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BTC Breakthrough Curve
CTRW Continuous Time Random Walk model
FDE Fractional Differential Equation
GCT Generalized Continuum Transport model
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Abstract

Fluid flow phenomena in porous media have always attracted a lot of attention of sci-
entists and engineers. Attempts to quantify the average transport in homogeneous me-
dia with a simple partial differential equation with constant coefficients disclosed sig-
nificant inconsistencies comparing to experiments. Modern numerical simulations of
porous networks confirmed that those inconsistencies are systematic and not caused by
the observation error. The error appeared as a result of the, so called, anomalous or
non-Fickian transport, which was in contrast to the normal regime, described by the
Fick’s laws.

The problem has been addressed through the introduction of more complex and sub-
stantial models to describe the phenomena. Although, these new approaches have re-
solved the problem of quantification, they have raised another question for researchers
and engineers, how to choose the most suitable approach and, if it is possible, to
parametrize the modeling choice at all. The models general lack of physical consis-
tency makes it difficult to distinguish the model parameters. This leaves judging of
suitability to the general accuracy of quantification only, which is often not the most
important criterion. In other words, the model parameters are typically estimated by
fitting the model to the experimental data, and are often not related to the real prop-
erties of the medium. Therefore, a model is often chosen a priory, based only on the
experience of the researcher.

In this work, we address the problem of model selection by introducing a new
model: the Generalized Continuum Transport model. This model transforms into exist-
ing models at certain limits and, therefore, constrains the modeling choice through the
introduction of the parameter space. It is shown that the Generalized Continuum Trans-
port model limits to the advection-dispersion equation, the Continuous Time Random
Walk, the Multi-Rate Mass Transfer and the Multiple-Porosity models, when corre-
sponding configurations of the parameter space are applied.

The model’s accuracy is studied by quantifying the breakthrough curves obtained
from a fine scale porous network modeldemonstrating significant appearance of anoma-
lous transport phenomena. The results show that the error of quantification is smaller
than the error of the existing models.

It is discussed that the parameters of the Generalized Continuum Transport model
are related to the physical properties of porous media. Finally, it is presented that the
parameter space of GCT can be constrained and related to the transport phenomena
studied. Hence, the limits of GCT are controlled by the transport complexity and the
desired accuracy and the modeling choice can be parametrized.
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Outline

This dissertation consists of two parts. In the first part a background theory is pro-
vided for the papers included in the second part. Part I is structured as follows. Chapter
1 contains a brief description of porous systems and fine scale approaches for model-
ing transport phenomena on a pore level. In Chapter 2, the appearance of non-Fickian
transport is introduced as opposed to normal or Fickian. Existing large scale model-
ing approaches for transport in porous media are presented in Chapter 3 starting from
the most simple models and moving towards more sophisticated and more accurate
approaches. The included papers are summarized in Chapter 4.

The following papers are included in the thesis as Part II:
Paper A: J. Nordbotten and L. Vasilyev. On the relationship between multiple poros-
ity models and continuous time random walk. In proceedings of XVIII International
Conference on Water Resources CMWR2010, 2010.
Paper B: L. Vasilyev, A. Raoof, and J. M. Nordbotten. Effect of mean network coordi-
nation number on dispersivity characteristics. Transport in Porous Media, 95(2):447–
463, 2012.
Paper C: L. Vasilyev, J. M. Nordbotten, A. F. Radu, and K. Kumar. On the properties
of the parameter space of the generalized continuum transport model for description of
fluid flow in porous networks. Transport in Porous Media, 119(3):673–688, 2017.
Paper D: L. Vasilyev and A. F. Radu. On the ability of the Generalized Continuum
Transport Model to properly capture dispersion. Accepted for publication in Analele
Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 2017.
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Part I

Background





Chapter 1

Introduction

“Look deep into nature, and then you
will understand everything better.”

–Albert Einstein

Our physical knowledge of the laws of nature is based on observations and experi-
ments. Mathematical modeling is the way to quantify a physical phenomenon or, in
other words, the method to relate physical quantities to each other. There always exist
a gap between our understanding of the processes underlying the phenomenon and the
mathematical model describing it. A mathematical model can perfectly quantify the
phenomenon but, at the same time, it may lack the knowledge of the underlying pro-
cess or interpret the process in an unnatural manner. On the other hand, a model can
demonstrate good description of the dominating physical phenomenon, while omission
of some minor effects may lead to poor quantification.

Modeling of flow through porous media has always been challenging for scientists,
even though the porous systems have usually been considered simplified and ideal-
ized. On larger scales, the fundamental laws of physics are not sufficient to provide
a closed form system. Experimental or phenomenological relations, such as Hooke’s
law, Darcy’s law or Fick’s laws, were derived in order to represent a system within a
single scale.

Porous media can, without exaggeration, be found everywhere. Generally, any
medium that can be penetrated by fluids is a porous medium. Therefore, the appli-
cations of flow models are potentially numerous. Leakage through concrete can flood
a house basement or destroy a dam, tidal waves enter sand and affect groundwater.
Accurate models are especially important for enhanced oil recovery and hydrology.

Porous media are, by nature, essentially heterogeneous. It is, though, possible,
to some extent, to treat a large porous block as homogeneous, if its properties re-
main roughly unchanged on that scale. For decades, scientists and engineers used the
Advection-Dispersion Equation (ADE) and its variants for transport quantification. The
model is very reliable and easy to use, it is easily solvable both numerically and, more
important, analytically. ADE has also been adopted for more complex geometries by
introducing variable coefficients or additional source-leak terms.

ADE is still commonly used also nowadays, despite that even the early idealized
laboratory flow tests on homogeneous systems demonstrated systematic deviations that
could not be explained by inaccurate measurements [Aronofsky and Heller, 1957,
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Scheidegger, 1959, Silliman and Simpson, 1987]. Many authors related these devia-
tions to the existence of preferential flow paths related to the porous structure or textu-
ral differences [Ehlers, 1975, Bouma, 1981, Beven and Germann, 1982, Brusseau and
Rao, 1990, Wang, 1991, Thoma et al., 1992, Flury et al., 1994, Liu et al., 1998, Pruess,
1999]. The results of these preferential paths are, for example, fingering [Hill and Par-
lange, 1972, Hillel, 1987] or funneled flow [Kung, 1990, Steenhuis et al., 1990, Walter
et al., 2000]. Neuweiler and Vogel [2007] estimated the effective unsaturated param-
eters for non-Gaussian heterogeneous porous media which reflected the existence of
connected paths for different parameter ranges. It was demonstrated, that connectivity
of different parameter ranges contains important information that determines the typi-
cal time scales of the flow process [Neuweiler et al., 2011]. In contrast to the previous
findings, Ghodrati and Jury [1992] reported the occurrence of preferential flow even
in apparently “structureless” soils at the field scale. Systematic deviations appeared as
long tails in breakthrough curves (BTCs) and, due to this, the phenomenon was called
“the tailing effect”. Such transport is often referred as anomalous or non-Fickian in
contrast to normal, Gaussian or Fickian which satisfies the Fick’s laws of diffusion. In
principle, any transport phenomena that cannot be quantified with ADE can be referred
to as anomalous.

A common issue that appears when modeling transport in random systems is the
increase of dispersion with the scale of observation. The increase of the dispersion
coefficient from Darcy scale to laboratory scale and to field scale was reported by mea-
suring the BTCs and extracting the dispersion coefficient using different methods like
fitting of ADE and calculation of the second spatial moment [Fried, 1975, Cushman,
1986, Suciu, 2014].

ADE treats “homogeneous” media under some assumptions, though this homo-
geneity rarely, if ever, can be found in nature. In natural geological formations het-
erogeneities are present at all scales and can refer to the distribution of geometrical
properties (porosity, pore conduction, coordination number), variation of biogeochem-
ical properties of the medium that affects the passing fluid (wall friction, reactions with
the medium), or even variation of fluid characteristics (reactions, viscosity, diffusion).

It was, therefore, logical to employ probabilistic approaches to quantify the appear-
ance of non-Fickian behavior. In past years, much attention was paid to the Continu-
ous Time Random Walk (CTRW) framework [Kenkre et al., 1973, Shlesinger, 1974,
Berkowitz et al., 2006]. This approach treats a porous medium as a grid of discrete
sites, where fluid particles or, in other words, small volumes can reside. Transition
from site to site is defined through a transition time and the transition time distribution.
Thus, the information about the medium’s properties is summarized into the distribu-
tion, which is not directly related to the medium’s physical characteristics. Despite the
lack of knowledge about the system and the discrete nature of CTRW unsuitable for
mathematical investigation, it inspired a variety of deeper analyses. This resulted in the
development of the random walk based or equivalent models, such as Multi-Rate Mass
Transfer [Dentz and Berkowitz, 2003], fractional ADE [Hilfer, 2000, Metzler et al.,
1998], Global Random Walk [Vamoş et al., 2001, Suciu et al., 2011].

Another direction of investigations focused on further development of ADE in order
to account for the medium’s properties variations on different scales. Here, two major
approaches stand out. The first one is the introduction of space, time and concentration
dependent coefficients of ADE. The second approach, of a special interest for the work
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presented in this thesis, introduces also a scale dependency of coefficients such that
ADE transforms into a system of two or more equations: dual and multiple porosity
models [Gerke and Genuchten, 1993, Gwo et al., 1996].

For a model of a physical phenomenon, all aspects of the selected model are im-
portant and determine the modeling choice. But they are not equally preferable for
different problems. If the purpose is to quantify a laboratory or numerical experiment,
then accuracy plays the major role. If the medium’s characteristics are to be obtained,
then it is reasonable to use a model, which parameters represent or directly related to
the physically observable properties. For mathematical investigations, model’s conti-
nuity may be important, while accuracy and physical consistency can suffer.

Another challenge appears in the modeling choice itself. Determination of the cor-
rect complexity of the transport equations and the parameter space constraints are often
made a priory, based only on the experience and the desire of a researcher. Param-
eters of the model are typically estimated from tests, thus BTCs, or even fitted. But
they may not be related to the medium’s characteristics. It is, therefore, beneficial to
have a model which complexity is parametrized and where the parameter space can be
constrained based on the medium’s properties.

In this thesis, we give an overview of the existing deterministic and stochastic ap-
proaches to modeling transport in porous media. The models are discussed and com-
pared in terms of their accuracy of anomalous transport prediction, suitability for math-
ematical investigations and physical consistency of the parameters.

Much attention is paid to the appearance of non-Fickian phenomena in homoge-
neous synthetic porous networks, constructed such, that they reproduce a realistic ran-
dom structure of real porous systems as proposed in Raoof and Hassanizadeh [2010].
Large scale models are discussed in terms of their ability to quantify the appearance of
the “tailing effect” in BTCs.

Finally, a new approach, called the Generalized Continuum Transport model (GCT),
is introduced in the thesis as a new robust and attractive framework for transport quan-
tification and mathematical investigations. The difficulty of model selection is ad-
dressed by appealing to the fine scale models of transport processes, and the macroscale
parameters of GCT are extracted from the medium’s characteristics. The parame-
ter space of GCT is considered through its limits to classical models: ADE, CTRW,
MRMT and multiple-porosity. It is demonstrated, how the model complexity and the
parameters of GCT are related to the pore network parameters and the velocity field.
Thus, the construction of the parameter space eliminates the issue of modeling choice
and provides correlation to the medium’s nature.

Another interesting feature of GCT presented in this work is the adaptivity of the
GCT model to the complexity of transport phenomena and the desired accuracy. It
is demonstrated, that the size of the parameter space and, hence, the complexity of
equations can automatically adjust to transport complexity, and all necessary effects,
such as non-Fickian phenomena, are captured only if they appear. For example, no
extra calculation is needed when a plume has passed and the concentration remains
stable.

The main contributions of this work are summarized below:

1. Simulation of non-Fickian behavior in homogeneous porous networks. We
model transport in homogeneous porous networks with randomly constructed
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pore space according to Raoof and Hassanizadeh [2010] which corresponds to
real porous media. Fine scale simulations provide information about the porous
networks and the breakthrough curves for future analysis. Parameters of the net-
works and the velocity field are extracted from the simulations and translated
into the GCT’s parameter space. The BTCs are investigated in terms of appear-
ance of “the long tails” as the result of non-Fickian behavior in a system on the
macroscale.

2. Formulation of the Generalized Continuum Transport model. The GCT
model is introduced and its parameter space is presented. Important limits to
the classical models are obtained by constraining the parameter space. Numerical
approaches for the GCT assessment are suggested.

