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COMBINATORIAL DESCRIPTION OF JUMPS IN SPECTRAL

NETWORKS

ANASTASIA FROLOVA AND ALEXANDER VASIL’EV

Abstract. We describe a graph parametrization of rational quadratic differen-
tials with presence of a simple pole, whose critical trajectories form a network
depending on parameters focusing on the network topological jumps. Obtained
bifurcation diagrams are associated with the Stasheff polytopes.

1. Introduction

The problem of BPS (Bogomol’nyi–Prasad–Sommerfield) wall crossing have re-
ceived much attention the last decade, see e.g, [1, 2, 3, 4, 12, 13]. In physics terms, a
supersymmetric particle may change from stable to unstable crossing loci (walls) in
a parameter space. Considering four-dimensional N = 2 theories coupled to surface
defects, particularly the theories of class S, see [24], Gaiotto, Moore, and Neitzke
[5] introduced spectral networks of trajectories on Riemann surfaces obeying certain
local rules aiming at the characterization of the possible spectra of BPS states and
their allowed changes under continuous deformations of the theory. Given a com-
pact Riemann surface R with punctures and a Lie algebra g of ADE type, e.g.,
SU(2) in our case, there exists a corresponding four-dimensional quantum field the-
ory S(R, g), see [12, 24]. The spectral network is defined by the critical trajectories
of a quadratic differential q given by q(z)dz2 in a local parameter z, which defines
a singular measured foliation of R with singularities at the zeros and poles of q.
The differential is holomorphic on R and has possible poles at the punctures. The
trajectories emerging from the zeros form the spectral network. For certain values of
the zeros, there occur critical trajectories starting and ending at them, and we say
that the network undergoes jumps and splits R into cells. Generic small variation of
zeros changes the network by isotopy whereas the jumps occur for certain values of
them. Such critical trajectories we will call short. Counting the special trajectories
is related to generalized Donaldson-Thomas invariants of the theory.

Short trajectories of q turn to play an important role also in potential theory,
approximation theory and other branches of mathematics. For example, short tra-
jectories of rational quadratic differentials describe limiting distributions of certain
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types of orthogonal polynomials, see e.g., [16, 17, 18]. Motivated by applications to
minimal surfaces, Bruce and O’Shea published a preprint [9], where the short tra-
jectories characterized umbilical points and the geometry of unfolding. Baryshnikov
[6, 7] described the combinatorial structure of the Stokes sets for polynomials in one
variable by bifurcation diagrams, and in particular, encoded the short trajectories
of the differential q in the simplest case when R = C and q is a versal deformation
of zndz2. It was proved in [14] that the versal deformation of zn dz2 is the family
(zn + an−2z

n−2 + ...+ a0) dz
2, where ak, 0 ≤ k ≤ n− 2, are complex parameters. It

can be understood as a family which includes in a certain sense all quadratic differ-
entials of the form pn(z) dz

2, where pn(z) is a monic polynomial of degree n. The set
of all parameters (an−2, ..., a0) in the parameter base space C

n−2, for which the cor-
responding quadratic differential has a short trajectory, is the bifurcation diagram
of the versal deformation, i.e., whenever a parameter (an−2, ..., a0) belongs to the
bifurcation diagram, a small change of parameter causes a significant change in the
trajectory structure. Using formal power series Bruce and O’Shea gave an explicit
form of the bifurcation diagram for the case n = 2. They initiated the study of com-
binatorial structure of bifurcation diagrams for arbitrary n, which was completed by
Baryshnikov [6, 7], who gave combinatorial and geometric descriptions of the set of
polynomial quadratic differentials with short trajectories. He also established cor-
respondence between polynomial quadratic differentials and weighted graphs, and
used the connection between weighted graphs and the Stasheff polyhedra.

The combinatorial description of the Stokes sets above is equivalent to the descrip-
tion of admissible contours among which there is a solution to a max-min energy
variational problem in logarithmic potential theory in the polynomial external field,
and the extremal contour satisfies the S-property introduced and studied by Stahl,
Gonchar, and Rakhmanov [10, 20]. The equilibrium measure is supported on a finite
union of arcs of this extremal contour, see [15, Theorem 2.3].

