# Estimation of discards in the commercial trawl fishery for Northeast

Arctic cod (Gadus morhua L.) and some effects on assessment

Cand. Scient. thesis in fisheries biology

by

**Gjert Endre Dingsør** 



# **Department of Fisheries and Marine Biology**

University of Bergen

Spring 2001

# Contents

| Abstract                                                                                  | 1        |
|-------------------------------------------------------------------------------------------|----------|
| 1. Introduction                                                                           | 3        |
| 2. Materials and methods                                                                  | 9        |
| 2.1 Method I (No discarding in USSR catches)                                              | 9        |
| 2.2 The use of selection curves                                                           | 10       |
| 2.2.1 Method II (The use of selection curves and VPA stock sizes)                         | 10       |
| 2.2.1.1 The years 1977 – 1981                                                             | 18       |
| 2.2.1.2 The years 1983 – 1992                                                             | 18       |
| 2.2.2 Method III (The use of selection curves and bottom trawl survey abundance indices)  | 19       |
| 2.2.2.1 Method IIIa (The use of abundance indices)                                        | 19       |
| 2.2.2.2 Method IIIb (The use of adjusted abundance indices)                               | 19       |
| 2.3 Discard rates                                                                         | 21       |
| 2.4 Virtual Population Analysis (VPA)                                                     | 21       |
| 2.5 Computing <i>F</i> <sub>med</sub>                                                     | 22       |
| 3. Results                                                                                | 25       |
| 3.1 Method I (No discarding in USSR catches)                                              | 25       |
| 3.2 The use of selection curves                                                           | 28       |
| 3.2.1 Length at age and cod-end retention                                                 | 28       |
| 3.2.2 Method II (The use of selection curves and VPA stock sizes)                         | 30       |
| 3.2.2.1 1946 - 1976                                                                       | 30       |
| 3.2.2.2 1977 – 1981                                                                       | 33       |
| 3.2.2.3 1982 - 1992                                                                       | 34       |
| 3.2.5 Method III (1 he use of selection curves and bottom trawi survey abundance indices) | 33<br>25 |
| 3.2.3.1 Method IIIb (The use of adjusted abundance indices)                               | 35<br>72 |
| 3.3 Comparison of the methods                                                             |          |
| 3.4 Correlation analysis                                                                  | 39       |
| 3.5 Estimated discard rates compared with discard rates from literature                   |          |
| 3.6 Virtual Population Analysis (VPA)                                                     |          |
| 3.7 F <sub>med</sub>                                                                      | 46       |
| 4 Dissussion                                                                              | 47       |
| 4.1 The available data                                                                    | 47       |
| 4.2 Method I (No discarding in USSR catches)                                              | 50       |
| 4.3 The use of selection curves                                                           |          |
| 4.3.1 Method II (The use of selection curves and VPA stock sizes)                         |          |
| 4.3.2 Method III (The use of selection curves and bottom trawl survey abundance indices)  | 59       |
| 4.4 Correlation analysis                                                                  | 59       |
| 4.5 Virtual Population Analysis (VPA)                                                     | 60       |
| 4.6 <i>F<sub>med</sub></i>                                                                | 60       |
| 4.7 Conclusions and suggestions for further work                                          | 61       |
| Acknowledgements                                                                          | 63       |
| References                                                                                | 65       |
| Appendix                                                                                  | 69       |

# Abstract

Discarding of small fish has been and still is a large problem in many fisheries. It is a problem because most of the discarded fish die and are a direct loss to the biomass of the stock. When discards occur and it is not accounted for in the assessment, the total mortality from the stock is underestimated. Thus, it will cause bias in the VPA estimates and in analysis based on these estimates. In the present work, discards in the commercial trawl fishery for Northeast Arctic cod, during the years 1946 - 1998, were estimated from two points of view. The first was to assume that the USSR did not have any discards and adjust the other countries' catch at age distributions according to the USSR landings. The second was to use selectivity properties and abundance estimates to estimate age distributions in the catches and adjust the catches according to these. The differences between the estimated and reported catch numbers were then regarded as discards. New VPA numbers at age were estimated and the biological reference point  $F_{med}$  was calculated. The results from the first approach were considered not to be any reliable. The results from the second approach were as expected, high in the 1950s and 1960s with a decreasing trend towards the 1980s. The results indicate also that the USSR had discards or that they had errors in the reported catches. Discards were shown to have a large influence on the VPA estimates, especially stock numbers at age three, which resulted in a small increase in the value of  $F_{med}$ . Due to the large errors in the VPA stock numbers of Northeast Arctic cod, as indicated by the estimates of discards, it is suggested that the Arctic Fisheries Working Group should revise the catch numbers at age that are used in the VPA.

# 1. Introduction

Northeast Arctic cod (Gadus morhua) is the most important commercially exploited fish resource in the Barents Sea. The habitat of Northeast Arctic cod extends from the spawning grounds along the coast of Norway through the southern and central Barents Sea (Michalsen, 1999). The most important spawning areas are located in the vicinity of Lofoten, Sørøya, and the banks off Møre. The cod reach maturity at an age of 6-9 years and the mature fish arrive at the spawning grounds from late January and onwards, the most intense spawning occurs from mid-March to mid-April (Bergstad et al., 1987). The eggs and larvae are transported northwards by the currents during April-August and in August-September is the 0-group distributed over large areas in the Barents Sea and off Svalbard (Nakken, 1994). The immature cod is geographically separated into two components, one in the Svalbard – Bear Island area and one in the Barents Sea (Brander, 1994), these two components make seasonal north-south and east-west migrations, respectively, and the range of these migrations increases with age. When capelin becomes a major food item, at an age of 3-4, the immature follow the spawning migration of capelin to the coast of northern Norway and Murman (Nakken, 1994). After spawning the mature cod migrate to the feeding areas in the Barents Sea (Bergstad et al., 1987). The area where the Northeast Arctic cod is distributed is divided into fishing areas 1, 2a and 2b (figure 1) by the International Council for the Exploration of the Sea (ICES).



Figure 1 ICES fishing areas in the Barents Sea.

In the 1930s the fisheries for Northeast Arctic cod started to evolve from coastal to offshore fisheries and the efficiency increased in both these fisheries (Jakobsen, 1993). There are three main fisheries for Northeast Arctic cod, the "skrei fishery" on migrating spawning cod, the "Finnmark fishery" on the migratory prespawning cod following the capelin to the northern Norwegian coast, and the offshore fishery, taking place at the feeding grounds (Brander, 1994). The development of bigger and more efficient fishing vessels and fishing gears has put a great pressure on the cod stock (Nakken, 1998). This has made assessment a necessity and an important tool as basis for the advice to the management of the cod stock, which is necessary to protect it from depletion and to make sure that it gives a sustainable yield.

Stock assessments of- and research on- the Northeast Arctic cod stock, e.g. the determination of spawning stock – recruitment relationships, are based on stock number at age matrices from the Virtual Population Analysis (VPA) (Hilborn & Walters, 1992). Stock size as estimated by VPA is available from 1946 (ICES, 2000). VPA calculates the number of fish alive in each year-class for each past year based on the reported, past catches and the relationship between stock numbers at age,  $N_i$ , and reported catch numbers at age,  $C_i$ , is given by the following equation (Hilborn & Walters, 1992):

$$N_{i} = \frac{C_{i}}{s_{i}} + \frac{C_{i+1}}{s_{i} \cdot s_{i+1}} + \dots + \frac{C_{i+n}}{s_{i} \cdot s_{i+1} \cdot \dots \cdot s_{i+n}}$$
(1)

where *C* is the yearly catch number of a year-class and *s* is the yearly natural survival rate of the same year-class. Thus, for the assessment to be effective it needs reliable catch data from the fishing fleets. This is not always the case, catches may not be reported (illegal catches), escaped fish may die due to injuries caused by the gear and caught fish may be discarded. All of these factors will cause the stock numbers at age to be underestimated.

