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Summary. We derive a multiple porosity model based on the continuous time random walk 
model (CTRW). In particular, we show how the parameters of the multiple porosity models 
relate to the transition probability function which is at the heart of the CTRW formulation. A 
simple example is included to illustrate the results.  

 
 
1 INTRODUCTION 

Models for particle transport associated with fluid flow in porous media are essential for a 
wide range of applications spanning exploitation of groundwater resources to paper 
production and fuel cells. While many of the challenges in these applications relate to the 
simultaneous flow of multiple fluids through the pore space, even transport of a passive 
component flowing with a single fluid is not properly understood on scales above that at 
which the porous structure can be resolved (see e.g. the special issue [1]). 

Numerous experiments indicate that the solutions to the Advection-Dispersion Equation 
(ADE) and its modifications do not capture the full complexity of transport (see e.g. [2] and 
references therein). The last decade, the Continuous Time Random Walk (CTRW) model has 
been advocated as a general framework to address transport in porous media [2]. This is 
supported by the equivalence to the generalized master equation (GME) [3], showing that the 
solutions of CTRW must include the solution of all other deterministic transport models either 
through equivalence or as a subset. 

However, in practical applications, multiple porosity models remain much more wide-
spread, due to their simple implementation in existing code packages, as well as their simple 
intuitive interpretation [4, 5].  

In this paper, we show an explicit relationship between multiple porosity models and 
CTRW. This relationship goes beyond the usual analysis, which shows how CTRW 
converges to certain fractional differential equations in appropriate limits, by defining a 
multiple porosity model which is identified as identical to CTRW under a certain 
discretization in its Lagrangian formulation. This is achieved through considering generalized 
multiple porosity models with potentially infinitely many continua.  

Thus, we formulate a duality where CTRW is seen as a spatial discretization of transport, 
while retaining the exact structure of the subscale velocity distribution. In contrast, multiple 
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porosity models with a finite number of continua can be considered as spatially continuous 
models with a discrete approximation to the velocity distribution.  

We structure the presentation as follows. In the next section, we give the generalization of 
multiple porosity models we exploit in this paper. In section 3, we give a brief reminder of the 
main formulations of CTRW. Finally, in Section 4, we show the explicit relationship between 
CTRW and multiple porosity models.  

 

2 MULTIPLE POROSITY MODELS 

Multiple continua models are the intuitive generalization of single continua models. The 
idea was first presented by Barenblatt [6], and has since been widely used, not only for 
particle transport but also for multi-phase flow and thermal transport.  

Most commonly, multiple porosity models are applied to only two continua, and these are 
then identified as e.g. the fracture continua and the matrix continua. The equation for mass 
transport in the fracture continua (identified by subscript 1) can then be written as 

⋅     ,    (1) 
with the equivalent transport equation for the matrix continua (identified by subscript 2)  

⋅     .    (2) 
In equations (1-2), we may relate masses and concentrations by the porosity  and the 
fraction of the porosity which is associated with each continua , thus using  to denote 
density, . The fluxes  are usually determined from Darcy’s law, while the 
dispersion tensors  and interaction coefficient  are (possibly flux dependent) properties of 
the medium. We take these parameters as known herein.  

The natural generalization of the dual porosity models is the n-porosity model employed 
by Gwo for contaminant transport [5] and by Pruess for thermal transport [4]. This model can 
be concisely written as 

⋅   ∑ ,   ,   for all  1. .  . (3) 
The parameters ,  must be positive (when  for dispersive processes, with ∑ , 0. 
Further, we mass conservation implies ∑ , 0.  By definition, we also have the constraint 
that ∑ 1. 

Herein, we will further generalize Equation (3) by considering not only a finite number of 
continua, but indeed infinite families of continua. On one hand, this is simply a formal 
generalization, but it may also be given physical interpretations as we will see below. When 
we treat the index as a continuous variable, we will denote it by , which is assumed to be in 
the space Ω. Our independent variables are then functions of both physical and parameter 
spaces, in addition to time, e.g. , , , where , , ∈ Ω . The 
continuous generalization of Equation (3) is then stated as  

⋅   ,   ′.   (4) 
The subscript on the differential operators emphasizes that the differential is with respect to 
the spatial coordinate, as opposed to the parameter space coordinate . 

The generalized multiple porosity model can also be written such that it accommodate non-
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passive particles by replacing the integral transform on the right hand side by a non-linear 
operator, which we write as:  

⋅   | , .   (5) 
 
  

3 CONTINUOUS TIME RANDOM WALK 

The Continuous Time Random Walk (CTRW) models represent a distinct departure from 
the modeling philosophy of Section 2. Instead of looking at the deterministic movement of a 
concentration of particles in a continuum, CTRW considers the transition probabilities for 
particles between discrete points.  

