
Naive and adapted utilization of the GPU for

general purpose computing

Alexander Mjøs

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,

Western Norway University of Applied Sciences

Department of Informatics,

University of Bergen

September 2017

i

Preface

This is a master thesis in the joint master programme in software engineering at Western Nor-

way University of Applied Sciences (earlier Bergen University Collage) and University of Bergen

from January 2016 to September 2017. The thesis is performed at the Engineering computing re-

search group with Jon Eivind Vatne and Talal Rahman as supervisors. We assume that the reader

has a basic understanding for computer science and mathematics, however, the mathematics

for the Shallow Water Equation in Chapter 4 is considered difficult for a computer scientist. The

recent flood in the USA and tsunamis in Greenland, Greece and Japan indicates that simulating

The Shallow Water Equations is highly relevant today.

Bergen, 2017-09-11

Alexander Mjøs

ii

Acknowledgment

I would first like to thank my thesis advisors, Associate Professor Jon Eivind Vatne and Talal

Rahman of the Department of Computing, Mathematics and Physics at Western University of

Applied Sciences. Their offices were always open whenever I ran into a trouble spot or had

a question about my research or writing. They consistently allowed this paper to be my own

work, but steered me in the right direction whenever they thought I needed it.

Finally, I must express my very profound gratitude to my parents and to my partner for pro-

viding me with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

A.M.

iii

Summary and Conclusions

In this thesis we will see that adaptive utilization of the graphical processing unit (GPU) has

much better performance than naive utilization, but it takes longer time to implement and re-

quires more knowledge about GPU-programming. To choose which strategy to use for utilizing

the GPU depends on how we weigh implementation time against performance. If we want to

get results fast and the size of the problem is not too large (or too small where CPU is more suit-

able), the naive utilization of the GPU is probably the best choice. If we want high performance,

use large dataset or want a more sophisticated solution in terms of graphics and functionality,

the adapted utilization is probably the best choice. This conclusion is based on implementation

of numerical solutions for two partial differential equations (PDEs), The Heat Equation and The

Shallow Water Equations. These solutions were implemented to utilize the power of the GPU to

do the actual approximation of the equations. The power of the GPU can be utilized in different

ways. In this thesis we want to implement the numerical solutions to utilize the GPU in both a

naive way and an adaptive way. In the naive way, we use standard libraries where we can ap-

ply code written for the central processing unit (CPU) to the GPU without any knowledge about

how it is executed. In the adaptive way, we have to specify every little detail about setting up

the connection and communication with the GPU, how memory is used on the GPU and how

to write code on the GPU. For each implementation, we measure running time with different

problem sizes to see how each solution performed.

Contents

Preface . i

Acknowledgment . ii

Summary and Conclusions . iii

1 Introduction 1

1.1 Background . 1

1.2 Previous related work . 1

1.3 Goal of thesis . 2

1.4 Research questions . 2

1.5 Objectives . 2

1.6 Limitations . 3

1.7 Approach . 3

1.8 Structure of the report . 3

2 Technologies 5

2.1 MATLAB . 5

2.2 MATLAB Parallel Computing Toolbox . 5

2.3 C++ . 6

2.4 OpenCL . 6

2.5 OpenGL . 6

2.6 Betelgeuse . 7

2.7 Desktop . 7

3 The Heat Equation 8

iv

CONTENTS v

3.1 Overview . 8

3.2 1D heat equation . 8

3.3 Stepping up to 2D . 11

3.4 Naive implementation . 14

3.4.1 MATLAB CPU code . 14

3.4.2 Converting to GPU code . 16

3.5 Adaptive implementation . 17

3.5.1 C++ code . 18

3.5.2 OpenCL code . 19

3.6 Complexity . 22

3.7 Comparison of implementations . 22

3.7.1 MATLAB . 22

3.7.2 C++/OpenCL/OpenGL . 22

3.8 Efficiency . 23

3.8.1 Efficiency of computation, MATLAB . 23

3.8.2 Efficiency of computation, C++/OpenCL . 26

3.8.3 Efficiency of visualization, MATLAB . 27

3.8.4 Efficiency of visualization, C++/OpenCL/OpenGL 29

3.9 Analysis . 30

4 Shallow Water 32

4.1 Overview . 32

4.2 Discretization . 33

4.3 Boundary conditions . 36

4.3.1 Reflective boundaries . 37

4.3.2 Periodic boundaries . 37

4.3.3 Free boundaries . 37

4.4 Initial values . 38

4.5 Naive implementation . 39

4.5.1 CPU implementation . 39

CONTENTS vi

4.5.2 GPU implementation . 44

4.6 Adaptive implementation . 45

4.6.1 C++ . 45

4.6.2 OpenCL . 49

4.6.3 OpenGL . 51

4.7 Numerical instability . 54

4.8 Complexity . 57

4.9 Efficiency, computations . 57

4.9.1 MATLAB CPU . 57

4.9.2 MATLAB GPU . 58

4.9.3 C++/OpenCL . 59

4.10 Efficiency, visualization . 60

4.10.1 MATLAB CPU . 60

4.10.2 MATLAB GPU . 61

4.10.3 C++/OpenCL/OpenGL . 61

4.11 Analysis . 64

4.12 Quality and possibilities . 64

4.12.1 MATLAB . 65

4.12.2 OpenGL . 68

5 Summary 72

5.1 Summary and Conclusions . 72

5.2 Recommendations for Further Work . 76

A Acronyms 77

B Additional Information 79

B.1 Chapter 3 - The Heat Equation . 79

B.1.1 Computations . 79

B.1.2 Visualization . 86

B.2 Chapter 4 - The Shallow Water Equations . 92

B.2.1 Computations . 92

CONTENTS vii

B.2.2 Visualization . 98

Bibliography 104

Chapter 1

Introduction

1.1 Background

The increase in computational power of Graphics Processing Units (GPUs) in recent years allows

much better simulations in computer graphics, for instance for modeling fluid motion (e.g. wa-

ter, smoke, fire). There are standard libraries for utilizing this power called naive utilization

which require little or no knowledge about programming on GPUs, but to fully exploit the GPU

for a given task, an implementation adapted to the task will probably perform better.

1.2 Previous related work

We have not succeeded to find any previous related work which compare naive and adapted

utilization of the GPU. However, there has been done research on comparing GPU versus CPU

on The Shallow Water Equations. Visual simulation of shallow-water waves, a paper published

by SINTEF [1] they claim the following:

Modern numerical schemes for such models are inherently parallel in the sense that very little

global communication is needed in the computational domain to advance the solution forward

in time. Therefore, this application can readily exploit the parallel architecture of modern GPUs.

We have seen in practical computations that moving from a serial CPU-based implementation

to an implementation on a modern GPU decreases the runtime by more than one order of mag-

nitude. (The runtime of the full dambreak simulation was reduced from 2 h to 5 min). To achieve

1

CHAPTER 1. INTRODUCTION 2

the same speedup using CPUs, one would have to resort to a cluster of twenty or more process-

ing nodes [1].

1.3 Goal of thesis

The goal of this thesis is to compare running time for various implementations of the same

algorithms. A naive implementation using standard packages and libraries will be quicker to

develop, but the end result of an adapted and more sophisticated implementation will perform

better. We want to weigh the extra effort for using an adapted implementation against the pos-

sible payoff in terms of running time and visualization.

1.4 Research questions

In this thesis we will try to answer the following research questions:

• Will an adaptive implementation of fluid simulation be faster than a naive implementa-

tion? And if so, how much faster will it be?

• In what situations is doing an adaptive implementation worth the increased effort?

1.5 Objectives

In order to reach the goal of this thesis, we will look at two partial differential equations (PDE).

The main objectives of this Master’s project is to study these PDEs in the following order:

1. Develop one naive and one adaptive solution for the 1D heat equations.

2. Develop one naive and one adaptive solution for the 2D heat equations.

3. Develop one naive and one adaptive solution for the Shallow water equations in isolated

box environment.

CHAPTER 1. INTRODUCTION 3

1.6 Limitations

In this thesis we limit our research to apply numerical approximation of partial differential equa-

tions (PDE) running on a single standalone desktop graphics card. We are also limited to testing

on NVIDIA graphics card. Graphics card from other vendors, integrated graphics or multiple

GPU are not represented. Naive utilization on the GPU are in this thesis limited to MATLAB

and MATLAB parallel computing toolbox, and adapted utilization of the GPU are limited to C++

together with OpenCL and OpenGL.

1.7 Approach

The Partial Differential Equations (PDE) will be solved first using MATLAB utilizing the Central

Processing Unit (CPU) with small data to verify the result. Next, the program will be scaled and

benchmarked and optimized to ensure that the running time is good enough for a fair compar-

ison and then added support for running on the GPU. The same algorithm will then be imple-

mented in C++ together with OpenCL. At last, OpenGL will be integrated in the C++ solution.

With this approach, we start with small data and compare the result to ensure correctness.

1.8 Structure of the report

The rest of the report is organized as follow:

Chapter 2 gives an introduction to the technologies used in the thesis.

Chapter 3 starts with an introduction to the heat equations in one and two dimensions before

we move on and explain how the heat equation is discretized and implemented in the naive way

and the adapted way. At the end of the chapter we take a look at the complexity and the running

times for the different implementations.

In Chapter 4 there is an overview over the Shallow water equations starting with the equations

itself before we take a look at the discretization, initial values and different boundary conditions.

Next, we look at the naive and adapted implementation and discuss numerical instability and

the complexity. At the end of the chapter we look at the running time for the different imple-

mentations and analyze what we have observed in the chapter.

CHAPTER 1. INTRODUCTION 4

Chapter 5 is the final chapter which is summary and conclusion for the thesis along with rec-

ommendations for further work.

Appendix A is a list of acronyms used in the thesis.

Appendix B contains all the running times and graphs for the implementations in Chapter 3 and

4.

Chapter 2

Technologies

This chapter gives an overview over technologies used in the thesis.

2.1 MATLAB

MATLAB (matrix laboratory) is a programming environment built around the MATLAB scripting

language. The MATLAB platform is optimized for solving engineering and scientific problems.

The matrix-based MATLAB language is a natural way to express computational mathematics.

Built-in graphics make it easy to visualize and gain insights from data [2]. MATLAB is chosen

because it is easy and it takes less time to implement code versus other popular programming

language like Java, C or C#. This is because you don’t need classes, all the code is written in

script or functions for larger chunks of code. MATLAB has also the benefit of being a loosely

typed programming language which means that you don’t need to specify which type a variable

is, for instance int, double or string.

2.2 MATLAB Parallel Computing Toolbox

MATLAB Parallel Computing Toolbox is used for utilizing the power of the GPU in a naive way.

This means that the same code that runs on the CPU can be executed on the GPU by applying

this toolbox. Mathworks, the company behind MATLAB describes the MATLAB Parallel Com-

puting Toolbox as following:

5

CHAPTER 2. TECHNOLOGIES 6

Parallel Computing Toolbox lets you solve computationally and data-intensive problems us-

ing multi-core processors, GPUs, and computer clusters [3]. High-level constructs—parallel

for-loops, special array types, and parallelized numerical algorithms—let you parallelize MAT-

LAB applications without CUDA or MPI programming [3]. Parallel Computing Toolbox provides

GPUArray, a special array type with several associated functions that lets you perform computa-

tions on CUDA-enabled NVIDIA GPUs directly from MATLAB [4]. Using MATLAB for GPU com-

puting lets you accelerate your applications with GPUs more easily than by using C or Fortran

[5]. With the MATLAB language you can take advantage of the CUDA GPU computing technol-

ogy without having to learn the intricacies of GPU architectures or low-level GPU computing

libraries [5].

2.3 C++

C++ is a high level, general-purpose object oriented programming language. It is cross platform

and can therefore run on various hardware and platforms.

2.4 OpenCL

Open Computing Language (OpenCL) is an industry standard framework for programming com-

puters composed of a combination of CPUs, GPUs, and other processors [6]. According to

OpenCL Programming Guide [6], these so-called heterogeneous systems have become an im-

portant class of platforms, and OpenCL is the first industry standard that directly addresses their

needs. OpenCL is cross platform and can run on various devices such as workstations, laptops,

smart phones, FPGA and other hardware with support for OpenCL. No other parallel standard

has such a wide reach, and that is one of the reasons why OpenCL is so important [6].

2.5 OpenGL

Open Graphics Library (OpenGL) is a cross platform Application Programming Interface (API)

for developing 2D and 3D application. Together with OpenGL, freeglut is used for windows

CHAPTER 2. TECHNOLOGIES 7

managing and to manage keyboard input.

2.6 Betelgeuse

Server at campus with NVIDIA Tesla K40c graphics card and with remote desktop access to per-

form computations on a high performance GPU. This server does not provide OpenGL support,

so it is only for general purpose computing on graphics processing units (GPGPU).

2.7 Desktop

Desktop computer used for visualization and GPGPU. HP workstation with NVDIA GTX760

graphics card and Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz processor. This was used for

all benchmarks because of both OpenCL and OpenGL support.

Chapter 3

The Heat Equation

3.1 Overview

The heat equation is a partial differential equation (PDE) which describes the change of temper-

ature over time. It is derived from Newton’s law of cooling, which states that the rate of change

of the temperature of an object is directly proportional to the difference in temperature between

the object and its surroundings [7].

This has been an introductory project to my thesis, and the reason why is because it is a sim-

ple PDE, but also an important one. By using this approach it is easy to verify the result, both

numerically and visually.

3.2 1D heat equation

The heat equation in normalized form for one dimension

ut (x, t) = uxx(x, t), x ∈ R, t > 0 (3.1)

arises in the model of temperature evolution in uniform materials [8]. The independent vari-

ables are time,t , and one space variable, x. Here u(x, t) describes the temperature at time t and

position x. ut denotes the partial derivative with respect to time, and uxx the double partial

derivative with respect to position. As an example, we can envision a rectangular steel plate

8

CHAPTER 3. THE HEAT EQUATION 9

Figure 3.1: Heat equation illustrated with red as warm and blue as cold.

with fixed length of 1 as showed in Figure 3.1. We imagine that no heat leaves the plate, and the

boundary conditions at the ends of the plates are that the temperatures are set to zero:

u(0, t) = u(1, t) = 0, t > 0 (3.2)

This method for setting the boundary conditions is called Dirichlet-type boundary, where a spe-

cific value is set on the boundaries [8]. For other applications, there are also other standardized

methods for setting boundary conditions (see e.g. Tveito and Winther).

Initially, the function f (x) describes the temperature at t = 0.

u(x,0) = f (x), x ∈ (0,1) (3.3)

In order to solve an approximation of this PDE on a computer, we derive a finite difference

scheme. For the Heat Equation, an explicit scheme is used because the values in each time step

can be calculated independently of each other. This makes explicit schemes suitable for parallel

computations. We use the following approximation for time and space:

Forward differences for time approximation

ut (x, t) = u(x, t +∆t)−u(x, t)

∆t
+O(∆t) (3.4)

and central differences for space approximation

uxx(x, t) = u(x −∆x, t)−2u(x, t)+u(x +∆x, t)

∆x2
+O(∆x2). (3.5)

CHAPTER 3. THE HEAT EQUATION 10

u(i −1,n) u(i ,n) u(i +1,n)

u(i ,n +1)

Figure 3.2: Illustrates computation for next step in the Heat equation.

which is known as FTCS (Forward differences for time and central differences for space) [9].