The latter and physics motivation encouraged us to consider the case of quadratic
differential with the presence of poles, in particular, the case of one simple pole. The
domains in the trajectory structure of the differential in our approach contain ending
domains [11, 23] (or half-plane domains in terminology of [22]) and strip domains.
More poles destroy completely the proposed picture because even two simple poles
guarantee new types of domains, i.e., ring domains and dense structures. We so far
do not know what kind of graphs could parametrize them. So our result in some
sense extends Baryshnikov’s approach up to the end.

Let us remark that different graph encodings of quadratic differentials were also
used as a tool for solving a number of other problems. For example, Bogatyrëv in
[8] used certain graphs based on quadratic differentials in connection with the prob-
lem of description of extremal polynomials. Solynin [19] established the connection
between weighted graphs and quadratic differentials with closed trajectories.

The outline of the paper is as follows. In Section 2, we introduce the correspon-
dence between weighted chord diagrams and the Stasheff polyhedra through the
balanced weights following [6]. In Section 3, we discuss briefly the trajectory struc-
ture of rational quadratic differentials with a simple pole. We establish one-to-one
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correspondence between weighted graphs and rational quadratic differentials with a
simple pole in Section 4. Graphs and weighted chord diagrams identified with the
quadratic differentials with short trajectories are described there. The latter allows
us to use the correspondence between weighted chord diagrams and the Stasheff
polyhedra to obtain an analogue of the bifurcation diagram for the case of rational
quadratic differentials with a simple pole.

Acknowledgement. The authors acknowledge many helpful discussions with Boris
Shapiro (Stockholm University) and Alexander Solynin (Texas Tech University), and
we are thankful to the Mittag-Leffler Institute (Stockholm) where this study started.

2. Weighted chord diagrams and balanced weights

Following Baryshnikov [6, 7] we introduce weighted chord diagrams, Stasheff poly-
hedra, balanced weights, and describe the correspondence between them. Although
this section does not contain essentially new results, we take the liberty to complete
some details and proofs missing in [6, 7].

A polytope C in Rd is a convex hull of a certain number of points in Rd. If C
intersects a hyperplane H and lies entirely in one of the half-spaces defined by H ,
we call H ∩ C a face of C. The vertices and edges of a polytope C are 0− and
1−dimentional faces of C respectively. Any given vector v ∈ Rd determines a face
Fv(C) of C:

Fv(C) = {x ∈ C : x · v ≥ y · v ∀y ∈ C}.

Fv(C) is an intersection of C with a hyperplane which goes through the point
argmaxx∈C x · v and has v as the normal vector. For v = 0 we obtain the entire
polytope C. For any face F of C we define a normal cone NF (C) as

NF (C) = {v ∈ R
d : F = Fv(C)}.

Note that if the face F has dimension l and l ≤ d, then the dimension of the normal
cone NF (C) is d − l. The collection of all normal cones of C is called the normal
fan of C.

Stasheff polyhedron (associahedron) Kn, see [21], is an (n−2)−dimensional poly-
tope. Each vertex of Kn corresponds to a maximal bracketing of a string of n

symbols, and each 1-D edge corresponds to a single application of associativity
rule removing one bracket. Following applications correspond to (n − k)-D faces,
k = 0, 1, . . . , n − 1. For example, K3 consists of two vertices represented by (ab)c
and a(bc) and one edge abs connecting them. Analogously, K4 is a plane pentagon
and K5 is a 3-D polyhedron.

Alternatively, Kn can be realized as a polytope whose vertices represent triangu-
lations of a regular (n + 1)−gon and edges represent diagonal flips. Triangulation
of a polygon is a collection of non-intersecting diagonals; it is said to be incomplete
if the number of diagonals is not maximal. The vertices of the polytope dual to Kn

correspond to incomplete triangulations of the (n+ 1)−gon.

Example 1. The triangulation realization of K4 is shown on figure 1.
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Figure 1. The triangulation realization of K4.

Normal fan Σn to the Stasheff polytope Kn is called the Stasheff fan. The union
of the cones of Σn constitutes Rn−2. The number of full-dimensional cones is equal
to the Catalan number cn−1 =

1
n

(
2n−2
n−1

)
.

Example 2. The Stasheff fan Σ4 is illustrated on Figure 2.

