
Fourier Analysis on abelian groups;
theory and applications

by

Tommy Odland

Master of Science Thesis in
Applied and Computational Mathematics

Department of Mathematics
University of Bergen

November 2017

i

ii

Abstract

Fourier analysis expresses a function as a weighted sum of complex exponen-
tials. The Fourier machinery can be applied when a function is defined on
a locally compact abelian group (LCA). The groups R, T = R /Z, Z and
Zn are all LCAs of great interest, but numerical computations are almost
always done on the finite group Zn using the Fast Fourier Transform.

To reduce a general problem to a numerical computation, sampling and pe-
riodization is necessary. In this thesis we present a new software library
which facilitates Fourier analysis on elementary LCAs. The software al-
lows the user to work directly with abstract mathematical objects, perform
numerical computations and handle the relationship between discrete and
continuous domains in a natural way.

The specific combination of mathematical objects and operations available in
the software developed is to our knowledge not found elsewhere. Efforts have
been made to efficiently open-source, document and distribute the software
library, which is now available to every user of the Python programming
language.

Acknowledgements

First and foremost I would like to thank my advisor, professor Hans Z.
Munthe-Kaas, for suggesting this interesting project and for all of his help
following it through. The versatility of this project has made it delightful to
work with: there are undoubtedly abstract components to Fourier analysis
and group theory, but at the same time it’s an applicable and concrete field
of mathematics. Building a relatively large software library has been an
exciting learning experience.

I would also like to thank Amir M. Hashemi, Erlend R. V̊agset, Gunvor
Lemvik and Simen Midtbø for reading through a draft of the thesis and
providing comments.

iii Contents

Contents

1 Introduction 2

1.1 Introduction . 2

1.2 Chapter overview . 3

2 Preview 6

2.1 Sampling on a lattice . 6

2.2 Fourier series approximation 8

2.3 Hexagonal sampling and periodization 9

3 Preliminaries 12

3.1 Properties of integers and set functions 12

3.2 Group theory . 14

3.3 Category theory . 19

3.4 Fourier analysis . 23

4 Integer linear algebra 28

4.1 Unimodular matrices . 28

4.2 The Hermite normal form . 30

4.3 The Smith normal form . 31

4.4 Algorithms and computational issues 32

5 Computing factorizations in FinAb 37

5.1 Factorizations in abelian categories 37

5.2 Factorizations in VectR . 40

5.3 Factoring free-to-free morphisms in FinAb 42

5.4 Solving equations in FinAb . 44

5.5 Factoring left-free morphisms in FinAb 46

5.6 Morphisms in Ab . 53

6 Fourier analysis on locally compact abelian groups 55

6.1 Locally compact abelian groups 55

6.2 Characters and the dual group 56

6.3 The invariant integral . 57

Contents iv

6.4 The Fourier transform . 58
6.5 Pullbacks and pushforwards on groups 59
6.6 Computing pushforwards . 61
6.7 Dual homomorphisms . 62
6.8 Sampling and periodization 65
6.9 Hexagonal Fourier analysis in R2 69

7 The abelian software library 74
7.1 Scientific programming and Python 74
7.2 Principles of software development 75
7.3 Introducing abelian . 76
7.4 Example 1: Factoring a homomorphism 79
7.5 Example 2: Fourier series approximation 80
7.6 Example 3: Hexagonal Fourier analysis 81

8 Conclusion and further work 84
8.1 Conclusion . 84
8.2 Further work . 85

Appendices 90

A Source code 91

B Software documentation 99

1 Contents

Notation

• Groups

Z : Additive integers

Zn : Additive integers mod n

R : Additive reals

T = R /Z : Additive reals mod 1

T : Complex numbers z with |z| = 1

GL(n,Z) : Invertible matrices over Z
• Categories

Set : Category of sets

VectR : Vector spaces over R
ModZ : Modules over Z
FinAb : FGAs

Ab : Abelian groups

• Objects

G,H : Abelian groups

U, V : Unimodular matrices

In : Identity matrix of size n

• Binary operators

(·, ·) : Dual pairing

∗ : Convolution

⊕ : Direct sum

• Relations

∼= : Isomorphic

• Arrows

H G
φ

: epimorphism

H G
φ

: monomorphism

• Other

O : Big O notation

φ⊥ : Annihilator of φ

Ĝ : Dual group of G

F (f) , f̂ : Fourier transform of f

hom(·, ·) : Set of homomorphisms

BA : Functions f : A→ B

Abbreviations

DFT - Discrete Fourier Transform

FFT - Fast Fourier Transform

FGA - Finitely Generated Abelian group

LCA - Locally Compact Abelian group

HNF - Hermite Normal Form

SNF - Smith Normal Form

Chapter 1. Introduction 2

Chapter 1

Introduction

1.1 Introduction

Fourier analysis expresses a function as a weighted sum of trigonometric
functions, or equivalently complex exponentials. Fourier synthesis recovers
the original function from the frequency representation. These ideas are
remarkably powerful, and are widely used in applied and theoretical science.

The general setting for Fourier analysis are the locally compact abelian
groups (LCAs). The four common Fourier transforms are defined for func-
tions on R, T = R /Z, Z and Zn, and these groups are called elementary
LCAs. The goal of this master project is to create software which allows
for general computations and Fourier analysis on the group G, which is an
elementary LCA. To do this, the software must handle periodization, dis-
cretization and interpretation of functions f : G → C. Ideas for such a
software package were sketched in [Munthe-Kaas, 2016].

The majority of the thesis is devoted to the theory required to understand
the general framework we will work in. We will make use of group theory,
linear algebra, category theory and abstract Fourier analysis. To unify the
reading experience, the thesis includes theoretical preliminaries and some
historical remarks. After introducing the mathematics needed to understand
the objects, operations and algorithms in the software, the abelian library is
introduced in Chapter 7. A general introduction is given along with example
code, and further details about the software is found in the appendices.

Some of the underlying algorithms used in the software are known, see for
instance [Charles C. Sims, 1994] for algorithms which compute the Hermite
and Smith normal forms. Several algorithms are the result of my own work:
Algorithm 3 in Section 5.4 for the solution of a particular equation is my own,
and so is Algorithm 5 in Section 6.5 used to generate group elements ordered

3 1.2. Chapter overview

by norm. The theorems presented in Section 5.5 for the computation of the
kernel, cokernel, image and coimage were developed in discussions with my
advisor Hans Z. Munthe-Kaas.

The abelian software library is the main contribution of this project. It’s
open sourced, well-documented, has a modern test-suite and is distributed
on the official Python package index. As far as I am aware, no similar soft-
ware package exists. The combination of objects and operations is unique,
and implementations of the underlying algorithms are relatively rare. For
instance, MATLAB currently implements a Smith normal form algorithm
only for square matrices, while a general implementation is found in abelian.
Among the popular scientific Python libraries, no implementations were
found. Now, Python users will have access to this algorithm and many
others, as well as objects and methods for Fourier analysis and general com-
putations on elementary LCAs.

1.1.1 Software used in this project

This document was typeset using LATEX 2ε. The plots were produced using
the matplotlib library for Python, and the remaining figures were created
using the extensible drawing editor ipe.

The abelian library was written in Python 3.6. The following web services
were used for software distribution.

• Source code: github.com/tommyod/abelian/

• Documentation: abelian.readthedocs.io/

• Python package index: pypi.org/project/abelian/

1.2 Chapter overview

Chapter 1 – Introduction The introduction provides an overview of
the thesis. It gives a brief introduction to Fourier analysis, states the goal
of the project and details what is new. A brief comparison is made with
existing software. This chapter overview is a quick account of the content
and purpose of each chapter.

Chapter 2 – Preview To entice the reader, the preview chapter shows
some example usage of the abelian software library. Three examples are
presented in increasing order of complexity. Real Python code snippets are
included, along with figures explaining the problems.

http://matplotlib.org/
http://ipe.otfried.org/
https://github.com/tommyod/abelian/
http://abelian.readthedocs.io/en/latest/
https://pypi.org/project/abelian/

Chapter 1. Introduction 4

Chapter 3 – Preliminaries The purpose of this chapter is to serve as a
reference for the later chapters. It has been divided into four parts: integers
and set functions, group theory, category theory and Fourier analysis. Each
section briefly summarizes some material which the reader ideally has some
existing knowledge of, while also establishing the notation. Depending on
the background of the reader, this chapter may be skimmed or perhaps
skipped altogether.

Chapter 4 – Integer linear algebra To study finitely generated abelian
groups (FGAs), we will require knowledge of the the Hermite normal form
(HNF) and the Smith normal form (SNF), which are introduced as factor-
izations of a linear map A : Zn → Zm. Unimodular matrices are defined,
and algorithms for computing the HNF and SNF are presented. While these
algorithms are discussed in the literature, implementations are rare.

Chapter 5 – Computing factorizations in FinAb In an abelian cate-
gory, a morphism has a kernel, cokernel, image and coimage. The goal of
this chapter is to develop algorithms for computing these four important
morphisms in FinAb, the category of FGAs. Working our way up to this
goal, we consider how to compute the morphisms in several categories. We
start with the relatively well known case of the category of vector spaces
over R, denoted VectR, and work towards the goal of developing algorithms
for the category FinAb.

Chapter 6 – Fourier analysis on locally compact abelian groups
We examine Fourier analysis from the perspective of LCAs. From this view
Fourier series, the Fourier transform and the discrete Fourier transform are
the same thing. Dual groups, the dual pairing and dual homomorphisms are
introduced. Pullbacks and pushforwards are discussed both in theory and
practical computations. An algorithm for practical computations of push-
forwards is developed. Finally we discuss computational Fourier analysis on
T d as well as Rd, and study Fourier analysis on a hexagonal lattice in detail.
We briefly compare our approach to methods used in several recent research
papers on Fourier analysis on lattices.

Chapter. 7 – The abelian software library This chapter introduces
abelian, a software library for computations on elementary LCAs. We
start by briefly discussing the state of open-source scientific software and
the Python programming language. We mention some good practices for
developing a modern software library, and finally introduce abelian. The
abelian software library is then used to compute several concrete examples.

5 1.2. Chapter overview

A selection of the most important algorithms from the source code is found
in Appendix A. An excerpt of the full software documentation is found in
Appendix B.

Chapter 8 – Conclusions and further work The work is concluded
and some suggestions for further work are presented.

Appendices There are two appendices: Appendix A contains some of the
source code for abelian. Only the most important algorithms are included.
Appendix B contains parts of the full documentation. The general introduc-
tion and tutorials are included, while detailed documentation of the methods
with examples are omitted due to space considerations.

Chapter 2. Preview 6

Chapter 2

Preview

In this chapter we present concrete examples of the type of problems that
the abelian software library is able to handle. Real, working Python code
is included in each section. The purpose of this chapter is twofold, the goals
are to: (1) show what we will be working toward by way of example, and
(2) informally introduce the reader to some notation and terminology which
we will use. Concepts are loosely defined here, and they will be introduced
more rigorously in the following chapters.

2.1 Sampling on a lattice

Sampling is of great importance in signal processing, a field which makes
considerable use of Fourier analysis. While equidistant points are almost
always used in one dimension, higher dimensions open up to more choices.
Orthogonal, equidistant sampling is the prevalent choice in two dimensions
(e.g. a digital image), but it is not the only option.

We will now demonstrate how sampling may be done with abelian. This
example will make Figure 2.1 more concrete. In the software, an LCA object
is a locally compact abelian group (such as R or Z), a HomLCA object is a
homomorphism between two LCAs and an LCAFunc is a function from an
LCA to C. In the code below we start by defining R, which is a non-discrete
LCA of infinite order. Next we initialize a Gaussian function f : R2 → C,
which we define by the expression x 7→ exp

(
−x2

1 − x2
2

)
and the domain R2.� �

1 from abelian import HomLCA , LCA , LCAFunc

2 R = LCA(orders = [0], discrete = [False])

3 func_expr = lambda x: exp(-sum(x_j ∗ ∗ 2 for x_j in x))

4 func = LCAFunc(func_expr , domain = R∗ ∗ 2)� �

7 2.1. Sampling on a lattice

Z2

φ

C

R2

f
f ◦ φ

LCA

HomLCA

C

LCA

LCAFunc
HomLCA

Figure 2.1: To the left: Sampling f : R2 → C using a homomorphism φ :
Z2 → R2. The homomorphism φ defines a lattice on R2, and the composition
f ◦ φ : Z2 → C defines a function on the discrete group Z2. To the right:
the same diagram, with the objects defined in abelian representing the
mathematical objects.

To sample f , we define a group homomorphism φ : Z2 → R2 using a sam-
pling matrix A =

(
1 2 3
4 3 7

)
. To demonstrate a computation of the image

homomorphism, we have created a φ which is not injective on purpose.1

To make φ injective, we compute the image and remove trivial subgroups.
The image is injective by definition. To sample f , we form the composition
f ◦ φ : Z2 → C. This composition will be defined as the pullback of f along
φ in Section 6.5.� �

5 sample_matrix = [[1, 2, 3], [4, 3, 7]]

6 phi_sample = HomLCA(sample_matrix , target = R∗ ∗ 2)

7 phi_sample = phi_sample.image().remove_trivial_groups ()

8 sampled_func = func ∗ phi_sample� �
The sampled function can be evaluated at a point such as (1, 3). A more
dynamic approach is to generate the group elements (x1, x2) ∈ Z2 by increas-
ing max-norm, and then evaluate the sampled function on a stream of group
elements. A never-ending stream of group elements are yielded, so the user
of the software will have to write a criterion to terminate the infinite loop.� �

9 value = sampled_func ([1, 3])

10 elements = phi_sample.source.elements_by_maxnorm ()

11 for element in elements:

12 print(sampled_func(element))� �
With a few changes, the code above could be used to sample a function in
Rd, for instance to approximate a multi-dimensional integral.

1The homomorphism φ is not injective since columns 1 and 2 add to column 3.

Chapter 2. Preview 8

2.2 Fourier series approximation

A Fourier series is a representation of a periodic function as a weighted sum
of trigonometric functions. Analytical expressions for the weights can be
obtained by evaluating an integral. Alternatively, a numerical approxima-
tion can be obtained by sampling, computing the discrete Fourier transform
(DFT), and interpreting the results. Starting at the bottom right of Figure
2.2, the analytical solution is obtained by moving up. The approximation is
obtained by going left, up, and then right.

TZn

Zn Z

φ

φ̂

σ

Figure 2.2: Groups, functions and homomorphisms associated with Fourier
series approximation. The two-headed arrows denote dual pairs of groups.

We will now demonstrate approximation of Fourier series coefficients using
the abelian software. We start by creating a periodic, continuous domain
T and initialize f(x) = x as a function on this domain.� �

1 from abelian import HomLCA , LCA , LCAFunc

2 T = LCA(orders = [1], discrete = [False])

3 func_expr = lambda x: sum(x)

4 func = LCAFunc(func_expr , domain = T)� �
To sample f , we define a homomorphism φ : Zn → T by the rule j 7→ j/n.
We choose n = 10 sample points.� �

5 from sympy import Rational

6 n = 10

7 Z_n = LCA(orders = [n], discrete = [True])

8 phi = HomLCA ([Rational(1, n)], target = T, source = Z_n)� �
The function f is moved to the domain Zn using the pullback operation,
which corresponds to the composition f ◦ φ : Zn → C. Since the domain is
discrete and finite, the DFT is available to us. Using the DFT, we move the
function to the dual space, which corresponds to the top row in Figure 2.2.� �

9 func_sampled = func.pullback(phi)

10 func_sample_dual = func_sampled.dft()� �

9 2.3. Hexagonal sampling and periodization

The approximated Fourier series weights (or coefficients) are now defined on
Zn. To interpret the coefficients on Z, we employ the dual homomorphism
φ̂ and a user-specified quotient transversal σ, defined in Chapter 6. For
now it suffices to say that σ maps the Fourier coefficients to Z in such a way
that the Fourier series representation consists of low-frequency trigonometric
functions. In the language of signal processing, σ performs de-aliasing.� �
11 def sigma(x):

12 if x[0] < n//2:

13 return x

14 return [x[0] - n]

15

16 func_dual = func_sample_dual.transversal(phi.dual(), sigma)

17 points = [[i] for i in range(-n, n+1)]

18 fourier_coeffs = func_dual.sample(points)� �
Sampling the approximation is done in the last two lines in the code snippet
above, and the result is shown in Figure 2.3. In Example 3.38 on page 24
we will solve this problem analytically and obtain exact coefficients. The
analytical coefficients decay proportionally to 1/ |ξ| as |ξ| → ∞, and this
behavior is clearly visible in Figure 2.3.

−10−8−6−4−2 0 2 4 6 8 10
0

0.25

0.5
|f̂(ξ)| on Z, 10 sample points.

n = 10

−10−8 −6 −4 −2 0 2 4 6 8 10
0

0.25

0.5
|f̂(ξ)| on Z, 100 sample points.

n = 100

Figure 2.3: The plots show the absolute value of the approximated Fourier
series coefficients for f(x) = x defined on T . The number of sample points
used was n = 10 and n = 100 in the leftmost and rightmost plot, respectively.

2.3 Hexagonal sampling and periodization

Hexagonal sampling has several advantages over equidistant, orthogonal
sampling: equal distance to all neighboring points, higher degree of sym-
metry, and fewer sample points are required to reconstruct band-limited
functions with an isotropic (rotation-invariant) Fourier transform. We will
discuss Fourier analysis on a hexagonal lattice in detail in Section 6.9. In this
section we will sample and periodize on a hexagonal lattice using abelian,
which prepares data for the DFT to operate on.

Chapter 2. Preview 10

To perform computational Fourier analysis on hexagonally sampled data,
we will first move a function from R2 to Z2 by sampling, and then from Z2

to Zm⊕Zn by periodization. These groups, along with homomorphisms for
sampling and periodization, are shown in the following diagram.

Z2

Zm⊕Zn Z2 R2 T 2

A

SA

coker(A) S coker(S)

(2.1)

In this example we consider the Gaussian function f(x) = exp(−k(x2
1 +x2

2))
on R2, where k > 0 is a constant. In Diagram (2.1), the homomorphism

given by the matrix S =
(1 1/2

0
√

3/2

)
samples f(x) defined on R2. The ho-

momorphism represented by A =
(
m 0
0 n

)
periodizes a function on Z2 by

defining a quotient homomorphism called the cokernel, which we will define
and study in Chapter 5. See Figure 2.4 for a plot of the Gaussian and it’s
sampled values on a hexagonal lattice.

-16 0 16
-16

0

16
(a) Gaussian on R2

0 5 10

0

3

6

(b) Sampled function

0 5 10

0

3

6

(c) Sampled and periodized

0 4 8
0

4

8

(d) Input data for DFT

Figure 2.4: Several subplots related to hexagonal sampling and periodiza-
tion. (a) The Gaussian defined on R2, the unit cell of the periodization
homomorphism is shown in white. (b) Function values hexagonally sampled
in the unit cell. (c) Sampled and periodized function. (d) The input for
matrix for the DFT, i.e. a function on Z10⊕Z10.

We will now demonstrate how to create the homomorphisms in Diagram
(2.1) using abelian. The code below defines a Gaussian function on R2.� �

1 from abelian import HomLCA , LCA , LCAFunc

11 2.3. Hexagonal sampling and periodization

2 R = LCA(orders = [0], discrete = [False])

3 k = 0.05 # Decay of Gaussian function

4 func_expr = lambda x: exp(-k∗ sum(x_j ∗ ∗ 2 for x_j in x))

5 func = LCAFunc(func_expr , domain = R∗ ∗ 2)� �
Next we create S : Z2 → R2, defined by

(1 1/2

0
√

3/2

)
, a matrix with columns

generating a hexagonal lattice. Notice that when no homomorphism source
is explicitly given, abelian implicitly assumes Z2.� �

6 hexagonal_generators = [[1, 0.5], [0, sqrt (3)/2]]

7 S = HomLCA(hexagonal_generators , target = R∗ ∗ 2)� �
Choosing m = n = 10 sample points, we create a periodization homomor-
phism by defining A =

(
10 0
0 10

)
and computing it’s cokernel.� �

8 n = 10

9 A = HomLCA ([[n, 0], [0, n]])

10 coker_A = A.cokernel ()� �
We move the function from R2 to Z2 using the pullback (sampling), and
then move it from Z2 to Z10⊕Z10 using the pushforward (periodization).
Both the pushforward and pullback are defined in Section 6.5.� �
11 func_sampled = func.pullback(S)

12 func_periodized = func_sampled.pushforward(coker_A)� �
Using the three mathematical objects LCA, HomLCA and LCAFunc and their
associated mathematical operations, we have sampled and periodized f(x)
in only 12 lines of code. Figure 2.4 depicts graphically the sampling and
periodization of f(x).

Though many mathematical and computational details were omitted, the
reader will hopefully have an idea of what the thesis is about and what
the software is capable of. More code is found in Chapter 7, as well as
in Appendix B. It should be said that abelian implements many more
mathematical operations than those shown in the preceding examples.

Chapter 3. Preliminaries 12

Chapter 3

Preliminaries

This chapter on preliminaries has two purposes: (1) to remind the reader
of important definitions and theorems, and (2) to establish notation and
terminology for the remainder of the thesis. The reader who is comfortable
with basic group theory, category theory and Fourier analysis may skim this
chapter. If the reader is somewhat familiar with the concepts, this chapter
will hopefully serve as a quick refresher of knowledge. Literature references
are given in the text.

3.1 Properties of integers and set functions

We start with some elementary integer algorithms, and some definitions
related to set functions. The integer algorithms will be used in Chapter 4
on integer linear algebra, and the definitions related to set functions will be
generalized by category theory and used extensively in Chapter 5.

3.1.1 The division algorithm and Euclid’s algorithm

We recall the existence of two important algorithms which will be used later
in the thesis: the division algorithm and the extended Euclidean algorithm.

Definition 3.1 (Division algorithm). Given two integers a and b 6= 0,
the division algorithm finds a quotient q and a remainder r such that

a = qb+ r, 0 ≤ r < |b| .
y

Definition 3.2 (Extended Euclidean algorithm). Given two non-zero
integers a and b, the extended Euclidean algorithm finds the greatest common

13 3.1. Properties of integers and set functions

divisor gcd(a, b) = c along with Bézout coefficients r and s such that

ar + bs = c = gcd(r, s).

y

Euclid’s algorithm efficiently computes the greatest common divisor of two
integers, while the extended algorithm also returns the Bézout coefficients.

Example 3.3 (Extended Euclidean algorithm). If a = 14 and b = 8,
then extended Euclidean algorithm finds 14(−1) + 8(2) = 2 = gcd(14, 8). y

Quotients and remainders as defined in the division algorithm are typically
calculated using integer division and the modulus operation in programming
languages. The extended Euclidean algorithm is commonly implemented in
higher level languages, and it’s implementation is relatively simple. Details
related to both of these algorithms can be found in the introductory chapter
of [David Steven. Dummit, 2004].

3.1.2 Set functions

A function f : A → B is a mapping from a set A to a set B. The set A
is called the domain (or source) and the set B is called the codomain (or
target).

Definition 3.4 (Injective function). A set function f : A → B is injec-
tive if and only if f(a1) = f(a2)⇒ a1 = a2, where a1, a2 ∈ A. y

Given an injective function f : A → B, we can find a right-inverse f−1 :
B → A such that f−1 (f(a)) = a for every a ∈ A. If f(x) is injective, then
the equation f(x) = b may or may not have a solution, but if a solution
exists it is unique.

Definition 3.5 (Surjective function). A set function f : A → B is
surjective if and only if for every b ∈ B there exists an a ∈ A such that
f(a) = b. y

Given a surjective function f : A→ B, we can find a left-inverse f−1 : B →
A such that f

(
f−1(b)

)
= b for every b ∈ B. If f(x) is surjective, then the

equation f(x) = b has a solution, but the solution need not be unique.

Definition 3.6 (Bijective function). A set function f : A → B is bijec-
tive if it is injective and surjective. y

Chapter 3. Preliminaries 14

Bijective functions have right and left inverses. Given an equation f(x) = b
there exists a unique solution. A bijective function between A and B may
be thought of as a relabeling of the elements, since every a ∈ A can be
associated with a unique b ∈ B and vice versa.

3.2 Group theory

Group theory is the study of an abstract mathematical structure known as a
group. The group concept was formalized in the 1800s, and is still an active
research area to this day. Some applications of group theory are codes and
cryptography, harmonic analysis and combinatorics.

The following section summarizes some properties of abelian groups: what
they are, homomorphisms between them, how to create new groups from a
group, and what a finitely generated abelian group (FGA) is. Three sources
have been used for this section: [Ledermann, 1996] is an introductory text
about group theory, [David Steven. Dummit, 2004] presents group theory
and other parts of abstract algebra, while [Aluffi, 2009] introduces group
theory alongside category theory.

3.2.1 Basic group theory

Definition 3.7 (Abelian group). A group G is a set along with a binary
operation + such that the following properties are satisfied.

1. Closure: g1 + g2 ∈ G for every g1, g2 ∈ G.

2. Associativity: (g1 + g2) + g3 = g1 + (g2 + g3) for every g1, g2, g3 ∈ G.

3. Identity: there exists an identity element, denoted 0, such that g+0 =
0 + g = g for every g ∈ G.

4. Inverse: for every g ∈ G there exists an inverse element −g ∈ G, such
that g + (−g) = (−g) + g = 0.

A group G is said to be abelian if, in addition to the above, the binary
operation is commutative so that g1 + g2 = g2 + g1 for every g1, g2 ∈ G. y

The binary operation is in principle arbitrary, but will in our case often
be addition or multiplication. In the literature authors typically employ
multiplicative or additive notation, where the latter is more common for
abelian groups. In this thesis all groups will be abelian, and we will use the
additive notation. Thus by g1n we mean the sum g1 + g1 + · · ·+ g1 with n
terms, and we define g1 − g2 := g1 + (−g2) for every g1, g2 ∈ G.

15 3.2. Group theory

Definition 3.8 (Order of a group). The order of a group G is the number
of elements in the group, and will be denoted by |G|. If G does not have a
finite number of elements, then the order of G is said to be infinite. y

Definition 3.9 (Order of a group element). The order of an element
g ∈ G is the smallest positive integer m such that gm = 0. If no such m
exists, then the order of g is said to be infinite. The order of g will be denoted
by |g|. y

Proposition 3.10 (Computing the order of a group element in Zn).
The order of an element g ∈ Zn is n/ gcd(g, n) when n > 1, when n = 1 the
order is 1 by definition.

Proof. The order of g is the smallest m such that gm = 0 mod n. We write
gm = nk for some positive k. The least common multiple of g and n is the
value of gm for which this is satisfied. Therefore we have gm = lcm(g, n),
and we solve for m using the fact that lcm(g, n) = gn/ gcd(g, n).

Definition 3.11 (Generators of a group). If every element in a group
G can be expressed as a linear combination of a set of group elements S =
{g1, g2, . . . , gn}, then we say that G is generated by the set S. We denote
this as G = 〈S〉 = 〈g1, g2, . . . , gn〉. y

Definition 3.12 (Cyclic group). A cyclic group G is a group generated
by a single element g ∈ G. A cyclic group can be written as G = 〈g〉. y

Example 3.13 (Order and generators of Z4). Consider the group Z4 =
{0, 1, 2, 3}. The order of Z4 is 4, while |0| = 1, |1| = 4, |2| = 2 and |3| = 4.
Both 1 and 3 are generators of Z4, since repeated addition will produce every
element in Z4. The group Z4 is a cyclic group. y

Definition 3.14 (Group homomorphism). Let G be a group with binary
operation • and let H be a group with binary operation ◦. A group homo-
morphism is a function φ : H → G which preserves the binary operation in
the sense that

φ (h1 ◦ h2) = φ(g1) • φ(g2)

for every h1, h2 ∈ H and every g1, g2 ∈ G. In other words, the following
diagram commutes.

