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Abstract 
 

Domain specific modelling languages (DSML) are usually defined through fixed level meta modelling 

tools such as EMF. While this is sufficient for defining languages that has no overlap with other 

languages, the approach struggles to reuse overlapping parts of an existing language when defining a 

new language, especially when it comes to the definition of behaviour. Many domain specific 

languages have a significant overlap with eachother in terms of concepts and behaviour. Multilevel 

meta modelling is a promising approach to define a family of DSMLs.  

In this thesis, we aim to define behaviour once on a higher level of abstraction, and reuse it on every 

DSML which share that behaviour. We use multilevel coupled transformations (MCMT) to define the 

behaviour, and we present a multilevel transformation engine capable of transforming MCMTs into 

traditional two-level rules which can be run by existing transformation engines.   
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1.  Introduction 
 
In the beginning of software engineering, programs were written directly in machine code. Writing 
programs in machine code was a tedious and error prone process, and higher-level languages were 
developed to shield the developers from writing programs directly in machine code. Higher-level 
languages such as Fortran [1] are compiled into executable machine code automatically by a 
compiler, and work like an interface between the developer and the machine. Raising the abstraction 
level from machine code to fortran resulted in a huge swing in productivity.  
Programming languages from different paradigms were created in an attempt to maximize software 
quality and minimize the cost of software [2]. Today the most popular programming languages follow 
the object-oriented paradigm and are refered to as object-oriented programming (OOP) languages 
[3]. OOP focuses on the data/model rather than the algorithms, and allows developers to create a 
class to represent similar concepts. Many objects can be instantiated from a class, and these objects 
inherit the attributes and methods defined in their class. This allows functionality to be reused 
among concepts, and changing behaviour is made easier as a change only needs to be made in the 
class and then the change is automatically reflected in the objects. Furthermore, a class can be 
reused from other OOP programs outside of the program it was defined. The ability to reuse classes 
in other applications has lead developers to create code libraries intended to be reused by many 
programs.  
 
A software platform contains a collection of code libraries and is meant to provide the developers 
with base functionality when developing new applications. However, software platforms are 
becoming increasingly complex and difficult to use. Developers spend years mastering the libraries of 
a platform, and are usually only familiar with a subset of the functionality in the platform. Moreover, 
the complexity of the platform forces the developers to pay such close attention to the 
implementation details that they tunnel in on a specific part of the application and are unable to 
view the application as a whole. This leads to the developers creating duplicate code as they are 
unaware of the existing functionality in the application. Furthermore, it makes it hard for the 
developers to know which parts of the system are affected when making changes to a specific part of 
the system [4].  

 
Model-driven software engineering (MDSE) is a software development discipline that emerged as an 
approach to tackle the ever-increasing complexity of software systems. MDSE use models as the 
central artifact in the development process. When changes occur, they are first made in the model, 
and then the other artifacts are updated to reflect these changes. MDSE considers models to be at a 
higher abstraction level than code, and code can be produced from models which allows developers 
to focus on concepts from the problem domain rather than the underlying algorithms and the 
solution domain.  
Many studies support that the use of MDSE leads to an increase in productivity, quality, performance 
and more [5, 6]. However, the main advantage of MDSE is communication between all stakeholders 
in the project even those without a background in computer science. After all, poor communication 
between developers and domain experts is one of the main reasons that software projects fail [7].  
 
Unfortunately, many people commonly associate MDSE with the Unified Modeling Language (UML) 
[8] which is a general purpose modeling language (GPML). UML was created as a means to model 
object oriented systems. However, stakeholders without a background in computer science struggle 
to understand models written in UML [9], and UML models are therefore not the optimal tool for the 
communication between developers and domain experts.  
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Instead of using general purpose languages, MDSE suggests creating domain specific modeling 
languages (DSML) through the use of metamodeling [10]. DSMLs are tailored to a specific domain 
and are developed with the involved stakeholders in mind. DSMLs use concepts directly from the 
domain and a syntax that is intuitive to the stakeholders which allow the stakeholders to understand 
domain models without additional learning effort. Furthermore, DSLs encapsulate all of the needed 
functionality within the language, so the developers only have to learn the language of the domain 
instead of searching through multiple libraries to find the needed functionality. On the other hand, 
code libraries usually contain many functions that the developer will never use in a specific domain, 
and at the same time not enough functions to cover the problems in the developers’ domain. As a 
consequence, developers need to combine several libraries to cover the problems in their domain.  
Developers benefit from having all the needed functionality gathered in one place, as they do not 
have to search through several libraries and end up confused in the process which is often the case 
when functionality is scattered across many code libraries. Furthermore, DSLs has proven to be far 
more effective than GPLs when solving problems that they were designed to solve [11]. HTML and 
SQL are examples of how good DSLs can be although they are languages that solve problems of a 
specific technical space rather than a specific domain in the real world. However, DSLs of a specific 
domain are atleast equally effective as DSLs of a specific technical space, and the main difference 
between the two is that DSLs of technical spaces can be used to solve a broader specter of problems.  
 
Businesses from most domains are moving on to the computer world because of digitalization 
therefore creating a DSL for each domain could benefit these businesses greatly. However, the 
process of creating a new DSL is time consuming and involves creating new editors, simulators and 
transformations which usually needs to be created from scratch. Furthermore, existing DSLs are 
difficult to change, and making changes to a language usually results in breaking the tools that 
supports that language such as editors, simulators etc [12]. The introduction of language 
workbenches has allieviated many of these issues, but currently they do not solve all of them. 

  
An important observation is that there is a lot of overlap between some DSLs, and sometimes the 
difference between them is hardly noticeable [12]. In other words, some DSLs contains many of the 
same concepts, and these concepts usually have similar behaviour in all of these DSLs. We want to 
take advantage of this observation by creating a language at a higher abstraction level that contains 
many of the common concepts. We can then use the higher-level language as a base to create new 
DSLs. Moreover, we can define behaviour for the concepts in the higher-level language and let the 
DSLs that are created from the higher-level language inherit this behaviour. That way many DSLs can 
be created from the higher-level language, and we only need to define the common behaviour once.  
  
In this thesis, we use the multilevel metamodeling tool MultEcore [13], to create a hierarchy of 
domain specific modeling languages. The hierarchy contains an arbitrary number of levels where 
every level is an instance of the levels above, and the highest-level language is defined at the 
topmost level in the hierarchy. Our objective is to create a tool that allows developers to define 
behaviour on types at a higher level, and apply this behaviour on direct and indirect instances of 
these types at a lower level.  
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2.  Problem description 
 

2.1. Problem statement 
 
In the real world, similar concepts are grouped together under a common concept which in turn can 
be grouped under a more abstract concept. The result is a hierarchy of “things” which can be 
expanded by adding new abstraction levels. In other words, the hierarchy of the concepts in the real 
world has an unlimited number of abstraction levels which keeps growing as new concepts are 
identified. In this chapter, we look at how modelling approaches use a hierarchy with a fixed number 
of levels, and how that can cause problems when trying to mimic the hierarchy of the real world. 
Furthermore, we will see that behaviour is multilevel and can be expressed through model 
transformations. However, most model transformation tools are fixed-level and the model 
transformation tools which are multilevel have problems with precision which we will explain in 
chapter 4. We propse a solution to this problem and present two research questions that help 
determine the usefulness of our solution.  
 

 

 

 

FIGURE 2.1 - LEVELS IN FIXED METAMODELING 

Figure 2.1 shows the the structure of a fixed level modelling hierarchy. The meta-metamodel is the 

topmost level in the structure and is used to construct metamodels on the level below. We usually 

use MOF or Ecore as the meta-metamodel. The meta-metamodel contains generic concepts such as 

class and their relations to other classes. The meta-metamodel is fixed in the sense that it cannot be 

modified easily. The metamodel is used to construct models at the level below. Behaviour can be 

defined for model elements through model transformations. The model transformations are defined 

on the metamodel so that they can be applied to several models created from the metamodel. Here 

we only give a brief overview of the metamodeling structure in order to add some context to the 

problem description. We revisit this topic in the next chapter where we explain metamodeling in 
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depth.  

 

The fixed-level approach works fine when only one metamodel is considered. The problem appears 

when we have an existing metamodel and are in the process of creating a new metamodel which 

have many concepts in common with our existing metamodel. 

 

FIGURE 2.2 - PROBLEM SITUATION 

Figure 2.2 shows the situation where problems might occur. The existing metamodel and the new 

metamodel are defined on the same level which means that they have no knowledge of eachother, 

and both metamodels can only use concepts that are defined in the meta-metamodel. Moreover, the 

behaviour that is defined for the existing metamodel has to be recreated for the new metamodel 

even though it might be identical. One might ask, what if the common concepts in the existing 

metamodel were moved up to the meta-metamodel? That could help reuse concepts in new 

languages, but the developer has no straightforward way to access the meta-metamodel which is 

considered off limits because it was not ment to be modified by developers. Furthermore, modifying 

the meta-metamodel can break other artifacts and metamodels that are dependent on the meta-

metamodel.  
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FIGURE 2.3 IDEAL SOLUTION 

Figure 2.3 shows how we would like to solve the problem of reuse. The common concepts are 

defined on a new level between the meta-metamodel and the existing metamodel. That way the 

common concepts can be used in both the existing metamodel and facilitate the creation of new 

metamodels. Furthermore, the behaviour that is common to the existing metamodel and the new 

metamodel can be defined on the common concepts once and be applied to instances of both 

metamodels. However, inserting a new level in the hierarchy is not possible due to the limitation of 

fixed-level modelling because introducing a new meta-level would take up the space used by the 

models and their instances. We can avoid the limitations imposed by fixed-level modelling by turning 

to multilevel modelling. Multilevel modelling supports the solution displayed in Figure 2.3.  

Unfortunately, defining the behaviour of multilevel models is an issue due to the lack of multilevel 

transformation tools.  

We aim to tackle this issue by developing a multilevel transformation engine which can transform 

multilevel models, and we aim to facilitate the re-use of behaviour between metamodels.  

 

2.2. Research questions 
 

A concrete example of the problem regarding re-usability between metamodels is given here. 

The concepts dog and cat share the behavior eat. Currently, the behaviour eat needs to be defined 

separately for cat and dog even though the rules might look identical besides having different types. 

The reason is that current tools define behaviour which is tied to a specific type hence if a behaviour 

is defined for dog it is not applicable to cat. One way to re-use the behaviour is to define a new 

concept named animal. Make cat and dog inherit from animal, then define the behaviour eat on 

animal. Then the behaviour eat would be applicable to both cat and dog. The set back of this 

approach is that it requires animal, dog and cat to be defined in the same metamodel. This approach 

has some drawbacks: Animal is more abstract than dog and cat, and should be in a different layer of 

abstraction. Furthermore, it does not scale well because it requires all types to be in the same 

metamodel, and adding a new concrete animal like cow requires that the metamodel be updated 

along with the artifacts that are created for the metamodel such as editors, code-generators etc. 
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Frequently used concepts will get mixed with rarely used ones, leading to the pollution of the 

metamodel.  

Fortunately, using multilevel modelling we can follow a similar approach to re-using behaviour that 

allows us to separate animal from dog and cat. The idea is similar to the inheritance approach, but 

instead of inheritance we use instance relations to determine which concepts are eligible for a given 

behaviour. We make dog and cat instances of animal, and asssign the behaviour eat to animal (See 

Figure 2.4). The former approach could be viewed as generalisation and the second approach as 

classification. The author of [14] compares the two approaches and marks that classification offers 

greater flexibility, but comes at the cost of precision and sanity checks. 

 

FIGURE 2.4 - SIMPLIFIED MODELS OF OUR SOLUTION 

 

In order to execute the behaviour and determine which concepts can perform the behaviour, we 

need a multilevel execution engine because eating must be applicable to instances of dog and cat 

which are at level 3, but fixed-level engines are not able to recognize that instances of dog and cat 

are also instances of animal. Assuming, we have built a multilevel model transformation capable of 

running and matching the behaviour: 

 

1. Can we re-use behaviour across different model languages? 

 

2. Can we re-use behaviour defined for a higher-level language on refined lower-level 

versions of that language?  

 

An example of the first question: We have an existing language which includes the concept of Dog, 

and we are creating a new language which includes the concept of Cat. We notice that some of the 

behaviour that is defined on Dog is the same as some of the behaviour that we are about to define 

on Cat. The behaviour is specifically defined on Dog as we follow the “you ain’t gonna need it” 

principle therefore we create a new concept Animal at a higher abstraction layer than Dog and Cat, 

and move the common behaviour from Dog up one level to Animal. We make Dog and Cat an 
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instance of Animal. Now the question asks if we can apply the behaviour on both Dog and Cat when 

Animal is defined in a separate metamodel from Cat and Dog.  

 

The second question asks if we can apply the behaviour defined on Animal onto indirect instances of 

Animal. For example, dogs have many different breeds and some breeds have a specific behaviour 

that is different from other breeds, although all breeds have some behaviour in common. Now the 

question is: can we apply the behaviour defined on Animal onto some instances of Breed? 
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3.  Metamodelling 
 

In the introduction, we mentioned modeling languages. In this chapter, we look at the core 

components of a modelling language. We mainly discuss metamodeling which is a technique to 

define the abstract syntax of a modelling language. We discuss two approaches to metamodeling, 

the fixed-level approach and deep multilevel approach. We briefly introduce the concrete syntax and 

semantics of a modelling language. We end the chapter by displaying an example from Rossini [2] 

about modelling a component based web applications using the fixed-level and the multilevel 

approach to metamodeling. Lastly, we compare the two approaches.  

 

3.1. Modeling language 
 

A modelling language can be broken down to three core components: The abstract syntax, the 

concrete syntax, and the semantics [15]. The concrete syntax is not mandatory, but it is used to 

differentiate between the different concepts in the language aswell as making the concepts easier to 

understand.  

The abstract syntax identifies the relevant concepts used to construct models in a particular domain. 

