
Algebraic Attack on Small Scale Variants of

AES using Compressed Right Hand Sides

John - Petter Indrøy

Secure and Reliable Communications

University of Bergen

February 2018

Supervisor: Håvard Raddum

Abstract

The Advanced Encryption Standard is probably the most used symmetric encryption cipher in

use today, which makes it particularly interesting for cryptanalysis. This thesis attacks small-

scale variants of AES through a particular branch of algebraic cryptanalysis known as Com-

pressed Right-Hand Sides. We see some success, as we are able to break for the first time three

rounds of a 32-bit small-scale variant. We also make an interesting discovery, in that we get

indications that some plaintext values result in easier-to-break small-scale instances.

i

Acknowledgment

This work would not have been possible without the support and understanding of many peo-

ple, of which I am deeply grateful.

My heartfelt thanks to my adviser, Dr. Raddum. I am thankful for his patience, guidance and

continued support during this research.

To my parents, for relentless proofreading and help to conquer Excel, for a great upbringing

and support through my whole life, for who you are, I am deeply thankful and appreciative.

To my remaining family and friends, you have shown great patience and understanding,

especially during these last weeks. I look forward to seeing you again, and you have my thanks.

And to the most important and dearest person to me, my wife Helga. Without you, I would

never have come as far. I am ever greateful.

"2018", by XKCD [8].

ii

Contents

Abstract . i

Acknowledgment . ii

1 Introduction 2

1.1 The Concept of Encryption . 2

1.1.1 Symmetric vs. Asymmetric Encryption . 4

1.2 Benchmark for the Security of Encryption . 6

1.3 Cryptanalysis . 7

1.4 Problem Statement for the Thesis . 9

1.5 Thesis Outline . 9

2 Background 10

2.1 Abstract Algebra . 10

2.1.1 Group . 10

2.1.2 Ring . 11

2.1.3 Field . 12

2.1.4 Finite Fields . 13

2.1.5 Polynomials over a Field . 14

2.1.6 Operations on Polynomials . 15

2.1.7 Some Observations on Finite Fields with Characteristic 2 16

2.2 Linear Algebra . 16

2.3 Boolean Functions . 18

2.3.1 Bits and Boolean Vectors . 18

2.3.2 Function, Transformation and Permutation 19

iii

CONTENTS CONTENTS

2.3.3 Partition Bundles . 19

2.3.4 Transposition and Bundle Transposition . 20

2.3.5 Bricklayer Function . 20

2.3.6 Iterative Boolean Transformation . 21

2.4 Block Ciphers . 21

2.4.1 Key-Iterated Block Ciphers . 22

2.5 Cryptanalysis . 23

3 AES and Small-Scale Variants 25

3.1 Overview . 25

3.2 Math in AES . 28

3.3 Indexing in AES . 28

3.4 Round Operations . 29

3.4.1 SubBytes . 29

3.4.2 ShiftRows . 30

3.4.3 MixColumn . 31

3.4.4 AddRoundKey . 32

3.4.5 Key Schedule . 32

3.4.6 Decryption . 33

3.4.7 Design Criterias . 34

3.5 Small Scale Variants of the AES . 34

3.5.1 Parameters . 34

3.5.2 GF (24) and Small-Scale Round Operations . 35

4 Multiple Right-Hand Sides and Compressed Right-Hand Sides Equations 39

4.1 Multiple Right-Hand Sides . 40

4.1.1 MRHS Equation . 40

4.1.2 From AES to MRHS Equations . 40

4.1.3 Solving a System of MRHS Equations . 42

4.1.4 Size of MRHS Equations After Gluing . 45

4.2 Compressed Right-Hand Sides . 46

iv

CONTENTS CONTENTS

4.2.1 Binary Decision Diagrams and Compressed Right-Hand Sides Equations . . 46

4.2.2 BDD Construction . 48

4.2.3 Solving Systems of BDDs: Merging BDDs . 48

4.2.4 Tools for Solving CRHS Equation System: Swapping and Adding Levels . . . 49

4.2.5 Resolving Linear Dependencies in BDDs: Linear Absorption 50

4.2.6 Complexity . 51

4.3 Order of Joining . 51

5 Experiments and Findings 53

5.1 Setup . 54

5.1.1 Software . 54

5.1.2 Hardware . 55

5.1.3 Attack Execution . 55

5.1.4 Known Sources of Error . 55

5.1.5 Potential Sources of Error . 56

5.2 Findings and Results . 57

5.2.1 Reported and not Reported Instances . 57

5.2.2 64-bit Systems . 57

5.2.3 32-bit Systems . 57

5.2.4 16-Bit Systems . 58

5.3 Discussion on Findings . 58

5.3.1 SR*(n,4,1,4) . 59

5.3.2 SR*(n,2,2,4) and SR*(n,1,4,4) . 60

5.3.3 Indications of Plaintext Dependencies . 60

6 Conclusion and Further Works 66

Bibliography 69

A Plaintext Values 71

B Raw Data for 16 Bit Systems 73

v

CONTENTS CONTENTS

C Raw Data for 32 Bit Systems 81

1

Chapter 1

Introduction

The internet has become enormously large and complex, with billions of everyday users. These

users expect things to work, and they expect to use it without becoming subject to malicious

intent. For instance, they expect that the right amount is drawn from their account when paying

someone online, and that only themselves and their bank know how much they have on their

account. There are numerous mechanisms in place attempting to ensure that using the internet

is safe as possible. This thesis aims to take a closer look at one of those mechanisms, namely

the Advanced Encryption Standard, or AES. To understand what the AES is, we need to explain

what encryption is and how encryption is relevant to safe usage of the internet. Therefore, we

also find it natural to talk about how we gauge the security of encryption, which will eventually

lead us to what is known as cryptanalysis. I will then take the opportunity to give the problem

statement in general terms. A more detailed problem statement comes at the start of chapter

5, as it is leans on background covered in chapters 2 til 4. We will then round of this chapter by

giving an overview of the remainder of this thesis.

1.1 The Concept of Encryption

Encryption is the art of rendering readable text into something that looks like garble. When

talking about digital messages, then ideally the garble should look no different than the random

noise that naturally occurs when transferring data digitally. Hence we aim for the garbled mes-

sage to look completely random. When designing modern ciphers there are two aspects related

2

1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

to this perceived randomness which we will consider after we have got some terminology in

place.

Text that is readable to anyone is called plaintext. Plaintext that has been encrypted into a

seemingly random string of letters (or bits, in case of computers), is called ciphertext. Creating

a ciphertext from a plaintext is called to encrypt the plaintext. Making it back to readable form

is called to decrypt. The steps taken to transform a plaintext to a ciphertext and back again is

called an encryption algorithm, or a cipher. As we will see when we consider the application of

encryption, we need one more component to make this useful, namely the key. A key is needed

both to encrypt plaintext and to decrypt a ciphertext. No one who does not know the key should

not be able to extract any information about the plaintext from the ciphertext. Keeping the key

secret is therefore important. An illustration of the encryption process is given in Figure 1.1.

Plain Text Plain TextCipher Text

Encryption

Cipher Key

Decryption

Cipher Key

Figure 1.1: Encryption

The inclusion of keys ties in neatly with the randomness we want in the ciphertexts. As-

suming the key is chosen at random, the randomness in the key should be enough to make the

plaintext and the ciphertext seem completely unrelated. More generally, given two plaintexts

encrypted under the same key, the resulting ciphertexts are supposed to yield no useful infor-

mation at all about the two plaintexts. Even if only of bit, the smallest electronical building block

of computers, is changed, the difference in the ciphertexts must look the same as if all the bits,

or any other number of bits, were changed. More precisely, changing just one bit in one end

(plaintext or ciphertext) should result statistically in the change of approximately half the bits in

the other end.

There are two more principles important to modern-day ciphers. The first one is arguably

the most important one, namely Kerckhoff’s principle: If nothing but the key used is secret, the

cipher should still be secure to use. This implies that even if some malicious third party knows

every single detail about the cipher, not just how it works but also both the plaintext and the

3

1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

corresponding ciphertext under a key, but not the key itself, this third party should still not be

able to somehow figure out the key in use.

The second principle is known by some as Schneier’s Law, but, as Schneier himself points

out [16], this principle outdates him. The principle states that “anyone, from the most clueless

amateur to the best cryptographer, can create an algorithm that he himself can’t break.” [16]. What

he means by this is that not being able to break your own cipher does not mean it is unbreakable.

As trivial as that may seem, it still is important to bear in mind. For the modern day ciphers we

use, there is no formal proof that they are unbreakable.

Because of these two principles, it is widely accepted as best practice to always publish a

new cipher into the wild, so to speak, for others to scrutinize the cipher. If many clever people

have tried hard to break a cipher, but failed, we can be relatively certain that no one can break

it. This is also why this thesis is possible and relevant in the first place.

1.1.1 Symmetric vs. Asymmetric Encryption

As mentioned, encryption is only one of many security mechanisms in play. Its most noteworthy

application is the end-to-end protection it offers messages sent over the internet. Imagine that

Alice wants to talk to her online bank, Bob. If Alice were to send her message to Bob in plaintext,

anyone along the way could read her message. Naturally, Alice would rather like that no other

entity than Bob can read their communication. As most people do, she prefers her financial

details to remain confidential, and she therefore decides to encrypt her message. She applies

her chosen cipher combined with her secret key on her plaintext. Alice then sends the created

ciphertext instead. This way no one that does not know the secret key can read the message.

Since Bob also knows this secret key, he can decrypt and read Alice’s message. Likewise, Bob

can use the secret key to encrypt messages to Alice. This kind of encryption, where the same

key is used to both encrypt and decrypt the message, is known as symmetric encryption and is

illustrated in Figure 1.2.

A very useful consequence of using symmetric ciphers, is that it provides an indirect way for

Alice to identify who she is talking to. If she trusts Bob not to share the key with anyone else, she

can trust that it is Bob she is talking to. Since no one else but Alice and Bob have the key, no one

else can encrypt a message that their secret key decrypts.

4

1.1. THE CONCEPT OF ENCRYPTION CHAPTER 1. INTRODUCTION

Alice
Plain Text

Bob
Plain TextCipher Text

Encryption

Cipher Key

Decryption

Cipher Key

Symmetric

Figure 1.2: Symmetric Encryption.

This raises the question; how can Alice and Bob exchange the secret key in the first place?

One way would be to send the key by some means in the “snail-mail". Fortunately, there exists

a way to exchange keys online: By using asymmetric cryptography.

Alice
Plain Text

Bob
Plain TextCipher Text

Encryption

Public Key

Decryption

Private Key

Asymmetric

Figure 1.3: Asymmetric Encryption.

In asymmetric cryptography, see Figure 1.3, we use two keys instead of just one as in the

symmetric case. One key, the public key is used to encrypt the message while the other key, the

private key decrypts the message. In other words, the key that encrypted the message is not also

capable of decrypting it!

As the names suggest, one key is shared publicly to anyone who wants it, while the other is

kept utmost secret. If Alice wants to communicate with Bob, she can look up Bobs public key

online and use that key to encrypt her message. She then sends the message to Bob, and if Bob

has not shared/lost his private key, she can be confident that only Bob can decrypt the mes-

sage using his private key. The drawback with asymmetric cryptography is that it is significantly

slower than many symmetric cryptographic ciphers. Therefore, it is common to use asymmet-

ric ciphers to exchange the symmetric key with the recipient, and then to switch to a symmetric

cipher. Asymmetric ciphers are also useful to “prove” one’s identity, but that must stay a topic

for another time. We will deal only with a symmetric cipher in this thesis, namely the Advanced

5

1.2. BENCHMARK FOR THE SECURITY OF ENCRYPTION CHAPTER 1. INTRODUCTION

Encryption Standard.

1.2 Benchmark for the Security of Encryption

Since encryption is such an important part in staying safe while using the internet it is only

natural to wonder about the strength of it. The first thing that we need to realize when talking

about the security of ciphers is that no matter which one we choose, it may always be broken.

This may sound odd at first, that we willingly use something we know may be compromised,

and we even claim that is it safe to use. The explanation to that lies in the nature of the keys.

A key is a string of bits of a length predetermined by the cipher in question. In other words, it

is simply a long string of 0’s and 1’s, and anyone with the key can decrypt any ciphertext made

under that key. This means that an attacker can attempt to decrypt any ciphertext by trying all

possible variations of 0’s and 1’s of the specified length. Such an attempt is known as a brute

force attack. A brute force attack will always be possible against any cipher that uses a secret

key, in other words all ciphers in use today, but that does not mean brute force is viable. For

example, the smallest key size used by AES is 128 bits long. Basic combinatorics tells us that

since we have 128 places that each can hold either a 0 or a 1, we have 2128 possible keys. In other

words, guessing a key at random gives a 1/2128 chance to succeed.

Even the fastest supercomputer alive today does not come close to brute-forcing 128 bit

keys. The Sunway TaihuLigth supercomputer currently holds the title of fastest supercomputer

[1], and can do ≈ 100 petaflops, or ≈ 256 flops. Let us assume that we can test one key per flop.

This is a simplification which allows for more keys to be tested at one time than realistic, yet let

us increase our capabilities even further by assuming that we have 1000 such supercomputers.

Then we can test a staggering 266 keys per second! In terms of years, that is:

266 ×60×60×24×365 = 290 keys a year. (1.1)

Even accounting for the fact that we may expect to find a match after testing approximately

6

1.3. CRYPTANALYSIS CHAPTER 1. INTRODUCTION

half of the possible keys, we do not come close:

2128/2

290
= 237 ≈ 137 billion years is needed to find the key. (1.2)

Therefore, we define a cipher as secure if it is computationally infeasible to guess the key.

Furthermore, we define a cipher as broken if there exists a method to find the key faster than by

brute force. Notice that a cipher may still be regarded as secure even if it is broken, since it may

still be computationally infeasible to find the key.

1.3 Cryptanalysis

We know that brute force is always possible, even though not practical. We would like to assure

ourselves that brute force is the best attack we can do. In most cases we cannot know if there

exists a better, more efficient way to find the secret key. The best we can do is to look for a better

way. This is known as cryptanalysis, the science or art of breaking cryptosystems. Currently this

is the best way of gauging and ensuring the security of cryptographic algorithms.