H ×H G×G

H G

φ×φ

◦ •

φ

Chapter 3. Preliminaries 16

y

Definition 3.15 (Isomorphic groups). If there exists a bijective group
homomorphism between two groups G and H, then G and H are said to be
isomorphic, denoted G ∼= H. y

Stated differently, two groups are isomorphic if they are unique up to a rela-
beling of the elements, where the binary operation respects the relabeling.

Definition 3.16 (Kernel of a homomorphism). Given a homomor-
phism φ : G→ H, the kernel of φ is the set of elements in G which map to
the identity element in H, i.e. ker(φ) = {g ∈ G | φ(g) = 0}. y

Definition 3.17 (Image of a homomorphism). Given a homomorphism
φ : G → H, the image of φ is the set of elements in H which is mapped to
from some g ∈ H, i.e. im(φ) = {h ∈ H | h = φ(g) for some g ∈ G}. y

3.2.2 Creating smaller and larger groups

Having defined abelian groups and their basic properties, we now turn our
attention to some ways of creating “smaller” and “larger” groups.

Definition 3.18 (Subgroup). Let G be a group. A subgroup of G is a
subset which is also a group under the same binary operation as G. If H is
a subgroup of G, we denote it by H ≤ G. y

Two special subgroups of a group G are {0} (the trivial subgroup) and G
itself. A subgroup which is notG itself is called a proper subgroup, analogous
to the notion of a proper subset in set theory.

Example 3.19 (Subgroup defined by homomorphism). The homo-
morphism φ(g) = 2g with source Z and target Z6 defines a proper subgroup
of Z6, namely {0, 2, 4}, which is isomorphic to Z3. y

Definition 3.20 (Cosets). Let G be an abelian group with a subgroup H ≤
G, then g+H = {g+h | h ∈ H} is the coset of H in G with respect to g. y

Definition 3.21 (Quotient group). Let H be a subgroup of an abelian
group G. The quotient group G/H has elements corresponding to all cosets
g+H, and the group operation is defined as (g1+H)+(g2+H) = g1+g2+H.

y

For a more rigorous construction of the quotient group, see Chapter 3 of

17 3.2. Group theory

[Ledermann, 1996]. Two abelian groups which can be formed using the
quotient are Zn ∼= Z /(nZ) and T = R /Z, we will study both of these in
the thesis. The natural way to combine two groups is using the direct sum.

Definition 3.22 (Direct sum). Let G be an abelian group with binary
operation • and let H be an abelian group with binary operation ◦. The
direct sum of G and H is a group G ⊕ H. The elements (g, h) ∈ G ⊕ H
are Cartesian products and the binary operation + is defined as (g1, h1) +
(g2, h2) = (g1 • g2, h1 ◦ h2) for every h1, h2 ∈ H and every g1, g2 ∈ G. y

3.2.3 Finitely generated abelian groups

We now define FGAs and state some of their important properties. These
groups, and homomorphisms between them, will be studied in Chapter 5.

Definition 3.23 (Finitely generated abelian group). A finitely gen-
erated abelian group (FGA) is a commutative group which is generated by
a finite set of generators. If G is an FGA, then G may be expressed as
〈g1, g2, . . . , gn〉 for a finite n. y

Every abelian group of finite order is finitely generated, but the converse is
not true in general: an FGA is not necessarily of finite order. For instance
the group Z is generated by 〈1〉, so it is an FGA, but not of finite order.

Every FGA is isomorphic to Z, Zn or a direct sum of these groups. A
compact notation for an FGA is to write Zp, where p = (p1, p2, . . . , pk) is
a vector of integers with pi ≥ 0 for i = 1, 2, . . . , k. If pi = 0, then the i’th
group in the direct sum is Z. If pi > 0, then the i’th group in the direct sum
is Zpi . Notice that p is only in boldface when it’s a subscript, to remind us
that it’s a vector (or multi-index) and not an integer.

The fundamental theorem of FGAs provides a canonical way to structure an
FGA. There are two canonical decompositions of FGAs, the invariant factor
decomposition and the elementary divisor decomposition. We will use the
invariant factor decomposition, which we now define.

Theorem 3.24 (Fundamental theorem of FGAs). Every FGA is iso-
morphic to a unique direct sum of a free abelian group and torsion group. If
G is an FGA, then

G ∼= Zr ⊕Zn1 ⊕Zn2 ⊕ · · · ⊕ Zns ,

where Zr is the free subgroup (with r ≥ 0) and Zn1 ⊕Zn2 ⊕ · · · ⊕ Zns is the
torsion subgroup. Furthermore the integers n1, n2, . . . , ns satisfy the follow-
ing properties:

Chapter 3. Preliminaries 18

1. ni ≥ 2 for every i = 1, 2, . . . , s.

2. ni divides ni+1 for every i = 1, 2, . . . , s− 1.

Proof. See Chapter 8 in [Ledermann, 1996] for a proof. A more general
proof may be found in chapter 12 in [David Steven. Dummit, 2004].

The terms “free subgroup” and “torsion subgroup” are prevalent in the
literature. The free subgroup is the part isomorphic to Zr for some r ≥ 0,
and the torsion subgroup is a group of finite order, i.e. Zn1 ⊕Zn2 ⊕ · · ·⊕Zns

where every ni ≥ 2 for i = 1, 2, . . . , s. The trivial subgroup Z1
∼= Z0 is the

special case when r = 0 and s = 0.

Definition 3.25 (Rank of a finitely generated abelian group). Let
G = Zp, where p = (p1, p2, . . . , pk). We take pi = 0 to mean that the i’th
group is Z. We define the free rank of G as the number of zeros in p. We
define the rank of G as the number of non-trivial groups in G, i.e. the
number of pi’s for which pi 6= 1. y

The definition of the rank of an FGA varies somewhat in the literature. The
definition given above has the pleasant property that for G = Zp we have

rank (Zp) =
⊕

pi∈p
rank (Zpi)

for both the free rank and the rank.

Definition 3.26 (Canonical generators for an FGA). Given an FGA
in the form G = Zp, where p = (p1, p2, . . . , pk), the canonical generators is
the set 〈g1, g2, . . . , gk〉 with gi = (δi1, δi2, . . . , δij , . . . , δik) for i = 1, 2, . . . , k.
The symbol δij above denotes the Kronecker delta function, defined as 1 if
i = j and 0 if i 6= j. y

Example 3.27 (Orders, generators and rank). Consider the FGA G =
Z⊕Z⊕Z1⊕Z2. In compact notation this would be written as G = Zp

with p = (0, 0, 1, 2). The order of G is infinite, the canonical generators are
〈(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)〉 and G contains one trivial group,
namely Z1. The rank of G is 3 and the free rank of G is 2. y

We will now extend Proposition 3.10, which tells us how to compute the
order of an element in Zn, to arbitrary FGAs.

Proposition 3.28 (Order of a group element in an FGA). Let G = Zp

with p = (p1, p2, . . . , pk), where pi = 0 is taken to mean that the i’th group in

19 3.3. Category theory

the direct sum is Z. Let g = (g1, g2, . . . , gk) be an element in G. The order
of g ∈ G can be computed as

|g| =
k

lcm
i=1

(
pi

gcd(pi, gi)

)
,

where the lcm function is taken over all k arguments. In the division we
define 0/0 as 1.

Proof. We consider the i’th component of g. If pi 6= 0, then Proposition 3.10
on page 15 established that the order of the i’th component is pi/ gcd(pi, gi).
If pi = 0 and gi 6= 0, then the order is infinite, which we associate with 0,
this is calculated correctly by pi/ gcd(pi, gi). If pi = 0 and gi = 0, then the
order is 1, which is also calculated correctly by pi/ gcd(pi, gi) if we define
0/0 as 1. Having calculated the order of the i’th component of g, the order
of g is the least common multiple of each of the component-wise orders.

Example 3.29 (A finitely generated abelian group). Consider the
FGA G = Z8⊕Z5 and two group elements g1 = (2, 3) and g2 = (4, 7). One
way to visualize G and the two elements g1 and g2 is shown in Figure 3.1.

We observe that (4, 7) ∼= (4, 2) in G since 7 ∼= 2 in Z5. Therefore we take g2

to be represented by (4, 2). The generating set 〈g1, g2〉 generates a subgroup
of G with order 20, i.e. 〈g1, g2〉 < G. The orders of the generators are

|g1| = lcm

(
8

gcd(8, 2)
,

5

gcd(5, 3)

)
= lcm

(
8

2
,
5

1

)
= lcm (4, 5) = 20,

|g2| = lcm

(
8

gcd(8, 4)
,

5

gcd(5, 2)

)
= lcm

(
8

4
,
5

1

)
= lcm (2, 5) = 10.

The group generated by g2 is a subgroup of the one generated by g1, so that
〈g2〉 < 〈g1〉 = 〈g1, g2〉 < G. We will return to this example again on page 51.

y

3.3 Category theory

Category theory is a unifying, abstract framework in which many mathe-
matical structures can be studied. The initial formulation was made in the
1940s by Eilenberg and Mac Lane, and since then it has matured and found
numerous applications in science. Although there exist plenty of exotic cat-
egories, we will limit our study to relatively simple ones. There are two
reasons why we are interested in category theory: (1) it will help us express
ideas using diagrams with objects and arrows and (2) it will provide clues
as to how software with mathematical objects can be designed. The sources
for the following is [Aluffi, 2009] and [Harold. Simmons, 2011].

Chapter 3. Preliminaries 20

Z8

Z5

Figure 3.1: A visualization of the group G = Z8⊕Z5. The generators
g1 = (2, 3) and g2 = (4, 2) are shown as arrows. The elements in G which
are in 〈g1, g2〉 are marked with tiny crosses.

3.3.1 Definition, morphisms and diagrams

Definition 3.30 (Category). A category consists of the following:

• A collection of entities called objects: A, B, C, . . .

• A collection of entities called arrows: f , g, h, . . .

The objects and arrows must satisfy the following properties: (1) every arrow
has a source and target object, (2) every object has an identity arrow IdA :
A→ A, and (3) composing arrows is associative, i.e. (f ◦ g)◦h = f ◦(g ◦ h).

y

Name Objects Arrows

Set Sets Functions
VectR Vector spaces over R Linear functions
ModZ Modules over Z Linear functions
FinAb Finitely generated abelian groups Group homomorphisms
Ab abelian groups Group homomorphisms

Table 3.1: The categories that will be used in this thesis.

In Table 3.1, some examples of categories are listed. All of these categories
will be used in the thesis, and it is straightforward to verify the existence of
an identity and the associative property for each of them.

Monomorphisms and epimorphisms

Monomorphisms and epimorphisms can be thought of as generalizations
of injective and surjective functions, respectively. In the category Set the
definitions coincide perfectly, but the category theoretic definitions are given

21 3.3. Category theory

with respect to arrows and objects instead of sets and functions. Such
definitions are sometimes called “arrow-theoretic.”

Definition 3.31 (Monomorphism). Consider the diagram:

A B C
g1

g2

f

The arrow f is called a monomorphism if f ◦g1 = f ◦g2 ⇒ g1 = g2 for every
g1, g2 : A→ B. y

Definition 3.32 (Epimorphism). Consider the diagram:

A B C
f g1

g2

The arrow f is called an epimorphism if g1 ◦ f = g2 ◦ f ⇒ g1 = g2 for every
g1, g2 : A→ B. y

In this thesis, special arrows will be used to represent monomorphisms
and epimorphisms. Hooked arrows will represent monomorphisms and two
headed arrows will represent epimorphisms.

Arrow Meaning

A B
f

f is a monomorphism

A B
g

g is an epimorphism

Commutative diagrams

A drawing with objects and arrows is called a diagram, and a commutative
diagram is one in which every directed path from an arbitrary object to
another commutes.

A B

C D

f

g n

m

(3.1)

Stating that Diagram (3.1) commutes means that n ◦ f = m ◦ g.

3.3.2 Initial objects, products and their duals

Going back to Definitions 3.31 and 3.32 of monomorphisms and epimor-
phisms, we note that each definition can be obtained by switching the direc-

Chapter 3. Preliminaries 22

tion of the arrows in the other. In category theory, the dual of a construct is
obtained by reversing every arrow, and monomorphisms and epimorphisms
are therefore dual constructs. Another important dual pair of definitions
are initial objects and final objects.

Definition 3.33 (Initial object). An object I in a category C is said to

be initial if for each object A in C there exists a unique arrow I A. y

Definition 3.34 (Final object). An object F in a category C is said to

be final if for each object A in C there exists a unique arrow A F. y

In Set, the initial object is the empty set {} and the final object is a set
containing a single element {a}. In VectR the final and initial object both
correspond to R0, and when they coincide the object is referred to as the
zero object. It can be shown that initial and final objects are unique up
to isomorphism. Initial and final objects allow us to define zero morphisms,
which we will define and make use of in Chapter 5.

Definition 3.35 (Categorical product). A product is an object A × B
along with arrows πA and πB to A and B, respectively.

A×B

A B

πA πB

The product satisfies the following property: For every

X

A B

f g

there exists a unique arrow φ such that the following diagram commutes.

X

A A×B B

f g
φ

πA πB

y

Definition 3.36 (Categorical coproduct). The categorical coproduct is
the dual of the categorical product, so reversing every arrow in Definition
3.35 gives the definition of the coproduct. y

23 3.4. Fourier analysis

The coproduct is the dual of the product, and it is common to use the “co-
” prefix to signify this. Notice that the definition of the product includes
the object A × B along with the morphisms πA and πB, which are called
canonical projections. In Set the product is the Cartesian product, while in
Ab both the product and coproduct correspond to the direct sum.

Name Initial object Final object Product

Set ∅ {a} Cartesian product
VectR R0 R0 Direct sum
ModZ Z0 = Z1 = {0} Z0 = Z1 = {0} Direct sum
FinAb Z0 = Z1 = {0} Z0 = Z1 = {0} Direct sum
Ab Z0 = Z1 = {0} Z0 = Z1 = {0} Direct sum

Table 3.2: Categorical constructs as realized by some concrete categories.

3.4 Fourier analysis

Fourier analysis is named after the French mathematician and physicist Jean-
Baptiste Joseph Fourier. He introduced what is now known as Fourier series
as a result of his work on heat flow in the early 1800s. The advent of the
computer and the rediscovery of the fast Fourier transform (FFT) by Cooley
and Tukey in 1965 made Fourier analysis computationally tractable for large
amounts of data. Today Fourier analysis enjoys a wide range of applications
in both theoretical and applied science.

The purpose of this section is to reintroduce some of the main formulas and
results from the study of Fourier series, the discrete Fourier transform and
the Fourier transform. A more thorough, generalized exposition of Fourier
analysis from the group-theoretic perspective will be given in Chapter 6. For
an introduction to Fourier analysis with applications, the reader is referred
to [Albert. Boggess, 2009]. A very detailed account of the material is also
given in [C. Gasquet, 1999].

3.4.1 Fourier series

Fourier series expresses a periodic function as a sum of trigonometric func-
tions, or equivalently as complex exponentials. The relationship between
the trigonometric functions and the complex exponential is given by Euler’s
formula, which states that eix = cos(x) + i sin(x).

Definition 3.37 (Fourier series). A piecewise-continuous function f(x) :
R → C with a period on a bounded interval [a, b) has the following Fourier

Chapter 3. Preliminaries 24

series representation, where d = b− a.

f(x) =
∞∑

ξ=−∞
f̂(ξ) exp

(
2πi

xξ

d

)
, f̂(ξ) =

1

d

∫ b

a
f(x) exp

(
−2πi

xξ

d

)
dx

The expression f(x) above is the Fourier series representation, and the func-
tion f̂(ξ) : Z→ C is called the Fourier series coefficients. y

A piecewise continuous function f(x) on a bounded interval [a, b) is said to
be of bounded variation, and it can be shown that functions of bounded vari-
ation have Fourier series representations which converge pointwise. If there
are jump discontinuities, then the Gibbs phenomenon will occur, seen as an
overshoot/undershoot near the discontinuities. The Gibbs phenomenon is
shown in Figure 3.2.

If f(x) is continuous and differentiable (except possibly at a finite number
of points) on [a, b) and f ′(x) is piecewise continuous, then the Fourier series
representation converges uniformly. The smoother the function is the more
rapidly the Fourier coefficients f̂(ξ) will decay as |ξ| → ∞. For a detailed
account about convergence, see for instance Lesson 5 in [C. Gasquet, 1999].

0 0.25 0.5 0.75 1 ∼= 0
0

0.5

1
f(x) = x on T .

-3 -2 -1 0 1 2 3
0

0.25

0.5
|f̂(ξ)| on Z.

0 0.25 0.5 0.75 1 ∼= 0
0

0.5

1
Reconstruction with 3 terms.

0 0.25 0.5 0.75 1 ∼= 0
0

0.5

1
Gibbs

Reconstruction with 9 terms.

Figure 3.2: The top left plot shows f(x) = x on the periodic domain T =
R /Z. The top right plot shows the Fourier coefficients of f(x), plotted in
absolute value since f̂(ξ) is in general a complex number. The bottom left
plot shows the reconstruction of f(x) using 3 terms in the sum in Definition
3.37 of the Fourier series. The bottom right plot shows the reconstruction
using 9 terms in the sum, where the Gibbs phenomenon is starting to show.

Example 3.38 (Fourier series). Consider f(x) = x defined on T = [0, 1).

25 3.4. Fourier analysis

We calculate f̂(ξ) =
∫ 1

0 x exp (−2πixξ) dx. When ξ = 0 the integral is 1/2,
when ξ 6= 0 we use partial integration to obtain −1/(2πiξ). In summary,
the Fourier series coefficients are given by

f̂(ξ) =

{
1/2 if ξ = 0

−1/(2πiξ) if ξ ∈ Z \{0}.

The function f(x) and it’s Fourier series coefficients are plotted in Figure
3.2, along with approximations obtained by truncating the sum. y

3.4.2 The Fourier transform

The Fourier transform may be thought of as the limit of Fourier series, as the
time period goes to infinity. While the Fourier series representation sums
over integer frequencies, the Fourier transform integrates over the real line
to reproduce a function.

Definition 3.39 (Fourier transform). A sufficiently nice function f(x)
can be reconstructed using the Fourier transform of f(x), which is denoted
as f̂(ξ) or F(f(x)).

f(x) =

∫ ∞

−∞
f̂(ξ) exp (2πixξ) dξ f̂(ξ) =

∫ ∞

−∞
f(x) exp (−2πixξ) dx

y

If a function f(x) and it’s Fourier transform F(f) = f̂(ξ) are both absolutely
integrable (i.e.

∫
R |f(x)| dx < ∞), then f(x) can be recovered from its

Fourier transform almost everywhere. A discussion of the many properties
of the Fourier transform is outside the scope of this thesis, but we mention a
particularly important fact: the Fourier transform diagonalizes convolutions.

Definition 3.40 (Convolution of functions on R). Let f : R→ C and
g : R→ C be functions, and denote the space of such functions as CR. The
convolution of f and g, denoted f ∗ g : CR×CR → CR, is defined as

(f ∗ g)(ξ) =

∫ ∞

−∞
f(x)g(ξ − x) dx.

The convolution is a new function, and analogous definitions exists for do-
mains other than R. y

The Fourier transform converts convolution to point-wise multiplication, so
that F(f ∗ g) = F(f)·F(g). In other words, the following diagram commutes.

Chapter 3. Preliminaries 26

CR×CR CR

CR×CR CR

F(·)×F(·)

convolution multiplication

F(·)

(3.2)

Example 3.41 (Fourier transform of a Gaussian). We calculate the
Fourier transform of the Gaussian f(x) = exp(−kx2) defined on R. The
Fourier transform is f̂(ξ) =

∫∞
−∞ exp

(
−kx2 − 2πixξ

)
dx, and after complet-

ing the square in the exponent and simplifying we obtain

f̂(ξ) = exp
(
−π2ξ2/k

) ∫ ∞

−∞
exp

(
−k (x+ πiξ/k)2

)
dx.

A change of variable to ζ = x + πiξ/k and using the well-known fact that∫∞
−∞ exp(−kζ2) dζ =

√
π/k yields the answer, which is

F
(
exp(−kx2)

)
=
√
π/k exp

(−π2ξ2

k

)
.

In other words, the Fourier transform of a Gaussian function is a Gaussian.
When k = π then F(f) = f . The multidimensional extension is

F
(
exp(−kxTx)

)
= (π/k)d/2 exp

(
−π2ξT ξ/k

)
,

where x, ξ ∈ Rd and xTx =
∑d

j=1 x
2
j . y

3.4.3 The discrete Fourier transform

The discrete Fourier transform performs Fourier analysis on an array of
numbers, making it important in numerical computations. It can be derived
as an approximation to Fourier coefficients, as is done in [C. Gasquet, 1999].
With the discrete Fourier transform, there are no issues with convergence as
long as |f(x)| <∞ for every x ∈ Zn.

Definition 3.42 (Discrete Fourier transform). The discrete Fourier
transform of f(x) on Zn is denoted as f̂(ξ), and defined below. The equation
to the left reconstructs f(x) from f̂(ξ).

f(x) =

n−1∑

ξ=0

f̂(ξ) exp

(
2πi

xξ

n

)
f̂(ξ) =

1

n

n−1∑

x=0

f(x) exp

(
−2πi

xξ

n

)

y

27 3.4. Fourier analysis

The transform of a vector f(xj) = fj of length n can be thought of as matrix

multiplication f̂k = n−1
∑n

j=1 Fkjfj , where

Fkj = exp

(
−2πi

(k − 1)(j − 1)

n

)

for rows k = 1, 2, . . . , n and columns j = 1, 2, . . . , n. Chapter 4 in [Strang, 1986]
introduces the FFT as an efficient algorithm for this matrix-vector product,
bringing the cost down from the ordinary O(n2) complexity of matrix-vector
multiplication to O(n log n). A very enjoyable and detailed account is found
in [Dasgupta, 2008], where the FFT is put into algorithmic context—it’s a
divide and conquer algorithm.

Chapter 4. Integer linear algebra 28

Chapter 4

Integer linear algebra

This chapter is about linear functions A : Zn → Zm, which are represented
by matrices with integer entries. In the abstract setting, such maps are
called homomorphisms between Z-modules. Our approach will be concrete,
but a more abstract introduction to module theory is found for instance in
Chapter 17 of [Nicholas. Loehr, 2014].

We will examine unimodular matrices, which are automorphisms on Zn,
and define some special unimodular matrices which will be used to factor
A. The factorizations we will introduce are the Hermite normal form (HNF)
and the Smith normal form (SNF). The definitions of these factorizations,
along with algorithms for computing them, will be presented. This chapter is
mainly concerned with “what” and “how”—the “why” is explained in detail
in Chapter 5, where the factorizations will be used to solve more general
problems.

4.1 Unimodular matrices

Definition 4.1 (Unimodular matrix). A matrix U ∈ Zn×n is unimodu-
lar if det(U) = ±1. The set of all unimodular matrices of size n× n will be
denoted by GL(n,Z), the general linear group of size n over Z. y

The unimodular matrices are the integer matrices U ∈ Zn×n whose inverses
U−1 are also in Zn×n. Starting with any matrix U ∈ GL(n,Z), three ele-
mentary unimodular operations may be applied to U without spoiling the
unimodularity.

Definition 4.2 (Elementary unimodular operations). There are three
elementary unimodular operations: (1) multiplying a column by −1, (2)

29 4.1. Unimodular matrices

swapping (permuting) two columns and (3) adding an integer multiple of
a column to another column. These three operations can also be applied to
rows. y

The elementary column and row operations may be expressed as matrix
multiplications acting on the right and left, respectively. The matrices cor-
responding to the three elementary operations listed in Definition 4.2 above
have determinants −1, −1 and 1, respectively. Every unimodular matrix
U ∈ GL(n,Z) can be generated by a sequence of elementary unimodular
operations applied to the identity matrix.

4.1.1 Non-trivial unimodular transformations

We now introduce some unimodular transformations, represented by matri-
ces, which will be used in algorithms for computing the HNF and the SNF.
They are based on Definitions 3.1 and 3.2 of the division algorithm and the
extended Euclidean algorithm, which were presented on page 12.

Definition 4.3 (Division algorithm transform). Consider a row vector(
r s

)
with r, s ∈ Z and s > 0. The row vector can be transformed so that

the leftmost entry becomes non-negative and smaller than s by multiplication
with a unimodular matrix. Using the division algorithm we can write r =
sa + b where a is the integer quotient of the division r/s and b ≥ 0 is the
remainder. Using the quotient a from the division algorithm we construct
the unimodular transformation matrix as given below.

(
r s

)(1 0
−a 1

)
=
(
b s

)

y

Definition 4.4 (Elementary Hermite transform). Consider a row vec-
tor
(
r s

)
with r, s ∈ Z. In order to compute the HNF, we need to transform(

r s
)

to
(
c 0

)
with c ∈ Z by right-multiplication with a unimodular ma-

trix. This is achieved by using the extended Euclidean algorithm to compute
integers a, b, c ∈ Z such that ar+bs = c = gcd(r, s). The desired unimodular
matrix is given below.

(
r s

)(a − s
c

b r
c

)
=
(
c 0

)
=
(
gcd(r, s) 0

)

y

Definition 4.5 (Divisibility transform). When computing the SNF, we
will need to transform a diagonal matrix diag(r, s) with r, s ∈ Z to a diagonal

Chapter 4. Integer linear algebra 30

matrix diag(a1, a2) ∈ Z where a1 divides a2. To achieve this, unimodular
transformations are used. We use the extended Euclidean algorithm to com-
pute integers a, b, c ∈ Z such that ar + bs = c = gcd(r, s). The required
transformation is

(
a b
− s
c

r
c

)(
r 0
0 s

)(
1 −b sc
1 a rc

)
=

(
c 0
0 rs

c

)
, (4.1)

where c = gcd(r, s) and rs/c = lcm(r, s). It is easily verified that both of the
unimodular matrices above have determinants equal to 1. y

The source of the divisibility transform is Chapter 8 in [Charles C. Sims, 1994].

4.2 The Hermite normal form

Recall from linear algebra over R that the reduced echelon form of a matrix
A ∈ Rm×n is the result of repeatedly applying elementary operations to
A, see for instance Chapter 4 in [Nicholas. Loehr, 2014] for a description
of the algorithm. Analogously, a matrix A ∈ Zm×n can be put in HNF by
repeatedly performing elementary unimodular operations on A. We define
the HNF, assert that every integer matrix can be put into HNF, and present
an algorithm for doing so. More information about the HNF is found in
Chapter 8 in [Charles C. Sims, 1994], as well as in [Munthe-Kaas, 2016].

Definition 4.6 (Hermite normal form). A matrix H ∈ Zm×n is said to
be in column Hermite normal form if the following conditions hold.

i) There exists an 0 ≤ r ≤ n such that the first r columns of H contain
one or several non-zero entries and the remaining n − r columns are
identically zero.

ii) For each column 1 ≤ j ≤ r, the first non-zero entry from the top is
called the pivot element. The pivot elements hi(j),j are positive and
i(j + 1) > i(j) for all 1 ≤ j ≤ r.

iii) For every pivot element hi(j),j it is true that 0 ≤ hi,s < hi(j),j for all
1 ≤ s < j.

y

Example 4.7 (Structure of a matrix in HNF). Below we observe the
structure of a somewhat typical matrix in HNF. The hi(j),j ’s are pivots,
and every entry to the left of a pivot must be smaller than the pivot. No

31 4.3. The Smith normal form

requirement is made of h31 and h32, since row 3 has no pivots.




hi(1),1

h21 hi(2),2 0

h31 h32

h41 h42 hi(3),3

h51 h52 h53 hi(4),4




y

Theorem 4.8 (Hermite normal form). Every matrix A ∈ Zm×n can be
put in (column) Hermite normal form by some U ∈ GL(n,Z). We obtain
AU = H, where H is in Hermite normal form, and the following diagram
commutes.

