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Abstract

The Advanced Encryption Standard is probably the most used symmetric encryption cipher in

use today, which makes it particularly interesting for cryptanalysis. This thesis attacks small-

scale variants of AES through a particular branch of algebraic cryptanalysis known as Com-

pressed Right-Hand Sides. We see some success, as we are able to break for the first time three

rounds of a 32-bit small-scale variant. We also make an interesting discovery, in that we get

indications that some plaintext values result in easier-to-break small-scale instances.
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Chapter 1

Introduction

The internet has become enormously large and complex, with billions of everyday users. These

users expect things to work, and they expect to use it without becoming subject to malicious

intent. For instance, they expect that the right amount is drawn from their account when paying

someone online, and that only themselves and their bank know how much they have on their

account. There are numerous mechanisms in place attempting to ensure that using the internet

is safe as possible. This thesis aims to take a closer look at one of those mechanisms, namely

the Advanced Encryption Standard, or AES. To understand what the AES is, we need to explain

what encryption is and how encryption is relevant to safe usage of the internet. Therefore, we

also �nd it natural to talk about how we gauge the security of encryption, which will eventually

lead us to what is known as cryptanalysis. I will then take the opportunity to give the problem

statement in general terms. A more detailed problem statement comes at the start of chapter

5, as it is leans on background covered in chapters 2 til 4. We will then round of this chapter by

giving an overview of the remainder of this thesis.

1.1 The Concept of Encryption

Encryption is the art of rendering readable text into something that looks like garble. When

talking about digital messages, then ideally the garble should look no different than the random

noise that naturally occurs when transferring data digitally. Hence we aim for the garbled mes-

sage to look completely random. When designing modern ciphers there are two aspects related

2



1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

to this perceived randomness which we will consider after we have got some terminology in

place.

Text that is readable to anyone is called plaintext . Plaintext that has been encrypted into a

seemingly random string of letters (or bits, in case of computers), is called ciphertext . Creating

a ciphertext from a plaintext is called to encrypt the plaintext. Making it back to readable form

is called to decrypt. The steps taken to transform a plaintext to a ciphertext and back again is

called an encryption algorithm , or a cipher. As we will see when we consider the application of

encryption, we need one more component to make this useful, namely the key. A key is needed

both to encrypt plaintext and to decrypt a ciphertext. No one who does not know the key should

not be able to extract any information about the plaintext from the ciphertext. Keeping the key

secret is therefore important. An illustration of the encryption process is given in Figure 1.1.

Figure 1.1: Encryption

The inclusion of keys ties in neatly with the randomness we want in the ciphertexts. As-

suming the key is chosen at random, the randomness in the key should be enough to make the

plaintext and the ciphertext seem completely unrelated. More generally, given two plaintexts

encrypted under the same key, the resulting ciphertexts are supposed to yield no useful infor-

mation at all about the two plaintexts. Even if only of bit, the smallest electronical building block

of computers, is changed, the difference in the ciphertexts must look the same as if all the bits,

or any other number of bits, were changed. More precisely, changing just one bit in one end

(plaintext or ciphertext) should result statistically in the change of approximately half the bits in

the other end.

There are two more principles important to modern-day ciphers. The �rst one is arguably

the most important one, namely Kerckhoff's principle: If nothing but the key used is secret, the

cipher should still be secure to use. This implies that even if some malicious third party knows

every single detail about the cipher, not just how it works but also both the plaintext and the

3



1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

corresponding ciphertext under a key, but not the key itself, this third party should still not be

able to somehow �gure out the key in use.

The second principle is known by some as Schneier's Law, but, as Schneier himself points

out [16], this principle outdates him. The principle states that “anyone, from the most clueless

amateur to the best cryptographer, can create an algorithm that he himself can't break.” [16]. What

he means by this is that not being able to break your own cipher does not mean it is unbreakable.

As trivial as that may seem, it still is important to bear in mind. For the modern day ciphers we

use, there is no formal proof that they are unbreakable.

Because of these two principles, it is widely accepted as best practice to always publish a

new cipher into the wild, so to speak, for others to scrutinize the cipher. If many clever people

have tried hard to break a cipher, but failed, we can be relatively certain that no one can break

it. This is also why this thesis is possible and relevant in the �rst place.

1.1.1 Symmetric vs. Asymmetric Encryption

As mentioned, encryption is only one of many security mechanisms in play. Its most noteworthy

application is the end-to-end protection it offers messages sent over the internet. Imagine that

Alice wants to talk to her online bank, Bob. If Alice were to send her message to Bob in plaintext,

anyone along the way could read her message. Naturally, Alice would rather like that no other

entity than Bob can read their communication. As most people do, she prefers her �nancial

details to remain con�dential, and she therefore decides to encrypt her message. She applies

her chosen cipher combined with her secret key on her plaintext. Alice then sends the created

ciphertext instead. This way no one that does not know the secret key can read the message.

Since Bob also knows this secret key, he can decrypt and read Alice's message. Likewise, Bob

can use the secret key to encrypt messages to Alice. This kind of encryption, where the same

key is used to both encrypt and decrypt the message, is known as symmetric encryption and is

illustrated in Figure 1.2.

A very useful consequence of using symmetric ciphers, is that it provides an indirect way for

Alice to identify who she is talking to. If she trusts Bob not to share the key with anyone else, she

can trust that it is Bob she is talking to. Since no one else but Alice and Bob have the key, no one

else can encrypt a message that their secret key decrypts.