3. Relation of the GCT parameter space to pore network characteristics. An
important aspect of any large scale model is the possibility to obtain its parame-
ters from macro and microscale properties of the porous medium. Typically, the
parameters are estimated by fitting the breakthrough curves. In this case a labora-
tory test or a numerical simulation has to be performed. Alternatively, empirical
correlations can be derived. It is, therefore, beneficial to extract the parameters
directly from the information about the medium. It is shown that the parameter
space of GCT can be directly derived from the velocity distribution, which is re-
lated to the distribution of the microscale properties of the network. At the current
stage BTCs are still needed in order to obtain some important parameters (this is
discussed in Chapters 4.6, 4.7, Papers C and D), but we believe that in the future
it will become possible to avoid large scale simulations at all.

4. Parametrization of the modeling choice: GCT adaptivity to transport com-
plexity. It is shown that the construction of the GCT parameter space can be
parametrized and related to the complexity of transport phenomena modeled.
Parametrization of the parameter space eliminates the problem of model selec-
tion, and the complexity of equations can be determined by the expected or ob-
served transport complexity. It is always a trade off between accuracy and com-
putational efforts, but it is favorable to constrain the modeling choice to a set of
some meaningful parameters. This becomes possible with GCT.



Chapter 2

Brief introduction to flow in porous media

“Science is beautiful when it makes
simple explanations of phenomena or

connections between different
observations.”

–Stephen Hawking

Flow through porous media is a broad topic that can be encountered in many fields of
industrial and scientific interest including ground water hydrology, reservoir modeling,
geothermal energy and carbon dioxide storage. Examples of porous materials can be
found almost everywhere and include soils, porous and fractured rocks, filtering paper,
sand, ceramics and concrete. Considering these examples, it is possible to imagine,
how systematization and characterization of porous media are useful, and how accurate
quantification of transport is important. In this chapter, we present some basics of
porous media and an approach for accurate numerical representation of porous media
on a fine-scale.

2.1 Flow in porous media

A porous medium can intuitively be defined as a solid material with holes or pores in it.
Though this definition is very straightforward, it has a few points missing. It is crucial
to understand the concept of a continuum through which a fluid can flow. Therefore,
the pores should be interconnected, that it can be established several continuous paths
between two sides of the medium. Moreover, it should be a possibility to exchange
fluid between the paths. We follow Bear et al. [1968] to define a porous medium as:

1. a portion of space occupied by a multiphase matter, where at least one phase is
not solid. The space within the domain that does not comprise the solid part is
called the void space;

2. the solid phase should be distributed throughout the porous medium such that it
is present inside each representative elementary volume (the meaning of a repre-
sentative elementary volume is explained below);

3. some of the pores should be interconnected creating the effective pore space. The
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of porous media: (a) - poorly sorted sedimentary rock with low porosity;
(b) - well-sorted sand with high porosity; (c) - porous matrices separated by long fractures; (d)
- dead pore channel; (e) - fractures with dead-ends; (f) - dead porous block.

distribution of the void space may form some dead-end pores or even areas where
the fluid is completely stationary;

On Fig. 2.1 some most typical examples of porous systems are presented. Figures
2.1a and 2.1b are the well known sedimentary rocks originated from sand grains packed
into a sandstone. Fig. 2.1c is a combination of porous matrices such as sandstones and
larger fractures or cracks. Figures 2.1d–f demonstrate the appearance of dead pores
and dead zones.

In the definition above we used a few important terms that require deeper explana-
tion. Essential to the concept of a continuum is the representative elementary volume
(REV) over which the average is performed. REV is the volume of the medium chosen
small enough to represent the medium’s characteristics but not taking into account the
local fluctuations of the pore sizes or, in other words, not resolving the porous micro-
geometry.

An important and intuitive characteristic of a porous medium associated with REV
is the medium’s volumetric porosity. Porosity is usually defined as the ratio between
the void space volume within REV and the total volume. Thus the definition of REV
is constrained with the meaning of porosity. For a homogeneous porous medium REV
must be large enough that the porosity is not affected by the micro-scale fluctuations.
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In terms of a hetergeneous porous medium, porosity is varying in space, and the size of
REV is the characteristic length indicating the rate at which the porosity changes.

Though the definition of the porous medium’s porosity is intuitive, it should be
considered more thoroughly. It is discussed above that due to the random nature of a
medium some dead pores or even dead zones may appear. In these parts, the fluid does
not move or moves slow enough that these dead zones do not participate in the average
flow. In such case, we may define the effective porosity based on the flow profile and
the distribution of the pore conductivities. It was reported by Vasilyev et al. [2012] that
the presence of dead zones cannot be neglected and depends on the medium’s topology.

When a fluid flows through a porous medium, it follows a number of paths through
the medium’s voids. Thus, it is reasonable to include another characteristic of the
medium defined as the ration between the average path length traveled by the fluid and
the length of the porous domain. This ratio is called the medium’s tortuosity [Bear and
Dagan, 1964, Carman, 1937]:

T =

(
L
〈Ls〉

)2

, (2.1)

where L is the length of the flow domain and 〈Ls〉 is the average length of all possible
flow paths. Tortuosity can also be defined in terms of its influence on the average
velocity [Carman, 1937]:

T =

(
v
〈vs〉

)2

, (2.2)

where v is the large scale fluid velocity and 〈vs〉 is the average of the mean velocities
appearing in those paths.

The most important and the most useful, from a practical point of view, characteris-
tic of a porous medium is the hydraulic conductivity which quantitatively describes the
ability of the porous medium to transmit a specific fluid through it. Hydraulic conduc-
tivity relates the specific flux vector to the pressure gradient:

q =−K∇p. (2.3)

Relation (2.3) is the Darcy’s law, derived experimentally by Henry Darcy [Darcy,
1856]. The coefficient K depends on the porous medium’s and the fluid properties
and is usually obtained from experiments. Various attempts have been made to relate
hydraulic conductivity to some properties of the porous matrix. An initial step can be
made by splitting the parameters related to the medium’s structure and the parameters
related to the fluid as suggested by Nutting [1930]

K =
kg
ν
, (2.4)

where k is the permeability of the porous matrix, g is the gravity acceleration and ν is
the dynamic viscosity of the fluid. Thus, the problem was reduced to parametrization
of the porous matrix. For example, Krumbein and Monk [1943] suggested a purely
empirical relation to the grain size:

k = 0.617×10−11d2. (2.5)
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Fair and Hatch [1933], who based their approach on a dimensional analysis and exper-
imental verifications, suggested:

k =
1
m

[
(1−n)2

n3

(
0.01α ∑

P
dm

)2
]−1

, (2.6)

where m is a packing factor, α is a grain shape coefficient, P is the porosity and dm is
the characteristic grain size.

In purely theoretical approaches to relate permeability to the medium’s properties,
the authors tried to resolve the micro-scale structure of porous matrices. They simpli-
fied the porous matrix with long capillary tubes [Scheidegger, 1953, Fatt, 1956] or a set
of narrow capillary fissures [Irmay, 1955] or a bundle of capillary tubes of given shape
and constant length [Carman, 1937]. With modern technologies, it became possible to
improve these assessments by including the random nature: small scale heterogeneities
and arbitrary channel shape. This led to a new direction in porous media studies: the
pore network modeling.

2.2 Fine-scale numerical modeling of porous systems

When the early investigators tried to find the large scale parameters of porous me-
dia, they also understood the importance of linking these parameters to the medium’s
microgeometry [Carman, 1937, Wyllie and Spangler, 1952, Irmay, 1955, Scheidegger,
1953, Fatt, 1956, Scheidegger, 1960]. Hence, it was reasonable to address the fine-scale
structure as well. Having limited computational opportunities, they had to work fully
analytically by considering regular structures and averages. Growing computational
capacity opened access to larger and more complex structures, shifting from regularity
to randomization.

The idea of a fine-scale numerical representation of porous networks appeared to-
gether with the first attempts to obtain the parameters analytically. Carman [1937],
Wyllie and Spangler [1952], Scheidegger [1953], Fatt [1956] have reasonably sug-
gested that a porous medium can be interpreted as small interconnected capillaries. The
technique of the pore-scale description of porous matrices is called the pore-network
modeling, and it is widely used to describe macroscopic behavior by explicitly account-
ing for the physical phenomena on the pore scale. In order to reproduce the average
phenomena, the models require an accurate description of the medium’s morphology.
It has been clearly demonstrated that the geometric properties, such as the distribution
of the pore sizes and shapes, are crucial [Larson et al., 1977, 1991, Øren and S, 2003,
Blunt et al., 1992, Heiba et al., 1992, Ioannidis and Chatzis, 1993, Pereira et al., 1996,
Raoof and Hassanizadeh, 2010, Reeves and Celia, 1996, Dillard and Blunt, 2000]. It
has also been shown that the network topology, such as connectivity, coordination num-
ber and coordination number distribution, plays a significant role in the mean process
[Raoof and Hassanizadeh, 2010, Vasilyev et al., 2012].

It is common to consider a porous network as pore bodies interconnected with pore
throats (Fig. 2.2). Obviously, the volume of both throats and bodies represents the void
space of the porous medium which is one of the most important characteristics. Early
attempts in pore-network modeling considered only regular networks, thus, omitting



2.2 Fine-scale numerical modeling of porous systems 11

Figure 2.2: A pore-network model.

the network’s random nature. At the same time, it has been discovered that equally or
even more important is the network topology which is accounted by, for example, a
number of connections to each pore body, called the coordination number, as well as
the distribution of this number [Chatzis and Dullien, 1977, Wilkinson and Willemsen,
1983]. Accurate consideration of the network topology is crucial for proper descrip-
tion of the physical properties and mean transport quantification. Therefore, scientists
employed various techniques for reconstruction of porous networks. Arns et al. [2004]
compared different network topologies with the same mean coordination number and
concluded that matching the coordination number distribution is crucial when generat-
ing the corresponding network models. Ioannidis et al. [1997], Bakke and Øren [1997],
Øren et al. [1998] studied serial sections of a sandstone core and obtained the mean co-
ordination number (CN) for those samples CN = 3.5–4.5. Flannery et al. [1987], Dun-
smoir et al. [October 69 1991], Spanne et al. [1994] employed X-ray microtomography
for direct resolution of 3D pore structures and found CN = 4 for the most sandstones.
Lindquist et al. [2000] reported the coordination numbers of Fontainebleau sandstone
up to 20, depending on the medium’s porosity. Vasilyev et al. [2012] found that the co-
ordination number can affect the average transport phenomena, that the networks with
higher CN demonstrated more tailing in the BTCs as a result of non-Fickian behavior
(the definition of non-Fickian transport will be discussed below).

Continuous development of pore network models reduced the need of laboratory
experiments for obtaining the BTCs. Moreover, network models contain all necessary
information about the medium which is, in contrast, very hard to obtain from a real
sample. This information is of high importance for large scale models, as it can intro-
duce relations to the model’s parameter space.

In the next chapter, we give a brief introduction to Fickian and non-Fickian (anoma-
lous) transport and focus on the usability of fine-scale models to demonstrate anoma-
lous effects.
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Chapter 3

Normal and anomalous transport in porous
media

“No amount of experimentation can
ever prove me right; a single

experiment can prove me wrong.”
–Albert Einstein

Understanding of physical phenomena underlying a process is crucial for setting up
large scale models that are desired to be both accurate and physically consistent. Phe-
nomenological relations are usually a good compromise for quantitative assessments
as they are based on real observations. However, the phenomenon is, sometimes, too
complex to be expressed with a simple equation and should be considered more thor-
oughly.

Fick’s laws of diffusion are based on basic principles of molecules’ heat motion
and, therefore, can reasonably be applied to spreading of a plume in a flow domain. At
the same time, the approach has failed in some cases, when it was applied to flow in
porous media. In this chapter, we discuss the appearance of the ”non-Fickian” transport
phenomena in porous structures, but before we do that, we must, of course, discuss the
original Fick’s laws.

3.1 Fick’s laws of diffusion

Molecules of any physical substance are always in random motion. This motion ap-
pears if the temperature of the substance is greater than 0oK, and it is called the heat
motion of molecules. In terms of fluid flow, this phenomenon forces particles to ex-
change, thus, resulting in a macroscale phenomenon called diffusion. Diffusion de-
scribes the spreading of particles due to their random movements from regions with
higher concentrations to regions with lower concentrations. In other words, if a box
contains molecules of red and blue color split by a wall, these molecules will fill the
box uniformly at inifinite time after the wall has been removed (Fig. 3.1). This supports
also the idea that any system should converge to an equilibrium state.

The way to quantify diffusion has first been introduced by Fick [1855], whose ap-
proach can be presented in his own words: “It was quite natural to suppose that this law
for the diffusion of a salt in its solvent must be identical with that, according to which
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Figure 3.1: Effect of molecular diffusion.

the diffusion of heat in a conducting body takes place; upon this law Fourier founded
his celebrated theory and it is the same which Ohm applied, with such extraordinary
success, to the diffusion of electricity in a conductor”.