The problem of unreported (illegal) catches has been discussed in the Arctic Fisheries Working Group (AFWG) (Schöne, 1999), but is currently not taken into account in the assessment. In 1992 rumors and allegations of unreported catches flourished (Jakobsen, 1993) and in the period 1990-1994 unreported catches are added to the catch statistics (ICES, 2000). In other years there are no knowledge of the magnitude of unreported catches. Allegations of unreported cod-catches flourished also in the national Norwegian news in the fall of 2000.

Introduction

Mortality due to injuries caused by the gear may be divided into two categories. Fish dying because of damage to scales or other injuries caused when escaping through the meshes of a cod-end or through a metal grid sorting-device, and predation of fish that are exhausted or injured by the gear. According to Soldal et al. (1993) Scottish and Russian investigations in the 1980s indicated that escaped cod had high mortality rates, but newer research indicate low mortality for cod after contact with the gear (Soldal et al., 1991; DeAlteris & Reifsteck, 1993; Soldal et al., 1993; Soldal, 1996; Soldal & Engås, 1997). Small fish that escape from a trawl may also be more vulnerable to predation due to exhaustion or to injuries. However, Løkkeborg & Soldal (1995) showed that small cod that escaped from a trawl had no increased risk of predation. This experiment was conducted in a controlled environment and the results might be different if tested under conditions more representative to actual fishing operations.

Discards are defined as caught fish that are returned to sea due to various reasons. Survival studies show that discarded fish have high mortality rates (Jean, 1963) and are assumed to be a direct loss to the abundance and biomass of the stock. The main reasons for discarding of Northeast Arctic cod are: (a) low market value of small cod (high grading), (b) fish below legal minimum landing size, (c) damaged or poor quality of fish. Discards due to low market value of small fish were assumed to be quite high in the 1950s and 1960s (ICES, 1965a; Nakken, 1994). According to Crean & Symes (1994) fisheries managed under systems of output control, such as quotas and minimum landing size, have become notorious for high level of discards. It is therefore plausible to assume that the minimum landing size, which were introduced

Introduction

in the 1960s, has caused discards of small fish. Discarding of young fish due to poor condition is known to have taken place in the 1980s (Mehl, 1991; Nakken, 1994).

The amount of discards depends probably on marked demand of small fish, size and age composition of the stock, condition of the fish, fishing-area, selection of the gear and the discarding policy among skippers and crews. The discarding policy among skippers and crews may vary between the countries. It was believed that the Soviet Union had no discards (Hylen & Rørvik, 1983) due to the fact that they used most of the fish for their internal market and had fixed prices (Jakobsen, 1999). Garrod (1967) estimated the discards of Northeast Arctic cod in the English trawler fleet during the 1950s and found discard rates up to 42% by number (1953). Several investigations were done onboard vessels in the Norwegian trawler fleet in the 1960s - 1980s (Hylen, 1965b; Hylen, 1967a; Hylen, 1967b; Hylen & Smedstad, 1974; Hylen, 1987) and the discards by number were high (up to 42% in 1987). In the 1990s the AFWG considered discards in the Barents Sea not to be a major problem (ICES, 1999b), but investigations onboard German trawlers in 1998 showed a portion of 36% undersized and juvenile cod in catches of a certain area (Schöne, 1999). In the latest AFWG report (ICES, 2000) the Working Group states that unknown quantities of cod probably have been discarded.

Quite a few actions have been carried out in attempt to minimize the discarding problem. Between the 1950s and the early 1980s the minimum mesh sizes were increased several times to reduce catches of small juvenile cod and thereby the discards. At the same time they increased the minimum legal landing size, which might have had an opposite effect on the discards. In the early 1990s was a discard

7

Introduction

ban introduced in the Norwegian economical zone and the Svalbard zone as well as an area closure system, i.e. an area where the amount of undersized fish in the catches exceeds 15% by number is closed for fishing. Regulations prohibiting discards and catches of undersized cod are now in effect both in Norwegian and Russian zones (ICES, 2000). The use of a sorting grid system to improve the selection was made compulsory in the bottom trawl fishery for gadoid species in the Barents Sea in 1997 (Isaksen, 1997).

The purpose of the present thesis was to estimate the magnitude of discards of small cod in the trawl fishery for Northeast Arctic cod during the years 1946 - 1998 and to examine some effects of this bias in the catch data on the estimation of stock numbers at age three, four and five. The estimation of discards was done using two main approaches. The first approach was to assume that USSR had no discards and then adjust the catches from other countries according to the USSR catches. The second approach was to use cod-end selection curves and stock abundance estimates to estimate age proportions in the catches and to adjust the catches from the various countries, including the USSR catches, according to these proportions. New VPA numbers at ages three, four and five were estimated and the effect of an increase in the numbers of three-year olds on the calculation of  $F_{med}$  was investigated.

8

# 2. Materials and methods

Members of the Arctic Fisheries Working Group (AFWG) have collected commercial catch data on Northeast Arctic cod since 1946. These data provide information on catch numbers by age, area and country, and makes the foundation of my work.

Two different approaches were used to estimate the total of fish caught. The first approach was to assume that the Soviet Union had no discards (Hylen & Rørvik, 1983) and to adjust the catches from the other countries according to the Soviet catches (Method I). The second approach was to establish the selection curves for the mesh sizes used in the time period, 1946 - 1998, and to adjust the catches according to the selection curves and the age distributions in the population (Method II and III). The details of the catch data are not consistent and different methods were established according to the information available. All the calculations and statistical analyses were performed in Microsoft Excel 2000.

# 2.1 Method I (No discarding in USSR catches)

In the period 1946 - 1976, landings were available as catch numbers at age by country and area. By assuming that the USSRs vessels had no discards, i.e. that they landed all caught fish, and that the age frequencies in their landings are representative for catches taken in the area and by other countries, it was possible to estimate the actual catches of three-, four- and five-year olds taken by other countries. Provided that the trawls used had similar selection properties and that they fished on the same population, i.e. that the catches overlapped in time and space, the ratio of age i over the sum of ages 6+ can be assumed to be equal in USSRs landings and in other countries catches. The catches,  $\hat{C}$ , at age *i* by country *E* in area *k* were estimated by:

$$\hat{C}_{i,k,E} = \frac{C_{i,k,R} \cdot \sum_{j=6}^{15} C_{j,k,E}}{\sum_{j=6}^{15} C_{j,k,R}}$$
(1)

where  $C_{i,k,R}$  is the USSRs catch at age *i* in area *k*, the ages are denoted by *j* in the summations. Estimated catch,  $\hat{C}$ , is assumed to be equal to the sum of the landed catch and the discards. The catches were adjusted for all countries in area 1 and 2b in those cases where the estimated catches were larger than the landed catches. USSR has only reported catches in area 2a in 1971 – 1973 and 1976 during this time period. Catches in area 2a were estimated for all countries except Norway for those years. Norwegian catches were not raised in area 2a since the main percentage (60-90%) of the Norwegian catches in this area were taken with other gears than trawl (ICES, 2000).

