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Abstract 

Shear-dilation-based hydraulic stimulations are conducted to create enhanced 
geothermal systems (EGS) from low permeable geothermal reservoirs, which are 
initially not amenable to energy production. Reservoir stimulations are done by 
injecting low-pressurized fluid into the naturally fractured formations. The injection 
aims to activate critically stressed fractures by decreasing frictional strength and 
ultimately cause a shear failure. The shear failure leads to a permanent permeability 
enhancement of the fractures, which contributes to the overall reservoir permeability, 
owing to the damage in fracture surface characteristics during the shear failure. Shear 
stimulation is considered a key for geothermal energy development; however, 
seismicity is a critical by-product, which has to be controlled. Numerical modeling 
can provide a deeper understanding on governing mechanisms, which is essential for 
reservoir assessments and the control of seismicity. The primary goal of this thesis is 
to aid further development of EGS by contributing to the current state-of-the-art for 
numerical modeling of shear-dilation-based hydraulic stimulations.  
Numerical modeling of shear-dilation-based hydraulic stimulations requires 
mathematical modeling of flow and mechanical deformation in fractured formations. 
The initial focus of the thesis is the modeling of the mechanical deformation of 
naturally fractured rock. The deformation and stress state of the rock are controlled 
by the deformation of pre-existing fractures, which is governed by different equations 
than the deformation of the surrounding formation. A cell-centered finite-volume 
approach is developed where the fractures are represented as co-dimension one 
inclusions in the domain. The method is capable of modeling deformation 
considering open and closed fractures with complex and nonlinear relationships 
governing the displacements and tractions at the fracture surfaces. The method aims 
to provide benefits for studies including flow and deformation couplings in a 
discontinuous rock.  
Hydraulic stimulations are essentially coupled hydro-mechanical processes, where 
the deformation of fractures has an impact on the permeability as well as on the stress 
state of the rock. We develop a computational model, which has the capability to 
capture these interrelations in two- or three-dimensional domains. Considering the 
significance of the pre-existing fractures, we model the reservoir as a network of 
explicitly represented large-scale fractures immersed in a permeable rock matrix. The 
model can forecast the permeability evolution of geothermal reservoirs with complex 
fracture networks.  
To be able to mitigate the seismic hazards, the contributing processes and the 
interaction between them should be examined. The computational model developed 
here also has the capability to investigate the induced seismicity. By using the 
developed model, a novel hypothesis regarding the induced seismicity generated after 
the termination of injections has been tested. During the fluid injections, the pressure 
builds up inside the fractures, which causes normal deformation and increases the 
void place between the fracture surfaces. The termination of the injections reverses 
the void increase; i.e., the fracture starts to close owing to the pressure decrease. We 
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identify that the fracture closure is one of the mechanisms that are responsible for the 
induced seismicity generated after the termination of injections. 
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Outline 

This dissertation consists of two parts. The first part contains the background theory 
covering the papers found in the second part. 

Part I is structured as follows: In Chapter 1, enhanced geothermal systems, shear 
stimulation, induced seismicity, and the modeling challenges of shear stimulation are 
introduced. The physical processes pertaining to shear stimulation are presented in 
Chapter 2, and the constitutive relations for fracture deformation are provided in 
Chapter 3. In Chapter 4, the numerical methods for the processes are presented. 
Finally, the main findings are discussed, and an outlook is provided in Chapter 5. 

 

The included papers found in Part II are: 

Paper A: Ucar, E., Keilegavlen, E., Berre, I., and Nordbotten, J. M. (2016). “A 
Finite-Volume Discretization for the Deformation of Fractured Media.” submitted to 
Computational Geosciences, can be found in arXiv:1612.06594v2. 

Paper B: Ucar, E., Berre, I., Keilegavlen, E. (2016). “Modelling of the Shear-
Dilation-Based Hydraulic Stimulation in Enhanced Geothermal Systems Considering 
Fractures in Different Scales.” in proceedings for the European Geothermal Congress 
2016 in Strasbourg, France. 

Paper C: Ucar, E., Berre, I., Keilegavlen, E. (2017). “Three-Dimensional Numerical 
Modeling of Shear Stimulation of Naturally Fractured Reservoirs.” submitted to 
Journal of Geophysical Research-Solid Earth, can be found in arXiv: 1709.01847. 

Paper D: Ucar, E., Berre, I., Keilegavlen, E. (2017). “Postinjection Normal Closure 
of Fractures as a Mechanism for Induced Seismicity.” Geophysical Research Letters, 
44, 9598–9606. doi:10.1002/2017GL074282 
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1. Introduction 

Geothermal energy is the thermal energy that is generated and stored in the Earth’s 
crust. Heat flows through the crust of the Earth due to two primary processes: heat 
generated by the decay of radioactive elements in the crust and continuous heat 
transfer (both conduction and convection) from Earth’s molten metal core [60; 87; 
106]. Harnessing geothermal energy for industrial purposes was started in the early 
20th century, and it is reported that the major geothermal power potential remains 
untapped [74; 96]. 

Using renewable energy sources has become a necessity rather than an option due to 
the negative economic and environmental impacts of heavy reliance on fossil fuels. 
Currently, 23.5 % of the global electricity generation is provided by renewable 
energy sources, which are dominated by hydropower (17.2 %) and wind (3.5 %). 
Geothermal energy is seen as a complement to other renewable energy sources 
because it can provide continuous baseload power generation with a small footprint 
and minimum environmental impacts [106]. These attributes of geothermal energy 
combined with its widespread distribution and no storage requirements make the 
geothermal energy one of the most promising and clean energy resources in the world 
[106]. Geothermal energy gains significant momentum as there has been a spike in 
geothermal projects worldwide; a total of 44 new geothermal power projects began 
development throughout 23 countries between March and September 2016, which is 
more than the annual development over the previous two years [11]. Despite its 
advantages and recent project developments, the current geothermal energy share in 
global electricity generation is still limited to 0.3 % [55]. The current production is 
mainly provided from hydrothermal and magmatic systems where hot fluids are 
extracted from naturally permeable reservoirs located in shallow (0 - 0.1 km) or 
intermediate depths (0.1 - 4 km) [43]. Bertani [20] reports that 8.3% of global 
electricity need can be supplied from geothermal sources by 2050. However, to make 
the geothermal energy a major supplier to the global energy need, the geothermal 
energy that is confined to the greater depths (> 4 km) should be exploited [87].  

Deep geothermal sources have high potential for electricity generation owing to their 
high temperatures. However, high formation temperature should be accompanied by 
sufficient amount of fluid to carry heat from the reservoir and high formation 
permeability to transport the fluid at a high flow rate. Although high temperature can 
be found extensively, natural permeability levels and the amount of existing fluid do 
not generally meet the criteria for viable production rates. A remedy is to create 
artificial reservoirs by enhancing (or engineering) the geothermal systems. 

1.1 Enhanced geothermal systems 

The common formations observed in deep geothermal reservoirs, such as crystalline 
igneous rocks, preserves inherently very low natural porosity and permeability [106]. 
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The low permeability limits the hydraulic connection between the 
production/injection wells and the fractured reservoir, which leads to inefficient 
production rates. Enhanced geothermal systems (EGS) aim to cure this limitation by 
mainly three stimulation methods: thermal, chemical and hydraulic stimulation [25]. 
Thermal stimulation is conducted by cold-water injections, which cause contraction 
of rock and consequent expansion of fractures [45; 49]. Chemical stimulation (a.k.a. 
acidizing) is based on acid injection into the formation with the aim of permeability 
enhancement through transport and precipitation processes [91]. Another common 
stimulation method is hydraulic stimulation, which is performed by injecting 
pressurized fluid into the formation. Hydraulic stimulation has the potential to 
stimulate larger regions than chemical and thermal stimulations, whose effects are 
localized to the proximity of wells. In this thesis, we focus on hydraulic stimulations. 

Depending on the injection pressure and the stress state of the reservoir, three 
common mechanisms can be encountered during hydraulic stimulations in EGS. 
Tensile fractures can be initiated (hydraulic fracturing), the shear strength of the 
fractures can be decreased causing shear and normal deformations on the fracture 
surfaces (shear stimulation), and mixed-mechanism can occur in which opening and 
shearing of fractures take place simultaneously. The conventional hydraulic 
fracturing method has been applied widely in the oil and gas industry from the late 
1940s [63], and the method has been adapted to geothermal applications [69; 116]. 
The success of the hydraulic fracturing has been lower than expected especially when 
applied to the naturally fractured reservoirs. The possible reasons of inefficient 
fracturing are listed as high pressurization related fluid leak-off acceleration to the 
outside of the wellbore area, fracture initiation at non-preferred locations, and 
inefficient proppant transport [54; 93; 110; 111]. Moreover, public concerns 
regarding hydraulic fracturing and the use of certain chemical substances give rise to 
groundwater and air contamination discussions [28]. Thus, the investigation of 
alternative stimulation strategies is recommended [111], and shear-dilation-based 
hydraulic stimulation (a. k. a. shear stimulation, low-pressure stimulation or 
hydroshearing), is discussed as a possible remedy [81; 89; 93].  

1.2 Shear-dilation-based hydraulic stimulation 

Shear-dilation-based hydraulic stimulations are suggested for formations which are 
subjected to high deviatoric stresses [81; 89]. High deviatoric stresses (which means a 
big difference between the maximum and minimum principal stresses) promote the 
existence of critically stressed fractures (favorably oriented fractures) such that these 
fractures exposed to high shear forces and can be activated by low-pressure fluid 
injections. As with the hydraulic fracturing, shear stimulations are also conducted by 
fluid injections; however, the pressure level is intentionally kept below the minimum 
principal stress not to cause tensile fractures. The low-pressure injections cause stress 
alterations on the fractures, which decrease the frictional strength of the fracture 
surfaces, eventually leading to shear movements of two rough surfaces of fractures. 
During the shear deformation, the asperity movement between fracture surfaces 
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causes dilation between them, which provides additional void space for fluid flow as 
shown in Figure 1.1. Unlike the hydraulic fracturing, shear stimulation does not 
require proppant injections (or requires very little). The permeability enhancement 
provided by shear dilation is assumed to be irreversible because of the irregularity 
and roughness of the fracture surface [92; 93]. An illustration of the shear stimulation 
in EGS is provided in Figure 1.2. 