Figure 2. Normal fan Σ4

Suppose we have a convex regular (n + 1)−gon P . Together with some weighted
non-intersecting diagonals it is called a weighted chord diagram. In this case we say
that the weighted chord diagram is based on P.

A balanced weight is a function defined on the vertices of the (n+1)−gon P , such
that the sum of its values at the vertices is zero and the geometric center of masses
is at the origin. A balanced weight f is called degenerate if there exists a real linear
function L and vertices a1,2,3,4, such that L majorizes f and coincides with it at the
vertices a1,2,3,4.

Balanced weights form a linear space of real dimension n − 2. According to
Baryshnikov, the degenerate balanced weights form a fan Σn, which is a normal fan
for the Stasheff polytope Kn.

In what follows, we describe the correspondence between weighted chord diagrams
and balanced weights.
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Figure 3. Construction of a chord.

Lemma 1. There is one-to-one correspondence between balanced weights and weighted
chord diagrams.

Proof. Let us show that each balanced weight gives rise to a weighted chord diagram.
We fix a point p lying on the plane of the polygon P and in general position with
respect to P . Let a and c be two arbitrary non-adjacent vertices of P . We consider
all the real linear functions L on the plane of P , such that L(a) = f(a), L(c) = f(c),
and L|P (z) ≥ f(z) for any vertex z of P . The values of such linear functions at
p swipe out an interval of length v, v ≥ 0. If v > 0, we construct a diagonal with
weight v joining a and c. We go through this procedure for any pair of non-adjacent
vertices of P and we construct all possible diagonals. Construction of a chord is
illustrated in Figure 3.

Note that the diagonals in the resulting diagram do not intersect, i.e., we obtain
a weighted chord diagram. Suppose we have constructed two intersecting diagonals
a1a2 and b1b2. Then there exist linear functions L and Λ, satisfying the relations

(1)
L|P ≥ f, L(a1,2) = f(a1,2),

Λ|P ≥ f, Λ(b1,2) = f(b1,2).

The latter gives us that

L(a1,2) = f(a1,2) ≤ Λ(a1,2),
Λ(b1,2) = f(b1,2) ≤ L(b1,2).

Thus, the function d(z) = Λ(z) − L(z) satisfies the inequalities d(a1,2) ≥ 0 and
d(b1,2) ≤ 0. As a1 and a2 lie on different sides with respect to b1b2 and d is real
linear, we obtain that d vanishes identically. Therefore, the diagonals a1a2 and b1b2
fail to exist and we arrive at a contradiction.

Analogously, for each weighted chord diagram there is a balanced weight corre-
sponding to it. �

Furthermore, there is a one-to-one correspondence between the degenerate bal-
anced weights and weighted chord diagrams with incomplete triangulation. We
separate the proof of this fact into three lemmas.
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Lemma 2. Suppose f is a degenerate balanced weight and P is the weighted chord
diagram corresponding to f . Then P has an incomplete triangulation.

Proof. Suppose we are given a degenerate weight f, i.e., there exists a linear function
L and vertices ak ∈ P, 1 ≤ k ≤ 4, such that L|P ≥ f, L(ak) = f(ak), 1 ≤ k ≤ 4. The
chord diagram corresponding to the weight f can not have a diagonal that intersects
the interior of the quadrilateral Q formed by ak, 1 ≤ k ≤ 4, and thus, triangulation
of P is not complete. To show this, we assume that P has non-adjacent vertices
b1 and b2, such that the diagonal b1b2 intersects the interior of Q. As the diagonal
b1b2 exists, there must be a linear function Λ, such that Λ|P ≥ f, Λ(b1,2) = f(b1,2).
As L majorizes f, we have that Λ(b1,2) = f(b1,2) ≤ L(b1,2). Thus, the real linear
function d defined by d(z) = Λ(z) − L(z) satisfies d(b1,2) ≤ 0. Since b1b2 intersects
the interior of Q, there are two vertices ak and aj , 1 ≤ k < j ≤ 4, which are
separated by the line containing the diagonal b1b2. Since Λ majorizes f , we obtain
that Λ(ak,j) ≥ f(ak,j) = L(ak,j) and d(ak,j) ≥ 0. Such a behaviour of the sign of a
linear function d is possible if and only if d ≡ 0. Therefore, there may be only one
linear function majorizing f and coinciding with it at b1,2, which contradicts the
existence of the diagonal b1b2.