From 3.1, we get

u(x, t +∆t)−u(x, t)

∆t
≈ u(x −∆x, t)−2u(x, t)+u(x +∆x, t)

∆x2
(3.6)

and

u(x, t +∆t) ≈ u(x, t)+∆t
u(x −∆x, t)−2u(x, t)+u(x +∆x, t)

∆x2
. (3.7)

For f (x) we choose the sinus function as initial value to get numerical results.

f (x) = sin(π ·x). (3.8)

Now, all we need is to decide ∆t and ∆x. The accuracy of the approximation is increased

by lowering ∆t [8], but it will require more computing power. We need ∆t É 1
2∆x2 to get good

approximations, see e.g. [8].

Since we can only do an approximation in fixed position on the computer, we define time steps

and space steps as

u(i ,n) ≈ u((i −1) ·∆x, (n −1) ·∆t). (3.9)

The equation from (3.7) can directly be translated into MATLAB code with two simple loops.

As we can see from Figure 3.2, all we need to compute the temperature at the next time step in

position x is the temperature at the current time step in position x together with the temperature

∆x to the left and∆x to the right of position x. Here, "deltaX" is 1
steps , which means that u(i-1,n)

CHAPTER 3. THE HEAT EQUATION 11

in the code is the same as u(x −∆x, t).

u = zeros (steps +1 , timeSteps) ;

xx = 0 : deltaX : 1 ;

for i = 1 : steps+1

u(i , 1) = sin (pi * xx (i)) ; % I n i t i a l value

end

for n = 1 : timeSteps−1

for i = 2 : steps

u(i , n+1) = u(i , n)+ deltaT * (u(i −1,n)−2*u(i , n) + \

u(i +1 ,n)) / (deltaX ^ 2) ;

end

u(1 , n) = 0 ; % Boundary conditions

u(steps +1 , n) = 0 ;

end

3.3 Stepping up to 2D

The 2D heat equation adds another independent space variable, y , and an extra part for the

equation on the right hand side. For this problem, we can envision a square with leading di-

mension d , with fixed temperature at the edges of the square as boundary conditions.

ut (x, y, t) = uxx(x, y, t)+uy y (x, y, t), x, y ∈ R, t > 0 (3.10)

Central differences for y-direction is approximated in the same way as for the x-direction.

uy y (x, y, t +∆t) = u(x, y −∆y, t)−2u(x, y, t)+u(x, y +∆y, t)

∆y2
+O(∆y2) (3.11)

CHAPTER 3. THE HEAT EQUATION 12

i H
HHY

u(i,j,n)

j
��

�1

u(i,j, n+1)

n

6

Figure 3.3: Illustrates which data is needed to calculate ut (x, y, t +∆t).

We choose boundary conditions with 0 temperature at the edges of the square.

u(x,0, t) = 0,

u(d ,0, t) = 0,

u(0, y, t) = 0,

u(d , y, t) = 0,

x, y ∈ (0,d), t > 0.

For better visualization, we have added an extra boundary to the problem which is not a part of

the original equation. This extra boundary is that we set the center of the square to 100◦c shown

in Figure 3.4.

u(d/2,d/2, t) = 100,

CHAPTER 3. THE HEAT EQUATION 13

Figure 3.4: Heat Equation output from MATLAB.

CHAPTER 3. THE HEAT EQUATION 14

3.4 Naive implementation

For the naive implementation, MATLAB is used. To get as fair comparison between naive and

adaptive implementation as possible, it is important to understand how MATLAB works. MAT-

LAB stands for MATrix LABoratory, and it is optimized for doing operations on matrices. If you

implement an algorithm using loops (for, while or even worse nested loops), the code will run

very slowly and you will get poor performance. It is faster to create a vector, which is basically

a one dimensional matrix, and perform the calculations on this vector. This technique is called

vectorization, and the computer performs operations on the vector instead of each element.

Pre-allocation of memory is also important for performance, otherwise MATLAB has to reallo-

cate new memory blocks for each iteration. Also, according to Mathworks [10], writing code in

a function is faster than writing the same code as a script. With this in mind, the MATLAB code

should be as good as possible to have a fair comparison versus the adaptive implementation.

3.4.1 MATLAB CPU code

This is straight forward to implement if you have the optimization from previous section in

mind. In the code in Figure 3.4.1, "bound" is a function to set the boundary conditions. This

is done for each time step in the algorithm. "imagesc" is used to create an image from an ma-

trix, and the command "set" is used to update the image data. Whenever "drawnow" is called,

MATLAB is refreshing the image and "limitrate nocallbacks" limits the number of updates to 20

frames per second and skips updates if the renderer is busy, according to MATLABs API. MAT-

LABs built in profiler is used to run and analyze the code to ensure that the code is as efficient

as possible. In this project, we specified the mapping for the color scheme. MATLAB has built in

color maps to choose from, but we specified it because we want it to be equal to the color map

used in the adaptive implementation.

CHAPTER 3. THE HEAT EQUATION 15

function [] = heatSquare
% Heat Equation f o r 2D square
deltaX = 0 . 2 ;
deltaY = deltaX ;
deltaT = 0 . 0 1 ;
timeSteps = 10000;
N = 512; % Steps in one d i r e c t i o n
Uold = zeros (N) ;
Unew = zeros (N) ;
Uold = bound(Uold , N) ; % Boundary conditions
map = createColormap () ; % Sp e ci f y the color scheme
colormap (map) ; % Apply the color scheme
p = imagesc (Uold) ; % Creates an image of the heat matrix
i = 2 :N−1;
j = 2 :N−1;
for n = 1 : timeSteps

Uxx = (Uold (i , j −1) − 2 * Uold (i , j) + Uold (i , j +1))/ deltaX ^2;
Uyy = (Uold (i −1, j) − 2 * Uold (i , j) + Uold (i +1 , j)) / deltaY ^2;
Unew(i , j) = Uold (i , j) + deltaT * (Uxx + Uyy) ;
Unew = bound(Unew,N) ; % S e t t i n g boundary conditions
Uold = Unew;
set (p , ’ cData ’ , Unew) ; % Update image
drawnow l i m i t r a t e nocallbacks % Render updated image

end
end

Figure 3.5: The naive implementation of The Heat Equation.

CHAPTER 3. THE HEAT EQUATION 16

3.4.2 Converting to GPU code

As mention in Section 1.1, the naive implementation uses standard libraries for utilizing the

power of the GPU. For MATLAB, this library is called MATLAB Parallel Computing Toolbox. To

utilize this, we only need to change the declaration of the matrices from

Unew = zeros (N) ;

to

Unew = gpuArray (zeros (N)) ;

and similarly for the "Uold" matrix, and all operation on these matrices will be performed on

the GPU without having to specify how. To fetch the result back to the CPU requires only to use

"gather("arrayname");"

set (p , ’ cData ’ , gather (Unew)) ;

The problem arises when we want to visualize the data. MATLAB has no support for interop-

erability between the graphics and GPGPU. This means that for each time step, MATLAB will

execute in this order:

1. Compute on the GPU

2. Send data from GPU to CPU

3. CPU renders the data

MATLAB has an option to use OpenGL to render, but it does not allow us to visualize data which

is already on the GPU. This makes visualization on MATLAB using GPU less efficient that us-

ing only CPU due to the data transfer for small and medium size problems. For computational

comparison, this is not a problem, but it might be for the visual part. We will for that part try to

figure out if there is any effort in making the naive implementation a bit more adaptive, or if its

just better to do it all adaptively.

The first attempt is to do all computations on the GPU, and gather the results on CPU for ani-

mation. Animation is not a fair comparison versus real time rendering, but it is interesting to see

if it can be done. To do so, the GPU has to store all the data. In the implementation in Section

3.4.1, the GPU stored the matrix representation of the square which is I · J numbers, where I is

CHAPTER 3. THE HEAT EQUATION 17

the number of space steps in x direction and J is the number of space steps in y direction. Now

the GPU also needs to store data for all time steps, resulting in I · J ·T numbers, where T is the

number of time steps. This is only suitable for either small squares or few time steps. After a few

benchmarks with increasing problem size, the conclusion was that this solution was inexpedi-

ent.

With this in mind, it was clear that the problem needed to be divided into smaller problems,

and combined at the CPU. When the size of the problem is so large that the GPU cannot store all

data, time steps can be divided in two time periods. The first period is first computed and saved

on the CPU before the second period is computed on the GPU and combined with the first pe-

riod on the CPU. We refer to this model of computations as GPU with block computations. This

worked better than the previous attempt. If the GPU cannot store all the data, it will be given

smaller time periods to compute. Unfortunately, this solution did not scale very well as the CPU

also went out of memory when the size of the problem increased.

With this experience, we know now that the most efficient implementation in MATLAB is the

most naive one. The outer for loop is needed because for each time step, we need the values

calculated from the previous time step in addition to applying boundary conditions. Therefore,

we cannot vectorize the outer for loop and this has a major drawback on the performance.

3.5 Adaptive implementation

The adaptive implementation is implemented in C++ and use OpenCL to utilize the GPU. In the

adaptive implementation, the programmer has to specify everything, staring with discovering

platforms and selecting a platform. A platform is an OpenCL implementation, for instance AMD

OpenCL, NVIDIA OpenCL or Intel OpenCL. After selecting the platform, the programmer must

select a device from the platform and a create context from this. A device is for instance a CPU

or GPU. Selecting one platform together with one or more devices is called a context. Next, the

code which runs on the GPU, called kernel code written in OpenCL C, must be written. The

kernel code is read and compiled during runtime. A command queue is used to communicate

with the GPU. The programmer has to create the command queue and attach a kernel to it to be

able to run code on the GPU. All allocation on the CPU and GPU needs to be specified, and how

CHAPTER 3. THE HEAT EQUATION 18

many work-groups and work-items to use in the calculation. In OpenCL, a work item is one of

many parallel executions of a kernel. A collection of work items is called a work group which

share memory. The programmer also has to consider how the memory is accessed, because the

performance is better if the accessed data is already in the cache. Swapping cache costs a lot of

time.

3.5.1 C++ code

In the adaptive implementation, C++ acts as a host. This means that C++ is not performing

any computations or visualization. C++ is responsible for setting up data structures, initializing

data, sending to and receiving data from the GPU. C++ is also responsible for queuing jobs to

the GPU. In short terms, the program runs the following order:

Setup and initialize data structures;
Setup OpenGL;
Setup OpenCL;
while Program still running do

Tell GPU to compute next time step (OpenCL);
Tell GPU to change texture (OpenCL);
Tell GPU to render the new texture (OpenGL);

end

The case presented in Section 4.6.1 contains more details.

CHAPTER 3. THE HEAT EQUATION 19

3.5.2 OpenCL code

OpenCL is responsible for the computational part. OpenCL uses OpenCL C as programming

language, and it is very similar to C. One of the largest difference is that OpenCL C does not sup-

port two-dimensional arrays. Arrays in OpenCL C must be allocated in one dimension, which

makes indexing different. This means that an array which would be allocated in C++ as A[n][m]

need to be allocated as A[n*m]. Loops can be done in OpenCL, but the idea is that each work-

item is replacing the loops. Each work-item has a global identifier, and this is used to index the

array. For example:

i n t idx = get_global_id (0) ;

i n t idy = get_global_id (1) ;

i n t index = idx+dim* idy ;

get global id returns the global id for each work-item, and the parameter is 0 for x-direction, 1 for

y-direction and 2 for z-direction. For this problem we only use two dimensions. It is important

to notice that "idx*dim+idy" where "dim" is the leading dimension, gives the exact same result

as "idx+dim*idy", but with worse performance due to memory swapping. With this in mind, the

kernel to compute one step of the heat equation and update the boundaries is:

CHAPTER 3. THE HEAT EQUATION 20

__kernel void heatEquation_kernel (__global f l o a t *Uold , \
__global f l o a t *Unew, const i n t dim) {
i n t idx = get_global_id (0) ;
i n t idy = get_global_id (1) ;
f l o a t deltaT = 0 . 0 1 ;
f l o a t dx2 = 0 . 2 * 0 . 2 ;
f l o a t dy2 = 0 . 2 * 0 . 2 ;
i n t ind = idx+dim* idy ;
i n t l e f t = ind−1;
i n t r i g h t = ind +1;
i n t up = ind−dim ;
i n t down = ind+dim ;
i n t mid = dim*dim/2 + dim/ 2 ;
// I f we are not on the boundary , update values
i f (idx != 0 && idy != 0 && idx != dim−1 && \
idy != dim−1 && ind != mid) {

f l o a t uxx = (Uold [l e f t] − 2 * Uold [ind] + Uold [r i g h t]) / dx2 ;
f l o a t uyy = (Uold [up] − 2 * Uold [ind] + Uold [down]) / dy2 ;
Unew[ind] = Uold [ind] + deltaT * (uxx+uyy) ;

}
else i f (ind == mid) {

Unew[ind] = 1 0 0 . 0 ; // Center at 100 degrees
}
else i f (ind == mid−1){

Unew[ind]= 1 0 0 . 0 ;
}
else i f (ind == mid−dim) {

Unew[ind]= 1 0 0 . 0 ;
}
else i f (ind == mid−dim−1){

Unew[ind]= 1 0 0 . 0 ;
}
else {

Unew[ind] = 0 . 0 ; // Boundary condition
}

}

CHAPTER 3. THE HEAT EQUATION 21

To update the texture according to the new values, we call another kernel which computes

the color with respect to the temperature value.

__kernel void texture_kernel (__write_only image2d_t texture , \
i n t dim , __global f l o a t *Unew)

{
int2 coord = { get_global_id (0) , get_global_id (1) } ;
i n t ind = coord . x+dim* coord . y ;
__private f l o a t r , g , b ;
i f (Unew[ind] >= 75){

r = 1.0 f ;
g = 0+((100−Unew[ind]) * 0 . 0 4) ;
b = 0.0 f ;

}
else i f (Unew[ind] >= 50){

r = 2−((100−Unew[ind]) * 0 . 0 4) ;
g = 1.0 f ;
b = 0.0 f ;

}
else i f (Unew[ind] >= 25){

r = 0.0 f ;
g = 1.0 f ;
b = −2 + ((100−Unew[ind]) * 0 . 0 4) ;

}
else {

r = 0.0 f ;
g = 4 − ((100−Unew[ind]) * 0 . 0 4) ;
b = 1.0 f ;

}
f l o a t 4 col = { r , g , b , 1.0 f } ; // red , green , blue , alpha
write_imagef (texture , coord , col) ; // Update texture

}

CHAPTER 3. THE HEAT EQUATION 22

3.6 Complexity

In each time step, we need to calculate Uxx, Uyy and combine to a new matrix of U as shown

in the code in Section 3.4.1. To calculate Uxx, we require one addition, one subtraction, one

multiplication and one division. These four operations are done for ∀(i , j) where i = [1,2, . . . , I]

and j = [1,2, . . . , J] resulting in 4 · I · J operations. For Uyy, it is the same amount of operations,

and for Unew it is two additions and one multiplication. In total there are 11 · I · J operations

in each time step. This gives us the complexity of O (I · J) per time step, and a total complexity

of O (I · J ·T) where T is the number of time steps. The I · J computations can be processed in

parallel, but for each time step in N , there is a need to set boundary conditions and update

graphics.