It does not distinguish between the appearance of the concepts and all concepts usually have the 

same notation. Since all the concepts have the same appearance, one can only distuingish between 

concepts by looking at the concepts name. This makes models written in the abstract syntax hard to 

read, and therefor they are not well suited for communication purposes.  

However, the abstract syntax can be represented by a concrete syntax. Each concept in the abstract 

syntax can be mapped to a more concrete concept with a unique representation. A concrete syntax 

can be textual or graphical, and an abstract syntax can be mapped to a graphical concrete syntax and 

a textual concrete syntax. In fact, there are no limits to the number of concrete syntaxes that can be 

mapped to an abstract syntax. The point of the concrete syntax is to make the abstract syntax more 

intuitive and easier to understand, and that is dependent on the person who is reading the model. 

Therefor, many concrete syntaxes can be defined for a given abstract syntax and a reader can choose 

the concrete syntax that is most appealing to them. 

 

5 + 6 Infix 

(+ 5 6) Prefix 

(5 6 +) Postix 

TABLE 3-1 THREE CONCRETE SYNTAXES FOR THE SUM EXPRESSION 

Table 3-1 shows three different syntaxes for expressing the same expression. All of the syntaxes 

express the same thing, and the meaning of each syntax should therefor only be defined once. The 

meaning is therefor only specified for the abstract syntax and is derived from the concrete syntax.  

The idea of concrete syntax is to convey information as fast as possible, and therefor the graphical 

syntax is usually the best option as a picture says more than a 1000 word.  

Graphical concrete syntaxes can be created using Sirius [16], and textual concrete syntaxes can be 

created using Xtext [17]. Sirius allows a concepts appearance to change depending on it’s attributes. 

For example, the concept of a person may be displayed as a male or female depending on the 



3.    Metamodelling 

 

9 
 

persons gender, and a child or an adult depending on the persons age which helps the reader gather 

more information quickly.  

The last component of a language is the semantics. The semantics specifies what a concept means 

and what should happen when a combination of concepts appear together. In modelling, one of the 

ways to specify the semantics of a language is through model transformations [18]. Formal semantics 

are necessary to make the concepts in the language unambiguous meaning that there are no room 

for miss-interpretation.  

Figure 3.1 gives an overview of the components in a DSML. 

 

FIGURE 3.1 - ANATOMY OF A MODELING LANGUAGE [15] 

We discuss metamodeling in the next section as a technique to define the abstract syntax of the 

language, and model transformation in the next chapter as a technique to specify the semantics of 

the language. We do not talk more about the concrete syntax as it is not relevant for this thesis. 

Furthermore, semantics can be divided into static and dynamic semantics. Static semantics refers to 

the structural properties of the model and dynamic semantics refers to the behaviour of the model. 

In this thesis, we use the words dynamic semantics and semantics interchangeably.  

 

3.2.  Metamodelling 
 

In modeling languages, the abstract syntax is described by a metamodel. The process of creating 

metamodels is refered to as Metamodeling. A metamodel is a model that describes elements that 

can be used to create new models, additionally it provides a set of rules and constraints that dictates 

how elements are related to each other. The elements in the metamodel are referred to as types. 

Models can be produced by creating instances of the types in the metamodel hence the elements in 

the model are referred to as instances.  

The metamodel dictates the set of valid models. For a model to be valid, it must conform to it’s 

metamodel. A model is said to conform to it’s metamodel if it is both typed by and follows the 

constraints placed on it’s metamodel. A model is typed by it’s metamodel if every element in the 

model is an instance of a type defined in the model’s metamodel. Types in a metamodel may have 

cardinality and uniqueness constraints, referered to as structural constraints. Additional constraints 

may also be placed on the meta-model by using a constraint language such as OCL, these constraints 
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are referred to as attached constraints. A model is only considered valid if both structural and 

attached constraints are satisfied [19].  

In MDSE, the abstract syntax of a language is described by a metamodel [15]. Models and 

metamodels are created in a hierarchical structure which often span many levels. We refer to the 

hierarchy as the model hierarchy, and a level in the model hierarchy as a metalevel. The most 

abstract metamodel is placed at the top of the model hierarchy. The relationship between two 

adjacent metalevels is that the upper metalevel acts as a metamodel, and the metalevel below acts 

as the model. The topmost metalevel is an exception to this rule, as it is reflexive meaning that it is 

defined on its own terms (conforms to itself). The pattern of model and metamodel can continue 

infinitely, and therefor the number of metalevels in the model hierarchy is arbitrary and can change 

over time.  

However, tradionally the model hierarchy has been using a fixed size of three or four metalevels. A 

modeling hierarchy of fixed length means that it is not possible to insert new levels to account for 

changing requirements [20]. Additionally, the real world does not have a fixed number of abstraction 

levels, and using a fixed level hierarchy to represent the abstraction levels of the real world is 

sometimes not sufficient and requires complex workarounds. 

Atkinson and Kühne has proposed deep metamodeling which is an approach that uses an arbitrary 

number of metalevels [21] and allows information to be carried across more than one level. The 

number of levels may change over time, depending on the requirements. A characteristic of deep 

metamodeling is that a model doesn’t necessarily only conform to the metamodel on the level 

directly above itself, but may conform to several of the metamodels above. In addition, deep 

metamodeling does not have a fixed limitation on the number of metalevels in the model hierarchy. 

In [20] the authors show an example of how accidental complexity may be introduced when 

restricted to only two metalevels, and how this could be avoided by introducing more metalevels. 

We will include the same example later in this chapter, but first we show the OMG’s four-layer 

approach as an example of a fixed level approach, and MultEcore as an example of a deep 

metamodeling approach.  

 

3.2.1. Object Management Group’s (OMG) four-layer approach  
 
The OMG defines an architecture with four levels. The top-most level is the meta object facility 

(MOF). The MOF was created by the OMG with a purpose to provide a type system to the CORBA 

architecture, and a set of interfaces through those types could be created, viewed, edited or deleted 

[22]. OMG’s four-layer hierarchy is one of the most commonly used structures in practise. The eclipse 

modelling framework (EMF) adopts this construct, but utilises only three levels.  

The MOF which is the meta-metamodel, is used to create metamodels. The metamodel works as a 

type system for a set of models, and every element in the model must be an instance of a type 

defined in the metamodel.  

Figure 3.2 gives an overview of the OMG’s four level architecture. We have until now used the 

opposite numbering of the levels in the hierarchy, and the reason will become clear later. The 

topmost metamodel is located at level M3, and is used to construct the modelling language on M2. 

In this case, M2 is a model of M3, and every element in M2 is an instance of a type defined in M3. 

M3 is the metamodel of M2, and contains all the types that can be used to construct a language in 
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M2. In the same way, M1 is a model of M2, and M2 now acts as a metamodel to M1. One can see 

that M2 is both a model and a metamodel. In the fixed-level architecture the whole modelling 

language is defined in the same level M2. Unfortunately, using only one level to describe a modelling 

language makes it difficult to re-use segments of an existing modelling language when creating a new 

modelling language. Attempts in reusing parts of an existing language in a fixed level environment 

often results in a complex relation between types and instances.  

 

 

FIGURE 3.2 - OMG'S FOUR LAYER ARCHITECTURE [22] 

 

3.2.2. Deep meta-modelling (DMM)  
 

A consequence of the fixed metamodelings lack of flexibility is that people often start from scratch 

when creating a new language to avoid the added complexities of re-using existing languages. 

Starting from scratch is not ideal, as many domains uses similar concepts which could be re-used 

when creating new languages. The need for domain specific meta-modelling languages (DSMM) is 

discussed in [23]. Domain specific metamodeling languages are languages which contain concepts 

that are used in several domains, and they can be used as a starting point when creating a new 

language. DSMMs are created using many levels, and each level represents a language which is a 

refined version of the levels above. The topmost levels in the hierarchy contains the most abstract 

concepts which are applicable to the most domains. The process is the definition of a family of 
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languages, starting out with very general elements. The languages get more refined and specific on 

each level. The more general a language is, the easier it is to re-use. On the other hand, more specific 

languages are more beneficial, when they can be re-used. One can choose which level in the 

hierarchy to use as a starting point for creating a new language. However, two metalevels are not 

adequate to support the use of DSMMs [23]. We have turned to multilevel modelling which do not 

have a limitation on the number of metalevels in the hierarchy. 

Multilevel modelling tools follow a similar pattern to the fixed level architecture, but the depth of the 

hierarchy may change over time as a result of levels being inserted or deleted from the hierarchy. 

Another difference between fixed and multilevel modelling tools is the mechanisms for instantiating 

types in a model. In fixed level modelling, shallow instantiation is commonly used. Shallow 

instantiation only considers two levels at a time, where one level is the model and the other is the 

metamodel. These two levels must be adjacent, and the model can only create instances of types 

which are defined in the metamodel. With shallow instantiation, it is not possible to instantiate a 

type two levels below the metalevel where the type was defined. Unless a copy of the type is 

instantiated on every level between where the type was defined and the level where the type is 

instantiated. Creating a copy of a type on every level is refered to as the replication of concepts 

problem. Shallow instantiation works fine with the fixed two-level approach, but does not scale well 

when used in a multilevel environment [24].  

 

The preferred instantiation mechanism for multilevel modelling tools is deep instantiation. Deep 

instantiation is an instantiation mechanism where the system is aware of multiple modelling levels, 

and allows the user to create instances of types defined on more than one level above the current 

level. When deep instantiation is supported the metamodel is not restricted to only the level 

adjacently above the current level, but instead the metamodel is the union of all the levels above the 

current level. When we talk about fixed-level modelling tools we always assume shallow 

instantiation, and although some multilevel modelling tools only support shallow instatiation we wil 

assume that multilevel modelling tools support deep instantiation throughout this thesis.  

 

One way to implement deep instantiation is through potency. Potency is an integer that is assigned 

to each concept/model element on every level in the hierarchy. The value assigned dictates how 

many levels below a concept may be instantiated. The potency value of an element is reduced by one 

everytime the element is instantiated.  

 

In the four-layer approach, the top most level was labelled M3. When using multilevel modelling it 

makes more sense to let the top most level be M0 because it is not likely that another level is 

inserted on top of the top most level. If M0 is not used as the top most level then adding a new 

model at the bottom of the hierarchy would require that every model level in the stack is 

incremented by 1. This is also most likely the case therefore labelling the top most level as M0 makes 

the most sense, although traditionally the bottom most level has been labelled as M0. With deep 

metamodelling, a model at a given level does not always conform only to the level directly above 

itself. It can conform to several or even every level above. Deep meta-modelling offers greater 

flexibility, as it allows insertion of a new level inbetween meta-levels to cope with changing 

requirements.  

 

Figure 3.3 shows an example of a multilevel model hierarchy with five levels. The top most level and 

the bottom most levels are not shown. The top most level is the ecore, and the bottom most level is 

the state of the model. The types are depicted as blue elipses, and the name of the instance is 
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depicted in the yellow square. The first level shown is named generic_plant and contains abstract 

concepts identified in product line systems. Machine is responsible for creating, assembling or de-

assembling items which are represented by Part. Machine has a creates reference to Part which is 

necessary to specifcy which Part it should generate. Container is used to store items produced by the 

Machine or to store items that the Machine requires producing additional items. The two cases is 

recognized by the out and in relation respectively.      

 

 

FIGURE 3.3 – DEEP METAMODELLING HIERARCHY EXAMPLE [25] 

An arbitrary number of new levels may be created from generic_plant. In this example, two 

instances are created from generic_plant namely hammer_plant and stool_plant they are located on 

the second level in the hierarchy. These plants are refined versions of generic_plant and contains 

concepts for a specific plant. In hammer_plant there are three instances of Machine, GenHandle 

which generates Handle, GenHead, which generates Head, and Assembler which combines Head 

and Handle to produce a Hammer. There are two instances of Container namely, Conveyor and Tray. 

Conveyor is responsible for transporting a Part from a Machine to a Tray, and from a Tray to a 

Machine. Tray is responsible for storing items generated by the Machine. A new relation cout has 

been defined between Tray and Conveyor. The cout relation has not been defined in generic_plant 

which is possible because hammer_plant also conforms to ecore. Three instances of Part are 

defined, Head, Handle, and Hammer all mentioned previously. Hammer has a one to one has 

relation to both Head and Handle indicating that a Head and a Handle is required to create a 

Hammer. The stool_plant is similar to hammer_plant and will not be discussed much further here, 

other then it uses Box as the only transporter and Gluer has a similar role to the Assembler in 

hammer_plant. 
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The two models on the third level are hammer_config and stool_config which is the configuration of 

hammer_plant and stool_plant respectively. In the configurations, more components can be added 

to increase the production rate. Notice that the out relation between ghead and c1 in 

hammer_config is not defined for GenHead and Conveyor in hammer_plant, but rather defined for 

Machine and Container in generic_plant. This is possible because hammer_config does not only 

conform to hammer_plant and ecore, but it conforms to generic_plant aswell.   

The number of levels in the hierarchy is not fixed, and we may at any time create a new level 

anywhere in the hierarchy. This means that it is possible to create a model at the level above 

generic_plant or between generic_plant and hammer_plant.  

 

3.2.3. Deep metamodeling vs fixed metamodeling 
 

Earlier in this chapter we stated that the fixed-level approach can lead to accidental complexity, here 

we give an example of this. The example and the figures are taken from [2], they provide a more 

thorough explanation than we do here.  

A DSL for developing component-based web applications is defined using metamodeling. Two 

approaches to metamodeling is used. First the DSL is created using the fixed-level approach then 

another version of the DSL is created using deep metamodeling. Both approaches must deal with the 

challenge of extending the DSL.  