# 2.2 The use of selection curves

# 2.2.1 Method II (The use of selection curves and VPA stock sizes)

The mesh sizes in the cod-ends used by the commercial trawlers have changed during the time series (table 2.1). Each mesh size corresponds to a selection curve, which is sigmoid in shape and characterized by the 50% retention length, i.e. the length of fish that has a 50% probability of being retained in the cod-end, and the selection range, i.e. the difference in length between the fish that has a 75% probability of retention and that with a 25% probability of retention (Wileman et al., 1996). Halliday et al.

(1999) have gathered information from selection studies of cod by different mesh sizes since 1980. They used linear regressions to find the relationship between the 50% retention length,  $l_{50}$  (cm), and mesh size, m (mm), and the relationship between the selection range, *SR* (cm), and mesh size. The relationships are described by the following equations (Halliday et al., 1999):

$$l_{50} = 0.499m - 16.105 \tag{2}$$

$$SR = 0.112m - 4.335 \tag{3}$$

The 50% retention length and the selection range for the mesh sizes used were established from these equations using the mesh sizes in table 2.1 as input (table 2.2).

**Table 2.1** Cod-end mesh sizes used in Northeast Arctic cod fisheries. The mesh sizes apply to nylon since 1967. 135 mm apply to all vessels in the Norwegian economical zone, the Svalbard zone and to Norwegian vessels in the "gray zone". 125 mm apply to all vessels in the Russian economical zone and to Russian vessels in the "gray zone". The "gray zone" is an area in the Barents Sea where Norway and Russia have shared jurisdiction.

| Year | Norway | Other countries | Sources |
|------|--------|-----------------|---------|
| 1946 | 80 mm  | 80 mm           | 1, 3    |
| 1954 | 110 mm | 110 mm          | 1       |
| 1963 | 130 mm | 120 mm          | 1, 2    |
| 1982 | 135 mm | 125 mm          | 3       |

Sources: 1 Garrod (1967), 2 Hylen (1965a) and 3 Nakken (1994).

**Table 2.2** Mesh sizes and their 50% retention length ( $l_{50}$ ) and selection range (*SR*).  $l_{50}$  and *SR* are calculated by equations from Halliday et al. (1999).

| Mesh size (mm) | <i>I<sub>50</sub></i> (cm) | SR (cm) |
|----------------|----------------------------|---------|
| 80             | 23.8                       | 4.6     |
| 110            | 38.8                       | 8.0     |
| 120            | 43.8                       | 9.1     |
| 125            | 46.3                       | 9.7     |
| 130            | 48.8                       | 10.2    |
| 135            | 51.3                       | 10.8    |

The selection curve is assumed to be logistic (Millar & Walsh, 1992; Wileman et al., 1996; Millar & Fryer, 1999) and is parameterized as:

$$r(l) = \frac{\exp(a+b\cdot l)}{1+\exp(a+b\cdot l)} \tag{4}$$

where r(l) is the retention probability of a length l fish. The parameters a and b corresponds to  $l_{50}$  and *SR* (Millar, 1993; Wileman et al., 1996; Millar & Fryer, 1999) and are given by:

$$a = -l_{50} \frac{2\ln(3)}{SR}$$
(5)

$$b = \frac{2\ln(3)}{SR} \tag{6}$$

The selection curves were then established by the values in table 2.2 and equations (4) through (6), r(l) was calculated for each centimeter. The selection curves are illustrated in figure 2.1.



Figure 2.1 Mesh selection curves with different mesh sizes, based on the logistic equation.

The available catch data were given in numbers at age and the selection is length dependant. To be able to use selection curves in the estimation of discards it was necessary to find the length distributions at age in the population. No data including this information were available for the years 1946 – 1982 and the length distributions at age had to be estimated. The length distributions at age in the population were assumed to be normal with mean lengths,  $\mu_i$ , and standard deviations,  $\sigma_i$ .

Norway has conducted bottom trawl surveys in the Barents Sea each year since 1981. The surveys have been carried out in January – March, lasting for 4 – 6 weeks (Mehl, 1999). The data are given in numbers at length group and age matrices, where each length group has a five cm interval. The indices from the Norwegian bottom trawl surveys have been revised for the years 1983 – 1999 (ICES, 2000). The mean length at age,  $\mu_{i,j}$ , and the standard deviation,  $\sigma_{i,j}$ , where *i* denotes the age and *j* the year, were calculated for the period 1983 – 1999 by the methods for grouped data (Bhattacharyya & Johnson, 1977).

In the estimates of the length distributions at age in the population it was necessary to take into account that the fish grows during the year and that the catches are distributed throughout the year.

The length distributions at age in the survey data were assumed to be normal and represent lengths at the start of the year. The length distributions at age through the year were estimated by a method for a mixture of two normal distributions. This method uses the mean length of a cohort (year-class) in one year and the mean length of the same cohort for the next year with their respective standard deviations to

13

estimate a new mean,  $\hat{\mu}_{i,j}$ , and standard deviation,  $\hat{\sigma}_{i,j}$ , for the mixture (McLaughlin, 1999).

$$\hat{\mu}_{i,j} = p\mu_{i,j} + (1-p)\mu_{i+1,j+1} \tag{7}$$

$$\hat{\sigma}_{i,j} = p \left[ \sigma_{i,j}^2 - (p-1)(\mu_{i,j} - \mu_{i+1,j+1})^2 \right] - (p-1)\sigma_{i+1,j+1}^2$$
(8)

where *p* is a variable that weighs the two distributions. The philosophy behind and the calculation of *p* are explained later in the text. The result of a mixture of two normal distributions is illustrated in figure 2.2, where the distribution of the mixture is calculated by the equation for a normal distribution with mean =  $\hat{\mu}$  and standard deviation =  $\hat{\sigma}$  (Bhattacharyya & Johnson, 1977).



**Figure 2.2** Distribution of length groups in three-year old fish (1983), shaded bars, and in four-year old fish (1984), open bars, with the respective fitted normal distributions. The solid line is the mixture of the two distributions. Data are collected from the Norwegian bottom trawl surveys.

Assuming that the fishing mortality and the natural mortality are constant through the year, catch per day decreases with a negative exponential factor. This means that the catches of a cohort are larger in the beginning of the year and that half of the total catch is caught earlier than the middle of the year (figure 2.3). The equations for the

mixture of two normal distributions method need therefore a variable that weighs the two distributions accordingly.



**Figure 2.3** Catch per day with constant fishing mortality rate, F = 0.5, and natural mortality rate, M = 0.2. The straight-line marks when half of the total catch is caught. Catch = a\*exp(-b\*day).