3.7 Comparison of implementations

3.7.1 MATLAB

The effort of changing the implementation from CPU to GPU in MATLAB is very small. As men-

tioned in 3.4.2, the only change of code is initialization of the arrays, and a gather to send data

from GPU back to CPU after computations. This is done in minutes if the CPU implementation

is implemented in such way that there is no dependency in each time step.

3.7.2 C++/OpenCL/OpenGL

Implementing in C++ and OpenCL + OpenGL requires more knowledge by the programmer, and

the implementation time varies from a day up to a week, depending on code quality, refactoring

of the code and optimization. Knowledge about memory and implementation quality are more

important in the adaptive implementation e.g. because the efficiency of the program is better

if the data is already in the cache. For instance, the running time of this implementation went

about ten times faster just by changing the indexing of the arrays.

CHAPTER 3. THE HEAT EQUATION 23

3.8 Efficiency

To be able to compare the different implementations, we want to measure the efficiency of each

implementation in terms of running time for the problems with different problem sizes. We

also want to see how the algorithm scales, and to measure the scalability for the algorithm we

increase the problem, but keep the amount of work per work item the same. This is a fair com-

parison since MATLAB does not allow us to control how many work items are used on the GPU.

3.8.1 Efficiency of computation, MATLAB

We begin with leading dimension of 64 which gives us a total number of elements of 64 · 64 =
4096. We scale the problem linear in terms of total number of elements to compute, so the next

leading dimensions will be
p

4096 ·2 = 91,
p

4096 ·3 = 111 until the leading dimension is 448. For

each dimension, the program run from t = 1 to t = 10000 and calculate minimum, maximum

and average running time.

CHAPTER 3. THE HEAT EQUATION 24

CPU implementation

As a reference, we begin to look at the running time of MATLAB CPU implementation to ensure

that the GPU implementation is not limited due to the lack of interoperability support. As we

can see in Figure 3.6, using the CPU is not suitable when the size of the problem is increasing.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

CPU mean time

Figure 3.6: CPU running time in seconds, MATLAB. Table overview for the data behind this graph
along with minimum and maximum running time can be seen in Appendix B.1.

CHAPTER 3. THE HEAT EQUATION 25

Naive GPU implementation

This is the most naive implementation. For small problem size, it runs slowly compared to the

other implementation, but it scales much better. There is almost no increased time when in-

creasing the size of LD from 64 to 448.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 3.7: GPU running time in seconds, MATLAB. Table overview for the data behind this
graph along with minimum and maximum running time can be seen in Appendix B.2.

CHAPTER 3. THE HEAT EQUATION 26

3.8.2 Efficiency of computation, C++/OpenCL

OpenCL has the advantage of holding the memory on the GPU during the whole computation,

and only getting instructions from C++. This means that the CPU sends the GPU memory ob-

jects to the GPU once, and after that the CPU only queue jobs to the GPU. The only time the GPU

has to send data back to the CPU is when the programmer specifies it. We can see from the table

below that this affects the running time in a positive way. To benchmark, the Hayai [11] library

is used. The program computes the first 10000 time steps and the program is timed 100 times,

just like we did with the MATLAB implementation. As we can see in Figure 3.8, the overhead of

using the GPU is less than in MATLAB and it is much faster than the MATLAB implementation

in Figure 3.7

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 3.8: GPU running time in seconds, C++/OpenCL. Table overview for the data behind this
graph along with minimum and maximum running time can be seen in Appendix B.3.

CHAPTER 3. THE HEAT EQUATION 27

3.8.3 Efficiency of visualization, MATLAB

In this section, we will look at the running time for the naive implementation for rendering the

heat equation in real time. We use the CPU implementation again as a reference implementa-

tion to ensure that using GPU in MATLAB is beneficial.

CPU implementation

The graph in Figure 3.9 shows CPU mean running time. It is easy to see that the CPU implemen-

tation scales badly when the size of the problem increases.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

CPU mean time

Figure 3.9: CPU with visualization running time in seconds, MATLAB. Table overview for the
data behind this graph along with minimum and maximum running time can be seen in Ap-
pendix B.4.

CHAPTER 3. THE HEAT EQUATION 28

Naive GPU implementation

The naive GPU implementation is as expected slower than the CPU implementation for small

problem sizes, but it scales much better. From the running time in Figure 3.10 we can see that

MATLAB suffers from lack of interoperability between graphics and computation on the GPU

and this affects the efficiency. As we can see in Figure 3.10, the increase in running time starts

earlier and the increase is greater than for computation only, seen in Figure 3.7.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 3.10: GPU running time in seconds, MATLAB. Table overview for the data behind this
graph along with minimum and maximum running time can be seen in Appendix B.5.

CHAPTER 3. THE HEAT EQUATION 29

3.8.4 Efficiency of visualization, C++/OpenCL/OpenGL

The graph in Figure 3.11 shows that the running time has increased with a few seconds, which

is the overhead of using OpenGL. The scaling is similar to Figure 3.8 with only computations,

but with some increased running time due to writing new values to the texture and render it for

each time step.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 3.11: GPU running time in seconds, C++/OpenCL/OpenGL. Table overview for the data
behind this graph along with minimum and maximum running time can be seen in Appendix
B.6.

CHAPTER 3. THE HEAT EQUATION 30

3.9 Analysis

What we have learned in this chapter is that there is an overhead just to setup the GPU for com-

putations. The overhead was largest for MATLAB which uses about ten seconds no matter how

small the problem is. This is not just the GPU overhead, but also the slow for-loop which is

for the time steps. The adapted implementation has a smaller overhead and is therefore much

faster, but it takes longer time to implement.

One can imagine that since OpenCL can launch millions of work-items, this algorithm would

run completely in parallel since each computation can be done independently of other. That

is true, but if we look at Figure 3.10 and Figure 3.11, the running time is increasing as the size

of the problem is increasing. There are multiple reasons for this. First of all, we need to look

at the OpenCL platform model. One platform has multiple compute units or streaming multi-

processors as NVIDIA calls them, each consisting of a number of stream processors depending

on the hardware [12]. On NVIDIA hardware the multiprocessor will execute 32 threads at once

(which they call a “warp group”), if the work group contains more threads than this they will

be serialized, which has obvious implications on the consistency of local memory [12]. When

the amount of work is increasing, the work groups are queued for execution and have to wait

for available multiprocessor. The second reason is that there is more to synchronize. The com-

mand queue is in-order, which means that the kernels is executing in order and have to wait for

the previous kernel to finish.

CHAPTER 3. THE HEAT EQUATION 31

Figure 3.12: Graphical output from MATLAB and C++/OpenGL. MATLAB on the left side and
C++/OpenGL on the right side.

Chapter 4

Shallow Water

4.1 Overview

The Shallow Water equations are a set of partial differential equations which is a special case

of water simulation. In the Shallow Water equations, we assume that the water is shallow with

respect to the wave length. This means that we can ignore vertical variations in the velocity field

and just keep track of the depth-averaged horizontal velocities u(x, y) and v(x, y) [13].

It is not only restricted to simulating water, but it can also be used to simulate avalanches and

other incompressible fluids. In this project we will focus on the Shallow Shallow Water equations

applied on water in a fixed square. The partial differential equations are:

∂h

∂t
+ ∂uh

∂x
+ ∂vh

∂y
= 0 (4.1)

∂(uh)

∂t
+ ∂(u2h + 1

2 g h2)

∂x
+ ∂(uvh)

∂y
= 0 (4.2)

∂(vh)

∂t
+ ∂(uvh)

∂x
+ ∂(v2h + 1

2 g h2)

∂y
= 0 (4.3)

The independent variable are time,t , and two space variables x and y . The dependent variables

are the height h and the velocities u and v . Acceleration due to gravity is denoted g , which is

9.81m/s2.

32

CHAPTER 4. SHALLOW WATER 33

By introducing three vectors, H, F(H) and G(H),

H =

h

uh

vh

 (4.4)

F (H) =

uh

u2h + 1
2 g h2

uvh

 (4.5)

G(H) =

vh

uvh

v2h + 1
2 g h2

 , (4.6)

we can write the equations in a compact form.

∂H

∂t
+ ∂F (H)

∂x
+ ∂G(H)

∂y
= 0. (4.7)

4.2 Discretization

In order to solve an approximation of this PDE on a computer, we need to come up with a nu-

merical solution. With the previously introduced vectors, the Shallow Water equations are an

instance of a hyperbolic conservation law [14]. Since the equation is a hyperbolic partial dif-

ferential equation, it can be solved with the Lax-Wendroff [15] method which is based on finite

differences and is second order accurate in both time and space. We introduce a regular square

finite difference grid with a vector-valued solution centered in the grid cells, denoted center

point as shown in Figure 4.1 [14]. At the beginning of each time step, the variables represent the

solution at the center of the finite difference grid, and we use those variables to calculate the

half time step. This is the values of H at H n+ 1
2 as shown in Figure 4.2 [14]. H represent the height

matrix and U and V represent the velocity matrices in u and v direction.

CHAPTER 4. SHALLOW WATER 34

The first step of Lax-Wendroff is:

f n+1/2
i+1/2 = f n

i + f n
i+1

2
− ∆t

2 ·∆x
· (g n

i+1 − g n
i) (4.8)

and the final step of is:

f n+1
i = f n

i − ∆t

∆x
(g n+1/2

i+1/2 − g n+1/2
i−1/2) (4.9)

To apply this on the Shallow Water equation for the first partial derivative, we just change f to H,

and g(f) to F(H). Since H a is two dimensional grid, we need to calculate steps in both x and y

direction. First step in x-direction:

H n+1/2
i+1/2 = H n

i +H n
i+1

2
− ∆t

2 ·∆x
· (U n

i+1 −U n
i) (4.10)

First step in y-direction:

H n+1/2
j+1/2 =

H n
j +H n

j+1

2
− ∆t

2 ·∆y
· (V n

j+1 −V n
j) (4.11)

and the last step:

H n+1
i , j = H n

i , j −
∆t

∆x
(U n+1/2

i+1/2 −U n+1/2
i−1/2)− ∆t

∆y
(V n+1/2

i+1/2 −V n+1/2
i−1/2) (4.12)

The half time steps for U and V, and last step for U and V are calculated in the same manner.

CHAPTER 4. SHALLOW WATER 35

j -

i
6

f n
i

grid cell -

center point -

interface -

Figure 4.1: At the beginning of a time step, the variables represent the solution at the centers of
the finite difference grid [14].

j -

i
6

j +1/2 -

i +1/2 -

Figure 4.2: The first stage computes values that represent the solution at the midpoints of the
interface between the grid cells in the finite difference grid [14].

CHAPTER 4. SHALLOW WATER 36

H(i , j)U (i , j)

V (i , j)

Figure 4.3: Illustration of the ghost cells. Black square represent the finite difference grid, the
red square represent the height matrix and the red and green square represent velocity matrices
in u and v direction.

4.3 Boundary conditions

Since we calculate the equation for a fixed space, we need to apply boundary conditions to de-

fine how we calculate the solution at the points lying on the edge of the water area. This is

because finite differences uses values from the neighboring cells, and the outermost cell rows

and columns do not have neighbors outside the computed region. In this project, ghost cells

are applied around the finite difference grid and we copy values into the ghost cell according to

boundary conditions given. As seen in Figure 4.3, the black square is the finite difference grid.

The red square is the height matrix including the ghost cells. The blue square is the velocity ma-

trix in u direction with ghost cells and the green square is the velocity matrix in v direction with

ghost cells. We have used three different boundary conditions:

CHAPTER 4. SHALLOW WATER 37

4.3.1 Reflective boundaries

With reflective boundaries, all waves which hit the boundary are returned in the opposite direc-

tion with negative velocity.

Hi ,1 = Hi ,2 Hi ,I+2 = Hi ,I+1 H1,i = H2,i HI+2,1 = HI+1,2 i ∈ [1,2, . . . , I] (4.13)

Ui ,1 =Ui ,2 Ui ,I+2 =Ui ,I+1 U1,i =−U2,i UI+2,1 =−UI+1,2 i ∈ [1,2, . . . , I] (4.14)

Vi ,1 =−Vi ,2 Vi ,I+2 =−Vi ,I+1 V1,i =V2,i VI+2,1 =VI+1,2 i ∈ [1,2, . . . , I] (4.15)

4.3.2 Periodic boundaries

With periodic boundaries, all waves which hit the boundaries will continue at the opposite side

of the grid. You can envision that left and right side, and top and bottom side of the grid are

connected like a torus. For the periodic boundaries, there is no boundary to be "set" for each

iteration and there is no ghost cell. In each iteration of the approximation of the equations,

grid cells in the leftmost column using grids cells in the rightmost column. Grid cells in the

rightmost column are using grid cells in the leftmost column. The same goes for rows on the top

and bottom.

4.3.3 Free boundaries

With free boundaries, all waves which hit the boundaries will just be copied out to the ghost

cells and fade.

Hi ,1 = Hi ,2 Hi ,I+2 = Hi ,I+1 H1,i = H2,i HI+2,1 = HI+1,2 i ∈ [1,2, . . . , I] (4.16)

Ui ,1 =Ui ,2 Ui ,I+2 =Ui ,I+1 U1,i =U2,i UI+2,1 =UI+1,2 i ∈ [1,2, . . . , I] (4.17)

Vi ,1 =Vi ,2 Vi ,I+2 =Vi ,I+1 V1,i =V2,i VI+2,1 =VI+1,2 i ∈ [1,2, . . . , I] (4.18)

CHAPTER 4. SHALLOW WATER 38

4.4 Initial values

As initial values, the velocity in U and V direction is set to zero. For the height matrix, H , the

initial values are set by the Gaussian function:

y = ce−10(x2+y2) (4.19)

where c is height constant and x and y are coordinates in the grid. This results in a raised wave

in the center of the finite difference grid as showed in Figure 4.4. These initial values are used

because it makes it easy to verify the result and correctness of the equations and boundary con-

ditions.

Figure 4.4: Gaussian function for initial values

CHAPTER 4. SHALLOW WATER 39

4.5 Naive implementation

For the naive implementation, MATLAB is used. On the CPU, it is straight forward.

4.5.1 CPU implementation

First, set up variables, matrices and set the initial values.

