and t, respectively, along with one of the newly added paths on 2 vertices. Along
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the way, we will also duplicate certain vertices k + 1 times simply to ensure that a copy
of these vertices always remains in the graph resulting from deleting a set of at most k
vertices. We now move to the formal description of the reduction.

Let (G, s, t, k, col : E(G) → 2[α]) be an instance of Sim-Cut. For technical rea-
sons we will assume that (s, t) /∈ E(G). Such an assumption is legitimate because
otherwise, either we have a trivial no-instance of Sim-Cut which is the case when
col((s, t)) �= ∅ or we can delete the edge (s, t) which is the case when col((s, t)) = ∅.
We create an instance (G′, k′, col′ : E(G′) → 2[α]) of Sim-OCT as follows. Initially,
V (G′) = V (G) and E(G′) = ∅. For each edge (u, v) ∈ E(G) we add a vertex euv to
V (G′), add the edges (u, euv), (v, euv) to E(G′), and set col′((u, euv)) = col((u, v)) and
col′((v, euv)) = col((u, v)). For i ∈ [k + 1], we add vertices wi, w

′
i to V (G′) and add the

edges (s, wi), (wi, w
′
i), (w

′
i, t) to E(G′). In addition, we set col′((s, wi)) = col′((wi, w

′
i)) =

col′((w′
i, t)) = [α]. We create k chromatic false twins, i.e. false twins with the color

sets on edges duplicated appropriately, of vertices s and t respectively in G′ and let
Sf = {si | i ∈ [k]} ∪ {s} and Tf = {ti | i ∈ [k]} ∪ {t}. Finally, we set k′ = k.

Proposition 12.2. Let H be a graph containing a cycle C with an odd number of vertices.
Then H contains an induced cycle C ′ with an odd number of vertices.

In the following lemmata we establish some of the properties of the instance
(G′, k′, col′ : E(G′) → 2[α]) of Sim-OCT that will be helpful in establishing its equiva-
lence with the instance (G, s, t, k, col : E(G) → 2[α]) of Sim-Cut. We let G′ to be the
graph constructed as described above from G. For i ∈ [α], by Gi we denote the graph
G[Ei], where Ei = {e ∈ E(G) | i ∈ col(e)}. Analogously, we define G′

i, for i ∈ [α].

Lemma 12.10. For i ∈ [α], let C be an induced cycle in G′
i such that |V (C)| �= 4. Then,

|V (C) ∩ Sf | ≤ 1 and |V (C) ∩ Tf | ≤ 1.

Proof. Consider an induced cycle C in G′
i such that |V (C)| �= 4. We will only argue

that |V (C) ∩ Sf | ≤ 1 and |V (C) ∩ Tf | ≤ 1 will follow from a symmetric argument.
If C contains a vertex from Sf , say s′, then C must contain at least 2 vertices from
{wi, w

′
i | i ∈ [k + 1]} ∪ {esv | v ∈ NGi

(s)} since they are the only neighbors of s′ in G′.
But then C cannot contain any other vertex from Sf since vertices in Sf are chromatic
false twins of s′ in G′ and |V (C)| �= 4. This concludes the proof.

Lemma 12.11. For i ∈ [α], let C be an induced cycle in G′
i such that V (C) ∩ {wi, w

′
i |

i ∈ [k + 1]} = ∅. Then, C is a cycle with an even number of vertices.

Proof. Consider an induced cycle C in G′
i such that |V (C)| ∩ {wi, w

′
i | i ∈ [k + 1]} = ∅.

If |V (C)| = 4 then the claim trivially holds. Otherwise, Lemma 12.10 implies that
|V (C) ∩ Sf | ≤ 1 and |V (C) ∩ Tf | ≤ 1. Since vertices in Sf and Tf are chromatic false
twins, we can find a cycle C ′ with |V (C)| vertices by replacing vertex s′ ∈ V (C) ∩ Sf

(if it exists) by s and vertex t′ ∈ V (C) ∩ Sf (if it exists) by t. Recall that for X =
(V (G′)\(Sf∪Tf∪{wi, w

′
i | i ∈ [k+1]}))∪{s, t}, G′[X] is a graph obtained by subdivision

of edges in G. But C ′ is a cycle in G′
i[X] and hence it follows that |V (C ′)| = |V (C)| is

an even number.