 

Figure 1.1: Induced shear movement and corresponding dilation (reproduced from 
[93]). (Upper) Fluid injection creates an offset between fracture surfaces. (Lower) A 
closer look at the dashed area. The dilation is the cause of permeability enhancement. 
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Figure 1.2: A reservoir (left) before and (right) after the stimulation. Shear 
stimulation increases the permeability of favorably oriented fractures. The 
permeability of the fractures is visualized by the thickness of the lines. The cold fluid 
is injected (shown with blue) and traveled in fractures where the reservoir works as a 
heat exchanger. The hot fluid (shown with red) is produced from production wells.  

1.3 Induced seismicity 

Seismicity is deliberately induced in EGS applications to engineer the geothermal 
reservoirs that have poor initial permeability. A major challenge of hydraulic 
stimulations is the control of induced seismicity [30; 73]. In fact, induced seismicity 
is considered as a possible hazard for several kinds of subsurface applications 
including mining, oil and gas hydraulic fracturing, extraction of natural gas and 
disposal of wastewater by injection [40; 41; 46; 53; 108]. The Earth’s crust generally 
supports high shear stress levels and is often close to shear failure; therefore, small 
perturbations during any subsurface applications can affect fracture stability and 
trigger earthquakes [40; 41]. 

A fracture located in the subsurface is under shear and normal stresses caused by the 
tectonic stresses such as the weight of earth and the stresses caused by plate motions 
[24; 75; 107]. Following the classical theory of friction, the fracture, which can be 
thought of as a plane of weakness, will remain locked as long as the applied shear 
stress is less than the frictional strength of the fracture surface contacts [40]. The 
main shear failure mechanisms associated with establishing and operating EGS can 
be listed as (i) reduction of the frictional strength by the pore pressure increase via 
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fluid injection (ii) reduction of the frictional strength due to the contraction of rock 
formations via cold fluid injection (iii) perturbation in the stress state by volume 
change due to fluid withdrawal/injection (iv) perturbation in the characteristics of the 
fracture surfaces via chemical processes [73]. The primary focus of this thesis 
regarding induced seismicity mechanisms is the reduction of the frictional strength by 
the pressure increase via fluid injections.  

The induced seismicity associated with EGS has been observed to be minor 
concerning damage and magnitude [50]; however, the seismic events can still be felt 
as many EGS are located in near proximity to communities for the efficient use of 
geothermal energy. Despite its low magnitude nature, the public tolerance to induced 
seismicity is delicate due to the fears of, for instance, the small events possibly being 
precursors of larger ones or possible structural damage similar to that caused by large 
natural earthquakes. In order to avoid intolerable induced seismicity, a reactive 
control approach, which is called traffic-light system, is applied for several EGS 
applications [22; 51; 73]. The traffic-light system can be briefly explained as the 
ongoing geothermal operation, such as stimulation, has to be altered/adjusted 
whenever a pre-defined threshold of one indicator of seismic hazard is reached [22]. 
This protocol has been considered to be too simplistic, especially for the case of the 
Deep Heat Mining project in Basel, where the termination of injection did not prevent 
the occurrence of the publicly felt seismic event. In Basel, a relatively high level of 
seismicity was observed on 8 December 2006 during hydraulic stimulations, and the 
injection was first decreased and then terminated to prevent the occurrence of larger 
seismic events. However, more substantial seismicity occurred 4 hours after the 
termination of injection. The following three months, several events were still 
observed in the area. The Basel project eventually was shut down permanently due to 
public reaction and the damage allegedly caused by the induced seismic events [35]. 
As another example, the traffic light system would have also been insufficient if 
implemented to the Soultz-sous-Forêts geothermal power plant during the major 
stimulations of 2003 in which large induced seismicity occurred several days after the 
fluid injection was terminated [39].  

The above-mentioned past events underline that the mechanisms of the induced 
seismicity are not adequately handled with the traffic-light systems, and a deeper 
understanding of the physical processes associated with induced seismicity is 
required to implement a large-scale application of the EGS technology [73]. To that 
end, there have been several attempts to diagnose mechanisms leading to induced 
seismicity [12; 26; 65; 76; 77; 97].  

1.4 Challenges in modeling and simulation of hydraulic 
stimulation  

Mathematical modeling plays a key role in the reservoir assessment for EGS 
applications. Direct observations of reservoir behavior are not possible since the 
permeability enhancements and induced seismicity take place deep in the crust. In 
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addition, field experiments with samples in large scales are technically challenging 
and costly. Although measurements from fields such as well logs and microseismicity 
recordings provide essential information, they possess incompleteness and 
uncertainty [51; 102]. Therefore, the field data should be accompanied by numerical 
models for reservoir assessment. Numerical studies represent the governing 
mechanisms in an approximate manner, allow to qualify the essential mechanisms 
and forecast the outcomes of stimulations in a large variety of settings. The objective 
of this thesis is to contribute to the current state-of-the-art for numerical modeling of 
the shear-dilation process. We construct our studies to serve the theoretical challenges 
of stimulation modeling and the conceptual challenge of induced seismicity in EGS. 

The first challenge that is targeted here is incorporating the discontinuous and 
complex nature of rocks into the modeling. The existence of fractures modifies the 
mechanical and hydraulic properties of the rock mass significantly. In a mechanical 
sense, fractures have more compliant nature than the rock, and in a hydraulic sense, 
they have higher permeability than the rock. Given the importance of the fractured 
rock behavior, the first contribution of this thesis is: 

1. Formulating a cell-centered discretization method for mechanical 
deformation modeling of fractured formations. In Paper A, an existing cell-
centered discretization method for elastic deformation in porous media is 
upgraded as the effect of fractures to rock deformation is captured by 
modeling them as co-dimension one inclusions in the domain. The developed 
method is capable of modeling deformation considering open and closed 
fractures with complex and nonlinear relationships governing the 
displacements and tractions at the fracture surfaces. The method serves as an 
important tool for modeling studies that include coupling of flow and 
mechanical deformation because it shares the same data structure with 
commonly used cell-centered flow discretization method in porous media. The 
developed method provides a door for conducting accurate modeling studies 
with the explicit representation of fractures.  

 

The second challenge that is targeted here pertains to hydraulic stimulation modeling 
as several physical processes take place at the same time during the stimulations. 
Mathematical formulation of the final reservoir stimulation model requires coupling 
of a number of physics such as multiphase fluid flow, mechanical deformation, 
fracture deformation, heat transfer, and chemical processes. These processes are 
represented by a set of nonlinear or linear equations that are dominated by pre-
existing fractures, which may have a variety of orientations and scales. In this setting, 
the second contribution is:  

2. Developing a computational model for shear stimulation with 
representing pre-existing fractures in different scales and orientations. In 
Papers B and C, we present our method, which couples fluid flow in both rock 
matrix and fractures with linear deformation of rock matrix and non-linear 
deformation of fractures. The initial version of the method, which is presented 
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in Paper B, is used for the simulation of shear stimulation in a 2D synthetic 
reservoir. In Paper C, the method is applied to two cases in which a synthetic 
3D geothermal reservoir that hosts 20 fractures with distinctive orientations 
and properties is stimulated. The cases are discussed under the topic of 
permeability enhancement, induced seismicity, and the significance of rock 
matrix permeability. Our method aims to assist geothermal reservoir 
assessments by, for example, simulations of different injection scenarios (e.g., 
monotonic, cyclic, rate-controlled, pressure-controlled injection) for reservoirs 
structurally dominated by complex fracture networks. 

 
Mitigation of large induced seismicity, as presented in Section 1.3, has vital 
importance for the full development of EGS. Deep understanding of physical 
processes of induced seismicity serves as a tool for avoiding a seismic hazard. Thus, 
the third contribution is: 

3. Identifying fracture closure as a mechanism for postinjection seismicity. 
Paper D tests a novel hypothesis pertaining to the mechanisms underlying 
elevated postinjection events occurring at the boundaries of the stimulation 
regions by using the computational method developed in Paper C. The 
hypothesis originates from the elastic normal deformation of the fractures due 
to the pressure decrease following the termination of injection. The normal 
deformation decreases fracture void space to host the fluid, which pushes the 
pressure propagation away from the injection region and increases the 
potential for postinjection seismicity at the outer rim of the previously active 
seismic region. The hypothesis is verified by numerical experiments, which 
are conducted in 3D formations with simple and complex fracture networks. 
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2. Coupled processes in fractured formations 

Subsurface rock has a special nature, and perhaps the most realistic description of this 
nature would be discontinuous, anisotropic, inhomogeneous, and non-elastic material 
[59]. This particular nature of rock combined with the number of processes taking 
place during any engineering operation challenge the modeling studies significantly. 
Although the recent rapid progress in computer technology has helped the tackling of 
these problems greatly, modeling simplifications are still inevitable. This chapter 
starts with the brief description of subsurface fractured rock and continues with 
summaries of the typical modeling simplifications. 

The governing processes of flow, transport, and deformation in fractured formations 
have been appealing subjects in the literature from the late 1980s due to their 
essential role in many engineering fields such as underground radioactive waste 
repositories, contaminant transport analysis, and gas/oil recovery [59]. One can count 
fluid flow, rock mechanics, and heat transfer as the primary processes and these 
processes may interact with each other, i.e., the processes are characterized as 
coupled. In fact, not only these three but also chemical processes can be included in 
the set of coupled processes, but we do not focus on the latter here. Thus, the chapter 
presents the governing equations for fluid flow, rock mechanics, and heat transfer, 
which are structured with the common assumption of rock masses being a porous 
material [57]. For a rock mass where the pore space is filled with fluids under 
pressure, the connection between pore pressure and stress state of the rock can be 
profoundly linked to the failure of fractured formations. Therefore, we close the 
chapter with a brief description of poroelastic relations. 

2.1 Naturally fractured rock 

Fractures are the most common type of geological structure which divide the rock 
masses into the blocks [57]. The existence of fractures alters the physical properties 
of rock masses significantly. Especially for hard crystalline rocks, fractures dominate 
several processes due to their high permeability and deformation tendency.  

Fractures can be characterized as joints according to their offset between surfaces, 
that is, a joint can be named as a fracture if the fracture surfaces exhibit a relative 
displacement [57]. However, in this thesis and the attached papers, fractures represent 
any form of discontinuities that exist in the rock mass.  

In this thesis, the rock is modeled as a porous material that hosts pre-existing 
fractures. Moreover, we consider the fact that the fractures in the rock can be 
observed at all scales and this heterogeneity should be preserved. Although fractures 
have great geometrical complexity in reality, the pre-existing fractures are assumed to 
consist of two planar surfaces, and the geometrical complexity of the fracture walls is 
accounted in a simplified manner (discussed in Chapter 3). Notably, the rock masses 
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surrounding the fractures (the porous material) are named as the rock matrix 
throughout this thesis for clarity.  