 

Figure 3.4 displays the language defined using a metamodel and a model from the OMG’s 4-layer 

architecture. In the metamodel the following concepts are defined: Component represents 

component types and has an identifier to distinguish between component types. CInstance 

represents instances of component types having a name and a flag which indicates whether the 

instance should be displayed or hidden. Datalink is used to relate component types to eachother, 

dlinstance is an instance of datalink and is used to relate component instances to eachother. Type is 

a relation between Component and CInstance, it specifies which component a cinstance is an 

instance of. The metamodel is used model many component-based web apps. The model included 

here is of a web app that shows the position of the professors’ offices on a map. The model contains 

the concepts: Table and Map which are instances of Component, geopos is an instance of datalink 

and relates Table and Map together. UAMProfs and UAMCamp are instances of CInstance and they 

represent component instances of Table and Map respectively. The relation offices is an instance of 

dlinstance and specifies the relation between UAMProfs and UAMCamp. The relations profstype 

and camptype are instances of the relation type in the metamodel, profstype specifies that 

UAMProfs is typed by Table and camptype specifies that UAMCamp is typed by Map.  

The type-object relation between component types and instances is defined explicitly by the type 

relation in the metamodel. However, the type-object relation between datalink and dlinstance is 

implicit as no relation between datalink and dlinstance is specified in the metamodel. This may 

cause problems as we can not control that offices is an instance of geopos, and this instance relation 

could become ambigious if more relations between Table and Map are defined. Relations may be 

created between UAMProfs and UAMCamp even if no relation between Table and Map is defined. A 

reflexive relation from UAMProfs to UAMProfs could be defined even though table does not have a 

reflexive datalink relation. A constraint language such as OCL could be used to detect these errors by 

defining attached constraints on the elements in the metamodel. However, this may not be enough 
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to guide the correct instantiation of each datalink. Furthermore, defining the OCL constraints 

requires more work, and would still not work as good as a built-in type system would if the datalink 

types and instances would be defined on two separate meta-levels [2]. In addition, the built-in type 

system would not require any additional work, in constrast to the OCL approach.  

 

FIGURE 3.4 - A FIXED-LEVEL DSL FOR COMPONENT BASED WEB APPLICATIONS 

 

In the complete version of the language, component types may have features. These features need 

to be correctly instantiated in the instance of the component type. This addition makes the models 

even more complex, Figure 3.5 displays the complete DSL. Feature and Slot are added to the 

metamodel. Feature represents the attribute of a component type, and Slot represents the value of a 

Feature. In the model, the feature Scroll is added to the component type Map and it represents the 

ability to zoom in on the map. Defining the class UAMScroll and relating it to Scroll and UAMCamp 

has to be done manually. Furthermore, the system does not know that the the value of UAMSCroll 

needs to be a Boolean, and this check needs to be done manually. A tool that emulates the existence 

of two meta-levels within the same level must be built to automatically perform conformance tests 

and relate instances to their apropriate types otherwise the language quickly becomes too complex 

to use/maintain [2].  
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FIGURE 3.5 - EXTENDED VERSION OF THE FIXED-LEVEL DSL, ADDING FEATURES TO COMPONENT 

 

Now we show a solution which uses deep metamodeling with three levels, and how this yields a 

much simpler DSL with the benefits of built in conformance check between types and instances.  

The solution of the initial DSL without the added features is shown in Figure 3.6. The topmost level 

M1 contains: Component which has the attributes id, name and visualise. Datalink which is the 

relation between components. Note that the @ sign denotes potency which we mentioned earlier in 

this chapter. The middle level M2 contains: Map and Table which are instances of Component, 

geopos which is an instance of datalink and it relates Table and Map. Lastly the bottom most model 

M3 contains: UAMCamp which is an instance of Map, UAMProfs which is an instance of Table and 

offices which is an instance of geopos and relates UAMProfs to UAMCamp. 

The DSL in Figure 3.6 uses fewer concepts than the DSL in Figure 3.4. Furthermore, the type-instance 

relation between geopos and offices is unambigious and the system recognizes the conformance. 

The concept of component instance is not needed as the system recognizes that UAMCamp and 

UAMProfs are indirect instances of Component.  
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FIGURE 3.6 - A DSL FOR COMPONENT BASED APPLICATIONS, CREATED USING DEEP MULTILEVEL MODELING 

 

Figure 3.7 displays how features can be added to Component when using deep metamodeling. Like 

before the scroll feature is to be added to Map. The problem is solved easily by linguistic extension 

which allows the user to add new elements; to instances; that was not defined in their types 

metamodel. In Figure 3.7, scroll is not defined for Component, and is directly added to Map which is 

an instance of Component. It’s allowed because Map is an instance of Class in addition to an instance 

of Component, therefor any native datatype that can be added to class, may also be added to Map. 

This is very useful because it allows us to refine instances at a lower level with details that could not 

be foreseen when designing the high-level language. In addition to the hierarchy being much simpler 

than the one in Figure 3.5, this solution also has two other advantages over the fixed-level solution: 

Firstly, the linguistic extension allows the system to check that the value of scroll is a Boolean by 

performing an automatic conformance check. Secondly, when instantiating an object all its attributes 

are also instantiated by the system. With the fixed-level approach this had to be done either 

manually or a tool had to be created that emulated 2 levels within the same level. However, such a 

tool would be coupled to a specific metamodel and a new tool would have to be developed when 

creating a new DSL, in contrast the deep approach does this for free.  
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FIGURE 3.7 - EXTENDING THE MULTILEVEL DSL, ADDING FEATURES TO COMPONENT 
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3.2.4. Example of re-use challenge in Fixed-level modeling 
 

In the previous example, we showed that deep metamodeling produced simpler models and were 

more resilient to change than fixed-level metamodeling. However, the example only included the 

case where a single application were modeled therefore we could not compare the re-usability 

between the two approaches. We illustrate this in the next example by describing the PLS for 

hammer generation using fixed-level metamodeling.  

Figure 3.8 displays a 2-level metamodel of the hammer_plant in Figure 3.3. The metamodel 

combines generic_plant and hammer_plant from Figure 3.3. The instance relations are modeled as 

inheritance. The metamodel works fine when only hammer_plant needs to be described.  

However, the approach fail to reuse generic_plant when developing languages for other production 

line systems such as stool_plant.  

 

 

FIGURE 3.8 - HAMMER PRODUCTION DESCRIBED BY A 2-LEVEL METAMODEL [26] 

 

The pattern in Figure 3.9 needs to be created from scratch when defining a fixed-level metamodel for 

stool_plant and many other production line systems. Moreover, changes to generic_plant has to be 

made in each metamodel because there is no correspondence between the implementations of 

generic_plant. 

 

FIGURE 3.9 - REPEATED PATTERN IN PRODUCTION LINE SYSTEMS 
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4.  Model transformations 
 

In the previous chapter, we introduced metamodeling as a way to define the abstract syntax of a 

modelling language. Furthermore, we introduced two approaches to create metamodels, namely the 

fixed-level approach and the multi-level approach. We provided an example of each approach and 

we argued that the fixed-level approach was not adequate to support a domain specific 

metamodeling framework. Moreover, we showed an example where the fixed-level approach led to 

accidental complexity, and the multi-level approach yielded much simpler metamodels. 

In this chapter, we discuss how model transformations can be used to define the dynamic semantics 

of a modelling language. We explain what model transformations are and the different approaches 

to performing model transformations. We look at different classifications of model transformations, 

and the differences between transformation approaches to fixed-level models and multilevel models. 

Lastly, we discuss the theory of graph transformations because that is the approach we used for our 

transformation engine.  

 

 

4.1. Model transformations in general 
 

Model transformations have many applications in MDE and is considered one of the key techniques. 

They can be used to refine models by adding details to higher-level models. They can also be used to 

translate a model written in one language to the corresponding model written in another language. 

For example, a UML model can be transformed into an ER model. Model transformations have many 

more applications in MDE. In this thesis, we use model transformations as a means to execute 

models by altering their states. 

The following is a general definition of model transformation given by [27]: 

A transformation is the automatic generation of a target model from a source model, according to a 

transformation definition. A transformation definition is a set of transformation rules that together 

describe how a model in the source language can be transformed into a model in the target 

language. 
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FIGURE 4.1 - MODEL TRANSFORMATION OVERVIEW [19] 

In a model transformation, a target model is produced from a source model. It is not necessarily a 

one to one relation (although it’s most common). Several source models could be combined into a 

target model, or a source model could be split into several target models. A transformation definition 

defines how a source model should be transformed into a target model. The transformation 

definition contains a set of transformation rules. A transformation rule contains a source pattern and 

a target pattern. The source pattern is referred to as the left-hand side (LHS) and the target pattern is 

referred to as the right-hand side (RHS). The target pattern is produced if a match of the source 

pattern is found. A pattern is a set of elements (could also be the empty set) and their relations. The 

transformation definition is written in a transformation language. The model transformations are 

defined on the types, and executed on instances of these types (Figure 4.1). Therefore, a link to the 

source and targets metamodel is necessary so that the transformation engine can know about the 

types of the models to be transformed, and thereby verify that the resulting target models are valid.  

Model transformations are performed in one of two ways: Either the target model could be the 

result of modifying the input model or the target model could be created from scratch. The former 

case is refered to as in-place transformations and it means that the input and the output model are 

the same model. The latter case is refered to as out-place transformations. Furthermore, model 

transformations are either endogenous or exogenous. Endogenous transformations are 

transformations where the input and output model conform to the same metamodel. Exogenous 

transformations on the other hand are transformations where the input and output model conform 

to different metamodels.  

Like programming languages, model transformations follow a paradigm. Declarative, imperative and 

graph transformations are the most commonly used paradigms in model transformations. 

Declarative languages focus on what should be transformed from what without specifying how it 

should be transformed. The order of execution is neglected, and an output pattern is generated from 

an input pattern. The style is similar to that of a logical programming language such as prolog. 

Imperative languages focus on how and when a model should be transformed. The order of 

execution is important and changing the sequence that the commands are executed in might change 

the result of the transformation. Imperative languages ressembles object oriented languages such as 
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Java, and might be easier for a developer to learn and use than declarative languages. Graph 

transformation languages use nodes to represent concepts, and edges between nodes to express 

relations between concepts.  

As with metamodeling tools, model transformation tools can be limited to transform fixed-level 

models or they can support the transformations of multilevel models. Since fixed-level modelling 

tools have been around the longest, most model transformation tools only support fixed-level model 

transformations. In the next sections, we discuss the two approaches fixed and multilevel 

transformations, and we will see that both approaches are similar in many aspects. 

 

4.2. Model transformation with fixed meta levels 
 

We have discussed fixed-level metamodelling in the previous chapter. Fixed-level model 

transformations work on models that are defined by such metamodeling frameworks. Most fixed-

level transformation tools are defined for the standard 4-level architecture. We will use atlas 

transformation language (ATL) as an example of a fixed-level transformation tool.  ATL is a hybrid 

language which means that it supports both the declarative and imperative style of programming. 

The creators of ATL encourages the declarative style, but the imperative part is included to deal with 

more complex problems [28]. ATL performs out-place transformations by default, but supports in-

place transformations by using the refining keyword.  

 

 

 

FIGURE 4.2 –THE ATL RULE DEFINITION OVERVIEW [28] 

In ATL it is necessary to specify the source and target metamodel, so that the transformation engine 

may ensure the validity of the models. This also enriches the editor with code suggestions and error 

detection, along with other useful features. Figure 4.2 illustrates an example of the ATL 

transformation context. The MOF is on level 0, MMa is on level 1 and Ma is on level 2. Adjacent 

elements are on the same level. There is a source and a target model, Ma and Mb respectively. MMa 

and MMb contains all the types that the source and target model could use respectively. MMa, 

MMb, Ma, and MMa2MMb.atl must be defined before running a transformation. Mb is generated 

by running the transformation and does not exist until the transformation is performed. 

 



4.    Model transformations 

 

23 
 

 

FIGURE 4.3 SAMPLE ATL RULE, GENERATING A HEAD FROM HEAD GENERATOR 

Figure 4.3 illustrates a transformation rule in ATL. The rule matches every GenHead instances of 

hammer_plant and creates a new head object that is connected to the matched GenHead instance. 

The from and to keyword refers to the left-hand side and the right-hand side of the rule respectively. 

Variable definition is done in the from and to part of the rule. It follows the pattern of 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶

 𝑀𝑒𝑡𝑎𝑚𝑜𝑑𝑒𝑙! 𝑇𝑦𝑝𝑒. The instances to be matched are specified on the left-hand side of the rule, and 

these instances are read only meaning that they can not be modified. The matched instances are 

only used to set the values of the created instances in the right-hand side of the rule. A matched 

instance is deleted after a transformation has been performed, and it is necessary to make a copy of 

the matched instance in the right-hand side of the rule if one does not wish to delete it. In the figure, 

a copy of GenHead is made to preserve the matching instance gh. Moreover, an instance h of Head is 

created and assigned as the target of the creates releation where genhe is the source. 

On the right-hand side of the rule, a set of bindings are defined after the variable declaration. A 

binding connects a feature of the target model with a feature of the source model. The bindings are 

specified using the <- operator which means that the feature on the left side of the arrow is 

initialized by the expression on the right side of the arrow.  

Notice the variable declaration in ATL, they follow as mentioned the pattern 𝑀𝑒𝑡𝑎𝑚𝑜𝑑𝑒𝑙! 𝑇𝑦𝑝𝑒 

where the element to be transformed must be a direct instance of the given type which means that a 

transformation is tied to a specific type of a specific metamodel.  

This example uses ATL, however most fixed-level transformation languages follow a similar structure. 

For example, Figure 4.2 could be said to be an instance of Figure 4.1 and many other transformation 

languages follow the pattern in Figure 4.1. 

 

4.3. Multilevel model transformations 
 

Multilevel transformations are defined on multilevel model hierarchies. They can be used to define 

and share behaviour that is common to a group of concepts by defining the behaviour on an abstract 

representation of the group. The abstract concept would be defined on an upper level in the 
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hierarchy, and the behaviour could be applied at an arbitrary level below which could be the level 

directly below or several levels below.  

 

FIGURE 4.4 - MULTILEVEL MODEL TRANSFORMATION RULE: CREATE PART 

For example, Figure 4.4 displays how a create part rule is defined for Machine and Part in 

generic_plant (Figure 3.3). The rule can be applied on GenHead and GenHandle in the 

hammer_plant and GenLeg and GenSeat in the stool_plant, see Figure 3.3(b) and Figure 3.3(c). 