Lemma 12.12. For i ∈ [α], let C be an induced cycle in G′
i such that |V (C)| �= 4. Then

for � ∈ [k + 1], w� ∈ V (C) if and only if w′
� ∈ V (C). Furthermore, if |V (C)| �= 6 then

|V (C) ∩ {wj | j ∈ [k + 1]}| ≤ 1.
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Proof. For � ∈ [k + 1], let C be an induced cycle in G′
i such that w� ∈ V (C). Recall

that NG′
i
(w�) = Sf ∪ {w′

�}. Therefore, C must contain two vertices from Sf ∪ {w′
�}.

From Lemma 12.10 it follows that |V (C) ∩ Sf | ≤ 1. This implies that w′
� ∈ V (C). An

analogous argument can be given for the reverse direction.
For the second part of the lemma, suppose there exists distinct �, �′ ∈ [k + 1] such

that w�, w�′ ∈ V (C). First part of the lemma implies that w′
�, w

′
�′ ∈ V (C). But then C

must contain a vertex s′ ∈ Sf and a vertex t′ ∈ Tf as C must contain two neighbors of
w� and two neighbors of w′

�. But s
′ ∈ NG′

i
(w�′) and t′ ∈ NG′

i
(w′

�′). This contradicts the
assumption that C is an induced cycle such that |V (C)| �= 6.

Lemma 12.13. (G, s, t, k, col : E(G) → 2[α]) is a yes-instance of Sim-Cut if and only
if (G′, k′, col′ : E(G′) → 2[α]) is a yes-instance of Sim-OCT.

Proof. In the forward direction let (G, s, t, k, col : E(G) → 2[α]) be a yes-instance of
Sim-Cut and S ⊆ V (G) \ {s, t} be one of its solutions. We will show that S is a
solution to the instance (G′, k′, col′ : E(G′) → 2[α]) of Sim-OCT. Suppose not. Then,
there is an odd cycle Ĉ in G′

i − S, for some i ∈ [α]. Since G′
i − S has an odd-cycle Ĉ,

Proposition 12.2 implies that G′
i −S has an induced odd-cycle C. As C is an odd-cycle,

Lemma 12.11 and Lemma 12.12 imply that there exists a unique � ∈ [k + 1] such that
w�, w

′
� ∈ V (C). But then C must contain a vertex in Sf and a vertex in Tf . This

together with Lemma 12.10 implies that there exists a unique s′ ∈ Sf and t′ ∈ Tf such
that s′, t′ ∈ V (C). Let P ′ be the path from s′ to t′ obtained from C by deleting w� and
w′
�. Since V (P ′) ∩ (Sf \ {s′}) = ∅ and V (P ′) ∩ (Tf \ {t′}) = ∅ it must be that all the

internal vertices in P ′ are in X = V (G′) \ (Sf ∪ Tf ∪ {wj , w
′
j | j ∈ [k + 1]} ∪ S). Recall

that G′[X] is obtained from G by subdividing edges in G. But then we can obtain an
(s,t)-path in Gi − S from P ′ by replacing s′ by s, t′ by t and edges (u, euv)(euv, v) by
(u, v) in G− S contradicting that S is a solution to Sim-Cut.

In the reverse direction, let (G′, k′, col′ : E(G′) → 2[α]) be a yes-instance of Sim-

OCT and S′ ⊆ V (G′) be a solution. Let Ŝ = S′ \ (Sf ∪ Tf ∪ {wi, w
′
i | i ∈ [k + 1]}).