2.2 Modeling approaches for fractured rock 

Modeling of the physical processes can be a challenging problem because of the 
structurally complicated geometry of the reservoir. The complexity of the problem 
often restricts researchers to consider simple models for fractured geometries. Here, 
we briefly present three conceptual models for fractured formations: continuum 
models, the discrete fracture network (DFN) approach, and the discrete fracture-
matrix (DFM) approach. 

2.2.1 Continuum models 

Continuum models are widely employed for large-scale analyses, where the rock 
matrix and pre-existing fractures are treated as equivalent continua. The behavior of 
the rock mass that hosts many fractures is governed by equivalent properties 
established by a homogenization/upscaling process [56; 58; 112]. A fractured rock, 
represented by a continuum approach should present a limited number of regions, 
each having uniform physical properties. Continuum models are preferable especially 
for large-scale analysis of rock masses with dense fracture networks because the 
explicit representation of each fracture in the network would be computationally very 
intensive (Figure 2.1a). Poorly connected fracture networks are also suitable to be 
treated with a continuum description (Figure 2.1b). The main drawback of this 
method is the elimination of discrete effects of the fractures, which could be essential 
in the context of hydraulic stimulation. 

2.2.2 Discrete fracture network (DFN) model 

DFN model is another common approach [12; 26; 77]. In DFM model, the reservoir 
is treated as a combination of distinct, individual fractures and impermeable rock 
matrix. DFN approach is most useful for modeling of large-scale fracture network 
that dominates the system, and when an equivalent continuum model is difficult to 
establish (Figure 2.1c). DFN model is a powerful tool due to its advantage of 
capturing the distinct effects of fractures but more computationally intensive than the 
continuum models. This approach suffers from the heterogeneous structure of the 
fractured rock especially when the time scale of the problem is long enough such that 
matrix diffusion cannot be ignored. When the fractures exist in various forms of 
sizes, locations, and orientations; the explicit representation of large numbers of 
fractures makes the computational model less efficient. In addition, all fractures that 
contribute to flow typically cannot be represented in the model. Alternatively, the 
fine-scale heterogeneity can be eliminated to improve the computational time, which 
may affect the predictions of hydraulic stimulation severely. 
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2.2.3 Discrete fracture-matrix (DFM) model 

DFM approach has emerged as an alternative method for accurate modeling of 
fractured formations that have fractures in different scales (Figure 2.1d). DFM model 
can be thought of as a combination of continuum approach and DFN model. In this 
model, the fractures are generally divided into two categories: large-scale fractures 
and fine-scale fractures. The effects of the fractures are computed in a hierarchical 
manner; the large-scale fractures, which contribute to the governing processes, are 
represented explicitly, and the effect of the fine-scale fractures and the porous media 
is captured implicitly via upscaling them into continua. DFM models (also sometimes 
named as hybrid models [68]) are successfully applied in several studies [42; 61; 68; 
101]; however, they can be applied for analysis of smaller scale domains because of 
their higher computational cost than continuum and DFN models. 

In this thesis, the rock is assumed to have fractures in various scales; thus, we apply a 
DFM approach to model fractured formations such that the corresponding 
heterogeneity can be preserved. 
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Figure 2.1: Modeling approaches for fractured rock. (a) A high-density fracture 
network example to be represented as a continuum (b) A poorly connected fracture 
network example to be represented as a continuum (c) A suitable rock structure for 
DFN type of modeling (d) A suitable rock structure for DFM type of modeling. 
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2.3 Fluid flow in fractured rock 

The fluid flow is governed by the principle of mass balance. For a single-phase and 
isothermal flow, the conservation of mass equation is: 

 𝜙𝑐!
𝜕𝑝
𝜕𝑡 + 𝛻 ∙𝒘 = 𝑞, (2.1) 

where 𝜙 is porosity of solid material, 𝑐! is the compressibility of the fluid, 𝑡 is time, 𝑝 
is pressure, 𝒘 is Darcy velocity, and 𝑞 is a source term. Neglecting gravitational 
effects, the Darcy velocity can be written as 

 𝒘 = −
𝑲
𝜂 𝛻𝑝, (2.2) 

where 𝑲 is the intrinsic permeability of the solid material and 𝜂 is the fluid viscosity. 
𝑲 should be defined as a second order tensor for an anisotropic medium or scalar 
value for isotropic medium.  

Keeping in mind the DFM approach where the fluid flow can take place both in the 
rock matrix and in fractures, the material properties of the solid material, porosity, 𝜙, 
in equation (2.1) and the permeability, 𝑲, in equation (2.2), should be customized 
according to the rock matrix and the fractures. For the rock matrix, the porosity is 
considered to be a constant value, for example, a value between 0.18 and 1 for granite 
[109]. The porosity of fractures can also be constant or can be related to the aperture 
of fractures as noted in Paper C. Regarding the permeability values, the rock matrix 
has been considered as a material that preserves smaller permeability than the 
fracture. For the calculation of flow in the fractures, 𝑲 in the equation (2.2) should be 
defined with the fracture permeability, 𝐾!, as 𝑲 = 𝐾!𝑰.  𝐾! can be calculated by the 
common approximation of fluid flow in fractures as Poiseuille flow between parallel 
plates, namely the cubic law, 

 𝐾! =
𝑒!

12, 
(2.3) 

where 𝑒 is the hydraulic aperture of fractures [57]. 

2.4 Rock mechanics 

The change in the stress field of the rock is obtained by the principle of momentum 
balance and constitutive equations for the different rocks in the reservoir. One of the 
most common constitutive relations for a rock matrix, especially for hard rocks, is 
Hooke's law with elastic behavior [57; 59].  

Ignoring the body forces and assuming quasi-static condition, the momentum balance 
reads 
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 𝛻 ∙ 𝝈 + 𝒇 = 0, (2.4) 

where 𝝈 is Cauchy stress tensor and 𝒇 is the body force vector. The stress tensor, 𝝈, 
describes any stress field is of the form 

 𝝈 =
𝜎!! 𝜏!" 𝜏!"
𝜏!" 𝜎!! 𝜏!"
𝜏!" 𝜏!" 𝜎!!

. (2.5) 

The traction vector, 𝑻 𝒏 , on an arbitrary plane whose unit normal vector is 
𝒏 = 𝑛! ,𝑛! ,𝑛!  can be calculated by  

 𝑻 𝒏 = 𝝈 ∙ 𝒏. (2.6) 

Any deformation in the rock is quantified by the deformation vector, 𝒖, which is the 
change in the position of a given particle of rock. Under the small-strain assumption, 
the linearized strains, 𝜺, are defined as the symmetric part of the displacement 
gradient: 

 𝜺 =
!𝒖! !𝒖!

!
. (2.7) 

Hooke’s Law states that the components of the strain tensor are linearly related to the 
components of the stress tensor: 

 𝝈 = ℂ: 𝜺, (2.8) 

where ℂ is fourth-order tensor that defines the stiffness of the material. Equation (2.8) 
can be rewritten as 

 𝝈 = 2𝐺𝜺 + 𝜆 𝑡𝑟 𝜺  𝑰, (2.9) 

for an isotropic medium where 𝐺 and 𝜆 are the Lamé constants, 𝐺 being the shear 
modulus. The equations given in this section only cover the mechanics of the rock 
matrix surrounding the fractures.  

The mechanical behavior of the fractures is different from the rock matrix. The stress 
alterations caused by fracture deformation are spatially heterogeneous, and 
interactions of neighboring fractures are dependent on their relative orientations and 
locations. Thus, the constitutive equations regarding the deformation of pre-existing 
fractures and the effects on rock matrix deformation are not given here. Instead, the 
whole Chapter 3 is devoted to the fracture deformations. 

2.5 Heat transfer in fractured rock 

The hydraulic stimulation model developed in this thesis does not include thermal 
effects, i.e., the reservoir temperature is assumed to be constant during the 



 17 

stimulation. However, the effect of the stimulation process is illustrated by simulation 
of tentative reservoir production scenarios in Paper C. Therefore; the heat transfer 
equation is presented for the sake of completeness. 

The heat transport equation is obtained by the principle of energy conservation under 
the assumptions of incompressible fluid without any phase change and incompressible 
rock matrix. We also assume that there is a local thermodynamic equilibrium between 
rock matrix and fluid. Then, the heat transfer equation reads: 

 𝜌!""𝑐!,!""
𝜕𝜃
𝜕𝑡 + 𝜌!𝑐!,!𝒘 ∙ 𝛻𝜃 − 𝛻 ∙ 𝜿!""𝛻𝜃 = ℎ!"", (2.10) 

where 𝜃 stands for both fluid and rock matrix temperature due to the local 
equilibrium assumption. Here, the effective heat capacity per volume, 𝜌!""𝑐!,!"", 
effective thermal conductivity, 𝜿!"",  and total heat sources, ℎ!"", are given by 

 
𝜌!""𝑐!,!"" = 1 − 𝜙 𝜌!𝑐!,! + 𝜙𝜌!𝑐!,! ,

𝜿!"" = 1 − 𝜙 𝜿! + 𝜙𝜿! ,
ℎ!"" = ℎ! + ℎ! ,

 (2.11) 

where 𝜌! is fluid density, 𝜌! is density of rock matrix, 𝑐!,! is heat capacity of rock 
matrix, 𝑐!,! is heat capacity of fluid, 𝜿! and 𝜿! are the thermal conductivities of rock 
and fluid, and ℎ! and ℎ! are heat source terms for the rock matrix and the fluid phase, 
respectively. In equation (2.10), the time dependent term is known as the storage 
term, the velocity dependent term is the advective term, ℋ!"#, and the third term is 
the diffusion term, ℋ!"##. 

In Paper C, a production scenario is created to illustrate the effect of shear stimulation 
to the reservoir. In this scenario, the temperature distribution of an artificial reservoir 
after one year of production is illustrated by solving equation (2.10) with (2.11). 