4



1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

Figure 1.2: Symmetric Encryption.

This raises the question; how can Alice and Bob exchange the secret key in the �rst place?

One way would be to send the key by some means in the “snail-mail". Fortunately, there exists

a way to exchange keys online: By using asymmetric cryptography .

Figure 1.3: Asymmetric Encryption.

In asymmetric cryptography, see Figure 1.3, we use two keys instead of just one as in the

symmetric case. One key, the public key is used to encrypt the message while the other key, the

private key decrypts the message. In other words, the key that encrypted the message is not also

capable of decrypting it!

As the names suggest, one key is shared publicly to anyone who wants it, while the other is

kept utmost secret. If Alice wants to communicate with Bob, she can look up Bobs public key

online and use that key to encrypt her message. She then sends the message to Bob, and if Bob

has not shared/lost his private key, she can be con�dent that only Bob can decrypt the mes-

sage using his private key. The drawback with asymmetric cryptography is that it is signi�cantly

slower than many symmetric cryptographic ciphers. Therefore, it is common to use asymmet-

ric ciphers to exchange the symmetric key with the recipient, and then to switch to a symmetric

cipher. Asymmetric ciphers are also useful to “prove” one's identity, but that must stay a topic

for another time. We will deal only with a symmetric cipher in this thesis, namely the Advanced

5



1.2. BENCHMARK FOR THE SECURITY OF ENCRYPTION CHAPTER 1. INTRODUCTION

Encryption Standard.

1.2 Benchmark for the Security of Encryption

Since encryption is such an important part in staying safe while using the internet it is only

natural to wonder about the strength of it. The �rst thing that we need to realize when talking

about the security of ciphers is that no matter which one we choose, it may always be broken.

This may sound odd at �rst, that we willingly use something we know may be compromised,

and we even claim that is it safe to use. The explanation to that lies in the nature of the keys.

A key is a string of bits of a length predetermined by the cipher in question. In other words, it

is simply a long string of 0's and 1's, and anyone with the key can decrypt any ciphertext made

under that key. This means that an attacker can attempt to decrypt any ciphertext by trying all

possible variations of 0's and 1's of the speci�ed length. Such an attempt is known as a brute

force attack. A brute force attack will always be possible against any cipher that uses a secret

key, in other words all ciphers in use today, but that does not mean brute force is viable. For

example, the smallest key size used by AES is 128 bits long. Basic combinatorics tells us that

since we have 128 places that each can hold either a 0 or a 1, we have 2 128 possible keys. In other

words, guessing a key at random gives a 1/2 128 chance to succeed.

Even the fastest supercomputer alive today does not come close to brute-forcing 128 bit

keys. The Sunway TaihuLigth supercomputer currently holds the title of fastest supercomputer

[1], and can do ¼100 peta�ops, or ¼256 �ops. Let us assume that we can test one key per �op.

This is a simpli�cation which allows for more keys to be tested at one time than realistic, yet let

us increase our capabilities even further by assuming that we have 1000 such supercomputers.

Then we can test a staggering 266 keys per second! In terms of years, that is:

266 £ 60£ 60£ 24£ 365Æ290 keys a year. (1.1)

Even accounting for the fact that we may expect to �nd a match after testing approximately
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1.3. CRYPTANALYSIS CHAPTER 1. INTRODUCTION

half of the possible keys, we do not come close:

2128/2

290 Æ237 ¼137 billion years is needed to �nd the key. (1.2)

Therefore, we de�ne a cipher as secure if it is computationally infeasible to guess the key.

Furthermore, we de�ne a cipher as broken if there exists a method to �nd the key faster than by

brute force. Notice that a cipher may still be regarded as secure even if it is broken, since it may

still be computationally infeasible to �nd the key.

1.3 Cryptanalysis

We know that brute force is always possible, even though not practical. We would like to assure

ourselves that brute force is the best attack we can do. In most cases we cannot know if there

exists a better, more ef�cient way to �nd the secret key. The best we can do is to look for a better

way. This is known as cryptanalysis, the science or art of breaking cryptosystems. Currently this

is the best way of gauging and ensuring the security of cryptographic algorithms.

Because of the somewhat vague de�nition of cryptanalysis, we can divide these efforts into

roughly three categories. It is important to note that opinions differ on whether the second and

third category is included or excluded.

Classical cryptanalysis deals with attempting to recover the secret key from the associated

ciphertext only, or from both the plaintext and ciphertext encrypted under some unknown key.

This is usually done through various mathematical techniques and rigorous analysis of the algo-

rithm in question. These techniques may be of a highly advanced level, or as simply as counting

the frequency of letters. Brute force is an example of a technique in this category. Because it sets

the bar for “worst-case” it also serves as a benchmark for how well the other techniques do. This

is the category that everybody agrees on to be cryptanalysis.

Implementation attacks , or side-channel attacks is the second category. This one tries to ob-

tain the key in use by exploiting weaknesses in how the cipher is implemented in a real-world

application. This category is more debated since there are two kinds of exploitation possible:

The one that looks for the key, and the one that looks for a way to bypass the key. Most cryp-
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tographers agree that the �rst one is regarded as cryptanalysis, while the second exploitation is

more debated as to whether it should be considered cryptanalysis. To give an example, �nding

a key through the means of monitoring the power usage of a CPU during execution of a cipher

is attempting to acquire the key, while exploiting race-condition to bypass an authentication

process may be outside what many cryptographers consider to be cryptanalysis. Therefore, the

group is somewhat debated.