We obtain S from Ŝ by replacing each euv ∈ Ŝ (if any) by either of u or v. Here, in
making the choice we give preference to one that is not s nor t and since (s, t) /∈ E(G)
such a choice always exists. We will show that S is a solution to the instance (G, s, t, k,
col : E(G) → 2[α]) of Sim-Cut. Note that |S| ≤ k, therefore it is enough to show that
for each i ∈ [α], Gi − S has no (s,t)-path. Aiming for a contradiction, suppose for some
i ∈ [α], Gi − S has an (s,t)-path P . Since |S′| ≤ k, there exists j ∈ [k + 1] such that
wj , w

′
j /∈ S′, s′ ∈ Sf \ S′ and t′ ∈ Tf \ S′. Let P ′

1 be the (s′,t′)-path in G′
i obtained from

P by replacing each edge (u, v) by (u, euv) and (euv, v), replacing s by s′ and t by t′.
Also, let P ′

2 = s′, wj , w
′
j , t

′ be another (s′,t′)-path in G′
i. Recall that by construction, for

each edge e ∈ E(P ′
1)∪E(P ′

2), i ∈ col′(e). Furthermore, S′ ∩ (V (P ′
1)∪ V (P ′

2)) = ∅, which
follows from our construction of the paths P ′

1 and P ′
2. But then we have two (s′,t′)-paths

P ′
1 and P ′

2 (internally vertex disjoint). Therefore, we obtain a cycle C containing s′ and t′
with paths P ′

1 and P ′
2 between them. Notice that C has an odd number of vertices since

P ′
2 has an even number of vertices and P ′

1 has odd number of vertices. This contradicts
the fact that S′ is a solution to Sim-OCT, as needed.

As a consequence of the reduction presented above, we obtain the following theorem.

Theorem 12.3. For all α ≥ 2, Sim-OCT is W[1]-hard when parameterized by k. Here,
α is the number of colors in the coloring function of the edge set.



Part IV

Conclusions





Chapter 13

Discussions and Open Problems

In Part II of the thesis we looked at F -Editing problems where the edit operations were
restricted to one of vertex deletion and edge contraction for various classes of chordal
graphs. Below we briefly discuss these results, and some future directions.

• In Chapter 5, we studied the problem Block Graph Vertex Deletion. We
designed an FPT algorithm running in time O(4k|V (G)|O(1)) and a polynomial
kernel with O(k4) vertices for the problem. Improving either the FPT algorithm
or the kernelization algorithm for the problem remains as an interesting future
direction.

• In Chapter 6, we designed O(logO(1) n)-approximation algorithms for Weighted

Planar F -Minor-Free Deletion, Weighted Chordal Vertex Dele-

tion and Weighted Distance Hereditary Vertex Deletion. These al-
gorithms are the first ones for these problems whose approximation factors are
bounded by O(logO(1) n). Along the way, we also obtained a constant-factor ap-
proximation algorithm for Weighted Multicut on chordal graphs. All these
algorithms are based on the same recursive scheme. We believe that the scope of
applicability of the approach used in this chapter is very wide. The following are
some of the natural open problems that arise from this chapter.

– Does Weighted Planar F -Minor-Free Deletion admit a constant-
factor approximation algorithm? Furthermore, studying the problem for fam-
ilies F that do not necessarily contain a planar graph is another direction for
further research.

– Does Weighted Chordal Vertex Deletion admit a constant-factor ap-
proximation algorithm?

– Does Weighted Rankwidth-η Vertex Deletion admit a O(logO(1) n)-
factor approximation algorithm?

– On which other graph classesWeighted Multicut admits a constant-factor
approximation?

• In Chapter 7, we designed a polynomial kernel for Chordal Vertex Deletion

of size O(k12 log10 k). This kernel significantly improves over the previously known
O(k161 log58 k) sized kernel. We believe that the notion of independence degree
and the bootstrapping trick used in the kernelization procedure could be useful in
designing polynomial kernels for other F-Vertex (Edge) Deletion problems,
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where F is characterized by an infinite set of forbidden induced graphs. The
following are some of the natural open problems.