2.6 Poroelasticity 

Following or prior to the fluid injection, the pore space of the rock mass is filled with 
fluids under pressure. The pore pressure acts outward from the pore space, in some 
sense acts as a tensile force. This behavior initially characterized by the concept of 
‘effective stress’ by Karl von Terzaghi [105]. According to Terzaghi, the failure of a 
solid is controlled by the effective stress, which is defined as 

 𝜎!,!"" = 𝜎! − 𝑝,𝜎!,!"" = 𝜎! − 𝑝,𝜎!,!"" = 𝜎! − 𝑝, (2.12) 

where 𝜎!, 𝜎!, 𝜎! are the principal stresses defined positive for compression. 
Terzaghi's theory is followed by a phenomenological approach of poroelasticity, 
Biot’s theory of isothermal consolidation of elastic porous media [21]. According to 
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Biot’s theory of poroelasticity, the relation of stress to deformation and pore pressure 
for a linear isotropic poroelastic medium is given by 

 𝝈 = ℂ: 𝜺 − 𝛼𝑝𝑰, (2.13) 

where 𝛼 is Biot’s coupling coefficient which is also known as the effective stress 
coefficient. Fluid injection can create variation in the volume of the rock matrix and 
pore space, and the change in the volume of rock matrix can affect the stress-state of 
the rock. This is described by 

 
1
𝜌!,!

𝑚 −𝑚! = 𝛼𝜀! +
1
𝑀 𝑝 − 𝑝! , (2.14) 

where subscript 0 refers to the reference state, 𝑚 is the fluid mass per unit bulk 
volume, 𝜀! is the volumetric strain (trace of the strain tensor), 𝑀 is the Biot modulus 
[31].  

Although poroelasticity and thermoelasticity are important topics for subsurface 
applications, they are commonly ignored for modeling studies regarding hard rocks 
[26; 52; 78; 83; 93]. Considering that hard rocks are the primary targets of the EGS, 
we simplify our model by discarding the poroelastic and thermoelastic impacts for the 
rock matrix in Papers B, C and D. However, the ‘effective stress’ concept is applied 
for the determination of shear failure of fractures. The details about the fracture 
failure are provided in the next chapter. 
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3. Constitutive relations for deformation of pre-
existing fractures  

As presented in the previous chapter, the mechanical deformation of rock matrix can 
be approximated with the assumption of linear elasticity. However, the pre-existing 
fractures have distinctive constitutive relations for deformation which are mainly 
formulated with empirical approaches.  

Depending on the stress state and mechanical properties, a fractured rock can exhibit 
three types of fracture deformation: shear deformation, irreversible normal 
deformation following the shear deformation, and reversible normal deformation. The 
fracture deformations, which alter the stress state of rock, are linked to permeability 
changes and induced seismicity. Thus, we start with the presentation of all these three 
types of deformations, and discuss their effect on permeability evolution and 
seismicity, beginning with the shear failure criterion. The shear failure criterion and 
resulting deformation are essential components of constitutive relations due to their 
primary effect on fracture permeability. Although there are other methods for 
determination of shear failure [59], we present the most well-known and perhaps also 
the most widely used criterion, which is Mohr-Coulomb. Also, several friction 
models to estimate frictional strength have been proposed for rock masses over the 
years. We also provide a small introduction to the most common friction models for 
rock surfaces.  

Due to the different governing equations for fractures and rock matrix, we present the 
coupled problem of the deformation of fractured rock matrix at the end. This problem 
is solved in Paper A and coupled with fluid flow in Papers B, C, and D for hydraulic 
stimulation modeling.  

3.1 The stress regimes and failure of fractured rocks 

The stress field of the rock mass in the subsurface is created by a certain set of loads, 
for example, the weight of earth and the stresses created by the plate motions. For a 
stress field, 𝝈, which is described in terms of principal stresses, 𝜎!, 𝜎!, 𝜎!, the most 
common conditions of stress state in EGS in Europe are given as strike-slip 
𝜎! > 𝜎! > 𝜎! or normal faulting 𝜎! > 𝜎! > 𝜎! [43], where 𝜎! is the maximum 
horizontal stress, 𝜎! is the vertical stress, and 𝜎! is the minimum horizontal stress. 

The stress field, 𝝈, provides traction vectors, 𝑻, on fracture surfaces, which can be 
calculated using equation (2.6). The traction vectors, 𝑻, have normal and shear 
components whose magnitudes are denoted as 𝑇𝒏 and 𝑇𝝉, respectively. Following the 
classical theory of friction, if the applied shear force exceeds the frictional strength of 
fracture faces, irreversible failure occurs in the direction of shear traction. Mohr-
Coulomb theory defines the shear failure criterion by 
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 𝑇𝝉 ≥ 𝑆! + 𝜇!𝑇𝒏,!"" , (3.1) 

where 𝑆! is the strength of the rock in absence of any normal stresses, 𝑇𝒏,!"" is the 
effective stress and 𝜇! is the static friction coefficient. 𝜇! ranges between 0.6 and 1.0 
for almost all rock types, and the cohesive strength of the sliding surface, 𝑆!, can be 
considered as negligible under typical crustal conditions [40]. Here, we exploit 
Terzaghi’s effective stress definition: 

 𝑇𝒏,!"" = 𝑇𝒏 − 𝑝 . (3.2) 

The shear resistance of the different fracture planes, which have different 
orientations, can be visualized by Mohr circle with failure curve, which is given in 
Figure 3.1. Moreover, the role of pressure can be easily shown in the same figure. 
Notably, this widely used failure criterion is constructed only by the maximum and 
minimum principal stresses; thus, it represents a simplification of actual rock 
behavior. However, it is considered to be extremely useful for understanding the 
effects of the stress state on rock failure [57]. 

 

Figure 3.1: (Left) Fracture plane with outward normal vector oriented at angle 𝜉 to 
the direction of maximum principal stress. (Right) Mohr circles with a failure curve. 
The black Mohr circle shows the initial (unpressurized) state and the red Mohr circle 
shows the pressurized state. The failure curve is shown by the blue line. For initial 
state, the normal and shear tractions along the fracture plane are represented by the 
point 𝐹. Shear slip will occur if the point 𝐹 lies within arc 𝐵𝐶 of the Mohr circle. Due 
to the pressure, the failure arc becomes 𝐵′𝐶′ and the stress location of fracture 
plane 𝐹′ lies within arc 𝐵!𝐶′ in this situation [57]. 

3.2 Friction models for fracture surfaces 

The shear resistance of the pre-existing fractures can be determined with a static 
friction coefficient, 𝜇!, according to the Mohr-Coulomb theory. In addition, when the 
frictional resistance controls the fracture deformation, a dynamic friction coefficient, 
𝜇!, should be defined. There are four common friction models for rock surfaces 
which all are motivated by experiments [33]. The common models can be listed: 
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static/dynamic friction model, slip-weakening model, time-weakening model, and 
rate- and state- dependent friction model. 

The static/dynamic friction model 
Two distinct friction values determine the friction coefficient of the fracture surfaces: 
the static friction coefficient, 𝜇!, and the dynamic friction coefficient, 𝜇!. If the shear 
stress of a fracture exceeds the Mohr-Coulomb failure criterion determined by 𝜇!, 
then its corresponding coefficient of friction is instantaneously lowered to a new 
dynamic value, 𝜇!. The 𝜇! > 𝜇! relation is named as velocity-weakening model, 
where the shear strength of the fractures decrease with increased slip velocity. This 
model fits the failure behavior of fracture surfaces that are exposed to a sudden 
increase in slip velocity, in a very simplistic manner [37]. The static/dynamic friction 
model is denoted as an ‘inherently discrete’ method because the strength of the 
failing elements drops discontinuously with the slip [18; 95]. Although the model 
lacks convergence properties, it is reported to provide qualitatively acceptable results 
[77].  

In all of our papers, we applied the static/dynamic friction model to calculate friction 
resistance prior to and after the shear slip. 

The slip-weakening friction model 
The friction of the fracture surfaces decreases from a static value, 𝜇!, to a dynamic 
value, 𝜇!, as slip progresses over a critical distance, 𝑑! [7; 10].  

The time-weakening friction model 
The time-weakening friction model is analogous to the slip-weakening friction 
model. The only difference is that this model requires a critical time, 𝑡!, for friction to 
decrease from a static value to a dynamic value [9].  

The rate- and state- friction model 
The Dieterich-Ruina rate and state friction model defines the friction by  

 𝜇 = 𝜇! + 𝑎 ln
𝑉
𝑉!
+ 𝑏 ln

𝑉!𝛾
𝑑!

, (3.3) 

where 𝜇! is a friction coefficient measured at velocity 𝑉!, 𝑉 is the slip velocity, 𝑎 and 
𝑏 are material coefficients and 𝛾 is a state variable [36; 37; 38]. The state variable, 𝛾, 
which represents the irreversible mechanical deformations that occur during the 
sliding, is commonly defined as 

 
𝑑𝛾
𝑑𝑡 = 1 −

𝑉!𝛾
𝑑!

 (3.4) 

[36; 37; 98]. Unlike the previously introduced friction models, the Dieterich-Ruina 
rate and state friction model can capture healing of friction after a high-velocity slip. 
With the help of coefficients 𝑎 and 𝑏, both velocity-weakening and velocity-
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strengthening mechanisms can be modeled. This may be essential for earthquake 
modeling where both seismic and aseismic slip should be captured [103]. This model 
does not suffer from convergence issues, on the other hand, incorporating this 
equation to modeling studies is significantly more computationally demanding than 
the previously introduced friction models due to the highly nonlinear terms [78].  

3.3 Nonlinear fracture deformation 

Laboratory investigations of various natural rock fracture samples have shown that 
the rough surfaces of the fractures deform with any alteration in the stress state of 
fractures [13; 14; 15; 16; 47]. In the context of shear stimulation, the main reason for 
stress alteration is the fluid injection. The injection changes the state of fluid pressure 
inside the fractures, which may lead to different types of fracture displacements 
according to the stress state and fracture characteristics. Here, we introduce three 
types of fracture displacements pertaining to shear stimulation: shear deformation, 
shear dilation, and normal deformation. 