Zn Zm

Zn

A

U−1 H

Proof. Algorithm 1 on page 34 provides the constructive proof.

Example 4.9 (Matrix in HNF). Below is an example of AU = H. It is
straightforward to check that U ∈ GL(3,Z) by verifying that det(U) = 1. It
is also straightforward to verify that H is in HNF. The pivots of H are 1, 1
and 8. 


0 1 6
0 1 7
8 0 2






1 0 1
7 −6 0
−1 1 0


 =




1 0 0
0 1 0
6 2 8




y

4.3 The Smith normal form

Just as the reduced echelon form and the Hermite normal form are analogous,
the Smith normal form (SNF) of A ∈ Zm×n is analogous to the singular value
decomposition of A ∈ Rm×n. While the singular value decomposition uses
orthogonal matrices to diagonalize A ∈ Rm×n, the SNF uses elementary
unimodular operations to diagonalize A ∈ Zm×n. We define the SNF, assert
that every integer matrix can be put into SNF, and present an algorithm
for doing so.

Definition 4.10 (Smith normal form). An integer matrix Σ ∈ Zm×n is
said to be in Smith normal form if the following conditions hold.

i) Σ is diagonal, i.e. Σij = 0 when i 6= j.

Chapter 4. Integer linear algebra 32

ii) The first r diagonals σi = Σii are positive, and σi divides σi+1 for all
1 ≤ i < r− 1, where r denotes the number of positive diagonal entries.
The remaining min(m,n)− r diagonal entries are zero.

y

Theorem 4.11 (Smith normal form). Every integer matrix A ∈ Zm×n
can be put into SNF by matrices U and V such that UAV = Σ, where
U ∈ GL(m,Z), V ∈ GL(n,Z) and Σ ∈ Zm×n is in SNF. In other words,
A : Zn → Zm can be factored such that the following diagram commutes.

Zn Zm

Zn Zm

A

V −1

Σ

U−1

Proof. Algorithm 2 on page 36 provides a constructive proof.

Example 4.12 (Matrix in Smith normal form). Here is an example
of UAV = Σ. The matrices U and V both have determinant 1 and are
unimodular. The division criterion is clearly satisfied for 1, 1 and 8.




1 0 0
−1 1 0
2 −2 1






0 1 6
0 1 7
8 0 2






0 0 1
1 −6 0
0 1 0


 =




1 0 0
0 1 0
0 0 8




y

4.4 Algorithms and computational issues

We now present algorithms for putting A ∈ Zm×n in HNF and SNF. The
algorithms provide constructive proofs of the factorizations. The primary
source for the algorithms is Chapter 9 in [Derek F. Holt, 2005]. An attempt
has been made to make the algorithms more readable by introducing uni-
modular matrices ρ1, ρ2 and ρ3, as is done in [Jäger and Wagner, 2009].

Although various algorithms exist in the literature, general implementations
are somewhat hard to find: MATLAB only has an implementation of the
SNF for square A, and none of the popular scientific libraries in Python
implement these algorithms.

The algorithms were implemented in Python as part of this thesis, and the
implementations are found in Appendix A. As we will see in Chapter 5,
these algorithms are crucial for computations with FGAs. In the actual
code, several optimizations were made. The most significant optimization

33 4.4. Algorithms and computational issues

is that sparse matrices are never explicitly formed and multiplied—instead
their actions are implemented. This optimization brings the cost of some
multiplications down from O(n3) to O(n). Additional savings can be real-
ized when taking linear combinations of rows and columns with a significant
number of zeros, these zeros are ignored in the optimized code. The book
[Lloyd N. Trefethen, 1997] is a good reference for how to efficiently imple-
ment linear algebra algorithms.

4.4.1 Unimodular matrices for the normal forms

We now extend the division algorithm transform, elementary Hermite trans-
form and divisibility transform presented on page 29 to n× n matrices. We
also define a permutation matrix. These matrices will be used notation-
ally in Algorithm 1 and Algorithm 2 on pages 34 and 36. In the actual
implementation, none of these matrices should be explicitly formed.

• The matrix P (i, j, n) ∈ GL(n,Z) is the permutation matrix, which
permutes columns/rows i and j.

• Based on Definition 4.3 we define ρ1(r, s, i, j, n) ∈ GL(n,Z) as In with
entry Ij,i := −a, where a is the integer quotient in the division r/s.
The effect of right-multiplication by ρ1 is “subtract a times column j
from column i”, and the effect of left-multiplication by ρ1 is “subtract
a times column i from column j.”

• Based on Definition 4.4 we define ρ2(r, s, i, j, n) ∈ GL(n,Z) as In with
the following entries from the extended Euclidean algorithm ar+ bs =
c = gcd(r, s).

– Ii,i := a

– Ii,j := −s/c
– Ij,i := b

– Ij,j := r/c

The effect of right-multiplication by ρ2 is “multiply column i by a and
add b times column j, and multiply column j by r/c and subtract s/c
times column i.”

• Based on Definition 4.5 we define ρ3(r, s, i, j, n) ∈ GL(n,Z) as In with
the following entries from the extended Euclidean algorithm ar+ bs =
c = gcd(r, s).

– Ii,i := 1

– Ii,j := −b sc

– Ij,i := 1

– Ij,j := a rc

This matrix is an n× n extension of the rightmost factor in Equation
(4.1). The effect of right-multiplication by ρ3 is “add column j to

Chapter 4. Integer linear algebra 34

column i, and multiply column j by a rc and subtract b sc times column
i.”

4.4.2 Algorithm for the Hermite normal form

Algorithm 1: Algorithm for the Hermite normal form.

Input : Matrix A ∈ Zm×n
Output : Matrices H ∈ Zm×n and U ∈ GL(n,Z) such that H = AU

1 H := copy(A); U := In // Initialize H and U.

2 j, i := 1, 1 // Initialize counters.

3 while i ≤ m do

4 if H[i, j :] = 0 then
5 i := i+ 1 // Skip row if it’s identically zero.

6 continue

7 end

8 for k in [j + 1, . . . , n] do
9 H := H · ρ2(H[i, j], H[i, k], j, k, n) // Create zeros to the

10 U := U · ρ2(U [i, j], U [i, k], j, k, n) // right of the pivot.

11 end

12 for k in [0, . . . , j − 1] do
13 H := H · ρ1(H[i, k], H[i, j], k, j, n) // Reduce elements left

14 U := U · ρ1(H[i, k], H[i, j], k, j, n) // of pivot h to [0, h).

15 end

16 i, j := i+ 1, j + 1 // Increment the counters by 1.

17 if j > n then
18 break
19 end

20 end

Explanation of Algorithm 1. The algorithm initializes two variables i and j,
which are incremented as the algorithm progresses. The counter i is the
current row, and the counter j is the current column.

If the if-block on line 4 is triggered, the entries to the right of, and including,
the current position (i, j) are identically zero. If this is the case, then row i
has no pivot element, and the counter i is incremented and the while-loop
starts over in the next row.

If we are on line 8, then some entry to the right of, or including, the current
position (i, j) is non-zero. When applying ρ2 to column j and k ∈ [j +

35 4.4. Algorithms and computational issues

1, . . . , n] we assure that (i, j) ends up with a positive pivot, and that every
entry to the right of this pivot becomes zero. We require that every element
to the right of (i, j) be zero, since if (i, j+ k) were not zero for some k, then
the second criterion in Definition 4.6 would be violated—there is only one
pivot per column.

What remains to do is ensure that every element to the left of the pivot at
(i, j) is smaller than the pivot, as stated in Definition 4.6. This is exactly
what happens on line 12. Applying ρ1 to columns j and k ∈ [j + 1, . . . , n]
ensures that all entries to the left of entry (i, j) satisfy the criterion.

The final lines increment the counters i and j. If j > n, then the algorithm
is finished. When the algorithm terminates, every row i has been iterated
over and the matrix satisfies the definition of the HNF.

4.4.3 Algorithm for the Smith normal form

Explanation of Algorithm 2. In stage 1, the algorithm will successively cre-
ate zeros to the right of and below diagonal elements starting in the top-left
corner.

The while loop in line 3 will run until all entries below and to the right of
(f, f) are zero. Assume that not every such entry is zero. The algorithm will
move the minimal entry in the sub-matrix Σ[f :, f :]1 to the (f, f) position.
Using left and right multiplication by ρ1, every element to the right of and
below (f, f) will be made non-negative and smaller than f . Since the positive
entries to the right of and below (f, f) will decrease in every iteration, the
while-loop in line 3 will eventually terminate. When it terminates, the row
and column corresponding to position (f, f) have been diagonalized, and
when stage 1 ends the entire matrix Σ is diagonal.

When stage 2 starts, the matrix is in diagonal form, but the diagonal ele-
ments do not necessarily obey the divisibility criterion given in Definition
4.10. The while-loop in line 3 will run on every diagonal entry Σ[f, f] for
f ∈ [1, . . . ,min(m,n)]. The nested for-loops in line 21 successively use Equa-
tion (4.1) to ensure divisibility.

Let σf be the value at entry (f, f). When the inner loop in stage 2 fin-
ishes, entry (f, f) will be set to gcd (σf , gcd(σf+1, . . .)). This is equal to
gcd(σf , σf+1, . . .), meaning that σf = gcd(σf , σf+1, . . .) and therefore it
divides all other diagonals. Once the outer loop finishes, the divisibility
criterion is fulfilled, which can be shown by induction.

1By Σ[f :, f :] we mean the lower right submatrix which includes the position (f, f).

Chapter 4. Integer linear algebra 36

Algorithm 2: Algorithm for the Smith normal form.

Input : Matrix A ∈ Zm×n
Output : Matrices Σ ∈ Zm×n, U ∈ GL(m,Z) and V ∈ GL(n,Z) such that

UAV = Σ

1 U := Im; V := In; Σ := copy(A) // Initialize matrices.

// STAGE 1: Create diagonal matrix with positive entries

2 for f in [1, . . . ,min(m,n)] do
// While the current row/column is not in diagonal form.

3 while not {Σ[:, f]} ∪ {Σ[f, :]} \ {Σ[f, f]} = {0} do
/* Find the minimal element (in absolute value) of

bottom-right sub-matrix and permute it to the pivot

position. */

4 find (s, t) = argmin(i,j)≥f |Σ[i, j]| // Find minimal element.

5 Σ := P (s, f)Σ; U := P (s, f)U // Permute rows and columns

6 Σ := ΣP (t, f); V := V P (t, f) // to switch Σ[f, f] and Σ[s, t].

7 if Σ[f, f] < 0 then
8 R := In ; In(f, f) := −1 // If the pivot is negative,

9 Σ := ΣR ; V := V R // make it positive.

10 end

/* Reduce row and column entries using ρ1 so that every

element in the row/col is smaller than the pivot. */

11 for k in [f + 1, . . . , n] do
12 R := ρ1(Σ[f, k],Σ[f, f], k, f, n) // Reduce entries in row

13 Σ := ΣR, V := V R // using ρ1, apply to V too.

14 end

15 for k in [f + 1, . . . ,m] do
16 L := ρ1(Σ[k, f],Σ[f, f], f, k,m) // Reduce entries in col

17 Σ := LΣ ; U := LU // using ρ1, apply to U too.

18 end

19 end

20 end

// STAGE 2: Enforce divisibility of diagonal entries.

21 for f in [1, . . . ,min(m,n)] do
22 for k in [f + 1, . . . ,min(m,n)] do
23 if Σ[k, k]%Σ[f, f] = 0 then
24 continue // Skip if divisible, or both entries zero.

25 end

26 r := Σ[f, f]; s := Σ[k, k] // Enforce divisibility criterion

27 L := ρ2(r, s, k, f,m) ; R := ρ3(r, s, f, k, n) // by applying

28 Σ := LΣR ; U := LU ; V := V R // divisibility transform.

29 end

30 end

37

Chapter 5

Computing factorizations in
FinAb

The primary goal of this chapter is to understand and be able to compute
certain factorizations of homomorphisms between FGAs, i.e. morphisms in
FinAb. The categories VectR, ModZ and FinAb are abelian categories, in
which every morphism has a kernel, cokernel, image and coimage morphism.
These special morphisms, which allow us to factor an arbitrary morphism φ,
will provide us with understanding about φ.

We work our way towards something which, to the extent of our knowledge,
is not found in the literature: explicit algorithms for the kernel, cokernel,
image and coimage morphisms in FinAb. As an intermediate step, a new
algorithm for solving a particular type of equation in FinAb is also presented
in Section 5.4. We start by giving general definitions, examine VectR, then
ModZ, and finally give algorithms for FinAb.

5.1 Factorizations in abelian categories

Informally, an abelian category is an abstract setting in which the kernel,
cokernel and image/coimage factorizations exist and exhibit nice properties.
Furthermore, morphisms can be added and subtracted in abelian categories.
We will now give definitions of the kernel, cokernel, image and coimage
(which need not exist in a general category), and then define an abelian
category more precisely. For a more thorough discussion, see Chapter 9 in
[Aluffi, 2009] or Chapter 8 in [Mac Lane, 1998].

Definition 5.1 (Zero morphism). Consider a category in which initial
and final objects coincide, i.e. a category where there exists an object 0

Chapter 5. Computing factorizations in FinAb 38

which is both initial and final. The zero morphism is the unique morphism
0 : A→ B making the following diagram commute.

A

0 B

0
f

g

y

5.1.1 The kernel and cokernel

Definition 5.2 (Kernel morphism). Consider a morphism φ : A → B.
The kernel morphism, denoted ker(φ), is a morphism such that:

1. The following diagram commutes.

K

A B

ker(φ)

0

φ

2. For all
X

A B

ξ
0

φ

there exists a unique ψ such that the following diagram commutes.

K

A B

X

0

ker(φ)

φ
ψ

0

ξ

y

Note that the kernel morphism is not strictly the same as the kernel of a
group homomorphism as per Definition 3.16. The kernel morphism is a
morphism, while the kernel of a group homomorphism is a subgroup.

39 5.1. Factorizations in abelian categories

Definition 5.3 (Cokernel morphism). The cokernel is the dual of the
kernel. We switch the direction of every arrow in Definition 5.2 of the kernel
morphism to obtain the definition of the cokernel. y

Definition 5.4 (Abelian category). A category is abelian if (1) it has a
zero object, (2) it has finite products and finite coproducts, (3) it has kernels
and cokernels, (4) every kernel is a monomorphism and every monomor-
phism is the kernel of some morphism and (5) every cokernel is an epimor-
phism and every epimorphism is the cokernel of some morphism. y

Some examples of abelian categories are VectR, ModZ, FinAb and Ab.

5.1.2 The image and coimage

Definition 5.5 (Image and coimage morphism). The image of a mor-
phism φ : A→ B in an abelian category is defined as

im(φ) = ker (coker(φ)) .

Dually, the coimage of a morphism φ : A → B in an abelian category is
defined as

coim(φ) = coker (ker(φ)) .

y

Proposition 5.6 (Factoring with image/coimage). In an abelian cat-
egory, every morphism φ : A→ B may be factored as im(φ) ◦ coim(φ).

A B

Z

coim(φ)

φ

im(φ)

The object Z in A
coim(φ)−−−−−→ Z

im(φ)−−−→ B is unique up to isomorphism.

Proof. A detailed proof is given in Chapter 9 in [Aluffi, 2009].

5.1.3 A summary of factorizations

We summarize the factorizations available in an abelian category, they are:
φ◦ker(φ) = 0, coker(φ)◦φ = 0 and φ = im(φ)◦coim(φ). The diagram below

Chapter 5. Computing factorizations in FinAb 40

shows a morphism φ along with the factorizations. In the next section, we
will see how these factorizations reveal the structure of the morphism φ.

K A B C

Z

0

ker(φ)

0

φ

coim(φ)

coker(φ)

im(φ)
(5.1)

5.2 Factorizations in VectR

The four fundamental subspaces of a matrix A ∈ Rm×n are introduced in
Chapter 2 in [Strang, 1976] as the nullspace of A (kernel), the nullspace of
AT (cokernel), the column space (image) and the row space (coimage). In
[Strang, 1993] it is explained how the singular value decomposition yields
orthogonal bases for these subspaces, i.e. how the morphisms are found
computationally.

In VectR, Diagram (5.1) looks like the following (zero morphisms omitted).

Rn−r Rn Rm Rm−r

Rr

ker(A) A

coim(A)

coker(A)

im(A)
(5.2)

5.2.1 Concrete interpretations

We now give some intuition as to what these morphisms tell us about φ.
These interpretations are for VectR, but the same underlying principles apply
in other abelian categories.

• The kernel monomorphism. The kernel monomorphism is a basis
for the nullspace, i.e. a basis for the space of solutions to Ax = 0. The
dimensionality of the source of the kernel, Rn−r, measures how far A is
from being a monomorphism—if the kernel source has dimensionality
R0, then n = r and A is a monomorphism.

• The cokernel epimorphism. Dual to the kernel, the target of the
cokernel epimorphism measures how farA is from being an epimorphism—

41 5.2. Factorizations in VectR

if the cokernel target has dimensionality R0, then m = r and A is an
epimorphism.

• The image monomorphism. The morphism im(A) is the injective
part of A. The image monomorphism gives a basis for the solution
space (or column space, or range) of A. It is in a sense the “most
economical” expression of A—the column space is unchanged, but all
“redundant” information is removed.

• The coimage epimorphism. Dually to the image morphism, the
coimage is the surjective part of A. The coimage projects onto the
source of the image such that coim(A) ◦ im(A) = A.

5.2.2 Computing the factorizations

We now mention two methods for computing the the kernel, cokernel, image
and coimage. Issues such as numerical stability and computational complex-
ity are not considered. For a discussion on elementary operations and the re-
duced echelon form of real matrices, see Chapter 4 in [Nicholas. Loehr, 2014].
For information about the singular value decomposition and how to effi-
ciently compute it, see Chapter 8 in [Golub and Van Loan, 2012].

Using the reduced column echelon form

Imitating Algorithm 1 for the HNF, but allowing elementary operations for
real matrices instead of the unimodular ones, we can write AE = R, where
A ∈ Rm×n, E ∈ Rn×n and R ∈ Rm×n. The invertible matrix E stores
elementary column operations. The matrix R is in reduced column echelon
form. Splitting the decomposition into blocks we obtain

A
m×n

(
E1
n×r

E2
n×(n−r)

)
=
(
R1
m×r

0
m×(n−r)

)
⇔

A
m×n

=
(
R1
m×r

0
m×(n−r)

)



E−1
1

r×n
E−1

2
(n−r)×n


 = R1E

−1
1

m×n
+ 0E−1

2
m×n

.

From these factorizations we obtain im(A) = R1 ∈ Rm×r, coim(A) =
E−1

1 ∈ Rr×n, ker(A) = E2 ∈ Rn×(n−r). The cokernel can be obtained as
coker(A) = ker(AT)T , by virtue of the fundamental theorem of linear alge-
bra, see [Strang, 1993]. Using this procedure, the reduced column echelon
form is computed twice, once for A and once for AT . The resulting mor-
phisms are in general not orthogonal.

Chapter 5. Computing factorizations in FinAb 42

Using the singular value decomposition

In [Golub and Van Loan, 2012], the authors state that “nothing takes apart
a matrix as conclusively as the SVD.” Indeed, the singular value decompo-
sition relates the kernel, cokernel, image and coimage to one decomposition
of A ∈ Rm×n, and the column spaces of the resulting morphisms are orthog-
onal. This is done explicitly in [Munthe-Kaas, 2016], and we do not repeat
it here.

5.3 Factoring free-to-free morphisms in FinAb

A free-to-free morphism between FGAs is a morphism in which both the
source and target are free, i.e. a morphism of the form A : Zn → Zm where
A is an integer matrix. This was discussed in the previous chapter, and
the situation coincides with the category ModZ of modules over Z, where a
module over a ring (such as Z) is similar to a vector space over a field (such
as R). For an abstract introduction to modules and vector spaces, see for
instance chapters 10 and 11 in [David Steven. Dummit, 2004].

5.3.1 Structure of the groups

In FinAb, the cokernel morphism is a projection onto a quotient. For φ : G→
H, the coimage morphism projects onto G/K, where K is the kernel of the
homomorphism, i.e. a subgroup of G. Furthermore, the cokernel projects
onto H/ image(φ), where image(φ) is the source of the image morphism.

K G H H/(G/K)

G/K ∼= image(φ)

ker(φ) φ

coim(φ)

coker(φ)

im(φ)

The statement that G/K ∼= image(φ) for φ : G → H is called the first
isomorphism theorem. More information about it may be found in Chapter
3 of [Ledermann, 1996]. See Chapter 3 of [Mac Lane, 1998] for the statement
about the target of the cokernel morphism.

5.3.2 The Hermite normal form

We demonstrate how to find the kernel, coimage and image using the HNF.
First we employ Theorem 4.8 to write AU = H, where U ∈ GL(n,Z) and

43 5.3. Factoring free-to-free morphisms in FinAb

H ∈ Zm,n is in HNF. Mimicking the reduced column echelon form on page
41, we write

A
m×n

(
U1
n×r

U2
n×(n−r)

)
=
(
H1
m×r

0
m×(n−r)

)
⇔

A
m×n

=
(
H1
m×r

0
m×(n−r)

)



U−1
1
r×n
U−1

2
(n−r)×n


 = H1U

−1
1

m×n
+ 0U−1

2
m×n

.

We obtain im(A) = H1 ∈ hom(Zr,Zm), coim(A) = U−1
1 ∈ hom(Zn,Zr) and

ker(A) = U2 ∈ hom(Zn−r,Zn), as is done in [Munthe-Kaas, 2016].

5.3.3 The Smith normal form

Using the SNF, we can compute every morphism and factorization. We use
Theorem 4.11 to write UAV = Σ, where U ∈ GL(m,Z), V ∈ GL(n,Z) and
Σ ∈ Zm×n is diagonal. We block up the matrices as




U1
r×m
U2

(m−r)×m


 A

m×n

(
V1
n×r

V2
n×(n−r)

)
=




Σ11
r×r

Σ12
r×(n−r)

Σ21
(m−r)×r

Σ22
(m−r)×(n−r)


 ,

or alternatively

A
m×n

=

(
U−1

1
m×r

U−1
2

m×(m−r)

)



Σ11
r×r

Σ12
r×(n−r)

Σ21
(m−r)×r

Σ22
(m−r)×(n−r)







V −1
1
r×n
V −1

2
(n−r)×n


 ,

where r is the number of non-zero entries in Σ11, and Σ12, Σ21 and Σ22 are
all identically zero. The morphisms are then:

• ker(A) = V2 ∈ hom(Zn−r,Zn)

• coker(A) = U ∈ hom(Zm,Zp⊕Zm−r), where p = diag(Σ11)

• im(A) = U−1
1 Σ11 ∈ hom(Zr,Zm)

• coim(A) = V −1
1 ∈ hom(Zn,Zr)

In summary, Diagram (5.1) looks like the following in ModZ.

Zn−r Zn Zm Zp⊕Zm−r

Zr

V2 A

V −1
1

U

U−1
1 Σ11

(5.3)

For more information, see [Munthe-Kaas, 2016].

Chapter 5. Computing factorizations in FinAb 44

5.4 Solving equations in FinAb

In Section 5.5 we will need the solution to a particular equation. We solve
this problem here so as not to interrupt the flow of ideas later. The algorithm
presented in this section is my own.

Definition 5.7 (Left-free morphism). A morphism φ in the category
FinAb is left free if it can be written as φ : Zn → Zp, where p = (p1, p2, . . . , pm)
is a vector (or multi-index). If pi = 0, then the i’th term in the direct sum
is taken to be Z. If pi ≥ 1, then the i’th term is Zpi. y

We remind the reader that we will only typeset the p in Zp using boldface
when it is a subscript, to remind ourselves that p is not an integer.

Consider the problem of solving φ(x) = g for x when φ : Zm → Zp. The ho-
momorphism consists of matrix multiplication with A, followed by a canoni-
cal projection π onto Zp, which mods each component in the group element
with the corresponding group order in the direct sum Zp.

Problem 5.8. Given a left free morphism φ : Zm → Zp, where φ(x) =
π(A(x)) and π(x) = x mod p, solve φ(x) = g for x if possible.

Zn Zp

Zm

φ

A π
(5.4)

This problem is a generalization of the integer equation ax = g mod p,
and can can have zero, one, or an infinite number of integer solutions. A
single solution is possible if p is zero, in which case the mod operation is the
identity function.

Proposition 5.9 (Solving φ(x) = g when φ is left-free). Algorithm 3
solves Problem 5.8. If no solution exists, the algorithms reveals it. If several
solutions exists, one of them is returned.

Explanation of Algorithm 3. The explanation is split into three parts. First
we will find a left-inverse of π. Then we form a block-matrix (A | ker(π) | g)
and realize that the solution must be in its kernel. Finally we iteratively

45 5.4. Solving equations in FinAb

Algorithm 3: Solving φ(x) = g when φ is left-free.

Input : Matrix A ∈ Zm×n, group element g ∈ Zp and vector p ∈ Zm.
Output : Group element x ∈ Zn such that φ(x) = g.

1 kerπ := remove zero cols(diag(p))
2 K := free kernel(A | kerπ | g)
3 Remove columns from K where the last column entry is zero.

4 while K has more than 1 column do
5 r := K[−1, 1] // Get the last column entry in the first column.

6 s := K[−1, 2] // Get the last column entry in the second column.

7 Compute a, b such that ar + bs = gcd(r, s)

8 new col := aK[:, 1] + bK[:, 2] // Linear combination of cols 1 and 2.

9 Replace columns K[:, 1] and K[:, 2] with new col in the matrix K.

10 end
11 x := −K[: n, 1] // Get the first n entries of K, multiply by −1.

employ the extended Euclidean algorithm to find a solution.

Zn Zp

Zk Zm

φ

A

π−1

ker(π)

π
(5.5)

We find a left-inverse of the canonical projection π : Zm → Zp. Let k be the
number of non-zero entries in p. The kernel of the canonical projection π
is a diagonal matrix diag(p1, p2, . . . , pm) with a modification; zero columns
are removed to assure that ker(π) : Zk → Zm is a monomorphism. Clearly
π(x+ ker(π)ξ) = π(x) for every ξ ∈ Zk, and thus π−1(x) = x+ ker(π)ξ is a
left-inverse of π such that π(π−1(g)) = g for every g ∈ Zp.

We want to solve π(A(x)) = g. If a solution exists, then π(g + ker(π)ξ) = g
for some ξ ∈ Zk. Comparing these two equation we observe that Ax =
g+ ker(π)ξ, which we write as Ax− ker(π)ξ− g = 0, where every term is in
Zm. We factor this as

(A | ker(π) | g)(x;−ξ;−1) = 0, (5.6)

where the semicolons denote row separation in a column vector. This is
a mapping from Zn and Zk to Zm, where the result is added/subtracted.
All these groups are free, so we can compute the kernel using the SNF as
previously explained using Diagram (5.3). Writing the kernel factorization
of (A | ker(π) | g) as

(A | ker(π) | g) ker(A | ker(π) | g)µ = 0

Chapter 5. Computing factorizations in FinAb 46

and comparing with Equation (5.6) we realize that

ker (A | ker(π) | g)µ =



x
−ξ
−1


 . (5.7)

To find a solution x, we search for an integer combination of the columns of
K := ker(A | ker(π) | g) such that the resulting bottom column entry is −1.