Because of the somewhat vague definition of cryptanalysis, we can divide these efforts into

roughly three categories. It is important to note that opinions differ on whether the second and

third category is included or excluded.

Classical cryptanalysis deals with attempting to recover the secret key from the associated

ciphertext only, or from both the plaintext and ciphertext encrypted under some unknown key.

This is usually done through various mathematical techniques and rigorous analysis of the algo-

rithm in question. These techniques may be of a highly advanced level, or as simply as counting

the frequency of letters. Brute force is an example of a technique in this category. Because it sets

the bar for “worst-case” it also serves as a benchmark for how well the other techniques do. This

is the category that everybody agrees on to be cryptanalysis.

Implementation attacks, or side-channel attacks is the second category. This one tries to ob-

tain the key in use by exploiting weaknesses in how the cipher is implemented in a real-world

application. This category is more debated since there are two kinds of exploitation possible:

The one that looks for the key, and the one that looks for a way to bypass the key. Most cryp-

7

1.3. CRYPTANALYSIS CHAPTER 1. INTRODUCTION

tographers agree that the first one is regarded as cryptanalysis, while the second exploitation is

more debated as to whether it should be considered cryptanalysis. To give an example, finding

a key through the means of monitoring the power usage of a CPU during execution of a cipher

is attempting to acquire the key, while exploiting race-condition to bypass an authentication

process may be outside what many cryptographers consider to be cryptanalysis. Therefore, the

group is somewhat debated.

The last group is social engineering. Bluntly said, this group encompasses all attempts to

lure the victims into giving their keys to the attacker. A typical example of this is a phishing

attack, where the victim is lured onto a website it believes belongs to credible company, when

in reality it is the attacker’s own website made to look like the credible company. If the victim

attempts to log in with the credentials they use on the site they believe they are on, instead of

actually logging in they give their credentials to the attacker. Since this way of obtaining the key,

or equivalently, access to the system in question, is more of a bypass than an actual attack on

the mathematics or implementation of the system, most cryptographers do not consider this

category as part of cryptanalysis. However, in [10] they do.

Those who argue that it belongs to the term ’cryptanalysis’ argues that the secret ingredient

was acquired, and also that the system needs to take into account the human element. No

matter what your opinion on this matter is, for a system to be secure overall, we need both

strong ciphers and to make sure that successful implementation and social engineering attacks

are as unlikely as possible.

When we use the term “cryptanalysis” in the remainder of this thesis, we think of it as “classical

cryptanalysis” as defined above.

One last thing before we are ready to state our problem. As we will see in Chapter 4, attacking

“normal” AES will take so much time that we cannot get any useful results from it. Therefore,

in the second part of Chapter 3, we will consider small-scale variants of AES. In a nutshell, we

vary several of the parameters set for the AES algorithm to create new, but similar, encryption

algorithms that may actually be broken. It is believed that these small-scale variants retain much

of the structure of “full” AES, and that any weaknesses found in a small-scale variant may give

insight on the security of the full version. Using small-scale variants enables us to get useful data

to analyze within a practical time frame. The details will be covered in Chapters 3 and 4.

8

1.4. PROBLEM STATEMENT FOR THE THESIS CHAPTER 1. INTRODUCTION

1.4 Problem Statement for the Thesis

This thesis considers a particular branch of cryptanalysis known as algebraic cryptanalysis, ap-

plied to small-scale variants of the AES. We build on earlier work done in [3, 12, 11], and try to

extend the results found there by attacking more AES variants with newer methods for algebraic

attacks. The results show when we are successful in breaking small-scale versions of AES, and

fill a small gap in our knowledge about the security of the AES.

We decided to put the full problem statement at the beginning of Chapter 5, as we feel that

the full problem statement need more background covered.

1.5 Thesis Outline

Chapter 2 is intended to give a recap of important concepts relevant to the subsequent chap-

ters: Abstract and linear algebra, Boolean functions, block ciphers, and cryptanalysis. Then we

will move onto the Advanced Encryption Standard in Chapter 3, going into the details of the

encryption algorithm. Here we will also cover small-scale AES, a common framework for the

analysis of AES-like equation systems [3]. Chapter 4 covers the background and theory of the

algebraic cryptanalysis branch we will use; Multiple Right-Hand Sides (MRHS) and Compressed

Right-Hand Sides (CRHS). In here we also introduce three different solving strategies that uti-

lizes CRHS. Next, Chapter 5 starts of by explaining the project setup and configurations. It then

summarizes our results, before we discuss these findings. Lastly, in Chapter 6 we give some

closing remarks and work for the future.

9

Chapter 2

Background

This chapter introduces the basic mathematics necessary to understand AES and the algebraic

cryptanalysis of it that comes later in the thesis. Much of the content here is learned from the

book "The design of Rijndael" by Daemen and Rijmen [13]. Furthermore, both the Boolean

Functions and Block Cipher sections are inspired by the same book, though most, if not all, may

be considered common knowledge in the field.

2.1 Abstract Algebra

The mathematical foundation of the Advanced Encryption Standard, as for many other cryp-

tosystems, are based upon the field of abstract algebra. This section aims to give a recap of the

most relevant concepts of abstract algebra as it pertains to this research, and is adapted from

[13]. For a more comprehensive treatment of abstract algebra, consult an algebra book such as

[4]

2.1.1 Group

In abstract algebra, groups are the basic construction on which more advanced mathematical

constructs are built. It is therefore natural to begin by defining a group.

Definition 1. A group <G ,+> consists of a set G and an operation defined on its elements, here

10

2.1. ABSTRACT ALGEBRA Chapter 2

denoted by +:

+ : G ×G →G : (a,b) 7→ a +b,

fulfilling the following conditions:

• Closed: ∀a,b ∈G : a +b ∈G

• Associative: ∀a,b,c ∈G : (a +b)+ c = a + (b + c)

• Neutral element: ∃0 ∈G , such that ∀a ∈G : a +0 = a

• Inverse elements: ∀a ∈G ,∃b ∈G such that a +b = 0

Another possible condition the operation may satisfy is commutativity:

Commutative: ∀a,b ∈G : a +b = b +a

If the operation also is commutative, we call the group an Abelian group.

Example 1. There are two well known examples of Abelian groups that we use every day: the

first is the set of integers under addition: <Z,+>. The second is the structure <Z24,+>, which

is used in 24 hour watches. It contains the integer numbers 0-23. The operation is addition

modulo 24. This last example can be generalized to the structure < Zn ,+> which contains the

set of integers from 0 to n −1, with addition modulo n being its operation.

Since the set of integers under addition is the best-known example of a group, it is com-

monplace to use “+” to denote an arbitrary group operation. Also, “+” is often referred to as

“addition”. We will adhere to this practice in this thesis both when talking about an arbitrary

group operation as well as talking about integer addition. The context should make it clear what

operation the symbol is referring to.

2.1.2 Ring

The next structure to define is the ring. A ring is essentially an Abelian group that has been

“expanded” with a second operation. The second operation needs to have a neutral element,

11

2.1. ABSTRACT ALGEBRA Chapter 2

associativity and closedness, but it needs not have inverses. Therefore, the set under the second

operation only, needs not be a group by itself.

Definition 2. A ring < R,+,×> consists of a set R with two operations defined on its elements,

here denoted by + and ×. In order to qualify as a ring, the operations have to fulfill the following

conditions:

• The structure < R,+> is an Abelian group

• The operation × is closed, and associative over R. There is a neutral element for × in R

• The two operations + and × are related by the law of distributivity: ∀a,b,c ∈ R : (a+b)×c =
(a × c)+ (b × c).

The operator × is often referred to as “multiplication”, and its neutral element is usually de-

noted by 1. If × is commutative, the ring < R,+,×> is called a commutative ring.

Example 2. Example: If we include multiplication in the set of integers under addition from

the previous example, we get the ring < Z,+,× >, the set of integers under addition and mul-

tiplication. This ring is commutative. Another well known ring is the set of matrices over Z

with n rows and n columns under “matrix addition” and “matrix multiplication”. This ring is not

commutative for n larger than 1.

2.1.3 Field

The next structure, the field, will expand the concept of a ring. Simply said, a field is a commu-

tative ring that also has inverse elements with respect to multiplication.

Definition 3. A structure < F,+,×> is a field if the following two conditions are satisfied:

• < F,+,×> is a commutative ring.

• For all elements of F , there is an inverse element in F with respect to the operation ×,

except for the element 0, the neutral element of < F,+>.

12

2.1. ABSTRACT ALGEBRA Chapter 2

A field can be thought of as a set that is an Abelian group both under addition alone and

under multiplication alone, except for 0. More formally, a structure < F,+,× > is a field if both

< F,+ > and < F \{0},× > are Abelian groups and the law of distributivity applies. The neutral

element of < F \{0},×> is known as the unit element of the field.

Example 3. The set of real numbers under addition and multiplication is the best-known exam-

ple of a field. When a set is a field, it is possible to do addition, subtraction, multiplication and

division without leaving the set. Subtraction is done by adding inverses: a–b = a + (−b), where

−b is the additive inverse of b. Division uses the multiplicative inverses: a/b = a ×b−1, where

b−1 is the inverse of b with respect to multiplication.

2.1.4 Finite Fields

A finite field is a field with a finite number of elements. The number of elements in the set of

the finite field is known as the order of the field. There can only exist finite fields for which

the order is a prime power. More formally, there can only exists fields of order m if and only if

m = pn for some integer n and p being a prime integer. This has to do with the need for inverses

for both operations in the field. It is also worth noting that p is known as the characteristic of

the finite field. An important property of finite fields is the fact that fields of the same order

are isomorphic: Even though the elements of two fields of the same order may differ in their

representation, their underlying algebraic structure is exactly the same.

Definition 4. Two finite fields F and F ′ are isomorphic if there exists a one-to-one function ϕ

mapping F onto F ′ and the following conditions are satisfied:

• ϕ(x + y) =ϕ(x)+ϕ(y),∀x, y ∈ F

• ϕ(x × y) =ϕ(x)×ϕ(y),∀x, y ∈ F .

This means that for each prime power there exists exactly one finite field, denoted GF (pn).

The perhaps easiest form of finite fields to grasp are the ones where n = 1. When this is the

case, the finite field has order p, and due to isomorphism, the finite field can be represented by

<Zp ,+,×>.

13

2.1. ABSTRACT ALGEBRA Chapter 2

When the order is not prime, i.e. n > 1, things are a bit more complicated. The operations

can no longer be modulo p, nor will they be modulo pn . Instead we will represent GF (pn) as

polynomials over GF (p) of degree n. This is not the only way to represent GF (pn) with n > 1, but

it is the one we will use in this thesis. The reason for this is that these polynomials in GF (28) can

easily be represented using Boolean vectors, which can conveniently be stored as 8-bit values, or

bytes. This is opportune for us, since we will only be working with fields of characteristic 2, with

n ∈ {1,4,8}. Table (2.1) gives GF (24) as numbering the elements using hexadecimal notation and

the corresponding 4 bit Boolean vector.

Hexadecimal Boolean vector
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

Table 2.1: Table of the elements of GF (24). Use equation (2.1) to go from Boolean vector form to
the corresponding polynomial.

2.1.5 Polynomials over a Field

A polynomial is a sum of a finite number of terms, where each term is a constant multiplied with

one or more variables to the power of a positive integer exponent. A polynomial b over a field F

is an expression of the form

b(x) = bn−1xn−1 +bn−2xn−2 + ...+b1x +b0,

14

2.1. ABSTRACT ALGEBRA Chapter 2

where the bi ∈ F are known as the coefficients. There is no need to evaluate the polynomials in

this thesis, and we will therefore treat them as abstract elements only. The degree of a polynomial

is the largest exponent in the polynomial which have a non-zero coefficient.

The set of polynomials over a field F is denoted F [x]. A compressed, efficient way of writing

polynomials is to store only the coefficients as an ordered string. Since we will use polynomials

with coefficients from GF (2) in this thesis, the coefficients may only be 0 or 1. This enables us

to store polynomials up to degree 8 in a single byte:

b7b6b5b4b3b2b1b0 7→ b(x) = b7x7 +b6x6 +b5x5 +b4x4 +b3x3 +b2x2 +b1x +b0. (2.1)

Bytes are often written in hexadecimal notation.

2.1.6 Operations on Polynomials

Addition of polynomials consists of summing the coefficients of equal powers of x, where the

summing of the coefficients occurs in the underlying field F . The neutral element for addition is

the polynomial in which all coefficients are equal to zero. The additive inverse of a polynomial

is easily made by replacing each coefficient by its additive inverse element in F . For the poly-

nomial representation of the elements in GF (2n), each polynomial will be its own inverse under

addition.

Definition 5. A polynomial d(x) is irreducible over the field GF (p) if and only if there exist no

two polynomials a(x) and b(x) with coefficients in GF (p) such that d(x) = a(x)×b(x), where

both a(x) and b(x) are of degree > 0.

Definition 6. The multiplication of two polynomials a(x) and b(x) is defined as the algebraic

product of the polynomials modulo an irreducible polynomial m(x):

c(x) = a(x) ·b(x) ⇐⇒ c(x) ≡ a(x)×b(x) (modm(x)).

This makes the multiplication operation closed.

With respect to addition of polynomials, multiplication of polynomials is associative, com-

mutative and distributive. The neutral element is the polynomial of degree 0 and with coeffi-

15

2.2. LINEAR ALGEBRA Chapter 2

cient of x0 equal to 1. In order to find the inverse for the multiplication, the Extended Euclidean

Algorithm may be utilized (see e.g. [7, p. 81]).

2.1.7 Some Observations on Finite Fields with Characteristic 2

• Elements of finite fields with characteristic 2 may be represented as binary polynomials.

This makes them easy to store and process digitally.

• Multiplication by x is fast when byte representation is used, as it is the same as a left-

shift of the bits, followed by an addition of the chosen reduction polynomial if the highest

coefficient is 1.