Multilevel transformations rules work fine when the model to be transformed contains the pattern 

that is required by the rule and the types used by the rule are all located in the same metalevel [25]. 

Otherwise the rules become too generic and imprecise. For instance, machine instances would create 

all parts. GenHead would create Hammer and Handle. Assembler which is not supposed to create 

any parts would create Handle, Head etc...  

The approach could be viewed as a way to loosen up the strictness of types imposed by fixed level 

model transformations [25]. However, with it’s side effects and limitations, we deem it unfit for our 

purpose. Instead we turn to multilevel coupled transformations which is another form of multilevel 

transformations that aim to accomplish the same thing as multilevel transformations without the 

side effects.  

 

4.4. Multilevel coupled model transformations (MCMT) 
 

MCMT [25] is an approach to model transformations that transforms the model together with its 

metamodel. The metamodel here is not necessarily one metalevel, it may be several ones. The 

metamodel consist of all the metalevels above the model to be transformed, and could be thought of 

as the union of the metalevels above, granted that the potency allows it. The MCMT rules share a 

similar construct to fixed level rules, but MCMT rules have a meta block in adition to the source and 

target block. The meta block allows one to put constraints on the types and to define a pattern that 

the types must satisfy to be eligible for a transformation. The meta block dictates over the types in 

the source block and in the target block, and one could say that it works as a type system when 

writing the rules.  

 

FIGURE 4.5 - MCMT RULE: CREATE PART 

We use the same example from earlier namely create part. This time the rule is defined using MCMT, 

Figure 4.5 shows what the MCMT version look like. The metablock contains a variable M1 of type 

Machine, a variable P1 of type Part and a relation of type creates between the two. The metablock 
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indicates that a valid match of M1 needs to have a relation of type creates to an instance of Part. If 

M1 is matched first then P1 needs to be the exact same type that is related to the match of M1 by 

the creates relation. For example, if M1 is matched to GenHead, then GenHeads creates relation is 

looked up and the target of this relation is Head and therefor P1 must be assigned to Head. This 

makes sure that create part rules are only produced for instances of machine that has a creates 

relation to an instance of part. Thereby rules are created that generate the correct part for the right 

machine, and rules are not produced for machines that are not supposed to create parts such as 

assembler. As mentioned before the metablock does not require all its types to be in the same 

metalevel and each type could in theory be defined in a separate level. That elimates one of the 

limitations of the multilevel transformations mentioned earlier. The other one being related to case 

distinction, which is tackled by defining a pattern in the meta block that the types must satisfy. This 

means that it is possible to perform multilevel transformations without the limitations and side 

effects mentioned earlier.  

While the fixed-level approach was too strict, and the multilevel approach too loose, MCMT could be 

considered to be somewhere inbetween those two approaches.  

 

FIGURE 4.6 – MULTILEVEL COUPLED MODEL TRANSFORMATIONS  [29] 

Figure 4.6 gives an overview of the elements involved in an MCMT, and how they are structured. The 

structure could be viewed as two flat trees M and TG where each node in the trees represent a level 

in a hierarchy. The tree on the left side MM represents the typing hierarchy defined in the meta part 

of the rule. TG, the tree on the right side represents the multi level model hierarchy where the actual 

types are defined. The nodes in MM contains variables which are only partly typed meaning their 

concrete types are not known before the nodes in MM are mapped to nodes in TG. Nodes in MM is 

bound to nodes in TG by the relation b. For example, MM0 is bound to TG0 by the relation b0 in the 

figure. All levels in MM is required to be bound to a level in TG for a rule to be valid. The bottom part 

of the left tree contains the left and right-hand side of the rule depicted in the figure as L and R 

respectively. The interface I contains the union of L and R which are the elements to be preserved. 
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The elements in L, I and R are all typed by concepts defined in the levels of MM. S represents the 

model we wish to transform and T is the resulting model of performing the MCMT to S. 

 

4.5. Graph transformations 
 

For the underlying transformation engine, we have used Groove which is a tool that performs 

transformations on Graphs. Graph transformation uses graphs to represent the model and the rules. 

Rules include a left-hand side and a right-hand side, LHS and RHS respectively [30]. The left-hand side 

of a rule must be matched to the host graph for the rule to be applicable. When a rule is applied, the 

left-hand side is matched in the host graph, and then this match is replaced by the right-hand side 

which results in the target graph, this step is referred to as graph-rewriting.  

We use the algebraic approach to graph transformations. An approach that is based on pushout 

constructions. Pushouts specifies how the target graph is produced from applying a rule to the host 

graph. There are two ways to perform a pushout. Namely, the single-pushout (SPO) and the double-

pushout (DPO). The double-pushout is the most used in practice [31]. However, both approaches 

have their unique advantages. We will briefly explain both approaches and then make a short  

comparison. 

 

The double-pushout approach performs graph rewriting in two steps. In the first step elements are 

deleted and in the second step new elements are added. DPO has a condition called the gluing 

condition which must be satisfied for a transformation to be applicable. The gluing condition consists 

of two other conditions, namely the identification and the dangling edge condition. The identification 

condition specifies that elements to be deleted by the rule must be mapped injectively to the host 

graph. For example, if two pattern elements u and v should be deleted by a rule then u and v must 

not be mapped to the same element in the host graph. The dangling edge condition specifies that if a 

node u is deleted by a rule, then all edges adjacent to u must also be deleted.  

Figure 4.7 illustrates how the target graph H is derived by applying a rule (L,K,R) to the host graph G. 

The figure contains the elements:  

• L describes the elements that must be matched by the host graph, for a rule to be applicable  

• R describes the elements that are added to the host graph when applying the rule 

• K describes the elements that are in both L and R. All elements in K exists before and after 

the rule is applied 

• G is the host graph 

• H is the target graph 

• Elements in L that are not in K is deleted from G when a rule is applied which results in the 

temporary graph D. 

• D is a temporary graph that holds the result of the first pushout.  

• Elements in R that are not in K is added to D when performing the second pushout which 

results in the target graph H 

• After rule completion, H becomes the new host graph, instead of G 



4.    Model transformations 

 

27 
 

 

FIGURE 4.7 - THE DOUBLE-PUSHOUT APPROACH 

Furthermore, here is a quick explaination of what happens during DPO. Firstly, a match of L needs to 

be found in G, let m be such a match. Secondly, if m statisfies the gluing condition, then the context 

graph 𝐷 ≔ 𝐺\(𝑚(𝐿)\𝑚(𝐾)) is constructed by deleting the elements in m that is not in K. Lastly the 

target graph 𝐻 ≔ 𝐷 ∪ 𝑅\𝐾 is constructed by adding the elements in R that is not in K.  

 

Single-pushout performs graph rewriting in a single step, hence the name single-pushout. Figure 4.8 

illustrates the process: Let mL be a match of L in G, then all elements in mL that are not in R is 

deleted from G and the elements in R is added to G to produce 𝐻 ≔ 𝐺\(𝐿\𝑅) ∪ 𝑅\𝐿 

In other words: L is mapped to elements in G by the morphism mL, which must be complete for a 

rule to be applicable. Only the elements in G that are mapped by L is modified by the rule.  

Furthermore, r is a partial mapping between L and R that describes the application context. The 

application context is made up of elements preserved by the transformation, and it plays a similar 

part as the interface graph in DPO [32]. Let v be an element in L then there are two options; either v 

has a morphism in r that points to a corresponding element in R in which case mL(v) is preserved, 

otherwise mL(v) is deleted because it has no morphism in r to an element in R. The elements in R 

that are not mapped by an element in L need to be added to the graph. Finally, the addition and 

deletion are performed in the same step. 

 

FIGURE 4.8 - THE SINGLE-PUSHOUT APPROACH [33] 

 

There are two main differences between SPO and DPO: 

1. SPO does rewriting in one step, meaning that the target graph is directly derived from the 

host graph.  

2. SPO does not have a gluing condition which allows it to run rules that DPO would not 

therefore it is considered more powerful than DPO. However, it is also more dangerous than 

DPO because SPO does not have a gluing condition hence SPO transformations may 

invalidate the graph.  
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5.  Design and implementation  
 

This chapter is structured into several parts which starts by presenting our alternatives and 

explaining our design choice before introducing the structure of our framework. The framework is 

composed of several components. We describe the components of the framework in their own 

section. Lastly, we explain the functionalities of the framework and the responsibilies of each 

component. 

 

 

5.1. Design options 
 

We were faced with two options when implementing the multilevel transformation engine. The first 

option was to create an engine from scratch. An engine capable of interpreting multilevel models at 

run-time. This ment to implement many of the features which were already supported by existing 

transformation engines.  

The second option was to re-use an existing transformation engine. Unfortunately, the existing 

engines available are not capable of running MCMT rules. It is therefor necessary to reduce the 

MCMT rules into 2-level rules. The process of reducing MCMT rules into 2-level rules are referred to 

as flattening of the rules. The flattening process will be discussed further later in this chapter, but for 

now we will mention that it happens in a preprocessing step. That is, we need to generate new rules 

from our MCMT rules. In that sense, this option resembles code-generation while the first option is 

similar to that of model interpretation.   

We decided early on to go with the second option because the first option was presumably too much 

work for a master’s thesis. Not much time was spent investigating the pros and cons of the two 

options, because of the workload of the first option. Furthermore, both options were capable of 

solving our goal. It is still worth to mention few of the many benefits of the first option. The approach 

is more elegant, no code generation is needed, and a component can be removed from the 

framework because no external engine is needed. The fact that the multilevel engine does not rely 

on an external engine makes the engine more flexible and gives the developer more control. These 

benefits and more lead us to believe that the first option should be implemented in the future, while 

the implementation in this thesis could work as a proof of concept. 
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5.2. Framework overview 

 

FIGURE 5.1 - OVERVIEW OF MCMT FRAMEWORK 

We execute multilevel coupled model transformations through an MCMT framework. Figure 5.1 

shows the components of our MCMT framework. The MCMT Engine is the central component and 

takes as input an MCMT Rule together with a Model hierarchy. The MCMT Engine matches the 

MCMT Rule with the Model hierarchy and generates a 2-level Rule for each valid match. We 

describe each component in the framework by illustrating what they look like and explain what role 

they have in the matching and generation process. Furthermore, we explain how the matching and 

rule generation process is performed.  

 

5.3. DSL for writing MCMT rules 
 

The DSL for writing MCMT rules was created using Xtext [17] which is a framework for creating 

languages. The standward way of Xtext is to first define the concrete syntax, and then Xtext infers 

the abstract syntax from the concrete syntax. In other words, the user defines a concrete syntax in a 

file which is then used to construct an EMF metamodel. The constructed metamodel is used to 

generate a textual editor for the language. The textual editor provides features such as syntax 

highlighting, code completion, error detection and more. 

Using EMF metamodels as the abstract syntax opens the possibilities of using graphical frameworks 

such as Sirius to create a graphical syntax for the language.  
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The purpose of the DSL is to facilitate the creation of MCMT rules by improving the structure of the 

syntax and making the syntax more concise. Thereby making the transformations easier to read, 

write and learn.  

 

 

FIGURE 5.2 - FRAGMENT OF THE METAMODEL DEFINING THE ABSTRACT SYNTAX OF THE DSL [25] 

Figure 5.3 illustrates how a rule is structured. A rule always starts with the keyword RULE followed by 

the name of the rule. It contains three blocks: META, FROM and TO, named in lowercase in the 

textual concrete syntax. The META block may not be empty and must contain a valid pattern. The 

FROM and TO blocks can only use variables of types which are defined in the META block, they may 

also be empty. In the METABLOCK there are MetaElementDecl and MetaExprs. MetaElements 

include nodes and edges which can be variables or constants. Constants are used as specific types to 

use with the FROM and TO block in order to reduce the number of matches found in the proliferation 

process. Constants are specified by supplying the dollar sign $ as a suffix to the type. The model 

where the MetaElement’s type is defined must be specified, it’s done so by suffixing the name of the 

MetaElement with mm and followed by the level of the model where the MetaElements type is 

defined. The level starts at 0, representing the top most model, and is increased by one for each level 

that is visited. The level doesn’t necessarily represent the exact level in the actual model hierarchy, 

for instance there might be models in the actual hierarchy which are above the model declared as 

level 0 in the rule. There might also be models which are between 0 and 1. This is allowed, because if 

we were to lock these rules to their exact rule locations, it would limit flexibilitiy, in addition 

introducing new levels in the actual hierarchy would break the rules. Note also that the ecore is 

presumed to be at level 0 and doesn’t need to be included explicitly. The MetaExprs is the other 

construct used in the Meta block. It’s mainly used to assign values. For example, to specify the source 

and target of an edge. MetaExprs are also used to place additional constraints on an element for 

example that a value must be between 5 and 10. The expression also helps limit the number of rules 

proliferated. The more constraints, the less rules are generated because there will be less candidates 

which fits the requirements.   
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The META block is used to find matches in the proliferation process, and also works as a type system 

for the body part (FROM and TO block) of the rule. The body part is used for the generation of fixed-

level rules that should be executed by the underlying transformation engine.  

 

 

 

FIGURE 5.3 - THE DSL EDITOR BEING USED TO DEFINE THE CREATEPART RULE [25] 

 
The DSL is optional when defining multilevel transformations. The alternative to using the DSL is to 
use a Java API, and write the transformation rules programmatically. Either approach will produce a 
java code representation of the rules because the engine can only work with rules that are defined in 
Java.  
The rules defined in the DSL are translated into Java code before they are executed. One could say 
that the DSL works as a façade over the engine, and it is therefore possible to exclude the DSL and 
write the rules directly in the engine. However, the DSL provides so many useful features as well as 
much more concise and readable syntax that it becomes somewhat mandatory when using the 
framework for larger projects.  
We defined the rules directly in Java when developing the engine because the rules we used to test 
the functionalitiy of the engine were simple, and it was straightforward to define them using objects 
in Java.  