Here, RaiseWater is a the function from Equation (4.19). The values from Lax-Wendroff half step

g r a v i t y = 9 . 8 1 ;
deltaX = 0 . 3 ; deltaY = 0 . 3 ; deltaT = 0 . 0 1 ;
grid = 64; % Space s t e p s in each d i r e c t i o n
steps = 5000; % Time s t e p s
H=ones (grid + 2) ; Hx=zeros (grid + 1) ; Hy=zeros (grid + 1) ;
U=zeros (grid + 2) ; Ux=zeros (grid + 1) ; Uy=zeros (grid + 1) ;
V=zeros (grid + 2) ; Vx=zeros (grid + 1) ; Vy=zeros (grid + 1) ;
H = RaiseWater (H, 3 . 5 , 0) ; % For r a i s i n g water in a c i r c l e .

are stored in separate matrices called Hx for x-direction and Hy for y-direction and similarly for

U and V .

function H = RaiseWater (H, height , o f f s e t)
s t r = s i z e (H) ;
resolution = 2 / (s t r (1) −1);
[x , y] = ndgrid (−1: resolution : 1) ;
wave = height * exp(−10 * (x .^2 + y . ^ 2)) ;
waveSize = s i z e (wave , 1) ;
i = 1+ o f f s e t : waveSize+ o f f s e t ;
j = 1+ o f f s e t : waveSize+ o f f s e t ;
u = 1 : waveSize ;
v = 1 : waveSize ;
i i = 1+mod(i −1, s t r (1)) ;
j j = 1+mod(j −1, s t r (1)) ;

H(i i , j j) = H(i i , j j) + wave(u , v) ;
end

CHAPTER 4. SHALLOW WATER 40

The main loop of the program is done in three steps:

1. Set boundary conditions

2. Compute half step

3. Compute Final step

for k = 1 : steps
% Boundary conditions
[H, U, V] = ReflectiveBoundary (H,U, V , grid) ;

% Halfstep
[Hx, Ux, Vx , Hy, Uy, Vy] = HalfStep (H, U, V , 1 , grid , deltaX , . . .

deltaY , deltaT , g r a v i t y) ;
% Update values f o r hight and v e l o c i t y
[H, U, V] = FinalStep (H, Hx, Hy, U, Ux, Uy, V , Vx , Vy , 2 , grid , . . .

deltaX , deltaY , deltaT , g r a v i t y) ;
end

where the boundaries are from Section 4.3.1

function [H, U, V] = ReflectiveBoundary (H, U, V , grid)
H(: , 1) = H(: , 2) ; U(: , 1) = U(: , 2) ; V (: , 1) = −V (: , 2) ;
H(: , grid +2) = H(: , grid + 1) ; U(: , grid +2) = U(: , grid + 1) ; . . .

V (: , grid +2) = −V (: , grid + 1) ;
H(1 , :) = H(2 , :) ; U(1 , :) = −U(2 , :) ; V (1 , :) = V (2 , :) ;
H(grid + 2 , :) = H(grid + 1 , :) ; U(grid + 2 , :) = −U(grid + 1 , :) ; . . .

V(grid + 2 , :) = V(grid + 1 , :) ;
end

CHAPTER 4. SHALLOW WATER 41

Figure 4.5: The code in MATLAB for calculating the Lax-Wendroffs first half time step

function [Hx, Ux, Vx , Hy, Uy, Vy] = HalfStep (H, U, V , runFrom , runTo , . . .
deltaX , deltaY , deltaT , g r a v i t y)

% X−d i r e c t i o n
i = runFrom : runTo+1;
j = runFrom : runTo ;
Hx(i , j) = (H(i +1 , j +1) + H(i , j +1)) / 2 − deltaT /(2* deltaX) * . . .

(U(i +1 , j +1)−U(i , j + 1)) ;
Ux(i , j) = (U(i +1 , j +1) + U(i , j +1)) / 2 − deltaT /(2* deltaX) * (. . .

(U(i +1 , j + 1) . ^ 2 . /H(i +1 , j +1) + g r a v i t y /2*H(i +1 , j +1) .^2) − . . .
(U(i , j + 1) . ^ 2 . /H(i , j +1) + g r a v i t y /2*H(i , j + 1) . ^ 2)) ;

Vx (i , j) = (V(i +1 , j +1) + V(i , j +1)) / 2 − deltaT /(2* deltaX) * (. . .
(U(i +1 , j + 1) . *V(i +1 , j + 1) . /H(i +1 , j +1)) − (U(i , j + 1) . *V(i , j + 1) . /H(i , j + 1))) ;

% Y−d i r e c t i o n
i = runFrom : runTo ;
j = runFrom : runTo+1;
Hy(i , j) = (H(i +1 , j +1) + H(i +1 , j)) / 2 − deltaT /(2* deltaY) * . . .

(V(i +1 , j +1)−V(i +1 , j)) ;
Uy(i , j) = (U(i +1 , j +1) + U(i +1 , j)) / 2 − deltaT /(2* deltaY) * (. . .

(U(i +1 , j + 1) . *V(i +1 , j + 1) . /H(i +1 , j +1)) − . . .
(U(i , j + 1) . *V(i , j + 1) . /H(i , j + 1))) ;

Vy (i , j) = (V(i +1 , j +1) + V(i +1 , j)) / 2 − deltaT /(2* deltaY) * (. . .
(V(i +1 , j + 1) . ^ 2 . /H(i +1 , j +1) + g r a v i t y /2*H(i +1 , j +1) .^2) − . . .
(V(i +1 , j) . ^ 2 . /H(i +1 , j) + g r a v i t y /2*H(i +1 , j) . ^ 2)) ;

end

The half step seen Figure 4.5 are calculated according to Lax-Wendroffs first step from Sec-

tion 4.8 and the final step seen in Figure 4.6 are calculated according to Lax-Wendroffs final step

from Section 4.9. In the two last function there are two variables "runFrom" and "runTo". These

makes it possible to only calculate certain areas of the finite grid and exclude dry spots where

there is no water or the water level is lower than the terrain.

CHAPTER 4. SHALLOW WATER 42

Figure 4.6: The code in MATLAB for calculating the Lax-Wendroffs final step

function [H, U, V] = FinalStep (H, Hx, Hy, U, Ux, Uy, V , Vx , Vy , . . .
runFrom , runTo , deltaX , deltaY , deltaT , g r a v i t y)

i = runFrom : runTo+1;
j = runFrom : runTo+1;

H(i , j) = H(i , j) − (deltaT / deltaX) * (Ux(i , j −1)−Ux(i −1, j −1)) − . . .
(deltaT / deltaY) * (Vy (i −1, j)−Vy (i −1, j −1)) ;

U(i , j) = U(i , j) − (deltaT / deltaX) * (. . .
(Ux(i , j −1).^2./Hx(i , j −1) + g r a v i t y /2*Hx(i , j −1).^2) − . . .
(Ux(i −1, j −1).^2./Hx(i −1, j −1) + g r a v i t y /2*Hx(i −1, j −1).^2)) . . .
− (deltaT / deltaY) * ((Vy (i −1, j) . * Uy(i −1, j) . /Hy(i −1, j)) − . . .
(Vy (i −1, j −1).*Uy(i −1, j −1)./Hy(i −1, j −1))) ;

V(i , j) = V(i , j) − (deltaT / deltaX) * ((Ux(i , j −1).*Vx (i , j −1)./Hx(i , j −1)) . . .
− (Ux(i −1, j −1).*Vx (i −1, j −1)./Hx(i −1, j −1))) − (deltaT / deltaY) * . . .
((Vy (i −1, j) . ^ 2 . /Hy(i −1, j) + g r a v i t y /2 * Hy(i −1, j) . ^ 2) . . .
− (Vy (i −1, j −1).^2./Hy(i −1, j −1) + g r a v i t y /2*Hy(i −1, j −1) . ^ 2)) ;

end

CHAPTER 4. SHALLOW WATER 43

To apply graphics, we use "surfplot" from MATLABs API and define colors and lightning to

make the waves look more realistic. More details about the graphical part is explained in Section

4.12.1.

s u r f p l o t = surf (H) ;
s u r f p l o t . FaceColor = ’ cyan ’ ;
s u r f p l o t . EdgeColor = ’none ’ ;
camlight headlight ;
l i g h t i n g phong
alpha (surfplot , 0 . 8)
set (gca , ’ zlim ’ , [0 8])
axis o f f

For each iteration we need to update the surfplot.

s u r f p l o t . ZData = H;
drawnow l i m i t r a t e nocallbacks

In the updates, MATLAB update the plot whenever "drawnow" is called. By using "limitrate no-

callbacks", the rendering is none-blocking and the overall performance is increased as discussed

in Section 3.4.1.

CHAPTER 4. SHALLOW WATER 44

4.5.2 GPU implementation

As mentioned in Section 1.1, the naive implementation uses standard libraries for utilizing the

power of the GPU. For MATLAB, this library is called MATLAB Parallel Computing Toolbox. To

utilize this, we only need to change the declaration of the matrices from normal array to gpuAr-

ray. From the CPU implementation, we had:

H=ones (grid + 2) ; Hx=zeros (grid + 1) ; Hy=zeros (grid + 1) ;
U=zeros (grid + 2) ; Ux=zeros (grid + 1) ; Uy=zeros (grid + 1) ;
V=zeros (grid + 2) ; Vx=zeros (grid + 1) ; Vy=zeros (grid + 1) ;

To utilize the GPU, we only need to change to:

H=gpuArray (ones (grid + 2)) ;
Hx=gpuArray (zeros (grid + 1)) ; Hy=gpuArray (zeros (grid + 1)) ;
U=gpuArray (zeros (grid + 2)) ;
Ux=gpuArray (zeros (grid + 1)) ; Uy=gpuArray (zeros (grid + 1)) ;
V=gpuArray (zeros (grid + 2)) ;
Vx=gpuArray (zeros (grid + 1)) ; Vy=gpuArray (zeros (grid + 1)) ;

On the CPU, we updated the plot by:

s u r f p l o t . ZData = H;
drawnow l i m i t r a t e nocallbacks

On the GPU however, we need to gather the information stored on the GPU before we can ren-

der.

s u r f p l o t . ZData = gather (H) ;
drawnow l i m i t r a t e nocallbacks

CHAPTER 4. SHALLOW WATER 45

4.6 Adaptive implementation

The adaptive implementation is implemented in C++ using OpenCL to utilize the GPU for com-

putations, and using OpenGL to visualize.

4.6.1 C++

C++ is responsible for creating variables, data structures and sending data and instructions to

OpenCL and OpenGL. To be able to use OpenCL/OpenGL interoperability, we need to create a

shared context between OpenCL and OpenGL. This is platform dependent which means that

the programmer has to specify which platform the code is written for. This code is designed

to run on both Windows and Linux machines and the code is separated by "ifdef _WIN32" and

"elif defined(_GNUC _)". If the code is compiled on a Windows machine, the code in "elif de-

fined(_GNUC _)" is ignored by the compiler, and if the code is compiled on a Linux machine the

code in "ifdef _WIN32" is ignored.

CHAPTER 4. SHALLOW WATER 46

c l : : Context createSharedContext () {
std : : cout << " Creating shared context " << std : : endl ;
c l _ i n t errNum ;
std : : vector < c l : : Platform > platformList ;
c l : : Platform : : get (& platformList) ;
i f (platformList . s i z e () == 0) {

std : : cerr << " Failed to find any OpenCL platforms . " . . .
<< std : : endl ;
return EXIT_FAILURE ;

}
cl_context_properties contextProperties [] = {

i f d e f _WIN32
CL_CONTEXT_PLATFORM,

(cl_context_properties) (cl_context_properties) (platformList [0]) () ,
CL_GL_CONTEXT_KHR,
(cl_context_properties) wglGetCurrentContext () ,
CL_WGL_HDC_KHR,
(cl_context_properties) wglGetCurrentDC () ,

e l i f defined (__GNUC__)
CL_CONTEXT_PLATFORM, (cl_context_properties) (platformList [0]) () ,

CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext () ,
CL_GLX_DISPLAY_KHR, (cl_context_properties) glXGetCurrentDisplay () ,

#endif
0 } ;

c l : : Context context (CL_DEVICE_TYPE_GPU, contextProperties , . .
NULL, NULL, &errNum) ;
i f (errNum ! = CL_SUCCESS) {

std : : cout << "Could not create GPU context . . " . . .
<< std : : endl ;

}
std : : cout << " Context created . " << std : : endl ;
return context ;

}

CHAPTER 4. SHALLOW WATER 47

After creating the context, we need to compile the OpenCL kernel code during runtime.

c l : : Program createProgram (c l : : Context context , . . .
std : : vector < c l : : Device> devices , const char * filename) {
std : : i fstream f i l e (filename) ;
std : : s t r i n g code (std : : istreambuf_iterator <char >(f i l e) , . . .
(std : : istreambuf_iterator <char > ())) ;
c l : : Program : : Sources source (1 , std : : make_pair (code . c _ s t r () , . . .
code . length () + 1)) ;
c l : : Program program (context , source) ;
program . build (devices) ;
return program ;

}

To be able to communicate with OpenCL, we create a command queue which we queue kernel

jobs to. This is an in-order command queue, which means that the first job needs to finish before

the second job is executed. By using in-order queue, we are ensured that the Lax-Wendroff

half step is computed before the last step of Lax-Wendroff without using synchronization in the

algorithm itself.

commandQueue = c l : : CommandQueue(context , devices [0] , 0) ;
c l : : Program program = createProgram (context , devices , "main . c l ") ;
halfStepKernel = c l : : Kernel (program , " halfStep_kernel ") ;
f inalStepKernel = c l : : Kernel (program , " f inalStep_kernel ") ;
boundaryKernel = c l : : Kernel (program , "boundary_kernel") ;
vboKernel = c l : : Kernel (program , " vbo_kernel ") ;

CHAPTER 4. SHALLOW WATER 48

Because we want to do the computations on OpenCL and not the CPU, the H,U,V matrices

along with the Hx,Hy,Ux,Uy,Vx and Vy matrices need to be sent to the GPU. This is accomplished

with:

c l : : Buffer HBuffer = c l : : Buffer (context , CL_MEM_READ_WRITE | . . .
CL_MEM_COPY_HOST_PTR, t o t a l S i z e 2 * s i z e o f (f l o a t) , (void *)&H[0]) ;

and similarly for U,V,Hx,Hy,Ux,Uy,Vx and Vy. For each kernel, we need to manually set the kernel

arguments.

halfStepKernel . setArg (0 , HBuffer) ;
halfStepKernel . setArg (1 , HxBuffer) ;
halfStepKernel . setArg (2 , HyBuffer) ;
halfStepKernel . setArg (3 , UBuffer) ;
halfStepKernel . setArg (4 , UxBuffer) ;
halfStepKernel . setArg (5 , UyBuffer) ;
halfStepKernel . setArg (6 , VBuffer) ;
halfStepKernel . setArg (7 , VxBuffer) ;
halfStepKernel . setArg (8 , VyBuffer) ;
halfStepKernel . setArg (9 , grid + 1) ;

To launch to kernel on OpenCL, we use the command queue to queue jobs to the kernel.

commandQueue. enqueueNDRangeKernel (halfStepKernel , c l : : NullRange , global , . . .
c l : : NullRange) ; / / Half−step

CHAPTER 4. SHALLOW WATER 49

4.6.2 OpenCL

The logic to calculate next time step for the Shallow Water equations is implemented in OpenCL

kernels. OpenCL kernels are written in OpenCL C, which is similar to the C programming lan-

guage. As mentioned in Chapter 3, there is no support for multidimensional arrays in OpenCL,

so the matrices are allocated in one row. To find the correct index in the array, we use the global

identifier for each work-item. The work-items are organized in a two dimensional grid, which

makes index calculation simpler. As we can see in the code below, there are two index calcu-

lations, and two dimensions. This is because the H,U and V arrays have ghost cells of different

size as seen in Figure 4.3. Variables are created in the kernel because it will then be stored in the

local memory of a work-item which is faster than the global memory.