The last group is social engineering. Bluntly said, this group encompasses all attempts to

lure the victims into giving their keys to the attacker. A typical example of this is a phishing

attack, where the victim is lured onto a website it believes belongs to credible company, when

in reality it is the attacker's own website made to look like the credible company. If the victim

attempts to log in with the credentials they use on the site they believe they are on, instead of

actually logging in they give their credentials to the attacker. Since this way of obtaining the key,

or equivalently, access to the system in question, is more of a bypass than an actual attack on

the mathematics or implementation of the system, most cryptographers do not consider this

category as part of cryptanalysis. However, in [10] they do.

Those who argue that it belongs to the term 'cryptanalysis' argues that the secret ingredient

was acquired, and also that the system needs to take into account the human element. No

matter what your opinion on this matter is, for a system to be secure overall, we need both

strong ciphers and to make sure that successful implementation and social engineering attacks

are as unlikely as possible.

When we use the term “cryptanalysis” in the remainder of this thesis, we think of it as “classical

cryptanalysis” as de�ned above.

One last thing before we are ready to state our problem. As we will see in Chapter 4, attacking

“normal” AES will take so much time that we cannot get any useful results from it. Therefore,

in the second part of Chapter 3, we will consider small-scale variants of AES. In a nutshell, we

vary several of the parameters set for the AES algorithm to create new, but similar, encryption

algorithms that may actually be broken. It is believed that these small-scale variants retain much

of the structure of “full” AES, and that any weaknesses found in a small-scale variant may give

insight on the security of the full version. Using small-scale variants enables us to get useful data

to analyze within a practical time frame. The details will be covered in Chapters 3 and 4.

8
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1.4 Problem Statement for the Thesis

This thesis considers a particular branch of cryptanalysis known as algebraic cryptanalysis , ap-

plied to small-scale variants of the AES. We build on earlier work done in [3, 12, 11], and try to

extend the results found there by attacking more AES variants with newer methods for algebraic

attacks. The results show when we are successful in breaking small-scale versions of AES, and

�ll a small gap in our knowledge about the security of the AES.

We decided to put the full problem statement at the beginning of Chapter 5, as we feel that

the full problem statement need more background covered.

1.5 Thesis Outline

Chapter 2 is intended to give a recap of important concepts relevant to the subsequent chap-

ters: Abstract and linear algebra, Boolean functions, block ciphers, and cryptanalysis. Then we

will move onto the Advanced Encryption Standard in Chapter 3, going into the details of the

encryption algorithm. Here we will also cover small-scale AES, a common framework for the

analysis of AES-like equation systems [3]. Chapter 4 covers the background and theory of the

algebraic cryptanalysis branch we will use; Multiple Right-Hand Sides (MRHS) and Compressed

Right-Hand Sides (CRHS). In here we also introduce three different solving strategies that uti-

lizes CRHS. Next, Chapter 5 starts of by explaining the project setup and con�gurations. It then

summarizes our results, before we discuss these �ndings. Lastly, in Chapter 6 we give some

closing remarks and work for the future.
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Chapter 2

Background

This chapter introduces the basic mathematics necessary to understand AES and the algebraic

cryptanalysis of it that comes later in the thesis. Much of the content here is learned from the

book "The design of Rijndael" by Daemen and Rijmen [13]. Furthermore, both the Boolean

Functions and Block Cipher sections are inspired by the same book, though most, if not all, may

be considered common knowledge in the �eld.

2.1 Abstract Algebra

The mathematical foundation of the Advanced Encryption Standard, as for many other cryp-

tosystems, are based upon the �eld of abstract algebra. This section aims to give a recap of the

most relevant concepts of abstract algebra as it pertains to this research, and is adapted from

[13]. For a more comprehensive treatment of abstract algebra, consult an algebra book such as

[4]

2.1.1 Group

In abstract algebra, groups are the basic construction on which more advanced mathematical

constructs are built. It is therefore natural to begin by de�ning a group.

De�nition 1. A group Ç G,Å È consists of a set G and an operation de�ned on its elements, here

10



2.1. ABSTRACT ALGEBRA Chapter 2

denoted by Å:

Å : G £ G ! G : (a,b) 7! a Å b,

ful�lling the following conditions:

• Closed: 8 a,b 2 G : a Å b 2 G

• Associative: 8 a,b,c 2 G : (a Å b) Å c Æa Å (b Å c)

• Neutral element: 90 2 G, such that 8 a 2 G : a Å 0 Æa

• Inverse elements: 8 a 2 G,9b 2 G such that a Å b Æ0

Another possible condition the operation may satisfy is commutativity :

Commutative: 8 a,b 2 G : a Å b Æb Å a

If the operation also is commutative, we call the group an Abelian group .

Example 1. There are two well known examples of Abelian groups that we use every day: the

�rst is the set of integers under addition: Ç Z,Å È. The second is the structure Ç Z24,Å È, which

is used in 24 hour watches. It contains the integer numbers 0-23. The operation is addition

modulo 24. This last example can be generalized to the structure Ç Zn ,Å È which contains the

set of integers from 0 to n ¡ 1, with addition modulo n being its operation.

Since the set of integers under addition is the best-known example of a group, it is com-

monplace to use “+” to denote an arbitrary group operation. Also, “+” is often referred to as

“addition”. We will adhere to this practice in this thesis both when talking about an arbitrary

group operation as well as talking about integer addition. The context should make it clear what

operation the symbol is referring to.