 
 

5.4. MultEcore 
 
We use MultEcore to create multilevel models to transform with our Engine. MultEcore is a 
metamodeling tool that extends EMF with unlimited number of abstraction levels. In EMF, a 
metamodel is defined in an Ecore file and instances of a metamodel is specified in an xmi file. 
However, it is not possible to create new instances from the xmi file so therefor the model hierarchy 
ends after a model is created in xmi. MultEcore allows the user to transform the xmi file back into an 
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Ecore file, and produce a new model from the produced Ecore file. The elements in the xmi file are 
transformed into EClasses in the produced Ecore file, and their actual type is placed as a type 
annotation within their new EClass. The transformations are semi automatic in the sense that the 
user must click a button to transform an xmi file into an ecore file.  
 
Other tools to create multilevel models such as Melanee [34] and Metadepth [35] could have been 
used instead of MultEcore. We did not investigate which metamodelling tool was best suited 
however we believe that any metamodeling tool that supports deep metamodeling would be 
suitable. Changing the modelling tool from MultEcore to Melanee would require that a generator 
from Melanee models to the engines representation of the model hierarchy is built. The user could 
then choose if he wanted to transform MultEcore or Melanee models, and overtime many modelling 
tools could be supported. The translation of Melanee models to the engine representation is refered 
to as tool chaining or bridging.  
 
The multilevel hierarchy is one of the inputs that we use when determining the proliferated rules. 
The other input is the multilevel rule. Changes to either one of the inputs could lead to an increased 
or decreased number of proliferated rules.  
 
We call it a model hierarchy because several new models can be created from one level onto the 
level below which creates a tree like structure with many branches. The engine is only working with 
one path in the hierarchy when matching multilevel rules. One path in the hierarchy is when there is 
only one model in each level. In other words, we only consider one model from each level even 
though in realitiy there might exist many more models per level.  
 

 
FIGURE 5.4 - EXAMPLE OF A PATH IN THE MODEL HIERARCHY 

Using a different path for the matching requires that a new path is specified and that the engine runs 
with the new path. There are some reasons for only considering one path at a time.  
It shortens the search space because only one model per level needs to be visited. The alternative 
being that m visits are needed per level where m is the number of branches. This means that the 
number of visists are reduced from 𝑚𝑛 to n.  
Running the matching for every path in the hierarchy will produce a lot of redundant rules which will 
never be matched to the model we are working with at the current time. These redundant rules lead 
to needless complexity. 
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5.5. The underyling transformation engine 
 

Our multilevel transformation engine produces a set of two-level rules out of an MCMT, and we need 

a tool to execute the two-level rules that our engine produces. We decided to use an existing tool to 

run our produced rules. However, there are over a 100 transformation tools available [36] and not 

every tool is suited as an underlying engine to a multilevel transformation framework. We made a 

comparison of some of the transformation tools out there to find a tool that could be used as our 

underlying engine.  

 

5.5.1. Comparison of transformation tools 

 
Transformation tools are often created to solve specific problems which means that the correct 
transformation tool to use depends on the problem you are trying to solve. Many studies on 
comparing model transformation tools have been done in the past. Some studies laying out the 
features of every transformation tools other studies comparing transformation tools for a given 
purpose. However, no studies have been done on which transformation tool is best suited as an 
underlying engine to a multilevel transformation tool.   
Here we do a literature review of studies done on comparison of model transformation tools in 
general, and apply it to determine which transformation tool is best suited as an underlying engine to 
our multilevel transformation engine.  
 
 

5.5.1.1. Criterias 
 
The first question to ask when determining the correct transformation tool to use is: What should be 
transformed into what? [37] The question refers to what is the source of the transformation and 
what is the target. Should models be transformed into other models (M2M) or should models be 
transformed into text (M2T) or should text be transformed into models (T2M). In our case, we want 
to transform models into other models and therefore we only consider M2M tools.  
 
Transformation tool often have many features that they support such as rule scheduling, rule 
application control, traceability, interoperability etc. No transformation tools support every feature, 
and we need to determine which features we need, and pick a transformation tool that supports 
most of those features.  
Since the transformation tool only acts as an underlying engine, many of the features typically 
supported in transformation tools become redundant because the underlying engine is hidden from 
the users. That means most features relating to the usage of the tool such as the editor, and re-
usability techniques(RUT).  
RUT refers to the re-use of transformation rules which can be done through rule composition, 
generic types and higher order transformations. The multilevel engine provides an editor, and re-
usability of rules are supported through instance relations and therefore it is not needed in the 
underlying engine. There are more features that loses their importance, but we will not mention 
those here. Instead, we focus on the features that are important for the underlying engine. 
 
We focus on endogenous transformation which is transformations where the source and target 
models conform to the same language. When transformations are endogenous it is usually beneficial 
to perform in-place transformations. In-place transformation means to produce the target model by 
modifying the source model. The other option is to produce the target model from scratch which is 
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referred to out-place transformations. In our case, we want our underlying engine to support in-
place transformations. 
 
We use MultEcore models which are EMF models and therefore our underlying engine should be 
able to transform EMF models directly, or provide mechanisms to automatically import EMF models 
and transform them into their representation, and mechanisms for exporting the tools native 
representation into the equivalent EMF model.  
 
The underlying engine should be extensible which means that we can integrate the underlying engine 
with other tools, and add new functionality to the underlying engine. Furthermore, we should be 
able to execute the rules programmatically through an API. 
 
The underlying engine should be a plugin to eclipse because eclipse plugins tend to be easily 
extendible and it is beneficial to keep everything on the same platform. However, standalone tools 
with open source code that runs on Java could be imported to the eclipse project.  
 
The domain application of the tool should be general, and the underlying engine should be able to 
solve any problem. The underlying engine should support the CRUD operations meaning that it 
should be able to create, read, update and delete elements from a model. Furthermore, there should 
be support for logical constructs such as if statements and there should be mechanisms for looping 
or recursion.  
 
The engine should support rule priority which means that we can decide which rule should be run 
first when two rules are applicable to the model at the same time. In other words, there should be a 
mechanism to control the order of which rules are executed when the order of execution is 
important. 
 
The tool should provide documentation on how to use the tool, and provide examples. It’s also 
preferred if a tutorial is included. The tool should be easy to use, although it does not really matter 
for the user as the syntax of the tool is hidden from them, but it’s nice to work with a tool that is easy 
to use when mapping the MCMT rules to the underlying engine.  
 
Transformation languages have different mechanism for applying the transformations. The 
mechanisms used depends on the paradigm the transformation tool follows. Declarative approaches 
focus on what should be transformed into what, with no regards to the order of execution. The order 
is non-deterministic which means that the engine transforms the models by applying the rules in a 
random order. Rules created in a declarative language are more compact and easier to maintain 
because the order of execution is implicit.  
Imperative languages on the other hand, focuses on how a transformation should be performed and 
when. The multilevel transformation engine follows a declarative style, and therefore the underlying 
engine should also be of declarative nature. The declarative style is commonly used in 
transformation tools in the modelling community, and it seems most promising in theory [37].   
 
Declarative tools are desired, but graph transformation tools are very similar to declarative tools and 
overlaps in many aspects therefore we rate graph transformation tools equally with declarative tools.  
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In summary, we are looking for a tool that:  
• Supports EMF models 
• Performs in-place transformations 
• Declarative approach 
• Eclipse plugin 
• General purpose 
• Supports explicit rule-scheduling 
• Easily extendible 
• Called through API 
• Well documented 

 
There is no way to determine which tool is the best without implementing the solution using each 
tool, but that would take far too much time. We will have to take an educated guess based on the 
criteria we have selected. The tool of choice may not contain all of the features we would like, but it 
will act as a filter to limit the number of transformation tools that we will further investigate.  
 

5.5.1.2. Candidates 
 
In [36] they do a study on model transformation tools. They give an overview of a total of 65 model 
transformation tools where the features of each tool is laid out. We use their information to 
determine four transformation tools which we will investigate further. We cross-reference our 
criteria against the features of each transformation tool included in their study, and pick the tools 
that support the most criterias.  
The reason for picking four tools is that we do not have time to go into depth about every tool, and 
the information is not accurate enough to pick a winner straight away. Instead, we went somewhere 
in between where we picked some candidates which seem like they could get the job done, and then 
we tested each tool to find out which tool felt best. 
 
 

TEFKAT 

 
Tefkat is a declarative transformation tool that has a simple SQL like syntax. The tool is an eclipse 
plugin that performs transformations directly on EMF models. Tefkat is specifically designed to write 
re-usable transformations that operates on high level domain concepts [38]. 
Tefkat only supports out-place transformations, and does not have an API to programmatically 
execute the transformation rules.  
 

• Declarative 
• General tool 
• Plugin for eclipse 
• No extensibility support 
• Documented with tutorial and examples.  
• The tool transforms EMF models directly without any intermediate representation 
• The tool performs out-place transformations 
• Rule scheduling is implicit 
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HENSHIN 
 
Henshin is an eclipse plugin that performs graph transformations on EMF models. Henshin 
transformation rules can be executed by using an interpreter wizard or the interpreter can be called 
programmatically by an API. The transformations can be performed in-place or out-place depending 
on the needs of the user. In the case of in-place transformations, Henshin supports state space 
exploration which is an overview of all the intermediate states that are used to transform the source 
model into the target model. In the case of out-place transformations, Henshin can transform an 
arbitrary number of source models into an arbitrary number of target models.  
 

• Graph based 
• General tool 
• The tool is an eclipse plugin 
• The tool supported extensibility 
• The tools transforms EMF models directly without any intermediate representation  
• The rules can be invoked through an API 
• Supports both in-place and out-place transformations 
• The rule scheduling is explicit 

 
 

 

ATL 

ATL is transformation tool developed by AtlanMod as a plugin to eclipse. The tool is a hybrid between 
declarative and imperative where both styles can be used although the declarative style is 
encouraged when possible. It supports in-place and out-place transformations and the 
transformations are performed on EMF models. The transformations can be executed 
programmatically through an API which we can use to extend the tool. The order of rule execution is 
nondeterministic, but the user can manipulate the order of execution by using Lazy rules. Lazy rules 
are not matched by the engine, but rather are called from other rules that have been matched by the 
engine. The tool is well documented and provides several examples in addition to a large user base.   
 

• Hybrid style - mix of declarative and imperative 
• General tool 
• Performs transformations directly on EMF models 
• Out-place and in-place transformations 
• Plugin to eclipse 
• The transformations can be called programmatically through an API.  
• The tool is extensible. 
• Supports both implicit and explicit rule scheduling  

 
 

Groove 

 
Groove is a graph transformation tool specifically designed to explore state spaces. The tool 
performs in-place transformations on a graph representation of the models. This means that EMF 
models can not be transformed directly in Groove, and must be converted into a graph 
representation before they can be transformed. Groove supports functionality that does this 
transformation automatically. Groove runs as a standalone that runs on the JVM virtual machine. 
However, Groove is open source which can be downloaded and included in a Java project hence the 



5.    Design and implementation 

 

37 
 

rules can be called programmatically.  
 
 

• Graph based 
• General tool 
• Uses an intermediate graph representation of the model to perform transformations on.  
• Standalone 
• Extensible 
• EMF models import/export mechanisms 
• All forms of rule scheduling including rule priority 

 

 

5.5.1.3. Overview of the candidates 

 
 

 TEFKAT HENSHIN ATL GROOVE 

Paradigm Declarative Graph Hybrid Graph 

Purpose General General General General 

Model 
representation 

XMI/EMF XMI/EMF XMI/EMF GXL/Graph 

Execution 
environment 

Eclipse Eclipse Eclipse Standalone 

Extensible No Yes Yes Yes 

Transformation 
type 

Out-place In-place and out-
place 

In-place and out-
place 

In-place 

Documentation Sufficient Yes Yes Yes 

Rule scheduling Implicit Explicit Implicit and 
explicit 

Implicit and 
explicit 
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5.5.2. Groove as the underlying engine 
 
We chose to use Groove as the underlying engine because it was the candidate that we preferred. In 
addition, Groove was very easy to learn and the rules were easy to generate due to the simple syntax 
used in Groove. 
 
The syntax uses nodes and edges in a similar way that we do in our engine. Figure 5.5 displays the 

syntax of a groove rule. The rule is defined in a GXL file which is basically the same as an XML file, and 

it is possible to produce a GXL file by using an XML generator. The syntax always starts with an XML 

declaration, followed by a gxl tag. A graph is defined inside of a gxl tag, and may contain attributes, 

nodes and edges. The attributes of a graph specify its properties. An example would be the priority of 

a rule graph, another one would be RHS is NAC which means that a rule may only be applied once. A 

node has an ID and nothing else, the attributes of a node is specified by using an edge from the node, 

to itself and attach the attribute to that edge. An edge has a source and target node which must be 

specified by using their ID, an edge contains an attribute that hold information.  

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"> 
<graph edgeids="false" edgemode="directed" id="GenPart1" role="rule"> 
  <attr name="priority"> 
            <string>1</string> 
        </attr> 
<node id="m1"/> 
<edge from="m1" to="m1"> 
<attr name="label"> 
<string>type:GenHandle</string> 
</attr> 
</edge> 
<edge from="m1" to="p1"> 
<attr name="label"> 
<string>new:creates</string> 
</attr> 
</edge> 
<node id="p1"/> 
<edge from="p1" to="p1"> 
<attr name="label"> 
<string>type:Handle</string> 
</attr> 
</edge> 
<edge from="p1" to="p1"> 
<attr name="label"> 
<string>new:</string> 
</attr> 
</edge> 
</graph> 
</gxl>  

FIGURE 5.5 TEXTUAL SYNTAX OF CREATE HANDLE IN GROOVE 

 

Every element in groove is either a node or an edge. Groove uses a host graph (Figure 5.6) which is a 

representation of the model, and a set of rule graphs which are matched against the host graph and 

transforms it if a match is found. The rule graph consists of three different graphs, the left-hand side 

(LHS), the right-hand side (RHS) and the negative application conditions (NACs).  They appear to be in 

the same graph in the view editor, but they are stored in separate containers in the background.  
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FIGURE 5.6 - HOST GRAPH IN GROOVE 

 

FIGURE 5.7 - BASIC RULE GRAPH ELEMENTS IN GROOVE [39] 

Figure 5.7 shows how the three graphs are seperated by color coding. There are four basic elements 

in rule graphs.  