Assume, that molecules can occupy only fixed points on a spatial lattice called sites
with a probability to jump to the next site in any of the three dimensions (±x,±y,±z).
Let us define the frequency of such jumps ν , with the total amount of jumps over time
given by νt. Such discrete approach refers to the random walk method that describes
a path consisting of a consequence of random steps. If it was C molecules at a site
initially, then it is possible to define the flux in, for example, +x direction:

J+x(x) =
1
6

νaC, (3.1)

where a is the discretization length of the lattice. Accordingly, the number of molecules
at the next site x+δx is C+δC, and the flux in the opposite direction is defined as:

J−x(x+δx) =
1
6

νa(C+δC). (3.2)

Since δC is the change of concentration in x direction then

δC = a
∂C
∂x

. (3.3)

Thus, the total flux can be expressed as:

Jnet =−
1
6

νa2 ∂C
∂x

=−D
∂C
∂x

. (3.4)

Equation (3.4) is the Fick’s first law of diffusion with the coefficient of proportionality
D called the diffusion coefficient [Fick, 1855].

Fick’s first law applies to steady state flux in a uniform concentration gradient. For
a non-uniform case let us consider a part of the flow domain between x and x+δx. Flux
in and out of the subdomain is defined as:

Jin =−D
∂C
∂x

,

Jout = Jin +δJ = Jin +δx
∂ 2C
∂x2 .

(3.5)
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Over the time interval δ t the concentration changes by:

δC =
Jin− Jout

δx
δ t. (3.6)

And in case of constant diffusivity we obtain the Fick’s second law

∂C
∂ t

=−∂J
∂x

= D
∂ 2C
∂x2 . (3.7)

Description of the molecule jumps above leads to an important statement that the
average displacement is defined as:

x = a
√

νt ∼=
√

Dt, (3.8)

which refers to Gaussian distribution. Therefore, such behavior is often referred as
normal, Gaussian or Fickian, in contrast to anomalous, non-Gaussian or non-Fickian,
when the displacement distribution is not Gaussian.

In the next chapter, we discuss the application of Fick’s ideas to porous flow and
present the non-Fickian behaviour in porous systems.

3.2 Non-Fickian dispersion in homogeneous porous networks

In Chapter 2.2, we mentioned pore network models for numerical fine scale resolution
of transport phenomena. A porous network is the synthetic representation of a porous
and fractured medium. Pore throats or fractures are typically represented as tubes of
various shapes serving for flow phenomenon, whereas pore bodies are volumes that
accumulate the fluid and serve for fluid mixing. Pore network modeling is a powerful
tool which allows to simulate processes in homogeneous and heterogeneous porous
media, multi-permeable systems and many others.

Flow spreading in a porous network can be described in terms of molecular diffu-
sion: particles occupy discrete sites and have their frequency of displacements. In a
realistic porous network the pore conductivities are random which leads to random fre-
quency for each kind of a random walk (site-to-site displacement). The central limit
theorem assures that on average all these random displacements converge to Gaussian
distribution. Therefore, it is reasonable to make a hypothesis that dispersion in porous
media should satisfy the Fick’s laws [Kitanidis, 2017]. Thus, the average fluid trans-
port in a homogeneous porous medium can be described with the Advection-Dispersion
Equation (ADE)

∂c
∂ t

+∇ · (uc−D∇c) = 0. (3.9)

c is the medium’s saturation or fluid concentration, u is the mean fluid velocity and D
is the dispersion coefficient accounting for spreading of the concentration profile.

The effect of fluid dispersion resembles the molecular diffusion. Indeed, both phe-
nomena are caused by a distribution of particle velocities. In terms of diffusion, this is
the Maxwell-Boltzmann distribution of molecular speeds, while the distribution of the
pore network properties, such as pore channel conductivities, leads to dispersion.
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Another separately standing phenomenon of Taylor dispersion should also be men-
tioned in this section. Taylor dispersion is the effect of the flow profile spreading in
small capillary tubes due to friction on the walls [Taylor, 1953]. Wall friction acts on
the fluid layers creating a parabolic velocity profile across the tube. On average, the
quantitative impact of Taylor dispersion is described as an addition to the diffusion co-
efficient. Thus, the effective dispersion coefficient D in (3.9) should be a composition:

Deff = Diffusion+Taylor dispersion+network dispersion.

ADE is often referred as the advection-diffusion equation, when only molecular dif-
fusion is considered. In order to avoid any confusion, we would like to emphasize that
both names refer to the same equation, where the coefficient D is denoted for differ-
ent phenomena. Before and after, we use the term ”advection-dispersion equation” for
ADE in order to point out its universality.

Though ADE and its variants are widely used also nowadays, deviations has been
reported in both numerical and natural experiments while fitting ADE to breakthrough
curves (BTCs) [Aronofsky and Heller, 1957, Scheidegger, 1959, Vasilyev et al., 2012,
Kitanidis, 2017]. It has been demonstrated in laboratory experiments that dispersion is
scale-dependent [Silliman and Simpson, 1987] in contrast to the fundamental assump-
tion that the disperisivity is only a function of the porous medium’s microgeometry.
Such scale-dependent behavior is referred as non-Fickian, non-Gaussian or anoma-
lous.

The problem of ADE’s applicability arises from our understanding of ”homogene-
ity”. In a real porous medium, heterogeneities are present at all scales. This requires a
better knowledge of the medium which cannot be summarized in a single constant and
thus, needs more sophisticated models.

One example of such scale-dependent behavior has been presented in Vasilyev et al.
[2012], where the disperisivity of virtually homogeneous porous networks was investi-
gated with the respect to the mean network coordination number explained below. In
Raoof and Hassanizadeh [2010] it was suggested to compose a synthetic porous struc-
ture such that the pore throats are interconnected by the pore bodies located on a regular
cubic lattice. The number of pore throats connecting in a pore body, called the coor-
dination number, was randomized by removing arbitrarily some of the pore throats.
The resulting coordination number distribution was log-normal with the mean network
coordination number introduced as one of the main parameters describing the porous
network. Investigating the networks with the mean network coordination number vary-
ing from 3 to 15, it was finally concluded that the networks with higher coordination
numbers have demonstrated higher anomality of the BTCs. This anomality appeared as
”long tails”, and it is commonly known as the tailing effect. One of the reasons for the
tailing effect in homogeneous porous networks is the appearance of dead zones - parts
of the network where the fluid moves very slowly [Yang et al., 2016]. This is more
probable in the networks with high mean network coordination number, therefore, a
more complicated structure.

Many authors have striven to improve the quality of transport quantification as well
as the description of the underlying processes. The first and the most logical attention
has been directed towards ADE and its dispersion coefficient which has been reintro-
duced as a function of time, concentration or flow velocity [Hundsdorfer and Verwer,
2013, Sanskrityayn and Kumar, 2016]. It has later been criticized, that the governing
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Figure 3.2: Long tails appearing in the BTCs from the pore network simulation (dashes). Solid
lines represent the fitted solution of ADE.

equations are deterministic which required that the physical quantities were defined on
a representative elementary volume large enough to render their space-time variations
slow enough. In a anomalous regime the variables change so rapidly that they should
be treated as random functions of space and time over a macroscopic continuum, which
leads to a stochastic approach.

In the next chapter we present some of the most known and used large scale models
for transport in porous materials and focus our attention to the recently introduced
Generalized Continuum Transport (GCT) model.
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Chapter 4

Large scale models for transport in porous
media

“Divide each difficulty into as many
parts as is feasible and necessary to

resolve it.”
–Rene Descartes

Despite that porous systems are often treated as homogeneous at some scale, they are
essentially multiscale heterogeneous, and therefore, cannot be described with certainty
at all scales and locations of relevance. Alternative approaches address the scale and
space-time dependencies in different ways.

Some of the methods describe transport at some reference scale with the classi-
cal ADE where velocity is a spatially correlated random field. The approach refers
to variations of pore conductivities and leads to the stochastic ADE. Averaging the
stochastic ADE over the ensemble of the velocity fields results in a space and time
non-local representation of the mean advective-dispersive flux. Representation of the
advective-dispersive flux that is non-local in time but local in space leads to the Con-
tinuous Time Random Walk model (CRTW) and the Multirate Mass Transfer model
(MRMT). A form of ADE entailing fractional derivatives yields a representation of
advective-dispersive flux which is local in time but non-local in space. Stochastic ap-
proaches are attractive for numerical simulations as they do not introduce numerical
diffusion into the scheme.

The main difficulty in the large-scale quantification of transport phenomena arises
from the selection of a model and the corresponding parameter space which is often
made a priory. For the models mentioned above, the form of the parameter space is
crucial for the most accurate results. Constraining the parameters space and providing
the physical interpretations of the modeling choice are the main challenges in the appli-
cability of the generalized models. In order to address these problems, the Generalized
Continuum Transport model (GCT) has been introduced.

In this chapter, we provide an overview of the existing classical and generalized
transport models and introduce the Generalized Continuum Transport model as the
ultimate solution for model selection and parameter estimation.
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4.1 The classical advection-dispersion equation

The macroscopic description of tracer propagation in a uniform medium by means of
ADE is based on the Fick’s laws (Chapter 3.1), from which it follows that a macro-
scopic mass flux J(x, t) at any point x of the continuum at time t can be expressed
as:

J = Jadv +Jdiff +Jdisp, (4.1)

where Jadv is the advective mass flux related to the mean fluid velocity v(x, t), Jdiff
represents the effect of molecular diffusion across the channel and Jdisp is the disper-
sive mass flux due to random deviations of the fluid velocities from their macroscopic
average v. It follows, that the fluxes are related to the concentration of contaminant as:

Jadv = vc, Jdiff =−Dmol∇c, Jdisp =−Ddisp∇c. (4.2)

Fick’s second law provides, that the solute mass is conserved on a macro-scale. As-
suming that there are no sources or sinks in the medium, we obtain:

∂c
∂ t

=−∇ ·J. (4.3)

Substituting (4.2) into (4.3) we derive the advection-dispersion equation:

∂c
∂ t

=−∇ · (vc)+∇ · (Deff∇c), (4.4)

where Deff = DmolI+Ddisp is the effective dispersion coefficient, and I is the identity
matrix.

Though, it was reported by many authors that ADE is inadequate to quantify non-
Fickian behavior [Aronofsky and Heller, 1957, Scheidegger, 1959, Silliman and Simp-
son, 1987], it is still widely used in many applications due to its simplicity and possi-
bility to obtain the parameters from laboratory experiments.

In the next chapters, we present some of the most well known approaches to treat
anomalous phenomena in porous flow and introduce a new model, called Generalized
Continuum Transport (GCT).

4.2 Stochastic advection-dispersion equation

The problem of ADE to accurately describe non-Fickian transport arises from its de-
terministic nature which requires that all physical quantities entering the equation are
defined on a representative elementary volume (REV) large enough to represent their
space and time variations sufficiently slow. For real porous media it is more common
to consider the parameters on smaller support volumes (related here and below as ω),
since averages can be unreliable in a system with large fluctuations. Physical quanti-
ties defined on the scale of ω vary so rapidly, that they should be treated as random
functions of space and(or) time over a macroscopic continuum. Thus, ADE becomes
stochastic.

Let us consider contaminant propagation as a cloud of particles, where each particle
makes a series of space transitions before the velocity v changes. In the deterministic
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approaches, the velocity v and the dispersion D are defined in each REV as an average.
The stochastic approaches are based on the assumption that Fickian behavior occurs on
the local support scale ω , thus, can be described by the classical ADE. Let us now start
with the following equation:

∂c
∂ t

=−∇ · (vc)+∇ · (Dl∇c)+g, (4.5)

subject to initial and boundary conditions:

c(x, t = 0) =C0(x),x ∈Ω, (4.6a)
c(x, t) =CD(x, t),x ∈ Γ1, (4.6b)
−Dl∇c(x, t) ·n(x) =W (x, t),x ∈ Γ2, (4.6c)
[v(x, t)c(x, t)−Dl∇c(x, t)] ·n(x) = P(x, t),x ∈ Γ3. (4.6d)

(4.6a) is the initial condition on a flow domain Ω. (4.6b) sets the random concentration
CD on the boundary segment Γ1. (4.6c) describes the random dispersive flux W normal
to the boundary segment Γ2. (4.6d) determines the random advective-dispersive flux
normal to the boundary segment Γ3.