2.1.2 Ring

The next structure to de�ne is the ring. A ring is essentially an Abelian group that has been

“expanded” with a second operation. The second operation needs to have a neutral element,

11
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associativity and closedness, but it needs not have inverses. Therefore, the set under the second

operation only, needs not be a group by itself.

De�nition 2. A ring Ç R,Å,£ È consists of a set R with two operations de�ned on its elements,

here denoted by Å and £ . In order to qualify as a ring, the operations have to ful�ll the following

conditions:

• The structure Ç R,Å È is an Abelian group

• The operation £ is closed, and associative over R. There is a neutral element for £ in R

• The two operations Å and £ are related by the law of distributivity: 8 a,b,c 2 R : (aÅb)£ c Æ

(a £ c) Å (b £ c).

The operator £ is often referred to as “multiplication”, and its neutral element is usually de-

noted by 1. If £ is commutative, the ring Ç R,Å,£ È is called a commutative ring.

Example 2. Example: If we include multiplication in the set of integers under addition from

the previous example, we get the ring Ç Z,Å,£ È , the set of integers under addition and mul-

tiplication. This ring is commutative. Another well known ring is the set of matrices over Z

with n rows and n columns under “matrix addition” and “matrix multiplication”. This ring is not

commutative for n larger than 1.

2.1.3 Field

The next structure, the �eld, will expand the concept of a ring. Simply said, a �eld is a commu-

tative ring that also has inverse elements with respect to multiplication.

De�nition 3. A structure Ç F,Å,£ È is a �eld if the following two conditions are satis�ed:

• Ç F,Å,£ È is a commutative ring.

• For all elements of F, there is an inverse element in F with respect to the operation £ ,

except for the element 0, the neutral element of Ç F,Å È.

12
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A �eld can be thought of as a set that is an Abelian group both under addition alone and

under multiplication alone, except for 0. More formally, a structure Ç F,Å,£ È is a �eld if both

Ç F,Å È and Ç F\{0}, £ È are Abelian groups and the law of distributivity applies. The neutral

element of Ç F\{0}, £ È is known as the unit element of the �eld.

Example 3. The set of real numbers under addition and multiplication is the best-known exam-

ple of a �eld. When a set is a �eld, it is possible to do addition, subtraction, multiplication and

division without leaving the set. Subtraction is done by adding inverses: a–b Æa Å (¡ b), where

¡ b is the additive inverse of b. Division uses the multiplicative inverses: a/ b Æa £ b¡ 1, where

b¡ 1 is the inverse of b with respect to multiplication.

2.1.4 Finite Fields

A �nite �eld is a �eld with a �nite number of elements. The number of elements in the set of

the �nite �eld is known as the order of the �eld. There can only exist �nite �elds for which

the order is a prime power. More formally, there can only exists �elds of order m if and only if

m Æpn for some integer n and p being a prime integer. This has to do with the need for inverses

for both operations in the �eld. It is also worth noting that p is known as the characteristic of

the �nite �eld. An important property of �nite �elds is the fact that �elds of the same order

are isomorphic : Even though the elements of two �elds of the same order may differ in their

representation, their underlying algebraic structure is exactly the same.

De�nition 4. Two �nite �elds F and F0 are isomorphic if there exists a one-to-one function '

mapping F onto F0and the following conditions are satis�ed:

• ' (x Å y) Æ' (x) Å ' (y),8 x, y 2 F

• ' (x £ y) Æ' (x) £ ' (y),8 x, y 2 F.

This means that for each prime power there exists exactly one �nite �eld, denoted GF(pn ).

The perhaps easiest form of �nite �elds to grasp are the ones where n Æ1. When this is the

case, the �nite �eld has order p, and due to isomorphism, the �nite �eld can be represented by

Ç Zp ,Å,£ È .

13
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When the order is not prime, i.e. n È 1, things are a bit more complicated. The operations

can no longer be modulo p, nor will they be modulo pn . Instead we will represent GF(pn ) as

polynomials over GF(p) of degree n. This is not the only way to represent GF(pn ) with n È 1, but

it is the one we will use in this thesis. The reason for this is that these polynomials in GF(28) can

easily be represented using Boolean vectors, which can conveniently be stored as 8-bit values, or

bytes. This is opportune for us, since we will only be working with �elds of characteristic 2, with

n 2 {1,4,8}. Table (2.1) givesGF(24) as numbering the elements using hexadecimal notation and

the corresponding 4 bit Boolean vector.

Hexadecimal Boolean vector
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

Table 2.1: Table of the elements of GF(24). Use equation (2.1) to go from Boolean vector form to
the corresponding polynomial.

2.1.5 Polynomials over a Field

A polynomial is a sum of a �nite number of terms, where each term is a constant multiplied with

one or more variables to the power of a positive integer exponent. A polynomial b over a �eld F

is an expression of the form

b(x) Æbn¡ 1xn¡ 1 Å bn¡ 2xn¡ 2 Å ...Å b1x Å b0,

14
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where the bi 2 F are known as the coef�cients . There is no need to evaluate the polynomials in

this thesis, and we will therefore treat them as abstract elements only. The degreeof a polynomial

is the largest exponent in the polynomial which have a non-zero coef�cient.

The set of polynomials over a �eld F is denoted F[x]. A compressed, ef�cient way of writing

polynomials is to store only the coef�cients as an ordered string. Since we will use polynomials

with coef�cients from GF(2) in this thesis, the coef�cients may only be 0 or 1. This enables us

to store polynomials up to degree 8 in a single byte:

b7b6b5b4b3b2b1b0 7! b(x) Æb7x7 Å b6x6 Å b5x5 Å b4x4 Å b3x3 Å b2x2 Å b1x Å b0. (2.1)

Bytes are often written in hexadecimal notation.