Readers are elements which appear in both the LHS and the RHS. They are used to match the host 

graph, but they don’t modify the host graph in anyway. These elements are represented by the color 

black and unlike the other elements the readers don’t need a keyword. The reader element is the 

default element, so if no keyword is specified then the element becomes a reader.  

Creators are elements which appear only in the RHS of the rule. They are not used for matching, but 

are instead added to the host graph when applying the rule.  They are represented by green in the 

rule graph, and are declared as a creator by prefixing the keyword new. 

Erasers are elements which appear only in the LHS of the rule. They are used to match the host graph 

and are removed from the host graph when a rule is applied. They are represented by blue in the 

rule graph, and are declared as an eraser by prefixing the keyword del. 

Embargoes are elements which appear in the NAC, and are not allowed to appear in the LHS. They 

are used as a guard to filter out unwanted matches. They are represented by blue in the rule graph 

and are declared by the prefix not. 

There are more advanced concepts in Groove for example counting and merging, but we will ignore 

these in this thesis. The reason is that the goal of this thesis is to show that transformation rules can 

be defined on generic types and be reused on instances of these types. It should not make a 

difference if the rule is simple or complex, the principle is the same and should work in both cases. 
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Therefore, if we succeed in reusing the rules for simple cases then we should be able to reuse them 

in more complex cases. That is not certain though, so it could be investigated in further work.  

One of the drawbacks with Groove is that it uses its own graph representation for models, and 

doesn’t support emf models directly therefore we need to transform our emf models into Groove 

graphs before performing the transformations. Then the Groove graph needs to be transformed back 

into an emf model, after the transformations are completed.  

 

Other transformation tools could have been used as the engine. Changing Groove with another 

transformation tool would require that we make a new generator from our flattened rules to the 

new transformation tool. We could still use Groove by using the Groove generator, but the new 

generator gives us another option and over time we could potentially have many transformation 

tools that could run the flattened rules. It is only a question as to how many bridges we build from 

the flattened rules to different transformation tools. The initial flattened rules would not change 

from changing the underlying engine, only the way they are transformed.  

 

 

5.6. Multilevel execution engine 
 
The multilevel execution engine is the core of the MCMT framework. The engine is implemented in 
java, and connects all the other components in the framework. The engine matches an MCMT rule 
against a model hierarchy and produces a flattened rule for every valid match. In other words, the 
engine transforms an input rule into a set of new rules which is the same concept as that of higher 
order transformations [40] (HOTs). The number of produced rules are dependent on both the MCMT 
rule and the model hierarchy. Making changes to either one could change the produced rules. The 
equation: 
𝑀𝐶𝑀𝑇 𝑅𝑢𝑙𝑒 + 𝑀𝑜𝑑𝑒𝑙 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 + 𝐸𝑛𝑔𝑖𝑛𝑒 → (0. .∗) 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 𝑅𝑢𝑙𝑒𝑠 
gives a good overview of what the engine does. Flattened rules are 2-level versions of the MCMT 
rule, and is ment to be executed by a 2-level execution engine.  
 
The engine has two main responsibilities: Firstly, find all the matches of the MCMT rule in the model 
hierarchy. Secondly, generate a flattened rule for each match found.  

 

 

5.6.1. Components inside the Engine 
 
Here we will present the components of the engine. Each component has an internal representation 
within the engine aswell as being an external component with an external representation. The 
external representation is mapped to its corresponding internal representation. The mapping is 
commonly referred to as tool chaining and could be viewed as a bridge from one tool to another. 

 

 

Model hierarchy 
The model hierarchy acts as an in-memory representation of a multilevel model hierarchy. 
The hierarchy is represented by a list of metalevels. A metalevel contains a list of nodes. A 
node contains a name, a type and a list of edges which represents relations to other nodes. 
Edges have a source and target node, a name and a type. The model hierarchy is used to 
match the transformation rules. 
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The objects should be populated by parsing a MultEcore hierarchy file, but we did not 
implement that part yet, so we are using hardcoded objects to represent the model 
hierarchy.  
 
Currently a node only represents a concept, the attributes of a concept is omitted for 
simplicity. One way to represent a concept’s attributes would be to add a list of attributes to 
a node.  
 

 

MCMT rule  
The class used to represent a transformation rule contains a meta part and a body. The meta part 
contains a list of variables. Variables have a name, a type, and a link to the metamodel that defines 
its type. Variables also contain a list of connections which represents relations from itself to other 
variables. A connection has a source and target which are variables, they also have a name and a 
type.  
 
Variables and connections are similar to nodes and edges in the model hierarchy, and could be 
presented by the same classes. We chose to use different names to distinguish between the two 
because variables and connections are to be matched with nodes and edges respectively.  
 
The body of a rule contains a From part and a To part which represents the left hand side and right 
han side respectively. Both sides contain body variables and body connections, which are typed by 
variables and connections in the meta part. The type of the elements in the body is replaced when a 
match is found.  

 

 

Pattern hierarchy 
A pattern hierarchy contains a list of pattern levels, the number of pattern levels and their contents 
are inferred by the number of model levels used in the meta part of the rule. A pattern level is similar 
to the meta part of a rule, but instead of having all variables in the same level they are scattered 
across multiple pattern levels. The union of pattern levels are equal to the metapart of the rule which 
they were inferred from. All variables and connections that are typed by the the same metalevel are 
placed in the same pattern level.  
The pattern hierarchy is matched against the model hierarchy where every level of the pattern 
hierarchy must match a level in the model hierarchy. We will go into depth about how this is done 
later in the chapter. 
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5.7. Matching 
 

In the engine, matching is the process of finding every way that an MCMT rule matches a model 

hierarchy. A pattern hierarchy is inferred from an MCMT rule, and is matched against the model 

hierarchy. Two different forms of matching are used, an inner matching and an outer matching. Both 

the pattern hierarchy and model hierarchy may have several levels. The inner matching determines if 

a pattern level matches a given model level. The outer matching iterates over each pattern level and 

attempts to find a match with a model level using the inner matching. 

  

5.7.1. Graph Pattern Matching 
 

Matching is a process to determine if a transformation rule can be applied to a model. The process is 

usually performed by finding a pattern of the left-hand side of the rule in a model. A rule may be 

applied if such a pattern exists in a model.  

Finding patterns in graphs means finding a homomorphic or isomorphic image of an input graph 

(pattern) in another graph (target) [41]. Because of this, graph pattern matching is also known as the 

subgraph isomorphism problem. Subgraph isomorphism problem is known to be NP-complete [42] so 

no efficient perfect solution exists. Some algorithms are efficient, but comes at the cost of the 

matching result, meaning the matches are not complete. Because we want to find all the matches, 

this is not an option for us and we don’t care too much about efficiency at this stage. Two algorithms 

are the most used ones for finding exact subgraphs. The tree search based Vf2 and Ullmanns 

algorithm, they are both using depth first search. The difference between the two is that Vf2 tries to 

build up matches from scratch while Ullmanns algorithm starts out with all matches as potential 

candidates and tries to prune the unfit candidates in each iteration until only fitting candidates 

remain. Candidate nodes are mapped to variables in the pattern graph if they have the same type, 

and will become a match for a variable if they have the same structure.  

We have adopted the algorithm used in [43], the author has created an algorithm for subgraph 

pattern matching on large scaled graphs based on dual simulation. The algorithm is easily extendible 

and is meant to be used as a backbone for a query processing engine for a graph database.  

 

5.7.1.1. Dual Simulation 
 

Dual simulation is one of the approaches to pattern matching that does not produce exact matches, 

the algorithm runs in quadratic time and rapidly eliminates many of the candidates which would 

have been eliminated by Ullmanns algorithm [43]. We use dual simulation in conjunction with 

Ullmanns algorithm to prune out bad candidates early on. Removing bad candidates early on means 

that the search tree will have less nodes, and removing a bad node higher up in the tree is more 

efficient because the number of bad results that are spawned from the node is multiplied by n on 

every new level. We run dual simulation on the matches as a preprocessing step, and on each 

iteration of the search tree.  

Dual simulation is a pruning method, identified by the author of [43]. Given the pattern graph 

𝑄(𝑉𝑞 , 𝐸𝑞), the target graph 𝐺(𝑉, 𝐸) and the morphism Φ(𝑉𝑞) → 𝑉  from Q to G. It checks that the 

two conditions hold: 
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∀(u, u′) ∈  Eq, ∀v ∈  Φ(u), ∃v′ ∈  Φ(u′)s. t. (v, v′) ∈  E 

Which means that if v is matched to a pattern node u, then all childrens of u in Q must be be 

matched by childrens of v in G. Children here means target nodes of an edge with the parent being 

the source node.  

∀(u, u′) ∈ 𝐸𝑞 , ∀v′ ∈  Φ(u′), ∃v ∈  Φ(u)s. t. (v, v′) ∈  E 

The second condition is the other way around and states that if the pattern node u’ has a parent u, 

then the target node v’ must have a parent node v which is a match for u. 

Checking only the first condition, is refered to as simple simulation. Dual simulation is used to filter 

out bad matches early on, and thereby reducing the search path.  

 

 

FIGURE 5.8 - A RELATION BETWEEN TWO VARIABLES A AND B IN THE PATTERN 

Figure 5.8 illustrates two adjacent variables A and B in the pattern graph, where A is the parent and B 

is the child. Finding a match for A and B in a target graph requires that the match for A is adjacent to 

the match for B, otherwise the structure is violated. Moreover, the match for A must be the parent 

and the match for B must be the child. Let φ(A) be the candidates for variable A, and φ(B) the 

candidates for B. Then simple simulation checks that each candidate 𝑎 ∈ 𝜑(𝐴) has an adjacent child 

node which is a candidate for B. In other words, there exists an edge 𝑒(𝑎, 𝑏) in the target graph 

where 𝑏 ∈ 𝜑(𝐵). Dual simulation works the other way around, and is checked when evaluating the 

candidates of the child of a relation. We continue from the example of simple simulation, and the 

candidates of B are being evaluated. Dual simulation requires that a candidate for B is adjacent to a 

parent node that is a candidate for A. An edge 𝑒(𝑎, 𝑏) must exist in the target graph for each 

candidate 𝑏 ∈ 𝜑(𝐵). The condition is the same in both cases, but with simple simulation it is only 

checked when evaluating the candidates of the parent variable (A in this case). Dual simulation 

checks this condition when visting both the child and parent variable. However, it is not necessary to 

check this condition explicitly when visiting the child variable because it is possible to remove bad 

candidates of the child variable when visiting the parent variable. The bad candidates are removed 

by constructing a new set of candidates for the child variable. The new set only contains children of 

the set of candidates for the parent variable and therefor every candidate of the child variable has a 

parent in the set of candidates for the parent variable.  
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FIGURE 5.9 - PSEUDOCODE FOR DUALSIMULATION TAKEN FROM [43] 

In Figure 5.9 the algorithm takes the target graph G, the pattern graph Q and the mapping from 

pattern nodes to target nodes ϕ. The mapping is done by having a pattern node point to a list of 

possible target nodes. A loop iterates over every pattern node u, and a nested loop iterates over 

every children u’ of u. On each iteration of child u’ a new list of matches ϕ’ are created from the 

empty set. Then each target node which matches u is iterated in a third forloop, during this forloop 

the conditions discussed earlier are checked. The first condidition for simple simulation is checked on 

line 9, and the second condition is ensured in line 17, by constructing a new set of matches ϕ’(u’) 

which only consists of nodes with a parent in ϕ(u).  

 

5.7.1.2. Subgraph Matching  
 

After the initial matching, a variable might be matched to several types. For instance, a 
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HeadGenerator and a HandleGenerator are both a valid match for a variable of type Machine. 

However only one type is allowed to be mapped to a given variable, this means that the variable for 

machine needs to create atleast two new rules. One where it’s mapped to HandleGenerator and one 

where it’s mapped to HeadGenerator. This algorithm makes sure that every combination of variables 

assigned types are generated. It does so by creating a new copy of the matches and replacing the list 

of matches for the variable at the current depth with a singleton list containing only one of the 

matched nodes. Then the algorithm continues to the variable at the next depth until it has reached 

every variable, and you end up with a singleton list for each variable. A complete match is found 

when all variables have been assigned to a single node. A search could provide many such matches, 

these matches are returned in a list. One could think of the process as the process of generating 

every possible permutation of the legal assignments of the variables. The process is illustrated in 

Figure 5.11.  

 

FIGURE 5.10 - THE ALGORITHM USED FOR FINDING ISOMORPHIC MATCHES [43] 

The algorithm in Figure 5.10 illustrates how this matching works. The algorithm starts with finding a 

set of candidate nodes for each variable (line 3). Variables are nodes in the pattern graph. For a node 

in the target graph to be a valid candidate for a variable, it needs to be an instance of the same type 

as the variable. For example, let M be a variable of type Machine, then Assembler of type Machine is 

a valid candidate for M. The initial search for candidates is purely based on labels therefor the initial 
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set of candidates can be quite large. The candidate nodes are checked for structural constraints in 

line 4 so unfit candidates are discarded. Structural constraints are the constraints mentioned in 

section 5.7.1.1.  Now we have a map from a variable to a list of candidates, the depth of the map is 

the number of variables. The length of the list for each variable depends on the number of valid 

candidates for the given variable. The end goal of the search is to end up with a list of maps where 

each map contains all the variables, and each variable point to a singleton list with only one valid 

candidate. The search begins on line 5, and takes as arguments a target graph, a pattern graph, the 

map of matches and the starting depth (index starting at 0). The search algorithm starts at line 11. It 

iterates through all the candidates for the variable at the current depth. It makes sure that the 

candidate node is not already matched to another variable (line 12). If the candidiaite is not matched 

to another variable then it makes a copy of the map of matches, and replaces the candidate list for 

the variable at the current depth with the candidate node from line 11. Then it runs the dual 

simulation pruning on the new map. If the map is not empty after running dual simulation, then 

recursively continue with the new map to the next depth. If the algorithm makes it to the depth 

equal to the number of variables then each variable has found a match, and therefore the current 

map is added to the list of matches.   