2.2 Linear Algebra

As linear algebra is one of the main pillar of MRHS and CRHS, this section will briefly cover some

core aspects of it. This section is based upon [6]. For a comprehensive treatment, see [6] or some

other linear algebra textbook.

A linear equation in the variables x1, . . . , xn is an equation that can be written in the form

a1x1 +a2x2 +·· ·+an xn = b (2.2)

where a1, . . . , an are called the coefficients. A system of linear equations (or a linear system) is a

collection of one or more linear equations involving the same variables.

Example 4.

x1 +x2 +x3 = 0

x1 +x3 = 1

The coefficients of a system of linear equations may be written as a matrix, in what is known

as the coefficient matrix.

Example 5. The coefficient matrix of Example 4:

1 1 1

1 0 1

16

2.2. LINEAR ALGEBRA Chapter 2

The size of a matrix is the number of rows and columns that comprises it, denoted m×n.

A matrix with only one column is called a vector. If b is included in the coefficient matrix of

Example 4, we have the augmented matrix.

Example 6. The augmented matrix of Example 4:

1 1 1 0

1 0 1 1

Reducing the augmented matrix in Example 6 into echelon form (see [6, ch 1.2]) quickly tells

us if there exists a solution to Example 4. If there exists no row in the reduced augmented matrix

on the form
[

0 . . . 0 1
]

then there exists at least one solution. Otherwise we have no solution.

Further reducing the matrix into reduced echelon form makes it easy to tell if the solution is

unique. If there are no free variables the solution is unique. Otherwise we have more than one

solution, depending on the field we are in. For R we have infinitely many solutions, while for

GF (2), which is the one we will operate in, we have 2k solutions for k free variables.

Given vectors v1, . . . ,vp in GF (2)n and given scalars c1, . . . ,cp , the vector y defined by

y = c1v1 +·· ·+cp vp (2.3)

is called a linear combination of v1, . . . ,vp with weights c1, . . . ,cp .

The matrix equation Ax = b is the linear combination of the columns of A using the corre-

sponding entries in x as weights, that is

Ax =
[

a1 a2 . . . an

]

x1

x2

. . .

xn

= x1a1 +x2a2 +·· ·+xnan

Example 7. Ax = b form of Example 4:

1 1 1

1 0 1

x1

x2

x3

=
0

1

A n-vector x is said to be a solution if it satisfies Ax = b, meaning that b is a linear combination

of the columns of A using the entries of x as weights. A system is said to be consistent if it contains

17

2.3. BOOLEAN FUNCTIONS Chapter 2

no rows on the form
[

0 . . . 0 1
]

when in echelon form. In other words, when there is at least

one solution to the system. Otherwise it is said to be inconsistent.

A set {v1, . . . ,vp } of two or more rows of A is said to be linearly dependent if there exists

weights c1, . . . ,cp such that

0 = c1v1 +·· ·+cp vp ,

where not all ci are 0. If there is no combination that forms the zero row, {v1, . . . ,vp } are said to

be linearly independent of each other.

2.3 Boolean Functions

2.3.1 Bits and Boolean Vectors

The smallest finite field, GF (2) has only two elements, 0 and 1. These elements are known as

bits, or Boolean variables, depending on context. The two operations of this finite field, addition

and multiplication correspond to the logical operations of XOR and AND respectively. XOR is a

binary function that returns 1 if and only if the two input values differ, see Table (2.2). AND is a

binary function that on the other hand returns 1 if and only if both input values are 1, see Table

(2.3).

XOR 0 1
0 0 1
1 1 0

Table 2.2: Table for XOR of two bits.

AND 0 1
0 0 0
1 0 1

Table 2.3: Table for AND of two bits.

A vector whose coordinates are bits is called a Boolean vector. Often a Boolean vector is

represented as a binary string of equal length to the vector. One can XOR or AND two Boolean

vectors of equal size by XORing/ANDing the corresponding bits from each vector, called bitwise

XOR and bitwise AND.

18

2.3. BOOLEAN FUNCTIONS Chapter 2

2.3.2 Function, Transformation and Permutation

A Boolean function b =ϕ(a) is a function that maps a Boolean vector to another Boolean vector.

ϕ : GF
(
2n)→GF

(
2m)

: a 7→ b =ϕ (a)

where a is called the input vector and b is called the output vector. If the output vector b has

only one bit, that is m = 1, then ϕ is known as a Boolean function. When the input vector a

has the same length as the output vector b, or n = m, ϕ is known as a Boolean transformation.

A Boolean transformation may be viewed as a function that operates on a state. If the Boolean

transformation also is one-to-one and onto, which makes it invertible, then we call ϕ a Boolean

permutation. Onto means that every possible output vector is mapped to by some input vector

to ϕ. One-to-one means that different input vectors always maps to different output vectors.

Summarized, a Boolean permutation is a Boolean function that is invertible, and that has input

vectors a of same length as its output vectors b.

2.3.3 Partition Bundles

When dealing with sets of binary variables, it is often useful to partition them into disjoint sub-

sets known as bundles. This allows us to express functions in terms of these bundles instead of

in terms of each individual bit. We will deal only with ordered sets, which has the effect that the

bits within the bundles also will be ordered, and that the bundles among themselves, at least ini-

tially, will be ordered. We normally use indexes to keep track of the order, and the index scheme

in use will be explained when needed.

By bundling together bits one can easily represent extensions of GF (2). For instance, a bun-

dle of 4 bits can be thought of as an element in GF (24), with indexing starting at 0 and rightmost.

Thus it corresponds with the indexing convention used in polynomials over a field, like in (2.1).

Table (2.4) shows a bundle of four bits, and its corresponding polynomial in GF (24).

Bundle Polynomial
0101 0x3 +x2 +0x +1

Table 2.4: A 4-bit bundle and its corresponding polynomial.

19

2.3. BOOLEAN FUNCTIONS Chapter 2

2.3.4 Transposition and Bundle Transposition

A transposition b = πa is a function that changes the order of an ordered set, without changing

the values of the elements.

bi = ap(i),

where i is an index and p(i) is a permutation of the indices. When the set is a set of bundles,

this means that a permutation of the bundles will be executed, but the order of the internal bits

of each bundle will remain the same. So even if the bundle order is changed, the values stay the

same. This is known as a bundle transposition, and Figure (2.1) gives an example.

Figure 2.1: Example of a bundle transposition. From [13, p. 21].

2.3.5 Bricklayer Function

A similar, yet fundamentally different Boolean function to the bundle permutation, is the brick-

layer function. The bricklayer function also works on smaller partitions of a set, but unlike the

bundle permutations, it may, and usually do, change the values of the bits of its bundles. One

may view it as a Boolean function that may be decomposed into a number of Boolean functions,

each of whom operate in parallel on a partition. Note that these decomposed functions may be

different from one another.

These decomposed functions are known as S-boxes when the function is non-linear, and

D-boxes when they are linear. S stands for substitution while D stands for diffusion. When the

input vector is of the same length as its output vector, we call the overall function for a bricklayer

transformation. If the partitions/bundles within the input vector a and b are denoted by ai

and bi respectively, this can be represented as bi = ϕi (ai). It is worth noting that the parallel

operations of the S-/D- boxes are independent from each other.

The non-linear step of the AES-candidate Serpent is an example of a bricklayer function. As

are all AES’ Boolean transformations, as we will see in the next chapter. If the S- / D- boxes of

20

2.4. BLOCK CIPHERS Chapter 2

the bricklayer transformation are all invertible, the bricklayer transformation is also invertible,

and thus known as a bricklayer permutation.

2.3.6 Iterative Boolean Transformation

One may apply Boolean transformations on a Boolean vector, one after another, creating a se-

quence of Boolean transformations known as an iterative Boolean transformation. Figure 2.2

shows the form of an iterative transformation, in where ρ(i) represents the individual transfor-

mations.

β= ρ(r) ◦ . . .◦ρ(2) ◦ρ(1)(a1)

The value of ρ(i)◦ . . .◦ρ(1)(a1) for 1 < i < r is known as an intermediate state. If all the intermedi-

ate functions are Boolean permutations, the whole function is an iterative Boolean permutation,

and is thus invertible.

Figure 2.2: Illustration of an iterative Boolean transformation. From [13, p. 23].

2.4 Block Ciphers

A block cipher is a permutation that transforms plaintext blocks of a fixed length nb to ciphertext

blocks of the same length, under the influence of a cipher key k. One may view a block cipher

21

2.4. BLOCK CIPHERS Chapter 2

as a set of operations that works on fixed length vectors. The key vector may be of a different

length nk .

For a fixed plaintext vector and a key vector of size nk there are 2nk possible permutations

for the block cipher. The act of transforming an input vector, or plaintext block, into an output

vector, or ciphertext block, under the influence of the key k, is known as encrypting the plain-

text under k. Transforming the ciphertext back into the plaintext using the key k, is known as

decrypting the ciphertext under k.

The specification of the block cipher gives the encryption algorithm. The encryption algo-

rithm specifies the operations to be used, and the sequence in which they will be applied to the

plaintext in order to obtain the ciphertext. In this thesis we will only be dealing with plaintexts,

keys and ciphertexts represented as Boolean vectors. This means that the only operations we

will be dealing with are Boolean functions. Since encrypting a plaintext without the ability to

decrypt it again is of little use to us, all Boolean functions will be Boolean permutations.

2.4.1 Key-Iterated Block Ciphers

According to [13], AES belongs to a class of block ciphers known as key-iterated block ciphers.

In a key-iterated block cipher, the cipher is defined as the alternating application of round-

transformations and key additions. One application of the round-transformation, or the key-

independent Boolean transformation, and one key addition is one round of the cipher. It is

normal to have a key addition step before the first round as well. The keys for each round are

usually specified in a part of the encryption algorithm known as the key schedule. How the key

schedule and round transformations are designed vary from block cipher to block cipher.

Key-iterated block ciphers’ key addition step is simply to XOR in the round key. Further-

more, each round transformation, with the possible exception of the first or last round, need

be the same. This makes for efficient implementation in both hardware and software. Key-

iterated block ciphers belong to the class of key-alternating block ciphers. Figure 2.3 illustrates

two rounds of a key-alternating block cipher.

22

2.5. CRYPTANALYSIS Chapter 2

Figure 2.3: Key-alternating block cipher with two rounds. From [13, p. 26]

2.5 Cryptanalysis

Analysing ciphers to assess their strength is known as cryptanalysis. As already noted in Section

1.3 we only consider classical cryptanalysis in this thesis, i.e., only studying the abstract descrip-

tion of the cipher in question and not taking any particular use or implementation into account.

There are some known standard techniques for doing cryptanalysis of block ciphers. The most

well known (modern) cryptanalytic methods are called differential and linear cryptanalysis.

In differential cryptanalysis one considers two plaintexts at the time, usually with some

small, known, difference between them. The crucial observation is that adding the same round

key onto the two plaintexts will not change this difference! So when only considering differences

of two cipher blocks, key additions behave like the identity mapping. Linear operations in the

cipher change the difference of a cipher block, but in a known way. The only operations in a

cipher that can change a difference in an unpredictable way are the non-linear ones, such as

S-boxes. In a differential attack the attacker tries to predict what the difference of the two cipher

blocks will be at some point in the encryption operation. If the attacker knows that a difference

has a relatively high probability of occurring at some particular point close to the ciphertext, he

can use this information to find what the value of at least parts of the last round key(s) must be.

This is usually enough to break the cipher.

In linear cryptanalysis the attacker studies linear combinations of bits from the cipher block

23

2.5. CRYPTANALYSIS Chapter 2

as it progresses through the cipher. Starting with a known plaintext, the attacker knows what the

sum of some of its bits will be. After adding the first round key, the attacker knows that the sum of

the same bits in the cipher block will have the same value if the corresponding bits in the round

key sum to 0, and will be flipped otherwise. The crucial thing is that repeating this for many

plaintexts, the attacker knows that the 0/1-distribution of the particular linear combination will

be the same, or flipped, after adding key material. Applying linear transformations on the cipher

block does not change this, the attacker still knows how skewed the 0/1-distribution is for some

linear combinations at the output of a linear transformation. Again, the only component that

defends against linear cryptanalysis are the non-linear ones, i.e. S-boxes. Different S-boxes gives

better or worse protection, and linear cryptanalysis is most famous for being the best attack on

the Data Encryption Standard (DES) that was the predecessor of AES. The S-boxes in DES do not

give optimal protection against linear cryptanalysis.

The topic of the rest of this thesis is algebraic cryptanalysis. In algebraic cryptanalysis the

attacker treats the unkown bits of the key as variables, and models the whole encryption algo-

rithm as an equation system using the knowledge of one plaintext/ciphertext pair. The question

of breaking the cipher then becomes a question of solving the equation system. In order to keep

the equations of a manageable size the attacker normally needs to introduce more variables

that represent the bits of the cipher block at certain points in the encryption process.Therefor

the total number of variables in the system is usually quite a bit larger than just the size of the

user-selected key. If all operations in a cipher are linear, the equation system describing the ci-

pher would also be linear and hence very easy to solve. So for algebraic cryptanalysis as well, it

is the non-linear components of the cipher that gives protection against this attack method.

24

Chapter 3

AES and Small-Scale Variants

On November 26th. 2001, the National Institute of Standards and Technology (NIST) published

the Advanced Encryption Standard [9]. This was following a four year long process, where 15

candidates had been evaluated and dwindled down to just one. The global cryptographic com-

munity had been invited to analyse and to try to find weaknesses in the candidates, and after a

thorough process, Rijndael was selected as the new standard [13].

Rijndael and AES as specified in [9] are not quite the same, as Rijndael has more flexibility

to block sizes than what was required for AES. This chapter will therefore concentrate on AES as

it is probably the most widely uesd symmetric cipher today. The first section will explain how

AES transforms a plaintext into ciphertext and back again. As full AES is beyond what we are

currently able to attack using the techniques in the next chapter, we spend the next section on

small-scale versions of AES. Small-scale AES is a common framework for the analysis of AES-

like equation systems [3]. This will allow us to attack smaller AES-like ciphers and see how small

they must be for attacks to actually succeed on a normal computer. Any weakness found in any

small-scale AES version would however need to be verified for the full AES.