2.1.6 Operations on Polynomials

Addition of polynomials consists of summing the coef�cients of equal powers of x, where the

summing of the coef�cients occurs in the underlying �eld F. The neutral element for addition is

the polynomial in which all coef�cients are equal to zero. The additive inverse of a polynomial

is easily made by replacing each coef�cient by its additive inverse element in F. For the poly-

nomial representation of the elements in GF(2n ), each polynomial will be its own inverse under

addition.

De�nition 5. A polynomial d (x) is irreducible over the �eld GF(p) if and only if there exist no

two polynomials a(x) and b(x) with coef�cients in GF(p) such that d (x) Æa(x) £ b(x), where

both a(x) and b(x) are of degree > 0.

De�nition 6. The multiplication of two polynomials a(x) and b(x) is de�ned as the algebraic

product of the polynomials modulo an irreducible polynomial m(x):

c(x) Æa(x) ¢b(x) () c(x) ´ a(x) £ b(x) (mod m(x)).

This makes the multiplication operation closed.

With respect to addition of polynomials, multiplication of polynomials is associative, com-

mutative and distributive. The neutral element is the polynomial of degree 0 and with coef�-
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cient of x0 equal to 1. In order to �nd the inverse for the multiplication, the Extended Euclidean

Algorithm may be utilized (see e.g. [7, p. 81]).

2.1.7 Some Observations on Finite Fields with Characteristic 2

• Elements of �nite �elds with characteristic 2 may be represented as binary polynomials.

This makes them easy to store and process digitally.

• Multiplication by x is fast when byte representation is used, as it is the same as a left-

shift of the bits, followed by an addition of the chosen reduction polynomial if the highest

coef�cient is 1.

2.2 Linear Algebra

As linear algebra is one of the main pillar of MRHS and CRHS, this section will brie�y cover some

core aspects of it. This section is based upon [6]. For a comprehensive treatment, see [6] or some

other linear algebra textbook.

A linear equation in the variables x1, . . . ,xn is an equation that can be written in the form

a1x1 Å a2x2 Å¢¢¢Åan xn Æb (2.2)

where a1, . . . ,an are called the coef�cients . A system of linear equations (or a linear system) is a

collection of one or more linear equations involving the same variables.

Example 4.

x1 Å x2 Å x3 Æ0

x1 Å x3 Æ1

The coef�cients of a system of linear equations may be written as a matrix, in what is known

as the coef�cient matrix .

Example 5. The coef�cient matrix of Example 4:

2

4
1 1 1

1 0 1

3

5
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The size of a matrix is the number of rows and columns that comprises it, denoted m £ n.

A matrix with only one column is called a vector. If b is included in the coef�cient matrix of

Example 4, we have the augmented matrix .

Example 6. The augmented matrix of Example 4:

2

4
1 1 1 0

1 0 1 1

3

5

Reducing the augmented matrix in Example 6 into echelon form (see [6, ch 1.2]) quickly tells

us if there exists a solution to Example 4. If there exists no row in the reduced augmented matrix

on the form
h
0 . . . 0 1

i
then there exists at least one solution. Otherwise we have no solution.

Further reducing the matrix into reduced echelon form makes it easy to tell if the solution is

unique. If there are no free variables the solution is unique. Otherwise we have more than one

solution, depending on the �eld we are in. For R we have in�nitely many solutions, while for

GF(2), which is the one we will operate in, we have 2 k solutions for k free variables.

Given vectors v1, . . . ,vp in GF(2)n and given scalars c1, . . . ,cp , the vector y de�ned by

y Æc1v1 Å¢¢¢Åcp vp (2.3)

is called a linear combination of v1, . . . ,vp with weights c1, . . . ,cp .

The matrix equation Ax Æb is the linear combination of the columns of A using the corre-

sponding entries in x as weights, that is

Ax Æ
h
a1 a2 . . . an

i

2

6
6
6
6
6
6
6
4

x1

x2

. . .

xn

3

7
7
7
7
7
7
7
5

Æx1a1 Å x2a2 Å¢¢¢Åxn an

Example 7. Ax Æb form of Example 4:

2

4
1 1 1

1 0 1

3

5

2

6
6
6
6
4

x1

x2

x3

3

7
7
7
7
5

Æ

2

4
0

1

3

5

A n-vector x is said to be a solution if it satis�es A x = b, meaning that b is a linear combination

of the columns of A using the entries of x as weights. A system is said to be consistent if it contains
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no rows on the form
h
0 . . . 0 1

i
when in echelon form. In other words, when there is at least

one solution to the system. Otherwise it is said to be inconsistent.

A set {v1, . . . ,vp } of two or more rows of A is said to be linearly dependent if there exists

weights c1, . . . ,cp such that

0 Æc1v1 Å¢¢¢Åcp vp ,

where not all ci are 0. If there is no combination that forms the zero row, { v1, . . . ,vp } are said to

be linearly independent of each other.

2.3 Boolean Functions

2.3.1 Bits and Boolean Vectors

The smallest �nite �eld, GF(2) has only two elements, 0 and 1. These elements are known as

bits, or Boolean variables, depending on context. The two operations of this �nite �eld, addition

and multiplication correspond to the logical operations of XOR and AND respectively. XOR is a

binary function that returns 1 if and only if the two input values differ, see Table (2.2). AND is a

binary function that on the other hand returns 1 if and only if both input values are 1, see Table

(2.3).