When both the fishing mortality rate, F, and natural mortality rate, M, are assumed to be constant throughout the year, the catch equation is given as:

$$C(t - t_0) = \frac{F}{Z} N(t_0) (1 - e^{-Z \cdot (t - t_0)})$$
(9)

where *C* denotes the catch of a cohort from time  $t_0$  to time t, Z = F + M and  $N(t_0)$  denotes the number of fish at time  $t_0$ . By setting  $t - t_0$  equal to one year the total catch of a cohort in a year is found. To simplify the equation,  $t_0$  is set equal to 0. To find the time of the year when half of the catch is caught,  $t_{0.5}$ , 0.5C(1) is set equal to  $C(t_{0.5})$ :

$$0.5C(1) = \frac{F}{Z} N(0)(1 - e^{-Z \cdot t_{0.5}})$$
(10)

Solving with respect to  $t_{0.5}$  gives the equation:

$$t_{0.5} = -\frac{\ln(1 - 0.5\frac{C(1) \cdot Z}{F \cdot N(0)})}{Z}$$
(11)

Since equation (9) gives:

$$\frac{C(1) \cdot Z}{F \cdot N(0)} = 1 - e^{-Z}$$
(12)

equation (11) can be written as:

$$t_{0.5} = -\frac{\ln(1 - 0.5(1 - e^{-Z}))}{Z}$$
(13)

Z = F + M where *F* and *M* are taken from the AFWG report (ICES, 2000) for the respective years and ages. Assuming linear growth, and setting  $\hat{\mu}_{i,j}$  in equation (7) equal to the length of the cohort at time  $t_{0.5}$ , we get:

$$\hat{\mu}_{i,j} = \mu_{i,j} + (\mu_{i+1,j+1} - \mu_{i,j})t_{0.5}$$

$$= \mu_{i,j}(1 - t_{0.5}) + \mu_{i+1,j+1}t_{0.5}$$
(14)

Thus, *p* in equation (7) and (8) should be  $1 - t_{0.5}$ . The means and standard deviations used to establish the length distributions at age in the population for the years 1946 – 1982 were the results from equations (7) and (8) averaged over the time period 1983 – 1998. The distributions were established for the ages three through seven years. It is assumed that all fish eight-year and older are retained in the cod-end, thus length distributions are not necessary for those ages. The length distributions, *f<sub>i</sub>(l)*, at age were calculated, for each centimeter, by the equation for a normal distribution (Bhattacharyya & Johnson, 1977)

$$f_i(l) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_i} e^{-\frac{(l-\hat{\mu}_i)^2}{2\hat{\sigma}_i^2}}$$
(15)

where *l* denotes the length and *i* the age. The proportion, r(i), of age *i* retained in a cod-end, i.e. caught, with a given mesh size was then found by the expression:

$$r(i) = \sum_{l} r(l) \cdot f_i(l) \tag{16}$$

where r(l) is the retention probability of length l and  $f_i(l)$  is the length distribution at age *i*. The age proportions,  $\hat{c}_i$ , in the estimated catches were found by the equation:

$$\hat{c}_i = \frac{n_i \cdot r(i)}{\sum_i n_j \cdot r(j)} \tag{17}$$

where  $n_i$  denotes the numbers at age, *i* (*j* in the summation), from the traditional Virtual Population Analysis (VPA) table in the AFWG report (ICES, 2000). The proportions were calculated for each year with their respective mesh sizes according to table 2.1 and the catch numbers were adjusted for the ages three to five years for each country by:

$$\hat{C}_i = \hat{c}_i \cdot \sum_j C_j \tag{18}$$

where  $C_j$  is the landed catch at age, *j*. The catches were adjusted only in those cases where the estimated proportions were bigger than in the reported catches. Catches in ICES area 2a were not adjusted since the abundance of small fish is less there than in the other areas (Hylen & Rørvik, 1983). Young fish are generally distributed farther east than older age groups (Nakken & Raknes, 1987). The spawning fishery is also conducted in area 2a in the first quarter of the year and results in a large proportion of mature cod in the catches.

New stock numbers were estimated with the results from method II for the ages three through five by the methods for traditional VPA (Hilborn & Walters, 1992). Large discard rates cause the stock numbers for the ages three through five in the AFWG report to be too low. This influences the estimated catches from method II. The new VPA stock numbers were used as input in equation (17) to minimize this problem.

The catches were then adjusted once again. This process was repeated twice, i.e. the catches were in all adjusted three times.

Method II was run for the time period 1946 - 1992, but due to differences in the available catch data the method was modified for the years 1977 - 1981 and 1983 - 1992. For the years 1946 - 1976 and 1982 the catch numbers at age were stratified by country and area. Method II was not run any further than 1992 because of the uncertainties in the VPA for the most recent years of a time series.

### 2.2.1.1 The years 1977 – 1981

For the years 1977 – 1981, no catch at age data by country and area were available. Total catch numbers at age, nominal catch (tonnes) by countries and total nominal catch (tonnes) by trawl and other gears for each area were available (ICES, 2000). The catch numbers at age were divided into Norwegian catches and catches by the remaining countries by the nominal catch by countries table. It is assumed that only Norway uses other gears than trawl. The Norwegian catches were divided into Norwegian trawl catches and catches by other gears by the table for nominal catch by trawl and other gears. The Norwegian trawl catches and catches by remaining countries were adjusted by method II with the respective selection curves from 130 mm and 120 mm mesh sizes as input.

### 2.2.1.2 The years 1983 – 1992

For the years 1983 - 1998 catch numbers at age by country for each area were available, including data from the Norwegian bottom trawl surveys (1983 - 1999). For the years 1985 - 1998 the total Norwegian catch numbers at age by trawl were

18

also available. The catches were adjusted by method II using length distributions calculated by (15) with the results from equations (7) and (8) as input. The Norwegian catches in area 1 and 2b (1983 – 1984) and total Norwegian trawl catches (1985 – 1992) were adjusted with 135 mm mesh size as input. Russian and other countries' catches were adjusted with 125 mm as input in area 1 and 135 mm in area 2b (1982 – 1992). Catches in area 2a were not adjusted except for the Norwegian trawl catches, which were summed over all areas in the available data.

# 2.2.2 Method III (The use of selection curves and bottom trawl survey abundance indices)

# 2.2.2.1 Method IIIa (The use of abundance indices)

Uncertainties in the catch data affect the results from the VPA and will therefore influence the estimation of catches in method II. This can be avoided by using the stock numbers at age indices from the Norwegian bottom trawl surveys. Method IIIa is practically the same as method II, but instead of using the VPA numbers at age as input ( $n_i$ ) in (17), the indices from the Norwegian bottom trawl surveys were used. This is a modified and slightly simplified method of the one used by McBride & Fotland (1996). Method IIIa was run for the years 1983 – 1998.

#### 2.2.2.2 Method IIIb (The use of adjusted abundance indices)

The Norwegian bottom trawl surveys have been carried out in January – March (Mehl, 1999). Most of the mature fish have at this time started their migration towards the spawning grounds along the Norwegian coast (Bergstad et al., 1987; Nakken, 1994). These fish may have migrated out of the survey area and the entire mature

portion of the stock will not be covered by the survey (ICES, 2000). If this portion of the stock is added to the indices, one will get more accurate indices of the whole population.

There were a few mature fish in the survey data. These fish were subtracted from the indices,  $I_i$ , and the new numbers were adjusted according to the maturity proportions at age from the AFWG report (ICES, 2000). The adjusted indices,  $\hat{I}$ , for the ages, i, three through seven were then found by the equation:

$$\hat{I}_i = \frac{I_i - m_i I_i}{1 - Mat_i} \tag{19}$$

where *m* is the proportion mature at age in the survey data and *Mat* is the proportion mature at age from the AFWG report. Since *Mat* cannot equal to one in equation (19), the indices,  $\hat{I}_{8+}$ , of eight year and older fish were found by the equation:

$$\hat{I}_{8+} = \frac{p_{8+} \cdot \sum_{j=3}^{7} \hat{I}_{j}}{1 - p_{8+}}$$
(20)

where  $\hat{I}_j$  is the adjusted indices at age, *j*, three through seven and  $p_{8+}$  is the proportion of eight year and older fish in the VPA stock numbers from the AFWG report. The adjusted indices at age 3 – 7 and 8+ were then used as input in (17).