3.3.1 The shear displacement 

The Mohr-Coulomb failure criterion states that the fracture surfaces displace in shear 
direction when the applied shear traction is greater than the shear resistance. Keeping 
in mind the static/dynamic friction model, the fracture surfaces have higher frictional 
strength prior to displacement and show a reduced level of frictional resistance after 
the displacement is initiated. The difference between static and dynamic strength 
causes a stress drop which is assumed to be the net force available to power a shear 
displacement once the failure has commenced [100]. The available net force driving 
the shear displacement is called ‘excess shear stress’ and defined as a difference 
between shear stress prior to slip and dynamic strength of the fracture faces [82; 93; 
100]: 

 𝑇! = 𝑇𝝉 − 𝜇!𝑇𝒏,!"" , (3.5) 

where 𝑇! denotes the excess shear stress. The corresponding shear displacement 
following the stress drop can be approximated by exploiting the linear elastic theory:  

 𝛥𝑑! =
𝑇!
𝐾!!
, (3.6) 

where 𝛥𝑑! is the shear displacement and 𝐾!! is the fracture shear stiffness per area. 𝐾!! 
is taken as a constant value for simplicity in Papers B, C and D; however, it has also 
been defined as a function of slip area in the related literature [90]. We use the excess 
shear stress concept in Papers B, C, and D to approximate the induced shear 
displacements. A more advanced model, in which the shear displacements are 
calculated by equating the shear stress to the dynamic frictional resistance, can also 
be used [77; 88].  
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3.3.2 The shear dilation 

The shear displacement changes the surface characteristics of the fracture irreversibly 
owing to the asperity movement between fracture surfaces. The asperities slide over 
each other and lead to an increase in aperture, which is called shear dilation [15]. 
Dilation occurs in the normal direction with respect to the fracture surfaces and can 
be modeled by the following empirical relation [113]: 

 𝛥𝐸!,!""#$ = 𝛥𝑑!  𝑡𝑎𝑛𝜑!"# , (3.7) 

where 𝜑!"# is the dilation angle that is measured experimentally, and suggested as a 
function of stress conditions [113]. The shear displacement and the dilation are 
presented in Figure 1.1. 

3.3.3 The reversible normal deformation 

In the laboratory experiments conducted by Goodman [47], the fracture closure (the 
change of the average aperture of the fracture) was measured as a function of normal 
stress, and a nonlinear relation was obtained between increasing normal stress and the 
closure of fractures. Goodman [47]’s experiments showed that fractures become more 
difficult to compress as the applied normal stress increases and that there is a 
maximum closure value. The laboratory investigations conducted by Bandis et al. 
[14] also showed that there is a non-linear and reversible normal-stress and normal-
deformation relationship for fractures. This nonlinear relationship is described by 
Bandis et al. [14] as 

 𝛥𝐸!,!"# =
𝑇𝒏,!""

𝐾!! +
𝑇𝒏,!""
𝛥𝐸!"#

, (3.8) 

where 𝛥𝐸!,!"# is the reversible normal deformation, 𝛥𝐸!"# is the maximum possible 
closure, and 𝐾!!  is given by 

 𝐾!! =
 𝜕𝑇𝒏,!""
𝜕𝛥𝐸!,!"#

=
𝐾!"!

1 −
𝛥𝐸!,!"#
𝛥𝐸!"#

!, (3.9) 

where 𝐾!"!  is the initial normal stiffness per area. For simplicity, the stiffness 
coefficient is assumed to be constant and equal to the initial stiffness in Papers B, C, 
and D.  

Equation (3.8) gives the reversible deformation that occurs during the alteration of 
normal stress affecting the fractures. Notably, focusing on this relation, a detailed 
analysis of the reversible normal deformation and its contribution to the induced 
seismicity in hydraulic stimulations is discussed in Paper D. 
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The nonlinear normal deformation relation (equation (3.8)) with its counterpart in 
shear direction is named as the Barton-Bandis joint deformation model [15]. In 
addition to the Barton-Bandis joint deformation model, Willis-Richards model [113] 
is also commonly used in the literature [52; 65; 77; 93]. In this model, 𝛥𝐸!,!"# is 
given by 

 𝛥𝐸!,!"# = 𝐸! 1 −
1 

1 +
9𝑇𝒏,!""
𝑇𝒏,!"#

. (3.10) 

Here, 𝑇𝒏,!"# is defined as the stress required to obtain 90 % closure of the aperture 
and 𝐸! is the aperture measured under zero stress conditions. The main differences 
between the Barton-Bandis joint deformation model and the Willis-Richards model 
are: the Willis-Richards model assumes the maximum possible closure is equal to the 
aperture measured under zero stress conditions and the stiffness coefficient is 
assumed to be constant and equal to the initial stiffness. 

3.4 Fracture aperture and permeability evolution 

The permeability of the fractures is determined by the mechanical apertures (void 
space between fracture faces). The empirical studies [14; 47] indicated that, first, the 
mechanical apertures between fracture surfaces can be measured under zero stress 
conditions, then, the deformation in the normal direction can be superposed to predict 
the final mechanical apertures which yield 

 𝐸 = 𝐸! − 𝛥𝐸!,!"# + 𝛥𝐸!,!""#$ , (3.11) 

where 𝐸 is the resulting mechanical aperture and 𝐸! is the mechanical aperture 
measured under zero stress conditions. 𝛥𝐸!,!"# and 𝛥𝐸!,!""#$ are calculated according 
to the given relations in Section 3.3. 

The permeability of fractures, 𝐾!, is calculated by the cubic law (equation (2.3)). The 
cubic law assumes the fracture surfaces to be smooth parallel plates. However, the 
mechanical aperture of real fractures varies in space and is affected by several 
parameters such as wall friction and tortuosity [29]. Thus, another type of aperture, 
hydraulic aperture, is defined between fractured surfaces. Many researchers have 
conducted studies regarding to the relationship between mechanical and hydraulic 
aperture [15; 27; 94; 114]. One can use the joint roughness coefficient (JRC) to 
differentiate between aperture types [16], and the hydraulic aperture, 𝑒, can be 
calculated by considering the following relation suggested by Barton et al. [15] 

 𝑒 =
𝐸!

𝐽𝑅𝐶!.!. 
(3.12) 
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The JRC ranges between 0 and 20 and can be measured experimentally or by 
comparison with existing JRC values given by Barton and Choubey [16]. A large 
JRC indicates that the fracture surfaces are rough so that the shear movement 
between fracture surfaces is difficult. Note that the units in equation (3.12) are in 𝜇𝑚 
and the equation is valid only for 𝐸 ≥ 𝑒.  

3.5 Seismicity relations 

The strength of the seismicity due the induced shear displacements is evaluated by 
calculating the seismic moment, 𝑀!, and the moment magnitude, 𝑀!, as 

 
𝑀! = 𝐺𝛥𝑑! 𝑑𝐴

!

𝑀! =
2
3 log𝑀! − 6.07

, (3.13) 

where 𝐺 is the shear modulus and 𝐴 is the slip area. In Papers C and D, the strength 
of the induced seismicity is analyzed by seismic moment calculations in each time 
step.  

3.6 Coupling of deformation of fractures and rock matrix 

Our particular interest is a stressed rock that includes pre-existing fractures. The 
fractures, which are denoted as 𝛤, are considered as two-sided co-dimension one 
inclusions in 2D or 3D domain, 𝛺. The fracture surfaces, which are considered as line 
pairs for 2D domains and face pairs for 3D domains, can displace relative to one 
another according to the fracture deformation equations presented in Section 3.3. 
Following the common notation in the related literature [2; 8; 32], we denote the two 
sides of the fracture inclusion by subscripts + and –, and we define the displacements 
on the positive and negative sides as 𝒖! and 𝒖!, respectively. The illustration of the 
considered fractured formation is given in Figure 3.2. 

 

Figure 3.2: Modeling of a fracture retrieved from Paper A. Fractures are modeled as 
two-sided co-dimension one inclusions in the domain. 



 26 

For a fracture plane that has a unit normal vector, the traction vector on the fracture 
can be found by using equation (2.6). Further, the relation between tractions on the 
fracture surfaces can be written as  

 𝑻! = −𝑻!, (3.14) 

because of the equilibrium conditions where 𝑻! and 𝑻! are the tractions on the 
positive and negative side of the inclusion.  

The fracture deformations are defined by a jump vector that is obtained by stress 
conditions (Section 3.3). The deformation response of the rock matrix to the fracture 
deformations can be obtained by solving the following set of equations, 

 
𝛻 ∙ 𝝈 + 𝒇 = 0 on 𝛺,
𝒖 = 𝒖! on 𝜕𝛺! ,

𝑻 𝒏 = 𝑻! on 𝜕𝛺! ,
 (3.15a) 

with the following internal boundary conditions: 

 
𝑻! = −𝑻! on 𝛤,

𝒖! − 𝒖! = ∆𝒖! on 𝛤 where ∆𝒖!  = 𝒏!(𝛥𝐸!,!"# +  𝛥𝐸!,!""#$) +  𝝉!𝛥𝑑!,
 (3.15b) 

where 𝑻 𝒏  are the forces on the surfaces of 𝛺, identified by the outward normal 
vector 𝒏, and  𝒖 is the unknown displacement field. The two superscripts, D and N, 
denote Dirichlet and Neumann boundary conditions, respectively. The relative 
motion between the positive and negative surfaces, 𝒖! − 𝒖! , are defined by a 
vector ∆𝒖! in which 𝒏! denotes the unit vector defining the normal direction of the 
positive side of the fracture and 𝝉! denotes the unit vector defining the direction of 
the shear displacement (which points in the direction of maximum shear force) at 
positive side of the fracture. The positive face is considered as the reference to 
indicate the directions here, but the jump between the fracture faces can also be 
defined according to the negative fracture face. This problem is solved and analyzed 
for single- and multi-fractured 2D and 3D domains in Paper A. Moreover, the 
synthetic reservoirs considered in Papers B, C and D are exposed to displacement 
jumps; thus, the problem is solved for multiple-fractured 3D domains in these papers.  
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4. Numerical methods  

The mathematical equations for the governing processes of shear stimulation are 
introduced in the previous chapter. Proper discretization methods and computational 
grids are required for the solution of the considered equations. Since the 
computational grid is profoundly connected to the numerical discretization, we 
introduce several grid types according to the used methods in the papers attached in 
Part II. For the numerical methods, we start with the finite volume methods (FVMs) 
for flow and mechanics discretization. The chapter continues with brief presentations 
of two common elasticity discretizations for fractured media: the finite element 
method (FEM) and the displacement discontinuity method (DDM). Further, upwind 
discretization is introduced for the advective term, ℋ!"#, in equation (2.10), and 
temporal discretization is provided for the time dependent terms in the conservation 
of mass (equation (2.1)) and conservation of energy equations (equation (2.10)). The 
chapter closes with the numerical coupling strategy that is applied for the modeling of 
shear stimulation.  

4.1 Fractures in the grid 

An example domain, which consists of fractures and rock matrix, is shown in Figure 
4.1a. Depending on the computational method, the discretization can be conducted in 
various forms. Here, we present fracture implementation to the grids for the FVMs, 
FEM, and DDM used during the course of this thesis.  