XOR 0 1
0 0 1
1 1 0

Table 2.2: Table for XOR of two bits.

AND 0 1
0 0 0
1 0 1

Table 2.3: Table for AND of two bits.

A vector whose coordinates are bits is called a Boolean vector. Often a Boolean vector is

represented as a binary string of equal length to the vector. One can XOR or AND two Boolean

vectors of equal size by XORing/ANDing the corresponding bits from each vector, called bitwise

XOR and bitwise AND.
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2.3.2 Function, Transformation and Permutation

A Boolean function b Æ' (a) is a function that maps a Boolean vector to another Boolean vector.

' : GF
¡
2n ¢

! GF
¡
2m ¢

: a 7! b Æ' (a)

where a is called the input vector and b is called the output vector. If the output vector b has

only one bit, that is m Æ1, then ' is known as a Boolean function. When the input vector a

has the same length as the output vector b, or n Æm, ' is known as a Boolean transformation .

A Boolean transformation may be viewed as a function that operates on a state. If the Boolean

transformation also is one-to-one and onto, which makes it invertible, then we call ' a Boolean

permutation. Onto means that every possible output vector is mapped to by some input vector

to ' . One-to-one means that different input vectors always maps to different output vectors.

Summarized, a Boolean permutation is a Boolean function that is invertible, and that has input

vectors a of same length as its output vectors b.

2.3.3 Partition Bundles

When dealing with sets of binary variables, it is often useful to partition them into disjoint sub-

sets known as bundles. This allows us to express functions in terms of these bundles instead of

in terms of each individual bit. We will deal only with ordered sets, which has the effect that the

bits within the bundles also will be ordered, and that the bundles among themselves, at least ini-

tially, will be ordered. We normally use indexes to keep track of the order, and the index scheme

in use will be explained when needed.

By bundling together bits one can easily represent extensions of GF(2). For instance, a bun-

dle of 4 bits can be thought of as an element in GF(24), with indexing starting at 0 and rightmost.

Thus it corresponds with the indexing convention used in polynomials over a �eld, like in (2.1).

Table (2.4) shows a bundle of four bits, and its corresponding polynomial in GF(24).

Bundle Polynomial
0101 0x3 Å x2 Å 0x Å 1

Table 2.4: A 4-bit bundle and its corresponding polynomial.
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2.3.4 Transposition and Bundle Transposition

A transposition b Æ¼a is a function that changes the order of an ordered set, without changing

the values of the elements.

bi Æap(i ),

where i is an index and p(i ) is a permutation of the indices. When the set is a set of bundles,

this means that a permutation of the bundles will be executed, but the order of the internal bits

of each bundle will remain the same. So even if the bundle order is changed, the values stay the

same. This is known as a bundle transposition , and Figure (2.1) gives an example.

Figure 2.1: Example of a bundle transposition. From [13, p. 21].

2.3.5 Bricklayer Function

A similar, yet fundamentally different Boolean function to the bundle permutation, is the brick-

layer function . The bricklayer function also works on smaller partitions of a set, but unlike the

bundle permutations, it may, and usually do, change the values of the bits of its bundles. One

may view it as a Boolean function that may be decomposed into a number of Boolean functions,

each of whom operate in parallel on a partition. Note that these decomposed functions may be

different from one another.

These decomposed functions are known as S-boxes when the function is non-linear, and

D-boxes when they are linear. S stands for substitution while D stands for diffusion. When the

input vector is of the same length as its output vector, we call the overall function for a bricklayer

transformation. If the partitions/bundles within the input vector a and b are denoted by ai

and bi respectively, this can be represented as bi Æ' i (ai ). It is worth noting that the parallel

operations of the S-/D- boxes are independent from each other.

The non-linear step of the AES-candidate Serpent is an example of a bricklayer function. As

are all AES' Boolean transformations, as we will see in the next chapter. If the S- / D- boxes of
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the bricklayer transformation are all invertible, the bricklayer transformation is also invertible,

and thus known as a bricklayer permutation.

2.3.6 Iterative Boolean Transformation

One may apply Boolean transformations on a Boolean vector, one after another, creating a se-

quence of Boolean transformations known as an iterative Boolean transformation. Figure 2.2

shows the form of an iterative transformation, in where ½(i ) represents the individual transfor-

mations.

¯ Æ½(r ) ±.. .±½(2) ±½(1)(a1)

The value of ½(i ) ±. . .±½(1)(a1) for 1 Ç i Ç r is known as an intermediate state. If all the intermedi-

ate functions are Boolean permutations, the whole function is an iterative Boolean permutation,

and is thus invertible.

Figure 2.2: Illustration of an iterative Boolean transformation. From [13, p. 23].

2.4 Block Ciphers

A block cipher is a permutation that transforms plaintext blocks of a �xed length nb to ciphertext

blocks of the same length, under the in�uence of a cipher key k . One may view a block cipher
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as a set of operations that works on �xed length vectors. The key vector may be of a different

length nk .

For a �xed plaintext vector and a key vector of size nk there are 2nk possible permutations

for the block cipher. The act of transforming an input vector, or plaintext block, into an output

vector, or ciphertext block, under the in�uence of the key k , is known as encrypting the plain-

text under k . Transforming the ciphertext back into the plaintext using the key k , is known as

decrypting the ciphertext under k .