/ / Index calculat ions
int idx = get_global_id (0) ;
int idy = get_global_id (1) ;

int ind = idx+dim* idy ;
int dim2 = dim+1;
int ind2 = idx+dim2* idy ;

int i 1 j 1 = ind2+dim2+1;
int i j 1 = ind2 +1;
int i 1 j = ind2+dim2 ;

/ / Variables
f l o a t g r a v i t y = 9.81 f ;
f l o a t deltaX = 0.3 f ;
f l o a t deltaY = 0.3 f ;
f l o a t deltaT = 0.01 f ;

For the computation of the first step, we use the i1j1, ij1 and i1j to find the neighboring cells.

Here, "i1j1" denotes i+1 and j+1, so H[i1j1] in code is the same as H n
i+1, j+1. and similarly for final

step and boundary conditions.

CHAPTER 4. SHALLOW WATER 50

i f (idx < dim−1){
Hx[ind] = (H[i 1 j 1] + H[i j 1]) / 2.0 − deltaT /(2* deltaX) * . . .

(U[i 1 j 1]−U[i j 1]) ;
Ux[ind] = (U[i 1 j 1] + U[i j 1]) / 2.0 − deltaT /(2* deltaX) * . . .

((pow(U[i 1 j 1] , 2) /H[i 1 j 1] + g r a v i t y /2*pow(H[i 1 j 1] , 2)) − . . .
(pow(U[i j 1] , 2) /H[i j 1] + g r a v i t y /2*pow(H[i j 1] , 2))) ;

Vx [ind] = (V[i 1 j 1] + V[i j 1]) / 2.0 − deltaT /(2* deltaX) * . . .
(U[i 1 j 1] *V[i 1 j 1] /H[i 1 j 1] − U[i j 1] *V[i j 1] /H[i j 1]) ;
}

i f (idy < dim−1){
Hy[ind] = (H[i 1 j 1] + H[i 1 j]) / 2.0 − deltaT /(2* deltaY) * . . .

(V[i 1 j 1]−V[i 1 j]) ;
Uy[ind] = (U[i 1 j 1] + U[i 1 j]) / 2.0 − deltaT /(2* deltaY) * . . .

((U[i 1 j 1] *V[i 1 j 1] /H[i j 1]) − (U[i j 1] *V[i j 1] /H[i j 1])) ;
Vy [ind] = (V[i 1 j 1] + V[i 1 j]) / 2.0 − deltaT /(2* deltaY) * . . .

((pow(V[i 1 j 1] , 2) /H[i 1 j 1] + g r a v i t y /2*pow(H[i 1 j 1] , 2)) − . . .
(pow(V[i 1 j] , 2) /H[i 1 j] + g r a v i t y /2*pow(H[i 1 j] , 2))) ;
}

CHAPTER 4. SHALLOW WATER 51

4.6.3 OpenGL

OpenGL is responsible for visualizing the result in real time, using glut and glew library. Unlike

MATLAB, where the rendering is done with one single line, we have to specify every little detail

in OpenGL. First we need to create a vertex buffer object, more known as VBO. This is all the

vertices in the mesh with position x,y ,z and w . x and y use the indexing of i and j in the height

matrix H as position with spacing of ten pixels as seen in the code snipped below.

int o f f s e t = 0 ;
for (int i = 0 ; i < vboGrid ; i ++){

o f f s e t = i * vboGrid ;
for (int j = 0 ; j < vboGrid ; j ++){

vbo_data [o f f s e t + j] . x = j *10;
vbo_data [o f f s e t + j] . y = 10;
vbo_data [o f f s e t + j] . z = i *10;
vbo_data [o f f s e t + j] .w = 1 ;

}
}

The downside to vertex buffers comes when we use many of the same vertices over and over

again [16]. For example, a height map can be broken down into a series of triangle strips [16].

Since each neighbor strip shares one row of vertices, we will end up repeating a lot of vertices

with a vertex buffer [16] as seen in Figure 4.7. From Figure 4.7 we can see that each middle row

is sent twice to the GPU. This will cost in terms of memory and efficiency when the size of the

problem is increasing. A workaround for this is to use an index buffer object, more known as

IBO. This is an array containing only the order to draw the VBO. Now, if we look at the code

above, the VBO looks more like in Figure 4.8. Now it only contains the position of each vertex

in ascending order, and not in the order of drawing as in Figure 4.7. It is now the IBO who

decides the drawing order. If we want to draw the VBO as a triangle strip, the order of the IBO

must be 1, 6, 2, 7, 3, 8, 4, 9, 5 and so on. When we repeat the middle row of vertices, we only

repeat the number, instead of repeating the entire block of data [16]. When we are creating a

grid containing multiple triangle strips, like we do when we are creating a mesh for water, we

need to add an extra vertex at the end of each strip and one extra vertex at the beginning of the

next strip. This is known as a degenerate triangle, which is a triangle that has no area, and when

the GPU encounters such triangles, it will simply skip them [16] as shown in Figure 4.9.

CHAPTER 4. SHALLOW WATER 52

Figure 4.7: An example of VBO drawn as a triangle strip, from [16]

Figure 4.8: VBO without any edges, from [16]

CHAPTER 4. SHALLOW WATER 53

Figure 4.9: Example of degeneration when starting on a new row with triangle strip, from [16]

CHAPTER 4. SHALLOW WATER 54

4.7 Numerical instability

Numerical approximation using explicit schemes requires selecting ∆t , ∆x and ∆y to avoid in-

stability. The CFL condition, named after Courant, Friedrichs and Lewy, defines the conditions

as

C F L = ux∆t

∆x
+ uy∆t

∆y
ÉCmax (4.20)

where Cmax is usually 1 for explicit schemes [17]. In this project, we experience numerical in-

stability by using a combination of a large wave as initial values and reflective boundaries. By

applying the Gaussian function from Section 4.4 on a fraction of the finite difference grid, we

eliminate the problem with numerical instability, but the resolution of the wave is lower and the

wave has four higher points as seen in Figure 4.10. If we apply the Gaussian function on the

whole finite difference grid, the resolution is better and the wave looks more realistic (see Figure

4.11) but we get numerical instability when large waves are meeting at the boundaries as seen

in Figure 4.12. By studying the numerical values right before the instability occurs, we see that

the velocity is building up rapidly and lowering the ∆t did not help in this case. The equations

have certain limitation in terms of assumptions, such as ignoring the vertical variations in the

velocity fields as mentioned in Section 4.1. This could be the reason why we experience numer-

ical instability. Further investigation from the mathematical point of view is considered beyond

the scope of this thesis.

CHAPTER 4. SHALLOW WATER 55

Figure 4.10: Gaussian initial values applied on 32x32 middle point of the finite difference grid
with a total of 64x64 grid points.

Figure 4.11: Gaussian initial values applied on the whole finite difference grid.

CHAPTER 4. SHALLOW WATER 56

Figure 4.12: An example of numerical instability after 700 time steps and ∆t = 0.01.

CHAPTER 4. SHALLOW WATER 57

4.8 Complexity

In each time step, we need to calculate new values for the height, and velocities in u and v direc-

tion. This must be done for each space step. For the Lax-Wendroff half step, it is ten additions,

twelve subtractions, twenty multiplications, twenty-four divisions and eight power functions.

For the Lax-Wendroff final step, it is four additions, eleven subtractions, fourteen multiplica-

tions, eighteen divisions and eight power functions. In total 129 operations steps for ∀(i , j)

where i = [1,2, . . . , I] and j = [1,2, . . . , J]. This gives us the complexity of O (I · J) per time step, and

a total complexity of O (I · J ·T) where T is the number of time steps. This is the same complexity

as for the Heat Equation, but the Big-O notation hides the constant factor which is 129 in Shal-

low Water equations versus 11 in the Heat Equation seen in Section 3.6. The I · J computations

cannot be completely computed in parallel as we could in the Heat Equation. This is because

the Lax-Wendroff half step need to be computed before the final step can be computed, and

then we can update graphics and set boundary conditions. In the C++ implementation there is

also some extra work to be done related to manually update the VBO, but it doesn’t affect the

complexity in the Big-O notation.

4.9 Efficiency, computations

To measure the scalability for the algorithm we increase the problem, but keep the amount of

work per work item the same. This is a fair comparison since MATLAB does not allow us to

control how many work items used on the GPU. We begin with leading dimension of 64 which

gives us a total number of elements of 64 · 64 = 4096. We scale the problem linear in terms of

total number of elements to compute, so the next leading dimensions will be
p

4096 ·2 = 91,
p

4096 ·3 = 111 until the leading dimension is 448. For each dimension, the program runs from

t = 1 to t = 1000 and calculates minimum, maximum and average running time.

4.9.1 MATLAB CPU

As a reference, we begin to look at the running of MATLAB CPU implementation. If we look at

Figure 4.13 we see that it scales very badly and the CPU is not suitable when the problem size

CHAPTER 4. SHALLOW WATER 58

increases. In Section 4.8 we estimated the complexity to polynomial per time step and the graph

in Figure 4.13 proves that claim. This is as expected since the CPU is only using one core.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
CPU mean time

Figure 4.13: CPU running time in seconds, MATLAB. Table overview for the data behind this
graph along with minimum and maximum running time can be seen in Appendix B.7.

4.9.2 MATLAB GPU

The GPU implementation runs the Lax-Wendroff half step and final step in parallel for each

time step. However, the outermost loop which iterate over each time step runs sequentially on

the CPU because we need to ensure that the previous time step is calculated before we move

on to the next time step. In addition to that, we also need to set boundary conditions. For

calculating the first 1000 times steps of the Shallow Water Equations, it takes just above seven

second no matter how small the problem is. This is expected due to the GPU overhead and slow

performance MATLAB has when performing loops. As we can see in the graph in Figure 4.14,

there is almost no increased running time when we increase the size of the problem. In Section

4.8 we claimed that the complexity was O (I · J) per time step, and a total complexity of O (I · J ·T).

Next, we claimed that the I · J computation could be done completely in parallel except for the

CHAPTER 4. SHALLOW WATER 59

update of boundary conditions and updating of graphics. The graph in Figure 4.14 proves that

claim. The small increase in running time is because as the size of the problem increase, there

will be more synchronization and the GPU has to queue parts of the computations since the

GPU has a limit of threads it can execute in parallel.

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 4.14: GPU running time in seconds, MATLAB. Table overview for the data behind this
graph along with minimum and maximum running time can be seen in Appendix B.8.

4.9.3 C++/OpenCL

The GPU implementation using C++ and OpenCL has less overhead for utilizing the GPU than

MATLAB and has much better performance as we can see in Figure 4.15. The complexity is the

same as for the MATLAB implementation, O (I · J) for each time step, as mention in Section 4.8.

As we can see from Figure 4.15, there is almost no increase in runtime when we increase the size

of the problem.

CHAPTER 4. SHALLOW WATER 60

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 4.15: GPU running time in seconds, C++/OpenCL. Table overview for the data behind
this graph along with minimum and maximum running time can be seen in Appendix B.9.

4.10 Efficiency, visualization

In this section, we will look at the total running time of the naive and adaptive implementation.

The total running time is the running time for approximation of the Shallow Water Equation as

we did in Section 4.9, together with visualization in real time. The benchmark is executed in the

same manner as for computations only, explained in Section 4.9.

4.10.1 MATLAB CPU

As a reference, we begin to measure the running time for the CPU. By comparing the graph in

Figure 4.16 with the graph in Figure 4.13 which is the same implementation without visualiza-

tion, we get an impression of how much visualization is affecting the running time.

CHAPTER 4. SHALLOW WATER 61

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

CPU mean time

Figure 4.16: CPU with visualization, running time in seconds, MATLAB. Table overview for the
data behind this graph along with minimum and maximum running time can be seen in Ap-
pendix B.10.

4.10.2 MATLAB GPU

If we compare the graph in Figure 4.17 with the Figure 4.14, we see that the running time with

visualization is slower than computations only. It is also increases faster than for only compu-

tations. This is because MATLAB lacks support for interoperability between the data computed

on the GPU and the data rendered on the GPU. For each time step, the GPU needs to send data

to the CPU to render, instead of rendering it directly from the GPU like OpenCL and OpenGL

does. This means that when the size of the problem increases, the amount of data to send for

each time step is increased and therefore the communication time is increased.

4.10.3 C++/OpenCL/OpenGL

The adaptive implementation has less overhead to visualize, but there is still some overhead.

If we compare Figure 4.18 we see that the running time is greater than in Figure 4.15 which is

without visualization. This increased running time is because we need to create VBO and IBO

CHAPTER 4. SHALLOW WATER 62

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 4.17: GPU with visualization running time in seconds, MATLAB. Table overview for the
data behind this graph along with minimum and maximum running time can be seen in Ap-
pendix B.11.

for the mesh, we need to update the VBO according to the height calculated in the Lax-Wendroff

method and OpenGL need to draw to the screen. If we add texture and water depth, there will

be another few milliseconds added to the time.

CHAPTER 4. SHALLOW WATER 63

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

GPU mean time

Figure 4.18: GPU with OpenGL running time in seconds, C++/OpenCL/OpenGL. Table overview
for the data behind this graph along with minimum and maximum running time can be seen in
Appendix B.12.

CHAPTER 4. SHALLOW WATER 64

4.11 Analysis

What we have learned from this chapter is that the performance for utilizing the GPU is better

in C++ together with OpenCL than using MATLAB together with MATLAB Parallel Computing

Toolbox. There are two main reasons for this. First, for loops are slow in MATLAB compared

to C++. MATLAB is optimized for performing operations on matrices and vectors, but in this

algorithm we need to use one for loop for the time steps as described in Section 4.9.2. The other

reason, is that we have no control over what is executed on the GPU by using MATLAB parallel

computing toolbox. We basically write code to run on the CPU and say "run this on the GPU",

without having any knowledge on how it is done. Since this is a general library which will work

on any problem, it is not optimized for the given task. The OpenCL implementation on the

other hand, is designed for this specific algorithm and is optimized for best performance. As an

example, we claimed in Section 3.5.2 that different ordering of indexing gave different efficiency.

In the last benchmark where the leading dimension was equal to 448, the average running time

with OpenCL was about 0.63 seconds. If we were to change the order of indexing, the running

time for this benchmark increased to about 4.5 seconds. This is because of cache swapping.

In the fastest indexing, we are reading along the cache line, but in the slowest indexing we are

swapping cache. We have full control over this in the OpenCL implementation, but we have no

control over how this is done in the MATLAB implementation.

4.12 Quality and possibilities

Until now we have been looking at the running time and implementation of the naive and adap-

tive utilization of the GPU for calculating an approximation of the Shallow Water Equations. In

this section, we will look at the naive and adaptive implementation for the graphical point of

view. What we want to investigate is how easy is it to change from a console application with

only text output to an application with graphical user interface. And, what are the possibilities

if you put an extra effort into it.