Assume, that the local dispersion coefficient Dl in (4.5) is constant and determinis-
tic, while the velocity v is a space-time non-stationary random field satisfying a stochas-
tic flow equation:

∇v = fω(x, t), (4.7)

where f (x, t) is an ω scale random fluid source. Introduce a term g accounting for a
presence of random sources. Hence, v, c and g are random functions, that can be split
into their averages and disturbances:

v(x, t) = 〈v(x, t)〉c +v′(x, t),
c(x, t) = 〈c(x, t)〉c + c′(x, t),
g(x, t) = 〈g(x, t)〉c +g′(x, t),

(4.8)

where 〈·〉 denotes the conditional ensemble’s mean, and the primed quantities are the
zero-mean random fluctuations. Decomposing all random functions in (4.5), we obtain:

∂ 〈c〉c
∂ t

=−∇ · (〈v〉c〈c〉c)+∇ · (Dl∇〈c〉c +Qc)+ 〈g〉c,x ∈Ω, (4.9)

where Qc(x, t) = 〈v′(x, t)c′(x, t)〉c is the conditional dispersive flux. (4.9) is subject to
initial and boundary conditions analogues to (4.6):

〈c(x, t = 0)〉c = 〈C0(x)〉,x ∈Ω, (4.10a)
〈c(x, t)〉c = 〈CD(x, t)〉,x ∈ Γ1, (4.10b)
−Dl∇〈c(x, t)〉c ·n(x) = 〈W (x, t)〉,x ∈ Γ2, (4.10c)
[〈v(x, t)〉c〈c(x, t)〉c−Dl∇〈c(x, t)〉c +Qc(x, t)] ·n(x) = 〈P(x, t)〉,x ∈ Γ3. (4.10d)

In a bounded domain, Qc is given exactly by the implicit relation [Morales-Casique
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et al., 2006]:

Qc(x, t) =
t∫

0

∫

Ω

〈G(x, t;y,τ)v′(x, t)〉c∇y ·Qc(x, t;y,τ)dydτ

−
t∫

0

∫

Ω

〈G(x, t;y,τ)v′(x, t)v′T (y,τ)〉c∇y〈c(y,τ)〉cdydτ

−
t∫

0

∫

Ω

〈G(x, t;y,τ)v′(x, t) f ′(y,τ)〉c〈c(y,τ)〉cdydτ

−
t∫

0

∫

Γ3

〈G(x, t;y,τ)v′(x, t)〉c∇y ·QT
c (x, t;y,τ)n(y)dydτ

+

t∫

0

∫

Γ3

〈G(x, t;y,τ)v′(x, t)v′T (y,τ)〉c〈c(y,τ)〉cn(y)dydτ,

(4.11)

where G(x, t;y,τ) is the random Green’s function satisfying a stochastic ADE with
homogeneous (zero) initial and boundary conditions [Morales-Casique et al., 2006].
Since G depends on the boundary configuration but not on the boundary values, the
same yields Qc as long as the initial-boundary values are independent of v. The terms
in (4.11) form non-local parameters which depend on the flow field but not on the
transport-related forcing terms.

An important advantage of the model is that the only modeling assumption to be
made is the validity of ADE on the local scale of measurement ω . Such generality pro-
vides the establishment of the space-time non-locality in a compact mathematical form.
The model represents the mean behavior as a result of the spatio-temporal dependen-
cies (including correlations) between the velocity fluctuations and, as follows, between
the randomly heterogeneous parameters (permeability and porosity) that control it.

However, (4.9) to (4.11) do not provide a closed form system. The kernels of (4.11)
contain unknown moments which evaluation requires additional assumptions or ap-
proximations. If the velocity v is space-time stationary, the ensemble moments of the
Green function depend only on space and time increments, i.e G(x−y, t− τ), and the
first and the fourth terms in (4.11) can be dropped. In order to produce a stationary ve-
locity field, the flow domain must be infinite such that the boundary integrals of (4.11)
vanish. The remaining integrals turn into space-time convolutions and the mean trans-
port equation becomes:

∂ 〈c〉c
∂ t

=−∇ · (


−〈v〉〈v〉+

t∫

0

∫

Ω

〈G(x−y, t− τ)v′(x, t)v′T (y,τ)〉∇y〈c(y,τ)〉dydτ

+

t∫

0

∫

Ω

〈G(x−y, t− τ)v′(x, t) f ′(y,τ)〉〈c(y,τ)〉dydτ +Dl∇〈c〉


+ 〈g〉.

(4.12)
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The subscript c has been omitted because conditioning would require the velocity field
to be non-stationary. Stationarity implies the mean advective velocity 〈v〉 be constant,
the flow domain has to be infinite, free of sources, and no data conditioning is possible.
This limits significantly the functionality of the model.

Stochastic ADE is based on the classical ADE formulation. Let us now focus on a
probabilistic approach presented in the next chapter.

4.3 Continuous Time Random Walk

The idea of the random walk models rests on a representation of fluid flow, where fluid
particles (molecules or small volumes) occupy discrete sites of the flow domain. Parti-
cles residing at a site s leave to a site s′ with a transition rate w(s′,s) which determines
the number of transitions per unit time. At the same time, the particles residing at s′
arrive at s with a transition rate w(s,s′). Denoting the bulk particle concentration as
c(s, t), we can find the concentration change by appealing to the mass conservation
principles:

∂c(s, t)
∂ t

=−∑
s′

w(s′,s)c(s, t)+∑
s′

w(s,s′)c(s′, t). (4.13)

The above equation is known as the Master Equation [Oppenheim et al., 1977,
Shlesinger, 1996]. The transition rates describe the effect of the velocity field on the
particle motion and represent the detailed knowledge of the system. The Master Equa-
tion does not distinguish the effects of varying velocity field into advective and disper-
sive terms.

Definition of w(s,s′) requires a complete description of the system. Thus, the het-
erogeneities must be characterized on all length scales influencing the flow field. There-
fore, a distribution of w on the subdomain should be addressed. To realize the proba-
bilistic approach, let us consider the ensemble average of (4.13), which has the form of
the Generalized Master Equation (GME) [Klafter and Silbey, 1980]:

∂P(s, t)
∂ t

=−∑
s′

t∫

0

φ(s′− s, t− t ′)〈c(s, t ′)〉dt ′

+∑
s′

t∫

0

φ(s− s′, t− t ′)〈c(s′, t ′)〉dt ′,

(4.14)

where P(s, t) is the average concentration. In contrast to (4.13), GME is non-local in
time, since it contains integration over time accounting for the past state of the concen-
tration. The ensemble average of (4.13) for a heterogeneous system leads to a non-local
equation, because the role of the transition rates w is replaced by a distribution of tran-
sit times φ(s′− s, t − t ′) between sites. Thus, the transition rates are time-dependent
but stationary, depending only on the difference (s′− s), which represents the available
information about the system on a certain scale.

In the context of the Continuous Time Random Walk Model (CTRW), the bulk
concentration is replaced by the probability per time for a particle to just arrive at site s
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at time t:

R(s, t) = ∑
s′

t∫

0

ψ(s− s′, t− t ′)R(s′, t ′)dt ′, (4.15)

where ψ(s, t) is the probability per time for a displacement s with a difference of arrival
times t. It has been proved that CTRW is completely equivalent to GME with the
correspondence [Kenkre et al., 1973, Shlesinger, 1974]:

P(s, t) =
t∫

0


1−

t−t ′∫

0

ψ(τ)dτ


R(s, t ′)dt ′, (4.16a)

L(φ(s,u)) =
uL(ψ(s,u))
1−L(ψ(u))

, (4.16b)

where L denotes Laplace transformation (it is important to mentioned that the CTRW
model is often considered in Laplace space). ψ(t) is the probability of a particle to
leave the site at time t:

ψ(t) = ∑
s

ψ(s, t). (4.17)

Let us consider a simple example of a one-dimensional random walk: the par-
ticles start initially from the same point, and each particle jumps after a given pe-
riod of time either to the left (−∆x) or to the right (+∆x) with equal probabil-
ity. After conducting n such steps, the particles may appear at any of the points:
−n∆x,−(n−1)∆x, ...,−∆x,0,∆x, ...,(n−1)∆x,n∆x. Assuming that the displacements
are all independent, the probability of any sequence of n steps is 0.5n. Accordingly, the
probability of a particle to arrive at a point m∆x after n displacements is:

p(m,n) =
n!(n+m

2

)
!
(n−m

2

)
!
·0.5n. (4.18)

(4.18) is the Bernoulli distribution, which variance or, in other words, the root mean
square displacement is exactly

√
n. When n is sufficiently large and m� n, the distri-

bution limits to a continuous form as the normal distribution:

p(m,n) =

√(
2

πn

)
e−m2/2n. (4.19)

Substituting x = n∆x and assuming that a particle makes u displacements per unit time
∆t, we obtain:

p(x, t) =

√
1

4πDt
e−x2/4Dt , (4.20)

where D = u∆x2/2. Thus, this simple statistical transport model is equivalent to ADE
with the mean displacement x(t) proportional to time and standard deviation σ(t) pro-
portional to the square root of time, as shown in Chapter 3.1:

x(t)∼ t,

σ(t)∼
√

t.
(4.21)
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Figure 4.1: Illustration of the random walk approach. 200 particles start from the same point,
performing one step upwards or downwards with equal probability. The cloud of particles
spreads out with each time step. Theoretical particle density distribution after 100 walks (time
steps) is plotted on the right axes.

Figure 4.1 illustrates the behavior of 200 random walkers started from the same initial
point. After each time step, the cloud of particles spreads out demonstrating Fickian-
type transport.

A similar but more substantial approach is presented as the Global Random Walk
by Suciu et al. [2011], Suciu [2014], who replaced the mean velocity in ADE with a
random velocity fields. These models are very attractive in terms of numerical analysis
which assumes discretization but do not introduce numerical diffusion in the scheme
[Radu et al., 2011].

The probability of displacements introduced as ψ(s, t) in CTRW accounts for the
transport nature. For the basic example discussed above, ψ(s, t) becomes simply:

ψ(s, t) =
{

0.5, s =±∆x, t = ∆t,
0, elsewhere. (4.22)

In realistic highly disordered media, the variation of rates (values of w(s,s′)) deter-
mined by the flow field is very large, and the temporal distribution dominates the trans-
port nature. The temporal aspects of particle transport is the key feature of the CTRW
approach, giving rise to anomalous effects. Therefore, definition of ψ(s, t) is the key to
a proper model set up and accurate quantification.

CTRW is often considered on an ordered site lattice using an average rate, that
w(s,s′)) = w(s− s′)), and ψ(s, t) varies slowly in time as a power law:

ψ(s, t)∼ t−1−β , (4.23)

which accounts for a wide distribution of event times in a highly disordered medium. It
has been shown that the power law behavior refers to non-Fickian transport [Scher and
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Montroll, 1975, Berkowitz and Scher, 2001]. In this case, ψ(s, t) can be decomposed
into the spatial and temporal dependencies such that ψ(t) has also the power law. Thus,
β is the effective parameter accounting for the behavior of transitions over a time period
corresponding to the duration of observation. The form of ψ(t) at large time determines
the time dependence of the mean displacement x(t) and the standard deviation σ(t) of
R(s, t). It has been shown by Scher and Montroll [1975], Shlesinger [1974] that under
a constant pressure gradient for 0 < β < 1:

x(t)∼ tβ ,

σ(t)∼ tβ ,
(4.24)

whereas for 1 < β < 2:
x(t)∼ t,

σ(t)∼ t(3−β )/2,
(4.25)

which is in stark contrast to Fickian behavior (4.21). Dentz and Berkowitz [2003] has
shown that β > 2 refers to normal transport behavior

The CTRW approach has been utilized by many authors who reported excellent
results of fitting the breakthrough curves obtained both from numerical and natural ex-
periments [Berkowitz et al., 2000, Levy and Berkowitz, 2003, Berkowitz et al., 2006,
Bijeljic and Blunt, 2006, Boano et al., 2007, Cortis et al., 2006]. It has been shown
that CTRW has limits to ADE [Berkowitz and Scher, 2001], stationary stochastic ADE
[Neuman and Tartakovsky, 2009] and can take a form of a fractional differential equa-
tion (FDEs are discussed below) [Berkowitz et al., 2002]. However, the functionality
of the CTRW approach is limited by the definition of the transition time ψ(t) which
does not account for any porous medium characteristic. The selection of the form of
ψ(t) is made intuitively, and the parameters of the distribution are further guessed or
fitted. Another critical point arises from the discrete nature of the CTRW model which
was originally applied for electrons occupying discrete energy levels but is less suitable
for a continuous fluid flow.

Nevertheless, CTRW is an interesting framework that motivated further develop-
ment of probabilistic approaches considered in the next chapter.