For the years 1990 – 1994 unreported catches are estimated and added to the total catch by the AFWG. These catches were neither adjusted with method II nor III.

#### 2.3 Discard rates

Norway, USSR and England were the most important countries in the fisheries for Northeast Arctic cod during the period from 1946 to 1976. During the years 1977 – 1998 Norway and USSR (Russia since 1991) have been the most important countries. Other countries that contributed to the total catches were gathered in one group. Discard rates were calculated for the countries mentioned above and for all countries combined. The catches were summed over area, k, and the discard percentages, D, at age and by country were calculated by:

$$D_{i,E} = \frac{(\hat{C}_{i,E} - C_{i,E}) \cdot 100}{\hat{C}_{i,E}}$$
(21)

where  $\hat{C}$  denotes the estimated catch, *C* the landed catch, *i* the age for *i* = 3, 4, 5 and 3+, and *E* the country. By summing the catches over countries, *E*, the total discard rates were found and the methods were compared.

The English discard rates from method I and II were compared with the values from Garrods work (1967) for the years 1950 – 1959. Norwegian discard rates from the different methods were compared with observations done by Hylen (1965b; 1967a; 1967b), Hylen & Smedstad (1974), Hylen (1987) and McBride & Fotland (1996).

### 2.4 Virtual Population Analysis (VPA)

The catches estimated by method II (1946 - 1982) and IIIb (1983 - 1998) were used as input in the traditional VPA (Hilborn & Walters, 1992) and new stock numbers at age were estimated. The percent increase from the AFWG stock numbers at age to the new stock numbers at age were calculated for the ages three, four and five.

# 2.5 Computing F<sub>med</sub>

An increase in recruits, i.e. stock numbers at age three, as indicated by the estimates of discards will have an affect on the calculated relationship between spawning stock biomass and recruitment, and on the reference points which are based on this relationship. To demonstrate this, a spawning stock – recruitment plot was made with both new and old recruitment numbers and the reference point  $F_{med}$  was calculated by the method explained by Sissenwine & Shepherd (1987) and Jakobsen (1992).  $F_{med}$  is defined as "the level of fishing mortality where the accessions to the stock due to recruitment in half of the observed years have been more than sufficient to balance the losses due to mortality" (Jakobsen, 1992).

The spawning stock biomasses, *SSB*, (1000 tonnes) from 1946 – 1994 were plotted against the recruitments, *R*, (millions) from 1949 – 1997. *SSB/R* were calculated for each year, sorted ascending and the  $F_{med}$ -line is passing through the *SSB/R* middle point. The values in table 2.3 were used as input in the formula:

$$SSB/R = \frac{\sum_{i=3}^{15} (N_i \cdot SWt_i \cdot Mat_i)}{N_3}$$
(22)

where  $N_i$  is stock numbers at age *i*, *SWt* is stock weights at age and *Mat* is the proportion mature.  $N_3$  was set to 1000 and *N* for the ages 4 to 15 were found by:

$$N_{i+1} = N_i \cdot e^{-(F_i \cdot M_i)}$$
(23)

*F* is the fishing mortality and equals to the exploitation pattern,  $F_{expl}$ , multiplied with  $F_{med}$ . *M* is the natural mortality.  $F_{med}$  was then found by "Goal Seek" in Excel when the *SSB/R* middle point was given by the *SSB – R* plot. The "Goal Seek" program varied the  $F_{med}$  value until the requested *SSB/R* value was found.

| cannibalism and $F_{expl}$ is the exploitation pattern when $F_{5-10} = 1$ . |          |      |      |                   |  |  |  |
|------------------------------------------------------------------------------|----------|------|------|-------------------|--|--|--|
| Age                                                                          | SWt (kg) | Mat  | М    | F <sub>expl</sub> |  |  |  |
| 3                                                                            | 0.21     | 0.00 | 0.67 | 0.02              |  |  |  |
| 4                                                                            | 0.53     | 0.01 | 0.40 | 0.16              |  |  |  |
| 5                                                                            | 1.14     | 0.04 | 0.23 | 0.46              |  |  |  |
| 6                                                                            | 1.93     | 0.20 | 0.20 | 0.72              |  |  |  |
| 7                                                                            | 2.94     | 0.45 | 0.20 | 0.96              |  |  |  |
| 8                                                                            | 4.58     | 0.83 | 0.20 | 1.24              |  |  |  |
| 9                                                                            | 7.42     | 0.93 | 0.20 | 1.20              |  |  |  |
| 10                                                                           | 10.37    | 0.98 | 0.20 | 1.42              |  |  |  |
| 11                                                                           | 11.74    | 1.00 | 0.20 | 1.39              |  |  |  |
| 12                                                                           | 11.85    | 1.00 | 0.20 | 1.09              |  |  |  |
| 13                                                                           | 12.50    | 1.00 | 0.20 | 1.20              |  |  |  |
| 14                                                                           | 13.90    | 1.00 | 0.20 | 1.55              |  |  |  |
| 15                                                                           | 15.00    | 1.00 | 0.20 | 1.55              |  |  |  |

**Table 2.3** Input parameters for computation of  $F_{med}$ . The parameter values are taken from Motos (1998). *SWt* is stock weights at age, *Mat* is the proportion mature, *M* is the natural mortality including cannibalism and  $F_{evol}$  is the exploitation pattern when  $F_{5,10} = 1$ .

# 3. Results

The catch numbers at age from the Arctic Fisheries Working Group (AFWG) are given in the appendix (table A) together with the adjusted catch numbers at age estimated by the different methods. The catches are listed for the countries, which have the major contributions to the Northeast Arctic cod fishery. The remaining countries are grouped in "Others". For the years 1977 – 1981 and 1985 – 1998 the Norwegian trawl catches are listed. The Norwegian catches caught with conventional gears are included in the total catches, but are not adjusted. For the years 1990 – 1994 the Working Group has added some unreported catches to the statistics, these catches are included in the totals, but are not adjusted. The total catch numbers at age, received from a member of the AFWG, deviates some from the numbers in the AFWG report (ICES, 2000). The deviations are mostly small (less than 1%), but there are a few years where the deviations are larger and may be caused by typing errors. The deviations in 1983 and 1996 – 1998 are caused by revisions of the catch data by the AFWG.

# 3.1 Method I (No discarding in USSR catches)

In method I the catches were adjusted according to the USSR landings and discard rates were calculated.

England and Norway have high discard rates of three-year old fish, but the variation is large (figure 3.1). The group of other countries has a negative trend in the discard rates of three-year olds. Norway and England do not have any trends.

The discard rates of four- and five-year old fish are high with large variances. England and the group of other countries have a peak in the 1950s and a negative trend for the later period. Norway has higher discard rates at the end of the time period than the other countries, which may be caused by the difference between the mesh sizes used by Norway and USSR.

The English and Norwegian total discards by number have very high peaks several times in the period. There are no trends in the discard rates for these countries. The group of other countries has a negative trend after the peak in 1953.

The AFWG has for some years lacked the age distributions for some countries' catches and they have then assigned the catch numbers at age according to another country's catch numbers at age. An example: in 1948 the age distributions in area 1 and 2b catches by England and the group of other countries were raised by USSRs catch at age. This influences the results and causes in some years the estimated discard rates to be zero. The AFWG has in 1967 and 1968 raised the age distribution in the Norwegian catches in area 2b from the English catches, this is an error since Norwegian trawlers used 130 mm mesh size and English trawlers used 120 mm mesh size.