3.1 Overview

The Advanced Encryption Standard falls into the key-iterated block cipher category, as it has

Nr number of rounds consisting of the application of three Boolean permutations on the state

followed by XORing the round key and the state. For the ease of use, and since it has no practical

25

3.1. OVERVIEW Chapter 3

implications, we will include the addition of the round key, also known as the subkey, in the

round transformation, even though this is inconsistent with the definition of key-alternating

block ciphers from Section 2.4.1.

The AES encrypts blocks of 128 bits of plaintext into blocks of 128 bits ciphertext, and back.

Since any message larger than 128 bits can be broken into bundles of 128 bits and encrypted/decrypted

in parallel, AES may also be considered a bricklayer permutation.

Figure 3.1: Graphical overview of rounds 1 to Nr −1 of AES. From [10, p. 100].

Depending on the key size Nk , AES will have 10, 12 or 14 rounds. The Nr –1 first rounds all

starts with the state going through the nonlinear SubBytes before going through a transposition

of its bytes in ShiftRows, and then dependencies are created between the bytes in MixColumn.

Finally, the round key is XORed onto the intermediate state. The step of XORing in the round

key is named AddRoundKey. The last round follows the same pattern, except that Mix Columns

is omitted. Lastly, before the first round and in what we have chosen to call the “pre-round”, the

26

3.1. OVERVIEW Chapter 3

initial round key is XORed with the plaintext, creating the first intermediate state.

All the round keys are derived in the Key Schedule, an algorithm designed for the expansion

of the original key into Nr + 1 round keys. The legal key sizes for AES are only three; 128 bits,

192 bits and 256 bits, all divisible by 32. The key size determines the number of rounds AES

will utilize: 10, 12 and 14 rounds, respectively. The key schedule may have fewer rounds itself,

though it will always produce precisely the needed number of subkeys. The concatenation of all

the subkeys is called the expanded key.

Figure 3.2: Pseudo code: high level overview of the AES. From [10].

Figure 3.3: Pseudo code: Round and FinalRound. From [10].

27

3.2. MATH IN AES Chapter 3

3.2 Math in AES

Math in AES is done in the finite field GF (28). All elements may be represented as integers,

hexadecimal, binary or as polynomials. We will mostly use binary strings or polynomials. The

primitive polynomial that defines the AES instance of GF (28) is x8 + x4 + x3 + x +1. We quickly

remind that multiplication by x, or 00000010 is the same as a left shift in binary, where an “over-

flow” results in an addition of the binary representative of the primitive polynomial: 00011011.

Multiplication by x +1, or 00000011, is equal to multiplication by x followed by an addition of

the original element itself. This may be done efficiently in both software and hardware.

3.3 Indexing in AES

AES is known as a byte oriented block cipher. This means that the main size of the bundles in

AES are 8 bits large, or exactly one byte. All other bundle sizes are multiples of the byte. This is

also true for the state, which is 128 bits large, or in terms of the bundles, 16 bytes.

When dealing with the state in AES’ Boolean functions, the state will always be arranged in

a four by four matrix. The indexing convention used to enumerate these bundles starts at the

top-left bundle, naming it 0. Then it follows the column downwards, incrementing by one as it

goes. Upon reaching the bottom of one column, it will proceed to the next column to its right,

continuing the incrementation where it left off, until it reaches the bottom of the fourth column.

See Figure (3.4) for an illustration. Note that this is contrary to what we are used to when reading,

where we go top right and finishing the row before moving downwards.

Figure 3.4: AES state indexing scheme.

It should be specified that whenever an element of GF (28) is written in binary and as a col-

28

3.4. ROUND OPERATIONS Chapter 3

umn, the enumeration will always start at b0 at the topmost bit. When written as a row, we start

enumeration from the rightmost bit towards the left. Again we start indexing with 0. The bit

in position 0 is considered the least significant bit, bearing the same implications as the least

significant digit in a ordinary number.

When enumerating the AES rounds, we will count the “pre-round”, where only AddRound-

Key is performed, as round 0, even though it is technically not a round. The first full round will

be designated round 1, and so forth. The final round is indexed by Nr .

The fourth indexing scheme is that of the subkeys. The first 128 bit subkey is the one who

will be used in the “pre-round”, and will be designated subkey 0 or round key 0. Then follows the

normal incrementation, where the last subkey is subkey Nr . This ends up giving Nr +1 subkeys

in total.

3.4 Round Operations

3.4.1 SubBytes

The SubBytes permutation is a bricklayer permutation that applies 16 parallel S-boxes on the

input vector. Each s-box Sb takes a byte as input and then substitutes it with a predefined byte,

hence the name S(ubstitution) – box. This permutation is the only non-linear permutation in

AES. The construction of this mapping is a two-fold process, based upon the strong algebraic

properties that GF (28) offer. First step is mapping the bytes, regarded as elements in GF (28),

to their inverse in GF (28) under the irreducible polynomial P (x) = x8 + x4 + x3 + x +1. Since 00

has no multiplicative inverse, it is mapped to itself. In the next step each byte is regarded as a

vector over GF (2) and multiplied by a fixed binary matrix and then added to a fixed 8-bit vector,

shown in Figure 3.5. This step is known as an affine mapping. The resulting mapping is shown

in Figure 3.6. Note that no bundle transposition is done on the state during this permutation.

The application of the affine mapping turns an otherwise simple algebraic expression of the

S-box into a complex algebraic expression with no fixed or opposite fixed points. This is done to

make it harder to use algebraic manipulations to mount attacks on AES. Implementation wise,

the implementer is free to implement the S-box as a look-up table, to follow the mathematical

29

3.4. ROUND OPERATIONS Chapter 3

Figure 3.5: Second step in constructing the S-box. Note that B ′
i (x) = A−1

i (x). From [10, p. 103].

Figure 3.6: AES S-box: Substitution values for the byte x y (in hexadecimal format). From [9].

description, or to implement it in hardware instead of software. The 16 applications of the S-box

may also be done sequentially or in parallel. This gives flexibility to AES, as it is easily adaptable

to the various needs that arise in the real world.

When decrypting, one uses Sb−1, the inverse S-box instead. The permutation Sb−1 is ob-

tained through a two-step operation. First the inverse of the affine mapping is applied. There-

after, the bytes are mapped to their inverse, same way as when encrypting. This inverse S-box is

also called InvSubBytes.

3.4.2 ShiftRows

ShiftRows is a bundle transposition. It cyclically rotates row s of the state matrix Ns positions to

the left. The values for Ns are simply given as Ns = s, so the top row (indexed by 0) is left in place.

The row second to top is rotated one position to the left, next one two positions and the bottom

30

3.4. ROUND OPERATIONS Chapter 3

Figure 3.7: ShiftRows rotation of the rows of the state matrix.

row three positions. This ensures that all the new columns contain exactly one byte from each

of the previous columns, setting up the stage for MixColumn. See Figure 3.7.

The inverse procedure of ShiftRows, the InvShiftRows, rotates the rows 0, 1, 2 and 3 posi-

tions to the right, again starting from the top. This simply sets the bytes back to their original

positions.

3.4.3 MixColumn

As with SubBytes, MixColumn is a bricklayer function. But where SubBytes works on 16 bytes

at a time, MixColumn works on a bundle partition of four. Each column in the state matrix is

considered a bundle and forms the input to MixColumn. Similar to SubByte, one can process

one columns at a time or all four in parallel, depending on the needs of the implementer. As

one can see in Figure 3.8, the D-box of MixColumn performs a matrix multiplication between

the input column and a fixed matrix. Each element is one of the state bytes, and considered to

be an element of GF (28).

The elements of the fixed matrix are 01, 02 and 03 and were chosen for their simplicity to

implement in software and into dedicated hardware. Multiplying with 01 just gives the element

itself, and as mentioned earlier multiplying with 02 is just a left-shift of the coefficients in the

respective element. Multiplying with 03 is a left-shift followed by an XOR of the original element.

Alternatively, a look-up table for multiplication with 02 and 03 may be used.

Since one input byte influences four output bytes, MixColumn is a major contributor to-

wards the diffusion in AES. Combined with ShiftRows, one byte has influenced all 16 bytes after

two rounds of the AES. It also means that the influence of the previous round’s AddRoundKey is

31

3.4. ROUND OPERATIONS Chapter 3

Figure 3.8: Overview of the MixColumn D-box. The leftmost vector is the output vector. From
[10, p.105].

diffused over four bytes this round, contributing to confusion.

For decryption, the InvMixColumn simply uses the inverse matrix given for MixColumn to

undo the effect of MixColumn. It should be noted that the first round of decryption undoes the

last round of encryption, and therefore no InvMixColumn should be applied.

3.4.4 AddRoundKey

This step is the most straightforward one in AES. The state is modified by XORing it with a round-

key. Since XORing again with the same roundkey is the inverse operation, the only care needed

to be taken when decrypting is to ensure that one remembers to add the roundkeys in reverse

order.

3.4.5 Key Schedule

The user-selected key in AES is 128, 192, or 256 bits long. The key is partitioned into bytes and

arranged in a state with four rows, similar to the cipher block state. The key schedule of the

AES treats each column of the state as one bundle. The state itself will have four, six or eight

columns, depending on which key size is in use. The next round is then created one column at

at time, where the basic concept is that column C r
j (column j in the r ’th round key) is created

by XORing C r
j−1 and C r−1

j . The exception to this rule is the first column in each round C r
0 . This

column is created by XORing C r−1
0 with g (C r−1

b) where C r−1
b is the last column from round r −1.

The function g () is a non-linear function with a four byte input and output, regarded as a

column. The four bytes are rotated cyclically one position downwards, and then each byte goes

through the S-box. Finally, a round constant is added to the topmost byte of the output column.

This round constant is an element of GF (28), and Table 3.1 shows the round constants for each

32

3.4. ROUND OPERATIONS Chapter 3

Round Round Constant
1 00000001
2 00000010
3 00000100
4 00001000
5 00010000
6 00100000
7 01000000
8 10000000
9 00011011

10 00110110

Table 3.1: Round constants for GF (28).

round.

The values of the initial state is the given key. Since each round key is 128 bits large, the given

key may constitute one subkey, one and a half or two subkeys, for the 128-bit, 192-bit and 256-

bit key sizes respectively. This means that the rounds of the key schedule will not necessarily

correspond to those of the AES rounds for the 192 and 256 key sizes.

The key schedule for 256 bits is slightly more complicated than for 128 and 192 bits. It in-

troduces another non-linear function h(). The h() function takes four input bytes and gives four

output bytes by applying the S-box to each of the four bytes. The function h() is applied after

the fourth column created in the each key schedule round. Figure (3.9) gives a graphical repre-

sentation of the 256-bit key schedule. Note however that the indexing direction here is right to

left, opposite of the indexing direction used otherwise in this thesis.

3.4.6 Decryption

Decryption in AES is essentially a reversal of the encryption process, using the inverse func-

tions of each step. That means that the order of a normal round starts with AddRoundKey, then

InvMixColumn, InvShiftRows and ends with InvSubBytes. Note that the very first round of de-

cryption omits InvMixColumn, and that the very last thing that happens is the application of

AddRoundKey, corresponding to the AddRoundKey of the “pre-round” when encrypting.

33

3.5. SMALL SCALE VARIANTS OF THE AES Chapter 3

3.4.7 Design Criterias

AES is designed to be secure, simple, efficient and versatile. Security and simplicity should walk

hand in hand, as does efficiency and versatility. As we have seen, many of the choices that

makes AES efficient also makes it versatile. The algorithm needs to be as simple as possible, as

that makes it easier to analyse and as such indirectly improves the security.

The security aspect is the most important one for any cipher. A good cipher needs to be non-

linear, as linear systems are easily breakable. Furthermore, it needs to show resilience towards

known cryptanalysis techniques known at the time, especially towards differential and linear

cryptanalysis. A cipher also needs to attempt to take future development in cryptanalysis into

account. In [13] the two authors of AES explain their reasoning behind their design of AES in

more detail, explaining a strategy they call “the wide trail strategy”. It is a recommended read for

anyone who wants to know more about AES’ design and thought process.

3.5 Small Scale Variants of the AES

One approach to attacking iterated block ciphers is to define a series of round-reduced versions

of the cipher, and to see how many rounds one can break. This approach may yield information

about potential weaknesses in the cipher at question, as well as information with regards to how

large the security margin of that cipher is. Any weaknesses discovered by a round-reduced attack

may not apply in the full cipher, but this will give valuable information with regards to where

one should look for good attacks. For this thesis, we have chosen to use the fully parameterized

framework from [3]. This paper allows for more variation than only reducing the rounds. Also,

the small scale versions of the round operations of AES follow the full AES’ design pattern.

3.5.1 Parameters

Two sets of small scale variants, SR(n,r,c,e) and SR∗(n,r,c,e) are defined in [3]. The only dif-

ference between them lies in how the final round is defined. In SR(n,r,c,e) the final round is

no different than any other round, meaning that the MixColumn permutation is performed,

while SR∗(n,r,c,e) follows the AES standard of omitting MixColumn in the last round. The four

34

3.5. SMALL SCALE VARIANTS OF THE AES Chapter 3

parameters n,r,c,e are as follows:

• n is how many rounds are performed when encrypting/decrypting. In this thesis we con-

sider 3 ≤ n ≤ 10.

• r is the number of rows in the state matrix: r = 1,2, or 4.

• c is the number of columns in the state matrix: c = 1,2, or 4.

• e is the number of bits in a finite field element: e = 4 or 8.

Note also that the size of the cipher state no longer is fixed to 128 bits but is now defined

as r × c × e. Indexing of the state array follows the same pattern as with full AES, one column

at a time, starting from the topmost element. Normal 128-bits AES is defined as SR∗(10,4,4,8).

The cipher blocks produced by SR(n,r,c,e) and SR∗(n,r,c,e) are equal up to ShiftRow in the last

round, and the ciphertexts differ only by an affine mapping. Hence, if we can attack one of them

we can immediately use the same attack on the other, just by adjusting the key schedule in the

last round to compensate for this difference.