To find such a combination, we multiply both sides of Equation (5.7) by
−1 and instead look for a combination which gives 1 in the bottom column
entry. It is only possible to write 1 as a linear combination of two integers
if their greatest common divisor is 1. This suggests an approach for finding
a linear combination of the columns of K := ker(A | ker(π) | g) using the
extended Euclidean algorithm.

We use the extended Euclidean algorithm repeatedly as shown in line 4
in Algorithm 3 to take linear combinations of the columns until only one
column remains. If we are able to find such a column, we multiply by −1
in line 11 and return the first n entries corresponding to x in the column
vector in Equation (5.7). An x which solves the equation is returned if it
exists.

5.5 Factoring left-free morphisms in FinAb

We have seen how to compute factorizations of morphisms in VectR and
free-to-free morphisms in FinAb. The time has come to consider left-free
morphisms in FinAb, i.e. morphisms of the form φ : Zn → Zp.

Such a homomorphism is represented by a matrix A ∈ Zm×n, where we
think of each column as a generator. Calculating φ(x) = Ax mod p takes
linear combinations of the generator columns in A, and projects onto Zp.
There are two projections that can be performed on φ without spoiling the
homomorphism property φ(x+y) = φ(x)+φ(y), namely: (1) projecting the
source group to the orders of the generators and (2) projecting the generators
to the target group.

Definition 5.10 (Canonical projection to source). Given φ : Zn → Zp

represented by a matrix A ∈ Zm×n, there exists a projection π : Zn → Zq

such that φ = φ̃ ◦ π.

Zn Zp

Zq

φ

π
φ̃

47 5.5. Factoring left-free morphisms in FinAb

The group Zq contains the orders of the columns of A, i.e. the i’th component
of q in Zq is the order of the i’th column of A. y

We can compute Zq efficiently using Proposition 3.28, which explains how
to compute the order of a group element in an FGA. The proposition is used
on every column to compute the structure of Zq.

Definition 5.11 (Canonical projection to target). Consider φ : Zn →
Zp represented by a matrix A = (a1, a2, . . . , am) ∈ Zm×n where ai are
columns for i = 1, 2, . . . ,m. The canonical projection to the target is to
set ai := ai mod p for i = 1, 2, . . . ,m. y

The target projection projects each generator to the target group.

Example 5.12 (Projections to source and target). We demonstrate
projections to source and target as given by Definitions 5.10 and 5.11. Con-
sider the left-free morphism

(
2 6
3 1

)
∈ hom(Z2,Z4⊕Z3).

Projecting to the target Z4⊕Z3 yields the morphism
(

2 2
0 1

)
∈ hom(Z2,Z4⊕Z3),

where each column is projected onto the target group. Projecting this mor-
phism to the source reveals the orders of the columns, we obtain

(
2 2
0 1

)
∈ hom(Z2⊕Z6,Z4⊕Z3).

In general such a projection to source does not find the image morphism, as
the projection is not guaranteed to yield a monomorphism. y

5.5.1 The kernel

The following theorem explicitly states how to compute the kernel morphism.

Theorem 5.13 (Computing the kernel in FinAb). The kernel of a left-
free morphism φ : Zn → Zp is the first n rows of

(
ker(φ)
ξ

)
= ker (A | ker(π)) ,

where ker(π) is computed as remove zero cols(diag(π)) and the outer kernel
is computed as a free-to-free kernel.

Chapter 5. Computing factorizations in FinAb 48

Proof.

K Zn Zp

Zk Zm

ker(φ)

ξ
A◦ker(φ)

φ

A

ker(π)

π
(5.8)

We want to find ker(φ) such that φ ◦ ker(φ) = π ◦A ◦ ker(φ) = 0, where 0 is
the zero morphism. Since π ◦ ker(π) = 0, the morphism A ◦ ker(φ) factors
through ker(π) such that A ◦ ker(φ) = ker(π) ◦ ξ for some ξ. This is due
to the universal property of kernels, as per Definition 5.2. The situation is
depicted in Diagram (5.8), which commutes.

We factor A ◦ ker(φ) = ker(π) ◦ ξ as

(A | ker(π))

(
ker(φ)
ξ

)
= 0,

which we compare with the kernel

(A | ker(π)) ker (A | ker(π)) = 0.

Again we appeal to the universal property of kernels to write

(ker(φ); ξ) = ker (A | ker(π))ψ.

We take ψ to be the identity morphism, since it must be a bijection: if
ψ is not injective, ker(φ) would not be injective. If ψ is not surjective,
then it would remove elements in the kernel of (A | ker(π)) from the kernel
of φ. We want every element, since there is no element in the kernel of
(A | ker(π)) which is not in the kernel of φ. The morphism ψ must therefore
be bijective, and we take it to be the identity. The kernel of φ is then given
by (ker(φ); ξ) = ker (A | ker(π)), which is what we wanted to prove.

5.5.2 The cokernel

We now demonstrate how to compute the cokernel morphism.

Theorem 5.14 (Computing the cokernel in FinAb). The cokernel epi-
morphism of a left-free morphism φ : Zn → Zp may be computed as

coker(φ) = coker (A | ker(π)) ,

where ker(π) is computed as remove zero cols(diag(π)) and the outer coker-
nel is computed as a free-to-free cokernel. The target group of the cokernel
epimorphism can be computed using the SNF of (A | ker(π)).

49 5.5. Factoring left-free morphisms in FinAb

Proof.

Zn Zp Zp / im(φ)

Zk Zm Zm / im(φ̃)

φ

A

π−1

coker(φ)

ker(π) coker(φ̃)

π
(5.9)

This proof is in two parts. We will first show that the quotient group
Zp / im(φ), i.e. the target of coker(φ), has the same structure as the tar-
get of the cokernel of a map φ̃ “lifted” to Zm. Then we show that the
mappings coker(φ) and coker(φ̃) are also the same. Diagram (5.9) gives an
overview.

First notice that π is an epimorphism, and has a left-inverse π−1 such that
π
(
π−1(x)

)
= x for every x ∈ Zp. The left-inverse is π−1(x) = x + ker(π)ξ,

with ξ ∈ Zk. We “lift” the mapping from φ : Zn → Zp to φ̃ : Zn → Zm,
by introducing φ̃ = π−1 ◦ φ = Ax + ker(π)ξ as shown in Figure 5.1. The
structures of the quotient groups Zp / im(φ) and Zm / im(φ̃) are identical.
Therefore we may use φ̃, which is free-to-free, to compute the structure of
Zp / im(φ). To do this, we write φ̃ as (A | ker(π)) and compute the target
of the cokernel using the SNF as explained in Section 5.3.3.

Thus we can compute coker(φ̃), and this morphism is in fact identical to
coker(φ). To see why, recall that coker(φ) = coker(φ̃) ◦ π−1, and that

coker(φ̃) ◦ π−1(x) = coker(φ̃)(x+ ker(π)ξ).

Therefore coker(φ) equals coker(φ̃) if ξ can be taken as zero. No finite group
in Zp / im(φ) is of larger order than any finite group in Zp, so changing ξ in
coker(φ̃)(x+ ker(π)ξ) does not change the mapping coker(φ̃) ◦ π−1(x)—the
result is projected to Zm / im(φ̃) ∼= Zp / im(φ) anyway, rendering the choice
of ξ irrelevant.

Both the structure of Zp / im(φ) and the morphism coker(φ) can be com-
puted by using the free-to-free cokernel of (A | ker(π)). In other words,
coker(φ) = coker (A | ker(π)) as claimed.

5.5.3 The coimage

Theorem 5.15 (Computing the coimage in FinAb). The coimage epi-
morphism of a left-free morphism φ : Zn → Zp may be computed as

coim(φ) = coker(ker(φ)),

Chapter 5. Computing factorizations in FinAb 50

Zm

Zp

π

A = (a1, a2)

Figure 5.1: The columns of A generate a subgroup of Zp. The mapping
φ = π ◦ A can be lifted to Zm, where the lifted map is φ̃ = Ax + ker(π)ξ.
Intuitively, this corresponds to “ignoring” the canonical projection π.

where the inner kernel computation is left-free and the outer cokernel com-
putation is free-to-free.

Proof.

Zk Zn Zp

Zn /Zk

ker(φ) φ

coim(φ) im(φ)
(5.10)

We use Definition 5.5 of the coimage epimorphism as it was stated. The
argument of the inner kernel is a left-free morphism, which we already know
how to compute. The monomorphism ker(φ) is free-to-free, and we know how
to compute the cokernel of free-to-free morphisms from Diagram (5.3).

5.5.4 The image

Computing the image morphism requires more cleverness than the coimage
computation. The definition is im(φ) = ker(coker(φ)), but we cannot use
this directly since coker(φ) is not free-to-free in general. The uniqueness of
the coimage/image factorization of φ suggests an alternative route.

Theorem 5.16 (Computing the image in FinAb). Consider the diagram
below, and assume that we know the structure of every group and every

51 5.5. Factoring left-free morphisms in FinAb

morphism except the image morphism.

Zk Zn Zp

Zn /Zk

ker(φ) φ

coim(φ) im(φ)
(5.11)

The image can be computed by going through each canonical generator of
Zn /Zk and computing φ ◦ coim(φ)−1.

Proof. Let im(φ) be an unknown morphism and let im(φ)◦coim(φ) = φ. We
solve this equation for im(φ). Algorithm 4 iterates through every canonical
generator e1, e2, e3, . . . in the quotient space Zn /Zk, solves coim(φ)−1(ei)
using Algorithm 3 and applies φ to the result. Since the factorization always
exists and since Algorithm 3 solves the equation, the algorithm will return
the image morphism.

Algorithm 4: Solving for im(φ)

1 for every ei ∈ canonical generators
(
Zn /Zk

)
do

2 im(φ)i = φ
(
coim(φ)−1(ei)

)
// Solve equation, then apply φ.

3 end
4 im(φ) := (im(φ)1, im(φ)2, . . .) // Concatenate the individual results.

5 return im(φ)

We summarize this section with a concrete example.

Example 5.17 (Factoring a left-free morphism). Consider φ : Z2 →
Z8⊕Z5 given by the matrix A =

(
4 2
7 3

)
. This is a continuation of Example

3.29 on page 19, where we looked at the same set of generators. Figure 3.1
on page 20 provides a visualization of this group. The projection to source
gives φ̃ ∈ hom (Z10⊕Z20,Z8⊕Z5), revealing the orders of the columns to
be 10 and 20.

We form the matrix (A| ker(π)) =
(

4 2 8 0
7 3 0 5

)
, which has a SNF

(
−1 1
3 −2

)

︸ ︷︷ ︸
U

(
4 2 8 0
7 3 0 5

)

︸ ︷︷ ︸
A| ker(π)




0 −1 12 −5
1 3 −28 10
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
V

=

(
1 0 0 0
0 2 0 0

)

︸ ︷︷ ︸
Σ

, (5.12)

Chapter 5. Computing factorizations in FinAb 52

and the inverse matrices are given by

U−1 =

(
2 1
3 1

)
and V −1 =




3 1 −8 5
−1 0 12 −5
0 0 1 0
0 0 0 1


 .

The kernel of φ consists of the first m = 2 rows of the kernel of (A| ker(π)),
i.e. V2 in Diagram (5.3). The kernel of (A| ker(π)) consists of the last
n− r = 4− 2 columns of V . So ker(φ) consist of the first 2 rows in the last
2 columns of V , such that ker(φ) =

(
12 −5
−28 10

)
∈ hom

(
Z2,Z2

)
.

The cokernel is coker(A| ker(π)), which we know from the SNF to be U in
Equation (5.12). We have coker(φ) =

(−1 1
3 −2

)
∈ hom (Z8⊕Z5,Z1⊕Z2).

The coimage is the cokernel of the kernel. Since ker(φ) =
(

12 −5
−28 10

)
, we use

the SNF factorization of this matrix to obtain
(

1 0
−6 1

)(
12 −5
−28 10

)(−2 −5
−5 −12

)
=(

1 0
0 20

)
. The cokernel is U in the SNF, thus the coimage, or cokernel of the

kernel, is U =
(

1 0
−6 1

)
∈ hom

(
Z2,Z1⊕Z20

)
.

The image is solved for using Algorithm 4. Solving
(

1 0
−6 1

)
x =

(
1
0

)
yields

x =
(

1
−14

)
. We compute Ax =

(
4 2
7 3

)(
1
−14

)
=
(−24
−35

)
. This is the first column

generator in the image. We now solve
(

1 0
−6 1

)
x =

(
0
1

)
for x, which yields

x =
(

0
1

)
. Then Ax =

(
4 2
7 3

)(
0
1

)
=
(

2
3

)
, and we obtain im(φ) =

(−24 2
−35 3

)
∈

hom (Z1⊕Z20,Z8⊕Z5).

Based on the computations above, we obtain the following diagram.

Z2 Z2 Z8⊕Z5 Z1⊕Z2

Z1⊕Z20

 12 −5

−28 10



 1 0

−6 1



4 2

7 3

 −1 1

3 −2



−24 2

−35 3



The diagram is cluttered with trivial groups, which provide little information.
To “clean” it, we remove trivial groups and the corresponding rows and
columns of the target and source, respectively. After removing trivial groups,
we project every morphism to source and target using Definitions 5.10 and

53 5.6. Morphisms in Ab

5.11. The result is the following diagram, which contains no trivial groups.

Z5⊕Z2 Z10⊕Z20 Z8⊕Z5 Z2

Z20

 2 5

12 10



(
14 1

)

4 2

2 3

 (
1 0

)

2

3


(5.13)

In Section 7.4 we will re-do this example using the software developed as
part of this thesis. The software solution uses a mere 9 lines of code to
perform all of the preceding computations. y

5.6 Morphisms in Ab

In the previous section we investigated homomorphisms between FGAs in
FinAb. We now turn our attention to homomorphisms between elementary
LCAs (R, T , Z, Zn and direct sums) in Ab, the category of abelian groups.

5.6.1 Homomorphisms represented by a number

Consider φ : H → G and let φ(h) = αh for some number α. We fix H and
G and ask investigate which restrictions must be placed on α for φ to be a
homomorphism. For instance, α must be an integer when G is an FGA. If
it were not, then φ(1) would not map to an element in the target group G.
In addition, φ must be a homomorphism so that φ(h1 +h2) = φ(h1) +φ(h2)
for every h1, h2 ∈ H. In Table 5.1, we show what requirements α must fulfill
for various sources H and targets G if φ(h) = αh is to be a homomorphism.

Source (H)
R T Z Zn

Target (G)

R α ∈ R – α ∈ R –
T α ∈ R α ∈ Z α ∈ R α = k/n, k ∈ Z
Z – – α ∈ Z –
Zm – – α ∈ Z α = mk/ gcd(m,n), k ∈ Z

Table 5.1: Restrictions on α such that the function φ(h) = αh is in
hom(H,G), i.e. φ : H → G is a homomorphism. A dash denotes that
no such α exists.

Chapter 5. Computing factorizations in FinAb 54

There are two requirements: (1) every element which the canonical projec-
tion π maps to 0 in the source must map to 0 is the target, and (2) the
elements φ(h) = αh must be group elements in G for every h ∈ H.

Example 5.18. Consider φ : Zn → T . We must have φ(jn) = αjn ∈ Z for
every j ∈ Zn if φ(0) = 0. If α = 1/n then φ(jn) = j, which is always in Z.
Any integer multiple also works, so α = k/n with k ∈ Z satisfies the criteria
in general. y

5.6.2 Homomorphisms represented by a matrix

Consider the case when φ : H → G is represented by φ(h) = Ah, where
A is an m × n matrix. To verify or disprove that A represents a valid
homomorphism in accordance with Table 5.1, it is necessary to check every
Aij : Gj → Hi, since Hi =

∑
j AijGj by matrix multiplication. If every

Aij : Gj → Hi represents a homomorphism for every Gj ∈ G and Hi ∈ H,
then A : G→ H represents a homomorphism as a whole.

Full factorizations in terms of the kernel, cokernel, image and coimage is
possible and well-understood in the following cases.

• φ : Rn → Rm. This corresponds to the familiar VectR case, in which
we can may the SVD as briefly stated in Section 5.2.2.

• φ : Zn → Zm. This is the case when we have a free-to-free morphism
in FinAb, and the SNF may be used as explained in Section 5.3.3.

• φ : Zq → Zp. This case is computed by first allowing the source to be
free, then using the algorithms given in Section 5.5 on φ : Zn → Zp,
then projecting to source as in Definition 5.10 to compute the orders.

55

Chapter 6

Fourier analysis on locally
compact abelian groups

In the 1930s, the Soviet mathematician Lev Pontryagin proved a duality
theorem for locally compact abelian groups (LCAs). In the decades that
followed, the ideas of Fourier analysis were generalized further by mathe-
maticians such as Laurent Schwartz. He showed that the Fourier transform
can operate on distributions, which are a generalization of the classical func-
tions.

This chapter introduces Fourier analysis on the elementary LCAs R, T , Z
and Zn. We survey Fourier analysis from the group perspective, which
is a relatively abstract approach. Books such as [Ramakrishnan, 1999],
[Reiter, 1968], [R. E. Edwards, 1979] and [Rudin, 1967] provide this perspec-
tive. Our goal is computer representation and computation, so we will not
dwell on topological aspects and questions of convergence. Much of the
content of this chapter is explained in [Munthe-Kaas, 2016] in a very lucid
manner.

6.1 Locally compact abelian groups

The most general setting for Fourier analysis is an LCA. We state the defi-
nition as given in Chapter 1 in [Ramakrishnan, 1999].

Definition 6.1 (Locally compact group). A topological group which is
locally compact and Hausdorff is called a locally compact group. y

A topological group is a group with a continuous binary operation and a
continuous inverse. Intuitively, a topological space is locally compact if

Chapter 6. Fourier analysis on locally compact abelian groups 56

every element has a closed compact neighborhood. A space is Hausdorff
if for any two points x and y, we can find neighborhoods around x and y
such that the two neighborhoods are disjoint. Every group encountered in
this thesis is locally compact. We immediately refer the interested reader to
[Hewitt, 1963] for more on topology, as we will not discuss it further.

In this thesis we are interested in the groups R, T , Z and Zn. These groups
and direct sums of them are called elementary LCAs.

Definition 6.2 (Elementary locally compact abelian group). An el-
ementary locally compact abelian group (LCA) is a group isomorphic to
G = Ra⊕T b⊕Zc⊕Zp, where a, b, c ≥ 0 and p = (p1, p2, . . . , pk) with pi ≥ 1
for i = 1, 2, . . . , k. y

Every LCA encountered in this thesis is elementary, but there exist LCAs
which not elementary.

6.2 Characters and the dual group

In general, the Fourier representation of f : G→ C expresses f as a weighted
linear combination of the characters of G.

Definition 6.3 (Group character). A character of a group G is a contin-
uous homomorphism χ : G → T, where T is the group of complex numbers
with absolute value 1, i.e. T = {z ∈ C | |z| = 1}. y

We now introduce the dual group of a LCA. In linear algebra, the dual
space of a vector space V is the set of all linear functionals τ : V → R, i.e.
V ∗ = {τ : V → R | τ is linear}. The situation for LCAs is analogous: the
dual group of an LCA G is the set of all group homomorphisms χ : G→ T,
i.e. Ĝ = {χ : G→ T | χ is a homomorphism}.

Definition 6.4 (Dual group). The dual group of G, denoted Ĝ, is the set
of all characters on G. These characters themselves form a group. y

The fact that the set of characters of G themselves constitute a group also
has an analogue in linear algebra, where the set of linear functionals V ∗

is a vector space, see for instance [Roman, 2005]. The dual of an elemen-
tary LCA G is isomorphic to an elementary LCA. The dual of a discrete
group is continuous and the dual of continuous group is discrete. The word
compact is a generalization of the concept of finite group to topological
groups. The groups T and Zn are compact, and dual of a compact group

57 6.3. The invariant integral

is non-compact, and vice versa. Specifically R̂ ∼= R, T̂ ∼= Z, Ẑ ∼= T and
Ẑn ∼= Zn. Furthermore, duality “distributes” over direct sums in the sense
that Ĝ⊕H = Ĝ⊕ Ĥ. These and other important properties of duality and
LCAs are reported in [Reiter, 1968].

Definition 6.5 (Dual pairing). The dual pairing (·, ·) of G and the dual
Ĝ is a function (·, ·) : Ĝ×G→ T. Fixing ξ ∈ Ĝ, the functions (ξ, ·) : G→ T
are isomorphic to Ĝ, and vice versa. y

Consider ξ ∈ Ĝ and x ∈ G, then the dual pairing is (ξ, x) = exp (2πi〈ξ, x〉).
The bracket 〈ξ, x〉 is defined as

∑
i ξixi/Ci, similar to a dot product of vectors

apart from the constants Ci. If Gi is compact, then Ci =
∫
Gi

1 dx. If Gi
is non-compact, then Ci = 1. The constant Ci may be thought of as the
volume of Gi.

Example 6.6 (Dual of Z4). Consider the group Z4 = {0, 1, 2, 3}. Clearly
x→ exp(2πix) is a character for every x ∈ Z4. This maps every element of
Z4 to the identity 1, and is called the principal character. Every χξ(x) =
exp(2πiξx/4) for ξ ∈ Z4 is a character, and under multiplication this is a
group isomorphic to Z4. In other words, the dual group of Z4 is Z4, and the
dual pairing is (ξ, x) = exp(2πiξx/4). This example generalizes to Zn. y

The Pontryagin duality theorem states that the dual of Ĝ is isomorphic to G,

i.e.
̂̂
G ∼= G for every LCA G. As stated in [Rudin, 1967]: “Every LCA is the

dual group of its dual group.” Since Ĝ is an LCA, the operation of taking
the dual can be iterated and it can be shown that taking the dual twice is an
isomorphism of topological groups. For proofs, see the introductory chapter
of [Rudin, 1967] or Chapter 3 in [Ramakrishnan, 1999].

6.3 The invariant integral

Definition 6.7 (Translation operator). The translation operator Ta trans-
lates a function f : G → C, such that Ta (f(x)) = f(x − a). The a is an
element in G, and Ta : G × CG → CG where CG is the set of all functions
f : G→ C. y

The translation operator is also referred to as the shift operator or delay
operator. There exists an integral which is invariant under translation.

Definition 6.8 (Invariant integral). On every LCA G there exists a
unique (up to a constant) invariant integral I : CR → C such that I(f) ≥ 0
for non-negative functions f and I(Ta(f)) = I(f) for every a ∈ G. y

Chapter 6. Fourier analysis on locally compact abelian groups 58

The invariant integrals are the usual integral and sum, shown in Table 6.1.
For a readable, but more theoretical introduction to measurable functions,
Lebesgue integration and other related matters, see [C. Gasquet, 1999].

Group Compact Discrete Dual Group Invariant integral 〈·, ·〉
R no no R

∫
R dx ξx

T yes no Z
∫
T dx ξx

Z no yes T
∑

x∈Z ξx
Zn yes yes Zn

∑
x∈Zn

ξx/n

Table 6.1: The elementary LCAs, their properties, duals, invariant integrals
and brackets 〈·, ·〉 in the dual pairing (·, ·) = exp(2πi〈·, ·〉).

6.4 The Fourier transform

We now generalize the Fourier transform to an LCA G.

Definition 6.9 (Fourier transform on an LCA). Let f : G → C be a
sufficiently nice function on an LCA. The Fourier transform of f , denoted
f̂ or F(f), is given by

f̂(ξ) = F (f) =

∫

G
f(x)(ξ, x) dx, (6.1)

where
∫
G · dx is the invariant integral and (ξ, x) = exp (2πi〈ξ, x〉). The bar

denotes complex conjugation. Reconstruction of f is given by

f(x) = F−1(f̂) =
1

C

∫

Ĝ
f̂(ξ)(ξ, x) dξ, (6.2)

where C is the product of
∫
Gi

1 dxi for the compact groups in G = G1⊕G2⊕
· · · ⊕Gn, interpreted as the total volume of the compact groups. y

If G = G1⊕G2⊕· · ·⊕Gn, then the integrals in Equations (6.1) and (6.2) are
interpreted as

∫
G1

∫
G2
· · ·
∫
Gn

. For more on multidimensional extensions of
Fourier transforms, see Chapter 9 in [Vretblad, 2003]. Table 6.2 is adapted
from [Munthe-Kaas, 2016], and gives explicit formulas for the special cases
when G is Rn, Tn, Zn and Zp.

There are connections between the characters, translations, convolutions and
the Fourier transform. The convolution (w ∗ g)(x) =

∫
Gw(a)g(x− a) da is a

weighted sum of translations, since
∫
Gw(a)g(x−a) da =

∫
Gw(a)Ta (g(x)) da.

The characters χξ(x) = exp(2πiξx) are eigenfunctions of the translation op-
erator. We have Ta (χξ(x)) = exp(2πiξa)χξ(x), so χξ(x) is an eigenfunction
and exp(2πiξa) is an eigenvalue.

59 6.5. Pullbacks and pushforwards on groups

G Ĝ 〈·, ·〉 f̂(·) f(·)
Rn Rn

∑n
k=1 xkξk

∫
Rn f(x)(ξ, x) dx

∫
Rn f(ξ)(ξ, x) dξ

Tn Zn
∑n

k=1 xkξk
∫
Tn f(x)(ξ, x) dx

∑
ξ∈Zn f(ξ)(ξ, x)

Zn Tn
∑n

k=1 xkξk
∑

x∈Zn f(x)(ξ, x)
∫
Tn f(ξ)(ξ, x) dξ

Zp Zp
∑n

k=1 xkξk/pk
∑

x∈Zn f(x)(ξ, x) |Zp|−1∑
ξ∈Zn f(ξ)(ξ, x)

Table 6.2: Multidimensional transforms. The Fourier transform, Fourier
series, discrete-time Fourier transform and discrete Fourier transform. Here
every group in Zp = Zp1 ⊕Zp2 ⊕ · · · ⊕ Zpn is of finite order, and (ξ, x) =
exp(2πi〈ξ, x〉).

The first order derivative can be expressed as [f(x)− Th (f(x))] /h as h→ 0.
The convolution theorem states that the Fourier transform diagonalizes the
convolution (w ∗ g)(x) =

∫
Gw(a)g(x − a) da, such that F (w ∗ g) = F(w) ·

F(g). Thinking of the convolution as a weighted sum, the Fourier transform
takes the weight function w(x) to a single point—a notion formalized by
the Dirac delta distribution δ, intuitively defined as a “spike” such that∫
δf(x) dx = f(0).

Fourier transforms are not only defined for classical functions, but also for
the more general distributions. A distribution is defined by it’s action on a
set of suitable test functions. The most common example is δ, which acts
on a test function to “evaluate at zero.” Distributions will not be important
in this thesis, but the curious reader is referred to [C. Gasquet, 1999] for
a complete introduction to distributions, their derivative and their Fourier
transform.

6.5 Pullbacks and pushforwards on groups

We now define the pullback and the pushforward. Pullbacks and pushfor-
ward are also categorical constructions, but here we will employ more con-
crete definitions. The pullback lets us move a function from a group to
another.

Definition 6.10 (Pullback). Let f : G → C be a function and let φ :
H → G be a group homomorphism. The pullback of f along φ is defined as

Chapter 6. Fourier analysis on locally compact abelian groups 60

φ∗(f) = f ◦ φ. In other words, the following diagram commutes.

C

H G
φ

φ∗(f)
f

y

The pullback moves f from the target of φ to its source. The pushforward
accomplishes the opposite, it moves f from the source of φ to its target.

Definition 6.11 (Pushforward). Let f : H → C be a function and let
φ : H → G be a group homomorphism. The pushforward of f along φ is
defined as

φ∗(f)(x) =
∑

h∈S
f(h), where S = {h ∈ H | φ(h) = x} .