The algorithm is not the exact same as the one we are using because we have modified it to work 

with multilevel model transformations. We display this algorithm here because the principle is the 

same, but this algorithm is simpler and therefore illustrates the idea better. The changes we’ve had 

to make to the algorithm is that we have made edge labels part of the matching. This makes the 

algorithm abit clunkier than the original. We’ve also had to build a new algorithm on top of this one 

which uses this algorithm to search for matches in every level of the hierarchy. We’ll get back to that 

later in this chapter. 

 

 

FIGURE 5.11 - TREE SEARCH FOR VARIABLE ASSIGNMENT [41] 

As mentioned earlier, a variable can only be assigned to one specific type at a time. Figure 5.11 

illustrates how variables are assigned to only one type. For each node(variable) in the pattern there 

exists a row in the matrix, and the number of rows is n which is also equal to the depth of the tree. 

For each node (type) in the target graph there is a column. If a type matches a variable then the value 

1 is placed in that variables row in the types column otherwise it has the value 0. The initial 

candidates are shown in level 0, they are represented by a nXm matrix where all the columns have a 
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value of 1. A row which has more than one column with the value 1 means that the variable has 

multiple matches. The point of the search is to make sure that each variable only has one matching 

type. This means that there must be exactly one column with the value 1 in each row. This is 

achieved by iterating over each collumn in a row, and on each column with a value of 1 we make a 

copy of the current matrix, but with the current column as the only match. Then visit the next row of 

the newly made copy and repeat the process, continue until we have reached the end of the matrix 

(tree depth).  

Note that the process illustrated here is very simplified, it shows two variables which is assigned to 

the same type. Furthermore, this illustration uses matrixes, but in our implementation, we use a map 

of variables pointing to lists of varied sizes. These lists do not hold Boolean values, but rather uses 

node objects. The process of variable assignment is the same with both approaches, and the 

simplified version was used for illustration purposes. 

5.7.2. Multilevel Matching 
 

The algorithm presented earlier in Figure 5.10 is only able to find a match of one graph in another 

graph. The algorithm only uses one level however with multilevel matching both the source graph 

and the pattern graph can have multiple levels. One way to view the multilevel matching would be to 

imagine a pattern tree that only has one node in each level and the nodes in the tree are graphs. The 

pattern tree should be matched to a target tree (the model hierarchy) by finding a matching node in 

the target tree for each node in the pattern tree. 

We can reuse the algorithm in Figure 5.10 to match a node in the pattern tree with a node in the 

target tree without making significant changes to the algorithm. Because the pattern and the model 

on a given level are both graphs, we can take the pattern on a given level and match it with a model 

in each level and if we get a match then we can store the the model level as a match for the pattern 

level. The algorithm in Figure 5.12 takes advantage of this. Note that graphMatch is same as the 

algorithm in Figure 5.10, but with a few modifications. 
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FIGURE 5.12 - MULTILEVEL MATCHING ALGORITHM [25] 

The algorithm for multilevel matching takes five arguments: The pattern hierarchy (MM), the model 

hierarcy (TG), the index of the current pattern level being matched which starts at 0 and increases by 

1 if a match for the current pattern is found, the index of the current model level being matched 

which starts at 0 and is incremented everytime a level has been visited, and lastly the set of matches 

found so far which is initially empty and is used to save progress between recursive calls.  

The base case of the algorithm is when the index of the pattern level is equal to the number of 

pattern levels in the rule. This indicates that atleast one complete match has been found, and true is 

returned. 

First, we set found to false (line 5), found is a Boolean value that indicates whether or not we have 

found a complete match. Found is modified in line 13 and 17. The statement says that if found is true 

or the match function returns true, then we set the value of found to true. Once found is set to true, 

it will never go back to being false.  

The search starts inside the while loop on line 6, the while loop iterates until it has reached the end 

of the model hierarchy, this means that all model levels have been visited.  

The function in line 7 finds all the ways that the two current levels can be matched against 

eachother, and stores each match in a list of maps. If the two levels can’t be matched then maps will 

be empty, and no further actions will be taken except for increasing the model level.  If the list of 

maps is not empty then each map will be iterated in a for loop. The variable size is the number of 

matches found already, this includes partial matches. We check if we are adding to a partial match or 
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starting a new match in line 10. If the pattern level is greater than 0 and the size of matches is 

greater than 0 then we are adding to a partial match.  

If we are adding to a partial match then we take the current map in maps and append it to the last 

element in the matches list. Then we increase the pattern level and the model level, and try to match 

these. We add currentMatch to matches (line 14), this will be removed immediately (line 22) and will 

not be used for anything else. The addition is done post visit, and will not be included to any 

recursive call.  

Whenever the pattern level is 0, we must insert the current map as the only element in matches. 

Instead of the route on line 10, we pick the route on line 15.     

There is a check at line 22 that finds incomplete matches and removes them in line 23, the reason 

that the check works, is that if it’s a complete match, then the function will never get further than 

line 3, so complete matches will never encounter that check. This check will trigger based on the 

pattern level, this could lead to complete matches being removed. Therefor we need to temporarily 

add partial matches at the end of the list (line 14), so that these partial matches are removed instead 

of complete matches found in previous calls.  

 

5.7.2.1. Determining the number of pattern levels in the rule 

 
We have previously mentioned that an MCMT rule contains a META part and a BODY part both of 

which play a different role in the proliferation process. We will now talk about the role of the META 

part of the MCMT rule. The metapart of the rule is used to define the variable types used in the 

bodypart of the rule. The variable types have a metatype, and their actual type in the hierarchy is 

unknown. We use the metapart of the rule to construct a pattern hierarchy based on how many 

levels are used to define the variables in the metapart of the rule. We use an algorithm to decide the 

number of pattern levels that should be created and an algorithm that places the variables in their 

correct pattern level. The algorithm to decide how many pattern levels to create is straightforward: 

• Create an empty set of patternlevels 

• Visit each element of the metapart of the rule 

• For each visit: If the element is a constant then add elements metalevel url suffixed by 

constant. If the element is a variable then add the elements metalevel url suffixed by 

constant and then add the elements metalevel url suffixed by variable.  

• Lastly count the size of the set 

This works because sets do not add duplicates and therfore if two variables are typed by the same 

level then only one level will be added to the set. The name of the metalevel is suffixed by whether 

the visited element being a variable or constant because constants should be matched to the level 

they were defined in and variables should be matched with a level somewhere below the level it was 

defined in. In otherwords, if a variable is typed by a metalevel and a constant is typed by the same 

metalevel then two pattern levels are required. Note that; the metatypes of variables are considered 

constants, and patternlevels are added for these constants to check that the MCMT rules are typed 

by the model hierarchy. Therefore, metavariables always span two pattern levels: One pattern level 

for the variable and one for the metatype.   

The second algorithm to place the meta elemenets in the correct pattern level is as follow:  

• Continue from the set of pattern levels that was created in the previous step 
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• Visit each element of the metapart of the rule 

• For each visit: If it is a constant then look up the patternlevel at elements url + constant and 

then put the element in this patternlevel. If it is a variable then look up the the pattern level 

with the name elements url + constant and then add the metatype of the variable as a 

constant to this level, and then look up the patternlevel at elements url + variable and put 

the element in this patternevel. 

 

5.7.2.2. Replacing the variables with actual types 

 
The variables in the body part of the rule is initially typed over meta-variables, these meta-variables 

are just placeholders for actual types. Now we need to swap these meta-variables with actual types. 

As a result of the matching we get a list which contains all the valid matches, and for each of those 

matches we need to produce a new rule. This means that we need to iterate through the list of valid 

matches, and for each valid match we need to make a copy of the rule and then replace the variables 

in the copy rule with the types in the match. Meta-variables are looked up in the current match to 

find it’s corresponding type, the meta-variable is then replaced by that type. Once every meta-

variable is replaced by an actual type, we get a new proliferated rule.  

 

5.8. From Java objects to Groove rules 
 

Todo the code generation a simple XML writer is used. It works well because groove uses gxl which is 

no different than XML, and can be written to by using an XML writer. With Groove, there are only 

nodes and edges. They are matched by their label, so we need to map our variables to nodes and 

edges with corresponding labels. We also need to make sure that the variables in the from part only 

is in the left-hand side, in groove they use the keyword del. The variables in the to part is only in the 

right-hand side, in groove they use the keyword new, and the variables which are both in the from 

and to part need no keyword. We need to look at the rule to determine if an element is a creator, 

reader or eraser. 

The algorithm to determine the keyword of an element is straight forward. First go through the 

elements in the from part, check if it is contained in the to part and if it is then mark it as a reader, if 

it’s not then mark it as an eraser. Then visit the elements in the to part, if the element is marked then 

it means that the element occurs in both the left-hand side and the right-hand side hence it’s a 

reader. If it’s not marked then it means that it only occurs in the right-hand side and is therefore a 

creator.   
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6.  Demonstration 
 
In the previous chapter, we described a multilevel transformation engine that took as input a 
multilevel modelling stack and a multilevel coupled transformation rule and produced a collection of 
flattened rules. The engine is available at http://prosjekt.hib.no/ict/multecore where instructions are 
provided. 
 
In this chapter, we demonstrate how the engine performs this process. We will use the production 
line system that was introduced in Figure 3.3. The hammer production system is matched with an 
MCMT rule for generating parts and then the stool_plant is matched with the same MCMT rule. We 
intend to illustrate that an MCMT rule can be reused within the same system, and across similar 
systems.  
 
We repeat the hierarchy from Figure 3.3 because the hierarchy is central to the matching process. 
Looking at the hierarchy together with the MCMT rule should give the reader a better understanding 
of the flattening process. 

 
FIGURE 6.1 - MULTILEVEL PLS, INTRODUCED IN FIGURE 3.3 

The hierarchy illustrates two systems. However, only one system is matched at a time. A system is 
specified by a chain of metalevels. A chain of metalevels means that there is one model in each 
metalevel, and that each model conforms to the models above. For example, generic_plant  
hammer_plant  hammer_config constitutes a chain, whereas generic_plant  hammer_plant  
stool_config does not because stool_config does not conform to hammer_plant.   
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6.1. MCMT rule 
 

As a starting point of the demonstration, we use an MCMT rule which should be transformed into 

proliferated rules.  

 

FIGURE 6.2 - THE MCMT RULE TO BE MATCHED WITH THE PLS 

Figure 6.2 illustrates the rule we use to demonstrate the flattening process. The rule was explained 

earlier in Figure 4.5. Here, we add some details to that explaination. The meta part of the rule 

contains the pattern that should be matched to the hierarchy. The create_part rule has two pattern 

levels as illustrated in Figure 6.3. The first pattern level P0 contains the types of the rule, and must be 

matched to a metalevel in order to confirm that the MCMT rule conforms to a metalevel. The second 

level P1 contains the variables that should be matched to instances of the types in P0.  

Note that the number of pattern levels in a MCMT rule can be much greater than 2. A rule may also 

only have one pattern level in the special case where the meta part only contains constants that are 

defined in the same metalevel; in which case, the rule is the same as a two-level rule.  

 

FIGURE 6.3 - PATTERN LEVELS IN THE CREATE_PART RULE 

After the pattern hierarchy in Figure 6.3 has been constructed, the levels of the pattern hierarchy are 

matched against the levels of the model hierarchy in Figure 6.1. Starting with the topmost pattern 

level P0. The only valid match for P0 is generic_plant therefor a morphism from P0 to generic_plant is 

made, and a list of ways that the elements in P0 can be mapped to elements in generic_plant. In this 

case, only one mapping is possible because every element in P0 is a constant. After a match is found 

for P0, the next pattern level P1 is attempted to be matched. The matching of P1 is different from the 

matching of P0 because P1 has variables whereas P0 only has constants. The main difference is that P0 

could only be matched in one-way whereas P1 could potentially be matched to the same metalevel in 

several seperate ways. The other difference being that constants are matched by the name of the 

elements, whereas variables are matched by the types.  

Matching P1 to hammer_plant starts out by setting every instance of Machine in hammer_plant as 

candidates to M1, every instance of Part as candidates to P1, and every instance of creates as 
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candidates to cr. The initial matching is only based on the label of the type, and does not consider 

structure. Performing the initial matching of P1 to hammer_plant results in the mapping in Table 6-1.  

M1 : Machine GenHandle, GenHead, Assembler 

P1 : Part Head,  Handle, Hammer 

cr : creates (GenHandle  Handle), (GenHead  Head) 

TABLE 6-1 - INITIAL MAPPING OF VARIABLES TO THEIR POTENTIAL MATCH 

The initial matching sets Assembler as a valid match for M1 even though Assembler has no creates 

relation, these invalid matches are pruned by performing the pruning techniques discussed in 5.7.1.1. 

Pruning the mapping in Table 6-1 produces the mapping in Table 6-2.  

M1 : Machine GenHandle, GenHead 

P1 : Part Head, Handle 

cr : creates (GenHandle  Handle), (GenHead  Head) 

TABLE 6-2 - MAPPINGS OF VARIABLES AFTER PRUNING 

The mappings in Table 6-2 are not valid because the variables are not mapped injectively. The last 

part of matching P1 to hammer_plant involves creating tables where the variables are mapped 

injectively. For example, M1 creates two new tables; one where M1 is mapped to GenHandle and 

one where it is mapped to GenHead. The two tables produced are shown in Table 6-3 and Table 6-4.  

M1 : Machine GenHandle 

P1 : Part Head, Handle 

cr : creates (GenHandle  Handle), (GenHead  Head) 

TABLE 6-3 - M1 MAPPED TO GENHANDLE 

M1 : Machine GenHead 

P1 : Part Head, Handle 

cr : creates (GenHandle  Handle), (GenHead  Head) 

TABLE 6-4 - M1 MAPPED TO GENHEAD 

After the two new tables are produced, they are pruned to eliminate candidates that are no longer 

valid. The pruning on table Table 6-3 eliminates Head as a candidate to Part because GenHead is no 

longer a candidate for M1, aswell as the create relation between the two. The result of the pruning is 

shown in Table 6-5. The table shows an injective mapping that is valid, and may be used to generate 

a two-level rule. The other valid match is found by running the pruning on the mapping in Table 6-4.  