Further note that this parameterization does not exceed 10 rounds, and thus only considers

keys of 128 bits. Even though it is possible to build upon [3] to include the key sizes of 192 and

256 bits, 128-bit key size is considered a good starting point for our attack.

3.5.2 GF (24) and Small-Scale Round Operations

With the introduction of elements in GF (24) in addition to the standard GF (28) we also need to

adopt the round operations to GF (24). The polynomial used to define GF (24) is x4 + x +1. For

the creation of the S-boxes the same approach as for GF (28) is taken. First the inverse of the

input is computed, followed by a GF (2)-affine mapping. Fig (3.10) shows the S-box summary

for both GF (24) and GF (28). Fig (3.11) gives the resulting look-up table for GF (24). There will be

as many S-boxes in SubBytes as there are elements in the state array, r × c.

ShiftRows differ from the original only in the fact that there may be less rows and/or less

columns to rotate. The matrices to be used in MixColumn depend on the number of rows and

the finite field in use. Use Figure (3.12) to choose the right one. Here ρ is a root of x4 +x +1 and

θ is a root of the actual AES polynomial defining GF (28).

35

3.5. SMALL SCALE VARIANTS OF THE AES Chapter 3

As with normal AES, we need a total of n + 1 round keys for all reduced versions, and all

small scale variants of AES also begins with a round 0, or “pre-round”, where only AddRoundKey

is performed. Round keys are added as normal, simultaneously XORing the elements of the

subkey array and the corresponding elements of the state array (as elements of GF (2e)).

For the key schedule, a user supplied key of size (r × c)× e forms the initial subkey. Each

preceding subkey is then derived from the previous one in the same way as for full AES, taking

the number of columns c into account. See Figure (3.13). If the finite field is GF (24), we use the

round constants given in Table 3.2.

Round Round Constant
1 0001
2 0010
3 0100
4 1000
5 0011
6 0110
7 1100
8 1011
9 0101

10 1010

Table 3.2: Round constants for GF (24).

36

3.5. SMALL SCALE VARIANTS OF THE AES Chapter 3

Figure 3.9: AES schedule for 256-bit AES. K0 to K31 are the bytes of the given key. From [10,
p.107].

37

3.5. SMALL SCALE VARIANTS OF THE AES Chapter 3

Figure 3.10: Irreducible polynomial, affine mapping and constant used in creation of the two
S-boxes. From [3].

Figure 3.11: Look-up table for S-box under GF (24). From [3].

Figure 3.12: MixColumn matrix for various parameters. From [3].

Figure 3.13: One round of key schedule for the different values of c. From [3].

38

Chapter 4

Multiple Right-Hand Sides and Compressed

Right-Hand Sides Equations

Much of the research done in the field of algebraic cryptanalysis has been about SAT-solvers and

Gröbner basis computation.

The first task for a researcher in the field of algebraic cryptanalysis is to convert the encryp-

tion algorithm in question to a system of polynomial equations. The next part, usually the hard-

est part, is then to solve these systems of polynomial equations. Many researchers in the field

of algebraic cryptanalysis has had, and perhaps still have, high hopes to algorithms based upon

Gröbner basis and SAT-solvers. However, even though much research has been done, and much

progress made, they have yet to live up to the hopes.

This chapter will use a different algebraic approach. AES, our encryption algorithm in ques-

tion, will be modeled using linear systems of equations. This is step one, and the hardest part in

this step is to model the non-linear S-boxes in a way that works with linear systems of equations.

This is solved by introducing the concept of Multiple Right-Hand Sides, which is a technique

that opens up for having multiple vectors on the right hand side in a system of linear equations.

One needs initially one such Multiple Right-Hand Side for each S-box present. Through mainly a

technique called gluing, one is then able to "merge" all this various systems of linear equations

into one. Through this process vectors in the right-hand side that would render the equation

system inconsistent are identified and removed. This is the topic of the first section.

Unfortunately, the size of such Multiple Right-Hand Sides equation systems tend to grow ex-

39

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

ponentially during the gluing process, halting the process due to computer memory limitations.

In an attempt to remedy this problem, [14] introduces the concept of Compressed Right-Hand

Sides (CRHS). This is the topic for the second section. In a CRHS equation, the set of right hand

sides is structured as a directed acyclic graph (DAG) instead of a matrix, ordered in levels, and

with linear combinations associated with the levels. With some added details, this data struc-

ture is known as a Binary Decision Diagram (BDD). CRHS equations can be used to represent

encryption algorithms, and with the accompanying techniques for "merging" BDDs and identi-

fying and removing inconsistent paths it is a promising tool for doing algebraic cryptanalysis.

4.1 Multiple Right-Hand Sides

4.1.1 MRHS Equation

An equation on the form

Ax = b1,b2, . . . ,bs (4.1)

is known as a Multiple Right Hand Side (MRHS) equation if A is a matrix of size k ×n and rank

k, and b1,b2, . . . ,bs are column-vectors of length k. They first appeared in [12]. The vector x

consists of all n unique Boolean variables in use when modelling the cipher, represented as a

column-vector with n entries. To simplify notation, we will denote b1, . . . ,bs as [L] to emphasize

that this is no normal system of linear equations. An n-vector x0 is said to be a solution if and

only if it satisfies Ax0 = bi, for some i and hence a single MRHS equation has at least s solutions,

and often much more than that. In this thesis we only consider matrices and vectors over GF (2),

though the general principles are applicable for GF (q).

4.1.2 From AES to MRHS Equations

All operations in the AES except for SubBytes are linear so the encryption algorithm has much

inherent linearity. The MRHS representation is therefore an efficient way to represent the AES

encryption. We will need one MRHS equation for each S-box present in AES (or small-scale vari-

ant). This effectively gives us a system of MRHS equation, which we will explain solving strate-

gies for later. To construct the MRHS equations, one must first map variables strategically to bits

40

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

in the cipher block at various points in the encryption procedure. This must be done in such a

way that the bits of the input and output of any S-box can be written as a linear combination of

the variables defined.

Figure 4.1 and Figure 4.2 shows what this looks like for the key schedule and the encryption

in the SR*(3,2,2,4) small-scale variant. This variant has 16 unkown bits in the user-selected key,

denoted k0, . . . ,k15. We introduce new variables representing the state at the output of every S-

box, except for the layer of S-boxes in the last round. For the three round version these variables

are labelled k16, . . . ,k39, while in the actual encryption we label them a0, . . . , a15 for the S-boxes

in the first round and a16, . . . , a31 for the second round. The bits in the state output from the S-

boxes in the last round can be written as linear combinations of the known ciphertext bits and

the last round key, which we already have defined variables for.

k12 → → k16

k13 → Sk10 → k17

k14 → → k18

k15 → → k19

k20 + k4 + k12 → → k24

k21 + k5 + k13 → Sk20 → k25

k22 + k6 + k14 → → k26

k23 + k7 + k15 → → k27

k28 + k12 → → k32

k29 + k13 → Sk30 → k33

k30 + k14 → → k34

k31 + k15 → → k35

k08 → → k20

k09 → Sk11 → k21

k10 → → k22

k11 → → k23

k16 + k00 + k08 + 1 → → k28

k17 + k01 + k09 → Sk21 → k29

k18 + k02 + k10 → → k30

k19 + k03 + k11 → → k31

k24 + k08 → → k36

k25 + k09 + 1 → Sk31 → k37

k36 + k10 → → k38

k27 + k11 → → k39

Round 1 Round 2 Round 3

Figure 4.1: S-boxes in the key schedule of SR*(3,2,2,4) with associated variables.

Next we construct one MRHS equation Ai , j x = [Li , j] for each S-box Sk j
i in the key schedule

and each S-box Si , j in the encryption. The input linear combinations of Sk j
i and Si , j make up

the first four rows of each Ai , j and the output linear combinations make up the four bottom

rows of each Ai , j . When e = 4 each matrix Ai , j will be an 8×n matrix.

Finally, we make a list of all possible inputs to the S-boxes and their corresponding outputs.

41

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

Each input/output pair becomes a b-vector in [Li , j]. Since every S-box of the AES is the same,

every [Li , j] will initially also be the same. The vector x contains all unique variable present

across all Ai , j ’s.

The set of different MRHS equations leaves us with a system of MRHS equations that de-

scribes the whole encryption process. For the SR*(3,2,2,4) example in figures 4.1 and 4.2 we get

18 MRHS equations in 72 variables, while the full 128-bit AES, would leave us with 200 MRHS

equations; 160 from the encryption process itself and 40 from the key schedule.

4.1.3 Solving a System of MRHS Equations

We are given a system of MRHS equations

A1x = [L1], . . . , Amx = [Lm] (4.2)

where Ai and [Li] are matrices with ki rows. The matrix Ai has n columns, and the number of

columns in Li is si . Not all variables appear in all equations, and the related columns in the Ai ’s

are zero. A solution to (4.2) is an assignment to the variables of x such that x is a solution to every

MRHS equation in (4.2).

A column in an [Li] that is never produced for any solution to (4.2) may be thought of as

wrong, while a column in [Li] that is produced for a solution to (4.2) may be thought of as right.

The challenge when dealing with systems of MRHS equations is to identify and remove wrong

columns while keeping only the right ones. When a solution x0 is identified, we can simply look-

up the values for the key variables ki in x0, and we have found a valid key. This is the same as

breaking the cipher.

For one given plaintext/ciphertext pair, some ciphers may have more than one key that en-

crypts the given plaintext into the given ciphertext. The likelihood of this occurring is related to

the bit-size of the key and the plaintext. If the block size is larger than the key size we have more

constraints than free variables in the system. In this case, with large probability there is only one

solution to the system, and the key can be determined uniquely. If the block size is smaller than

the key size we do not get enough constraints to uniquely determine the key, and solving (4.2)

will give a whole set of possible keys. When the block and key sizes are equal, we may or may not

42

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

k
0
+
p
0
→

→
a
0

k
1
+
p
1
→

S
1 0

→
a
1

k
2
+
p
2
→

→
a
2

k
3
+
p
3
→

→
a
3

k
4
+
p
4
→

→
a
4

k
5
+
p
5
→

S
1 1

→
a
5

k
6
+
p
6
→

→
a
6

k
7
+
p
7
→

→
a
7

k
8
+

p
8
→

→
a
8

k
9
+

p
9
→

S
1 2

→
a
9

k
1
0
+

p
1
0
→

→
a
1
0

k
1
1
+

p
1
1
→

→
a
1
1

k
1
2
+

p
1
2
→

→
a
1
2

k
1
3
+

p
1
3
→

S
1 3

→
a
1
3

k
1
4
+

p
1
4
→

→
a
1
4

k
1
5
+

p
1
5
→

→
a
1
5

a
1
5
+
a
1
2
+

a
3
+

k
1
6
+
k
0
+
1
→

→
k
1
6

a
1
5
+

a
1
2
+

a
1
3
+
a
0
+
k
1
7
+

k
1
→

S
1 0

→
k
1
6

a
1
4
+
a
1
3
+

a
1
+

k
1
8
+
k
2
→

→
k
1
6

a
1
5
+
a
1
4
+

a
2
+

k
1
9
+
k
3
→

→
k
1
6

a
1
5
+

a
3
+

a
0
+

k
2
0
+

k
4
→

→
k
2
0

a
1
5
+

a
1
2
+

a
1
3
+
a
1
+
a
0
+
k
2
1
+

k
5
→

S
2 1

→
k
2
1

a
1
3
+

a
2
+

a
1
+

k
2
2
+

k
6
→

→
k
2
2

a
1
4
+

a
3
+

a
2
+

k
2
3
+

k
7
→

→
k
2
3

a
1
1
+

a
7
+

a
4
+

k
1
6
+

k
0
+

k
8
+
1
→

→
k
2
4

a
1
1
+

a
8
+

a
7
+

a
5
+

a
4
+

k
1
7
+

k
1
+

k
9
→

S
2 2

→
k
2
5

a
9
+

a
6
+

a
5
+

k
1
8
+
k
2
+

k
1
0
→

→
k
2
6

a
1
0
+
a
7
+
a
6
+
k
1
9
+

k
3
+
k
1
1
→

→
k
2
7

a
1
1
+
a
8
+
a
7
+
k
2
0
+

k
4
+
k
1
2
→

→
k
2
8

a
1
1
+
a
9
+
a
8
+
a
7
+
a
4
+
k
2
1
+

k
5
+
k
1
3
→

S
2 3

→
k
2
9

a
1
0
+
a
9
+
a
5
+
k
2
2
+

k
6
+
k
1
4
→

→
k
3
0

a
1
1
+

a
1
0
+

a
6
+

k
2
3
+
k
7
+

k
1
5
→

→
k
3
1

a
3
1
+
a
2
8
+

a
1
9
+

k
2
4
+
k
1
6
+
k
0
+
1
→

→
c 0

+
k
3
2
+

k
2
4
+

k
1
6
+
k
0
+
1

a
3
1
+
a
2
9
+
a
2
8
+

a
1
9
+

a
1
6
+

k
2
5
+

k
1
7
+
k
1
+
1
→

S
3 0

→
c 1

+
k
3
3
+

k
2
5
+

k
1
7
+
k
1
+
1

a
3
0
+
a
2
9
+
a
1
7
+

k
2
6
+
k
1
8
+

k
2
→

→
c 2

+
k
3
4
+

k
2
6
+

k
1
8
+
k
2
+
1

a
3
1
+
a
3
0
+
a
1
8
+

k
2
7
+
k
1
9
+

k
3
→

→
c 3

+
k
3
5
+

k
2
7
+

k
1
9
+
k
3

a
3
1
+

a
1
9
+

a
1
6
+

k
2
8
+

k
2
0
+
k
4
→

→
c 1

2
+

k
3
6
+

k
2
0
+
k
1
2
+

k
4

a
3
1
+
a
2
8
+

a
1
9
+

a
1
7
+

a
1
6
+
k
2
9
+

k
2
1
+

k
5
→

S
3 1

→
c 1

3
+

k
3
7
+

k
2
1
+
k
1
3
+

k
5

a
2
9
+

a
1
8
+

a
1
7
+

k
3
0
+

k
2
2
+
k
6
→

→
c 1

4
+

k
3
8
+
k
2
2
+
k
1
4
+

k
6

a
3
0
+

a
1
9
+

a
1
8
+

k
3
1
+

k
2
3
+
k
7
→

→
c 1

5
+

k
3
9
+
k
2
3
+
k
1
5
+

k
7

a
2
7
+
a
2
3
+

a
2
0
+

k
2
4
+

k
8
→

→
c 8

+
k
3
2
+

k
1
6
+
k
8
+

k
0
+
1

a
2
7
+
a
2
4
+

a
2
3
+

a
2
1
+

a
2
0
+
k
2
5
+

k
9
+
1
→

S
3 2

→
c 9

+
k
3
3
+

k
1
7
+
k
9
+

k
1

a
2
5
+

a
2
2
+
a
2
1
+
k
2
6
+

k
1
0
→

→
c 1

0
+

k
3
4
+

k
1
8
+
k
1
0
+

k
2
+
1

a
2
6
+

a
2
3
+
a
2
2
+
k
2
7
+

k
1
1
→

→
c 1

1
+

k
3
5
+

k
1
9
+
k
1
1
+

k
3

a
2
7
+
a
2
4
+

a
2
3
+

k
2
8
+

k
1
2
→

→
c 4

+
k
3
6
+

k
2
8
+

k
2
0
+
k
4

a
2
7
+

a
2
5
+

a
2
4
+
a
2
3
+
a
2
0
+

k
2
+

k
1
3
→

S
3 3

→
c 5

+
k
3
7
+

k
2
9
+

k
2
1
+
k
5

a
2
6
+
a
2
5
+

a
2
1
+

k
3
0
+
k
1
4
→

→
c 6

+
k
3
8
+

k
3
0
+

k
2
2
+
k
6

a
2
7
+
a
2
6
+
a
2
2
+

k
3
1
+
k
1
5
→

→
c 7

+
k
3
9
+

k
3
1
+

k
2
3
+
k
7

R
ou

n
d
1

R
ou

n
d
2

R
ou

n
d
3

F
ig

u
re

4.
2:

SR
*(

3,
2,

2,
4)

:S
-b

ox
es

in
th

e
en

cr
yp

ti
o

n
,w

it
h

as
so

ci
at

ed
va

ri
ab

le
s.

43

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

get unique solutions. For the small-scale AES variants with equal block and key sizes we have

often seen that more than one key fit in a system defined by a given plaintext/ciphertext pair.

Let Ai x = [Li] and A j x = [L j] be two MRHS equations in the system of MRHS equations.

There are two main operations used when trying to solve a system of MRHS equations.

Agreeing: The first operation is called agreeing. For a thorough explanation of agreeing,

see[12]. The idea behind agreeing is to temporarily merge two MRHS equations. Then, by iden-

tifying any linear dependencies among the rows of the two matrices Ai and A j , we may identify

some wrong columns in [Li] and [L j], and remove them. If there are no linear dependencies

then no columns in [Li] or [L j] can be shown to be wrong, and agreeing will give us no new

information towards a solution. Otherwise, we examine all pairs bi,bj where bi ∈ [Li],bj ∈ [L j].

If the joined right-hand side (bi,bj) does not give a consistent system for the joined [Ai , A j]-

matrix, then bi and bj do not agree. At least one of them must be a wrong right-hand side. If bi

does not agree with any of the columns in [L j], then certainly bi must be wrong and can be safely

deleted, and the same of course applies to bj and [Li]. The MRHS equations are then “decou-

pled”, meaning that both A-matrices revert back to their original form but with possibly fewer

right-hand sides in the MRHS equation. They are now free to agree with other MRHS equations.

All MRHS equations of AES and small-scale AES starts out in an agreed state, meaning that

no two inital MRHS equations agreed together will identify any wrong columns. In order to

make any progress towards finding a solution we then need to use gluing.

Gluing: We will present the general idea behind gluing here, as this will make some of the

observations later more apparent. For a more mathematical view, we refer to [12]. The purpose

of gluing is to permanently merge two MRHS equations into one MRHS equation. In this pro-

cess, any linear dependencies will be solved, removing any wrong columns bk in the resulting

merged [L].

Gluing Ai and A j into A is straightforward, stack Ai on top of A j . Then make a list [L] of right

hand sides where each column of [Li] is paired with each column of [L j]. If [Li] had ni columns

and [L j] had n j columns, then [L] contains ni n j columns. If there are linear dependencies

among the rows of A, we find all columns in [L] that gives an inconsistent system and remove

them as they must be wrong. We then get the glued MRHS equation Ax = [L]. We create [L]

the way we do since any present column bi in [Li] could be a solution to Ai x = [Li], any present

44

4.1. MULTIPLE RIGHT-HAND SIDES Chapter 4

column b j in [L j] could be a solution to A j x = [L j], and thus any combination of bi and b j could

be a solution to Ax = [L]. Lastly we check for any linear dependencies and remove inconsistent

columns in [L].

4.1.4 Size of MRHS Equations After Gluing

Since AES only uses one S-box, all MRHS equations will have the same initial right-hand sides

(RHS). For the first and last round, plaintext and ciphertext constants will then alter their re-

spective RHS’s. Each matrix starts off as a 2e ×n matrix, where n is the total number of unique

variables of the system. Every [Li] will start off with 2e columns, and each row in [Li] has an

equal number of 0’s and 1’s since the S-box is a permutation. XORing in constants does not

change this, as each value in each row is XORed with the constant. As XORing rows may be done

as a binary function recursively as many times as we want, we see that we may expect half of the

columns in [L] to be inconsistent when solving a linear dependency. Let si be the cardinality

of [Li] and s j the cardinality of [L j]. Then gluing these RHS’s as part of a gluing operation will

result in 2si ×2s j columns before removing columns due to inconsistencies. Let ∆(si , s j) be the

number of linear dependencies in the corresponding glued matrix A. Then we may expect

2si+s j

2∆(si ,s j)
= 2si+s j−∆(si ,s j) (4.3)

columns in [L] after solving the linear dependencies. We see that the size of [L] is expected

to grow when si + s j > ∆(si , s j), stay the same when si + s j = ∆(si , s j) and finally shrink when

si + s j <∆(si , s j).

We may use this to calculate how many columns we may expect in the final [L] after gluing

all MRHS equations together. In the case of the full AES, we have 1600 unique variables and

3200 rows in the final A, conceived after gluing all 200 MRHS equations together. This gives us

(at least) 1600 linear dependencies since there are 1600 more rows than columns in the final A.

The equation:
28×200

21600
= 21600−1600 = 1 (4.4)

tells us that we can expect a unique solution when all gluing operations finish.

Even though this seems promising, (4.3) tells us that when any [L] grows due to gluing, it

45

4.2. COMPRESSED RIGHT-HAND SIDES Chapter 4

grows exponentially, and needs exponentially more memory to store all the RHS’s. In an attempt

to circumvent this problem, [14] introduces the concept of Compressed Right-Hand Sides.

4.2 Compressed Right-Hand Sides

A Compressed Right-Hand Side (CRHS) system [14] is a MRHS system where the right-hand

sides are stored using a binary decision diagram instead of multiple independent vectors. Both

CRHS and MRHS represent the same abstract concept of modeling a cipher. Where MRHS dis-

plays more explicitly the changes done to the right-hand sides of the system, CRHS will have less

or equal memory requirements for large numbers of right-hand sides. Since a BDD is very differ-

ent as a structure than a matrix, the gluing operation from MRHS must be replaced: To remove

any linear dependencies within a BDD the concept of linear absorption will be introduced.

Where MRHS was developed for crytpanalysis, BDDs were designed for other purposes and

see a wide variety of use in the computer science community [5]. In this thesis a BDD is un-

derstood as a way to represent the right hand sides of a MRHS system, and as such will differ

somewhat from the traditional understanding. Where traditionally only a single variable may

be associated with each level of a BDD (explained below), we allow for linear combinations to

be associated as well.

4.2.1 Binary Decision Diagrams and Compressed Right-Hand Sides Equa-

tions

A Binary Decision Diagram (BDD) is a Directed Acyclic Graph (DAG) with exactly one source

node and one sink node. The nodes, except the sink, have at least one and at most two outgoing

edges, named the 0-edge and the 1-edge. As the name suggests, these represents the values 0

and 1. All nodes except the sink are considered internal nodes. If the source is at the top and

the sink at the bottom, all the remaining nodes are in between, and all the edges are directed

downwards. The nodes are arranged in levels, with no edges between any two nodes of the

same level. Each internal level, that is all levels except the sink level, has either one variable, or

a linear combination of variables, associated with it. See Figure 4.3 for an example.

46

4.2. COMPRESSED RIGHT-HAND SIDES Chapter 4

Figure 4.3: BDD with 5 levels.

Choosing an outgoing edge from the associated level is the same as assigning that edge’s

value to the variable/linear combination. A BDD with k+1 levels has k variables or linear equa-

tions associated with it, there is nothing assigned to the bottom level with only the sink node in

it. A path through the graph from source to sink assigns values to all levels, and is k edges long.

This path then may be thought of as equivalent to a column vector in [L] of a MRHS equation,

and all paths in the graph is then equivalent to some [L]. The associated variables and linear

equations may be though of as the matrix A. Then we have:

Definition 7 (CRHS equation. [14]). A Compressed Right-Hand Side equation is written as Ax =
D , where A is a binary k×n-matrix with rows l0, . . . , lk−1 and D a BDD with (from top to bottom)

l0, . . . , lk−1 attached to the levels. Any assignment to x such that Ax is a vector corresponding to

a path in D , is a satisfying assignment. If C is a CRHS equation then the number of nodes in the

BDD of C is denoted B(D).

Any assignment to x such that Ax gives a path in D may be though of as right, while assign-

ments Ax giving a vector that is not a path in D may be thought of as wrong.

47

4.2. COMPRESSED RIGHT-HAND SIDES Chapter 4

Figure 4.4: The BDD representing a 4-bit S-box.

4.2.2 BDD Construction

The construction of a CRHS based upon an S-box with n input bits and m output bits follows the

same pattern as for MRHS. The BDD itself is based upon the substitutions defined in the S-box

and will have n +m levels. This is constructed as follows: Create a complete binary tree from

the top node based on the 2n possible input values of the S-box. The source node is associated

with the LSB of the input. Then build a “reverse”, or bottom-up, complete binary tree based on

the 2m possible output values, from the sink node. The final step is then to link the two binary

trees, which is done based on the substitutions defined by the S-box. Each internal level has

their appropriate variable or linear combination associated with it. Figure 4.4 shows the BDD of

a 4-bit S-box.

4.2.3 Solving Systems of BDDs: Merging BDDs

As with MRHS, one CRHS equation is created for each S-box in the cipher, and as with MRHS

we get a system of CRHS equations describing the whole cipher:

A0x = D0, A1x = D1, . . . , Amx = Dm (4.5)

A solution to 4.5 is an assignment to the variables of x such that every CRHS equation in 4.5

has a solution. There is no concept of agreeing in CRHS, but CRHS equations may be merged

48

4.2. COMPRESSED RIGHT-HAND SIDES Chapter 4

in a similar fashion to gluing. Merging two CRHS equations into one is even simpler than for

MRHS: If T0 is the terminal node for D0 and U1 is the source node for D1, remove T0 from D0

and let all the edges that used to go to T0 instead go to U1. Now the two BDDs are connected

and represent the BDD D for a single CRHS equation. This joining operation does not produce

any new nodes (in fact, it removes one), and we see that B(D) = B(D0)+B(D1)− 1. This new

CRHS equation has all combinations of paths from D0 and D1, without needing any additional

memory!

As it is possible to hold all 200 BDDs from full AES in memory at once, we may easily build

a single CRHS equation that represents the full AES. Unfortunately, the BDD of this CRHS equa-

tion would hold 21600 paths, where all but maybe one or two are wrong. We need a way to remove

the wrong paths.

4.2.4 Tools for Solving CRHS Equation System: Swapping and Adding Levels

Where matrix operations for resolving linear dependencies and identifying wrong vectors is

fairly speedy in MRHS, identifying and removing wrong paths in a BDD is more demanding.

The solution to this issue is known as linear absorption, and was introduced in [15]. Linear

absorption is comprised of two subroutines, swapping and adding levels. It also uses the fact

that for a fixed order of linear combinations, there exists a unique reduced BDD. Running the

reduction algorithm [2] on a BDD removes unnecessary nodes and reduces a BDD to its unique

state. Simplified, the reduction algorithm will absorb nodes and paths representing equivalent

paths, essentially removing duplicates. It will also look for internal nodes (except the source)

that has no incoming or outgoing edges. These will be removed, as they are not parts of com-

plete paths. For the rest of this work we will assume that a BDD may always be reduced, and

that the reduction algorithm is run whenever necessary.

In order for any linear dependencies to be resolved in a CRHS equation, the linearly depen-

dent rows and corresponding levels in the BDD needs to be adjacent. In order to achieve that,

we need to either “bubble” lower levels, or “sink” higher levels into position. This is achieved

through the swapping subroutine. When swapping two adjacent levels, we must ensure that we

do not lose nor add any new paths. Swapping achieves this by clever rebinding of the involved

nodes and edges, and when done, the two involved levels have swapped places, without chang-

49

4.2. COMPRESSED RIGHT-HAND SIDES Chapter 4

ing the solution space of the CRHS equation. This is then repeated until the level we wish to

move has arrived where we want it.

Where swapping rearranges the BDD and corresponding matrix, the subroutine for adding

two levels together replicates the XORing of two rows in a MRHS equation. As with swapping, we

must keep the solution space intact in the process. The addition of levels needs the two levels

to be adjacent. Then it will XOR a copy of the highest level onto the level below through clever

rebinding of the involved nodes and edges. This process resembles that of swapping, although

the rebinding follow different rules.

The drawback of the operations of swapping and adding levels is that new nodes usually

needs to be created during the process. Hence the memory requirements grow when apply-

ing these operations. The memory increase is not as dramatic as with gluing MRHS equations

though, and we can solve larger systems in practice using the CRHS representation than we can

with MRHS representation.