**Figure 3.1** English ( $\Delta$ ), Norwegian ( $\Box$ ) and other countries' ( $\circ$ ) total discards by number estimated by method I (1946 – 1976).

#### 3.2 The use of selection curves

# 3.2.1 Length at age and cod-end retention

The values of mean lengths at age and standard deviations calculated from the Norwegian bottom trawl survey data for the years 1983 - 1999 are given in the appendix (table B) together with the other variables used to calculate the mean lengths at age and standard deviations by the method for a mixture of two normal distributions (1983 – 1998). The variations in the mean lengths from the results of the mixture are large between the years,  $\pm$  5-15% from the averaged values in table 3.1. The variations are largest for the youngest ages.

 Table 3.1 Averaged mean lengths at age and standard deviations from the results of the mixture of two normal distributions. Data from Norwegian bottom trawl surveys, 1983 - 1999.

|             | Averaged         |        |  |  |
|-------------|------------------|--------|--|--|
| Age (years) | mean length (cm) | St.dev |  |  |
| 3           | 39.25            | 7.27   |  |  |
| 4           | 49.70            | 6.98   |  |  |
| 5           | 59.02            | 7.24   |  |  |
| 6           | 68.14            | 7.77   |  |  |
| 7           | 76.37            | 7.08   |  |  |

The averaged mean lengths and standard deviations (table 3.1) were used as input in the estimation of the percentages of retained fish at age in cod-ends with the different mesh sizes used in the time period 1946 - 1982 (table 3.2). The percentages of retained fish were used in method II to estimate the age proportions in the catches for the years 1946 - 1982. The 80 mm mesh size has very little selection and catch almost all three-year and older fish that enters the cod-end. An increase in mesh size improves the selection and the improvement is largest for the youngest ages. The retention of the fish eight year and older, was set to be 100% with all mesh sizes.

|                | Age (years) |     |     |     |     |  |  |
|----------------|-------------|-----|-----|-----|-----|--|--|
| Mesh size (mm) | 3           | 4   | 5   | 6   | 7   |  |  |
| 80             | 97          | 100 | 100 | 100 | 100 |  |  |
| 110            | 52          | 87  | 98  | 99  | 100 |  |  |
| 120            | 33          | 72  | 93  | 98  | 100 |  |  |
| 125            | 25          | 63  | 89  | 97  | 100 |  |  |
| 130            | 19          | 53  | 83  | 95  | 99  |  |  |
| 135            | 14          | 44  | 76  | 93  | 98  |  |  |

**Table 3.2** Percent retained fish at age in cod-ends with different mesh sizes. Averaged mean lengths at age and the respective standard deviations from table 3.1 were used as input.

Table 3.3 shows the estimated percentages of retained fish at age in cod-ends with mesh sizes of 125 mm and 135 mm for the years 1983 – 1998. These were used in method II and III, and were found by using the results from the mixture of two normal distributions (appendix, table B) as input. The retention rates at age vary between the years and the variation is largest for the ages, which lengths are within the selection range. An example: the retention at age three with a 125 mm mesh size change from 12% in 1988 to 51% in 1991. This change is as large as the decrease when the mesh size is changed from 110 mm to 135 mm in table 3.2. The differences between the maximum and minimum values for three-, four- and five-year olds are 39%, 47% and 27%, respectively, for the 125 mm mesh size (table 3.3). For the 135 mm mesh size the differences are 27%, 47% and 39% for the three-, four- and five-year old fish. The variations are caused by the variations in the mean lengths at age and in the standard deviations. The mean lengths have the biggest influence on the retention rates.

| 0 0  |       |       | 125 mm | 1     |       |       |       | 135 mm |       |       |
|------|-------|-------|--------|-------|-------|-------|-------|--------|-------|-------|
| Year | Age 3 | Age 4 | Age 5  | Age 6 | Age 7 | Age 3 | Age 4 | Age 5  | Age 6 | Age 7 |
| 1983 | 32    | 66    | 90     | 98    | 100   | 20    | 48    | 78     | 93    | 99    |
| 1984 | 34    | 78    | 91     | 98    | 100   | 21    | 62    | 82     | 95    | 99    |
| 1985 | 45    | 78    | 97     | 99    | 100   | 28    | 60    | 90     | 98    | 100   |
| 1986 | 18    | 75    | 96     | 97    | 100   | 9     | 57    | 88     | 94    | 100   |
| 1987 | 12    | 41    | 86     | 98    | 97    | 6     | 24    | 71     | 95    | 94    |
| 1988 | 12    | 36    | 70     | 91    | 100   | 6     | 20    | 51     | 81    | 98    |
| 1989 | 29    | 51    | 74     | 92    | 99    | 17    | 34    | 57     | 82    | 96    |
| 1990 | 46    | 74    | 89     | 96    | 99    | 30    | 57    | 77     | 90    | 97    |
| 1991 | 51    | 83    | 95     | 99    | 100   | 33    | 67    | 87     | 96    | 99    |
| 1992 | 47    | 79    | 95     | 99    | 100   | 30    | 62    | 88     | 97    | 99    |
| 1993 | 27    | 75    | 93     | 99    | 100   | 16    | 57    | 83     | 96    | 99    |
| 1994 | 18    | 61    | 87     | 96    | 99    | 10    | 43    | 75     | 91    | 98    |
| 1995 | 15    | 48    | 87     | 97    | 100   | 8     | 30    | 73     | 91    | 98    |
| 1996 | 14    | 47    | 77     | 96    | 99    | 8     | 30    | 60     | 89    | 98    |
| 1997 | 14    | 49    | 79     | 95    | 99    | 7     | 31    | 62     | 87    | 97    |
| 1998 | 14    | 47    | 81     | 95    | 99    | 8     | 29    | 65     | 87    | 97    |

 Table 3.3 Percent retained fish at age (years) in 125 mm and 135 mm mesh sized cod-ends using lengths given in the appendix (table B) as input.

# **3.2.2 Method II (The use of selection curves and VPA stock sizes)**

# 3.2.2.1 1946 - 1976

The discard rates of three- and four-year old fish are high for all countries during the time period 1946 - 1976 (figure 3.2). However, the discard rates of four-year olds are in general lower than the discard rates of three-year olds. There is a negative trend in the discard rates after the late 1950s, but the inter-annual variation is large and there are some high peaks in the 1960s and in the 1970s. USSR does in general have lower discard rates than England and Norway, with few exceptions. The differences between the countries are large during the time period 1951 - 1976.

The discard rates of five-year olds are low except for some years in the beginning of the time period and in a few later years. Norway has high discard rates of five-year old fish in 1946 – 1950.

All countries have a negative trend in the total discards by number and they have similar fluctuations throughout the period, 1946 – 1976. The total discard rates by USSR during this time period have a mean of 18% by number, while England and the group of other countries have a mean of 19% and 18%, respectively. Norway has a lower mean (15%) than the other countries.









**Figure 3.2** English ( $\Delta$ ), Norwegian ( $\Box$ ), USSRs (**x**) and other countries' ( $\circ$ ) total discards by number estimated by method II (1946 – 1976).
#### 3.2.2.2 1977 - 1981

Both the Norwegian and the group of other countries' discard rates show similar trends for the years 1977 – 1981, but the Norwegian discard rates are lower than for the group of others (figure 3.3). The discard rates of three-year olds have a low point in 1978 before an increase towards the end of the period. The discards of four-year olds are low in 1977 and 1979, but are high the remaining years. In 1978 the discard rates of four-year olds are higher than the discard rates of three-year olds. The discard rates of five-year olds are low in the four first years and a little higher in 1981. The discard rates of the total Norwegian catch are low throughout the period, while the discard rates of the remaining countries' total catches have a positive trend.