M1 : Machine GenHandle 

P1 : Part Handle 

cr : creates (GenHandle  Handle) 

TABLE 6-5 - RESULT OF PRUNING THE MAPPING IN TABLE 6-3 

 

 

6.2. Proliferated rules 
 

Successfully matching the META part of the rule with the model hierarchy results in a list of matches, 

where one element in the list looks like Table 6-5. A two-level rule must be generated from each 

element in the list, these rules are refered to as proliferated rules. The BODY part of the rule is the 

key to autogenerating the two-level rules. The BODY of a multilevel rule is typed by the variables in 

the META part of the rule, which means that a two-level rule can be constructed by replacing the 
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variable types in the BODY with their matched type. For example, generating a two-level rule from 

the match in Table 6-5 is done by replacing M1 with GenHandle, P1 with Handle, and cr with creates. 

The proliferated rule corresponding to Table 6-5 is shown in Figure 6.4. The other proliferated rule 

from matching create_part to the hammer chain is shown in Figure 6.5.  

 

FIGURE 6.4 - GENHANDLE AUTOGENERATED TWO-LEVEL RULE 

 

 

FIGURE 6.5 - GENHEAD AUTOGENERATED TWO-LEVEL RULE 

The proliferation of create_part resulted in two rules; GenHandle and GenHead; when matched with 

the hammer chain. The MCMT rule can be matched with other branches of the hierarchy. Matching 

create_part with the stool chain in Figure 6.1 results in the two rules shown in Figure 6.6 and Figure 

6.7.  

 

 

FIGURE 6.6 - GENSEAT AUTOGENERATED TWO-LEVEL RULE 
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FIGURE 6.7 - GENLEG AUTOGENERATED TWO-LEVEL RULE 

 

In this chapter, we demonstrated how the MCMT rule create_part was matched to a model 

hierarchy, and how a two-level rule was generated from each match of create_part. Furthermore, 

the results showed that a MCMT rule could be matched to many elements in the same system and 

many elements in different systems as long as they conform to the same typing chain that the MCMT 

rule is typed over. The re-use of behaviour is achieved through instance inheritance of behaviour 

which means that the instances should have the the same behaviour that is defined for their type in 

addition to their own behaviour. 

 

6.3. From MCMT rule to Groove execution 
 

 

FIGURE 6.8 - FRAMEWORK COMPONENT OVERVIEW 

 

The process starts by writing MCMT rules in the MCMT editor. The editor in the figure has three rules 

which all follow the same structure with a META, FROM and TO part. Each of these rules are 

transformed into a set of proliferated rules one at a time. The MCMT rules are matched against the 

MLM hierarchy which may contain an arbitrary number of metalevels. Only one metalevel is 

transformed by the rule which is usually the bottom most level and this metalevel is not part of the 

MCMT matching process. In fact, only the metalevels above the metalevel to be transformed is part 

of the matching. We refer to the metalevel to be transformed as the model. An arbitrary number of 

proliferated rules may be generated from a single MCMT rule. Proliferated rules are the rules that 
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transform the model (metalevel to be transformed). They are executed by a 2-level engine which in 

our case is Groove. However, any 2-level engine could be used and Groove is easily replacable by 

modifying the rule generator. We need to translate the model into a hostgraph because the model 

conforms to a MultEcore metamodel whereas the hostgraph conforms to Grooves metamodel. For 

example, the model in Figure 6.9 must be transformed into the hostgraph in Figure 6.10 before 

Groove can apply any proliferated rules on it. 

 

 

FIGURE 6.9 – CONCRETE SYNTAX OF HAMMER CONFIG IN MULTECORE 

 

 

FIGURE 6.10 HAMMER CONFIG AS HOSTGRAPH IN GROOVE 

 

The hostgraph together with the proliferated rules are given to Groove which then transforms the 

model based on the proliferated rules. The result of applying the proliferated rules onto the 

hostgraph is a modified hostgraph therefor the last step is to transform the modified hostgraph back 

into an XMI MultEcore model.  

The matching in Groove is similar to our way of matching a single pattern level to a metalevel. In 

Groove, the left-hand side of the rule is the pattern and the hostgraph is the metalevel. A rule may 

be applied if its LHS matches the hostgraph. The order of execution is nondeterministic when many 

rules are applicable to the hostgraph. In other words, the developer has no control over the order 

that the rules are applied. Groove has two mechanics to work around this: Firstly, the simulator 

allows the developer to choose which rule he wants to execute. Secondly, assigning rule priority to 

the rule graphs. Rule priority is an integer value that indicates which rule should be applied first. The 

rule with the highest value is executed first, but if two rules have an equally highest value then the 

order between them is nondeterministic. We currently do not support priority in our MCMT rules, 
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but it should be straight forward to implement. One way would be to include a keyword for prioritiy 

in the DSL that assigns a value for a given MCMT rule and then carry this value over to the 

proliferated rules generated by the MCMT rule.  

The engine would usually execute all proliferated rules and then return the result, but often times we 

would like to observe the the steps that produced the final result. That is, we would execute one rule 

at a time and instantly get feedback by viewing the updated model. That way, we could detect at 

which step an error occurs. The simulation can be interactive or like a cd-player. The interactive 

approach lets the developer choose which rule should be applied, and then the result of applying the 

rule is presented to him. The cd-player approach lets the developer decide when the next rule should 

be applied, but it does not let him control which rule should be applied. The cd-player approach gives 

him a more realistic picture because the order is non-deterministic.  

As we mentioned earlier, the hostgraph is a graph representation of the model. A hostgraph in 
Groove could be typed over a typegraph. Typegraphs are optional, but when a typegraph is active it 
works as a metagraph to the hostgraphs and rulegraphs in Groove. An active typegraph constrains 
the hostgraph and rulegraphs to only use types that are defined in the typegraph. One could say that 
the relation between the hostgraph and the typegraph is parallel to that of a model and its 
metamodel. However, the typegraph is optional whereas the metamodel is not. Furthermore, many 
typegraphs can be active at the same time in which case the allowed types in the hostgraph is the 
union of the active typegraphs.  
 
The typegraphs make sure that target hostgraphs from applying rules to a source hostgraph are valid. 
This is done by enforcing that the source hostgraph and the rulegraphs conform to the typegraph. In 
otherwords, the source hostgraph is valid to begin with and no rule produces a node or edge that is 
not allowed by the typegraph, or deletes an element that is mandatory in the typegraph. Moreover, 
creation of edges between nodes only happens if the metatypes of these nodes have an edge 
between them.  
 
We do not need to use typegraphs in Groove to ensure that we produce valid target models. We 
already know that our source model is conforming to the model hierarchy, and we know that the 
proliferated rules are generated by an MCMT rule which in turn is typed by the model hierarchy. The 
proliferated rules are generated from types in the model hierarchy, and must therefor be typed by 
the model hierarchy. We can encode pre-conditions in the rules to make sure that constraints are not 
violated when applying the generated rules to our models. The pre-conditions can be encoded in the 
generated rules automatically by looking up the constraints of the types in the hierarchy and 
transforming those constraints into pre-conditions. Generating pre-conditions automatically would 
require a considerable amount of work. Alternatively, the constraints can be manually added to the 
MCMT rules. The drawback of that approach is that the same constraints might have to be specified 
in multiple MCMT rules, and if the constraint changes then multiple MCMT rules needs to be 
updated.  
 
However, if we want to use a typegraph in Groove to control the validity of our target models then 
we would need to translate our model hierarchy into a typegraph. Figure 6.11 illustrates the use of 
typegraps in Groove. The typegraph is not multilevel so we can not map the hierarchy directly into a 
typegraph. We must flatten the model hierarchy before performing the translation. We would do the 
flattening by creating an empty metamodel and then add a package for each level in the hierarchy. 
Translating the flattened metamodel into a typegraph is done in the same way as a model is 
transformed into a hostgraph, except that we must do the translation for each package in the 
metamodel and then activate all of the generated typegraphs.   
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FIGURE 6.11 - OVERVIEW OF ENGINE WITH FLATTENING OF MODEL HIERARCHY APPROACH 

 

We went with the approach to check the conformance of the proliferated rules in the preprocessing 
step and omit the flattening of the model hierarchy. Our reasoning is that this could allow us to 
detect/remove bad rules before they are sent to Groove. Moreover, the translation of the model 
hierarchy into the typegraph might have to be repeated when using a different engine. Which means 
that we would have to modify the translater everytime we used a different engine. In contrast, 
performing the conformance check on the proliferated rules is independent on the underlying 
transformation engine, and therefor replacing Groove with another engine would require no 
additional changes. Lastly, we have all the information from the model hierarchy in the preprocessing 
step, whereas some information could be lost when translating the model hierarchy into a typegraph 
hence we have more control in the preprocessing step. 
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7.  Conclusion 
 

In this chapter, we summarise our achievements and shortcommings. We give suggestions to what 

can be done in the future to improve our work. 

 

7.1. Summary  
 

In this thesis, we have created a multilevel model transformation engine that takes as input a model 

hierarchy, and a multilevel coupled transformation (MCMT) rule and performs higher order 

transformations to transform the MCMT rule into a several two-level transformation rules. We 

generate our MCMT into Groove rules, but the relation between the flattened rules and Groove is 

independent, and we may replace Groove with another engine by creating a bridge between the 

proliferated rules and the new engine. The bridge would be a code generator that translates 

proliferated rules into the transformation language used by the engine of our choice. The prolifered 

rules are equivalent to all the ways a multilevel model can be matched by an MCMT rule when using 

a true multilevel engine that supports direct manipulation of multilevel models (no flattening). The 

MCMT rules can indeed be reused by different modelling languages as one can change to a different 

branch of the model hierarchy and match it against the MCMT rule without making any changes to 

the MCMT rule. Matching the new branch to the unchanged MCMT rule produces new two-level 

rules that is applicable to models of the new branch. That answers the first research question which 

asks if we can reuse behaviour across different modeling languages, and the answer is yes.  

 

However, we cannot answer the second research question yet because the engine does not keep 

track of the whole typing chain and therefore does not match variables of the MCMT rules to indirect 

types of the variables. For example, given the typing chain {EClass, Consumables, Food, Meat, Cow} 

Then a MCMT rule has a variable X of type Consumables then only Food can be matched to the rule, 

but in reality, Meat and Cow should also be matched by the engine.  

This is a limitation of the engine which is already solved in theory. One solution is to keep track of the 

types typing chain, and then see if the typing chain of the element we are visiting contains the type 

of the current variable we are trying to match. For example, if we are trying to find a match for 

variable X of type Consumables, and we are matching it against Meat, then we look up the typing 

chain of Meat and see if Consumables is contained in this typing chain. 

Another solution is to recursively visit the type of the element we are visiting until we reach the type 

EClass or find the type we are looking for. On each visit, we compare the type of the variable with the 

type of the element we are visiting.  

The first approach is preferable as it does not require one to traverse model levels when matching 

one level to another, and it is straightforward to implement.  

 

The main contribution of this thesis is the work on multi level matching. That is matching a hierarchy 

specified in the rule against a model hierarchy. A valid match is found if all levels in the rule hierarchy 

matches a level in the model hierarchy. Ullmann’s algorithm is used to determine if a level in the rule 

hierarchy matches a level in the model hierarchy. The process is repeated until every level in the rule 

hierarchy has been matched against every level in the model hierarchy. At which point, the algorithm 

has found every valid match for the two hierarchies. Multilevel matching is a vital part of multilevel 

model transformations, and the work done in this thesis could be useful to anyone developing a 

multilevel transformation engine. In particular, the matching algorithm could be used as the basis 
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when developing a new multilevel transformation engine that directly manipulates multilevel 

models. 

 

7.2. Further work 
 
Add support for more complex transformation such as for all and exists statements and arithmetic 
operations. Currently only simple transformations are supported such as create, read, update and 
delete. Additionally, the engine does not consider the attributes of a class and potency is not 
supported. The reason for that was to keep the engine simple while focusing on the algorithms, but 
the engine should be updated to support these features.  

 
Currently the produced groove rules are imported to Groove manually, and then run inside of 
Groove. This should be done automatically executing the generated rules through an API to Groove. 
Moreover, the MultEcore models to transform are recreated inside of Groove as hostgraphs 
manually, but this should be done automatically. The reverse transformation of hostgraphs into 
MultEcore models should also be done automatically after the rules have been applied to the 
hostgraph.  
Future work includes making the entire process fully automatic which means that groove rules and 
hostgraphs are hidden from the user. Thereby, the user only needs to focus on creating MCMTs and 
MultEcore models.  
 

In the aftermath Groove was not as great as initially thought out. Mostly because it uses a native 
representation of the model that it performs the transformations on. The ideal scenario would be 
that Groove transformed EMF models directly. Furthermore, the import and export functionalities in 
Groove are glitchy and we were better off creating our own translation.  
 
If we had to do it over again we would probably have used Tefkat or Henshin as the underlying 

engine. The reason is that they perform transformations directly on EMF models, and that is very 

beneficial because then we don’t have to transform our EMF models into a temporary model to 

perform transformations on and then transform it back each time we want to do model 

transformations. Furthermore, Tefkat and Henshin are plugin to eclipse and therefore they are easier 

to integrate into our project. That said, we believe that Groove would have been the better choice if 

it supported direct transformation of EMF models. We did not realize the importance of this feature 

in the start. One drawback of the EMF tools is that the multilevel hierarchy needs to be transformed 

into a flat metamodel containing all the types. However, this only needs to be done once every time 

the model hierarchy is changed. That is, we can transform many models without regenerating the 

flattened model hierarchy if no changes have been made. Groove on the other hand, needed to 

transform the model into another format each time we wanted to transform the model. Further 

work could include trying to use the multilevel engine with a different underlying engine. 
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