– Design a polynomial kernel for Chordal Vertex Deletion of size O(kc)
for some fixed constant c ≤ 5.

– Does there exist an FPT algorithm for Chordal Vertex Deletion with
running time cknO(1), for some fixed constant c? We note that Marx [Mar10]
designed an FPT algorithm for Chordal Vertex Deletion, which resolved
an open problem of Cai [Cai03].

• In Chapter 8, we designed a polynomial kernel for Interval Vertex Deletion

with O(k1740) vertices. We believe that the kernel size can be improved at the
cost of significantly more involved arguments and by considering a solution of
lower redundancy. But it seems like obtaining a kernel of size around O(k10)
would require new ideas. Designing a kernel with better size bound remains an
interesting research direction. We believe that the idea of using solutions of higher
redundancy is extendable in designing algorithms for other problems as well. Also,
the technique of linear algebra that we use for bounding (for instance) the number
of module components seems to have wider applicability for designing polynomial
kernels for other problems.

• In Chapter 9, we considered the problem Split Contraction. We looked at two
important results regarding the complexity of the problem. First, we proved that
under the ETH, the problem cannot be solved in time 2o(�

2) · nO(1) where � is the
vertex cover number of the input graph, and this lower bound is tight. To the best
of our knowledge, this is the first tight lower bound of the form 2o(�

2) · nO(1) for
problems parameterized by the vertex cover number of the input graph. Second,
we have proved that Split Contraction, despite its deceptive simplicity, is
actually W[1]-hard with respect to the solution size. We believe that techniques
integrated in the constructions can be used to derive conditional lower bounds and
W[1]-hardness results in the context of other graph editing problems. In the exact
setting, it is easy to see that Split Contraction can be solved in time 2O(n log n).
Can it be solved in time 2o(n log n)? A negative answer would imply, for instance,
that it is neither possible to find a topological clique minor in a given graph in
time 2o(n log n), which is an interesting open problem [CFG+17].

In Part III of the thesis we looked at Simultaneous (F1, . . . ,Fα)-Editing prob-
lems. We restricted ourselves to edit operations being vertex or edge deletions. As men-
tioned by Cai and Ye [CY14], we believe that studying generalizations of other classical
problems to edge-colored graphs might lead to interesting new insights about combina-
torial and structural properties of such problems. Next, we briefly look at the results we
obtained and some open problems.

• In Chapter 10, we studied the problem Simultaneous Feedback Vertex Set.
We showed that the problem admits an FPT algorithm running in O�(23αk) time,
for any constant α. For the special case of α = 2, we designed a faster O�(81k)
time algorithm which follows from the observation that the base case of the general
algorithm can be solved in polynomial time when α = 2. Moreover, for constant α,
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we presented a kernel for the problem with O(αk3(α+1)) vertices. It is interesting to
note that our algorithm implies that Simultaneous Feedback Vertex Set can
be solved in (2O(α))knO(1) time. However, we have also seen that Simultaneous
Feedback Vertex Set becomesW[1]-hard when α ∈ O(log n). This implies that
(under plausible complexity assumptions) an algorithm running in (2o(α))knO(1)

time cannot exist. In other words, the running time cannot be subexponential in
either k or α.

• In Chapter 11, we look at the problem Simultaneous Feedback Edge Set.
We show that for α = 3, Simultaneous Feedback Edge Set is NP-hard by giv-
ing a reduction from Vertex Cover on cubic graphs. The same reduction shows
that the problem does not admit an algorithm running in time O(2o(k)nO(1)) unless
ETHfails. This hardness result is complimented by an FPT algorithm for Simul-
taneous Feedback Edge Set running in time O(2ωkα+α log knO(1)), where ω

is the exponent in the running time of matrix multiplication. The same algo-
rithm gives a polynomial time algorithm for the case when α = 2. We also give
a kernel for the problem with (kα)O(α) vertices. Finally, we consider the prob-
lem Max-Sim Acyclic-Subgraph. We give an FPT algorithm for Max-Sim

Acyclic-Subgraph running in time O(2ωqαnO(1)).