The usual CTRW derivation lets the probability density  of a particle arriving at some 
point in time be related to the history of the problem [7]: 

, ∑ , ,   ′ .   (6) 
Here we use a summation over space to emphasize that the spatial points are discrete and 
countable, and the transition probability is given by . From this equation, the 
probability density  of a particle being at a point is deduced from the probability that it has 
not transitioned to a different point,  

, ,   ′,     (7) 
where the probability of not transitioning is defined as  

1 ∑ ′,   ′,     (8) 
 
Continuous time models thus shift the emphasis away from the traditional view of 

advection and dispersion on a continuum scale, towards a concept of a spectrum of transition 
times. These are useful concepts and ideas, and they motivate our desire to incorporate this 
approach within multiple porosity models. 
 
 

4  MULTIPLE POROSITY AND CTRW 

We have seen in sections 2 and 3 that while both multiple porosity (MP) models and 
continuous time random walk aim at describing transport phenomena, they are parameterized 
by different functions. Indeed, the main parameters of concern to us in the MP model are the 
flux distributions ; the distribution of continua (porosity) ; and the kernel of the continua 
exchange term . In contrast, the important parameter of the CTRW model is the transition 
probability function . Recalling that our aim is to be able to reproduce the results of CTRW 
within a MP model, we will in this section show how to chose the parameters of the multiple 
porosity model given a transition probability function . 

Our approach will be to manipulate the MP model, by change of variables, rewriting the 
equation in a Lagrangian framework, and finally introducing a low-order quadrature. This will 
lead to equations equivalent to Equations (6), and we can thus identify the relationship 



Jan M. Nordbotten and Leonid Vasilyev 

 4

between the parameters of the two models. Since Equation (6) is discrete in space, we will use 
a form of the MP porosity model where the parameter space has both continuous and discrete 
components. 

As a preliminary note, we point out that the non-linear MP model is related to the 
Boltzmann equation, by identifying Ω , and interpreting it as the (discrete) flux space, 
e.g.  . We then obtain from a dispersion free Equation (5)  

⋅   | , .   (9) 
Up to the scaling between flux and velocity, Equation (9) is a discrete Boltzmann equation 
with no body forces. A common approximation to the collision term of the Boltzmann 
equation is the Bhatnagar-Gross-Krook (BGK) collision operator [8], which takes the form 

, | ,

〈 〉  , .     (10) 

Here angled brackets implies integration and summation over the parameter space Ω;  

〈 〉 〈 〉 , , ,   , ,    

Here, Ω  refers to the continuous part of Ω. Further, the equilibrium distribution refers to the 
distribution in Ω, such that ; , . Note that for dispersive processes, Equation (10) 
implies that , since . The characteristic time-scale of relaxation is given by 
, and we will include this time-scale in the parameter space, thus Ω ℙ , and 
, . Since  is now dependent on the parameter space, we must be careful with how we 

formulate the collision operator in order to retain mass balance. Then it is necessary to 
consider not the integral mass 〈 〉, but rather the weighted average 〈 〉. From a 
Boltzmann perspective, this corresponds to the mass (per time) entering collisions. From our 
perspective, this represents the mass (per time) leaving a continuum. Similarly, we are 
therefore also interested in not only the equilibrium distribution, but also how mass is 
distributed from collisions,   

,

  ,

〈   〉
.     (11) 

We will in the continuation suppress the dependence on  or  when it is clear from the 
context. Motivated by this analogy to the Boltzmann equation, we will investigate a collision 
term of the type 

| , 〈 〉  ∗ .    (12) 

We recognize the first term on the right hand side as the source to the continua from 
exchanges, while the second term represents the loss term. 

Using the collision term suggested in Equation (12) in the MP model given in Equation (5), 
and by transforming the equation from using a fluid flux to particle velocity as parameter, so 
that     , we can write the dispersion free MP model in terms of the mass 

, , ,  
⋅   〈 〉  .   (13) 

It is convenient to change dependent variables so that Equation (13) is written in terms of 
the mass lost to exchange, , , , ,  in stead of the mass distribution, which 
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gives the equation  

⋅  
〈 〉 

.    (14) 

This equation governs the evolution of the mass per time changing continua , and has the 
same structure as the Boltzmann equation with the BGK relaxation term.  This quantity is 
related to the arrival probability  solved for in the CTRW model, as we can see from 
Equation (12). However, Equation (14) is of a very different form than Equation (6).  

We now proceed by writing Equation (14) on a Lagrangian form. By integrating Equation 
(14) along characteristics from time  to , we obtain  

, , , , ,   | ,   ′. (15) 
While in general,  is some small parameter, it is helpful to keep in mind the special case 
where 1, as this leads to needed simplifications the later expressions. This is equivalent to 
considering a Lagrangian step which is exactly equal to the inverse exchange rate. 