�

The converse to Lemma 2 is also true, and we need the following lemma to prove
this.

Lemma 3. Let a weighted chord diagram have a chord a1a2 with some positive
weight. Let f be the balanced weight corresponding to the diagram. Then there are
two distinct vertices a3 and a4, which lie on different sides with respect to a1a2, such
that there exist distinct linear functions L and Λ majorizing f and satisfying the
relations

(2)
L|P ≥ f, L|P (a1,2,3) = f(a1,2,3),

Λ|P ≥ f, Λ|P (a1,2,4) = f(a1,2,4).

Proof. Indeed, there must exist distinct vertices a3, a4 and distinct linear functions
L, Λ satisfying relations (2), because otherwise the chord does not have a positive
weight. Let us assume now that a3 and a4 lie on one side with respect to the line
segment a1a2. The relations (2) imply that

L(a3) = f(a3) ≤ Λ(a3),

Λ(a4) = f(a4) ≤ L(a4),

and thus, the linear function d(z) = Λ(z)− L(z) satisfies the inequalities d(a3) ≥ 0
and d(a4) ≤ 0. In addition we have that d(a1,2) = 0. As the points a3 and a4 lie on
one side with respect to the chord a1a2, the linear function d has to vanish identically,
which contradicts the existence of the chord a1a2. �

Lemma 4. A balanced weight corresponding to a weighted chord diagram with an
incomplete triangulation is degenerate.
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Proof. Let f be a balanced weight which corresponds to the weighted chord dia-
gram P. If P has no diagonals, there must be a linear function whose restriction
to P is identically equal to f, and thus f is degenerate. Assume the contrary. We
denote by a1 and a2 the vertices of P such that the values f(a1) and f(a2) are the
biggest and second biggest values of f. Let a3 and a4 be the argument of the maxi-
mum of f among the vertices to the left and to the right from the line segment a1a2.
Linear functions L1 and L2, which coincide with f at a1,2,3 and a1,2,4 respectively,
majorize f. By assumption, L1 and L2 are not identically equal, and thus, the chord
a1a2 must have a positive weight, and we arrive at a contradiction.

Assume now that the chord diagram has a chord a1a2 with a positive weight.
Then there are a vertex a3 and a linear function L, such that L|P ≥ f, L|P (a1,2,3) =
f(a1,2,3). The line segment a1a3 divides P into two parts. Denote by b1, . . . , bm the
vertices of the part of P which does not contain a2. We define b = argmax1≤k≤mf(bk)
and construct the linear function L1 which coincides with f at vertices a1, a3 and b.

The function L1 majorizes f. If L1 ≡ L, f is degenerate. If L1 �≡ L, the chord a1a3
has a positive weight. Using Lemma 3 we continue this construction of the chords
until we either discover degeneracy of f or obtain a complete triangulation of P.

�

We summarize the results stated previously in the following theorem.

Theorem 1. The balanced weights defined on an (n+1)−gon P constitute a vector
space isomorphic to Rn−2. The degenerate balanced weights form the Stasheff fan
Σn. There is a one-to-one correspondence between the degenerate balanced weights
and the weighted chord diagrams based on P with an incomplete triangulation.

3. Quadratic differentials

A meromorphic quadratic differential q on a Riemann sphere S is a meromorphic
section of the symmetric square of the complexified cotangent bundle over S. It is
represented as q(z)dz2 in the local parameter z by a meromorphic function q(z) on
S together with the following transition rule

q∗(ζ) = q(z(ζ))

(
dz

dζ

)2

,

in the common neigbourhood of the parameters z and ζ , where q∗is the same qua-
dratic differential in terms of the local parameter ζ .

A horizontal (respectively, vertical) trajectory of quadratic differential is a maxi-
mal curve along which the inequality q(z) dz2 > 0, (respectively, q(z) dz2 < 0) holds.
If the endpoint of a trajectory is a zero or a simple pole of q, such trajectory is called
critical .