**Figure 3.3** Norwegian ( $\Box$ ) and other countries' ( $\circ$ ) total discards by number estimated by method II (1977 – 1981). The group of other countries includes USSR and England.

#### 3.2.2.3 1982 - 1992

All countries have similar fluctuations in the discard rates of three-year old fish, but there are some differences in what time the peaks occur (figure 3.4). USSRs discard rates of three-year olds are in general higher than the Norwegian and the other countries' discard rates. Norway has low discard rates of four- and five-year old fish throughout the period, 1982 – 1992. USSR and the other countries have a positive trend in the discard rates of four-year olds and in general low values for the five-year olds. The other countries have a few years with relatively high values for the five-year olds. The discard rates of the total catch have similar trends for Norway, USSR and the group of other countries, but Norway has in general lower values and smaller fluctuations.



**Figure 3.4** Norwegian ( $\Box$ ), USSRs (**x**) and other countries' ( $\circ$ ) total discards by number estimated by method II (1982 – 1992).

# **3.2.3** Method III (The use of selection curves and bottom trawl survey abundance indices)

#### **3.2.3.1** Method IIIa (The use of abundance indices)

The indices from the Norwegian bottom trawl surveys used as input in methods IIIa and IIIb are given in the appendix (table C).

The fluctuations in the discard rates of three-year old fish are large throughout the period, 1983 – 1998 (figure 3.5). Norway has in general lower discard rates of three-year olds than USSR and the group of other countries. All countries have a positive trend in the discard rates of three-year old fish and all countries have similar trends in the discard rates of four-year olds, but the differences between the countries are for some years large. The discard rates of five-year old fish are in general low, but the other countries and Norway have some years with high discard rates. All countries have similar trends in the discard rates of the total catch; increases in the mid 1980s and in the early 1990s, decreases in the late 1980s and in the end of the period. USSR



**Figure 3.5** Norwegian ( $\Box$ ), USSRs (**x**) and other countries' ( $\circ$ ) total discards by number estimated by method IIIa (1983 – 1998).

#### **3.2.3.2** Method IIIb (The use of adjusted abundance indices)

The discard rates estimated by method IIIb for the years 1983 - 1998 (figure 3.6) have the same trends as the discard rates estimated by method IIIa, but the discard rates estimated by method IIIb are in general 0-10% lower than the discard rates estimated by method IIIa. In 1983 are the differences up to 20%. The discard rates of three- and four-year olds were reduced the most.



**Figure 3.6** Norwegian ( $\Box$ ), USSRs (**x**) and other countries' ( $\circ$ ) total discards by number estimated by method IIIb (1983 – 1998).

#### **3.3** Comparison of the methods

The catch numbers at age estimated by the different methods were summed over all countries and the discard rates at age were calculated and plotted in the same graph (figure 3.7). The discard rates of three-year old fish estimated by method I have no trend and are much lower than the ones estimated by method II (1946 – 1976), with few exceptions. The rates estimated by method II have a negative trend, but there are large fluctuations. Discard rates of three-year olds estimated by method II (1977 – 1981) have a low point in 1978 and increases towards a peak in 1980. The discard rates of three-year olds estimated by method II (1982 – 1992) coincides with the rates estimated by method III (and b only for a few years. The II value is much higher in 1983 and lower in 1986 – 1988. The discard rates estimated by IIIa and b have a positive trend, but the fluctuations are large. The IIIb values are 1-11% lower than the IIIa values.

Both method I and method II (1946 – 1976) have large fluctuations in the discard rates of four-year old fish. There are no similarities between the methods. The values from method II have a negative trend while the values from method I have no trend. The discard rates estimated by method II (1977 – 1981) are low in 1977 and 1979, but are high the remaining years. The discard rates from method II (1982 – 1992), IIIa and IIIb coincides fairly well, except for in 1989 when II has a lower value. The discard rates are low in the early 1980s, have large fluctuations in the late 1980s and in the 1990s with high peaks in 1989 and 1994. The IIIb discard rates are 0-7% lower than the IIIa discard rates.

Results

The discard rates of five-year olds estimated by method I are in general higher than the discard rates estimated by method II (1946 – 1977). The II discard rates are low except for some years in the beginning of the period and some years in the end of the period. The II (1977 – 1981) discard rates are low except for in 1981. The discard rates estimated by method II (1982 – 1992), IIIa and IIIb are low throughout the period, with a few exceptions.

The discard rates of the total catch estimated by methods I and II (1946 - 1976) have similar fluctuations, except for the years 1946 - 1950 when the values from method I are low. The fluctuations in the discard rates estimated by method I are larger than the fluctuations in method II. The discard rates estimated by method II (1977 - 1981) are low, except for in 1981. The discard rates estimated by methods II (1982 - 1992), IIIa and IIIb have similar fluctuations, but the values from method II are in general a little lower than the IIIa and IIIb values. The values from method IIIb are 1-4% lower than the values from method IIIa.

#### **3.4 Correlation analysis**

By correlation analysis a positive linear relationship (r = 0.60) was found between the total discard rates, from method II (1946 – 1982) and IIIb (1983 – 1998), and the new total VPA stock numbers throughout the period, 1946 – 1998. A negative linear relationship (r = -0.87) was found in the same period between the total discard rates and the mesh sizes used.



3-year olds

4-year olds





100 % 80 % Discards 60 % 40 % 20 % 0 % 1946 1966 1958 1954 1962 1970 1978 1982 1986 1990 1998 950 1994 1974 Year

Figure 3.7 Total discards when the catches, estimated by the different methods, for all countries are summed.

**Total catch** 

Results

#### 3.5 Estimated discard rates compared with discard rates from literature

The English discard rates from methods I and II were compared with Garrods work (1967) (figure 3.8). The years 1950 - 1959 were chosen for comparison because these are the years that Garrod thought would be most accurate. He doubted the accuracy of the English catch per effort in 1946 - 1949 and his assumption that discarding was zero for the 1955, 1956 and 1957 year classes causes some discard values to be negative in the years 1960 - 1963 (Garrod, 1967). His assumption does also cause the discard rates for three-year olds in 1958 and 1959 and for four-year olds in 1959 to be low.

Both methods I and II give similar discard rates to Garrods values for three-year old fish (figure 3.8). Method I deviates the most from Garrods values and especially with the low values in 1950 and 1951. The estimated discard rates of four-year olds have similar trends to the values from Garrod, but both methods have years when the differences from Garrod are large. In the discard rates of five-year olds there are very little similarities between the estimated discards and Garrods values. In general, method I has higher values and method II has lower values than Garrod. The discard rates of the total catch estimated by method II are similar to the values from Garrod, while the discard rates estimated by method I are in general higher than Garrods. On the whole the discard rates estimated by method II have most similarities to the discard rates from Garrods work.





**Figure 3.8** English discards at age estimated by method I ( $\Box$ ) and II ( $\circ$ ) compared with results ( $\Delta$ ) from Garrods work (1967) for the period 1950 - 1959.