4.4 Special forms of CTRW: multi-rate mass transfer, factional deriva-
tive ADE

In Chapters 2.2 and 3.2, we discussed the appearance of dead zones in a random porous
system, where the fluid velocity is relatively small. This phenomenon is addressed di-
rectly in a multi-rate mass transfer (MRMT) formulation which distinguishes mobile
and immobile solute fractions [Pfister and Scher, 1978, Haggerty and Gorelick, 1995].
Though the approach is often discussed in a context of heterogeneous or highly dis-
ordered medium, we would like to emphasize that slow motion areas appear also in
random but homogeneous media as demonstrated by Vasilyev et al. [2012].

In MRMT the total solute concentration is decomposed into mobile and immobile
phase such that:

c(s, t) = cm(s, t)+ cim(s, t), (4.26)
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and the change of concentration is governed by advective and diffusive flux of the
mobile phase:

∂c(s, t)
∂ t

=−v ·∇cm(s, t)+∇ ·D∇cm(s, t). (4.27)

(4.27) must be enclosed by a linear relation between the mobile and the immobile con-
centrations accounting for the transitions between phases. The relation can, for exam-
ple, be introduced as a multiple trapping process, which involves first-order transitions
into and out of the immobile phase. Thus, we can write:

∂cim(s, t)i

∂ t
= cm(s, t)ωi− cim(s, t)iWi,

cim(s, t) = ∑
i

cim(s, t)i,
(4.28)

where ωi is the trapping rate and Wi is the release rate of the i-th trap level. The traps
are characterized by their level (energy) independent of their position in space. It has
been shown that this model is a subset of CTRW [Schmidlin, 1977, Pfister and Scher,
1978]. Solving (4.27) together with (4.28) in Laplace space, it is possible to obtain the
transition rate [Berkowitz et al., 2006]:

L(ψ(u)) =

[
1+ut +ut ∑

i

ωi

u+Wi

]−1

, (4.29)

where t = (∑i ωi)
−1 is the average time spent in the mobile state (between two traps).

Thus, the random walk is a series of transitions in the mobile phase between traps.
(4.28) can be generalized in a continuous form Wi→ tr with a distribution of levels

P(tr) and a transfer function R(t/tr) [Carrera et al., 1998, Haggerty et al., 2000, Dentz
and Berkowitz, 2003]:

cim(s, t) =
∞∫

0

P(tr)ω(tr)dtr

t∫

0

R((t− t ′)/tr)cm(s, t ′)dt ′. (4.30)

The forms of the transfer function R(t/tr) and the trapping rate ω(tr) are determined
by the mass exchange mechanism between the mobile and the immobile phases.

Past years, more attention has been paid towards the fractional derivative (FDE)
form of CTRW also known as the fractional ADE (fADE) [Metzler et al., 1998, Meer-
schaert et al., 1999, Hilfer, 2000, Metzler and Klafter, 2000]. The idea of derivatives
having fractional order has been postulated by Leibniz and L’Hopital who naturally
suggested that:

d1/2 ∼ x

√
dx
x

as a generalization of
dn

dxn xk =
k!

(k−n)!
kk−n

for non-integer orders:
dα

dxα
xk =

Γ(k+1)
Γ(k−a+1)

kk−n.
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There exist several definitions for fractional operators, however, at this point, it is
enough to focus on the two of them applicable for transport formulation: the Riemann-
Louville fractional time derivative:

Dα f (t) =
dm

dxm


 1

Γ(m−α)

t∫

0

f (τ)
(t− τ)α−m+1 dt


 ,m ∈ N,m−1 < α ≤ m, (4.31)

and the Riesz spatial derivative [Oldham and Spanier, 1974, Samko et al., 1993].
Time-FDE follows directly from the case when the transition time has the power

law (4.23) with the parameter 0 < β < 1, for which the temporal moments are infinite.
The Riemann-Liouville fractional integral has the form:

∂−β

∂ t−β
P(s, t) :=

1
Γ(β )

t∫

0

P(s, t ′)
(t− t ′)1−β

dt, (4.32)

which possesses an important property:

L

{
∂−β

∂ t−β
P(s, t)

}
= u−β P̃(s,u). (4.33)

The negative index of (4.32) refers to fractional differentiation. It has been shown that
time-FDE yields the fractional order ADE [Compte, 1997, Compte et al., 1997, Compte
and Ca‘ceres, 1998, Metzler et al., 1998, Metzler and Klafter, 2000]:

∂

∂ t
P(s, t) =

∂ 1−β

∂ t1−β

(
−vβ ·∇+Kβ ∇

2)P(s, t), (4.34)

where vβ is the “generalized drift velocity” and K is the anomalous dispersion constant.
Thus, the probability density P(s, t) described by the time-fractional ADE is equivalent
to the large time limit of CTRW with an asymptotic form of transition times defined as
the power law (4.23).

The opposite case of the transition time distribution, with an existing first moment
appearing when β > 1, refers to a random displacement between discrete sites, where
time is not involved, called a Lévy flight. Analogously as for the time-FDE, let us apply
the power law for the transition length:

P(s, t)∼ |s|−1−µ , 0 < µ < 2, (4.35)

The Riesz operator ∇µ is defined in Fourier space as [Samko et al., 1993]:

F{∇µP(s, t)}=−|k|µP(k, t), (4.36)

with the characteristic function

P(k, t) = exp(−Kµ)t|k|µ . (4.37)

Thus for an assymptotic form of P(s, t) the Lévy flight fractional ADE takes a form
[Metzler et al., 1998]:

∂

∂ t
P(s, t)+v ·∇P(s, t) = Kµ

∇
µP(s, t). (4.38)
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Both forms of FDE represent generalizations of the Fickian ADE and are special
cases of CTRW. These formulations have limited applicability due to the diverging
first or second moment which are usually used to determine the drift velocity and the
dispersion coefficient.

4.5 Dual and multiple continua models

In Chapter 4.4, we discussed the MRMT approach to splitting the medium into two
continua: one mobile and one immobile, which corresponds directly to the processes
in a random porous system as presented in Chapter 2.2. Another example of a dual-
continuum medium is a combination of similar porous blocks separated by larger frac-
tures. Such system is treated as homogeneous on a large scale but a heterogeneous
dual-continuum nature should be taken into account for proper modeling. This corre-
sponds also to the idea that in a real porous media the fluid follows preferential paths.
Flow media consisting of two ore more continua have traditionally been modeled us-
ing dual- or multiple-porosity models [Barenblatt et al., 1960, Edwards et al., 1979,
Hoogmoed and Bouma, 1980, Berkowitz et al., 1988, Gerke and Genuchten, 1993].

A typical dual-porosity model is based on a simple ADE formulation assuming
Fickian, non-compressible flow in each continuum:

ϕp
∂cp
∂ t =−∇ · (vpcp−Dp∇cp)−Np f ,

ϕ f
∂c f
∂ t =−∇ ·

(
v f c f −D f ∇c f

)
−N f p,

(4.39)

where indices p and f refer to the porous matrix continuum and the fractured continuum
correspondingly. ϕ is the weighting factor defined by the volume ratio:

ϕω =Vomega/Vtotal, ω ∈ {p, f}. (4.40)

The terms Np f and N f p account for the mass transfer between the two continua. Mass
conservation requires that:

Np f =−N f p, (4.41)

as the species leaving one continuum should immediately enter the other continuum. It
is common to assume, that the mass transfer term is proportional to the concentration
difference between the pore-matrix and the fractured continua:

N = n(cp− c f ). (4.42)

Generalizing the concept of the dual-porosity model with application to multiple-
continuum media, it is natural to rewrite the multiple-porosity model in a form:

ϕω

∂cω

∂ t
=−∇ · (vωcω −Dω∇cω)− ∑

ξ∈Ω

Nω,ξ , ω ∈Ω. (4.43)

Same as before, Nω,ξ accounts for the mass exchange between the two continua, and
it is proportional to the concentration difference. Ω denotes a set of porous continua,
where each element corresponds to the volume, where the fluid moves with a given
velocity.
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It is interesting that in general, there is no restriction on the drift velocity in each
continuum. This means that one of the continuum may have zero velocity, accounting
for the the dead zones. Vasilyev et al. [2012] have demonstrated the importance of the
dead zones and included the immobile continuum in their simulations [Vasilyev et al.,
2017].

The major focus for authors investigating the applicability of the multiple-continuum
model has become the mass exchange and its dependence on the medium’s character-
istics.

Following the discussion above that in a real porous system “heterogeneities” are
present at all scales and the scales are a continuous set, it is logical to extrapolate the
idea of the multiple-continuum models on a continuous scale. This refers to a new
approach presented in Chapter 4.6.

4.6 Generalized Continuum Transport model

The main purpose of the transport models is the representation of flow phenomena in
porous media on a large scale without resolving the microstructure of a medium. The
effect of fluid propagation is usually observed by measuring fluid saturation or concen-
tration at a few control points. The result of this observation is called the breakthrough
curve (BCT), which is the concentration change in time at a certain point. Mimicking
those BTCs by a transport model is the quantification of the phenomena. Model ac-
curacy can further be qualified by comparing the BTCs obtained from an experiment
(numerical or laboratory) and the BTCs of the considered model. On the other hand,
the BTCs can be used for finding the model parameters, such as velocity and dispersion
coefficients of ADE or transition time distribution of CTRW.

Let us see, for example, how the BTCs on Fig. 3.2 can be quantified with ADE.
Consider a case of a 1D semi-infinite homogeneous porous domain unsaturated initially
with a constant saturation source on the boundary. This means that the porous domain
is thin enough that it can be treated as 1D, and long enough to omit the boundary effects
of the sink side. This domain is initially filled with fresh water (unsaturated fluid) and
salt water (saturated fluid) is injected from the source side at a constant rate. Fluid
inside the domain moves with a drift velocity vx and the effect of transversal spreading
is captured by the dispersion coefficient D. ADE corresponding to such system has a
form of:

∂c
∂ t

+vx
∂c
∂x
−D

∂ 2c
∂x2 = 0, (4.44)

where c(x, t) is the saturation or, in this particular case, the normalized salt water con-
centration. The solution of (4.44) for the given conditions is known to be:

c(x, t) = erfc
(

x− vxt√
2Dt

)
, (4.45)

where erfc(x) is the cumulative error function defined as

erfc(x) =
2√
π

∞∫

x

e−ζ 2
dζ . (4.46)
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The parameters vx and D can be found by matching the experimental BCTs with the
solution of ADE. As seen on Fig. 3.2, ADE cannot properly quantify the BTCs as they
originate from the porous network with highly non-Fickian flow.

Aiming to accurately quantify the BTCs obtained from an experiment or network
models, a researcher must pick up a transport model and estimate model parameters.
After the model has been selected, the parameters can be found from different sources
such as guessing, curve fitting or fluid (density, viscosity) and medium’s characteristics
(some porous media characteristics have been discussed in Chapter 2.1). However,
the model selection is not parametrized and the choice should be made a priory based
on the researcher’s knowledge and experience. Therefore, a proper model selection is
crucial for appropriate description of the transport mechanisms and good predictions.

The CTRW approach has resolved the problem of modeling choice, at least partially,
by introducing the power law for anomalous transport. The power law parameters
determine the transport regime and in limit cases refer to Fickian behavior. However,
the usage of the power law is also a subject for discussion as well as the applicability of
CTRW for a continuous process. Parameters of the CTRW model are usually guessed
or fitted, thus require obtaining the breakthrough curves.

Multiple-porosity models rely on the information about the velocity field, which,
in principle, can be related to the medium’s characteristics [Wang and Narasimhan,
1985, Gerke and Genuchten, 1993, Vasilyev et al., 2017]. The number of the governing
partial differential equations in the system (4.43) controls the model complexity which
can be adjusted to the desired accuracy of simulations. Each equation indexed by ω

corresponds to the porous volume, where the fluid moves with the given velocity. Thus,
v is the velocity distribution within the porous medium. But can a multiple porosity
model limit to CTRW and other existing models?

In a real porous medium heterogeneities are present at all scales and preferential
flow is significant. Thus, the velocity distribution of (4.43) should, in general, be con-
tinuous, accounting for all possible velocity variations. Can we rewrite the multiple
porosity model on a continuous scale?

These issues are addressed in the Generalized Continuum Transport model intro-
duced in Nordbotten and Vasilyev [2010], Vasilyev et al. [2017]. This model is de-
signed in order to satisfy the four key requirements:

1. the equations are formulated at a continuum scale large enough that the porous
structure is not resolved;

2. the model is capable to accurately quantify anomalous transport:

3. the model has existing models as certain limits:

4. the model is based on continuous, local transport of particles in space-time.

These requirements are partially met by the classical models, but in GCT they are all
satisfied as a solid set.