If S = ∅ for some x ∈ G, then we take φ∗(f)(x) to be zero. y

The diagram below shows the pushforward of f along φ. In words, we sum
the function values over every h ∈ H such that φ(h) = x, and assign this
value to φ∗(f)(x). We assume that the sum in Definition 6.11 is absolutely
convergent, i.e.

∑
h∈S |f(h)| ≤ ∞, so that the sum converges and the order

of the terms is insignificant.

C

K H G
ker(φ)

f

φ

φ∗(f)

Computationally, we first solve φ(h) = x for any h ∈ H that solves the
equation. This equation can have zero, one, many or an infinite number
of solutions, and is solved using Algorithm 3 from Section 5.4 when the
groups are FGAs. Next we compute ker(φ) and iterate through the elements
v ∈ K to generate solutions to the equation. If a full iteration over K
computationally infeasible, we assume that f(h) decays as ‖h‖ → ∞, and
consequently restrict the sum using a norm. We approximate a sum with
infinite terms by summing over a subset {v ∈ K | ‖v‖ ≤ C}, where ‖·‖ is a
norm and C is a constant. In summary, if φ(h) = x we may approximate
the pushforward φ∗(f)(x) as

φ∗(f)(x) ≈
∑

‖v‖≤C
f (h+ ker(φ)(v)) . (6.3)

61 6.6. Computing pushforwards

6.6 Computing pushforwards

If we are able to generate elements v ∈ K by increasing norm, we can
approximate the sum in Definition 6.11 of the pushforward by the truncated
sum given in Equation (6.3). We could for instance decide on a fixed number
of terms, or adaptively terminate the sum when |f | < ε for some small ε.
We now present an algorithm for generating elements by the infinity norm,
defined as ‖v‖∞ = maxi |vi|.

Problem 6.12 (Generate elements in Zr by infinity norm). Con-
sider Zr, where r is the free rank. We wish to generate every element
v1, v2, v3, · · · ∈ Zr in ordered fashion such that ‖vi‖∞ ≤ ‖vi+1‖∞ for every
i = 1, 2, 3,

The problem is solved by utilizing Algorithm 5. Given a fixed Zr, we apply
the algorithm with C = 1, 2, 3, . . . to generate every element in Zr sorted by
the infinity norm. To motivate the algorithm, first observe that 2r Cartesian
products (or equivalently, lower rank hypercubes) with (2C − 1)r−1 group
elements cover the elements {v ∈ Zr | ‖v‖∞ = C}, which can be thought of
as an r-dimensional cube. Figure 6.1 shows the situation when r = 2.

Z

Z

Z

Z

aa′

b

b′

Figure 6.1: The left part of the figure shows the elements v ∈ Z2 with
‖v‖∞ equal to 0, 1 and 2, separated by dotted lines. The right part of the
figure shows how Algorithm 5 generates elements v ∈ Z2 with ‖v‖∞ = 2.
The elements are contained in 4 1-dimensional hypercubes a, a′, b and b′.
The algorithm iterates over the hypercubes a and b, yielding elements (and
reflected elements from a′ and b′). Care must be taken so as not to yield
corner elements more than once.

The algorithm generates every element in these hypercubes sequentially,
keeping track of boundary elements so as not to yield the same elements more
than once. A hypercube with side length (2C+ 1) has (2C+ 1)r− (2C−1)r

boundary elements. Since (2C+1)r−(2C−1)r ≈ 2r(2C)r−1 by the binomial
theorem, the running time of the algorithm is O

(
r(2C)r−1

)
.

Chapter 6. Fourier analysis on locally compact abelian groups 62

Algorithm 5: Efficiently generating every v ∈ Zr with ‖v‖∞ = C.

Input : Free rank r, norm value C.
Output : Every v ∈ Zr such that ‖v‖∞ = C.

1 for p in [1, 2, . . . , r] do
// Iterate over the r (r − 1)-dimensional hypercubes enclosing the

r-dimensional hypercube.

2 B = [0]× (p− 1) + [1]× (r − p) // Boundary conditions for cube p.

3 for v in×r−1
i=1 [−C +B[i], C −B[i]] do

// Loop over elements v on the r − 1 dimensional

// cube, yield the element and it’s reflection.

4 yield v with C inserted into p’th position
5 yield v with −C inserted into p’th position // Reflection.

6 end

7 end

To solve the problem for a more general Zp, the algorithm can be extended
further. A naive approach would be to use Algorithm 5, project the elements,
and make sure not to yield duplicates by using a lookup table. Such lookups
could be costly in terms of computational time. Consider for instsance that
while there are 6 elements v ∈ Z3⊕Z such that ‖v‖ = 5, there are 40
elements with ‖v‖ = 5 in Z2. Significant reductions in computational time
can be made when the orders of the groups in Zp are small compared to C.

Three modifications were applied to Algorithm 5 to construct an efficient
algorithm for Zp: (1) hypercubes “outside” of Zp are immediately discarded,
(2) if the size of a hypercube may be reduced by the structure of Zp, this
is done before iteration of elements starts (the inner for-loop), and (3) if a
reflection “wraps around” in Zp it is not yielded twice. This more general
algorithm is implemented in the software, see Appendix A.

6.7 Dual homomorphisms

We now introduce the dual homomorphism, which is analogous to the adjoint
in linear algebra.

Definition 6.13 (Dual homomorphism). Given φ : H → G, the dual
homomorphism φ̂ : Ĝ→ Ĥ is the adjoint with respect to the dual pairing.

(ĝ, φ(h))G = (φ̂(ĝ), h)H

63 6.7. Dual homomorphisms

ĥ ∈ Ĥ Ĝ 3 ĝ

h ∈ H G 3 g

φ̂

φ

In the diagram above, the lines denote dual pairs of groups. y

In linear algebra over R, the adjoint is the transpose, since 〈x,Ay〉 =
〈ATx, y〉. For details about adjoints in linear algebra, see [Roman, 2005].

Proposition 6.14 (Dual of a homomorphism between FGAs). Con-
sider a homomorphism between FGAs φ : Zq → Zp given by a matrix A.
We index the elements as shown in the diagram below.

ĥ ∈ Ẑq Ẑp 3 ĝ

h ∈ Zq Zp 3 g

φ̂

φ

If φ(h) = Ah, then φ̂(ĝ) = diag(q)AT diag(p)ĝ.

Proof. Recall that the pairing (ĝ, g)Zp is given by exp (2πi〈ĝ, g〉), or more

explicitly as exp
(

2πi
∑

j ĝjgj/pj

)
. We write this in matrix notation as

exp
(
2πiĝT diag(1/p)g

)
. If the j’th group in Zp is Z, then we take the j’th

diagonal entry to be 1. If the j’th group is Zpj , then we take j’th diagonal

entry to be pj . We assume that φ̂(ĝ) = Bĝ for some matrix B. Comparing

(ĝ, φ(h))Zp = exp
(
2πiĝT diag(1/p)Ah

)
with

(φ̂(ĝ), h)Zq = exp
(
2πi(Bĝ)T diag(1/q)h

)

we observe that

ĝT diag(1/p)Ah = ĝTBT diag(1/q)h

This implies that diag(1/p)A = BT diag(1/q), and solving for B yields
diag(q)AT diag(p).

We will now investigate how the Fourier transform behaves under a change of
variables. The following theorem is found in Chapter 4 of [Madisetti, 2009].
Though the theorem concerns morphisms φ : Rn → Rn, factors proportional
to determinants also appear when sampling with φ : Zn → Rn. In general
the factors also depend on how dual pairings and Fourier transforms are
defined.

Chapter 6. Fourier analysis on locally compact abelian groups 64

Theorem 6.15 (Change of variables in the Fourier transform). Let
f(g) be a function on G = Rn with Fourier transform f̂(ĝ) on Ĝ = Rn.
Suppose that φ : H → G is a homomorphism, where H = Rn. Assume that
φ is represented by a matrix A with det(A) 6= 0, i.e. φ is a bijection. If we
change variables f(g) 7→ f(h), then the Fourier transform scales according
to f̂(ĝ) 7→ |det(A)| f̂(ĥ).

Proof. By the definition of the Fourier transform we know that f̂(ĝ) =
F(f(g)) =

∫
G f(g)(ĝ, g) dg. Changing variables according to g 7→ h gives

∫

G
f(h)(ĝ, g) dg =

∫

G
f(φ−1(g))(ĝ, g) dg =

∫

G
f(φ−1(g))(ĝ, φ(h)) dg =

∫

G
f(h)(φ̂(ĝ), h) dg =

∫

H
f(h)(ĥ, h) |det(A)| dh = |det(A)| f̂(ĥ),

where we used the defining property of the dual homomorphism, and the
Jacobian of φ to change variables in the multidimensional integral.

Theorem 6.16 (Fundamental duality theorem of LCAs). The follow-
ing diagram commutes. If φ is an epimorphism, then its dual is a monomor-
phism, and vice versa.

Ĥ Ĝ K̂

H G K

φ̂ ψ̂

φ ψ

The theorem above is found in Section 3 in [Munthe-Kaas, 2016], where
related concepts such as chain complexes and short exact sequences are also
discussed. Another source for duality of subgroups and quotients is Chapter
4 in [Reiter, 1968].

Definition 6.17 (Annihilator homomorphism). The annihilator homo-
morphism of φ : H → G is the kernel of the dual of φ, as depicted in the
diagram below.

Ĥ Ĝ K̂

H G K

φ̂ φ⊥

φ coker(φ)

The annihilator of φ is denoted φ⊥. y

65 6.8. Sampling and periodization

The annihilator of φ “annihilates” the dual pairing in the sense that

(φ⊥(k̂), φ(h))G = 1

for every k̂ ∈ K̂ and h ∈ H. To see this, we use the defining property of
the dual homomorphism to write (φ⊥(k̂), φ(h))G as (φ̂(φ⊥(k̂)), h)H . Notice
that the composition φ̂ ◦ φ⊥ maps to 0 ∈ H by the definition of the kernel
morphism, and thus (0, h)H = 1 for every h ∈ H and k̂ ∈ K̂ as claimed.
In the following section we will define lattices, and observe that when φ
generates a lattice, φ⊥ generates a dual (or reciprocal) lattice.

6.8 Sampling and periodization

The FFT algorithm for the DFT is used in practical numerical computations.
To make use of its O(n log(n)) runtime, the problem must be moved to a dis-
crete, compact domain, i.e. Zp with pi ≥ 1. As done in [Munthe-Kaas, 2016],
we will employ pullbacks and pushforwards of functions to “move” f(x) to
Zp. Pullbacks along monomorphisms will sample f , while pushforwards
along epimorphisms will periodize f(x). We first consider Fourier analysis
on T d, then on Rd.

6.8.1 Fourier analysis on T d

In order to approximate the Fourier series coefficients of a function f(x)
defined on T d, sampling is necessary to bring the function to Zp where DFT
can be used. Sampling is done using a monomorphism φ, which defines a
subgroup of T d. The subgroup defined by φ is a lattice, which we define as
follows.

Definition 6.18 (Lattice). A lattice is a discrete and closed subgroup H <
G such that G/H is compact. y

In the language of morphisms, when φ : H → G is a lattice, then coker(φ) :
G→ H/ im(φ) maps to a compact group. Two examples are given by

Zd Rd T d and Zd Zd Zq,
φ coker(φ) φ coker(φ)

where T d and Zq are compact. Lattices are used in areas such as crystal-
lography and multiple integration. Using a lattice to approximate a multi-
dimensional integral corresponds to the evaluation of f̂(0), i.e. evaluating
the Fourier transform in the origin. Lattice integration makes use of Fourier
analysis as well as group theory, see for instance [Sloan and Joe, 1994].

Chapter 6. Fourier analysis on locally compact abelian groups 66

To approximate Fourier coefficients, we follow the arrows in Diagram (6.4):
(1) first we sample to Zp using a pullback of f(x) along φ, (2) then we
compute the Fourier transform using the DFT, and (3) finally we move the
coefficients from Zp to Zd.

Zp Zd

Zp T d

σ

φ̂

φ

Zp Zd

Zp T d

transversal

FFT

periodize

sample

(6.4)

To interpret the Fourier coefficients on Zd, we employ a transversal mor-
phism σ, which we now define.

Definition 6.19 (Transversal of an epimorphism). A transversal of
an epimorphism φ : H → G is a map σ such that (φ ◦ σ)(g) = g for every
g ∈ G. In other words, σ is a left-inverse of φ. y

In category theory, a morphism with this property is called a section. A
transversal is in general not a homomorphism. We used a transversal in the
code example in Section 2.2, where we investigated f(x) = x on T . At the
time, we did not discuss the choice of the transversal σ, which is what we
will examine now.

6.8.2 The Voronoi transversal

Consider again an epimorphism φ : H → G and a transversal σ : G → H.
In the two-dimensional, orthogonal case elements are typically mapped as
shown in Figure 6.2. This function is called fftshift is MATLAB and
in Python1, and it is fast to compute. The elements of G = Zn⊕Zn are
mapped to H = Z⊕Z so that they are close to the origin. In the lan-
guage of group theory, the transversal picks a coset representative. In signal
processing, this is called de-alisaing.

In general, the Voronoi transversal is a natural choice. Intuitively, the
Voronoi transversal maps the coefficients such that the sampled points are
interpolated using low-frequency complex exponentials (as opposed to high-
frequency ones) in the Fourier reconstruction. Geometrically, this amounts
to mapping elements in such a way that they end up close to the origin,
which is made concrete in the following definition.

1More specifically, the Numpy library for numerical computing in Python.

67 6.8. Sampling and periodization

Zn Z

Zn Z
a b

c d ab

cd

Figure 6.2: When interpreting coefficients sampled orthogonally, a function
on Zn⊕Zn is typically moved to Z2 by shifting the areas a, b, c and d as
shown in the figure. The black dots indicate corners close to the origin.

Definition 6.20 (Voronoi transversal). Consider the following diagram,
where ker(φ) defines a lattice in H.

G H K
σ

φ ker(φ)

The Voronoi transversal maps g ∈ G to a h ∈ H such that

‖σ(g)‖ ≤ ‖σ(g)− ker (φ) (k)‖

for every k ∈ K. The image of σ is a polyhedron around the origin in H. y

In crystallography, the image of the Voronoi transversal is a Wigner–Seitz
primitive cell in the lattice generated by ker(φ). The Wigner–Seitz primitive
cell contains exactly one lattice point, the origin, such that every point in
the cell is closer to the origin than neighboring lattice points. For more
about lattices, reciprocal lattices and cells in the context of crystallography,
see Chapter 6 in [Christopher. Hammond, 2009]. We will say more about
reciprocal lattices, which are generated by the annihilator morphism, in the
next section.

Algorithm 6 gives a high-level account of how to compute a general Voronoi
transversal as given in Defintion 6.20. In line 1 we solve φ(y′) = x. If
φ : Zd → Zp, then φ is left-free and Algorithm 3 on page 45 can be used. If
φ : Rd → T d, then a linear algebra solver can be used. The algorithm uses
ker(φ) to generate neighboring solutions and shifts the solution to minimize
a norm ‖·‖ : H → R≥0.

6.8.3 Fourier analysis on Rd

To interpret a function on Rd as a function on Zp we must sample and
periodize. This is done with a pullback and a pushforward, as shown in the

Chapter 6. Fourier analysis on locally compact abelian groups 68

Algorithm 6: Computing the Voronoi transversal.

Input : Epimorphism φ : H → G, element x ∈ G.
Output : Element y ∈ H which minimizes norm and solves φ(y) = x.

// Solve using linear algebra routine or equation solver for FinAb.

1 Solve φ(y′) = x for some solution y′ ∈ H.
2 Compute the kernel of φ.
// Find group elements in the source of the kernel to generate

alternative, nearby solutions with respect to y′.

3 K := {k ∈ source (ker(φ)) | ‖k‖∞ ∈ {0, 1}}
// Find the k ∈ K which minimizes a norm.

4 k∗ := argmink∈K ‖y′ − ker(φ)(k)‖
// Shift to the minimizing solution and return.

5 return y′ − ker(φ)(k∗)

diagram below. Periodizing first and then sampling would yield the same
result.

C

Zp Zd Rd

φp∗(φ∗s(f))

φ∗s(f)

φsφp

f

We now examine Diagram (6.5), which describes sampling, periodization,
dualizing and interpretation of the result. The homomorphism φs defines a
sampling lattice in Rd. The homomorphism ker(φp) defines a periodization
lattice in Zd with cokernel φp, and pushforward along φp periodizes the (now
sampled) function. The composition φs ◦ ker(φp) defines a sub-lattice of φs
in Rd, which is sometimes referred to as the periodization lattice.

Zd

Zp Zd Rd T d

Zp T d Rd Zd

ker(φp)

φs ◦ ker(φp)

φp φs coker(φs)

ker(φp)⊥

σ

φ̂s φ⊥s

(6.5)

We turn our attention to the bottom row, representing the dual space. The
homomorphism ker(φp)

⊥ defines the dual sampling lattice, which is the an-
nihilator of the primal periodization lattice. Dually, the homomorphism φ⊥s

69 6.9. Hexagonal Fourier analysis in R2

defines the dual periodization lattice, which is the annihilator of the primal
sampling lattice. In Chapter 4 of [Madisetti, 2009], the author uses sam-
pling and periodization lattices along with so-called lattice combs to prove
this result. The dual lattice is also referred to as the reciprocal lattice in
literature.

To interpret f̂(ξ) on as a function on Rd we use the composition σ◦ker(φp)
⊥ :

Zp → Rd. The scaling must be accounted for by the factors |det(φs)| and
|det(ker(φp))|, and may also vary slightly depending on which definition of
the DFT that is used. Diagram (6.5) is inspired by a similar diagram in
Section 3.8 on lattice rules in [Munthe-Kaas, 2016], and in the following
section we will examine the diagram in a more concrete setting.

6.9 Hexagonal Fourier analysis in R2

In this section Fourier analysis on Rd will be made concrete by considering
the hexagonal lattice on R2. We introduce the hexagonal lattice, show how
to sample and periodize a function on such a lattice, review some recent
research in this area and briefly examine lattices in R3.

6.9.1 The hexagonal lattice

Hexagonal sampling is optimal in R2 in the following sense: there is no
sampling pattern that requires fewer sample points to reconstruct a band-
limited2 function with an isotropic spectrum. Intuitively, this is because a
circle inscribed in a hexagon almost fills the hexagon, and the hexagons tile
the plane, as seen in Figure 6.3. The efficiency of the hexagonal lattice is
90.8%, while a square orthogonal lattice only achieves 78.5%. Other advan-
tages include greater angular resolution, higher symmetry and equal distance
to all neighboring points. For an overview of the advantages of hexagonal
lattices, the reader is referred to [Xiangjian He and Wenjing Jia, 2005].

While hardware supporting hexagonal image processing and display is scarce,
extensive research has been conducted on hexagonal sampling. Detailed in-
formation about sampling, convolution, and computing the FFT on a hexag-
onal lattice is found in [Mersereau, 1979]. The author recognizes that the
hexagonal pattern is a special case of a skewed sampling raster, as seen in
rightmost part of Figure 6.3. He also states that “any sample which is a
member of one fundamental period can be exchanged for the corresponding
point in another fundamental period,” and recognizes that a fundamental

2A function is band-limited if it’s Fourier transform is zero outside of a region of finite
support.

Chapter 6. Fourier analysis on locally compact abelian groups 70

x1

x2

g1

g2

Figure 6.3: The figure on the left shows part of a plane tiled with hexagons.
The middle figure shows the generators g1 and g2 and the plane axes x1 and
x2. The figure to the right shows the parallelogram spanned by g1 and g2,
which is a fundamental domain, or fundamental period.

period can be a parallelogram or a hexagon, as shown in Figure 6.4. Infor-
mally, a fundamental period may be thought of as a geometric shape which
constitutes a periodic tiling of the plane, or a general d-dimensional space.

a

b

c

d

a

b

c

d

b

c

d(1, 0)

(1/2,
√
3/2) (3/2,

√
3/2)

(0, 0)

Figure 6.4: The figure on the left shows generators for a hexagonal lattice.
The middle and right figure show that the fundamental period may be taken
to be a hexagon or a parallelogram, since they both tile R2.

We will now periodize and sample a function on R2 using a hexagonal lattice.
Diagram (6.6) below shows the setup for Fourier analysis with hexagonal
sampling in a parallelogram. We wish to be concrete, so we use matrices A
and S notationally and explicitly give entries for the matrices. In Section 7.6
we will use software created as part of this thesis to compute every morphism

71 6.9. Hexagonal Fourier analysis in R2

in the diagram when A and S are known.

Z2

Zm⊕Zn Z2 R2 T 2

Zm⊕Zn T 2 R2 Z2

A

SA

coker(A) S coker(S)

A⊥

σ

Ŝ S⊥

(6.6)

The matrices in Diagram (6.6) are given by the following equations. In these
cases, the dual is the transpose and the annihilator is the transpose of the
inverse. This is not the case for homomorphisms between general FGAs, as
we saw in Proposition 6.14.

S =

(
1 1/2

0
√

3/2

)

coker(A) =

(
1 0
0 1

)
A =

(
m 0
0 n

)

Ŝ =

(
1 0

1/2
√

3/2

)

A⊥ =

(
1/m 0

0 1/n

)

S⊥ =

(
1 0

−
√

3
3

2
√

3
3

)

As explained in the previous section, we sample and periodize f(x) on R2 by
a pullback along S followed by a pushforward along coker(A). On Zm⊕Zn
we use a standard multidimensional FFT implementation of the DFT to
move to the bottom row of Diagram (6.6). To interpret the results, we map
the coordinates on Zm⊕Zn using σ◦A⊥, where σ is the Voronoi transversal.
Scaling proportional to |det(S)|must be applied to the approximated Fourier
coefficients.

6.9.2 Research on hexagonal lattices

In [Ehrhardt, 1993], the author describes a hexagonal FFT with rectangular

output. He samples with S =
(

2d/
√

3 −d/
√

3
0 d

)
and periodizes with A =

(
N1 N2/2
0 N2

)
. The output is rectangular since the product SA is a diagonal

matrix. To see this, notice that matrix given by S⊥ is a transversal of Ŝ, since
S⊥ is a left inverse such that S⊥◦Ŝ = IdT 2 . Interpretation of the coefficients
can be done with σ◦A⊥ = S⊥◦A⊥ = S−T ◦A−T = (SA)−T , which is diagonal
when SA is diagonal; and therefore the output is rectangular.

In [Vince and Zheng, 2007], the authors show how to reduce DFT computa-
tions on an arbitrary lattice in Rd to the standard multidimensional FFT.
They introduce lattices generated by matrices L and L0, and state that if

Chapter 6. Fourier analysis on locally compact abelian groups 72

the quotient L/L0 has divisors N1, N2, . . . , Nd, then the DFT can be com-
puted using the FFT. This amounts to finding a diagonal integer matrix
D = diag (N1, N2, . . . , Nd) in the left part of Digram (6.7) below, which is
done using the SNF in the paper. Comparing their approach to our own,
their D is our A, their sampling matrix L is our S, and so forth. This is
shown in Diagram (6.7) below. While the authors search for a diagonal D,
we chose our A to be diagonal.

Z2 Z2

Z2 R2 Z2 R2

L0
D

SA
A

L S

(6.7)

In [Birdsong and Rummelt, 2016] the authors consider a hexagonal FFT
using an array set addressing (ASA) coordinate system, which describes a
hexagonal grid as two interleaved rectangular arrays, see the left part of
Figure 6.5. The authors express the FFT in the ASA coordinate system,
and show that it can be computed using standard FFT routines.

An approach to the problem in line with the theory presented in this thesis
would be different. The data is already sampled and periodized, and can
interpreted as shown on the right in Figure 6.5, since both shapes are funda-
mental periods. The parallelogram data can be mapped to Zn⊕Zn, where
the FFT is available. Interpretation may then be done as in the bottom row
of Diagram (6.6)—by using the annihilator of the parallelogram periodicity
matrix and a transversal of the the dual sampling homomorphism.

Figure 6.5: The figure on the left demonstrates how a hexagonally sampled
rectangular area may be thought of as two interleaved rectangular arrays.
The figure on the right shows how the shape can be interpreted as a paral-
lelogram by changing the fundamental domain

6.9.3 Lattices in R3 and beyond

Four years after publishing a thorough paper on hexagonal sampling in R2,
Mersereau published a paper on Fourier analysis on periodically sampled
multidimensional signals, see [Mersereau and Speake, 1983]. He summarizes
by stating that “almost anything that can be done in the one-dimensional

73 6.9. Hexagonal Fourier analysis in R2

case or the rectangular multidimensional case can be generalized.” His con-
clusion seems correct. In more recent papers, authors typically consider
special cases, derive FFTs in novel ways, or attempt to speed up algorithms.

Just as in R2, orthogonal sampling is sub-optimal for isotropically band-
limited functions. The optimal lattice is the body-centered cubic (BCC),
which is 29.3% more efficient than naive, orthogonal sampling. The face-
centered cubic (FCC) is also a viable contestant, but it is not as efficient as
the BCC lattice. The lattices are generated by the matrices

SFCC =




1 1 0
0 1 1
1 0 1


 and SBCC =




2 0 1
0 2 1
0 0 1


 ,

which are given in [Zheng and Gu, 2014]. These two lattices constitute a
reciprocal pair: when a FCC lattice is used for sampling, the annihilator is
a BCC lattice, and vice versa.

As the number of dimensions increase, the Voronoi cells become increasingly
complex. The Voronoi cell for the BCC lattice is a truncated octahedron,
and the Voronoi cell for the FCC lattice is a rhombic dodecahedron, see Fig-
ure 6.6. In higher dimensions, general algorithms for the Voronoi transversal
(such as the one presented on page 68) suffer from the curse of dimensionality
and are increasingly slow as a result. The orthogonal case is computationally
fast due to algorithms such as fftshift. A middle ground may be achieved
if one computes transversals “by hand” for specific, non-orthogonal cases,
as is done in [Zheng and Gu, 2014].

Figure 6.6: Left: truncated octahedron. Right: rhombic dodecahedron.

To summarize, the well-known ideas, algorithms and interpretations of the
one-dimensional case are available in higher dimensions. Orthogonal sam-
pling is not optimal, but it is still the popular choice. The popularity is
likely due to a combination of existing hardware, ease of interpretation and
simple, efficient Voronoi transversal via routines such as fftshift.

Chapter 7. The abelian software library 74

Chapter 7

The abelian software library

The primary goal of this project is to create software for computations on
elementary LCAs. The result of this endeavor is abelian, an open-source
Python library. We spend the first section of this chapter briefly discussing
Python, it’s popularity and some principles of software development.

We give a detailed introduction of abelian: the purpose and philosophy, an
overview of features and objects, and several computational examples with
code. Most mathematical objects and definitions presented in this thesis are
implemented in the library using three classes: LCA, HomLCA and LCAFunc.

7.1 Scientific programming and Python

The Python programming language was developed in the early 1990s by
Guido van Rossum. It’s a high-level, object-oriented language which is
perhaps best known for it’s readability and portability. Scientists are in-
creasingly adopting Python. An example of it’s popularity comes from the
programming website Stack Overflow, where the Python question-tag has
overtaken every other major programming language in high-income coun-
tries, see [Robinson, 2017].

In a talk at the PyCon 2017 conference, Jake Vanderplas attributes the
popularity to (1) a high degree of interoperability with other programming
languages, (2) a “batteries included” philosophy and great number of high
quality third party libraries, (3) the simplicity and dynamic nature of Python
and (4) it’s open ethos, making it well fit to science. See [VanderPlas, 2017]
for more on the popularity of Python.