4.2.5 Resolving Linear Dependencies in BDDs: Linear Absorption

We are now ready to utilize linear absorption to get rid of the wrong paths. Let (l0, l1, . . . , lk−1) be

the ordered set of linear combinations associated with the levels. Assume that li1+li2+·· ·+lir = 0

is a linear dependency, where i1 < i2 < ·· · < ir . We can then utilize swap repeatedly, moving li1

to just above li2 before using level addition to replace li2 with li1+li2 . Then we utilize swap again

to move li1+li2 to the level just above li3 and replace li3 with li1+li2+li3 . We then keep repeating

this process, picking up each li j along the way, until we have replaced lir with li1 + li2 +·· ·+ lir .

We call this level a zero-level, because the linear dependency indicates the linear combination

for this level is 0. Then we may remove any 1-edges out of the zero-level, as any path that choose

any 1-edge would make the CRHS equation inconsistent via the 0 = 1 assignment. This leaves

us with a level with only outgoing 0-edges. There is no longer any choice to be made for any

path going through the zero-level, and thus we may redirect any incoming edges to the correct

nodes in the level below. We can then delete all nodes on the zero-level and the corresponding

0-row in the matrix, decreasing the number of levels in the CRHS by one. We say that the linear

dependency li1 + li2 +·· ·+ lir = 0 has been absorbed.

We can repeat this process, absorbing one linear dependency at a time, until all linear de-

50

4.3. ORDER OF JOINING Chapter 4

pendencies in the CRHS equation has been absorbed. Any remaining path in the BDD will now

yield right-hand sides that give a consistent linear system, which can readily be solved.

4.2.6 Complexity

Experimental results on the cipher Trivium suggests that the number of nodes in the BDDs grow

very slowly when absorbing the first linear dependencies, but increase more rapidly when fairly

large BDDs are joined, with many linear dependencies in them [15]. Though from (4.4) we know

that we may expect one path in the BDD when all CRHS equations have been merged and all

linear dependencies absorbed. A one-path BDD only has n +1 nodes, which is very small. This

tells us that there exists some tipping point where the number of nodes is at a maximum, and

must start to decrease when further absoptions and reductions are applied. At this tipping point

the BDD will contain its maximum number of nodes, and we will use this maximum, or peak,

number as our measure of memory complexity in the next section.

4.3 Order of Joining

When and how many linear dependencies arise in joined CRHS equations relies heavily on the

order the CRHS equations are joined in. The optimal order for joining CRHS equations (and

MRHS equations) is an unsolved problem. However, in [11] three strategies are proposed:

Automatic Ordering. This strategy can be applied to any system, and is as such reckoned

as a default strategy. It does not require any knowledge of how the CRHS equations has been

made. This procedure looks for the subset of CRHS equations that contains the smallest num-

ber of nodes, while still having linear dependencies. The CRHS equations of this subset is sub-

sequently joined and the linear dependencies absorbed. This is a greedy approach that always

tries to make a minimal CRHS equation to absorb dependencies in, which should then not be-

come too big after absorption. This will decrease the number of CRHS equations by at least

one, and we continue this process until we only have one CRHS equation left with no linear

dependencies.

Divide-and-Conquer. The thought behind this strategy is that it is always easier to join two

big CRHS equations and absorb their dependencies when there are few dependencies. The as-

51

4.3. ORDER OF JOINING Chapter 4

sumption is that we will only have a minimum of dependencies left when the last (maybe big)

BDDs are forced to be joined together. Basically, the earlier we can absorb linear dependencies

the better, as this would keep the number of nodes low since we absorb most dependencies only

in small BDDs.

This strategy proposes to divide the system into two roughly equally sized halves, where we

want as few linear dependencies between CRHS equations in opposite halves as possible. We

may do this recursively on the halves, ending the splitting ideally when the "half" only contains

one or two original CRHS systems. These halves are then joined and all dependencies absorbed.

This will leave us with only one CRHS equation with no dependencies in each half. We then join

the next halves, and absorb the relatively few remaining linear dependencies. This is repeated

until all CRHS equations are joined and all dependencies absorbed.

The challenge is to find the optimal way to split a system into two equally sized parts. This

seems to be a hard problem, and knowledge of the cipher should be utilized.

Finding Good Joining Order by Cryptanalysis. This strategy is to use knowledge of the cipher

represented by the CRHS system to decide a good order to join the equations. The order of the

joining should be such that each linear dependency only involves linear combinations on levels

that are relatively close to each other. This makes the absorption process somewhat local, which

should help keeping the complexity down.

52

Chapter 5

Experiments and Findings

This thesis considers a particular branch of cryptanalysis known as algebraic cryptanalysis, ap-

plied to small-scale variants of the AES. We build on earlier work done in [3, 12, 11], where a few

small-scale AES systems have been tried solved using different techniques. In [3] MAGMA with

its implementation of the F4-algorithm was used, while in [12] and [11] Multiple Right-Hand

Sides and Compressed Right-Hand Sides were used. Here we extend the results from these pa-

pers by trying to solve many systems from almost all SR-variants with the latest version of the

software made for solving equation systems in the CRHS representation.

These experiments seek to gain knowledge about what the complexity is for solving these

types of systems, and how it varies in the different systems. In particular, we try to answer the

following questions:

• How does the memory complexity vary with different rounds in a small-scale variant of

AES?

• How does execution time vary with rounds in a small-scale variant of AES?

• Are there differences in solving complexity in variants with the same key size, but with

different state array dimensions?

53

5.1. SETUP Chapter 5

5.1 Setup

5.1.1 Software

For each version of small-scale AES with bundle size of 4 bits, a set of eight fixed values were

used for both plaintext and key. The respective values for 16-, 32- and 64-bit systems are given

in Appendix A. These strings were not carefully chosen. We just wanted some control over the

plaintext and keys hoping that something interesting would come out of it.

We limited ourselves to only consider variants with 4-bit S-boxes. This still gives many SR-

variants to consider, most of which give systems that are hard to solve on the computer re-

sources available for these experiments.

For 16-bit keys, we considered block arrays of sizes 1×4, 2×2 and 4×1. For 32-bit keys there

are two variants of cipher blocks, namely 4×2 and 2×4. For 64-bit keys there is only the 4×4

state to consider. For each of these we made systems for 3 to 10 rounds, i.e. 8 variants for each

state array. With both plaintext and key taking all different combinations from a set of 8 values

means that we can generate 64 instances for each small-scale variant. With both SR and SR* this

gives a grand total of (3+2+1)∗8∗64∗2 = 6144 instances.

We had limited access to hardware to run the attack on, and it was therefore decided to only

run the SR* versions. The SR* versions were chosen as full AES itself is a SR* version. This left

us with 3072 instances to run. All the different system instances were generated by Java code

developed by myself.

The actual attacks on the instances were carried out by C-code developed by Raddum over

the course of 10 years. This code has been used in previous work [14]. The solving strategy of

this C-code uses the “automatic ordering” gluing strategy, which join BDDs that has the fewest

number of nodes, while still containing linear dependencies. Furthermore, a limit to the max-

imum node count of any BDD was set to 226. With the size of each node in this C-code, that

means a memory limit of roughly 8 GB. No two BDDs would be glued together if their combined

node count exceeded 226. Also, if the node count in a BDD exceeds 226 after absorbing a lin-

ear dependency, the program would abort and report "not solved". If no BDDs can be glued

together without exceeding this limit, the attack would be aborted and considered “not solved”.

If the memory limit is not reached, the program will always solve the system within reasonable

54

5.1. SETUP Chapter 5

time.

5.1.2 Hardware

For the execution of the attacks a virtual machine (VM) was borrowed from UH IaaS (http://www.uh-

iaas.no/), an organization that provides infrastructure-as-a-service for academia in Norway.

The exact specifics of the underlying hardware are unknown, but we know that we were given a

VM with 8 GB of RAM.

5.1.3 Attack Execution

The whole process was controlled by a master script, written in Python for this purpose. After

setting up the output files, one .txt and one .csv, it would call the C-code with a system instance

as parameter. This would instantiate a so-called run-through. A run-through would run in its

own thread and execute an attack on the given instance. Upon completion of the attack, but be-

fore returning control to the master script, the instance identifiers, time consumption, solving

complexity in terms of nodes, as well as 1 for "solved" or 0 for "not solved", would be written to

the output files. This process was then repeated for all instances, and progress could be moni-

tored through a log file maintained by the master script.

5.1.4 Known Sources of Error

First, a misconfiguration in the master script meant that no n = 10 variants were run, so we only

ran 2688 instances instead of the intended 3072.

For reasons that are not completely known, many run-through results have not been written

to the output files, despite being logged as instantiated by the master script. We can not be

certain of the explanation of this behavior, but it is our belief that they were killed by the VM

when a run-through required more than 8 GB of RAM. We do have some reported results which

required slightly more than 8 GB of memory, but our belief is that when exceeding the 8 GB

of RAM, the constant read and write to the Hard Disk Drive (HDD) could violate some other

restriction and result in killing the process.

55

5.1. SETUP Chapter 5

Our belief is primarily based upon two things: This behavior has not been experienced be-

fore in this C-code’s history. Furthermore, in January we were able to repeat the experiment for

one of the most affected system variants on a laptop with 16 GB memory and an Intel i7 pro-

cessor, without any loss. (These results are not included in this thesis as they are not directly

comparable to the initial results). This indicates that the issue lies with the VM and not with the

C-code.

We have not compensated for the loss of instances in the results and discussion, unless other-

wise stated.

5.1.5 Potential Sources of Error

A natural potential source of errors would be the software itself, both through design flaws and

bugs, although we have taken steps to mitigate this risk. The C-code has been developed and

tested for more than ten years, and some of its results have been verified by others. The genera-

tion of instances in Java have both utilized JUnit testing, as well as comparing output of certain

variations with already known instances used in earlier work. The master script was never in-

volved in the actual attacking, it only administered the order of run-throughs.

A second potential source of error would be the virtual RAM of the VM, if such exist. Virtual

RAM is a feature in which less frequent used data in RAM is written to the HDD when approach-

ing the limit of the actual RAM. The computer would swap data back and forth between RAM

and HDD as needed, usually without the user noticing. However, reading and writing to HDD

is significantly slower than reading and writing to RAM. That means that if a BDD or system of

BDDs grew above 8 GBs, constant reading and writing to HDD would be needed, significantly

slowing down the attack and reporting inflated numbers for execution time. As we do not know

the internal handling procedure of the VM, nor even if virtual memory was enabled, it is hard to

asses the significance of this issue.

Last, we have no way of knowing how, or even if, varying workload of the underlying software

and hardware would affect the run-time of the various run-throughs.

56

5.2. FINDINGS AND RESULTS Chapter 5

5.2 Findings and Results

5.2.1 Reported and not Reported Instances

As pointed out in 5.1.4, many instances have not reported their metrics. We think of them as

“lost”. Out of 2688 instances, we did not get reports on 1313 of them. This gives us a 51 percent

report rate. These will be treated as not solved, however they will be kept out of all metrics,

unless otherwise stated.

64-bit systems have the largest number of lost instances, with only two instances reported of

512 expected, giving ≈ 0.4 percent reporting rate. For the 32-bit systems 842 out of 896 expected

are reported, which gives ≈ 94 percent reporting rate. The 16-bit systems come in between, with

531 reported instances out of the 1344 expected, for an approximate 40 percent reporting rate.

5.2.2 64-bit Systems

We have two reported instances, and not surprisingly, none of them were solved. They are both

of the SR*(3,4,4,4) variant. Their average run-through time was 110 seconds and both exceeded

the 226 node limit. Both systems were generated using the same plaintext value. See Figure 5.1.

Figure 5.1: Data for the 64-bit system instances.

5.2.3 32-bit Systems

Here we have 842 reported instances, out of 896 expected. Six variants lost no instances, and

among the others only one system has lost more than 10 instances. Out of the 842 reported in-

stances, 9 were solved. All the solved instances were of the SR*(3,2,4,4) system variant. The av-

erage times of the run-throughs vary between 56 and 402 seconds. Figure 5.2 shows the average

time and number of nodes for each individual system variant, while Figure 5.7 shows the distri-

bution of solved/non-solved instances based on the plaintext used to generate the instances.

57

5.3. DISCUSSION ON FINDINGS Chapter 5

Figure 5.2: Metrics for the 32-bit system variants.

5.2.4 16-Bit Systems

We have 531 reported instances out of 1344 expected. We have 15 system variants that contains

reports, which leaves 6 variants that lost all instances. We solved in total 482 instances, which

is 90.7 percent out of the reported instances and 35.9 percent of the total instances. Figure 5.3

gives details of the metrics for the 16-bit system variants.

5.3 Discussion on Findings

The first thing we notice, is that whether the 64 systems within one variant are solved or not

actually depend on the fixed values of the plaintext and the key. This may be a feature of the

particular solving strategy used, where some of the constants from the plaintext and ciphertext

can give more "structure" or "order" in some of the initial BDDs, and hence fewer nodes in these.

So different plaintexts/ciphertexts may lead to different orders for joining BDDs, as always the

BDDs with fewer nodes are preferred, and some joinings may turn out to be more fortunate than

others.

Other observations are in large part based on the instances with a 16-bit block, as these are

mostly the ones where we were able to solve anything.

58

5.3. DISCUSSION ON FINDINGS Chapter 5

Figure 5.3: Metrics for the 16-bit system variants.

5.3.1 SR*(n,4,1,4)

The SR*(n,4,1,4) variants stand out, as four of the missing six variants are all from this set, for

n > 4. For n = 3 and n = 4 we have 1 and 5 reported instances, respectively, none of which were

solved. The fact that the instances with 4×1 block were the hardest to solve is not so surprising

when one looks into how the encryption algorithm works in this case.

When the cipher block only has one column we get full diffusion after only one round of

encryption, instead of the two rounds needed for normal AES. Moreover, the key schedule be-

comes fully non-linear as every column in the round keys pass through the g ()-function when

producing the next column. This gives more variables in the key schedule than the other in-

stances of the same bit size.