Let us generalize Ω in (4.43) to be a space of properties, denoted for each phys-
ical point x at a continuum scale. Ω can be varying on the subscale relevant to the
transport mechanisms involved. Ω is multi-dimensional accounting for the correla-
tion of mineral distributions with velocities or pore radii. In certain limits, it can be
a space of sub-scale velocities or fluxes, and in discrete form it refers to the classical
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ϕ v ω

Transport equation {1} {v} {1}
Dual porosity model {ϕ1,1−ϕ1} {v1,v2} {1,2}
ADE R1 R1-Gaussian R1

Multiple Continua finite set finite set finite set
CTRW R1-distribution R1-distribution P×R+

MRMT R2-distribution R2-distribution P2×R+ function of trapping time

Table 4.1: GCT limits to classical models. Table from Vasilyev et al. [2017]

models. If the physical properties are varying in time, then Ω must also be denoted
for a time domain. Concentration of a contaminant c is a function of (x, t,ω), where
(x, t,ω) ∈ X ×T ×Ω, and X and T are space and time domains correspondingly. Ac-
cording to the requirements specified above, transport is modeled in the spatial domain
as continuous, corresponding to the standard conservation equation with a linear and
local flux expression. The above assumptions lead to an equation for contaminant con-
centration in (X ,T,Ω) space:

φϕ
∂

∂ t
c+∇ · j = N(c|x,t ,ω). (4.47)

It is important that the interaction functional N(c|x,t ,ω) acts only on c as a function of
ω and, in general, depends on the transport properties of the medium. The void space
distribution ϕ is, in general, a function of (x, t,ω), while the porosity φ is a constant
determined by the porous medium. Thus, the void space distribution must satisfy:

∫

ω∈Ω

ϕ(x, t,ω)dω = 1,∀(x, t) ∈ X×T. (4.48)

The fluid flux j is generally a function of (c,x, t,ω). The mass conservation implies the
first moment of the interaction functional to be zero:

∫

ω∈Ω

N(c|x,t ,ω)dω = 0. (4.49)

Construction of the parameter space (X×T ×Ω) accounts for various physical phe-
nomena and refers to different transport models. The choice of Ω is crucial for accurate
and physically reasonable transport description. It has been demonstrated that the pa-
rameter space of GCT has flexible nature, such that it can be transformed matching the
transport phenomena which nature remains unknown [Vasilyev et al., 2017]. This is
in stark contrast with the classical principles when the modeling choice has to be done
and the parameter space has to be constrained.

Let us consider some examples of the parameter space Ω and the models it can lead
to (Table 4.1). The most obvious form of the interaction functional occurs when the
mass exchange rate is directly proportional to the concentration gradient. Following
(4.42), we obtain:

N(c|x,t ,ω) =
∫

ξ∈Ω

n(ω,ξ )dcω(ξ ), (4.50)



4.6 Generalized Continuum Transport model 33

where n(ω,ξ ) is a scalar mass transfer coefficient. If Ω is discrete, denoting the species
moving with the same velocity, then GCT limits directly to the multiple porosity model
(4.43). If Ω consists of only two elements, then GCT takes the form of the dual porosity
model (4.39).

GCT limit to the basic ADE with constant coefficients is not so straightforward and
can be obtained by a proper introduction of coefficients (vω ,ϕω), which represent and
can be determined from an accounting velocity distribution. Some examples of the
velocity distributions obtained from Fickian type transport models have been shown in
Vasilyev and Radu [2017a]. However, the problem of a continuous distribution, which
leads to ADE, remains unresolved.

In Nordbotten and Vasilyev [2010] a limit to CTRW has been derived. The mass
transfer term has been obtained in a form of Bhatnagar-Gross-Krook collision operator
[Bhatnagar et al., 1954], which corresponds to the mass per time entering collisions or,
in other words, mass per time leaving a continuum:

Ni(c|x,t) = 〈mi/τ〉i fi,coll−mi/τ, (4.51)

where fcoll is the mass distributed from the collisions:

fi,coll(τ) =
fi,eq(τ)/τ〈
fi,eq(τ)/τ

〉
i

, (4.52)

and feq is the equilibrium mass distribution. The characteristic time-scale of relaxation
τ has been included in order to present the time scale of collisions into the parameter
space that Ω = P×R+. Treating the governing equations in a Lagrangian form, the
similarity between GCT and CTRW has been derived, where

fi,coll(τ) = ψCTRW(xi,τ), (4.53a)

fi,eq ∼ τψCTRW(xi,τ). (4.53b)

GCT limit to MRMT can be easily obtained by following the same procedure applying
two mass transfer distributions: one for mobile phase and another one for immobile.

It has, therefore, been shown that the model selection can be parameterized by in-
troducing the space Ω into the GCT model. It has also been demonstrated that the
modeling choice can also be governed by a set of parameters, i.e. scalars or distri-
butions. The model can be adjusted to the desired accuracy and complexity directly
during the calculations.

The benefits of the GCT model can be summarized in a few points:

• equations are formulated on a continuous space;

• model complexity can be directly determined and parametrized;

• the parameter space can be adjusted to a desired complexity and accuracy;

• model parameters are directly related to physical characteristics of a medium;
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• model parameters can be directly determined from fine-scale modeling of trans-
port phenomena.

Let us explain the nature of GCT in the following simple way. Consider a cloud
of particles (or fluid molecules) entering a porous matrix. Each particle has its own
velocity, but for the complete particle cloud a velocity distribution can be assigned ac-
cording to natural properties of the fluid, as, for example, Gaussian distribution due to
heat motion in Chapter 3.1. Traveling through the manifold of pore channels and junc-
tions, each particle follows a path of its own length and arrives at a observation point of
its own time. Thus, an average drift velocity can be associated with each particle. This
approach is also reflected in the multiple-porosity models, where a finite set of drift ve-
locities is associated with the particle cloud. In reality, the amount of molecules is so
high, that it is hard to address each one separately and the velocity set becomes a con-
tinuous distribution. Moreover, there always exist particles that will never arrive at the
observation point being stuck in the dead zones. On the other hand, heat motion pro-
vides particles with infinitely high velocities. This means that an average model should
take all possible velocities into account as a continuous distribution, as done in GCT.

Similar discussion can also be applied for the distribution of the porous medium’s
properties. In a real porous medium, all pore conductivities can be found, though the
probability to meet extremely small as well as extremely high conductivities is infinitely
small. The same applies the pore connectivities as discussed in Chapter 2.2, where the
mean network coordination number was declared equally important as its distribution.
In other words, the mean pore connectivity (or coordination number) varies continu-
ously from 0 to the designed network maximum. Thus, the medium’s porosity and the
mass transfer function are also continuous distributions.

We can also employ the idea of preferential flow in a real porous medium. Larger
amount of particles will follow a certain path through pores and junctions, while other
particles will choose different ways. Considering all possible paths on a continuous
scale, it is possible to refer to a distribution of paths, where weight related to the void
space distribution is associated with each path.

4.7 Numerical solution of GCT

Though a continuous parameter distribution is the key to GCT, for numerical purposes
the equations should be discretized. Hence, it is more practical to consider GCT in a
form of the multiple porosity model with the linear interaction term:

φϕω

∂cω

∂ t
+∇ · (vωcω) = ∑

ξ∈Ω

n(ω,ξ )(c(ω)− c(ξ )), for each ω ∈Ω. (4.54)

In (4.54), the unknowns are the continuum fractions ϕω , the velocities vω and the mass
exchange rates n(ω,ξ ). When the porous medium’s properties are not specified, the
most reasonable way to find the parameters of the GCT model is the curve fitting. Thus,
transport through the porous medium is modeled either numerically or naturally, and
the BTCs are fitted with a solution of GCT. Fitting means guessing the parameters such
that the BCTs of the experiment and the model are as close to each other as possible.
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Proximity of the curves can be assessed visually, but it is more accurate to estimate the
proximity error as, for example:

err = ∑
x∈Xp

t∫

0

√
cmodel(x,τ)2− cexp(x,τ)2, (4.55)

where Xp is a set of observation points. Minimization of the error in the form of (4.55)
is called the least squares method, which is widely used for relatively smooth data sets.

So, the best parameter set is obtained, when the proximity error is lowest, but how
the parameters are guessed and found? We suggest using the Nelder-Mead optimiza-
tion method [Nelder and Mead, 1965] for finding a minimum of a multivariate func-
tion which is the error in the considered case. This method belongs to a general class
of derivative-free methods, so called, direct search methods, which are advantageous,
when a system of partial differential equations is to be solved. Parameters of the mul-
tivariate function (ϕω ,vω ,n(ω,ξ )) are variated based on an initial guess and a set of
procedures.

1. Initial simplex - Construct an initial simplex by generating vertices x1,x1, ...xN+1
around an initial point xin ∈ RN . In our case xin is composed from all parameters
of GCT taking into account that n(ω,ξ ) = n(ξ ,ω) according to (4.49). It is
typical, that all edges have the same specific length.

2. Ordering - Order the initial simplex from the lowest calculated proximity error to
the highest. After ordering, the worst point xN+1 is discarded and a new point is
calculated.

3. Centroid - Calculate the centroid of the best side by discarding the worst point:

xc =
1
N ∑

i6=N+1
xi.

4. Reflection - Reflect away from the worst point

xr = xc +α(xc− xw).

If the proximity error at this point is lower than that at the second worst point but
larger than that at the best point err(x1)< err(xr)< err(xN), then accept the new
point. Otherwise, proceed to contraction.

5. Expansion - If the proximity error of the reflected point is lower than that at the
best point err(xr)< err(x0), then calculate an expansion point

xe = xc + γ(xr− xc).

If the new point is better: err(xe) < err(xr), then accept it, otherwise accept the
result of the reflection in the new simplex.
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6. Contraction - Perform contraction between xc and the best of the two points xr
and xN+1:

xs = xc +β (xr− xc), err(xN)≤ err(xr)< err(xN+1)

xs = xc +β (xN+1− xc), err(xr)> err(xN+1)

If the contracted point is better, then it is accepted. Otherwise, shrinking is per-
formed.

7. Shrinkage - Compute N new vertexes:

xi = x1 +δ (xi− x1).

8. Iterate.

The algorithm iterates until a preset small variation of the parameters does not reduce
the proximity error. The algorithm parameters are α > 0, 0 < β < 1, γ > 1, γ > α, 0 <
δ < 1, which are called reflection, expansion, contraction and shrinkage respectively.
The process is highly dependent on the original guess and can, in some cases, con-
verge to a local minimum, which provides unreliable results. Therefore, it is useful to
perform minimization of the fitting error for a few initial points or even start the pro-
cess again on the previous guess. If the algorithm struggles to find a better point, it
can reflect the point to a completely different region, where a better minimum will be
found. Implementations of the algorithm can easily be accessed in many programming
languages as fminsearch in Matlab or commons-math in Java.

For a given set of parameters, GCT can be solved numerically using, for example,
the finite difference method. For a discussion on the numerical diffusion in the related
discretization schemes, we refer to Radu et al. [2011]. The equation (4.54) is rewritten
in a form:

ϕ(ω)
cn

k(ω)− cn−1
k (ω)

∆t
=−ϕ(ω)u(ω)

cn
k(ω)− cn

k−1(ω)

∆x
+

+ ∑
ξ∈Ω

n(ω,ξ )(cn
k(ω)− cn

k(ξ )),
(4.56)

applied initial conditions (non-saturated domain):

∀ω ∈Ω, c(x, t = 0,ω) = 0, x ∈ X , (4.57)

and boundary conditions (full saturation at the inlet):

∀ω ∈Ω, c(x = 0, t,ω) = 1, t ∈ T. (4.58)

The average concentration c(x, t) is calculated from the weighted sum:

c(x, t) = ∑
ω∈Ω

ϕ(ω)c(ω). (4.59)

Since GCT in the discrete form (when Ω is a finite set) transforms into the multiple
continua model (4.54), (4.56) is simply a system of algebraic equations that can easily
be solved.



Chapter 5

Summary of results and conclusions

“Success is a science; if you have the
conditions, you get the result.”

–Oscar Wilde

In this chapter we provide an overview of the scientific results presented in the included
papers.

The main objective of our research is to introduce the new Generalized Transport
model as a robust tool for transport quantification and analysis of phenomena occurring
when a fluid flows through a porous medium. This is done by linking GCT to some
useful existing transport models through certain limits, finding the model parameters
and comparing against the conventional approaches.

Paper B should be mentioned separately as it provides a method for fine-scale trans-
port modeling, which is used in order to demonstrate the appearance of non-Fikcian
behavior in homogeneous synthetic porous networks and to provide the BTCs for fur-
ther fitting. At the same time, network characteristics provide parameters for the GCT
model.