The discretizations for FVMs that are used here require dividing the computational 
domain into control volumes, 𝛺!, conforming to the fractures as shown in Figure 
4.1b. The primary variables are defined at centroids of the control volumes. The 
fracture discretization is customized according to the considered problem. For 
example, fluid flow occurs both inside of the fracture and the rock matrix; thus, the 
solution approximations of the fluid flow equations require discretizations in the 
fractures as well as in the rock matrix. In this case, the fracture discretization can be 
done by using a hybrid approach where the fractures are considered as lower 
dimensional objects [61; 101]. The hybrid approach converts the fractures into hybrid 
cells by assuming that the fracture is centered at the face and assigning an aperture to 
it. Then, the primary variable inside the fracture is associated with the hybrid cell 
centers. The volume of the hybrid cells is defined as the fracture volume, which is 
calculated by multiplying the area of the neighboring face by the aperture. An 
example grid for flow discretization with FVM is shown in Figure 4.1c. As for the 
FVM for flow discretization, the discretization for mechanics problem is done by 
considering the fractures as two-sided co-dimension one inclusions in the interior of 
the domain. Unlike the fluid flow problem, the inside of the fractures is not part of the 
solution, the fracture faces are the internal boundary conditions of the mechanical 
deformation problem. Thus, the computational grid, which is shown in Figure 4.1b, is 
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modified such that the edges of the grid corresponding to the fractures are duplicated. 
The vertices (edges in 3D) of the fracture edges are also duplicated. The vertices, 
which correspond to tips of the fractures interior to the domain, link the two faces on 
each side of the fractures. The primary variable for fracture faces is defined at the 
face centers. The resulting grid is presented in Figure 4.1d. Details of this approach 
are provided in Paper B. 

The FEM also divides the computational domain into cells, 𝛺!, and the grid structure 
for the rock matrix is again created such that the faces of the cells conform to the 
fracture faces. The main difference between FVM and FEM grid is the location of the 
primary variable, as FEM defines the primary variable at the vertices. Similar to the 
FVM developed for the mechanical deformation problem, FEM defines the fracture 
surfaces as parts of the solutions. An example FEM grid is shown in Figure 4.1e. 

DDM requires a very distinctive grid compared to the previously introduced 
discretization schemes. DDM defines the unknowns only on the internal boundary of 
the problems [72]. Thus, only the fractures are divided into several segments. The 
rock matrix is not discretized in this method. An example grid for DDM is shown in 
Figure 4.1f. 

For all the discretization techniques, the grid structures are created with the help of 
MATLAB Reservoir Simulation Toolbox (MRST) [70; 71]. MRST is an open-source 
reservoir simulator, which offers a wide range of data structures and computational 
methods. We also exploit Gmsh [44], especially for 3D discretizations. 
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Figure 4.1: The grid structure of various discretization methods. (a) An example 
fractured domain. (b) Conforming finite volume mesh without considering the 
discretization of fractures. The locations for unknowns are shown with black dots. (c) 
Hybrid cells are created to represent fractures for flow discretizations with FVM. The 
unknown locations for hybrid cells are shown with blue dots. (d) The fracture faces 
are treated as internal boundaries for mechanical deformation discretizations with 
FVM. The gap between fracture faces is created for illustration purposes. In practice, 
the fracture faces do not preserve offset in the grid structure. The locations for 
unknowns at the fracture faces are shown with red dots. (e) The FEM grid in which 
the unknown locations are shown with green squares. (f) The fracture discretization 
for DDM where the locations for unknowns are shown with crosses. 
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4.2 Flux discretization for fractured rock 

Two-point flux approximation (TPFA) [61], is a finite volume scheme, that can be 
used for the discretization of the diffusion terms in both conservation of mass 
(equation (2.1)) and conservation of energy equation (equation (2.10)). We start with 
a general steady-state conservation equation: 

 𝛻 ∙ 𝑭 = 𝛽, (4.1) 

where 𝛽 is a source/sink term, 𝑭 = −𝝍𝛻𝜁 for a quantity of 𝜁 to be conserved and 𝝍 
is the conductivities i.e., permeability for mass conservation equation, and effective 
thermal conductivity for heat transfer equation. The above equation is integrated over 
the control volume 𝛺! and the divergence theorem is applied for the flux term yields 

 𝒏 ∙ 𝑭 𝑑𝑆 = 𝛽 𝑑𝑉!!!"!
, (4.2) 

where 𝒏 is the outward unit normal vector on boundary of cell volume, 𝜕𝛺!. Denoting 
the quantity to be conserved by 𝜁, the flux across each face of 𝑠 is 𝐹!, is expressed in 
terms of 𝜁 in the nearby cells, 𝑛!, 

 𝐹! = − 𝒏 ∙𝝍𝛻𝜁 𝑑𝑆 ≈ 𝛾!𝜁!

!!

!!!

,
!

 (4.3) 

where 𝛾! is known as the face transmissibility. In the TPFA, the flux between two 
neighboring control volumes 𝛺! and 𝛺! is approximated as  

 𝑄!" ≈ 𝛾!" 𝜁! − 𝜁! , (4.4) 

where 𝜁! and 𝜁! are the unknowns defined at the centers of cell 𝑖 and cell 𝑗. The 
transmissibilities, 𝛾!", corresponding to the face, ℱ!,!, between the two cells, depend 
only on adjacent cells of the face, and are given by 

 𝛾!" =
𝛼!,ℱ!,! 𝛼!,ℱ!,! 
𝛼!,ℱ!,! + 𝛼!,ℱ!,! 

, (4.5) 

where 𝛼!,ℱ!,!  can be calculated as 

 𝛼!,ℱ!,! =
𝐴ℱ!,! 𝒏ℱ!,! ∙𝝍!

𝒅ℱ!,! ∙ 𝒅ℱ!,! 
 𝒅ℱ!,! . (4.6) 

Here, 𝐴ℱ!,!  is the area of the face, 𝒏ℱ!,!  is the unit normal vector pointing outward 
from cell 𝑖, 𝝍! is the conductivity of cell 𝑖 and 𝒅ℱ!,!  is the distance vector from the 
centroid of cell 𝑖 to the face centroid. Transmissibilities are calculated between 



 31 

neighbor rock matrix cells, between neighbor hybrid cells, and between neighbor 
rock matrix and hybrid cells.   

Notably, to be consistent, TPFA requires using K-orthogonal grids, i.e., anisotropy 
has to align with the grid. K-orthogonal requirement limits the usability of the TPFA 
for anisotropic permeability fields. A remedy can be using multipoint flux 
approximation (MPFA) where the discretization is done by using multiple points 
instead of two [3]. MPFA is reported to be robust and applicable for general grids; 
however, the method has disadvantages regarding computational expense [3; 101]. 

In Papers B, C, and D, isotropic permeability/thermal conductivity is assumed for the 
rock; thus, we have chosen to use TPFA, which is applied for the discretization of all 
diffusive terms with the help of MRST [70; 71]. 

4.3 Elasticity discretization for fractured rock 

This section includes the introduction of the method developed in Paper A and the 
most common elasticity discretization methods for domains that expose displacement 
jumps. The discretizations are introduced by focusing on the problem described by 
equation (3.15), as the displacement jumps induced by stimulation is our interest. 

4.3.1 Multi-point stress approximations 

The multipoint stress approximation (MPSA) is a recent method to model mechanical 
deformation in porous media [62; 84; 85; 86]. It is proposed as a compatible 
counterpart to finite-volume flow calculations, with the key advantage that it uses the 
same data structure with cell-centered flow discretizations. MPSA is explicitly 
formulated to handle discontinuities and heterogeneous material, which is the target 
domain of this thesis. Specifically, in the MPSA discretization, the traction forces 
have explicit expressions at the grid faces. This property is particularly attractive for 
us because it provides a natural fracture (discontinuity) implementation to the 
discretization. 

The static momentum balance equation ignoring the inertia forces can be written for 
each cell in integral form 

 − 𝒇𝑑𝑉 = 𝑻 𝒏 𝑑𝐴,
!!!!!

 (4.7) 

where 𝑻 𝒏  are the surface traction vectors on the boundary of some domain with 
outward facing normal vector 𝒏. The discrete form of equation (4.7) can be written as 

 −𝒇! =
1
𝛺!

𝑻!,! ,
!

 (4.8) 
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where 𝑻!,! is the stress over face ℱ!,! which is between cells 𝑖 and 𝑗, and −𝒇! is the 
volume-averaged force over cell 𝛺!. The discrete stress, 𝑻!,!, is defined as a linear 
function of displacements: 

 𝑻!,! = 𝑡!,!,!𝒖!
!

, (4.9) 

where 𝑡!,!,! are referred as stress weight tensors and 𝒖! are the displacements located 
at cell centers. The MPSA discretization divides the cells into one sub-cell per vertex, 
and all sub-cells associated with a vertex, 𝑙, form an interaction region, see Figure 
4.2. The gradients, which are denoted as 𝑮!,!, are defined in each sub-cell, 𝛺!,!. Each 
component of the displacement is approximated by a multi-linear function of the 
spatial coordinates, such that 

 𝒖 ≈ 𝒖! + 𝑮!,! ∙ 𝒙 − 𝒙! , (4.10) 

where 𝒖! is the cell-average displacement, 𝒙! is the cell-center, 𝒙 is a point within the 
sub-cell 𝛺!,!. 

The stress weight tensors, 𝑡!,!,!, are calculated by imposing continuity of surface 
stresses and displacements over a sub-face by local calculations in each interaction 
region. After the calculation of stress-weight tensors, the final discrete form of the 
force-balance equations is obtained by 

 −𝒇! =
1
𝛺!

𝑡!,!,!𝒖!
!

.
!

 (4.11) 

So far, the created force-balance system does not include the fractures. In Paper A, 
we incorporate constitutive models for fracture deformation into equation (4.11) via 
internal boundary conditions. We simply define the displacements on each side of the 
fracture by equation (4.10) 

 
𝒖!,!,! = 𝒖! + 𝑮!,! 𝒙!,!,! − 𝒙! ,
𝒖!,!,! = 𝒖! + 𝑮!,! 𝒙!,!,! − 𝒙! ,

 (4.12) 

where 𝒙!,!,! and 𝒙!,!,! are the split continuity points on sub-face ℱ!,!,! and ℱ!,!,!. The 
coupled fracture-matrix deformation problem, which is introduced in Section 3.6, is 
solved in Paper A (see Paper A for details). In Papers B, C, and D, the developed 
method in Paper A (MPSA with fractures) is applied to obtain stress alterations in the 
fractured rock caused by the fracture deformations.  
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Figure 4.2: MPSA grid details (retrieved from Paper A). (Left) MPSA grid with 
fractures. (Right) An example interaction region. The fracture faces are located 
between cells 𝑖 and 𝑠. While the unknowns 𝒖! and 𝒖! represent the displacements in 
the cell centers of  𝑖 and 𝑠, the unknowns 𝒖!,!,! and 𝒖!,!,! represent the discrete 
displacements on the fracture surfaces. For clarity, the colors of light green, dark 
green, and blue are associated with the faces, sub-faces, and sub-cells, respectively. 