The zeros and poles of a quadratic differential are the critical points. All non-
critical points are regular . In a neighborhood of a regular point horizontal and
vertical trajectories are just straight horizontal and respectively vertical lines. The
trajectory structure about the critical points is well-known, see e.g., [11, 22, 23].
Description of the global structure of a quadratic differentials is much more difficult.
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We are interested in the following family of quadratic differentials:

(3)
zk + a1z

k−1 + · · ·+ a0

z
dz2

where k ≥ 2, z ∈ C, aj ∈ C, 0 ≤ j ≤ k − 2.
Let q(z)dz2 be a member of the family (3). It has k zeros (counting multiplicity),

a simple pole at the origin and a pole p of order m = k+3 at infinity. Observe that
unlike the versal deformation of a polynomial quadratic differential the coefficient
a1 in (3) is not necesserily vanishing, because the simple pole at the origin prevents
to perform affine coordinate change.

Let us have a look at trajectory structure of q(z)dz2 near infinity. If the infinite
pole p is of order m ≥ 5, then it is possible to find a neighbourhood U of p, such
that any trajectory ray entering U stays in U . In this neighbourhood one can define
m − 2 so-called principal directions, such that the directions divide U into m − 2
sectors of angles 2π

m−2
; and any trajectory ray that enters U tends to p in one of these

directions.

Example 3. Quadratic differential of form z2−1
z

dz2 has three principal directions
at infinity. Figure 4 illustrates the trajectory structure about infinity in this case.

Figure 4. Trajectory structure near a pole of order 5

We denote by Φq the union of all critical trajectories of q(z) dz2. Then S \ Φ̄q

splits S into strip and ending domains. Strip and ending domains in the trajectory
structure of q(z) dz2 are simply connected domains, which can be mapped confor-

mally by w =
∫ √

q(z) dz onto a strip {a < 	w < b} and a halfplane respectively.
These domains are swept out by the trajectories starting and ending at infinity; the
critical points of q(z) dz2 belong to their boundaries.

4. Graph representation of quadratic differentials

In this section we establish the one-to-one correspondence between weighted
graphs of special type and quadratic differentials of the form (3).
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4.1. Assigning admissible graphs to quadratic differentials. We describe an
algorithm of assigning a pair of graphs to a quadratic differential.

Suppose we are given a quadratic differential q(z) dz2 from the family (3). It has
k zeros, a simple pole at the origin and a pole of order k + 3 at infinity. Thus, the
horizontal and vertical trajectory structures of q(z) dz2 about the infinite pole have
k + 1 principal directions each.

We construct graphs Gh and Gv which represent the horizontal and vertical tra-
jectory structure of q(z) dz2 respectively.

The graph Gh (respectively, Gv) contains k + 1 vertices and edges, which form
a regular convex (k + 1)−gon, denoted by Πh (respectively, Πv). In addition, each
graph has a vertex O placed at the center of the interior of the (k + 1)−gon. The
vertices of Πh (respectively, Πv) represent the principal directions along which the
critical trajectories tend to the infinite pole. The vertex O represents the finite pole.

The quadratic differential q(z) dz2 is characterized uniquely by its structure in
the large, i.e., the strip and half-plane domains in the trajectory structure. The
half-plane domains are represented by the edges of Πh (respectively, Πv). In order
to mark the strip domains of horizontal (respectively, vertical) trajectory structure
of q(z) dz2 on the Gh (respectively Gv) we construct additional edges so that all
edges may intersect only at the vertices. Suppose that we have a strip domain S,
which is to be marked on the graph Gh or Gv. As any strip domain it is swept out
by trajectories whose ends approach infinity in certain principal directions. Suppose
these two principal directions are represented by the vertices a and b of Πh or Πv.
Observe that a and b may coincide. If the strip domain S does not have a finite pole
on its boundary, we mark it with an edge joining the vertices a and b. If S has the
finite pole on its boundary, we mark it with an edge joining the pole vertex O with
a and an edge joining O with b. Finally, to each edge representing S we assign a
weight wS which is equal the width of S in the metric associated with the quadratic
differential q(z) dz2.

This way we mark all the strip domains of the horizontal (respectively vertical)
trajectory structure of q(z) dz2 on Gh (respectively Gv) so that the edges of Gh

(respectively Gv) intersect only at the vertices.