5.1 Summary of paper A: On the Relationship Between Multiple
Porosity Models and Continuous Time Random Walk

Generalized Continuum Transport model was first suggested in Paper A as a replace-
ment for the Continuous Time Random Walk approach. The purpose was to provide
a more reliable model, continuous in both space and time and accurate in terms of
anomalous transport quantification. Consequently, the authors realized that GCT is not
just another transport model but a new framework that encloses the existing gaps in
modeling choice and estimation of model parameters.

Applicability of the space-discrete CTRW model for the continuous phenomenon
has been argued even by the authors of the model [Berkowitz et al., 2006, Dentz and
Berkowitz, 2003]. Nevertheless, the model has widely been used due to its accuracy and
availability of the numerical schemes. In Paper A, the new GCT model is introduced
and its relation to CTRW is found. The nature of GCT is studied in terms of a simple
example, where the parameters of GCT are obtained from a regular 2D porous network,
but through the parameters of CTRW.
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This study inspired further investigations of the GCT framework focusing on the
selection of the parameter space, relations to the classical models and estimation of the
model parameters from the fine scale simulations of porous flow.

5.2 Summary of paper B: Effect of Mean Network Coordination Num-
ber on Dispersivity Characteristics

Non-Fickian transport behavior was initially observed in a set of experiments as sys-
tematic deviations that could not be explained by the classical principles [Aronofsky
and Heller, 1957, Scheidegger, 1959]. Berkowitz et al. [2006] have postulated that the
effect appears in all realistic porous media due to their natural “inhomogeneity” - het-
erogeneities that are present on all scales. This statement doubts our understanding of a
homogeneous porous system and REV. In Paper B, fluid flow through a realistic porous
network is considered by studying the network dispersivity dependence on the network
topology. A side result of this study was a discovery of anomalous transport effects in
the porous networks with large coordination numbers, even though the networks have
been constructed virtually “homogeneous”, but randomized in order to match the real
porous media.

Pore-network modeling is a numerical reconstruction of a real porous system in
order to perform transport simulations on a computer instead of laboratory testing.
Paper B is based on the previous approach for construction of realistic synthetic pore-
network models, and transport equations are included in order to obtain the BTCs. The
main focus is the pore network characteristic, called the network coordination number,
which is the number of pore throats connecting to a single pore body. In terms of a large
porous network, it is useful to consider the mean network coordination number and a
distribution of these numbers. The distribution is usually fixed according to a realistic
distribution of coordination numbers in porous systems, while the mean coordination
number can vary depending on the type of the medium to be reconstructed.

Dispersion in a porous network accounts for spreading of the concentration pro-
file and can appear on smaller and larger scales. On the pore scale, the spreading is
caused by the heat motion of molecules (diffusion) and friction on capillary walls (Tay-
lor dispersion), as discussed in Chapter 3.1. On a larger scale, spreading occurs due to
the network structure or topology (geometrical dispersion [Bear, 1972]). The overall
spreading is a combination of all phenomena with the effective dispersion coefficient
of the form:

D∗ = DmT +αGv+αT v2, (5.1)

where Dm is the molecular diffusion coefficient, T is the medium’s tortuosity, αG is
the geometrical dispersivity, αT is the Taylor dispersivity coefficient and v is the mean
velocity.

In the study, transport equations are added and the geometrical dispersivity of the
network is calculated from the second moment of the BTCs. It is found that geometrical
dispersivity is correlated with the mean network coordination number and an empirical
relation is proposed:

αG(z) = α0 + c× exp−δ (z−2), (5.2)
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where α0 is the geometric dispersivity at the highest mean network coordination num-
ber, z is the mean network coordination number and c, δ are some constants.

It was also pointed out that systematic deviations in the BTCs, which is the effect
of anomalous transport, grow with the mean network coordination. It is especially
important for deeper investigations of non-Fickian phenomena in homogeneous but
random porous networks, which construction, topology and characteristics are know
and can be related to the model parameters.

5.3 Summary of paper C: On the Properties of the Parameter Space
of the Generalized Continuum Transport Model for Description of
Fluid Flow in Porous Networks

Investigation of the GCT model continued in Paper C, but now more attention was paid
to the nature of the parameter space and the relation to the medium’s characteristics.
From that point GCT, is primarily considered in its discretized form which leads to the
multiple continua limit.

In Paper C we focused also on the construction of the parameter space of GCT.
It is proposed that the benefit of the model is not the accurate prediction of flow, but
an opportunity to constrain the parameter space, or, in other words, to parametrize the
modeling choice.

The realistic network models from Paper B are used as a source of the BTCs, as
well as the medium with known characteristics. Consequently, the parameter space
is determined from the velocity distribution in the network and the desired accuracy
of transport quantification is linked to the construction of the parameter space. It is
emphasized that the parameter space can be determined based on the network properties
and accuracy not only prior to modeling but also “on-the-fly”, during the solution of
GCT, thus taking into account the transport complexity at the moment.

Consider the following example: transport in a porous network is to be modeled
with the discrete form of GCT. First, the velocity distribution should be obtained. This
can be done by the fine-scale modeling of the porous network. For the velocity distri-
bution, it is sufficient to calculate only the pressure at the network nodes and suggest
some uniform network properties. A typical velocity distribution is shown on Fig. 5.1.
It is remarkable how many nearly-zero velocities appear in a realistic medium which
is exactly the influence of the dead zones. Discretized form of GCT is a system of
differential equations with interactions:





φϕ0
∂c0
∂ t +v0

∂c0
∂x = ∑i n(0, i)(c(0)− c(i)),

φϕ1
∂c1
∂ t +v1

∂c1
∂x = ∑i n(1, i)(c(1)− c(i)),

...
φϕN

∂cN
∂ t +vN

∂cN
∂x = ∑i n(N, i)(c(N)− c(i)).

(5.3)

It is important that in order to account for the zero-velocity term one equation in (5.3)
should have the velocity equal to (e.g. v0 = 0). After the model is initialized, we can
follow three directions:
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Figure 5.1: Velocity distribution in a regular porous network with the mean coordination num-
ber equal to 15. Figure from Vasilyev et al. [2017]

1. Static adaption to the medium’s structure. This assumes that the medium con-
sists of several subdomains with different complexity, for example a porous ma-
trix and fractures (as on Fig. 5.2). The porous matrix has more complex struc-
ture and requires higher order of GCT for accurate quantification (Vasilyev et al.
[2017] advise setting N>5 for accurate prediction of anomalous transport), while
fractures can be modeled with fewer equations which saves computational efforts.

2. Automatic adaption to the medium’s structure. If the structure of the multi-
domain medium is initially unknown, it is reasonable to apply initially higher
order of GCT for each subdomain. After the simulation is started, it is possi-
ble to judge the flow complexity and reduce the order if necessary. Transport
complexity can be verified by, for example, evaluating the distance between the
concentration profiles in a pair of continua:

ε = |ci(x,τ)− c j(x,τ)|L2

at a predefined time point τ .

3. Dynamic adaption to transport complexity. Same as above, if the transport
complexity (or desired accuracy) is initially unknown, it is possible to start with
a larger number of equations. The complexity can be judged at each time step
and the order can be reduced if necessary and increased back, when needed. This
can be especially useful to model passing of a plume. For better performance,
the order of GCT can be increased in the region where the plume is passing, and
reduced on a subdomain, where concentration is not changing.

The examples above demonstrate how the modeling choice can be constrained and
the configuration of the parameter space can be related to the medium’s and transport
properties.
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Figure 5.2: Heterogeneous porous medium consisting of homogeneous porous blocks and
fractures.

5.4 Summary of paper D: Applying Some Natural Velocity Distribu-
tions for the Generalized Continuum Transport Model

It is emphasized in Chapter 4.6 that the equations entering the GCT model do not con-
tain the second order spatial derivative which accounts for spreading of the concentra-
tion profile. It is suggested that ommition of this term does not limit the functionality of
the model, but it is more natural to have parameter distribution accounting for spread-
ing. Moreover, the lack of the second order derivative highlights the principles of GTC,
where transport phenomena are represented as distributions over a continuous scale. In
this case, dispersion on a large scale is accounted by the velocity distribution.

The main focus of Paper D is to show, that though the dispersion or the second order
term is not included in GCT, it can model ADE by accounting for the Fickian-type ve-
locity distribution. Moreover, the parameters of GCT are directly related to the velocity
distribution in the medium. Contaminant flow through a long circular channel is con-
sidered in order to obtain the BTCs, which can be accurately approximated by ADE,
and the dispersion coefficient can be estimated. Taylor dispersion [Taylor, 1953] due to
wall friction dominates in the fluid domain, thus known flow nature provided the veloc-
ity distribution for the GCT model. It is demonstrated that GCT represents spreading
of the concentration profile by accounting for the corresponding velocity distribution.
Hence, GCT models physical phenomena in a more natural way by appealing to the
actual flow characteristics.

The study continues in the same manner by considering CTRW as a source of the
velocity distribution. BTCs from the previous simulation are fitted with the CTRW
model with TPL transition time distribution. It is obvious, that the transition time on
a grid can be translated to velocities. Consequently, the derived velocity distribution
(Fig. 5.3) is applied to GCT and the BTCs are compared. Finally, it is concluded that
GCT accounts for physical phenomena in a natural way.
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Figure 5.3: TPL velocity distribution (solid line, left axis) and its discretized form applied for
GCT (bins,right axis).

5.5 Conclusions and future directions

This study focuses mainly on the Generalized Continuum Transport model and its pa-
rameter space. It was important to provide a thorough description of GCT focusing on
its attractivity in terms of mathematical investigations, flexibility with respect to con-
struction of the parameter space, accuracy of anomalous transport quantification and
relation to the medium’s characteristics. It has been demonstrated how the modeling
choice can be eliminated by introduction of the parameter space in terms of the GCT
framework.

The benefits of GCT can be summarized in a few points:

1. Continuous in both space and time which is useful for mathematical investiga-
tions.

2. Has existing models as a limit or a subset.

3. Suitable for accurate flow quantification especially the tailing effect of anomalous
transport.

4. Flexible in terms of accuracy and complexity: a researcher can always select
between accuracy and complexity.

5. The form of the parameter space can be constrained and related to the medium’s
properties.

6. The form of the parameter space can always be changed in order to match the
medium’s construction and flow complexity.
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Though the parameter space of GCT is, in general, continuous, in Papers C and D
it is investigated in its discretized form in order to assess the model numerically. Thus,
GCT is studied in a form of the multiple continuum limit. It is, therefore, beneficial
to consider the parameter space in its continuous form through, for example, the La-
grangian form, as it is done in Paper A. We believe that this is an interesting direction
for future investigations.

At the same time, it is useful to consider more forms of the parameter space and
relations to the medium’s nature. This can include 2D and 3D simulations of plume
propagation through more complex porous structures combined from both small pores
and larger structures, as done in 1D in paper C for the multi-zone medium.

In Papers C and D only a part of the GCT’s parameter space is related to the net-
work’s characteristics: the void space distribution and the velocity distribution are ex-
tracted directly from the construction of the network, while the mass exchange term
is a result of the BTCs fitting. It is, therefore, important to address this issue as well,
such that the whole parameter space is related to the medium’s macro and microscale
properties.

Finally, we hope that Generalized Continuum Transport is an interesting framework
from both mathematical (continuity) and engineering (accuracy) point of view.
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Summary. We derive a multiple porosity model based on the continuous time random walk 
model (CTRW). In particular, we show how the parameters of the multiple porosity models 
relate to the transition probability function which is at the heart of the CTRW formulation. A 
simple example is included to illustrate the results.  

 
 
1 INTRODUCTION 

Models for particle transport associated with fluid flow in porous media are essential for a 
wide range of applications spanning exploitation of groundwater resources to paper 
production and fuel cells. While many of the challenges in these applications relate to the 
simultaneous flow of multiple fluids through the pore space, even transport of a passive 
component flowing with a single fluid is not properly understood on scales above that at 
which the porous structure can be resolved (see e.g. the special issue [1]). 

Numerous experiments indicate that the solutions to the Advection-Dispersion Equation 
(ADE) and its modifications do not capture the full complexity of transport (see e.g. [2] and 
references therein). The last decade, the Continuous Time Random Walk (CTRW) model has 
been advocated as a general framework to address transport in porous media [2]. This is 
supported by the equivalence to the generalized master equation (GME) [3], showing that the 
solutions of CTRW must include the solution of all other deterministic transport models either 
through equivalence or as a subset. 

However, in practical applications, multiple porosity models remain much more wide-
spread, due to their simple implementation in existing code packages, as well as their simple 
intuitive interpretation [4, 5].  