4.3.2 Alternative discretization methods 

As we have only applied MPSA for the deformation of fractured domains and used 
the alternative techniques just for comparison in Paper A, the alternative methods are 
introduced briefly. Detailed presentations are provided in the suggested references.  

Finite element method (FEM) 
FEM has been one of the most popular numerical methods for a wide range of 
disciplines. The popularity is due to its well-established mathematical background, 
flexibility in gridding, and handling of material heterogeneity, complex boundary 
conditions, and dynamic problems, etc. [2; 17; 59; 64; 66; 115].  

FEM makes use of test functions, 𝝎, to create weak form of the considered equations: 

 𝝎 ∙ 𝜵 ∙ 𝝈 + 𝒇 𝑑
!

𝑉 = 0. (4.13) 

The discretization of the weak form is obtained by defining a trial solution, 𝒖 as 
linear combinations of a set of basis functions: 

 𝒖 = 𝑎!𝑁! ,
!

!!!

 (4.14) 

where 𝑎! are nodal values of the trial solution and 𝑚 the number of the basis 
functions, 𝑁! . In standard Galerkin FEM, the basis functions have local support. 
Depending on the considered problem/method, basis functions can be chosen as 
linear or higher degree polynomials. The discrete form of equation (4.13) is obtained 
by substituting the trial solution (equations (4.14)) with the basis functions as 
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successive test functions into equation (4.13). Then, the discrete form with boundary 
conditions is reformulated as an nxn system of algebraic equations. 

In case of domains with discontinuities, the tractions at the fracture surfaces and 
displacement jump between the fracture surfaces are also approximated with basis 
functions. The three commonly used methods for imposing the fracture deformation 
equations: the Lagrange multipliers method, the penalty method, and the augmented 
Lagrangian method [23]. An open source FEM software, Pylith [1; 2], which imposes 
the fracture tractions with Lagrange multipliers is used in Paper A to compare the 
convergence properties of MPSA with FEM for a case in which the domain includes 
a discontinuity. 

Displacement Discontinuity Method (DDM) 
DDM is an indirect boundary element method which is developed by Crouch and 
Starfield [32] and Shou and Crouch [104]  to model the deformation of elastic media 
containing discontinuities. It has been a preferred method in the literature [4; 48] due 
to its relatively easy implementation and lower memory demands. DDM divides the 
fractures into N elemental segments with the displacement in each segment assumed 
to have a constant discontinuity. At any point, induced stresses can be found by 
summing the effects of all N elements using the fundamental analytical solutions. The 
linear system is structured in the form of 

 ∆𝝈! = 𝑩!"∆𝒖!!

!

!!!

, (4.15) 

where ∆𝝈! is the induced stresses at element 𝑖, 𝑩!" is the matrix of interaction 
coefficients, and ∆𝒖!! is the given displacement jump. The interaction coefficients 
are calculated according to fundamental analytical solutions [32]. 

DDM has developed as a 2D method and has been extended to 3D applications [67]. 
The main disadvantage of DDM is the difficulty of treatment of heterogeneous 
materials [59]. 

4.4 Upwind Discretization 

An upwind discretization is applied for the advective term in the heat transfer 
equation, ℋ!"#, which is the energy that is transported by the flow. The amount of 
advective heat transfer over the face ℱ!,! between the two cells with index 𝑖 and 𝑗 is 
approximated by exploiting the flux direction: 

 ℋℱ!,! 
!"# ≈ 𝒘ℱ!,! 𝜃!"#$%&,!", (4.16) 

where 𝒘ℱ!,!  is the flux, and 𝜃!"#$%&,!" is calculated as 
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 𝜃!"#$%&,!" =
𝜃!  𝑖𝑓 𝒘ℱ!,! ∙ 𝒏ℱ!,! ≥ 0,
𝜃!  𝑖𝑓 𝒘ℱ!,! ∙ 𝒏ℱ!,! < 0. (4.17) 

While 𝒘ℱ!,! ∙ 𝒏ℱ!,! > 0 indicates that the flow direction is from cell 𝑖 to 𝑗, and 
𝒘ℱ!,! ∙ 𝒏ℱ!,! < 0 indicates that the flow occurs from cell 𝑗 to 𝑖.  

4.5 Temporal Discretization 

The solution of the mass conservation equation and the heat transfer equations require 
time discretization. In Papers B, C, and D, we use implicit Euler method; thus, the 
presentation here is limited to this scheme. 

For an unknown field of 𝜁, the general system of equations is in the form of 

 
𝜕𝜁
𝜕𝑡 = 𝑆 𝜁  (4.18) 

where 𝑆 is function obtained through the spatial discretization. The implicit Euler 
scheme approximates the unknown field for time step t + 1, 𝜁!!!, by using 𝑆 values 
evaluated at the time step t + 1: 

 𝜁!!! − 𝜁!

𝛿𝑡 = 𝑆 𝜁!!!  (4.19) 

where 𝜁! is the unknown field at the time step t and 𝛿𝑡 is the time step length. 

4.6 Numerical coupling strategy 

The shear stimulation modeling requires coupling three main processes: fluid flow, 
stress alteration, and fracture deformation. For example, the pressure term affects the 
fracture deformation in both reversibly and irreversibly. Fracture deformation 
changes the aperture and thus the permeability of the fractures, and the rock matrix 
responds to both irreversible and reversible fracture deformation, which creates a 
stress alteration both in the rock matrix and fracture surfaces. The stress state of the 
fractures also influences the mechanical apertures of the fractures.  

The following relations can be given as a summary of interconnections: 

 
𝐸! = 𝐸! 𝝈,𝑝 ,
𝑝 = 𝑝 𝐸! ,
𝝈 = 𝝈 𝐸! .

 (4.20) 

We have developed a two-stage sequential coupling approach in Papers B and C, 
which captures these interrelations. Paper B includes a premature version of the 
coupling strategy that is applied in Paper C. In Paper B, the two problems of flow and 
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mechanics are solved sequentially without iterations. First, the fluid flow problem is 
solved, and then the Mohr-Coulomb criterion is checked to obtain induced 
displacements. The induced displacements are given as internal boundary conditions 
to the conservation of momentum equations. The Mohr-Coulomb criterion is 
rechecked after the stress redistribution to capture possible additional shear 
displacements. This coupling strategy cannot capture the effect of the pressure to the 
elastic deformations of fractures; thus, the coupling strategy is improved in Paper C.  

In Paper C, a two-stage procedure is developed and applied at each time step. We can 
summarize that the first stage pertains to the reversible fracture deformation and its 
effects to flow and mechanics, and the second stage is related to irreversible fracture 
deformation and its effects to flow and mechanics. 

At the beginning of each time step, the first stage starts with solving the flow problem 
using the pressure distribution from the previous time-step. By using the obtained 
pressure field, iteration is started between reversible (elastic) fracture deformation, 
fluid flow and stress alteration of the rock matrix. This iteration between fluid flow, 
mechanical aperture and mechanical response of the matrix continues until 
convergence of mechanical aperture is obtained. It is observed that the convergence 
of mechanical aperture requires more iteration than pressure or displacement 
convergence. Thus, we choose convergence of mechanical aperture as stopping 
criteria for the iteration.  

After the convergence of mechanical aperture, the second stage is performed to 
obtain the shear failure of the fractures and the corresponding stress alteration of the 
rock matrix. In this stage, the stress alteration in the system is assumed to be 
instantaneous relative to the fluid flow; therefore, the pressure distribution is held 
fixed. The Mohr-Coulomb criterion is applied for each fracture face to capture the 
shear failure. When a shear stress is higher than the frictional resistance of the 
fracture face, the shear displacements are initiated. The shear displacements create 
irreversible normal deformations (dilations) on the fracture surfaces. Then, these 
fracture deformations are defined as internal boundary conditions to the mechanics 
problem to obtain the stress alterations in the system. The stress alterations in the 
domain can increase and decrease the shear and normal stresses at some locations; 
thus, further failures can be initiated, which are also named as ‘slip avalanches’ [12]. 
Hence, following a shear failure, the mechanical state of the system is recalculated, 
and the Mohr-Coulomb criterion successively checked for all fractures. This 
continues until the system reaches an equilibrium state in which additional 
displacements are no longer induced and the next time step is executed. The solution 
summary for each time step is illustrated in Figure 4.3, which is retrieved from Paper 
C. 

 



 37 

 

Figure 4.3: The two-stage solution procedures to model shear stimulation. The figure 
is retrieved from Paper C. 
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5. Main findings and outlook 

Part I of the thesis is finalized with this chapter. Here, summaries of the main 
findings, which are presented in the papers attached in Part II, are provided. The 
chapter ends with an outlook. 

5.1 Summary of papers 

5.1.1 Summary of Paper A 

An existing cell centered discretization method for linear elastic deformation is 
augmented to include deformation of discontinuities, i.e., fractures. The study is 
motivated by the fact that the subsurface formations preserve slit-like discontinuities, 
which have different governing equations than the rock, and they dominate the 
mechanical behavior. Thus, the proper modeling of rock mechanics requires efficient 
incorporation of fractures. Our method builds upon the recently developed multi-
point stress approximations (MPSA) [62; 84; 85; 86], which are introduced as a 
counterpart of cell-centered fluid flow discretizations. Hence, the method aims to 
provide benefits especially for modeling studies that include hydromechanical 
coupling in fractured formations. 

Simulations of several subsurface applications require mathematical modeling of 
coupled fluid flow and mechanical deformation in fractured formations. Modeling 
literature generally relies on different types of discretization schemes for the solutions 
of the flow and mechanics problem. Fluid flow is generally approximated by FVMs 
owing to their conservation properties. However, the mechanical deformation of 
discontinuous rock is approximated mainly using two approaches: boundary-element 
methods and FEM [4; 6]. The main contribution of the Paper A is to provide an 
opportunity to use the same data structure for the solution of flow and mechanics 
problems. Notably, the proposed method is not the first method that applies finite 
volume discretization in discontinuous media; recently, Deb and Jenny [34] have 
developed an FVM for fractured formations and successfully coupled it with the flow 
problem in 2D domains. The method presented in their study uses a structured grid 
for matrix discretization, and the discrete fractures are embedded in the domain. Our 
method carries the finite volume discretization one step further and applies it to the 
3D domains with 2D complex fracture networks.  