The speci�cation of the block cipher gives the encryption algorithm . The encryption algo-

rithm speci�es the operations to be used, and the sequence in which they will be applied to the

plaintext in order to obtain the ciphertext. In this thesis we will only be dealing with plaintexts,

keys and ciphertexts represented as Boolean vectors. This means that the only operations we

will be dealing with are Boolean functions. Since encrypting a plaintext without the ability to

decrypt it again is of little use to us, all Boolean functions will be Boolean permutations.

2.4.1 Key-Iterated Block Ciphers

According to [13], AES belongs to a class of block ciphers known as key-iterated block ciphers .

In a key-iterated block cipher, the cipher is de�ned as the alternating application of round-

transformations and key additions. One application of the round-transformation, or the key-

independent Boolean transformation, and one key addition is one round of the cipher. It is

normal to have a key addition step before the �rst round as well. The keys for each round are

usually speci�ed in a part of the encryption algorithm known as the key schedule. How the key

schedule and round transformations are designed vary from block cipher to block cipher.

Key-iterated block ciphers' key addition step is simply to XOR in the round key. Further-

more, each round transformation, with the possible exception of the �rst or last round, need

be the same. This makes for ef�cient implementation in both hardware and software. Key-

iterated block ciphers belong to the class of key-alternating block ciphers. Figure 2.3 illustrates

two rounds of a key-alternating block cipher.
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Figure 2.3: Key-alternating block cipher with two rounds. From [13, p. 26]

2.5 Cryptanalysis

Analysing ciphers to assess their strength is known as cryptanalysis. As already noted in Section

1.3 we only consider classical cryptanalysis in this thesis, i.e., only studying the abstract descrip-

tion of the cipher in question and not taking any particular use or implementation into account.

There are some known standard techniques for doing cryptanalysis of block ciphers. The most

well known (modern) cryptanalytic methods are called differential and linear cryptanalysis.

In differential cryptanalysis one considers two plaintexts at the time, usually with some

small, known, difference between them. The crucial observation is that adding the same round

key onto the two plaintexts will not change this difference! So when only considering differences

of two cipher blocks, key additions behave like the identity mapping. Linear operations in the

cipher change the difference of a cipher block, but in a known way. The only operations in a

cipher that can change a difference in an unpredictable way are the non-linear ones, such as

S-boxes. In a differential attack the attacker tries to predict what the difference of the two cipher

blocks will be at some point in the encryption operation. If the attacker knows that a difference

has a relatively high probability of occurring at some particular point close to the ciphertext, he

can use this information to �nd what the value of at least parts of the last round key(s) must be.

This is usually enough to break the cipher.

In linear cryptanalysis the attacker studies linear combinations of bits from the cipher block
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as it progresses through the cipher. Starting with a known plaintext, the attacker knows what the

sum of some of its bits will be. After adding the �rst round key, the attacker knows that the sum of

the same bits in the cipher block will have the same value if the corresponding bits in the round

key sum to 0, and will be �ipped otherwise. The crucial thing is that repeating this for many

plaintexts, the attacker knows that the 0/1-distribution of the particular linear combination will

be the same, or �ipped, after adding key material. Applying linear transformations on the cipher

block does not change this, the attacker still knows how skewed the 0/1-distribution is for some

linear combinations at the output of a linear transformation. Again, the only component that

defends against linear cryptanalysis are the non-linear ones, i.e. S-boxes. Different S-boxes gives

better or worse protection, and linear cryptanalysis is most famous for being the best attack on

the Data Encryption Standard (DES) that was the predecessor of AES. The S-boxes in DES do not

give optimal protection against linear cryptanalysis.

The topic of the rest of this thesis is algebraic cryptanalysis. In algebraic cryptanalysis the

attacker treats the unkown bits of the key as variables, and models the whole encryption algo-

rithm as an equation system using the knowledge of one plaintext/ciphertext pair. The question

of breaking the cipher then becomes a question of solving the equation system. In order to keep

the equations of a manageable size the attacker normally needs to introduce more variables

that represent the bits of the cipher block at certain points in the encryption process.Therefor

the total number of variables in the system is usually quite a bit larger than just the size of the

user-selected key. If all operations in a cipher are linear, the equation system describing the ci-

pher would also be linear and hence very easy to solve. So for algebraic cryptanalysis as well, it

is the non-linear components of the cipher that gives protection against this attack method.
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AES and Small-Scale Variants

On November 26th. 2001, the National Institute of Standards and Technology (NIST) published

the Advanced Encryption Standard [9]. This was following a four year long process, where 15

candidates had been evaluated and dwindled down to just one. The global cryptographic com-

munity had been invited to analyse and to try to �nd weaknesses in the candidates, and after a

thorough process, Rijndael was selected as the new standard [13].

Rijndael and AES as speci�ed in [9] are not quite the same, as Rijndael has more �exibility

to block sizes than what was required for AES. This chapter will therefore concentrate on AES as

it is probably the most widely uesd symmetric cipher today. The �rst section will explain how

AES transforms a plaintext into ciphertext and back again. As full AES is beyond what we are

currently able to attack using the techniques in the next chapter, we spend the next section on

small-scale versions of AES. Small-scale AES is a common framework for the analysis of AES-

like equation systems [3]. This will allow us to attack smaller AES-like ciphers and see how small

they must be for attacks to actually succeed on a normal computer. Any weakness found in any

small-scale AES version would however need to be veri�ed for the full AES.