CHAPTER 4. SHALLOW WATER 65

4.12.1 MATLAB

Visualizing data in MATLAB is very easy. The only required line of code is

s u r f p l o t = surf (H)

where "surf" is the built in method for rendering a surface plot from the data stored in "H" which

is our height matrix. For updating the surface plot, there is only required two additional lines of

code:

s u r f p l o t . ZData = H; % or gather (H) i f H i s gpuArray .

drawnow

With only these three lines of code, you get the result as shown in Figure 4.19. If we want to make

the visualization more realistic, the surf function has some variables that can be changed such

as camera light, lightning, color of the edge and color of the faces. In our project, we changed

the value of these variables so the model would look more like water.

s u r f p l o t . FaceColor = ’ cyan ’ ;

s u r f p l o t . EdgeColor = ’none ’ ;

camlight headlight ;

l i g h t i n g phong

alpha (surfplot , 0 . 8) & Set transparency

By this approach, the result looks like in Figure 4.20. Further, we can apply a texture to the

surface with only four lines. By setting the variable FaceColor to texturemap, it will use the data

in CData as face color.

texture = imread (’ water . jpg ’) ; % Load the texture image

s u r f p l o t . FaceColor = ’ texturemap ’ ;

s u r f p l o t . CData = texture ;

s u r f p l o t . EdgeColor = ’none ’ ;

CHAPTER 4. SHALLOW WATER 66

Figure 4.19: The simplest form for visualization in MATLAB.

Figure 4.20: Visualization in MATLAB with cyan face color and none edge color.

The result will look like in Figure 4.21. If we want to improve it even more, we can create a

box around the water area to make it look like the water is moving inside a box. This is done

by creating 6 squares with the MATLABs commando called "fill3". The final result is shown in

Figure 4.22.

CHAPTER 4. SHALLOW WATER 67

Figure 4.21: Visualization in MATLAB with texture.

Figure 4.22: Visualization in MATLAB with texture inside a box.

CHAPTER 4. SHALLOW WATER 68

4.12.2 OpenGL

Visualizing data in C++ together with OpenGL is more complicated than in MATLAB. First, we

need to create a VBO as explained in Section 4.6.3. We only need the VBO to render the data, but

as mentioned in Section 4.6.3, we will use less data if we also create an IBO. With VBO and IBO

implemented, we can visualize with only these few lines.

glColor4f (r , g , b , a) ; / / Red , green , blue and alpha

glPolygonMode (GL_FRONT_AND_BACK, GL_LINES) ;

glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, ibo) ;

glEnableClientState (GL_VERTEX_ARRAY) ;

glVertexPointer (4 , GL_FLOAT, 0 ,NULL) ;

glDrawElements (GL_TRIANGLE_STRIP , ((grid +2)*2+1)*2+((grid +2)−3)* \

((grid +2)*2+2) , GL_UNSIGNED_INT, (void *) 0) ;

With this minimal implementation, we will get a graphical representation like we see in Figure

4.23. For an even more realistic look, we can add water depth to the water. We were not able to

do this in MATLAB, but in OpenGL we created triangle strip around the whole finite difference

grid and then changed the height of the top of the triangle trip according to the wave height

on the boundaries. The result is shown in Figure 4.24. If we want to improve the visualization,

we can apply a texture to the model. In order to do this in C++/OpenGL, we need to load the

image we want to use as texture, convert the image to RGBA format, generate texture from the

converted image and apply correct texture wrapping so the texture fits our model. Next, we

can apply a cube around the water area to make it look like the water is moving inside a cube

as we did in the MATLAB implementation. This can be achieved by creating eight vertex, one

for each corner, and creating a cube by OpenGL quads as shown in the code below followed by

creating VBO and IBO for the quad in the same manner as for the waves. For more details, see

Section 4.6.3. We can also add ground to the model by creating a triangle fan consisting of four

vertices. A triangle fan is an OpenGL primitive to draw triangles in a fan shape where all triangles

share one vertex. With these features, the models now look as shown in Figure 4.25. To improve

the model even further, there is more opportunities in OpenGL such as shaders which we did

not have time to implement due to limited time. With a shader we could have implemented

CHAPTER 4. SHALLOW WATER 69

f l o a t 4 v1 = { 0 . 0 f , 0.0 f , 0.0 f , 1.0 f } ;
f l o a t 4 v2 = {dim , 0.0 f , 0.0 f , 1.0 f } ;
f l o a t 4 v3 = {dim , 0.0 f , dim , 1.0 f } ;
f l o a t 4 v4 = { 0 . 0 f , 0.0 f , dim , 1.0 f } ;
f l o a t 4 v5 = { 0 . 0 f , cubeHeight , 0.0 f , 1.0 f } ;
f l o a t 4 v6 = {dim , cubeHeight , 0.0 f , 1.0 f } ;
f l o a t 4 v7 = {dim , cubeHeight , dim , 1.0 f } ;
f l o a t 4 v8 = { 0 . 0 f , cubeHeight , dim , 1.0 f } ;
f l o a t 4 cube_data [quads] = {

v1 , v2 , v3 , v4 ,
v5 , v6 , v7 , v8 ,
v2 , v3 , v7 , v6 ,
v3 , v7 , v8 , v4 ,
v4 , v8 , v5 , v1 ,
v1 , v2 , v6 , v5

} ;

light sources, light direction and reflection to make the water look very realistic. We could also

implement rotation, camera and real time interaction to create new waves. The possibilities

when using C++ and OpenGL for rendering is more or less endless. In the naive implementation

on the other hand, we are limited to functionality provided by MATLAB.

CHAPTER 4. SHALLOW WATER 70

Figure 4.23: The simplest form for visualization with OpenGL where only the triangles strips are
drawn with a color.

Figure 4.24: OpenGL mesh with water depth.

CHAPTER 4. SHALLOW WATER 71

Figure 4.25: Illustration of OpenGL using texture and ground inside a box.

Chapter 5

Summary and Recommendations for

Further Work

5.1 Summary and Conclusions

Utilizing the power of the GPU gives the opportunity to calculate large computationally inten-

sive problems faster than only using the CPU due to its highly parallel structure and a greater

number of cores. MATLAB provides us with a toolbox for executing code on the GPU without

writing actual GPU code, allowing us to easily utilize the power of the GPU. On the over hand,

the Khronos Group provides us with OpenCL which is a framework for writing programs to exe-

cute on, among other things, the graphics card.

In order to compare the naive utilization provided by MATLAB’s parallel computing toolbox with

the adaptive utilization by using OpenCL, we selected two partial differential equations (PDEs),

The Heat Equation (Chapter 3) and The Shallow Water Equations (Chapter 4). In Chapter 3 and

4 we see that adaptive utilization of the GPU has much better performance than naive utiliza-

tion, whether it is only for computations or both for computations and visualization. In the

Analysis in Section 4.11 we concluded with three main reasons for the naive implementation

being slower than the adapted implementation. First, for loops are slow in MATLAB compared

to C++. MATLAB is optimized for performing operations on matrices and vectors, but in this

algorithm we need to use one for loop for the time steps as described in Section 4.9.2. The other

reason, is that we have no control over what is executed on the GPU by using MATLAB parallel

72

CHAPTER 5. SUMMARY 73

computing toolbox. We basically write code to run on the CPU and say "run this on the GPU",

without having any knowledge on how its done. Since this is a general library which will work on

any problem, it is not optimized for the given task. The OpenCL implementation on the other

hand, is designed for this specific algorithm and is optimized for best performance. As an ex-

ample, we claimed in Section 3.5.2 that different ordering of indexing gave different efficiency.

In the last benchmark where the leading dimension was equal to 448, the average running time

with OpenCL was about 0.63 seconds. If we were to change the order of indexing, the running

time for this benchmark increased to about 4.5 seconds. This is because of cache swapping.

In the fastest indexing, we are reading along the cache line, but in the slowest indexing we are

swapping cache. We have full control over this in the OpenCL implementation, but we have no

control how this is done in the MATLAB implementation. The last reason is that MATLAB has

no support for interoperability between the GPU memory used for computations and the GPU

memory used for visualization as described in Section 3.4.2. On the other hand, implementing

the naive implementation in MATLAB takes less time and requires less knowledge about GPU-

programming and programming in general. As we can see in Section 4.5, utilizing the GPU in

MATLAB only requires a few lines of code, but the utilizing of GPU using C++ and OpenCL re-

quires a lot of code as seen in Section 4.6.

Visualizing the results from the PDEs is very simple in MATLAB. From Section 4.12.1, we can

see that creating a mesh and visualizing it requires only a few lines. Adding custom colors at

edges and faces, adding lightning or texture is also done in a few additional lines. In OpenGL,

the mesh and everything else needed for visualization needs to be specified in code by the pro-

grammer, see Chapter 4.12.2 for all the details. However, the adapted implementation has better

performance, and more possibilities such as shaders where we can implement real time render-

ing with interactions.

In Chapter 1, we wanted to answer the following questions:

• Will an adaptive implementation of fluid simulation be faster than a naive implementa-

tion? And if so, how much faster will it be?

• In what situations is doing an adaptive implementation worth the increased effort?

For the first question, the answer is yes, the adaptive implementation of fluid simulation is

CHAPTER 5. SUMMARY 74

faster than the naive implementation. How much faster depends on the size of the problem ,

how computationally intensive the problem is and how complex the graphics are. Usually some

place between ten and twenty times as fast, as we can see in Section 4.9 and Section 4.10. For

the second question, the answer is not so clear. To choose which strategy to use for utilizing the

GPU depends on how we weigh implementation time against performance. If we want to get re-

sults fast and the size of the problem is not too large (or too small where CPU is more suitable),

the naive utilization of the GPU is probably the best choice. If we want high performance, use

large datasets or want a more sophisticated solution in terms of graphics and functionality, the

adapted utilization is probably the best choice.

If we look at the paper from SINTEF [1], they got a speedup between 9.53 and 30.6 depending

on scheme and size of the problem. As we can see from Figures 5.1 and 5.2, our implementa-

tion of The Shallow Water Equations performs similarly for the adapted implementation which

is also used in [1]. However, it is worth mentioning that we use different hardware and different

numerical schemes.

CHAPTER 5. SUMMARY 75

LD MATLAB CPU Naive GPU Adapted GPU Speedup Naive Speedup Adapted
64 0.790825 7.307220 0.073840 0.108 10.709

128 2.261987 7.430279 0.111032 0.304 13.299
192 4.485078 7.434853 0.170077 0.603 26.370
256 7.705122 7.536320 0.245257 1.022 31.416
320 12.029904 7.577522 0.361643 1.587 33.264
384 17.759003 7.573304 0.545613 2.344 32.548
448 23.956670 7.771071 0.632402 3.082 37.882

Figure 5.1: Table shows speedup for the naive and adapted implementation applied at The Shal-
low Water Equations without visualization, compared to the CPU

LD MATLAB CPU Naive GPU Adapted GPU Speedup Naive Speedup Adapted
64 1.393095 9.747331 0.527130 0.142 2.642

128 3.326229 10.630329 0.610865 0.312 5.445
192 6.847627 12.039569 0.694933 0.568 9.853
256 12.842405 13.765078 0.806527 0.932 15.923
320 21.781746 18.379540 1.004061 1.185 21,693
384 34.758954 26.369500 1.137292 1.318 30.562
448 56.912076 39.173698 1.281585 1.452 44.407

Figure 5.2: Table shows speedup for the naive and adapted implementation applied at The Shal-
low Water Equations with visualization, compared to the CPU

CHAPTER 5. SUMMARY 76

5.2 Recommendations for Further Work

The adaptive implementation is not using shaders. The end result will probably look better with

vertex and fragment shaders. By using shaders we have more opportunities such as navigation,

rotation and better graphics. For instance a water shader for the Shallow Water Equation and a

glass shader for the box around will strengthen the conclusion of the adaptive implementation

having more opportunities.

MATLAB is probably utilizing the GPU in the most naive way, and C++ together with OpenCL

is probably the most adaptive way to utilize the power of the GPU. It would be interesting to

compare with other languages in-between, such as Java, Python or C#.

The Shallow Water Equation is solved using the Lax-Wendroff method which is based on finite

differences. Solving the equations using finite volume or finite element which is based on in-

tegration, has in theory smaller errors, but is slower. It would be interesting to see how finite

element or finite volume is compared to finite differences.

Appendix A

Acronyms

API Application programming interface

CFL Courant, Freidrichs and Lewy

CPU Central processing unit

CUDA Compute unified device architecture

FPGA Field-programmable gate array

FTCS Forward differences for time and central differences for space

GPGPU General-purpose computing on graphics processing units

GPU Graphics processing unit

IBO Index buffer object

LD Leading dimension

MATLAB Matrix laboratory

MPI Message passing interface

OpenCL Open computing language

OpenGL Open graphics library

77

APPENDIX A. ACRONYMS 78

PDE Partial differential equation

VBO Vertex buffer object

Appendix B

Additional Information

All benchmark results are listed here.

B.1 Chapter 3 - The Heat Equation

B.1.1 Computations

79

APPENDIX B. ADDITIONAL INFORMATION 80

MATLAB CPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
CPU mean time

Figure B.1: CPU running time in seconds, MATLAB

APPENDIX B. ADDITIONAL INFORMATION 81

LD Min Max Average
64 0.687876 0.906292 0.697881
91 1.232159 1.413995 1.251367

111 1.716736 1.880310 1.738099
128 2.139152 2.409077 2.173245
143 2.576562 2.913656 2.632191
157 3.037950 3.294313 3.089903
169 3.449664 3.682595 3.503841
181 3.884133 4.147580 3.948325
192 4.332266 4.651995 4.400938
202 4.795285 5.112785 4.876478
212 5.325148 5.687581 5.429426
222 5.779985 6.108086 5.897436
231 6.202566 6.506916 6.336404
239 6.594280 6.877742 6.725653
248 7.030091 7.379891 7.162602
256 7.460261 7.811220 7.626614
264 7.873873 8.178861 7.996135
272 8.286943 8.677318 8.446167
279 8.673826 9.058606 8.865754
286 9.074101 9.466889 9.269473
293 9.517744 10.382262 9.703187
300 9.959053 10.358181 10.128068
307 10.431155 10.840984 10.616438
314 10.905756 11.312168 11.111190

LD Min Max Average
320 11.345290 11.772564 11.534710
326 11.728291 12.165450 11.922314
333 12.230083 12.914299 12.418683
339 12.625015 13.107550 12.864578
345 13.156274 13.607175 13.393305
351 13.667685 14.202874 13.871387
356 14.093860 14.654388 14.330524
362 14.444694 14.978068 14.672812
368 15.144922 15.594408 15.357187
373 15.458007 20.512565 15.762641
379 16.063787 16.579764 16.339950
384 16.803930 17.384855 17.113330
389 17.219419 17.736175 17.438377
395 17.431749 18.228851 17.928098
400 17.866152 18.755340 18.304785
405 18.407309 19.075292 18.728136
410 18.410355 19.320577 18.938974
415 18.917833 19.626847 19.299717
420 19.587051 20.207581 19.908749
425 19.882440 20.570784 20.214973
429 20.275744 21.133199 20.728259
434 20.528407 21.547992 20.939826
439 21.190352 22.092520 21.640842
443 21.662584 22.614652 22.141162
448 22.412392 23.216990 22.833517