Example 4. The quadratic differential z3−1
z

dz2 has 3 simple zeros, a simple pole
at the origin, and the infinite pole of order 6. The horizontal and vertical trajectory
structures have 4 principal directions at infinity each. Figure 5 illustrates the graphs
Gh and Gv together with the corresponding trajectory and orthogonal trajectory
structures in the large (by the circles we just bound the picture in the plane).

4.2. Admissible graphs. Let us describe the graphs which may represent a qua-
dratic differential. We call a graph admissible if we can associate a horizontal or
vertical trajectory structure of a quadratic differential to it. An admissible graph Γ
contains n, n ≥ 3, vertices and edges which constitute a regular convex polygon Πn.
In addition, Γ has vertex O at the center of the interior of Πn. There are two edges
connecting the vertex O with some adjacent vertices a and b of Πn. The vertices a
and b may coincide and in this case, we treat them as two adjacent vertices with one
and the same support. The edges of an admissible graph intersect only at vertices.
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Figure 5. Graphs Gh and Gv and corresponding trajectory and or-
thogonal trajectory structures for z3−1

z
dz2.

4.3. Assigning a quadratic differential to a pair of admissible graphs. Here
we describe an algorithm of assigning the trajectory structure of a quadratic differ-
ential to a pair (Gh, Gv) of admissible graphs with k + 2 vertices. Let us start with
merging Gh and Gv into one and the same graph G, assigning to Gh and Gv different
colours. Then, we place Gh over Gv in such a way, that the vertex O of Gh is right
above the vertex O of Gv, and the vertices of the polygons Πh and Πv are interlac-
ing. Furthermore, we erase the edges forming the polygons Πh and Πv, and join the
2(k + 1) interlacing vertices with edges, so that a regular convex 2(k+ 1)−gon Π is
formed. Finally, we merge what is left of Gh and Gv with the 2(k + 1)−gon Π into
a new graph G. Note, that the edges of G may intersect not only at vertices.

Example 5. The graphs Gh and Gv from Example 4 are admissible. The corre-
sponding graph G is shown in Figure 6.

Figure 6. Graph G for Examples 4 and 5.

Further, let us describe an algorithm of the construction of an extended graph
Gext. The constructed edges represent further pieces of critical trajectories of a
quadratic differential. Hence, we specify the correspondence between Gext and the
trajectory structure of a quadratic differential.

Remark 1. For the construction we need the following rule: if the graph G has a
double edge with ends at the vertex O and a vertex b of the polygon Π, then b counts
as two vertices with one and the same support. This follows from the fact that in
this case the strip domain in the trajectory structure starts and ends at one and the
same image of infinity which is counted as 2 different points over the same support.
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4.4. Algorithm of construction of Gext. By admissibility of Gh and Gv the in-
terior of the polygon Π is divided by edges of G into at least four connected compo-
nents. Pick a point in each connected component. We call these points component
centers. The component centers represent points of intersection of critical trajec-
tories of a quadratic differential. If the boundary of a component contains vertices
of the polygon Π, then connect the component center with these vertices by line
segments. Whenever the boundaries of two connected components share a piece of
an edge of G, connect the component centres by a line segment.

After the completion of previous steps, the interior of the polygon Π is divided
into triangles and quadrilaterals. Whenever the boundary of a quadrilateral contains
the vertex O and two pieces of the edges of the same colour, we construct a line
segment connecting O with the non-adjacent vertex of the quadrilateral. Such a line
segment represents a piece of a critical trajectory. This completes the construction
of Gext.

The edges of Gext divide the interior of the polygon Π into the following domains:

(a) Triangles including a side of Π as their side;
(b) Triangles having only one vertex of Π as a vertex. A piece of an edge of Gh

or Gv constitutes one of the triangles sides;
(c) Quadrilateral having 2 pieces of edges of G of different color as adjacent

sides;
(d) Triangle whose boundary contains the vertex O and a piece of an edge of G.

Each triangle of type (a) can be identified with a quadrant. The boundary of a
triangle of type (b) contains a piece of an edge of Gh or Gv of weight v. Then the
triangle is identified with a quarter of the strip {a < 	w < b}, where b − a = v.
The boundary of a quadrilateral of type (c) contains a piece of edge of Gh of weight
v, and a piece of edge of Gv of weight u. Then the quadrilateral is identified with
the rectangle with sides of length v and u.