3.1 Overview

The Advanced Encryption Standard falls into the key-iterated block cipher category, as it has

Nr number of rounds consisting of the application of three Boolean permutations on the state

followed by XORing the round key and the state. For the ease of use, and since it has no practical
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implications, we will include the addition of the round key, also known as the subkey, in the

round transformation, even though this is inconsistent with the de�nition of key-alternating

block ciphers from Section 2.4.1.

The AES encrypts blocks of 128 bits of plaintext into blocks of 128 bits ciphertext, and back.

Since any message larger than 128 bits can be broken into bundles of 128 bits and encrypted/decrypted

in parallel, AES may also be considered a bricklayer permutation.

Figure 3.1: Graphical overview of rounds 1 to Nr ¡ 1 of AES. From [10, p. 100].

Depending on the key size Nk , AES will have 10, 12 or 14 rounds. The Nr –1 �rst rounds all

starts with the state going through the nonlinear SubBytes before going through a transposition

of its bytes in ShiftRows, and then dependencies are created between the bytes in MixColumn.

Finally, the round key is XORed onto the intermediate state. The step of XORing in the round

key is named AddRoundKey. The last round follows the same pattern, except that Mix Columns

is omitted. Lastly, before the �rst round and in what we have chosen to call the “pre-round”, the
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initial round key is XORed with the plaintext, creating the �rst intermediate state.

All the round keys are derived in the Key Schedule, an algorithm designed for the expansion

of the original key into Nr Å 1 round keys. The legal key sizes for AES are only three; 128 bits,

192 bits and 256 bits, all divisible by 32. The key size determines the number of rounds AES

will utilize: 10, 12 and 14 rounds, respectively. The key schedule may have fewer rounds itself,

though it will always produce precisely the needed number of subkeys. The concatenation of all

the subkeys is called the expanded key.

Figure 3.2: Pseudo code: high level overview of the AES. From [10].

Figure 3.3: Pseudo code: Round and FinalRound. From [10].
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3.2 Math in AES

Math in AES is done in the �nite �eld GF(28). All elements may be represented as integers,

hexadecimal, binary or as polynomials. We will mostly use binary strings or polynomials. The

primitive polynomial that de�nes the AES instance of GF(28) is x8 Å x4 Å x3 Å x Å 1. We quickly

remind that multiplication by x, or 00000010 is the same as a left shift in binary, where an “over-

�ow” results in an addition of the binary representative of the primitive polynomial: 00011011.

Multiplication by x Å 1, or 00000011, is equal to multiplication by x followed by an addition of

the original element itself. This may be done ef�ciently in both software and hardware.

3.3 Indexing in AES

AES is known as a byte oriented block cipher. This means that the main size of the bundles in

AES are 8 bits large, or exactly one byte. All other bundle sizes are multiples of the byte. This is

also true for the state, which is 128 bits large, or in terms of the bundles, 16 bytes.

When dealing with the state in AES' Boolean functions, the state will always be arranged in

a four by four matrix. The indexing convention used to enumerate these bundles starts at the

top-left bundle, naming it 0. Then it follows the column downwards, incrementing by one as it

goes. Upon reaching the bottom of one column, it will proceed to the next column to its right,

continuing the incrementation where it left off, until it reaches the bottom of the fourth column.

See Figure (3.4) for an illustration. Note that this is contrary to what we are used to when reading,

where we go top right and �nishing the row before moving downwards.

Figure 3.4: AES state indexing scheme.

It should be speci�ed that whenever an element of GF(28) is written in binary and as a col-
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umn, the enumeration will always start at b0 at the topmost bit. When written as a row, we start

enumeration from the rightmost bit towards the left. Again we start indexing with 0. The bit

in position 0 is considered the least signi�cant bit , bearing the same implications as the least

signi�cant digit in a ordinary number.

When enumerating the AES rounds, we will count the “pre-round”, where only AddRound-

Key is performed, as round 0, even though it is technically not a round. The �rst full round will

be designated round 1, and so forth. The �nal round is indexed by Nr .

The fourth indexing scheme is that of the subkeys. The �rst 128 bit subkey is the one who

will be used in the “pre-round”, and will be designated subkey 0 or round key 0. Then follows the

normal incrementation, where the last subkey is subkey Nr . This ends up giving Nr Å 1 subkeys

in total.

3.4 Round Operations

3.4.1 SubBytes

The SubBytespermutation is a bricklayer permutation that applies 16 parallel S-boxes on the

input vector. Each s-box Sb takes a byte as input and then substitutes it with a prede�ned byte,

hence the name S(ubstitution) – box. This permutation is the only non-linear permutation in

AES. The construction of this mapping is a two-fold process, based upon the strong algebraic

properties that GF(28) offer. First step is mapping the bytes, regarded as elements in GF(28),

to their inverse in GF(28) under the irreducible polynomial P(x) Æx8 Å x4 Å x3 Å x Å 1. Since 00

has no multiplicative inverse, it is mapped to itself. In the next step each byte is regarded as a

vector over GF(2) and multiplied by a �xed binary matrix and then added to a �xed 8-bit vector,

shown in Figure 3.5. This step is known as an af�ne mapping. The resulting mapping is shown

in Figure 3.6. Note that no bundle transposition is done on the state during this permutation.

The application of the af�ne mapping turns an otherwise simple algebraic expression of the

S-box into a complex algebraic expression with no �xed or opposite �xed points. This is done to

make it harder to use algebraic manipulations to mount attacks on AES. Implementation wise,

the implementer is free to implement the S-box as a look-up table, to follow the mathematical
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