APPENDIX B. ADDITIONAL INFORMATION 82

MATLAB GPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.2: GPU running time in seconds, MATLAB

APPENDIX B. ADDITIONAL INFORMATION 83

LD Min Max Average
64 9.168378 11.112637 9.497189
91 9.201793 11.278203 10.135158

111 9.263353 10.687552 9.941215
128 9.398645 10.791539 9.797757
143 9.410197 9.483061 9.439549
157 9.413935 10.783292 9.572820
169 9.418577 11.406564 9.676754
181 9.435633 10.133362 9.461210
192 9.426423 9.511720 9.456522
202 9.429681 9.539958 9.461757
212 9.410715 9.518909 9.446407
222 9.429266 9.560585 9.456314
231 9.431518 9.502966 9.461864
239 9.433730 9.524663 9.465912
248 9.429027 9.611642 9.463916
256 9.431378 9.558531 9.462818
264 9.438955 11.257232 9.655795
272 9.438450 9.599019 9.477305
279 9.443306 9.615896 9.482346
286 9.429282 9.562545 9.478632
293 9.417308 9.601949 9.481534
300 9.423775 9.577232 9.477486
307 9.426099 9.596461 9.487675
314 9.425215 9.559201 9.483138

LD Min Max Average
320 9.440267 9.574373 9.492099
326 9.448876 9.713091 9.507183
333 9.455866 9.635001 9.506195
339 9.460980 9.574048 9.510173
345 9.453393 9.975270 9.659012
351 9.484721 9.635289 9.533070
356 9.465908 9.620872 9.526303
362 9.455898 9.603753 9.520987
368 9.489026 9.624160 9.544058
373 9.482587 9.611723 9.544782
379 9.490866 9.621078 9.545982
384 9.459508 9.631878 9.520325
389 9.510087 9.651078 9.558204
395 9.518561 9.630701 9.558826
400 9.511700 10.019711 9.677754
405 9.511849 9.683312 9.572264
410 9.507672 9.651183 9.574972
415 9.523127 9.655702 9.581555
420 9.512057 9.677436 9.570621
425 9.519142 9.672046 9.571163
429 9.525132 9.950608 9.627690
434 9.528928 9.700273 9.583672
439 9.526036 9.674899 9.580348
443 9.515020 9.649683 9.566199
448 9.507587 9.652887 9.569150

APPENDIX B. ADDITIONAL INFORMATION 84

C++/OpenCL

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.3: GPU running time in seconds, C++/OpenCL

APPENDIX B. ADDITIONAL INFORMATION 85

LD Min Max Average
64 0.099981 0.210980 0.103016
91 0.098113 0.151312 0.96563

111 0.096563 0.122483 0.100141
128 0.095524 0.110083 0.097359
143 0.095941 0.123678 0.098303
157 0.104700 0.116328 0.106596
169 0.110334 0.134888 0.112336
181 0.110234 0.137815 0.115905
192 0.108714 0.122957 0.111317
202 0.121503 0.164831 0.124240
212 0.128683 0.171282 0.130941
222 0.131142 0.159846 0.133328
231 0.136206 0.149404 0.138958
239 0.139750 0.184004 0.142429
248 0.140717 0.173624 0.142958
256 0.140561 0.168655 0.143167
264 0.168334 0.183440 0.170863
272 0.177856 0.235374 0.180172
279 0.189811 0.221701 0.192464
286 0.190652 0.225642 0.192834
293 0.201304 0.238277 0.203561
300 0.199536 0.234204 0.201737
307 0.207148 0.276963 0.210908
314 0.208390 0.278242 0.212714

LD Min Max Average
320 0.198299 0.232667 0.203053
326 0.231978 0.262841 0.236307
333 0.229453 0.266112 0.232488
339 0.233850 0.273308 0.236935
345 0.239010 0.277902 0.241874
351 0.243015 0.283016 0.251635
356 0.251570 0.269992 0.253235
362 0.254941 0.298686 0.258325
368 0.252061 0.297162 0.254943
373 0.277752 0.325364 0.282181
379 0.283104 0.360959 0.288120
384 0.252135 0.291157 0.255498
389 0.337955 0.385383 0.340925
395 0.321435 0.374038 0.331808
400 0.290393 0.336347 0.293963
405 0.308006 0.353503 0.311155
410 0.308576 0.354621 0.313592
415 0.337998 0.389944 0.342187
420 0.315309 0.363134 0.320586
425 0.346065 0.393194 0.349472
429 0.329116 0.390644 0.333310
434 0.328384 0.376267 0.331439
439 0.368945 0.439969 0.373795
443 0.373370 0.418972 0.377495
448 0.310175 0.352188 0.314576

APPENDIX B. ADDITIONAL INFORMATION 86

B.1.2 Visualization

MATLAB CPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.4: CPU with visualization running time in seconds, MATLAB

APPENDIX B. ADDITIONAL INFORMATION 87

LD Min Max Average
64 1.680095 1.860101 1.704836
91 2.172241 2.307463 2.201107

111 2.689591 2.879469 2.736130
128 3.113623 3.412568 3.173873
143 3.579883 3.793399 3.652112
157 4.064342 4.321199 4.161491
169 4.512637 4.776922 4.611622
181 4.914774 5.299418 5.101754
192 5.387673 5.790275 5.543992
202 5.978273 6.356681 6.094159
212 6.461813 6.835345 6.629179
222 6.959969 7.370410 7.124403
231 7.340688 7.671703 7.533767
239 7.848844 8.132027 7.994585
248 8.207012 8.612991 8.433106
256 8.641801 8.968628 8.805169
264 9.153217 9.618209 9.364258
272 9.647241 10.023264 9.862065
279 9.975746 10.441675 10.230146
286 10.424740 10.813807 10.665084
293 10.888408 11.307610 11.050144
300 11.311404 11.787168 11.573141
307 11.808519 12.295627 12.074088
314 12.378496 12.796458 12.603523

LD Min Max Average
320 12.811696 13.315188 13.088973
326 13.317138 13.721672 13.529384
333 13.849536 14.408056 14.120140
339 14.284632 14.845198 14.598017
345 14.798841 15.313897 15.065979
351 15.245544 15.788919 15.539104
356 15.704320 16.354232 16.003932
362 16.208663 16.953705 16.612970
368 16.957361 17.520848 17.182394
373 17.347997 18.087725 17.701993
379 17.761639 18.477622 18.195006
384 18.300165 19.071753 18.653093
389 18.545919 19.221040 18.887779
395 19.042168 19.760407 19.367010
400 19.728414 20.741642 20.155373
405 20.317939 21.041440 20.653323
410 20.533534 21.288415 20.950250
415 21.240455 22.352553 21.827725
420 21.767289 22.563744 22.229421
425 22.075928 22.874724 22.546990
429 22.342121 23.510568 22.960512
434 23.230426 24.497664 23.562031
439 23.651877 25.766525 24.621850
443 24.255450 25.145482 24.771824
448 24.805994 26.361463 25.276930

APPENDIX B. ADDITIONAL INFORMATION 88

MATLAB GPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.5: GPU running time in seconds, MATLAB

APPENDIX B. ADDITIONAL INFORMATION 89

LD Min Max Average
64 10.957753 11.395120 11.167792
91 11.171155 11.903500 11.482932

111 11.597856 12.085091 11.793726
128 11.751246 12.448680 11.963746
143 11.744750 12.209192 11.937279
157 11.965880 12.189344 12.057303
169 12.035747 12.300323 12.182088
181 12.265261 12.898050 12.435678
192 12.422780 12.909836 12.617912
202 12.551325 13.062094 12.692028
212 12.749703 13.042949 12.869047
222 12.683414 13.395357 12.983951
231 12.947869 13.517898 13.136493
239 13.107646 13.773229 13.322293
248 13.307352 14.025498 13.457161
256 13.451788 14.155873 13.664992
264 13.515980 14.207783 13.788742
272 13.709230 14.057867 13.886638
279 13.927480 14.447089 14.090276
286 14.076704 14.587779 14.293196
293 14.018541 14.560006 14.274448
300 14.160864 14.583412 14.429150
307 14.411120 14.735364 14.600250
314 14.581036 15.200902 14.886609

LD Min Max Average
320 14.791554 15.131971 15.028989
326 14.832443 15.469440 15.284568
333 15.138476 15.520897 15.356255
339 15.603361 16.040788 15.679269
345 15.627603 15.932622 15.755016
351 15.832493 16.130649 16.020110
356 15.952460 16.107467 16.009689
362 16.262301 16.454254 16.302486
368 16.232359 16.565140 16.339747
373 16.189166 16.705049 16.414802
379 16.422366 16.637742 16.546094
384 16.387091 16.704184 16.531557
389 16.418553 17.016065 16.660863
395 16.423268 17.039509 16.830746
400 16.240581 16.746847 16.409703
405 16.259382 16.964330 16.712538
410 16.791284 17.060006 16.905004
415 16.689074 17.207563 16.997841
420 17.057652 17.525382 17.168803
425 17.326521 17.641975 17.453297
429 17.236112 17.480448 17.348304
434 17.387958 17.842849 17.474797
439 16.923701 17.659438 17.323850
443 17.179448 17.837805 17.494022
448 17.266711 17.677188 17.507362

APPENDIX B. ADDITIONAL INFORMATION 90

C++/OpenCL/OpenGL

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.6: GPU running time in seconds, C++/OpenCL/OpenGL

APPENDIX B. ADDITIONAL INFORMATION 91

LD Min Max Average
64 1.848960 1.911900 1.878977
91 1.851202 2.059207 1.924244

111 1.855998 2.067342 1.955536
128 1.951365 2.051701 1.992943
143 1.852308 2.006516 1.909131
157 1.849290 2.114415 1.967812
169 1.886387 2.061686 1.947584
181 1.884370 2.099298 1.956635
192 1.868516 2.018703 1.948769
202 1.953896 2.087390 2.015788
212 1.954736 2.085877 2.021144
222 1.951586 2.272688 2.028186
231 1.951336 2.127184 2.009297
239 1.987067 2.289036 2.057732
248 1.980000 2.123816 2.029942
256 2.018136 2.171681 2.074438
264 2.068322 2.135143 2.106128
272 2.111942 2.235029 2.170038
279 2.084901 2.241678 2.141609
286 2.134884 2.280205 2.212329
293 2.201513 2.329288 2.284114
300 2.130277 2.240338 2.177518
307 2.201636 2.377544 2.270477
314 2.151617 2.669350 2.293954

LD Min Max Average
320 2.234477 2.528283 2.289417
326 2.251782 2.443672 2.317059
333 2.268557 2.451199 2.365521
339 2.268810 2.502238 2.362940
345 2.301761 2.418351 2.376977
351 2.285152 2.408036 2.352830
356 2.306361 2.473463 2.356175
362 2.343081 2.416953 2.375263
368 2.318470 2.440710 2.380729
373 2.392620 2.681269 2.506911
379 2.434911 2.526926 2.485108
384 2.417764 2.688472 2.508011
389 2.585187 2.635289 2.614389
395 2.521313 2.618471 2.578274
400 2.468638 2.599853 2.532711
405 2.534737 2.789959 2.608265
410 2.504008 2.611525 2.567596
415 2.568535 2.811574 2.642444
420 2.552209 2.665199 2.590283
425 2.605834 2.714257 2.664489
429 2.598276 2.681955 2.645576
434 2.589238 2.688489 2.636451
439 2.702037 3.035608 2.874139
443 2.723424 3.036392 2.809630
448 2.653682 2.884327 2.735545

APPENDIX B. ADDITIONAL INFORMATION 92

B.2 Chapter 4 - The Shallow Water Equations

B.2.1 Computations

MATLAB CPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s

CPU mean time

Figure B.7: CPU running time in seconds, MATLAB.

APPENDIX B. ADDITIONAL INFORMATION 93

LD Min Max Average
64 0.778130 1.107047 0.790825
91 1.332367 1.466516 1.338651

111 1.780873 2.128833 1.802114
128 2.224564 2.417692 2.261987
143 2.683396 2.870114 2.718367
157 3.125868 3.308465 3.163450
169 3.515143 3.745452 3.562941
181 3.989791 4.346371 4.050245
192 4.427457 4.748058 4.485078
202 4.942034 5.228336 5.016982
212 5.396830 5.694408 5.456509
222 5.851350 6.065590 5.916996
231 6.286891 6.512108 6.362316
239 6.664724 7.029963 6.759603
248 7.181043 7.395416 7.249842
256 7.619462 7.913216 7.705122
264 8.139884 8.408580 8.247762
272 8.658253 8.953282 8.748243
279 9.109247 9.650796 9.200068
286 9.594840 9.881662 9.674216
293 10.060891 10.378906 10.163672
300 10.516169 10.810666 10.613114
307 11.004180 11.261381 11.068762
314 11.492241 11.762505 11.563839

LD Min Max Average
320 11.911257 12.309029 12.029904
326 12.357118 12.668882 12.452101
333 12.882743 13.125817 12.962349
339 13.394780 13.772387 13.478613
345 13.942815 14.238900 14.010976
351 14.466833 14.787966 14.549361
356 14.887884 15.220189 14.995922
362 15.479939 15.993804 15.623428
368 15.920765 16.471934 16.121683
373 16.410583 17.332362 16.629638
379 16.937582 17.551588 17.230387
384 17.518163 18.113825 17.759003
389 18.043548 20.013538 18.422206
395 18.536497 18.871420 18.661151
400 19.065936 19.596983 19.309138
405 19.682766 20.000557 19.833364
410 20.070482 20.469260 20.291101
415 20.295840 20.940479 20.519905
420 20.850760 21.475782 21.075135
425 21.373488 22.010929 21.591573
429 21.863033 22.262053 22.008739
434 22.424601 23.116170 22.671270
439 22.938088 23.482657 23.159982
443 23.363140 23.965524 23.611054
448 23.956670 24.648032 24.217239

APPENDIX B. ADDITIONAL INFORMATION 94

MATLAB GPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.8: GPU running time in seconds, MATLAB.