In Paper A, the subsurface rock is considered as a combination of explicitly 
represented pre-existing fractures and the rock matrix surrounding them. The pre-
existing fractures are incorporated into the model as co-dimension one inclusions. 
The rock matrix is assumed to be a linearly deforming elastic material [57], and 
fractures are allowed to preserve various kinds of governing equations according to 
the application area. The two fracture surfaces are defined as internal boundary 
conditions to the linear elastic domain, and the governing relations for fractures are 



 40 

defined as relations between the fracture faces. The existing literature generally 
targets only one or two types of fracture deformation [2; 32; 88], the method 
developed here contributes to the literature such that it can be tailored to incorporate 
various kinds of governing equations for fracture deformations. Three types of 
fracture deformation equations, which are commonly encountered in subsurface 
applications, are considered. The first type is the displacement jump controlled 
fracture deformations. The second type tackles the deformation behavior of fractured 
formations when stress conditions are applied to the fracture faces. The last problem 
is created to approximate the mechanical behavior of fractured rock when the 
displacements are controlled by friction between fracture surfaces.  

The validation of the developed method is performed in three ways. First, the 
convergence properties of the presented method are discussed against analytical 
solutions, which are defined in single-fractured 2D domains. The comparisons with 
analytical solutions show that the method generally displays 1st order convergence 
for displacement, which is lower than in previous numerical studies of MPSA 
methods without fractures. The reduced convergence order is considered to be natural 
when the domain includes a discontinuity. Second, the convergence examination of 
the method is done in a 2D domain that includes a complex fracture network. The 
fracture network is created with 10 fractures with irregular orientations. The reference 
solution for this problem is obtained using a relatively fine grid. The convergence is 
observed to be higher than 1st order in this case. As a final examination, the method 
is compared with FEM [1]  in a 3D domain that includes a single fracture in the 
middle. The convergence ratio is found to be slightly higher than 1 for FEM and 
slightly lower than 1 for MPSA, while the errors are of the same magnitude for both 
methods. 

5.1.2 Summary of Papers B and C 

In the Papers B and C, we present a new modeling framework for shear stimulations 
performed in low permeable geothermal reservoirs. 

One of the main advantages of our method is the representation of the rock as a 
discrete fracture-matrix (DFM) system, which subdivides the domain into the 
explicitly represented fractures and the rock matrix [61]. Whereas the related 
literature either models the geothermal reservoir as a continuum or ignores the mass 
exchange between fractures and the rock matrix [26; 58; 77; 112], the study 
contributes to the literature by capturing discrete effects of each fracture while still 
considering the fluid leakage to the rock matrix. 

In the DFM system, three governing mechanisms are coupled: (i) fluid flow in both 
fractures and rock matrix, (ii) nonlinear fracture deformation, and (iii) linear rock 
matrix deformation in the 3D domain. In the presented model, the fluid flow in the 
reservoir is obtained by solving conservation of mass equations with Darcy’s law in 
both rock matrix and fractures. While permeability of the rock matrix is considered as 
a material specific constant number, the fracture permeabilities are associated with 
the gap between fracture surfaces, i.e., apertures, via the cubic law [57].  
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The change in the pressure field deforms the fractures in both normal and tangential 
direction with respect to the fracture plane. In the normal direction, the deformation 
of the fractures has elastic nature, which is modeled following the nonlinear Barton-
Bandis joint deformation model [15; 47]. In the tangential direction, the deformation 
is captured by Mohr-Coulomb criterion with static/dynamic friction model. For any 
fracture element that violates the criterion, the resulting irreversible linear 
deformation (shear deformation) is calculated according to the relations suggested by 
Ryder [100], Napier and Malan [82] and Rahman et al. [93]. The static/dynamic 
friction model has a drawback of being discretization dependent. A remedy can be 
using advanced friction models, which are computationally very expensive [78]. 
Alternatively, better estimations of shear slip can be achieved with an improvement 
that is suggested to the numerical coupling procedure of the current method by Berge 
et al. [19]. 

Following the shear deformation, the fracture faces are exposed a somewhat wearing 
that leads to a dilation in the normal direction of the fracture [15; 113]. The dilation 
(a.k.a. shear dilation) increases the aperture between fracture surfaces, which 
enhances the permeability of fractures according to the cubic law. While the dilation 
alters the fluid flow characteristic of the entire reservoir, the fracture deformations 
cause deformation of the rock matrix and alter the stress state of the rock. The stress 
alteration is captured by conservation of momentum principle by assuming that the 
rock matrix acts as an elastic material that deforms linearly following fracture 
deformations. The coupling of rock matrix and fractures are provided via representing 
fractures as two-sided co-dimension one inclusions in the rock matrix. 

Both of the conservation equations are approximated by using FVM with special 
treatment for the fractures. The discretization of mass conservation equations is 
conducted with a commonly applied cell centered method with converting fractures 
to hybrid cells in the grid [61]. Unlike the traditional methods in the literature for the 
solutions of conservation of momentum equations such as FEM and DDM, the 
method enjoys same data structure for two different differential equations (flow and 
mechanics) by using the method developed in Paper A. 

The initial version of the model is introduced in Paper B. The method is applied to a 
2D domain, which has several fractures with various orientations. In Paper B, we 
provide detailed visualizations of the induced shear displacements. Moreover, the 
effect of matrix permeability is emphasized via simulations that are conducted with 
different matrix permeability values. 

Paper C presents an improved version of the Paper B in terms of both coupling 
strategy and the dimension of the method. Here, the improved version is verified by 
conducting three cases in a 3D synthetic reservoir which hosts 20 fractures. The first 
of the three cases emphasizes the effects of the complex structure of fracture network 
on the permeability enhancement and induced seismicity. In the second case, the 
significance of the mass exchange between fractures and rock matrix on the shear 
stimulation is examined. We show that the rock matrix permeability has significant 
effects on both permeability enhancement and induced seismicity; thus, ignoring rock 
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matrix permeability may lead to inaccurate estimations. Finally, we take the results of 
our model from the stimulation experiments and apply to a production scenario. The 
effect of shear stimulation on the temperature profile of the reservoir is demonstrated 
by comparing the results of the same production scenario with the stimulated and un-
stimulated reservoirs. 

5.1.3 Summary of Paper D 

In this work, the developed model in Paper C is used to aid understanding the 
contributing mechanisms to postinjection seismicity that has been observed after the 
stimulation of several reservoirs [5; 39; 51].  

The spatiotemporal distributions of induced seismicity in Basel and Paralana 
geothermal projects show that the locations of seismic events after the termination of 
injection are mainly at the outer rim of the previous seismic activity region [5; 51; 
80]. We evaluate a novel hypothesis regarding causes of the postinjection seismicity 
in this region. 

The laboratory experiments conducted by Bandis et al. [14] and Barton et al. [15] 
indicated that the fracture deformation has nonlinear elastic characteristics in the 
normal direction with the applied normal stress. If the fluid pressure is increased in 
the fractures, the aperture increases, and the opposite effect occurs when the pressure 
decreases. The hypothesis in this study is motivated due to the fact that the pressure 
decreases after the termination of injection in the close proximity to the injection 
well, which causes a reduction in apertures. Reduced aperture acts as a postinjection 
pressure support to advance the front of the elevated fluid pressure and cause seismic 
events and corresponding increases in apertures beyond the previously stimulated 
region. 

The effect of the normal closure of fractures is qualified by examining two cases 
(Case 1 and Case 2) under two different scenarios; with and without the normal 
closure mechanism included after the termination of the injection. Case 1 
demonstrates the normal closure effect in a single-fractured 3D domain in detail. The 
second case includes an analysis of a 3D domain that consists of 20 penny-shaped 
fractures. Both of the cases suggest that the normal closure of fractures should be 
considered a significant mechanism that leads to elevated postinjection seismicity. 

There have been several attempts to investigate the governing mechanisms of the 
postinjection seismicity in the literature [12; 43; 65; 76; 77]. The contribution of this 
study is to identify and assess a mechanism that has been overlooked previously.  

5.2 Outlook 

An important goal for EGS is to identify optimum stimulation techniques for a 
geological structure in a safe setting. While shear stimulation with rate controlled 
fluid injection can be an optimum choice for a certain reservoir, a pressure controlled 
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cyclic injection technique can be preferable for others. The simulation method 
developed here can aid both decisions of the best technique for each geological 
setting and mitigation of elevated seismicity. Depending on the target application 
area, the method presented here can be used or extended. Thus, the further work 
related to the presented method can be both application-based and model-
development-based. 

The presented method can be applied in various geological settings. There are no 
known theoretical limitations of the method in terms of the considered fracture 
network or physical parameters. For example, the method can be applied to a more 
realistic fracture network generated by outcrop and borehole studies. The seismic 
recordings from boreholes can estimate the 3D structure of a reservoir as in Sausse et 
al. [102], and the recorded seismic response of the reservoir to stimulation 
experiments can be used for calibration of the methodology presented in this thesis. 
However, the computational intensity caused by the size of the considered problem 
should not be discarded.  

In terms of model development, including the thermal effect can be considered as a 
priority. Depending on the rock structure of the target application area, the method 
could be extended to include thermoelasticity and poroelasticity. Moreover, two-
phase or three-phase fluid flow can be added if one would like to benefit from the 
method for simulations requires modeling of different phases such as in CO2 
injections or water flooding.  

The current method provides a qualitative analysis regarding induced seismicity due 
to the considered static/dynamic friction model. More accurate estimations can be 
achieved by implementing more advanced friction models such as rate- and state- 
friction model [36; 37; 38; 98]. Although the implementation of an advanced friction 
model also solves the convergence problem that the current model preserves, these 
models are reported to be computationally very expensive [78].  

It should be noted that fracture deformation remains one of the major challenges due 
to its complex nature, which is defined by empirical correlations based on the 
experimental analysis. The fracture deformation in laboratory experiments is 
essentially different from the real reservoir conditions mainly because of the scale 
differences [99]. Further work can include characterizing the scale difference and 
representing it in the developed model. Also, the modeling of wing fractures, which 
may occur at the tip of fractures as a result of shear stimulations [79], remains future 
work. 

On the other hand, a trade-off exists between the number of physical processes 
considered and the efficiency of the method due to the computational cost. The 
numerical methods are developed to provide a better understanding of the overall 
behavior and to assist solution of practical problems. Hence, the numerical models 
will always require simplifications and idealizations while still aiming at maintaining 
the necessary level of complexity according to the target problem. 
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