The union of quadrilaterals and triangles with the vertex O at the boundary is
identified with a rectangle, which is a part of a strip. The width of the rectangle is
given by the weight of one of the coloured sides of the quadrilaterals and triangles.

Recall that each strip or ending domain of the trajectory structure of a quadratic
differential is mapped conformally onto an infinite strip or a half-plane. The identifi-
cation described above establishes the correspondence between the domains formed
by Gext and the domains of the trajectory structure of a quadratic differential.

Example 6. Figure 7 illustrates two copies of the graph Gext corresponding to the
graph G from Example 5. The dashed lines represent the critical trajectories. The
right-hand side copy has the shadowed region representing a strip domain.

The position and weights of the coloured edges of Gext define uniquely a quadratic
differential representing the original pair of graphs (Gh, Gv). The position of coloured
edges defines the relative position of the strip domains, while the weights fix their
width in the natural metric. More precisely, the mapping w =

∫ √
q(z)dz maps the

complex plane onto a Riemann surface branched at the images of the zeros of q and
the regular trajectories are mapped onto the horizontal straight lines in the w-plane.
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Figure 7. Gext for the graph G from Example 5.

4.5. Correspondence between triangulation and the short trajectories. We
established the one-to-one correspondence between quadratic differentials of the
form (3) and pairs of admissible graphs in the previous sections. In what follows, let
us specify the graphs which represent quadratic differentials with short trajectories.

We describe how an admissible graph Gh (respectively, Gv) gives rise to a weighted
chord diagram. Suppose that the graph Gh (respectively, Gv) has k+2 vertices, and
let the vertex O be connected with the vertices a and b by edges u and v. We erase
the vertex O and replace u and v by a single edge joining a and b. If a and b have the
same support, we disunite it, so that a and b become two separate adjacent vertices.
The resulting graph Γh (respectively, Γv) has n vertices, where n = k if a and b

originally had different supports, and n = k + 1 if a and b originally had coinciding
supports. The graph Γh (respectively, Γv) is isomorphic to a regular convex n−gon
with weighted diagonals. This convex realisation of Γh (respectively, Γv) is exactly
the desired weighted chord diagram. Analogously, a pair of weighted chord diagrams
with an appropriate number of vertices gives rise to a pair of admissible graphs.

The diagonals of Γh (respectively, Γv) generate triangulation, possibly incomplete,
of the n−gon. The following lemma provides characterization of quadratic differen-
tials with short trajectories.

Lemma 5. The trajectory structure represented by Gh (respectively, Gv) has a short
trajectory joining two zeros if and only if the triangulation of the corresponding
n−gon is incomplete.

Example 7. Figure 7 shows the weighted diagrams Γh and Γv associated with the
graphs Gh and Gv from Example 4. As we can see, the triangulations of Γh and Γv

are incomplete. The corresponding trajectory structures have short trajectories.

4.6. Parametric space. Our goal is to characterize the set of parameters S in the
parameter space Λ ∼= R2k, for which the corresponding quadratic differential has a
short trajectory joining two zeros. The set S naturally splits into the horizontal and
the vertical components Sh and Sv.

Theorem 2. The horizontal and vertical components of the set S have the following
form:

Sh =
(
Σk × R

k+2
)
∪
(
Σk+1 × R

k+1
)
,
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Figure 8. Γh and Γv.

Sv =
(
R

k+2 × Σk

)
∪
(
R

k+1 × Σk+1

)
.

Proof. By Theorem 1 and Lemma 5 a quadratic differential of the form (3) with a
short trajectory can be identified with a point in the fan Σk or Σk+1. The set S has
codimention 1, which leads us to the statement of the theorem.

�

Remark 2. Quadratic differentials of the form (3) contain a subfamily of quadratic
differentials

(4) (zk−1 + a∗k−2z
k−2 + · · ·+ a∗0) dz

2,

where a∗k−2, . . . , a
∗
0 are complex parameters. By Baryshnikov’s result [7] the bifur-

cation diagram S∗ of this family consists of components S∗
v = Rk−2 × Σk and

S∗
h = Σk × R

k−2 in the parameter space R
2(k−2). Therefore, S∗ is exactly the subset

of S corresponding to quadratic differentials of the form (4).
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