APPENDIX B. ADDITIONAL INFORMATION 95

LD Min Max Average
64 7.184199 7.654528 7.307220
91 7.255161 7.559784 7.285074

111 7.264392 7.616637 7.289568
128 7.405377 7.479791 7.430279
143 7.409890 7.469318 7.434790
157 7.411395 7.624724 7.444933
169 7.418935 7.522653 7.446091
181 7.402367 7.694282 7.438566
192 7.406766 7.518185 7.434853
202 7.415011 7.481751 7.439769
212 7.413329 7.657595 7.459755
222 7.476585 7.541621 7.501925
231 7.476278 7.808083 7.506655
239 7.483085 7.561626 7.511498
248 7.483096 7.731924 7.514677
256 7.510910 7.575409 7.536320
264 7.514091 7.575964 7.538723
272 7.514767 7.843379 7.546114
279 7.524174 7.619789 7.550153
286 7.530020 7.810013 7.555705
293 7.531740 7.640495 7.556731
300 7.537505 7.875876 7.567096
307 7.538198 7.673839 7.562505
314 7.545375 7.635869 7.572918

LD Min Max Average
320 7.548049 7.730265 7.577522
326 7.477048 7.699533 7.566417
333 7.547004 7.976490 7.578386
339 7.489021 7.600293 7.542682
345 7.488469 7.602309 7.535341
351 7.480136 8.558686 7.547873
356 7.491829 7.581253 7.535696
362 7.515456 7.804460 7.559878
368 7.507284 7.676598 7.559791
373 7.519887 7.802303 7.567793
379 7.525636 7.646957 7.574727
384 7.516321 7.668465 7.573304
389 7.528946 7.949652 7.585079
395 7.532358 7.973824 7.615670
400 7.533530 7.881495 7.591379
405 7.644478 7.980695 7.752156
410 7.644865 8.017080 7.758736
415 7.648371 7.930022 7.741497
420 7.635782 7.955201 7.726036
425 7.635507 8.004952 7.760457
429 7.675991 8.004472 7.769792
434 7.688534 8.065139 7.833564
439 7.603207 7.917859 7.740006
443 7.607625 8.047330 7.729477
448 7.623932 8.248465 7.771071

APPENDIX B. ADDITIONAL INFORMATION 96

C++/OpenCL

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.9: GPU running time in seconds, C++/OpenCL.

APPENDIX B. ADDITIONAL INFORMATION 97

LD Min Max Average
64 0.068321 0.224610 0.073840
91 0.073545 0.103960 0.076463

111 0.089249 0.126606 0.092443
128 0.105579 0.152182 0.111032
143 0.113652 0.133337 0.115011
157 0.121111 0.174755 0.125369
169 0.137693 0.166563 0.140402
181 0.144374 0.207624 0.147297
192 0.166066 0.237189 0.170077
202 0.175591 0.218561 0.179213
212 0.181523 0.261578 0.185504
222 0.188198 0.248239 0.200436
231 0.204382 0.294567 0.209806
239 0.208714 0.244695 0.213344
248 0.216526 0.283684 0.224487
256 0.240191 0.345487 0.245257
264 0.326474 0.414752 0.332479
272 0.255584 0.373058 0.260662
279 0.276649 0.326067 0.279247
286 0.455214 0.601675 0.472862
293 0.292645 0.392574 0.299235
300 0.475992 0.641345 0.501837
307 0.302921 0.401833 0.316571
314 0.340996 0.472146 0.356854

LD Min Max Average
320 0.347343 0.459001 0.361643
326 0.354450 0.483505 0.373078
333 0.370563 0.488477 0.379143
339 0.377441 0.512027 0.394439
345 0.382729 0.511632 0.400372
351 0.385106 0.534357 0.399228
356 0.382185 0.512728 0.397008
362 0.389391 0.523131 0.406773
368 0.395297 0.533109 0.409452
373 0.406995 0.533250 0.418806
379 0.413426 0.545250 0.426809
384 0.509788 0.685803 0.545613
389 0.507781 0.682775 0.524851
395 0.515321 0.687736 0.530350
400 0.531210 0.709982 0.546354
405 0.538205 0.707975 0.552266
410 0.535815 0.724052 0.561574
415 0.531136 0.695556 0.541804
420 0.568211 0.738814 0.583757
425 0.554058 0.735340 0.565289
429 0.562537 0.643157 0.571181
434 0.566649 0.734755 0.575534
439 0.564059 0.761454 0.585594
443 0.572699 0.751011 0.584848
448 0.626331 0.697559 0.632402

APPENDIX B. ADDITIONAL INFORMATION 98

B.2.2 Visualization

MATLAB CPU

0 64 192128 256 320 384 448
0

20

40

60

Leading dimension

T
im

e
in

se
co

n
d

s
CPU mean time

Figure B.10: CPU with visualization, running time in seconds, MATLAB.

APPENDIX B. ADDITIONAL INFORMATION 99

LD Min Max Average
64 1.335061 5.551656 1.393095
91 2.059203 2.384044 2.094870

111 2.666055 2.929040 2.710284
128 3.284303 3.525783 3.326229
143 3.956192 4.675671 4.030659
157 4.567473 5.136848 4.728639
169 5.180400 5.948921 5.384193
181 5.944574 6.488905 6.105519
192 6.682940 7.443890 6.847627
202 7.594822 8.123192 7.740363
212 8.284534 9.192152 8.544382
222 9.127187 9.464084 9.225845
231 10.047919 10.402637 10.209284
239 10.791998 11.363699 10.859179
248 11.496085 12.017110 11.573605
256 12.768654 12.922933 12.842405
264 13.487431 14.011421 13.560738
272 14.178479 14.988012 14.287715
279 15.707450 15.973749 15.820234
286 16.424308 16.668248 16.493152
293 17.112787 17.357266 17.185048
300 17.825680 18.243973 17.903073
307 18.569533 18.890063 18.666208
314 20.641934 21.106545 20.988059

LD Min Max Average
320 21.714669 21.915459 21.781746
326 22.450351 22.733415 22.520214
333 23.335884 23.943360 23.410719
339 24.119054 24.407945 24.198795
345 24.887616 25.475520 25.008992
351 25.559353 26.220943 25.782655
356 26.323232 26.890109 26.446052
362 30.299964 30.991049 30.755873
368 31.669812 32.967661 31.833660
373 32.564586 32.747794 32.646392
379 33.490708 34.145028 33.624560
384 34.364655 38.081559 34.758954
389 35.241639 39.788391 35.551721
395 36.302708 36.679290 36.455020
400 37.101184 37.458290 37.251396
405 38.039318 38.526840 38.177932
410 38.846206 39.798984 39.051216
415 39.825114 40.485344 40.006993
420 40.761633 41.265067 40.905295
425 41.683525 42.460012 41.891088
429 42.577942 43.684912 42.776585
434 43.606624 45.191631 44.016994
439 51.150878 54.801706 53.971232
443 54.319331 62.218141 55.544594
448 55.994089 58.456251 56.912076

APPENDIX B. ADDITIONAL INFORMATION 100

MATLAB GPU

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.11: GPU with visualization running time in seconds, MATLAB.

APPENDIX B. ADDITIONAL INFORMATION 101

LD Min Max Average
64 9.366068 27.855200 9.747331
91 10.252561 10.543490 10.353984

111 10.237013 10.866974 10.570609
128 10.486574 10.965731 10.630329
143 10.677048 12.319513 10.863271
157 10.712813 11.700444 11.036896
169 11.011185 11.939842 11.283984
181 11.537218 12.113618 11.700960
192 11.794371 12.524096 12.039569
202 11.682493 12.435800 11.998001
212 12.174902 12.744294 12.392160
222 12.388421 13.235307 12.737755
231 12.695563 14.032732 12.970305
239 12.753252 13.888819 13.068994
248 13.068113 14.340461 13.449333
256 13.324146 14.561511 13.765078
264 13.696692 15.865949 14.162959
272 13.769877 17.497530 14.807790
279 14.102712 16.615652 14.943342
286 15.065783 17.755520 16.018958
293 16.611182 18.203696 16.701843
300 16.199477 17.623333 16.637984
307 16.498538 18.825287 17.322797
314 16.664242 19.464152 17.652078

LD Min Max Average
320 17.930168 20.186461 18.379540
326 17.659845 21.147248 19.023679
333 18.058938 21.895865 19.712272
339 18.759289 22.774243 20.898968
345 20.571394 23.802391 22.559510
351 20.672758 23.479213 22.961425
356 21.700648 24.496719 23.497995
362 22.788903 24.712430 23.993322
368 24.026742 24.944199 24.514916
373 24.446291 25.605481 24.839346
379 24.756246 28.790444 25.213759
384 25.875947 29.584282 26.369500
389 28.218738 31.367794 28.807505
395 30.525199 34.108599 30.888040
400 26.741483 30.873322 29.991909
405 27.343147 31.099556 30.510912
410 28.932982 32.009990 31.256930
415 30.776836 32.807493 31.772518
420 31.902437 34.625742 32.660568
425 32.629699 34.929514 33.146076
429 33.409164 37.314325 34.233974
434 34.490621 39.369535 35.900714
439 34.414335 39.218898 37.303467
443 36.500295 39.631842 38.321354
448 38.516505 42.622988 39.173698

APPENDIX B. ADDITIONAL INFORMATION 102

C++/OpenCL/OpenGL

0 64 192128 256 320 384 448
0

5

10

15

20

25

Leading dimension

T
im

e
in

se
co

n
d

s
GPU mean time

Figure B.12: GPU with OpenGL running time in seconds, C++/OpenCL.

APPENDIX B. ADDITIONAL INFORMATION 103

LD Min Max Average
64 0.473112 0.596742 0.527130
91 0.534834 0.639292 0.570572

111 0.566018 0.680853 0.610865
128 0.586048 0.724054 0.610865
143 0.613356 0.730011 0.668926
157 0.605579 0.685515 0.645380
169 0.638522 0.779519 0.691671
181 0.624302 0.696841 0.660336
192 0.654573 0.748904 0.694933
202 0.691834 0.764736 0.694933
212 0.692622 0.830818 0.749972
222 0.696875 0.801789 0.737392
231 0.714456 0.786970 0.739089
239 0.714500 0.714500 0.748375
248 0.737841 0.870364 0.795217
256 0.752003 0.891436 0.806527
264 0.852004 0.939306 0.879200
272 0.784559 0.936779 0.831193
279 0.784509 0.938019 0.845002
286 0.966590 1.079775 1.013793
293 0.852042 1.022068 0.930949
300 1.009267 1.109091 1.045531
307 0.876529 0.976719 0.915698
314 0.898227 1.033912 0.958248

LD Min Max Average
320 0.933251 1.088057 1.004061
326 0.930580 1.059367 1.007188
333 0.931155 1.072763 0.990044
339 0.948367 1.036726 0.974549
345 0.969390 1.103185 1.023461
351 0.947980 1.071339 1.018466
356 0.974580 1.044574 1.011945
362 0.984785 1.039568 0.999281
368 0.984569 1.053967 1.025786
373 0.983004 1.047509 1.006671
379 1.004038 1.102988 1.033593
384 1.110542 1.228218 1.137292
389 1.067318 1.354411 1.148145
395 1.094592 1.243744 1.155428
400 1.097179 1.242446 1.163389
405 1.129033 1.279172 1.184281
410 1.103762 1.226109 1.178646
415 1.165487 1.287098 1.216770
420 1.149067 1.315953 1.219367
425 1.180362 1.287986 1.215562
429 1.167286 1.289659 1.214132
434 1.182806 1.284544 1.219320
439 1.152224 1.314669 1.227097
443 1.199415 1.297347 1.244632
448 1.207210 1.403806 1.281585

Bibliography

[1] K.-A. Lie J.R. Natvig M. Ofstad Henriksen T.R. Hagen *, J.M. Hjelmervik. Visual simulation

of shallow-water waves, 2006.

[2] The MathWorks inc. The language of technical computing. https://se.mathworks.com/

products/matlab.html.

[3] The MathWorks inc. Perform parallel computations on multicore computers, gpus,

and computer clusters. https://se.mathworks.com/products/parallel-computing.

html.

[4] The MathWorks inc. Speeding up matlab computations with gpus. https://se.

mathworks.com/products/parallel-computing/features.html.

[5] The MathWorks inc. Perform matlab computations on cuda gpus. https://se.

mathworks.com/discovery/matlab-gpu.html.

[6] Mattson Fung Ginsburg Munshi, Gaster. OpenCL Programming Guide. Pearson Education,

2011.

[7] John Daintith, editor. A Dictionary of Physics. OUP Oxford, 6nd edition, 2009.

[8] Tveito and Winther. Introduction to Partial Differential Equations, A computational ap-

proach. Springer, 2nd edition, 2008.

[9] Richard Pletcher John Tannehill, Dale Anderson. Computational Fluid Mechanics and Heat

Transfer. Taylor and Francis, 2st edition, 1997.

104

https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/parallel-computing.html
https://se.mathworks.com/products/parallel-computing.html
https://se.mathworks.com/products/parallel-computing/features.html
https://se.mathworks.com/products/parallel-computing/features.html
https://se.mathworks.com/discovery/matlab-gpu.html
https://se.mathworks.com/discovery/matlab-gpu.html

BIBLIOGRAPHY 105

[10] The MathWorks inc. Techniques to improve performance. https://se.mathworks.com/

help/matlab/matlab_prog/techniques-for-improving-performance.html.

[11] Nick Bruun. Hayai. https://github.com/nickbruun/hayai.

[12] Schlachter Tompson. An introduction to the opencl programming model. http://cims.

nyu.edu/~schlacht/OpenCLModel.pdf.

[13] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters/CRC Press, 2nd edi-

tion, 2015.

[14] Cleve Moler. Experiments with MATLAB. MathWorks, inc, 1st edition, 2011.

[15] John Strikwerda. Finite Difference Schemes and Partial Differential Equations. SIAM: Soci-

ety for Industrial and Applied Mathematics, 2nd edition, 2014.

[16] Kevin Brothaler. OpenGL ES 2 for Android. A Quick-Start Guide. Pragmatic Bookshelf, 1st

edition, 2013.

[17] E. Zauderer. Partial differential equations of applied mathematics. Wiley interscience, 3rd

edition, 2006.

https://se.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://se.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://github.com/nickbruun/hayai
http://cims.nyu.edu/~schlacht/OpenCLModel.pdf
http://cims.nyu.edu/~schlacht/OpenCLModel.pdf

	Preface
	Acknowledgment
	Summary and Conclusions
	Introduction
	Background
	Previous related work
	Goal of thesis
	Research questions
	Objectives
	Limitations
	Approach
	Structure of the report

	Technologies
	MATLAB
	MATLAB Parallel Computing Toolbox
	C++
	OpenCL
	OpenGL
	Betelgeuse
	Desktop

	The Heat Equation
	Overview
	1D heat equation
	Stepping up to 2D
	Naive implementation
	MATLAB CPU code
	Converting to GPU code

	Adaptive implementation
	C++ code
	OpenCL code

	Complexity
	Comparison of implementations
	MATLAB
	C++/OpenCL/OpenGL

	Efficiency
	Efficiency of computation, MATLAB
	Efficiency of computation, C++/OpenCL
	Efficiency of visualization, MATLAB
	Efficiency of visualization, C++/OpenCL/OpenGL

	Analysis

	Shallow Water
	Overview
	Discretization
	Boundary conditions
	Reflective boundaries
	Periodic boundaries
	Free boundaries

	Initial values
	Naive implementation
	CPU implementation
	GPU implementation

	Adaptive implementation
	C++
	OpenCL
	OpenGL

	Numerical instability
	Complexity
	Efficiency, computations
	MATLAB CPU
	MATLAB GPU
	C++/OpenCL

	Efficiency, visualization
	MATLAB CPU
	MATLAB GPU
	C++/OpenCL/OpenGL

	Analysis
	Quality and possibilities
	MATLAB
	OpenGL

	Summary
	Summary and Conclusions
	Recommendations for Further Work

	Acronyms
	Additional Information
	Chapter 3 - The Heat Equation
	Computations
	Visualization

	Chapter 4 - The Shallow Water Equations
	Computations
	Visualization

	Bibliography