In this paper, we show an explicit relationship between multiple porosity models and 
CTRW. This relationship goes beyond the usual analysis, which shows how CTRW 
converges to certain fractional differential equations in appropriate limits, by defining a 
multiple porosity model which is identified as identical to CTRW under a certain 
discretization in its Lagrangian formulation. This is achieved through considering generalized 
multiple porosity models with potentially infinitely many continua.  

Thus, we formulate a duality where CTRW is seen as a spatial discretization of transport, 
while retaining the exact structure of the subscale velocity distribution. In contrast, multiple 
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porosity models with a finite number of continua can be considered as spatially continuous 
models with a discrete approximation to the velocity distribution.  

We structure the presentation as follows. In the next section, we give the generalization of 
multiple porosity models we exploit in this paper. In section 3, we give a brief reminder of the 
main formulations of CTRW. Finally, in Section 4, we show the explicit relationship between 
CTRW and multiple porosity models.  

 

2 MULTIPLE POROSITY MODELS 

Multiple continua models are the intuitive generalization of single continua models. The 
idea was first presented by Barenblatt [6], and has since been widely used, not only for 
particle transport but also for multi-phase flow and thermal transport.  

Most commonly, multiple porosity models are applied to only two continua, and these are 
then identified as e.g. the fracture continua and the matrix continua. The equation for mass 
transport in the fracture continua (identified by subscript 1) can then be written as 

⋅     ,    (1) 
with the equivalent transport equation for the matrix continua (identified by subscript 2)  

⋅     .    (2) 
In equations (1-2), we may relate masses and concentrations by the porosity  and the 
fraction of the porosity which is associated with each continua , thus using  to denote 
density, . The fluxes  are usually determined from Darcy’s law, while the 
dispersion tensors  and interaction coefficient  are (possibly flux dependent) properties of 
the medium. We take these parameters as known herein.  

The natural generalization of the dual porosity models is the n-porosity model employed 
by Gwo for contaminant transport [5] and by Pruess for thermal transport [4]. This model can 
be concisely written as 

⋅   ∑ ,   ,   for all  1. .  . (3) 
The parameters ,  must be positive (when  for dispersive processes, with ∑ , 0. 
Further, we mass conservation implies ∑ , 0.  By definition, we also have the constraint 
that ∑ 1. 

Herein, we will further generalize Equation (3) by considering not only a finite number of 
continua, but indeed infinite families of continua. On one hand, this is simply a formal 
generalization, but it may also be given physical interpretations as we will see below. When 
we treat the index as a continuous variable, we will denote it by , which is assumed to be in 
the space Ω. Our independent variables are then functions of both physical and parameter 
spaces, in addition to time, e.g. , , , where , , ∈ Ω . The 
continuous generalization of Equation (3) is then stated as  

⋅   ,   ′.   (4) 
The subscript on the differential operators emphasizes that the differential is with respect to 
the spatial coordinate, as opposed to the parameter space coordinate . 

The generalized multiple porosity model can also be written such that it accommodate non-
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passive particles by replacing the integral transform on the right hand side by a non-linear 
operator, which we write as:  

⋅   | , .   (5) 
 
  

3 CONTINUOUS TIME RANDOM WALK 

The Continuous Time Random Walk (CTRW) models represent a distinct departure from 
the modeling philosophy of Section 2. Instead of looking at the deterministic movement of a 
concentration of particles in a continuum, CTRW considers the transition probabilities for 
particles between discrete points.  

The usual CTRW derivation lets the probability density  of a particle arriving at some 
point in time be related to the history of the problem [7]: 

, ∑ , ,   ′ .   (6) 
Here we use a summation over space to emphasize that the spatial points are discrete and 
countable, and the transition probability is given by . From this equation, the 
probability density  of a particle being at a point is deduced from the probability that it has 
not transitioned to a different point,  

, ,   ′,     (7) 
where the probability of not transitioning is defined as  

1 ∑ ′,   ′,     (8) 
 
Continuous time models thus shift the emphasis away from the traditional view of 

advection and dispersion on a continuum scale, towards a concept of a spectrum of transition 
times. These are useful concepts and ideas, and they motivate our desire to incorporate this 
approach within multiple porosity models. 
 
 

4  MULTIPLE POROSITY AND CTRW 

We have seen in sections 2 and 3 that while both multiple porosity (MP) models and 
continuous time random walk aim at describing transport phenomena, they are parameterized 
by different functions. Indeed, the main parameters of concern to us in the MP model are the 
flux distributions ; the distribution of continua (porosity) ; and the kernel of the continua 
exchange term . In contrast, the important parameter of the CTRW model is the transition 
probability function . Recalling that our aim is to be able to reproduce the results of CTRW 
within a MP model, we will in this section show how to chose the parameters of the multiple 
porosity model given a transition probability function . 

Our approach will be to manipulate the MP model, by change of variables, rewriting the 
equation in a Lagrangian framework, and finally introducing a low-order quadrature. This will 
lead to equations equivalent to Equations (6), and we can thus identify the relationship 
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between the parameters of the two models. Since Equation (6) is discrete in space, we will use 
a form of the MP porosity model where the parameter space has both continuous and discrete 
components. 

As a preliminary note, we point out that the non-linear MP model is related to the 
Boltzmann equation, by identifying Ω , and interpreting it as the (discrete) flux space, 
e.g.  . We then obtain from a dispersion free Equation (5)  

⋅   | , .   (9) 
Up to the scaling between flux and velocity, Equation (9) is a discrete Boltzmann equation 
with no body forces. A common approximation to the collision term of the Boltzmann 
equation is the Bhatnagar-Gross-Krook (BGK) collision operator [8], which takes the form 

, | ,

〈 〉  , .     (10) 

Here angled brackets implies integration and summation over the parameter space Ω;  

〈 〉 〈 〉 , , ,   , ,    

Here, Ω  refers to the continuous part of Ω. Further, the equilibrium distribution refers to the 
distribution in Ω, such that ; , . Note that for dispersive processes, Equation (10) 
implies that , since . The characteristic time-scale of relaxation is given by 
, and we will include this time-scale in the parameter space, thus Ω ℙ , and 
, . Since  is now dependent on the parameter space, we must be careful with how we 

formulate the collision operator in order to retain mass balance. Then it is necessary to 
consider not the integral mass 〈 〉, but rather the weighted average 〈 〉. From a 
Boltzmann perspective, this corresponds to the mass (per time) entering collisions. From our 
perspective, this represents the mass (per time) leaving a continuum. Similarly, we are 
therefore also interested in not only the equilibrium distribution, but also how mass is 
distributed from collisions,   

,

  ,

〈   〉
.     (11) 

We will in the continuation suppress the dependence on  or  when it is clear from the 
context. Motivated by this analogy to the Boltzmann equation, we will investigate a collision 
term of the type 

| , 〈 〉  ∗ .    (12) 

We recognize the first term on the right hand side as the source to the continua from 
exchanges, while the second term represents the loss term. 

Using the collision term suggested in Equation (12) in the MP model given in Equation (5), 
and by transforming the equation from using a fluid flux to particle velocity as parameter, so 
that     , we can write the dispersion free MP model in terms of the mass 

, , ,  
⋅   〈 〉  .   (13) 

It is convenient to change dependent variables so that Equation (13) is written in terms of 
the mass lost to exchange, , , , ,  in stead of the mass distribution, which 
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gives the equation  

⋅  
〈 〉 

.    (14) 

This equation governs the evolution of the mass per time changing continua , and has the 
same structure as the Boltzmann equation with the BGK relaxation term.  This quantity is 
related to the arrival probability  solved for in the CTRW model, as we can see from 
Equation (12). However, Equation (14) is of a very different form than Equation (6).  

We now proceed by writing Equation (14) on a Lagrangian form. By integrating Equation 
(14) along characteristics from time  to , we obtain  

, , , , ,   | ,   ′. (15) 
While in general,  is some small parameter, it is helpful to keep in mind the special case 
where 1, as this leads to needed simplifications the later expressions. This is equivalent to 
considering a Lagrangian step which is exactly equal to the inverse exchange rate. 

To treat the integral in Equation (15), we approximate the integral by simple quadrature. 
Let the integral over the collision operator be approximated by its lower limit;  

,   | ,   ′   ,   | , .   (16) 
Then substituting the definition of the exchange term we obtain from Equation (15)  

, , 1 , ,       
〈 〉 ,    , ; , .  (17) 

We see that for homogeneous problems, where the exchange term is independent of space, the 
last term of Equation (17) is decoupled. When we chose the discretization parameter 1, 
the first term on the right hand side of Equation (17) is zero, which allows us to obtain an 
equation for the evolution of the total mass by integrating over Ω, leading to:  

〈 〉 , ∑ 〈 〉 ,   , ; ,   .   (18) 
By changing the variables of integration we can go from a velocity formulation to a spatial 
formulation, with  and .    

〈 〉 , ∑ 〈 〉 , ′   , ′   ′.   (19) 
Here, we have assumed that the collision operator is homogeneous in space-time.  

For Equation (19) to be equivalent to Equation (6), we identify the distribution  as the 
CTRW distribution,  

, , .     (20) 
We note by comparing equations (6) and (19) that the probability R of a particle arriving at 

a point in the CTRW model satisfies the same equation as the mass change 〈 〉 at a point in a 
discrete-continuous form of the MP model as given in Equation (19). For spatially discrete 
distributions as given in Equation (20), integration needed to convert from arrival probability 
R to a conservative probability P is analogous to the relationship between mass collision 
densities p to physical masses m. Thus we have reached the conclusion that the CTRW can be 
interpreted as a spatial discretization of an approximate MP model in Lagrangian coordinates, 
where the interaction term is evaluated by one-sided quadrature.  

We summarize the relationship between the parameters of the MP and the CTRW models 
in Table 1, together with several of the intermediate distributions used in the derivation. The 
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key results are given in bold. 
 
 
 

Property Expression 
Multiple 
Porosity 
Equation 

⋅ , ,   ′ 

Parameter space Ω ℙ
Parameter 
variable 

,  

Lagrangian 
transport kernel 

, ,  

Equilibrium 
distribution  

, ∼ ,  

Discrete 
structure 

0 ⇒  
 

Flux density 
relation , ,  

Exchange term 
kernel , ,

1

′
, ,  

Table 1: The main parameter functions of the MP model expressed in terms of the 
parameter functions of the CTRW model are give in the table in bold. Various other 

expressions of interest from this section are also provided.  

5  EXAMPLE CALCULATION 

To illustrate the relation between the parameters of CTRW and MP models we investigate a 
simple representation of a 2D network with a regular triangular structure. With flow aligned 
with the network, this network has two types of pore throats: parallel and inclined to the flow 
direction.  

In such a synthetic case the fluid after complete mixing in a pore node will with probability 
2/3 go through the inclined pore, and with probability 1/3 go through a parallel 

pore. The corresponding travel distances are denoted Δ  and Δ , with Δ 2Δ . 
Similarly, we denote the travel times Δ  and Δ . 

Considering the described porous system in the CTRW framework we first observe that for 
this simple network, we only have two continua, and that the distribution of transit times is 
also discrete. Thus we replace the continuous time derivation from Section 4 with an 
equivalent discrete time random walk formulation. The transition probability is then given as 

,
if Δ    and   Δ

if Δ    and   Δ
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Following the calculations in Table 1 we can rewrite the exchange term kernel on the form 

, Δ Δ
 

Figure 1 shows a comparison between the break-through curves obtained by a network model 
as described, together with the equivalent dual-porosity model. The parameters have been 
chosen to be characteristic of homogeneous sand. While this is a relatively simple problem, 
the example nevertheless validates the connection between CTRW and MP models derived in 
Section 4. We also note that for these parameters, even though the coupling term  is 
relatively strong, the curves nevertheless show a devitation from the error function predicted 
by a single porosity model.  

 
Figure 1. Concentration profiles obtained different distances from the injection point. Results from network 

model (lines) and dual-porosity model (crosses).  
 

5 DISCUSSION 

We summarize the main results and observations herein: 
1. Given a suitable approximate Lagrangian form, the parameters of the multiple porosity 

model can be obtained from the parameters of the continuous time random walk model.  
2. Conversely, the continuous time random walk model can be seen as a spatial 

discretization of an approximate Lagrangian form of the multiple porosity model.  
3. A suitable interpretation of the different continua in the multiple porosity model is that 

they represent fluxes and expected particle travel times between change in flux field.  
4. The kernel  of the exchange transform can be expressed explicitly given the flux 

density . 
5. In practice, only a (small) finite number of continua are used in multiple porosity 

models. The multiple porosity model can then be seen as a flux space discretization of 
the underlying transition time distribution , as opposed to continuous time random 
walk which is a spatial discretization.  
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