We now mention two Python software projects which abelian depends on.
Numpy is a library which implements homogeneous n-dimensional arrays fa-

75 7.2. Principles of software development

cilitating efficient numerical computations, see [Walt et al., 2011] for details.
Sympy is a library for symbolic computations with mathematical objects
such as variables, functions, matrices, and so forth, see [Meurer et al., 2017].
Both of these are examples of the many popular scientific Python libraries.

abelian was written in Python because (1) the author had some prior knowl-
edge of the language, (2) implementations of FFTs and a matrix-class were
available through Numpy and Sympy respectively and (3) Python is free,
popular and has a package management system, all of which increase the
chance of others using abelian in the future.

7.2 Principles of software development

In [Buckheit and Donoho, 1995], it was stated that:

“An article about computational science in a scientific publication is not
the scholarship itself, it is merely advertising of the scholarship. The ac-
tual scholarship is the complete software development environment and the
complete set of instructions which generated the figures.”

A similar philosophy to the above has been guiding the work with abelian.
Software hastily developed and merely attached as an appendix in a thesis
has little chance of ever being found, let alone used, by anyone. In an
attempt to create high-quality software, the following principles have been
guiding the project.

• Object orientation – While Python does not force object orientation,
it is still an object oriented language. It seems natural to make use
of object oriented features when representing mathematical objects
in software, at least to the extent that it increases readability and
improves structure. Object orientation also makes it easier for users
to incorporate the objects in their own projects, and to further extend
the code.

• Testing – Many modern software projects include a test suite. Test
driven development is a common way to write software, in which the
tests are written before the actual code. In Python there are libraries
which make testing easier, such as the unittest and doctest libraries.
A unit test is a test for a small portion of the code, and a doctest is a
test which is part of the documentation.

• Documentation – Documentation is a broad term which incorpo-
rates consistent naming conventions, descriptive variables names, in-
line comments in the code, docstrings for functions and methods, in-
stallation instructions for the users, tutorials, and so forth. Conven-

Chapter 7. The abelian software library 76

tions exist for all of the above, and the Python community puts high
value on documentation and code readability.

• Distribution – There exists an official Python package index, and
uploading code to it is free. Once published, anyone can install, re-
move and upgrade the software by executing a single command in the
terminal. By publishing the source code on a public repository such
as Github, the project can be shared and improved efficiently.

For more information about the Python language and object orientation, the
reader is referred to [Ramalho, 2015]. A Python book which includes chap-
ters on testing, documentation and distribution is [Alchin and Browning, 2014].
For more details, see [Kristian. Rother, 2017], which describes testing and
debugging in great detail.

7.3 Introducing abelian

The goal of this project was to write a software library for computations on
elementary LCAs. The end result is the abelian software library, written
in Python, open sourced on Github and distributed on the Python package
index.

• Github – https://github.com/tommyod/abelian/

• Python package index – https://pypi.org/project/abelian/

• Documentation – http://abelian.readthedocs.io/en/latest/

The following sections give an overview of abelian. We start with the
purpose and philosophy, give an overview of the most important software
components, and give several example computations.

7.3.1 Purpose and philosophy

The purpose of the abelian library is to provide the end-user with a free,
comprehensible interface to mathematical objects such that computations on
elementary LCAs can be performed. More specifically, the software provides
a framework for the following:

• Computations on the elementary LCAs, i.e. R, T , Z and Zn and direct
sums of these groups.

• Sampling and periodization of continuous functions and interpreta-
tions of sampled values onto continuous groups. Numerical computa-
tions are performed on discrete groups of finite order using the FFT.

• Sampling functions on continuous groups on arbitrary lattices.

https://github.com/tommyod/abelian/
https://pypi.org/project/abelian/
http://abelian.readthedocs.io/en/latest/

77 7.3. Introducing abelian

• The software should reflect the mathematical theory.

In Section 7.2 we examined principles for software development. abelian

adheres to those principles in the following ways:

• Object orientation is used throughout the software. Class methods are
categorized as fundamental, derived and miscellaneous. Fundamental
methods are those which correspond to mathematical definitions, de-
rived methods are based on the fundamental ones, and the remaining
are miscellaneous methods.

• More than 150 tests were written, where approximately 50 are stochas-
tic and the remaining 100 are deterministic. The stochastic tests guard
against human errors in proofs and code. The deterministic tests allow
for efficient backtesting when new features are added, making sure no
functionality breaks.

• The documentation is found in the source code, and is also published
on the web. Every function has a description, a list of input and output
arguments and types, and one or several examples. Tutorials covering
the main features have been written.

• The source code is distributed on Github, and the projected is up-
loaded to the Python package index, so that users may download it to
their computers effortlessly.

7.3.2 Software overview

The library consists of two packages, the main package abelian and a sub-
package named abelian.linalg with linear algebra functions.

LCA

HomLCA

LCAFunc

abelian.linalgabelian

hermite normal form

smith normal form

numpy.fft sympy.Matrix

Figure 7.1: A diagram of the main components of abelian. Arrows are
read as “imports from”, class names are capitalized and external software
dependencies are contained in dashed boxes.

abelian.linalg is a collection of linear algebra functions which are built on
the sympy.Matrix class, which supports arbitrary precision integer matrices.
Here, algorithms such as the SNF and HNF are implemented, along with
many utility functions and factorization functions for free-to-free morphisms
based on the SNF.

Chapter 7. The abelian software library 78

abelian imports functions from abelian.linalg. Many of the class meth-
ods in abelian call functions in abelian.linalg to perform matrix com-
putations, this helps separate the “what” from the “how.” The typical user
will primarily interact with the objects defined in abelian, but working with
abelian.linalg directly is also possible if a user is interested in computing
matrix factorizations directly. The three main classes defined in abelian

are LCA, HomLCA and LCAFunc. Each class represents a mathematical object,
as depicted in Diagram (7.1) below.

C C

H G LCA LCA
φ

f

HomLCA

LCAFunc (7.1)

We now present the main classes, along with a short description and a list of
the fundamental methods defined in each class. More details are contained
in the software documentation in Appendix B.

• LCA - Elementary LCA.

– Elementary LCAs are implemented up to isomorphism. Both
homomorphisms φ : H → G and functions f : G→ C require an
LCA instance to be defined. Some LCAs are also FGAs.

– Fundamental methods: initialization of the identity object, direct
sums, equality checking, whether two LCA instances are isomor-
phic, whether or not an LCA is an FGA, projection of group
elements onto LCAs.

• HomLCA - Homomorphism between two LCAs, i.e. φ : H → G.

– Homomorphisms are created using a matrix representation, a
source LCA and a target LCA. If no source/target is given, the
software will implicitly assume a free FGA as source and target.

– Fundamental methods: initialization of the identity morphism,
the zero morphism, composition, dual homomorphisms, evalua-
tion, diagonal, horizontal and vertical stacking, element-wise ad-
dition and multiplication. Methods for computing the kernel,
cokernel, image, coimage.

• LCAFunc - A function f : G→ C from an LCA to C.

– To create an LCAFunc instance, an LCA instance is needed as a
domain, and a function representation is needed. A function is
typically represented as an evaluation rule, but a representation
based on n-dimensional table values is an option if the domain is
discrete and compact.

79 7.4. Example 1: Factoring a homomorphism

– Fundamental methods: evaluation, shifts, pullbacks, pushforwards,
pointwise operators, composition.

7.4 Example 1: Factoring a homomorphism

We now re-do Example 5.17 on page 51, where we found the kernel, cokernel,
image and coimage of φ : Z2 → Z8⊕Z5 given by the matrix A =

(
4 2
7 3

)
. We

use the HomLCA class and the LCA class.� �
1 # Import the classes and create a homomorphism

2 from abelian import HomLCA , LCA

3 target = LCA([8, 5]) # Create Z_8 + Z_5

4 phi = HomLCA ([[4, 2],[7, 3]], target = target)

5

6 # Compute cokernel , then remove trivial groups

7 cokernel = phi.cokernel ().remove_trivial_groups ()

8

9 # Compute image , then remove trivial groups

10 image = phi.image().remove_trivial_groups ()

11

12 # Compute coimage , remove trivial , then project

13 coimage = phi.coimage ().remove_trivial_groups ()

14 coimage = coimage.project_to_source ()

15

16 # Project phi , compute kernel

17 phi_projected = phi.project_to_source ()

18 kernel = phi_projected.kernel ().project_to_source ()

19

20 print(kernel)

21 # source: [Z_5 , Z_2] target: [Z_10 , Z_20]

22 # Matrix ([[2, 5], [12, 10]])� �
Notice in the code above that every object is immutable—the methods re-
turn new HomLCA instances instead of modifying existing object instances.
We have computed every morphism in the following diagram, which was
first introduced on page 53.

Z5⊕Z2 Z10⊕Z20 Z8⊕Z5 Z2

Z20

 2 5

12 10



(
14 1

)

4 2

2 3

 (
1 0

)

2

3



Chapter 7. The abelian software library 80

7.5 Example 2: Fourier series approximation

In Section 2.2 we approximated the Fourier series coefficients of f(x) = x
defined on T . In Example 3.38 on page 24 we found the analytical solution.
We will now use abelian to obtain approximated Fourier coefficients for
f(x) = x1 +x2 defined on T 2. The example is similar, but two dimensional—
notice how easily the code generalizes to several dimensions. The code will
be guided by the following diagram, which was introduced as Diagram (6.4)
on page 66 in a more general setting.

Zn⊕Zn Z2

Zn⊕Zn T 2

σ

φ̂

φ

In the following code, we first define f(x) = x1+x2 on T 2, then we define the

sampling monomorphism φ by
(1/10 0

0 1/10

)
. We compute the pullback φ∗(f)

and dualize using the DFT. Finally, we must use σ to move from Zn⊕Zn
to Z2. A user might specify their own σ, but if no σ is explicitly given the
software will use the Voronoi transversal.� �

1 # Import objects , create function on T^2

2 from abelian import HomLCA , LCA , LCAFunc

3 from sympy import Rational , diag

4 T = LCA(orders = [1], discrete = [False])

5 func = LCAFunc(lambda x: sum(x), domain = T∗ ∗ 2)

6

7 # Create homomorphism to sample function

8 n = 10

9 Z_n = LCA(orders = [n], discrete = [True])

10 phi = HomLCA(diag(Rational(1, n), Rational(1, n)),

11 target = T∗ ∗ 2, source = Z_n ∗ ∗ 2)

12

13 # Sample , dualize

14 func_sampled = func.pullback(phi)

15 func_sample_dual = func_sampled.dft()

16

17 # Transversal - minimizes distance

18 func_dual = func_sample_dual.transversal(phi.dual())� �
The code above generated the data which was used to produce Figure 7.2.

81 7.6. Example 3: Hexagonal Fourier analysis

x
1

0

1

2

x2

0

1

2

f(x) = x1 + x2 on T 2

ξ
1

−6

0

6

ξ2

−6

0

6

|f̂(ξ)| on Z2

Figure 7.2: The plot on the left shows f(x) = x1 + x2 on T 2, shown on
R2 to emphasize the periodicity. The plot on the right shows the absolute
value of the approximated Fourier coefficients on Z2. Sampling was done
with n = 10 orthogonal sample points in each direction.

7.6 Example 3: Hexagonal Fourier analysis

Hexagonal Fourier analysis was introduced in Section 6.9. The following
diagram was first introduced on page 71 as Diagram (6.6).

Z2

Zm⊕Zn Z2 R2 T 2

Zm⊕Zn T 2 R2 Z2

A

SA

coker(A) S coker(S)

A⊥

σ

Ŝ S⊥

We saw in Example 3.41 on page 26 that the Gaussian is invariant under
Fourier transforms. We will use abelian to define a Gaussian on R2, sam-
ple, periodize and interpret the results using a Voronoi transversal as per
Definition 6.20. The first part of the code is similar to the code introduced
in Section 2.3 in the Preview chapter.� �

1 # Import objects , create function on R^n

2 from abelian import HomLCA , LCA , LCAFunc , voronoi

3 R = LCA(orders = [0], discrete = [False])

4 k = 0.33 # Decay of exponential

5 func_expr = lambda x: exp(-k∗ sum(x_j ∗ ∗ 2 for x_j in x))

6 func = LCAFunc(func_expr , domain = R∗ ∗ 2)

7

Chapter 7. The abelian software library 82

8 # Create a homomorphism to sample

9 hexagonal_generators = [[1, 0.5], [0, sqrt (3)/2]]

10 phi_sample = HomLCA(hexagonal_generators , target = R∗ ∗ 2)

11

12 # Create a homomorphism to periodize

13 n = 10

14 phi_periodize = HomLCA ([[n, 0], [0, n]])

15 coker_phi_p = phi_periodize.cokernel ()

16

17 # Move function from R**2 to Z**2 to Z_n**2

18 func_sampled = func.pullback(phi_sample)

19 func_periodized = func_sampled.pushforward(coker_phi_p , 25)� �
We have defined the functions and homomorphism and moved the function
from R2 to Z10⊕Z10. To interpret the results, we compute the DFT and
let abelian compute a Voronoi transversal minimizing the 2-norm.� �
20 # Move function to dual space , then to T**2

21 func_dual = func_periodized.dft()

22 phi_periodize_ann = phi_periodize.annihilator ()

23

24 # Compute a Voronoi transversal function , interpret on R**2

25 scaling_factor = phi_sample.det()

26 sigma = voronoi(phi_sample.dual(), norm_p = 2)

27 for element in func_dual.domain.elements_by_maxnorm ():

28 value = func_dual(element) ∗ scaling_factor

29 coords_on_R = sigma(phi_periodize_ann(element))� �
In the code above, we use the composition σ ◦ A⊥ to interpret the results.
Evaluation of f̂(ξ) on R2 directly makes little sense numerically, since f̂(ξ) is
zero almost everywhere on R2 and the results would be difficult to interpret.
Figure 7.3 shows the result of the above code. In Example 3.41 on page 26
we claimed that the Fourier transform of a d-dimensional Gaussian is given
by

F
(
exp(−kxTx)

)
= (π/k)d/2 exp

(
−π2ξT ξ/k

)
,

and this can be used to verify that the above code is correct.

We summarize this chapter by summarizing the virtues of abelian: it al-
lows the user to work directly with mathematical objects and definitions,
sampling and periodizing analytical functions is done in a natural way us-
ing group homomorphisms, the default values are sensible, the syntax is
readable and the code generalizes easily to higher dimensions.

While the three preceding examples display much of the functionality, there
are many features which were omitted in the examples—particularly initial-
ization and binary operations defined on the objects.

83 7.6. Example 3: Hexagonal Fourier analysis

0 16

0

16
(a) Gaussian on R2

0 5 10

0

5

(b) Sampled

0 5 10

0

5

(c) Sampled and periodized

0 4 8

0

4

8

(d) DFT input

0 4 8

0

4

8

(e) DFT output

-0.5 0 0.5

-0.5

0

0.5

(f) Fourier coefficients

Figure 7.3: All the data for this figure was generated by the code in Section
7.6. (a) The Gaussian and the a fundamental domain for the periodization
lattice. (b) Sampled function values. (c) Sampled and periodized function
values. (d) Input to the DFT algorithm. (e) Output from the DFT al-
gorithm. (f) Fourier series coefficients as mapped to R2 by the Voronoi
transversal. Notice that the points are all inscribed in a circle.

Chapter 8. Conclusion and further work 84

Chapter 8

Conclusion and further work

We conclude the thesis and suggest further work. The conclusion summa-
rizes the work done, the goals we set out to reach, and how we reached them.
To avoid repetition of the Introduction and Preview chapters, the conclusion
is kept rather short.

8.1 Conclusion

In this thesis we have outlined the theory of Fourier analysis on the elemen-
tary LCAs: R, T = R /Z, Z, Zn, and direct sums of these groups. We
presented a new software library called abelian, which implements high-
level mathematical objects for general computations on elementary LCAs.
Chapters 3 to 6 consist of theory, and in Chapter 7 we gave a high-level
description of the abelian software library. Computational examples were
introduced in Chapter 2, as well as in Chapter 7.

One of the most important algorithms for computations with homomor-
phisms between FGAs is the Smith normal form, which we introduced in
Section 4.3. We also presented some results not found in literature: the
equation solver in Section 5.4, the theorems and algorithms in Section 5.5
for factoring left-free homomorphisms between FGAs, and the algorithm
used to compute pushforwards in Sections 6.5 and 6.6.

On a more abstract level than algorithms is the choice of how to represent
mathematical objects and which operations to implement. This was dis-
cussed in Chapter 7, and the abelian library makes use of three classes:
LCA, HomLCA and LCAFunc. The classes represent LCAs, homomorphisms be-
tween LCAs and functions from an LCA to C, respectively. The versatility
of these three classes was demonstrated with several examples at the end
of Chapter 7. The most complex example presented was Fourier analysis

85 8.2. Further work

on a hexagonal lattice; we discussed theory and surveyed recent research in
Section 6.9, and provided code in Section 7.6.

In the end, the goals of the project were reached: abelian facilitates com-
putations on elementary LCAs, arbitrary sampling and periodization using
group homomorphisms, and implements the mathematical objects and op-
erations associated with the theory. The software has tests, documentation,
and is now published on several well-respected services on the web.

8.2 Further work

It is always possible to extend and modify the software. Some use-cases
might warrant implementations of algorithms or operations not yet defined.
Speed is always a concern when computations are large, and low-level op-
timizations which might increase speed could be considered. It would be
interesting to examine more real-world examples of use-cases.

It might be a good idea to merge the software developed as part of this
project with a more mature library. There are at least two reasons why
merging with a large, mature software library1 might be wise: (1) it would
immediately make the algorithms and objects available to a large portion of
the scientific users of Python, as Sympy is included in most scientific Python
distributions, and (2) it would force the software to comply with a set of
high standards that are enforced by the library developers.

1Sympy would be an example of such a library. Recall that Sympy is a Python library
for symbolic mathematics, introduced on page 75.

Bibliography 86

Bibliography

[Albert. Boggess, 2009] Albert. Boggess (2009). A first course in wavelets
with Fourier analysis. Wiley, 2nd ed. edition.

[Alchin and Browning, 2014] Alchin, M. and Browning, J. B. (2014). Pro
Python. Apress, New York, 2nd ed. edition edition.

[Aluffi, 2009] Aluffi, P. (2009). Algebra: chapter 0, volume vol. 104 of Grad-
uate studies in mathematics. American Mathematical Society, Providence,
R.I.

[Birdsong and Rummelt, 2016] Birdsong, J. B. and Rummelt, N. I. (2016).
The hexagonal fast fourier transform. In 2016 IEEE International Con-
ference on Image Processing (ICIP), pages 1809–1812.

[Buckheit and Donoho, 1995] Buckheit, J. B. and Donoho, D. L. (1995).
WaveLab and Reproducible Research. In Wavelets and Statistics, Lec-
ture Notes in Statistics, pages 55–81. Springer, New York, NY. DOI:
10.1007/978-1-4612-2544-7 5.

[C. Gasquet, 1999] C. Gasquet (1999). Fourier analysis and applications:
filtering, numerical computation, wavelets, volume 30 of Texts in applied
mathematics. Springer, New York.

[Charles C. Sims, 1994] Charles C. Sims (1994). Computation with finitely
presented groups, volume 48 of Encyclopedia of mathematics and its ap-
plications. Cambridge University Press, Cambridge.

[Christopher. Hammond, 2009] Christopher. Hammond (2009). The Basics
of Crystallography and Diffraction. International Union of Crystallogra-
phy Texts on Crystallography, 12. OUP Oxford, Oxford, 3rd ed. edition.

[Dasgupta, 2008] Dasgupta, S. (2008). Algorithms. McGraw Hill.

[David Steven. Dummit, 2004] David Steven. Dummit (2004). Abstract al-
gebra. Wiley, Hoboken, N.J, 3rd ed. edition.

87 Bibliography

[Derek F. Holt, 2005] Derek F. Holt (2005). Handbook of computational
group theory. Discrete mathematics and its applications. Chapman &
Hall/CRC, Boca Raton, Fla.

[Ehrhardt, 1993] Ehrhardt, J. C. (1993). Hexagonal fast Fourier trans-
form with rectangular output. Signal Processing, IEEE Transactions on,
41(3):1469–1472.

[Golub and Van Loan, 2012] Golub, G. H. and Van Loan, C. F. (2012). Ma-
trix Computations. Johns Hopkins University Press, Baltimore, fourth
edition edition edition.

[Harold. Simmons, 2011] Harold. Simmons (2011). An introduction to cate-
gory theory. Cambridge University Press, Cambridge.

[Hewitt, 1963] Hewitt, E. (1963). Abstract harmonic analysis: Vol. 1 :
Structure of topological groups, integration theory, group representations,
volume Vol. 1 of Die Grundlehren der mathematischen Wissenschaften.
Springer, Berlin.

[Jäger and Wagner, 2009] Jäger, G. and Wagner, C. (2009). Efficient paral-
lelizations of Hermite and Smith normal form algorithms. Parallel Com-
puting, 35(6):345–357.

[Kristian. Rother, 2017] Kristian. Rother (2017). Pro Python Best Prac-
tices: Debugging, Testing and Maintenance. Imprint: Apress, Apress.

[Ledermann, 1996] Ledermann, W. (1996). Introduction to group theory.
Longman mathematics series. Addison Wesley Longman, Harlow, 2nd ed.
edition.

[Lloyd N. Trefethen, 1997] Lloyd N. Trefethen (1997). Numerical linear al-
gebra. Society for Industrial and Applied Mathematics.

[Mac Lane, 1998] Mac Lane, S. (1998). Categories for the working math-
ematician, volume 5 of Graduate texts in mathematics. Springer, New
York, 2nd ed. edition.

[Madisetti, 2009] Madisetti, V. (2009). Digital Signal Processing Fun-
damentals. Electrical Engineering Handbook. CRC Press. DOI:
10.1201/9781420046076.

[Mersereau and Speake, 1983] Mersereau, R. and Speake, T. (1983). The
processing of periodically sampled multidimensional signals. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 31(1):188–194.

[Mersereau, 1979] Mersereau, R. M. (1979). The processing of hexagonally
sampled two-dimensional signals. Proceedings of the IEEE, 67(6):930–949.

Bibliography 88

[Meurer et al., 2017] Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O.,
Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh,
S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F.,
Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel,
A. R., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.
(2017). SymPy: symbolic computing in Python. PeerJ Computer Science,
3:e103.

[Munthe-Kaas, 2016] Munthe-Kaas, H. Z. (2016). Groups and Symmetries
in Numerical Linear Algebra. In Exploiting Hidden Structure in Matrix
Computations: Algorithms and Applications, Lecture Notes in Mathemat-
ics, pages 319–406. Springer, Cham. DOI: 10.1007/978-3-319-49887-4 5.

[Nicholas. Loehr, 2014] Nicholas. Loehr (2014). Advanced Linear Algebra.
Discrete Mathematics and Its Applications. Taylor and Francis.

[R. E. Edwards, 1979] R. E. Edwards (1979). Fourier series: a modern in-
troduction : 1, volume 1 of Graduate texts in mathematics. Springer, New
York, 2nd ed. edition.

[Ramakrishnan, 1999] Ramakrishnan, D. (1999). Fourier analysis on num-
ber fields, volume 186 of Graduate texts in mathematics. Springer, New
York.

[Ramalho, 2015] Ramalho, L. (2015). Fluent Python. O’Reilly, 1st edition.
edition.

[Reiter, 1968] Reiter, H. (1968). Classical harmonic analysis and locally
compact groups. Oxford mathematical monographs. Clarendon Press, Ox-
ford.

[Robinson, 2017] Robinson, D. (2017). The incredible growth
of python. https://stackoverflow.blog/2017/09/06/

incredible-growth-python/. Accessed: 2017-09-21.

[Roman, 2005] Roman, S. (2005). Advanced linear algebra, volume 135 of
Graduate texts in mathematics. Springer, New York, 2nd ed. edition.

[Rudin, 1967] Rudin, W. (1967). Fourier analysis on groups, volume 12 of
Interscience tracts in pure and applied mathematics. Interscience, New
York.

[Sloan and Joe, 1994] Sloan, I. H. and Joe, S. (1994). Lattice Methods for
Multiple Integration. Clarendon Press, Oxford : New York, 1 edition
edition.

[Strang, 1976] Strang, G. (1976). Linear algebra and its applications. Aca-
demic Press, San Diego, 3nd ed. edition.

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

89 Bibliography

[Strang, 1986] Strang, G. (1986). Introduction to Applied Mathematics.
Wellesley-Cambridge Press, Wellesley, Mass.

[Strang, 1993] Strang, G. (1993). The Fundamental Theorem of Linear Al-
gebra. The American Mathematical Monthly, 100(9):848–855.

[VanderPlas, 2017] VanderPlas, J. (2017). The Unexpected Effectiveness of
Python in Science. PyCon 2017. https://speakerdeck.com/jakevdp/the-
unexpected-effectiveness-of-python-in-science.

[Vince and Zheng, 2007] Vince, A. and Zheng, X. (2007). Computing the
Discrete Fourier Transform on a Hexagonal Lattice. Journal of Mathe-
matical Imaging and Vision, 28(2):125–133.

[Vretblad, 2003] Vretblad, A. (2003). Fourier analysis and its applications,
volume 223 of Graduate texts in mathematics. Springer, New York.

[Walt et al., 2011] Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011).
The NumPy Array: A Structure for Efficient Numerical Computation.
Computing in Science & Engineering, 13(2):22–30.

[Xiangjian He and Wenjing Jia, 2005] Xiangjian He and Wenjing Jia (2005).
Hexagonal Structure for Intelligent Vision. In Information and Commu-
nication Technologies, 2005. ICICT 2005. First International Conference
on, pages 52–64. IEEE.

[Zheng and Gu, 2014] Zheng, X. and Gu, F. (2014). Fast Fourier Transform
on FCC and BCC Lattices with Outputs on FCC and BCC Lattices Re-
spectively. Journal of Mathematical Imaging and Vision, 49(3):530–550.

Appendices

90

91

Appendix A

Source code

Below are some of the algorithms used in abelian. The code below consti-
tutes a small part of the complete code. The total line count of abelian is
over 5000 lines, so to keep the length of the thesis at a reasonable level, full
source code is not given. For a complete code listing with comments, see
github.com/tommyod/abelian.

Hermite normal form

This is an implementation of Algorithm 1 for the Hermite normal form.� �
1 def hermite_normal_form(A):

2 """

3 Compute U and H such that A*U = H.

4 """

5

6 # Get size and set up matrices U and H

7 m, n = A.shape

8 j = 0

9 H = A.copy()

10 U = Matrix.eye(n)

11

12 # Iterate down the rows of the matrix

13 for i in range(0, m):

14

15 # If every entry to the right is a zero , no pivot will

16 # be found for this row and we move on to the next one.

17 if H[i, j:] == H[i, j:] ∗ 0:

18 continue

19

20 # Create zeros to the right of the pivot H[i, j]

21 for k in range(j + 1, n):

22

23 # Skip the column if the element is zero

24 # In this case the column index j in not incremented

25 if H[i, k] == 0:

26 continue

27

http://github.com/tommyod/abelian

Appendix A. Source code 92

28 # Apply the ’elementary hermite transform ’ to the

29 # columns of H, ignoring the top i rows of H as

30 # they are identically zero. The implementation

31 # of the ’elementary hermite transform ’ does not

32 # explicitly compute matrix products.

33 # Equivalent to right -multiplication with

34 # Matrix ([[a, -s/g],

35 # [b, r/g]])

36

37 # Extended Euclidean algorithm ,

38 # i.e. r*a + s*b = g = gcd(r, s)

39 r, s = H[i, j], H[i, k]

40 a, b, g = gcdex(r, s)

41

42 # Apply the matrix product of H and U

43 H[i:, j], H[i:, k] = (a ∗ H[i:, j] + b ∗ H[i:, k],

44 -(s/g)∗ H[i:, j]+(r/g)∗ H[i:, k])

45 U[:, j], U[:, k] = (a ∗ U[:, j] + b ∗ U[:, k],

46 -(s/g)∗ U[:, j]+(r/g)∗ U[:, k])

47

48 # Make sure the pivot element is positive.