59

5.3. DISCUSSION ON FINDINGS Chapter 5

5.3.2 SR*(n,2,2,4) and SR*(n,1,4,4)

For the other two 16-bit block variants, SR*(n,2,2,4) and SR*(n,1,4,4), we see a change for n ≥
7. The fraction of reported instances as well as solved instances drops, from an average 59.5

percent reported and 59.25 percent solved to an average 9.8 percent reported and 1.6 percent

solved. Also, up until round seven, all reported instances but two are solved. So with the 226-

limit on complexity we can solve most 2×2 and 1×4 instances up to seven rounds, but for higher

number of rounds the solving complexity is very often too high for our limit.

There appears, however, not to be a big difference between the hardness of solving SR*(n,2,2,4)-

instances and SR*(n,1,4,4)-instances, in the sense that we can solve roughly the same fraction

of instances, see Figure 5.4. This is maybe more surprising as the variants with 1×4 block are

rather degenerate compared to those with 2× 2 block. The encryption algorithm with a 1× 4

block does not give any diffusion at all as both ShiftRows and MixColumn become the identity

mapping. Hence the variants with a single row in the cipher block state are vulnerable to differ-

ential attacks and probably several other attacks as well. This is in clear contrast to the variants

with 2×2 cipher block, which is completely in line with the full AES’ square cipher block and

has the same diffusion properties.

For the average time it takes to complete a run-through we observe the following: For sys-

tems that largely got solved, the time for run-throughs increases with the number of rounds, as

expected. Another interesting observation is that while we were able to solve roughly the same

fraction of instances both for 1×4 and 2×2 block sizes, it clearly takes longer time to solve the

2× 2 instances, and it takes a little more memory as well. This can be seen in Figure 5.5. It

appears that the 2× 2 instances are harder to solve after all, as they consume more time and

memory, but there is less difference between the 2×2 and 1×4 instances than there is between

the 2×2 and 4×1 instances.

5.3.3 Indications of Plaintext Dependencies

Finally, we try to make some observations on which plaintext constants that may give easier

systems to solve. In SR*(7,2,2,4) we solve two instances, while in SR*(8,2,2,4) we solve four. In

Figure 5.6 we see that the four solved instances of SR*(8,2,2,4) all were based on the plaintext

60

5.3. DISCUSSION ON FINDINGS Chapter 5

(a) SR*(n,1,4,4)

(b) SR*(n,2,2,4)

Figure 5.4: Average complexity with distribution, and number of instances solved.

61

5.3. DISCUSSION ON FINDINGS Chapter 5

with the hexadecimal value ff00, while the two systems solved in SR*(7,2,2,4) were based on

different plaintexts. Looking into the nine instances of SR*(3,2,4,4) we were able to solve we find

that four of them had the plaintext value aaaaaaaa. All of these were solved considerably faster

than the other five.

These observations on plaintexts that seem to give systems that are easier to solve do not

have a strong enough basis to draw any firm conclusions. But I think they indicate something

that is worth to study further.

62

5.3. DISCUSSION ON FINDINGS Chapter 5

(a) SR*(n,1,4,4)

(b) SR*(n,2,2,4)

Figure 5.5: Average time with distribution, and number of instances solved.

63

5.3. DISCUSSION ON FINDINGS Chapter 5

F
ig

u
re

5.
6:

A
ll

n
o

n
-l

o
st

in
st

an
ce

s
an

d
th

ei
r

sp
re

ad
am

o
n

g
sy

st
em

s
an

d
p

la
in

te
xt

s
u

se
d

fo
r

16
-b

it
in

st
an

ce
s.

64

5.3. DISCUSSION ON FINDINGS Chapter 5

F
ig

u
re

5.
7:

A
ll

n
o

n
-l

o
st

in
st

an
ce

s
an

d
th

ei
r

sp
re

ad
am

o
n

g
sy

st
em

s
an

d
p

la
in

te
xt

s
u

se
d

fo
r

32
-b

it
in

st
an

ce
s.

65

Chapter 6

Conclusion and Further Works

In this thesis we have expanded on the work done in [3, 11, 12], by using Compressed Right-

Hand Side equations to attack small-scale versions of AES. Through this we have gained insight

on the behaviour of CRHS on small-scale AES, and through this hopefully on AES itself. We

have seen that system complexity and execution time has grown for variants with 16-bit key

size as the number of rounds grow (see Figure 6.1 and Figure 6.2). We observe differences in

complexity within variants of 16 bits but with different state array dimensions. It is clear that a

higher number of rows in the state array makes for higher complexity and execution time.

For the 32-bit variants, the hardware limit of 8 GB seems to limit the attacks in such a way

that little useful information can be deduced. The significant exception to this is the nine solved

run-throughs of SR*(3,2,4,4). These solved run-throughs had an average complexity of ≈ 223,76

nodes, which is less than the 232 complexity associated with brute-force. To the authors best

knowledge this is the first time small-scale versions of 32-bit keys have been broken using MRHS

or CRHS.

Furthermore, we have observed indications that complexity and execution time is depen-

dent on the plaintext value used for the run-through. The cause of this is as of yet undetermined,

and seems to be an interesting topic for further research.

Admittedly, the lost run-throughs skews the results. Although we cannot be sure, we believe

that these lost run-thorugh would have affected the results in a "negative" way. By negative we

mean that they probably would have led to a higher complexity and thus higher execution time.

We base this on our belief that they were lost due to their large total size in the first place.

66

Chapter 6

Figure 6.1: Average complexity per round for the 16-bit systems, with trend line.

Figure 6.2: Average time per round for the 16-bit systems, with trend line.

67

Chapter 6

The limited success on 32- and 64- bit size variants emphasizes the need for further im-

provements and refinements. In [11], cryptanalytic methods was used instead of automatic or-

dering to determine the order the BDDs should be joined in. They only attacked SR*(n,2,2,4)

but reports lower complexity for all rounds. This suggests that the automatic ordering strategy is

sub-optimal. It would therefore be interesting to see what results would come of running these

attacks again, with more emphasis on the ordering strategy. Work with this thesis has also re-

sulted in discussions on how to improve the cryptanalysis strategy used in [11]. This has resultet

in various ideas on possible improvement, though a fundamental question needs answering:

Is it possible to mathematically determine the expected best order of joining BDDs, utilizing

the fact that the initial linear combinations of a CRHS equation stay almost the same for every

run-through?

Furthermore, the discovery of plaintext influence intrigues. Some plaintexts appears to give

easier systems to solve than others. Can we explain this behavior and identify such plaintexts?

Or is it simply that the variables makes for fewer/more nodes in the initial BDD, and thus "tricks"

the automatic ordering into choosing a better/worse gluing order?

I am looking forward for the opportunity to study these and other questions as a PhD candi-

date!

68

Bibliography

[1] top500.org. https://www.top500.org/list/2017/11/, 2017. [Online: accessed 07-Feb-

2018].

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-

tions on Computers, 35(8):677 – 691, 1986.

[3] C. Cid, S. Murphy, and M. Robshaw. Small scale variants of the aes. In Fast Software En-

cryption - FSE 2005, volume 3557 of Lecture Notes in Computer Science, pages 145 – 162.

Springer, 2005.

[4] J. B. Fraleigh. A First Course in Abstract Algebra. Pearson, seventh edition, 2003.

[5] D. Knuth. Bitwise tricks and techniques; Binary Decision Diagrams. Number Vol 4, Fascicle

1 in The Art of Computer Programming. ADDISON WESLEY (PEAR), 2009.

[6] D. C. Lay. Linear Algebra and Its Applications. Pearson Education and Greg Tobin, third

edition, 2006.

[7] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied cryptography.

Discrete Mathematics and Its Applications. 1996.

[8] R. Munroe. "2018". https://xkcd.com/1935/, 2018. Licensed under Creative Commons

Attribution-NonCommercial 2.5 License.

[9] N. I. of Standards and Technology. Advanced encryption standard, 2001. FIPS PUBS 197.

[10] C. Paar and J. Pelzl. Understanding Cryptography. Springer, 2010. 2nd Corrected printing.

69

https://www.top500.org/list/2017/11/
https://xkcd.com/1935/

BIBLIOGRAPHY Chapter

[11] H. Raddum and O. Kazymyrov. Algebraic attacks using binary decision diagrams. In In-

ternational Conference on Cryptography and Information Security in the Balkans- Balkan-

CryptSec 2014, volume 9024 of Lecture Notes in Computer Science, pages 40 – 54. Springer

Verlag, 2015.

[12] H. Raddum and I. Semaev. Solving multiple right-hand sides linear equations. Designs,

Codes and Cryptography, 49:147 – 168, 2008.

[13] V. Rijmen and J. Daemen. The Design of Rijndael. Springer-Verlag, 2001.

[14] T. E. Schilling and H. Raddum. Analysis of trivium using compressed right hand side equa-

tions. In International Conference on Information Security and Cryptology - ICISC 2011,

volume 7259 of Lecture Notes in Computer Science, pages 18 – 32. Springer Verlag, 2011.

[15] T. E. Schilling and H. Raddum. Solving compressed right hand side equation systems with

linear absorption. In Sequences and Their Applications - SETA 2012, volume 7280 of Lecture

Notes in Computer Science, pages 291 – 302. Springer Verlag, 2012.

[16] B. Schneier. Schneier’s law. https://www.schneier.com/blog/archives/2011/04/

schneiers_law.html, 2011. [Online: accessed 07-Feb-2018].

70

https://www.schneier.com/blog/archives/2011/04/schneiers_law.html
https://www.schneier.com/blog/archives/2011/04/schneiers_law.html

Appendix A

Plaintext Values

The respective eight values were used both as plaintext and key during the creation of the vari-

ous Small-Scale instances:

16-Bit Plaintext Values:

• bbff

• aaaa

• 5555

• ff00

• 00ff

• 174c

• 94b3

• dbc5

71

Chapter A

32-Bit Plaintext Values:

• bbbbffff

• aaaaaaaa

• 55555555

• ffff0000

• 0000ffff

• 174ca832

• 94b3de7f

• dbc5a241

64-Bit Plaintext Values:

• bbbbbbbbffffffff

• aaaaaaaaaaaaaaaa

• 5555555555555555

• ffffffff00000000

• 00000000ffffffff

• 174ca832174ca832

• 94b3de7f94b3de7f

• dbc5a241dbc5a241

72

Appendix B

Raw Data for 16 Bit Systems

Figure B.1: Raw data for the 16 bit systems.

73

Chapter B

Figure B.2: Raw data for the 16 bit systems.

74

Chapter B

Figure B.3: Raw data for the 16 bit systems.

75

Chapter B

Figure B.4: Raw data for the 16 bit systems.

76

Chapter B

Figure B.5: Raw data for the 16 bit systems.

77

Chapter B

Figure B.6: Raw data for the 16 bit systems.

78

Chapter B

Figure B.7: Raw data for the 16 bit systems.

79

Chapter B

Figure B.8: Raw data for the 16 bit systems.

80

Appendix C

Raw Data for 32 Bit Systems

Figure C.1: Raw data for the 32 bit systems.

81

Chapter C

Figure C.2: Raw data for the 32 bit systems.

82

Chapter C

Figure C.3: Raw data for the 32 bit systems.

83

Chapter C

Figure C.4: Raw data for the 32 bit systems.

84

Chapter C

Figure C.5: Raw data for the 32 bit systems.

85

Chapter C

Figure C.6: Raw data for the 32 bit systems.

86

Chapter C

Figure C.7: Raw data for the 32 bit systems.

87

Chapter C

Figure C.8: Raw data for the 32 bit systems.

88

Chapter C

Figure C.9: Raw data for the 32 bit systems.

89

Chapter C

Figure C.10: Raw data for the 32 bit systems.

90

Chapter C

Figure C.11: Raw data for the 32 bit systems.

91

Chapter C

Figure C.12: Raw data for the 32 bit systems.

92

	Abstract
	Acknowledgment
	Introduction
	The Concept of Encryption
	Symmetric vs. Asymmetric Encryption

	Benchmark for the Security of Encryption
	Cryptanalysis
	Problem Statement for the Thesis
	Thesis Outline

	Background
	Abstract Algebra
	Group
	Ring
	Field
	Finite Fields
	Polynomials over a Field
	Operations on Polynomials
	Some Observations on Finite Fields with Characteristic 2

	Linear Algebra
	Boolean Functions
	Bits and Boolean Vectors
	Function, Transformation and Permutation
	Partition Bundles
	Transposition and Bundle Transposition
	Bricklayer Function
	Iterative Boolean Transformation

	Block Ciphers
	Key-Iterated Block Ciphers

	Cryptanalysis

	AES and Small-Scale Variants
	Overview
	Math in AES
	Indexing in AES
	Round Operations
	SubBytes
	ShiftRows
	MixColumn
	AddRoundKey
	Key Schedule
	Decryption
	Design Criterias

	Small Scale Variants of the AES
	Parameters
	GF(24) and Small-Scale Round Operations

	Multiple Right-Hand Sides and Compressed Right-Hand Sides Equations
	Multiple Right-Hand Sides
	MRHS Equation
	From AES to MRHS Equations
	Solving a System of MRHS Equations
	Size of MRHS Equations After Gluing

	Compressed Right-Hand Sides
	Binary Decision Diagrams and Compressed Right-Hand Sides Equations
	BDD Construction
	Solving Systems of BDDs: Merging BDDs
	Tools for Solving CRHS Equation System: Swapping and Adding Levels
	Resolving Linear Dependencies in BDDs: Linear Absorption
	Complexity

	Order of Joining

	Experiments and Findings
	Setup
	Software
	Hardware
	Attack Execution
	Known Sources of Error
	Potential Sources of Error

	Findings and Results
	Reported and not Reported Instances
	64-bit Systems
	32-bit Systems
	16-Bit Systems

	Discussion on Findings
	SR*(n,4,1,4)
	SR*(n,2,2,4) and SR*(n,1,4,4)
	Indications of Plaintext Dependencies

	Conclusion and Further Works
	Bibliography
	Plaintext Values
	Raw Data for 16 Bit Systems
	Raw Data for 32 Bit Systems