To treat the integral in Equation (15), we approximate the integral by simple quadrature. 
Let the integral over the collision operator be approximated by its lower limit;  

,   | ,   ′   ,   | , .   (16) 
Then substituting the definition of the exchange term we obtain from Equation (15)  

, , 1 , ,       
〈 〉 ,    , ; , .  (17) 

We see that for homogeneous problems, where the exchange term is independent of space, the 
last term of Equation (17) is decoupled. When we chose the discretization parameter 1, 
the first term on the right hand side of Equation (17) is zero, which allows us to obtain an 
equation for the evolution of the total mass by integrating over Ω, leading to:  

〈 〉 , ∑ 〈 〉 ,   , ; ,   .   (18) 
By changing the variables of integration we can go from a velocity formulation to a spatial 
formulation, with  and .    

〈 〉 , ∑ 〈 〉 , ′   , ′   ′.   (19) 
Here, we have assumed that the collision operator is homogeneous in space-time.  

For Equation (19) to be equivalent to Equation (6), we identify the distribution  as the 
CTRW distribution,  

, , .     (20) 
We note by comparing equations (6) and (19) that the probability R of a particle arriving at 

a point in the CTRW model satisfies the same equation as the mass change 〈 〉 at a point in a 
discrete-continuous form of the MP model as given in Equation (19). For spatially discrete 
distributions as given in Equation (20), integration needed to convert from arrival probability 
R to a conservative probability P is analogous to the relationship between mass collision 
densities p to physical masses m. Thus we have reached the conclusion that the CTRW can be 
interpreted as a spatial discretization of an approximate MP model in Lagrangian coordinates, 
where the interaction term is evaluated by one-sided quadrature.  

We summarize the relationship between the parameters of the MP and the CTRW models 
in Table 1, together with several of the intermediate distributions used in the derivation. The 



Jan M. Nordbotten and Leonid Vasilyev 

 6

key results are given in bold. 
 
 
 

Property Expression 
Multiple 
Porosity 
Equation 

⋅ , ,   ′ 

Parameter space Ω ℙ
Parameter 
variable 

,  

Lagrangian 
transport kernel 

, ,  

Equilibrium 
distribution  

, ∼ ,  

Discrete 
structure 

0 ⇒  
 

Flux density 
relation , ,  

Exchange term 
kernel , ,

1

′
, ,  

Table 1: The main parameter functions of the MP model expressed in terms of the 
parameter functions of the CTRW model are give in the table in bold. Various other 

expressions of interest from this section are also provided.  

5  EXAMPLE CALCULATION 

To illustrate the relation between the parameters of CTRW and MP models we investigate a 
simple representation of a 2D network with a regular triangular structure. With flow aligned 
with the network, this network has two types of pore throats: parallel and inclined to the flow 
direction.  

In such a synthetic case the fluid after complete mixing in a pore node will with probability 
2/3 go through the inclined pore, and with probability 1/3 go through a parallel 

pore. The corresponding travel distances are denoted Δ  and Δ , with Δ 2Δ . 
Similarly, we denote the travel times Δ  and Δ . 

Considering the described porous system in the CTRW framework we first observe that for 
this simple network, we only have two continua, and that the distribution of transit times is 
also discrete. Thus we replace the continuous time derivation from Section 4 with an 
equivalent discrete time random walk formulation. The transition probability is then given as 

,
if Δ    and   Δ

if Δ    and   Δ
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Following the calculations in Table 1 we can rewrite the exchange term kernel on the form 

, Δ Δ
 

Figure 1 shows a comparison between the break-through curves obtained by a network model 
as described, together with the equivalent dual-porosity model. The parameters have been 
chosen to be characteristic of homogeneous sand. While this is a relatively simple problem, 
the example nevertheless validates the connection between CTRW and MP models derived in 
Section 4. We also note that for these parameters, even though the coupling term  is 
relatively strong, the curves nevertheless show a devitation from the error function predicted 
by a single porosity model.  

 
Figure 1. Concentration profiles obtained different distances from the injection point. Results from network 

model (lines) and dual-porosity model (crosses).  
 

5 DISCUSSION 

We summarize the main results and observations herein: 
1. Given a suitable approximate Lagrangian form, the parameters of the multiple porosity 

model can be obtained from the parameters of the continuous time random walk model.  
2. Conversely, the continuous time random walk model can be seen as a spatial 

discretization of an approximate Lagrangian form of the multiple porosity model.  
3. A suitable interpretation of the different continua in the multiple porosity model is that 

they represent fluxes and expected particle travel times between change in flux field.  
4. The kernel  of the exchange transform can be expressed explicitly given the flux 

density . 
5. In practice, only a (small) finite number of continua are used in multiple porosity 

models. The multiple porosity model can then be seen as a flux space discretization of 
the underlying transition time distribution , as opposed to continuous time random 
walk which is a spatial discretization.  
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