49 # Some savings achieved by realizing that the

50 # first i rows of H are identically zero --

51 # thus no multiplication is needed.

52 if H[i, j] < 0:

53 H[i:, j] = -H[i:, j]

54 U[:, j] = -U[:, j]

55

56 # Making all elements to the left of the

57 # pivot H[i, j] smaller than the pivot and

58 # positive using division algorithm transform

59 for k in range(0, j):

60 # Compute quotient in the division algorithm ,

61 # subtracting the quotient times H[:, j]

62 # leaves a positive remainder

63 a = H[i, k] // H[i, j]

64 H[:, k] = H[:, k] - a ∗ H[:, j]

65 U[:, k] = U[:, k] - a ∗ U[:, j]

66

67 # Increment j (the column index).

68 # Break if j is out of dimension

69 j += 1

70 if j >= n:

71 # j is out of dimension , break

72 break

73

74 return U, H� �
Smith normal form

This is an implementation of Algorithm 2 for the Smith normal form.� �
1 def smith_normal_form(A, compute_unimod = True):

2 """

3 Compute U,S,V such that U*A*V = S.

4 """

5

6 # Get size and set up the unimodular matrices U and V

7 m, n = A.shape

93

8 min_m_n = min(m, n)

9 S = A.copy()

10 if compute_unimod:

11 U, V = Matrix.eye(m), Matrix.eye(n)

12

13 def row_col_all_zero(matrix , f):

14 """

15 Are all entries to the right of and below ‘f‘ zero?

16 """

17 for entry in matrix[f, f + 1:]:

18 if entry != 0:

19 return False

20 for entry in matrix[f + 1:, f]:

21 if entry != 0:

22 return False

23 return True

24

25 # Main loop , iterate over all sub -matrices to reduce

26 f = 0

27 while f < min_m_n:

28

29 # While there are non -zero elements to reduce in

30 # row/column f and the diagonal element is not positive

31 while not (row_col_all_zero(S, f) and S[f, f] >= 0):

32

33 # Find index pair of minimum non -zero entry

34 # (in absolute value) in the sub -matrix S[f:, f:].

35 inds = ((i, j) for j in range(f, n)

36 for i in range(f, m))

37

38 key_val_pairs = ((index , abs(S[index])) for index

39 in inds if abs(S[index]) != 0)

40

41 (i, j), min_val = min(key_val_pairs ,

42 key=lambda k: k[1])

43

44 # Permute S to move the minimal

45 # element to the pivot location

46 S[f:, j], S[f:, f] = S[f:, f], S[f:, j]

47 S[i, f:], S[f, f:] = S[f, f:], S[i, f:]

48 if compute_unimod:

49 V[:, j], V[:, f] = V[:, f], V[:, j]

50 U[i, :], U[f, :] = U[f, :], U[i, :]

51

52 # If the freshly permuted pivot

53 # is negative , make it positive

54 if S[f, f] < 0:

55 S[f:, f] = -S[f:, f]

56 if compute_unimod:

57 V[:, f] = -V[:, f]

58

59 # Reduce row f so every entry

60 # is smaller than pivot

61 for k in range(f + 1, n):

62 if S[f, k] == 0:

63 continue

64

65 # Subtract a times column

66 # f from column k

67 a = S[f, k] // S[f, f]

68 S[f:, k] = S[f:, k] - a ∗ S[f:, f]

69 if compute_unimod:

Appendix A. Source code 94

70 V[:, k] = V[:, k] - a ∗ V[:, f]

71

72 # Reduce column f so every

73 # entry is smaller than pivot

74 for k in range(f + 1, m):

75 if S[k, f] == 0:

76 continue

77

78 # Subtract a times row f from row k

79 a = S[k, f] // S[f, f]

80 S[k, f:] = S[k, f:] - a ∗ S[f, f:]

81 if compute_unimod:

82 U[k, :] = U[k, :] - a ∗ U[f, :]

83

84 f += 1

85

86 # Enforce divisibility criterion using

87 # the ’divisibility transformation ’ matrices.

88 for f in range(min_m_n):

89 for k in range(f + 1, min_m_n):

90

91 # Divisibility criterion is fulfilled

92 if mod(S[k, k], S[f, f]) == 0:

93 continue

94

95 # S[f, f] does not divide S[k, k]

96 r, s = S[f, f], S[k, k]

97 a, b, c = gcdex(r, s)

98 S[f, f], S[k, k] = c, (r ∗ s) // c

99

100 # Modify unimodular transformation matrices ,

101 # but without explicitly multiplying matrices

102 if compute_unimod:

103 V[:, f], V[:, k] = (V[:, f] + V[:, k],

104 -b ∗ (s / c) ∗ V[:,f] +\

105 a ∗ (r / c) ∗ V[:, k])

106 U[f, :], U[k, :] = (a ∗ U[f, :] + b ∗ U[k, :],

107 -(s / c) ∗ U[f, :] +\

108 (r / c) ∗ U[k, :])

109

110 if compute_unimod:

111 return U, S, V

112 else:

113 return S� �
Solving φ(x) = g when φ is left-free

This is an implementation of Algorithm 3, which solves an equation with a
left-free homomorphism.� �
1 def solve(A, b, p = None):

2 """

3 Solve eqn Ax = b mod p over Z.

4 """

5

6 # If no orders are supplied by the user ,

7 # set the orders to zero ,

8 # i.e. infinite order or free -to-free.

95

9 if p is None:

10 m, n = b.shape

11 p = Matrix(m, n, lambda i, j: 0)

12

13 # Verify that the dimensions are correct

14 (A_rows , A_cols) = A.shape

15 (b_rows , b_cols) = b.shape

16 (p_rows , p_cols) = p.shape

17 if not (A_rows == b_rows == p_rows):

18 raise ValueError(’Dimension mismatch.’)

19

20 # Find the kernel of the

21 # projection onto the space Z_‘p‘

22 ker_pi = remove_zero_columns(diag(∗ p))
23

24 # Stack A | ker(pi) | b

25 joined_A_D_b = A.row_join(ker_pi).row_join(b)

26

27 # Compute ker(A | ker(pi) | b)

28 # using the free -to-free kernel

29 kernel = free_kernel(joined_A_D_b)

30

31 # The solution must be a linear combination

32 # of the columns of ker(A | ker(pi) | b)

33 # such that the resulting vector has a -1

34 # in the bottom entry.

35

36 # Remove all columns with zero in the bottom entry

37 m, n = kernel.shape

38 col_indices = [j for j in range(n)

39 if kernel[-1, j] == 0]

40 kernel = remove_cols(kernel , col_indices)

41

42 # Return None if the kernel is empty

43 m, n = kernel.shape

44 if n == 0:

45 return None

46

47 # Iteratively ’collapse ’ the columns using the

48 # extended euclidean algorithm till the result is 1

49 m, n = kernel.shape

50 while n > 1:

51 # Compute the new column

52 # from the first two current ones

53 f, g = kernel[-1, 0], kernel[-1, 1]

54 (s, t, h) = gcdex(f, g) # s*f + t*g = h.

55 new_col = s ∗ kernel[:, 0] + t ∗ kernel[:, 1]

56

57 # If there are only two columns ,

58 # we have found the kernel

59 if n == 2:

60 kernel = new_col

61 break

62

63 # Delete current columns and insert the new one

64 kernel = remove_cols(kernel , [0, 1])

65 kernel = new_col.row_join(kernel)

66

67 # Calculate new n value for the while -loop

68 (m, n) = kernel.shape

69

70 # Find shape of input , since shape of output depends on it

Appendix A. Source code 96

71 (m, n) = A.shape

72

73 # Make sure that the bottom row is -1 or 1.

74 # It will always be 1 if the above while loop initiated ,

75 # but if it never initiated then value could be -1

76 if kernel[-1, 0] not in [1, -1]:

77 return None

78

79 # The solution to the problem is contained the first

80 # n rows of the kernel , which is a column vector.

81 # Multiply by -1 if needed to

82 # make sure the bottom entry is -1

83 if kernel[-1, 0] == 1:

84 return -kernel [:n, 0]

85 else:

86 return kernel [:n, 0]� �

Elements in Zr with given max-norm

This is an implementation of Algorithm 5 for generating group elements in
Zr with a given maximum norm.� �
1 def elements_of_maxnorm(free_rank , maxnorm_value):

2 """

3 Yield every element of Z^r such

4 that max_norm(element) = maxnorm_value.

5 """

6 # Special case when the norm is 0,

7 # yield the (0, 0, ...) element

8 if maxnorm_value == 0:

9 yield tuple ([0] ∗ free_rank)

10 return

11

12 # There are two ’walls ’ per hypercube , front and back

13 for wall in range(free_rank):

14

15 # In each hypercube , the boundaries

16 # must shrink , two at a time

17 border_reduced = [1] ∗ wall + [0] ∗ (free_rank-wall-1)

18

19 # The arguments into the

20 # cartesian product for the hypercube

21 prod_arg = [range(-maxnorm_value+k, maxnorm_value+1-k)\

22 for k in border_reduced]

23

24 # Take cartesian products along the boundaries

25 # of the r-dimensional hypercube.

26 # Yield from opposite sides of the hypercube

27 for b_element in itertools.product(∗ prod_arg):
28 start , end = b_element [:wall], b_element[wall:]

29 yield start + (maxnorm_value ,) + end

30 yield start + (-maxnorm_value ,) + end� �

97

Elements in Zp with given max-norm

This is an extension of Algorithm 5. The algorithm below generates group
elements in Zp with a given max-norm.� �
1 def elements_of_maxnorm_FGA(orders , maxnorm_value):

2 """

3 Yield every element of Z_‘orders ‘ such

4 that max_norm(element) = maxnorm_value.

5 """

6

7 # Special case when the norm is zero ,

8 # yield (0, 0, ...) and terminate

9 if maxnorm_value == 0:

10 yield tuple ([0] ∗ len(orders))

11 return

12

13 # Will be used in the loop ,

14 # so we compute it out -of-loop here

15 dimension = len(orders)

16

17 # The ’wall’ is the dimension held constant

18 for wallnum , dim in enumerate(orders):

19

20 # If the wall is outside the dimension , skip it

21 if (dim != 0) and maxnorm_value > (dim // 2):

22 continue

23

24 # Set up the cartesian product argument ,

25 # making sure to remove boundary elements

26 # so they are not yielded twice

27 border_reduced = [1]∗ wallnum + [0]∗ (dimension-wallnum-1)
28 prod_arg = [range(-maxnorm_value+k, maxnorm_value+1-k) \

29 for k in border_reduced]

30

31 # The dimensions that are not constant

32 non_const_dims = orders [:]

33 non_const_dims.pop(wallnum)

34

35 # Go through every argument in the cartesian

36 # product , and reduce the iterator if it’s

37 # partially outside of the order

38 for i in range(len(prod_arg)):

39 iterator = prod_arg[i]

40 order = non_const_dims[i]

41

42 # If the order is finite , we might be

43 # able to reduce the cartesian product

44 # by a significant amount

45 if order != 0:

46 start , stop = iterator.start , iterator.stop

47 prod_arg[i] = range(max(-order // 2 + 1, start),

48 min(order // 2 + 1, stop))

49

50 # Go through the Cartesian product / hypercube

51 for prod in itertools.product(∗ prod_arg):
52

53 # The first and last part of the element

54 first = mod(prod[: wallnum], non_const_dims [: wallnum])

55 last = mod(prod[wallnum:], non_const_dims[wallnum :])

56

Appendix A. Source code 98

57 mid1 = mod(maxnorm_value , dim)

58 mid2 = mod(-maxnorm_value , dim)

59 yield first + (mid1 ,) + last

60 if middle1 != middle2:

61 yield first + (mid2 ,) + last� �

99

Appendix B

Software documentation

Below is part of the software documentation for abelian. The included .pdf

file was automatically generated using the Python documentation generator
sphinx. A full version, which includes API reference for every function and
method, is available online at abelian.readthedocs.io. Due to the size of the
full documentation, which is around 80 pages, only the most essential part
is included here.

http://abelian.readthedocs.io/en/latest/

abelian Documentation
Release 1.0.1

Tommy Odland

Nov 15, 2017

Contents

1 Project overview 1
1.1 Short description . 1
1.2 Project goals . 1
1.3 Installation . 2

2 Contents 3
2.1 Software specification . 3
2.2 Tutorials . 6
2.3 API . 27

3 Indices and tables 73

Python Module Index 75

i

ii

CHAPTER 1

Project overview

1.1 Short description

Welcome to the documentation of abelian, a Python library which facilitates computations on ele-
mentary locally compact abelian groups (LCAs). The LCAs are the groups isomorphic to R, 𝑇 = R/Z,
Z, Z𝑛 and direct sums of these. The library is structured into two packages, the abelian package
and the abelian.linalg sub-package, which is built on the matrix class MutableDenseMatrix
from the sympy library for symbolic mathematics.

1.1.1 Classes and methods

• The LCA class represents elementary LCAs.

– Fundamental methods: identity LCA, direct sums, equality, isomorphic, element projec-
tion, Pontryagin dual.

• The HomLCA class represents homomorphisms between LCAs.

– Fundamental methods: identity morphism, zero morphism, equality, composition, evalu-
ation, stacking, element-wise operations, kernel, cokernel, image, coimage, dual (adjoint)
morphism.

• The LCAFunc class represents functions from LCAs to complex numbers.

– Fundamental methods: evaluation, composition, shift (translation), pullback, pushforward,
point-wise operators (e.g. addition).

Algorithms for the Smith normal form and Hermite normal form are also implemented in
smith_normal_form() and hermite_normal_form() respectively.

1.2 Project goals

• Represent the groups R, 𝑇 , Z and Z𝑛 and facilitate computations on these.

1

abelian Documentation, Release 1.0.1

• Handle the relationship between discrete and continuous groups in a natural way using group
homomorphisms.

• DFT computations on discrete, finite groups and their products using the FFT.

• The software should build on the mathematical theory.

1.3 Installation

1. Download the latest version of Python, e.g. the Anaconda distribution.

2. Depending on your operating system, do one of the following:

(a) If on Windows, open the Anaconda prompt and run pip install abelian to install
abelian from PyPI.

(b) If on Linux or Mac, open the terminal and run pip install abelian to install
abelian from PyPI.

3. Open a Python editor (such as Spyder, which comes with Anaconda) and type from abelian
import * to import all classes and functions from the library. You’re all set, go try some exam-
ples from the tutorials.

2 Chapter 1. Project overview

CHAPTER 2

Contents

2.1 Software specification

Below is an automatically generated software specification.

2.1.1 Public classes

HomLCA(A[, target, source]) A homomorphism between elementary LCAs.
LCA(orders[, discrete]) An elementary locally compact abelian group

(LCA).
LCAFunc(representation, domain) A function from an LCA to a complex number.

2.1.2 Public functions

hermite_normal_form(A) Compute U and H such that A*U = H.
smith_normal_form(A[, compute_unimod]) Compute U,S,V such that U*A*V = S.
solve(A, b[, p]) Solve eqn Ax = b mod p over Z.
voronoi(epimorphism[, norm_p]) Return the Voronoi transversal function.

2.1.3 Public classes (detailed)

LCAFunc

(inherits from: Callable)

LCAFunc(representation, domain) A function from an LCA to a complex number.
__call__(list_arg, *args, **kwargs) Override function calls, see evaluate().
__init__(representation, domain) Initialize a function G -> C.

Continued on next page

3

abelian Documentation, Release 1.0.1

Table 2.3 – continued from previous page
__repr__() Override the repr() function.
copy() Return a copy of the instance.
dft([func_type]) If the domain allows it, compute DFT.
evaluate(list_arg, *args, **kwargs) Evaluate function on a group element.
idft([func_type]) If the domain allows it, compute inv DFT.
pointwise(other, operator) Apply pointwise binary operator.
pullback(morphism) Return the pullback along morphism.
pushforward(morphism[, terms_in_sum]) Return the pushforward along morphism.
sample(list_of_elements, *args, **kwargs) Sample on a list of group elements.
shift(list_shift) Shift the function.
to_latex() Return as a 𝐿A𝑇E𝑋 string.
to_table(*args, **kwargs) Return a n-dimensional table.
transversal(epimorphism[, transversal_rule,
. . .])

Pushforward using transversal rule.

LCA

(inherits from: Sequence, Callable)

LCA(orders[, discrete]) An elementary locally compact abelian group
(LCA).

__add__(other) Override the addition (+) operator, see sum().
__call__(element) Override function calls, see

project_element().
__contains__(other) Override the ‘in’ operator, see contained_in().
__eq__(other) Override the equality (==) operator, see equal().
__getitem__(key) Override the slice operator, see slice().
__init__(orders[, discrete]) Initialize a new LCA.
__iter__() Override the iteration protocol, see iterate().
__len__() Override the len() function, see length().
__pow__(power[, modulo]) Override the pow (**) operator, see

compose_self().
__repr__() Override the repr() function.
canonical() Return the LCA in canonical form using SNF.
compose_self(power) Repeated direct summation.
contained_in(other) Whether the LCA is contained in other.
copy() Return a copy of the LCA.
dual() Return the Pontryagin dual of the LCA.
elements_by_maxnorm([norm_values]) Yield elements corresponding to max norm value.
equal(other) Whether or not two LCAs are equal.
getitem(key) Return a slice of the LCA.
is_FGA() Whether or not the LCA is a FGA.
isomorphic(other) Whether or not two LCAs are isomorphic.
iterate() Yields the groups in the direct sum one by one.
length() The number of groups in the direct sum.
project_element(element) Project an element onto the group.
rank() Return the rank of the LCA.

Continued on next page

4 Chapter 2. Contents

abelian Documentation, Release 1.0.1

Table 2.4 – continued from previous page
remove_indices(indices) Return a LCA with some groups removed.
remove_trivial() Remove trivial groups from the object.
sum(other) Return the direct sum of two LCAs.
to_latex() Return the LCA as a 𝐿A𝑇E𝑋 string.
trivial() Return a trivial LCA.

HomLCA

(inherits from: Callable)

HomLCA(A[, target, source]) A homomorphism between elementary LCAs.
__add__(other) Override the addition (+) operator, see add().
__call__(source_element) Override function calls, see evaluate().
__eq__(other) Override the equality (==) operator, see equal().
__getitem__(args) Override the slice operator, see getitem().
__init__(A[, target, source]) Initialize a homomorphism.
__mul__(other) Override the * operator, see compose().
__pow__(power[, modulo]) Override the pow (**) operator, see

compose_self().
__radd__(other) Override the addition (+) operator, see add().
__repr__() Override the repr() function.
__rmul__(other) Override the * operator, see compose().
add(other) Elementwise addition.
annihilator() Compute the annihilator monomorphism.
coimage() Compute the coimage epimorphism.
cokernel() Compute the cokernel epimorphism.
compose(other) Compose two homomorphisms.
compose_self(power) Repeated composition of an endomorphism.
copy() Return a copy of the homomorphism.
det() Determinant of the matrix representing the

HomLCA.
dual() Compute the dual homomorphism.
equal(other) Whether or not two homomorphisms are equal.
evaluate(source_element) Apply the homomorphism to an element.
getitem(args) Return a slice of the homomorphism.
identity(group) Return the identity morphism.
image() Compute the image monomorphism.
kernel() Compute the kernel monomorphism.
project_to_source() Project columns to source group (orders).
project_to_target() Project columns to target group.
remove_trivial_groups() Remove trivial groups.
stack_diag(other) Stack diagonally.
stack_horiz(other) Stack horizontally (column wise).
stack_vert(other) Stack vertically (row wise).
to_latex() Return the homomorphism as a 𝐿A𝑇E𝑋 string.
update([new_A, new_target, new_source]) Return a new homomorphism with updated proper-

ties.
Continued on next page

2.1. Software specification 5

abelian Documentation, Release 1.0.1

Table 2.5 – continued from previous page
zero(target, source) Initialize the zero morphism.

2.2 Tutorials

Here you will find tutorials convering all the main aspects of the abelian library.

2.2.1 Tutorial: LCAs

This is an interactive tutorial written with real code. We start by importing the LCA class and setting up
𝐿A𝑇E𝑋 printing.

In [1]: from abelian import LCA
from IPython.display import display, Math

def show(arg):
"""This function lets us show LaTeX output."""
return display(Math(arg.to_latex()))

Initializing a LCA

Initializing a locally compact abelian group (LCA) is simple. Every LCA can be written as a direct sum
of groups isomorphic to one of: Z𝑛, Z, 𝑇 = R/Z or R. Specifying these groups, we can initialize LCAs.
Groups are specified by:

• Order, where 0 is taken to mean infinite order.

• Whether or not they are discrete (if not, they are continuous).

In [2]: # Create the group Z_1 + R + Z_3
G = LCA(orders = [1, 0, 3],

discrete = [True, False, True])

print(G) # Standard printing
show(G) # LaTeX output

[Z_1, R, Z_3]

Z1 ⊕ R⊕ Z3

If no discrete parameter is passed, True is assumed and the LCA initialized will be a finitely
generated abelian group (FGA).

In [3]: # No 'discrete' argument passed,
so the initializer assumes a discrete group
G = LCA(orders = [5, 11])
show(G)

G.is_FGA() # Check if this group is an FGA

Z5 ⊕ Z11

Out[3]: True

6 Chapter 2. Contents

abelian Documentation, Release 1.0.1

Manipulating LCAs

One way to create LCAs is using the direct sum, which “glues” LCAs together.

In [4]: # Create two groups
Notice how the argument names can be omitted
G = LCA([5, 11])
H = LCA([7, 0], [True, True])

Take the direct sum of G and H
Two ways: explicitly and using the + operator
direct_sum = G.sum(H)
direct_sum = G + H

show(G)
show(H)
show(direct_sum)

Z5 ⊕ Z11

Z7 ⊕ Z

Z5 ⊕ Z11 ⊕ Z7 ⊕ Z

Python comes with a powerful slice syntax. This can be used to “split up” LCAs. LCAs of lower length
can be created by slicing, using the built-in slice notation in Python.

In [5]: # Return groups 0 to 3 (inclusive, exclusive)
sliced = direct_sum[0:3]
show(sliced)

Return the last two groups in the LCA
sliced = direct_sum[-2:]
show(sliced)

Z5 ⊕ Z11 ⊕ Z7

Z7 ⊕ Z

Trivial groups can be removed automatically using remove_trivial. Recall that the trivial group is
Z1.

In [6]: # Create a group with several trivial groups
G = LCA([1, 1, 0, 5, 1, 7])
show(G)

Remove trivial groups
G_no_trivial = G.remove_trivial()
show(G_no_trivial)

Z1 ⊕ Z1 ⊕ Z⊕ Z5 ⊕ Z1 ⊕ Z7

Z⊕ Z5 ⊕ Z7

Checking if an LCA is a FGA

Recall that a group 𝐺 is an FGA if all the groups in the direct sum are discrete.

In [7]: G = LCA([1, 5], discrete = [False, True])
G.is_FGA()

Out[7]: False

2.2. Tutorials 7

abelian Documentation, Release 1.0.1

If 𝐺 is an FGA, elements can be generated by max-norm by an efficient algorithm. The algorithm is
able to generate approximately 200000 elements per second, but scales exponentially with the free rank
of the group.

In [8]: Z = LCA([0])
for element in (Z**2).elements_by_maxnorm([0, 1]):

print(element)

[0, 0]
[1, -1]
[-1, -1]
[1, 0]
[-1, 0]
[1, 1]
[-1, 1]
[0, 1]
[0, -1]

In [9]: Z_5 = LCA([5])
for element in (Z_5**2).elements_by_maxnorm([0, 1]):

print(element)

[0, 0]
[1, 4]
[4, 4]
[1, 0]
[4, 0]
[1, 1]
[4, 1]
[0, 1]
[0, 4]

Dual groups

The dual() method returns a group isomorphic to the Pontryagin dual.

In [10]: show(G)
show(G.dual())

𝑇 ⊕ Z5

Z⊕ Z5

Iteration, containment and lengths

LCAs implement the Python iteration protocol, and they subclass the abstract base class (ABC)
Sequence. A Sequence is a subclass of Reversible and Collection ABCs. These ABCs
force the subclasses that inherit from them to implement certain behaviors, namely:

• Iteration over the object: this yields the LCAs in the direct sum one-by-one.

• The G in H statement: this checks whether 𝐺 is a contained in 𝐻 .

• The len(G) built-in, this check the length of the group.

We now show this behavior with examples.

In [11]: G = LCA([10, 1, 0, 0], [True, False, True, False])

8 Chapter 2. Contents

abelian Documentation, Release 1.0.1

Iterate over all subgroups in G
for subgroup in G:

dual = subgroup.dual()
print('The dual of', subgroup, 'is', dual)

Print if the group is self dual
if dual == subgroup:

print(' ->', subgroup, 'is self dual')

The dual of [Z_10] is [Z_10]
-> [Z_10] is self dual

The dual of [T] is [Z]
The dual of [Z] is [T]
The dual of [R] is [R]

-> [R] is self dual

Containment

A LCA 𝐺 is contained in 𝐻 iff there exists an injection 𝜑 : 𝐺→ 𝐻 such that every source/target of the
mapping are isomorphic groups.

In [12]: # Create two groups
G = LCA([1, 3, 5])
H = LCA([3, 5, 1, 8])

Two ways, explicitly or using the `in` keyword
print(G.contained_in(H))
print(G in H)

True
True

The length can be computed using the length() method, or the built-in method len. In contrast with
rank(), this does not remove trivial groups.

In [13]: # The length is available with the len built-in function
Notice that the length is not the same as the rank,
since the rank will remove trivial subgroups first
G = LCA([1, 3, 5])
show(G)

print(G.length()) # Explicit
print(len(G)) # Using the built-in len function
print(G.rank())

Z1 ⊕ Z3 ⊕ Z5

3
3
2

Ranks and lengths of groups

The rank can be computed by the rank() method.

• The rank() method removes trivial subgroups.

2.2. Tutorials 9

abelian Documentation, Release 1.0.1

• The length() method does not remove trivial subgroups.

In [14]: G = LCA([1, 5, 7, 0])
show(G)
G.rank()

Z1 ⊕ Z5 ⊕ Z7 ⊕ Z

Out[14]: 3

Canonical forms and isomorphic groups

FGAs can be put into a canonical form using the Smith normal form (SNF). Two FGAs are isomorphic
iff their canonical form is equal.

In [15]: G = LCA([1, 3, 3, 5, 8])
show(G)
show(G.canonical())

Z1 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z8

Z3 ⊕ Z120

The groups 𝐺 = Z3 ⊕Z4 and 𝐻 = Z12 are isomorphic because they can be put into the same canonical
form using the SNF.

In [16]: G = LCA([3, 4, 0])
H = LCA([12, 0])
G.isomorphic(H)

Out[16]: True

General LCAs are isomorphic if the FGAs are isomorphic and the remaining groups such as R and 𝑇
can be obtained with a permutation. We show this by example.

In [17]: G = LCA([12, 13, 0], [True, True, False])
H = LCA([12 * 13, 0], [True, False])
show(G)
show(H)
G.isomorphic(H)

Z12 ⊕ Z13 ⊕ R

Z156 ⊕ R

Out[17]: True

Projecting elements to groups

It is possible to project elements onto groups.

In [18]: element = [8, 17, 7]
G = LCA([10, 15, 20])
G(element)

Out[18]: [8, 2, 7]

10 Chapter 2. Contents

abelian Documentation, Release 1.0.1

2.2.2 Tutorial: Homomorphisms

This is an interactive tutorial written with real code. We start by setting up 𝐿A𝑇E𝑋 printing.