• In Chapter 12, we studied the problem Simultaneous (F1, . . . ,Fα)-Deletion

problem, where each Fi is either the family of forests or the family of bipartite
graphs. The work upon which the chapter is based initiated the investigation of the
complexity of Simultaneous (F1, . . . ,Fα)-Deletion with different families of
graphs. We obtained a complete characterization of the Parameterized Complexity
of the problem when one or more of the F ′

is is the class of bipartite graphs and the
rest (if any) are forests. We showed that if F1 is the family of bipartite graphs and
each of F2 = F3 = . . . = Fα is the family of forests then the problem is FPT when
parameterized by k and α. However, even when F1 and F2 are both the family
of bipartite graphs, then the Simultaneous (F1,F2)-Deletion problem itself is
already W[1]-hard. The following are some of the open problems arising from the
chapter.

– Towards designing the FPT algorithm we designed an FPT algorithm for the
problem Colorful Multiway Cut. It is natural to ask whether one can
improve the running time of the algorithm for Colorful Multiway Cut.
In particular, is it possible to solve the problem in O�(kO(k)) time when the
number of terminals is constant and the number of colors is at most k?

– Another interesting question which remains open is whether the Simultane-
ous FVS/OCT problem admits a (randomized) polynomial kernel.
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[FJP10] Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds
and growing cacti. In Proceedings of the 14th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO), volume 6080, pages
191–204, 2010. 6.1



268 BIBLIOGRAPHY

[FJP14] Fedor V. Fomin, Bart M. P. Jansen, and Michal Pilipczuk. Preprocess-
ing subgraph and minor problems: When does a small vertex cover help?
Journal of Computer and System Sciences, 80(2):468–495, 2014. 8

[FKP+14] Fedor V Fomin, Stefan Kratsch, Marcin Pilipczuk, Micha	l Pilipczuk, and
Yngve Villanger. Tight bounds for parameterized complexity of cluster
editing with a small number of clusters. Journal of Computer and System
Sciences, 80(7):1430–1447, 2014. 1.1

[FLM+16] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip,
and Saket Saurabh. Hitting forbidden minors: Approximation and kernel-
ization. SIAM Journal on Discrete Mathematics, 30(1):383–410, 2016. 6.1,
6.4

[FLMS12] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
Planar F-Deletion: Approximation, Kernelization and Optimal FPT algo-
rithms. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, (FOCS), pages 470–479, 2012. 1.1, 6.1, 6.1.1

[FLPS16] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
Efficient computation of representative families with applications in param-
eterized and exact algorithms. Journal of the ACM, 63(4):29:1–29:60, 2016.
2.1, 8

[FLRS11] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Bidimensionality and EPTAS. In Proceedings of the 22nd ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 748–759, 2011. 6.1, 6.4

[FLS12] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality
and geometric graphs. In Proceedings of the 23rd ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1563–1575, 2012. 6.1, 6.4

[FLST10] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thi-
likos. Bidimensionality and kernels. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 503–510,
2010. 1.1, 6.4

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression
and succinct PCPs for NP. Journal of Computer and System Sciences,
77(1):91–106, 2011. 1.1

[FSV13] Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel
for proper interval vertex deletion. SIAM Journal on Discrete Mathematics,
27(4):1964–1976, 2013. 1.1

[Fuj98] Toshihiro Fujito. A unified approximation algorithm for node-deletion prob-
lems. Discrete Applied Mathematics, 86:213–231, 1998. 1.1

[GC15] Chengwei Guo and Leizhen Cai. Obtaining split graphs by edge contraction.
Theoretical Computer Science, 607:60–67, 2015. 9



BIBLIOGRAPHY 269

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian
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