In [1]: from IPython.display import display, Math

def show(arg):
return display(Math(arg.to_latex()))

Initializing a homomorphism

Homomorphisms between general LCAs are represented by the HomLCA class. To define a homomor-
phism, a matrix representation is needed. In addition to the matrix, the user can also define a target
and source explicitly.

Some verification of the inputs is performed by the initializer, for instance a matrix 𝐴 ∈ Z2×2 cannot
represent 𝜑 : Z𝑚 → Z𝑛 unless both 𝑚 and 𝑛 are 2. If no target/source is given, the initializer will
assume a free, discrete group, i.e. Z𝑚.

In [2]: from abelian import LCA, HomLCA

Initialize the target group for the homomorphism
target = LCA([0, 5], discrete = [False, True])

Initialize a homomorphism between LCAs
phi = HomLCA([[1, 2], [3, 4]], target = target)
show(phi)

Initialize a homomorphism with no source/target.
Source and targets are assumed to be
of infinite order and discrete (free-to-free)
phi = HomLCA([[1, 2], [3, 4]])
show(phi)

(︂
1 2
3 4

)︂
: Z⊕ Z → R⊕ Z5

(︂
1 2
3 4

)︂
: Z⊕ Z → Z⊕ Z

Homomorphisms between finitely generated abelian groups (FGAs) are also represented by the HomLCA
class.

In [3]: from abelian import HomLCA
phi = HomLCA([[4, 5], [9, -3]])
show(phi)

(︂
4 5
9 −3

)︂
: Z⊕ Z → Z⊕ Z

Roughly speaking, for a HomLCA instance to represent a homomorphism between FGAs, it must have:

• FGAs as source and target.

• The matrix must contain only integer entries.

2.2. Tutorials 11

abelian Documentation, Release 1.0.1

Compositions

A fundamental way to combine two functions is to compose them. We create two homomorphisms and
compose them: first 𝜓, then 𝜑. The result is the function 𝜑 ∘ 𝜓.

In [4]: # Create two HomLCAs
phi = HomLCA([[4, 5], [9, -3]])
psi = HomLCA([[1, 0, 1], [0, 1, 1]])

The composition of phi, then psi
show(phi * psi)

(︂
4 5 9
9 −3 6

)︂
: Z⊕ Z⊕ Z → Z⊕ Z

If the homomorphism is an endomorphism (same source and target), repeated composition can be done
using exponents.

𝜑𝑛 = 𝜑 ∘ 𝜑 ∘ · · · ∘ 𝜑, 𝑛 ≥ 1

In [5]: show(phi**3)
(︂
289 290
522 −117

)︂
: Z⊕ Z → Z⊕ Z

Numbers and homomorphisms can be added to homomorphisms, in the same way that numbers and
matrices are added to matrices in other software packages.

In [6]: show(psi)

Each element in the matrix is multiplied by 2
show(psi + psi)

Element-wise addition
show(psi + 10)

(︂
1 0 1
0 1 1

)︂
: Z⊕ Z⊕ Z → Z⊕ Z

(︂
2 0 2
0 2 2

)︂
: Z⊕ Z⊕ Z → Z⊕ Z

(︂
11 10 11
10 11 11

)︂
: Z⊕ Z⊕ Z → Z⊕ Z

Slice notation

Slice notation is available. The first slice works on rows (target group) and the second slice works on
columns (source group). Notice that in Python, indices start with 0.

In [7]: A = [[10, 10], [10, 15]]
Notice how the HomLCA converts a list
into an LCA, this makes it easier to create HomLCAs
phi = HomLCA(A, target = [20, 20])
phi = phi.project_to_source()

Slice in different ways
show(phi)
show(phi[0, :]) # First row, all columns
show(phi[:, 0]) # All rows, first column
show(phi[1, 1]) # Second row, second column

12 Chapter 2. Contents

abelian Documentation, Release 1.0.1

(︂
10 10
10 15

)︂
: Z2 ⊕ Z4 → Z20 ⊕ Z20

(︀
10 10

)︀
: Z2 ⊕ Z4 → Z20

(︂
10
10

)︂
: Z2 → Z20 ⊕ Z20

(︀
15
)︀
: Z4 → Z20

Stacking homomorphisms

There are three ways to stack morphisms:

• Diagonal stacking

• Horizontal stacking

• Vertical stacking

They are all shown below.

Diagonal stacking

In [8]: # Create two homomorphisms
phi = HomLCA([2], target = LCA([0], [False]))
psi = HomLCA([2])

Stack diagonally
show(phi.stack_diag(psi))

(︂
2 0
0 2

)︂
: Z⊕ Z → R⊕ Z

Horizontal stacking

In [9]: # Create two homomorphisms with the same target
target = LCA([0], [False])
phi = HomLCA([[1, 3]], target = target)
source = LCA([0], [False])
psi = HomLCA([7], target=target, source=source)

Stack horizontally
show(phi.stack_horiz(psi))

(︀
1 3 7

)︀
: Z⊕ Z⊕ R → R

Vertical stacking

In [10]: # Create two homomorphisms, they have the same source
phi = HomLCA([[1, 2]])
psi = HomLCA([[3, 4]])

Stack vertically
show(phi.stack_vert(psi))

2.2. Tutorials 13

abelian Documentation, Release 1.0.1

(︂
1 2
3 4

)︂
: Z⊕ Z → Z⊕ Z

Calling homomorphisms

In Python, a callable is an object which implements a method for function calls. A homomorphism
is a callable object, so we can use phi(x) to evaluate x, i.e. send x from the source to the target.

We create a homomorphism.

In [11]: # Create a homomorphism, specify the target
phi = HomLCA([[2, 0], [0, 4]], [10, 12])
Find the source group (orders)
phi = phi.project_to_source()
show(phi)

(︂
2 0
0 4

)︂
: Z5 ⊕ Z3 → Z10 ⊕ Z12

We can now call it. The argument must be in the source group.

In [12]: # An element in the source, represented as a list
group_element = [1, 1]

Calling the homomorphism
print(phi(group_element))

Since [6, 4] = [1, 1] mod [5, 3] (source group)
the following is equal
print(phi([6, 4]) == phi([1, 1]))

[2, 4]
True

Calling and composing

We finish this tutorial by showing two ways to calculate the same thing:

• 𝑦 = (𝜑 ∘ 𝜓)(𝑥)
• 𝑦 = 𝜑(𝜓(𝑥))

In [13]: # Create two HomLCAs
phi = HomLCA([[4, 5], [9, -3]])
psi = HomLCA([[1, 0, 1], [0, 1, 1]])

x = [1, 1, 1]
Compose, then call
answer1 = (phi * psi)(x)

Call, then call again
answer2 = phi(psi(x))

The result is the same
print(answer1 == answer2)

True

14 Chapter 2. Contents

abelian Documentation, Release 1.0.1

2.2.3 Tutorial: Factoring homomorphisms

This is an interactive tutorial written with real code. We start by importing the LCA class, the HomLCA
class and setting up 𝐿A𝑇E𝑋 printing.

In [1]: from abelian import LCA, HomLCA
from IPython.display import display, Math

def show(arg):
return display(Math(arg.to_latex()))

Initialization and source/target projections

We create a HomLCA instance, which may represent a homomorphism between FGAs. In this tutorial
we will only consider homomorphisms between FGAs.

In [2]: phi = HomLCA([[5, 10, 15],
[10, 20, 30],
[10, 5, 30]],
target = [50, 20, 30])

show(phi)
⎛
⎝

5 10 15
10 20 30
10 5 30

⎞
⎠ : Z⊕ Z⊕ Z → Z50 ⊕ Z20 ⊕ Z30

Projecting to source

The source (or domain) is assumed to be free (infinite order). Calculating the orders is done with the
project_to_source method, after which the orders of the columns are shown in the source group.

In [3]: # Project to source, i.e. orders of generator columns
phi = phi.project_to_source()
show(phi)

⎛
⎝

5 10 15
10 20 30
10 5 30

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z50 ⊕ Z20 ⊕ Z30

Projecting to target

Projecting the columns onto the target group will make the morphism more readable. The
project_to_target() method will project every column to the target group.

In [4]: # Project the generator columns to the target group
phi = phi.project_to_target()
show(phi)

⎛
⎝

5 10 15
10 0 10
10 5 0

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z50 ⊕ Z20 ⊕ Z30

2.2. Tutorials 15

abelian Documentation, Release 1.0.1

The kernel monomorphism

The kernel morphism is a monomorphism such that 𝜑 ∘ ker(𝜑) = 0. The kernel of 𝜑 is:

In [5]: # Calculate the kernel
show(phi.kernel())

⎛
⎝
25 29 28
10 2 28
5 9 2

⎞
⎠ : Z⊕ Z⊕ Z → Z30 ⊕ Z30 ⊕ Z10

The kernel monomorphism is not projected to source by default, but doing so is simple.

In [6]: show(phi.kernel().project_to_source())
⎛
⎝
25 29 28
10 2 28
5 9 2

⎞
⎠ : Z6 ⊕ Z30 ⊕ Z15 → Z30 ⊕ Z30 ⊕ Z10

Verify that 𝜑 ∘ ker(𝜑) = 0.

In [7]: show(phi * phi.kernel())
⎛
⎝
300 300 450
300 380 300
300 300 420

⎞
⎠ : Z⊕ Z⊕ Z → Z50 ⊕ Z20 ⊕ Z30

To clearly see that this is the zero morphism, use the project_to_target() method as such.

In [8]: zero = phi * phi.kernel()
zero = zero.project_to_target()
show(zero)

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ : Z⊕ Z⊕ Z → Z50 ⊕ Z20 ⊕ Z30

The cokernel epimorphism

The kernel morphism is an epimorphism such that coker(𝜑) ∘ 𝜑 = 0. The cokernel of 𝜑 is:

In [9]: show(phi.cokernel())
⎛
⎝

1 0 0
0 1 4
18 17 4

⎞
⎠ : Z50 ⊕ Z20 ⊕ Z30 → Z5 ⊕ Z5 ⊕ Z20

We verify the factorization.

In [10]: show((phi.cokernel() * phi))
⎛
⎝

5 10 15
50 20 10
300 200 440

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z5 ⊕ Z5 ⊕ Z20

Again it is not immediately clear that this is the zero morphism. To verify this, we again use the
project_to_target() method as such.

In [11]: zero = phi.cokernel() * phi
zero = zero.project_to_target()

show(zero)

16 Chapter 2. Contents

abelian Documentation, Release 1.0.1

⎛
⎝
0 0 0
0 0 0
0 0 0

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z5 ⊕ Z5 ⊕ Z20

The image/coimage factorization

The image/coimage factorization is 𝜑 = im(𝜑) ∘ coim(𝜑), where the image is a monomorphism and the
coimage is an epimorphism.

The image monomorphism

Finding the image is easy, just call the image() method.

In [12]: im = phi.image()
show(im)

⎛
⎝
0 25 40
0 10 0
0 0 25

⎞
⎠ : Z1 ⊕ Z2 ⊕ Z30 → Z50 ⊕ Z20 ⊕ Z30

A trivial group Z1 is in the source. It can be removed using remove_trivial_subgroups().

In [13]: im = im.remove_trivial_groups()
show(im)

⎛
⎝
25 40
10 0
0 25

⎞
⎠ : Z2 ⊕ Z30 → Z50 ⊕ Z20 ⊕ Z30

The coimage epimorphism

Finding the coimage is done by calling the coimage() method.

In [14]: coim = phi.coimage().remove_trivial_groups()
show(coim)

(︂
1 0 1
22 29 6

)︂
: Z30 ⊕ Z30 ⊕ Z10 → Z2 ⊕ Z30

Verify the image/coimage factorization

We now verify that 𝜑 = im(𝜑) ∘ coim(𝜑).

In [15]: show(phi)
show((im * coim).project_to_target())

⎛
⎝

5 10 15
10 0 10
10 5 0

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z50 ⊕ Z20 ⊕ Z30

⎛
⎝

5 10 15
10 0 10
10 5 0

⎞
⎠ : Z30 ⊕ Z30 ⊕ Z10 → Z50 ⊕ Z20 ⊕ Z30

In [16]: (im * coim).project_to_target() == phi

2.2. Tutorials 17

abelian Documentation, Release 1.0.1

Out[16]: True

2.2.4 Tutorial: Functions on LCAs

This is an interactive tutorial written with real code. We start by setting up𝐿A𝑇E𝑋 printing, and importing
the classes LCA, HomLCA and LCAFunc.

In [1]: # Imports from abelian
from abelian import LCA, HomLCA, LCAFunc

Other imports
import math
import matplotlib.pyplot as plt
from IPython.display import display, Math

def show(arg):
return display(Math(arg.to_latex()))

Initializing a new function

There are two ways to create a function 𝑓 : 𝐺→ C:

• On general LCAs 𝐺, the function is represented by an analytical expression.

• If 𝐺 = Zp with 𝑝𝑖 ≥ 1 for every 𝑖 (𝐺 is a direct sum of discrete groups with finite period), a table
of values (multidimensional array) can also be used.

With an analytical representation

If the representation of the function is given by an analytical expression, initialization is simple.

Below we define a Gaussian function on Z, and one on 𝑇 .

In [2]: def gaussian(vector_arg, k = 0.1):
return math.exp(-sum(i**2 for i in vector_arg)*k)

Gaussian function on Z
Z = LCA([0])
gauss_on_Z = LCAFunc(gaussian, domain = Z)
print(gauss_on_Z) # Printing
show(gauss_on_Z) # LaTeX output

Gaussian function on T
T = LCA([1], [False])
gauss_on_T = LCAFunc(gaussian, domain = T)
show(gauss_on_T) # LaTeX output

LCAFunc on domain [Z]

function ∈ C𝐺, 𝐺 = Z

function ∈ C𝐺, 𝐺 = 𝑇

Notice how the print built-in and the to_latex() method will show human-readable output.

18 Chapter 2. Contents

abelian Documentation, Release 1.0.1

With a table of values

Functions on Zp can be defined using a table of values, if 𝑝𝑖 ≥ 1 for every 𝑝𝑖 ∈ p.

In [3]: # Create a table of values
table_data = [[1,2,3,4,5],

[2,3,4,5,6],
[3,4,5,6,7]]

Create a domain matching the table
domain = LCA([3, 5])

table_func = LCAFunc(table_data, domain)
show(table_func)
print(table_func([1, 1])) # [1, 1] maps to 3

function ∈ C𝐺, 𝐺 = Z3 ⊕ Z5

3

Function evaluation

A function 𝑓 ∈ C𝐺 is callable. To call (i.e. evaluate) a function, pass a group element.

In [4]: # An element in Z
element = [0]

Evaluate the function
gauss_on_Z(element)

Out[4]: 1.0

The sample() method can be used to sample a function on a list of group elements in the domain.

In [5]: # Create a list of sample points [-6, ..., 6]
sample_points = [[i] for i in range(-6, 7)]

Sample the function, returns a list of values
sampled_func = gauss_on_Z.sample(sample_points)

Plot the result of sampling the function
plt.figure(figsize = (8, 3))
plt.title('Gaussian function on \mathbb{Z}')
plt.plot(sample_points, sampled_func, '-o')
plt.grid(True)
plt.show()

2.2. Tutorials 19

abelian Documentation, Release 1.0.1

Shifts

Let 𝑓 : 𝐺→ C be a function. The shift operator (or translation operator) 𝑆ℎ is defined as

𝑆ℎ[𝑓(𝑔)] = 𝑓(𝑔 − ℎ).

The shift operator shifts 𝑓(𝑔) by ℎ, where ℎ, 𝑔 ∈ 𝐺.

The shift operator is implemented as a method called shift.

In [6]: # The group element to shift by
shift_by = [3]

Shift the function
shifted_gauss = gauss_on_Z.shift(shift_by)

Create sample poits and sample
sample_points = [[i] for i in range(-6, 7)]
sampled1 = gauss_on_Z.sample(sample_points)
sampled2 = shifted_gauss.sample(sample_points)

Create a plot
plt.figure(figsize = (8, 3))
ttl = 'Gaussians on \mathbb{Z}, one is shifted'
plt.title(ttl)
plt.plot(sample_points, sampled1, '-o')
plt.plot(sample_points, sampled2, '-o')
plt.grid(True)
plt.show()

20 Chapter 2. Contents

abelian Documentation, Release 1.0.1

Pullbacks

Let 𝜑 : 𝐺 → 𝐻 be a homomorphism and let 𝑓 : 𝐻 → C be a function. The pullback of 𝑓 along 𝜑,
denoted 𝜑*(𝑓), is defined as

𝜑*(𝑓) := 𝑓 ∘ 𝜑.

The pullback “moves” the domain of the function 𝑓 to 𝐺, i.e. 𝜑*(𝑓) : 𝐺 → C. The pullback is of f is
calculated using the pullback method, as shown below.

In [7]: def linear(arg):
return sum(arg)

The original function
f = LCAFunc(linear, LCA([10]))
show(f)

A homomorphism phi
phi = HomLCA([2], target = [10])
show(phi)

The pullback of f along phi
g = f.pullback(phi)
show(g)

function ∈ C𝐺, 𝐺 = Z10
(︀
2
)︀
: Z → Z10

function ∈ C𝐺, 𝐺 = Z

We now sample the functions and plot them.

In [8]: # Sample the functions and plot them
sample_points = [[i] for i in range(-5, 15)]
f_sampled = f.sample(sample_points)
g_sampled = g.sample(sample_points)

Plot the original function and the pullback
plt.figure(figsize = (8, 3))
plt.title('Linear functions')

2.2. Tutorials 21

abelian Documentation, Release 1.0.1

label = '$f \in \mathbb{Z}_{10}$'
plt.plot(sample_points, f_sampled, '-o', label = label)
label = '$g \circ \phi \in \mathbb{Z}$'
plt.plot(sample_points, g_sampled, '-o', label = label)
plt.grid(True)
plt.legend(loc = 'best')
plt.show()

Pushforwards

Let 𝜑 : 𝐺 → 𝐻 be a epimorphism and let 𝑓 : 𝐺 → C be a function. The pushforward of 𝑓 along 𝜑,
denoted 𝜑*(𝑓), is defined as

(𝜑*(𝑓))(𝑔) :=
∑︁

𝑘∈ker𝜑
𝑓(𝑘 + ℎ), 𝜑(𝑔) = ℎ

The pullback “moves” the domain of the function 𝑓 to 𝐻 , i.e. 𝜑*(𝑓) : 𝐻 → C. First a solution is
obtained, then we sum over the kernel. Since such a sum may contain an infinite number of terms, we
bound it using a norm. Below is an example where we:

• Define a Gaussian 𝑓(𝑥) = exp(−𝑘𝑥2) on Z

• Use pushforward to “move” it with 𝜑(𝑔) = 𝑔 ∈ Hom(Z,Z10)

In [9]: # We create a function on Z and plot it
def gaussian(arg, k = 0.05):

"""
A gaussian function.
"""
return math.exp(-sum(i**2 for i in arg)*k)

Create gaussian on Z, shift it by 5
gauss_on_Z = LCAFunc(gaussian, LCA([0]))
gauss_on_Z = gauss_on_Z.shift([5])

Sample points and sampled function
s_points = [[i] for i in range(-5, 15)]
f_sampled = gauss_on_Z.sample(s_points)

Plot it

22 Chapter 2. Contents

abelian Documentation, Release 1.0.1

plt.figure(figsize = (8, 3))
plt.title('A gaussian function on \mathbb{Z}')
plt.plot(s_points, f_sampled, '-o')
plt.grid(True)
plt.show()

In [10]: # Use a pushforward to periodize the function
phi = HomLCA([1], target = [10])
show(phi)

(︀
1
)︀
: Z → Z10

First we do a pushforward with only one term. Not enough terms are present in the sum to capture
what the pushforward would look like if the sum went to infinity.

In [11]: terms = 1

Pushforward of the function along phi
gauss_on_Z_10 = gauss_on_Z.pushforward(phi, terms)

Sample the functions and plot them
pushforward_sampled = gauss_on_Z_10.sample(sample_points)

plt.figure(figsize = (8, 3))
label = 'A gaussian function on \mathbb{Z} and \
pushforward to \mathbb{Z}_{10} with few terms in the sum'
plt.title(label)
plt.plot(s_points, f_sampled, '-o', label ='Original')
plt.plot(s_points, pushforward_sampled, '-o', label ='Pushforward')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

2.2. Tutorials 23

abelian Documentation, Release 1.0.1

Next we do a pushforward with more terms in the sum, this captures what the pushforward would look
like if the sum went to infinity.

In [12]: terms = 9

gauss_on_Z_10 = gauss_on_Z.pushforward(phi, terms)

Sample the functions and plot them
pushforward_sampled = gauss_on_Z_10.sample(sample_points)

plt.figure(figsize = (8, 3))
plt.title('A gaussian function on \mathbb{Z} and \
pushforward to \mathbb{Z}_{10} with enough terms')
plt.plot(s_points, f_sampled, '-o', label ='Original')
plt.plot(s_points, pushforward_sampled, '-o', label ='Pushforward')
plt.legend(loc = 'best')
plt.grid(True)
plt.show()

2.2.5 Tutorial: Fourier series

This is an interactive tutorial written with real code. We start by setting up 𝐿A𝑇E𝑋 printing and importing
some classes.

24 Chapter 2. Contents

abelian Documentation, Release 1.0.1

In [1]: # Imports related to plotting and LaTeX
import matplotlib.pyplot as plt
%matplotlib inline
from IPython.display import display, Math
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'png')
def show(arg):

return display(Math(arg.to_latex()))

In [2]: # Imports related to mathematics
import numpy as np
from abelian import LCA, HomLCA, LCAFunc
from sympy import Rational, pi

Overview: 𝑓(𝑥) = 𝑥 defined on 𝑇 = R/Z

In this example we compute the Fourier series coefficients for 𝑓(𝑥) = 𝑥 with domain 𝑇 = R/Z.

We will proceed as follows:

1. Define a function 𝑓(𝑥) = 𝑥 on 𝑇 .

2. Sample using pullback along 𝜑sample : Z𝑛 → 𝑇 . Specifically, we will use 𝜑(𝑛) = 1/𝑛 to sample
uniformly.

3. Compute the DFT of the sampled function using the dft method.

4. Use a transversal rule to move the DFT from Z𝑛 to ̂︀𝑇 = Z.

5. Plot the result and compare with the analytical solution, which can be obtained by computing the
complex Fourier coefficients of the Fourier integral by hand.

We start by defining the function on the domain.

Defining the function

In [3]: def identity(arg_list):
return sum(arg_list)

Create the domain T and a function on it
T = LCA(orders = [1], discrete = [False])
function = LCAFunc(identity, T)
show(function)

function ∈ C𝐺, 𝐺 = 𝑇

We now create a monomorphism 𝜑sample to sample the function, where we make use of the Rational
class to avoid numerical errors.

Sampling using pullback

In [4]: # Set up the number of sample points
n = 8

Create the source of the monomorphism
Z_n = LCA([n])
phi_sample = HomLCA([Rational(1, n)],T, Z_n)
show(phi_sample)

2.2. Tutorials 25

abelian Documentation, Release 1.0.1

(︀
1
8

)︀
: Z8 → 𝑇

We sample the function using the pullback.

In [5]: # Pullback along phi_sample
function_sampled = function.pullback(phi_sample)

Then we compute the DFT (discrete Fourier transform). The DFT is available on functions defined on
Zp with 𝑝𝑖 ≥ 1, i.e. on FGAs with finite orders.

The DFT

In [6]: # Take the DFT (a multidimensional FFT is used)
function_sampled_dual = function_sampled.dft()

Transversal

We use a transversal rule, along with ̂︀𝜑sample, to push the function to ̂︀𝑇 = Z.

In [7]: # Set up a transversal rule
def transversal_rule(arg_list):

x = arg_list[0] # First element of vector/list
if x < n/2:

return [x]
else:

return [x - n]

Calculate the Fourier series coefficients
phi_d = phi_sample.dual()
rule = transversal_rule
coeffs = function_sampled_dual.transversal(phi_d, rule)
show(coeffs)

function ∈ C𝐺, 𝐺 = Z

Comparing with analytical solution

Let us compare this result with the analytical solution, which is

𝑐𝑘 =

{︃
1/2 if 𝑘 = 0

−1/2𝜋𝑖𝑘 else.

In [8]: # Set up a function for the analytical solution
def analytical(k):

if k == 0:
return 1/2

return complex(0, 1)/(2*pi*k)

Sample the analytical and computed functions
sample_values = list(range(-int(1.5*n), int(1.5*n)+1))
analytical_sampled = list(map(analytical, sample_values))
computed_sampled = coeffs.sample(sample_values)

Because the forward DFT does not scale, we scale manually
computed_sampled = [k/n for k in computed_sampled]

26 Chapter 2. Contents

abelian Documentation, Release 1.0.1

Finally, we create the plot comparing the computed coefficients with the ones obtained analytically.
Notice how the computed values drop to zero outside of the transversal region.

In [9]: # Since we are working with complex numbers
and we wish to plot them, we convert
to absolute values first
length = lambda x: float(abs(x))
analytical_abs = list(map(length, analytical_sampled))
computed_abs = list(map(length, computed_sampled))

Plot it
plt.figure(figsize = (8,3))
plt.title('Absolute value of Fourier coefficients')
plt.plot(sample_values, analytical_abs, label = 'Analytical')
plt.plot(sample_values, computed_abs, label = 'Computed')
plt.grid(True)
plt.legend(loc = 'best')
plt.show()

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5
Absolute value of Fourier coefficients

Analytical
Computed

2.3 API

2.3.1 Library structure

The abelian library consists of two packages, abelian and the abelian.linalg sub-package.

• abelian - Provides access to high-level mathematical objects: LCAs, homomorphisms between
LCAs and functions from an LCA to the complex numbers.

– abelian.linalg - Lower-level linear algebra routines. Most notably the Hermite normal
form, the Smith normal form, an equation solver for the equation Ax = b mod p over the
integers, as well as functions for generating elements of a finitely generated abelian group
(FGA) ordered by maximum-norm.

2.3. API 27

131

This concludes Appendix B. Every class, method and function is documented
with examples. Due to the length, this part of the documentation is omitted.
It can be found online at abelian.readthedocs.io/, and the .pdf documenta-
tion is found at media.readthedocs.org/pdf/abelian/latest/abelian.pdf.

http://abelian.readthedocs.io/en/latest/
https://media.readthedocs.org/pdf/abelian/latest/abelian.pdf

	Introduction
	Introduction
	Chapter overview

	Preview
	Sampling on a lattice
	Fourier series approximation
	Hexagonal sampling and periodization

	Preliminaries
	Properties of integers and set functions
	Group theory
	Category theory
	Fourier analysis

	Integer linear algebra
	Unimodular matrices
	The Hermite normal form
	The Smith normal form
	Algorithms and computational issues

	Computing factorizations in FinAb
	Factorizations in abelian categories
	Factorizations in VectR
	Factoring free-to-free morphisms in FinAb
	Solving equations in FinAb
	Factoring left-free morphisms in FinAb
	Morphisms in Ab

	Fourier analysis on locally compact abelian groups
	Locally compact abelian groups
	Characters and the dual group
	The invariant integral
	The Fourier transform
	Pullbacks and pushforwards on groups
	Computing pushforwards
	Dual homomorphisms
	Sampling and periodization
	Hexagonal Fourier analysis in `39`42`"613A``45`47`"603AR2

	The abelian software library
	Scientific programming and Python
	Principles of software development
	Introducing abelian
	Example 1: Factoring a homomorphism
	Example 2: Fourier series approximation
	Example 3: Hexagonal Fourier analysis

	Conclusion and further work
	Conclusion
	Further work

	Appendices
	Source code
	Software documentation