Total Norwegian discard rates estimated by the different methods were compared with available information from the literature (table 3.4). Method I give higher values than the maximum values from the literature. The discard rates by method II are above the values from the literature for 1964 and 1966, within the values for 1965 and 1967, and below for 1973. For 1987 all the estimated discard rates in trawl are within the boundaries from the literature and close to the minimum value. For 1989 the discard rate in trawl estimated by method IIIa is above the value from the literature and the discard rates in trawl estimated by method II and IIIa are below. Both the discard rate from method IIIa and the discard rate from method IIIb are close to the value from the literature. It is important to remember that the observations are made in limited areas for a limited time with few vessels. Thus, it is expected that these observations will deviate some from the estimates. The discard rates are calculated for larger areas and all the vessels that had catches in these areas during the year.

| Total discards by number Discards by number in trawl Discard rates from lite                           | Discard rates from literature |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| Year Method I Method II Method IIIa Method IIIb Method II Method IIIa Method IIIb Min Max S            | ource                         |  |  |
| 1964     40 %     12 %     4 %                                                                         | 1                             |  |  |
| 1965         29 %         16 %         1 %         24 %                                                | 3                             |  |  |
| 1966         33 %         16 %         1 %         2 %                                                 | 2                             |  |  |
| 1967         56 %         10 %         6 %         25 %                                                | 2                             |  |  |
| 1973         61 %         10 %         23 %         38 %                                               | 4                             |  |  |
| 1987         6 %         7 %         5 %         8 %         10 %         7 %         6 %         42 % | 5                             |  |  |
| 1989         1 %         4 %         3 %         2 %         8 %         6 %         7 %               | 6                             |  |  |

**Table 3.4** Norwegian discard rates estimated by the different methods compared with earlier observations and estimates from the literature. Sources 1 and 6 have only one value.

*Sources:* 1 Hylen (1965b), 2 Hylen (1967a), 3 Hylen (1967b), 4 Hylen & Smedstad (1974), 5 Hylen (1987) and 6 McBride & Fotland (1996).

#### **3.6 Virtual Population Analysis (VPA)**

The catch numbers at age estimated by method II (1946 – 1982) and IIIb (1983 – 1998) were used as input in the VPA and new stock numbers at ages three, four and five were estimated (table 3.5). The estimated discards have a large influence on the stock numbers at age three. The increases in stock numbers at age three have a mean of 26% for the years 1946 – 1949. In the 1950s is the mean increase 19%, but there is a peak at 40% in 1955. In the 1960s, 1970s, 1980s and 1990s are the mean increases 15%, 10%, 5% and 5%, respectively. There is a negative trend, but the increases in stock numbers at age three reflect the large variations in the discard rates. The increases in stock numbers at age four do also have large variations. There are a few periods with high increases in the 1940s, 1950s and 1970s, but for the remaining years the increases are moderate (0-11%). The negative value in 1983 is caused by some minor differences in the catch numbers at age used as input in the estimation of discards and as input in the AFWGs VPA (ICES, 2000). The increases in stock numbers at age five are low (0-5%) except for the years 1973 (11%) and 1974 (9%). The negative value in 1998 has the same explanation as the negative value at age four in 1983.

**Table 3.5** Stock numbers at age (in thousands) estimated by VPA with the adjusted catch numbers estimated by method II (1946-1982) and IIIb (1983-1998). The percentages show the increases from the AFWG stock numbers at age (ICES, 2000) to the estimated stock numbers at age.

|      | Estimated stock numbers (thousands) |           |         | Percent increase |             |             |
|------|-------------------------------------|-----------|---------|------------------|-------------|-------------|
| Year | Age 3                               | Age 4     | Age 5   | Age 3            | Age 4       | Age 5       |
| 1946 | 875 346                             | 602 579   | 407 163 | 20 %             | 4 %         | 1 %         |
| 1947 | 531 993                             | 676 806   | 465 099 | 27 %             | 14 %        | 0 %         |
| 1948 | 570 356                             | 392 309   | 497 476 | 29 %             | 14 %        | 5 %         |
| 1949 | 589 367                             | 416 668   | 285 459 | 26 %             | 16 %        | 3 %         |
| 1950 | 799 732                             | 414 016   | 291 200 | 13 %             | 9 %         | 1 %         |
| 1951 | 1 235 322                           | 586 054   | 302 346 | 14 %             | 2 %         | 0 %         |
| 1952 | 1 388 731                           | 889 509   | 401 768 | 17 %             | 3 %         | 0 %         |
| 1953 | 1 801 114                           | 975 004   | 600 908 | 13 %             | 2 %         | 0 %         |
| 1954 | 830 653                             | 1 321 053 | 684 303 | 29 %             | 5 %         | 0 %         |
| 1955 | 381 489                             | 615 696   | 907 875 | 40 %             | 19 %        | 2 %         |
| 1956 | 567 555                             | 274 235   | 399 344 | 29 %             | 25 %        | 3 %         |
| 1957 | 914 850                             | 387 496   | 161 710 | 14 %             | 10 %        | 2 %         |
| 1958 | 552 600                             | 672 221   | 262 135 | 11 %             | 4 %         | 2 %         |
| 1959 | 757 567                             | 391 906   | 406 694 | 11 %             | 3 %         | 0 %         |
| 1960 | 855 470                             | 534 350   | 240 047 | 8 %              | 1 %         | 0 %         |
| 1961 | 1 041 570                           | 620 707   | 347 043 | 13 %             | 1 %         | 0 %         |
| 1962 | 894 728                             | 739 196   | 382 556 | 23 %             | 4 %         | 0 %         |
| 1963 | 551 938                             | 614 025   | 429 068 | 17 %             | 10 %        | 0 %         |
| 1964 | 389 151                             | 396 165   | 361 790 | 15 %             | 5 %         | 0 %         |
| 1965 | 845 469                             | 293 844   | 266 134 | 9 %              | 8 %         | 0 %         |
| 1966 | 1 618 188                           | 647 435   | 203 168 | 2 %              | 4 %         | 2 %         |
| 1967 | 1 404 569                           | 1 249 506 | 465 035 | 9 %              | 0 %         | 1 %         |
| 1968 | 210 875                             | 1 088 071 | 876 095 | 24 %             | 6 %         | 0 %         |
| 1969 | 143 791                             | 155 947   | 699 033 | 28 %             | 15 %        | 2 %         |
| 1970 | 222 635                             | 104 415   | 92 541  | 13 %             | 17 %        | 4 %         |
| 1971 | 462 474                             | 164 397   | 65 112  | 14 %             | 6 %         | 2 %         |
| 1972 | 1 221 559                           | 358 357   | 115 892 | 20 %             | 10 %        | 1 %         |
| 1973 | 1 858 123                           | 947 409   | 249 400 | 2 %              | 19 %        | 11 %        |
| 1974 | 598 555                             | 1 246 499 | 583 612 | 14 %             | 2 %         | 9 %         |
| 1975 | 654 442                             | 382 692   | 627 793 | 5 %              | 10 %        | 3 %         |
| 1976 | 622 230                             | 477 390   | 233 608 | 1 %              | 2 %         | 1 %         |
| 1977 | 397 826                             | 426 386   | 280 645 | 14 %             | 0 %         | 0 %         |
| 1978 | 653 256                             | 277 410   | 198 204 | 2 %              | 11 %        | 0 %         |
| 1979 | 225 935                             | 460 104   | 164 243 | 14 %             | 2 %         | 1 %         |
| 1980 | 152 937                             | 171 954   | 300 312 | 11 %             | 11 %        | 0 %         |
| 1981 | 161 752                             | 116 964   | 116 337 | 7 %              | 7 %         | 4 %         |
| 1982 | 151 642                             | 125 307   | 81 780  | 0 %              | 4 %         | 1 %         |
| 1983 | 166 310                             | 115 423   | 82 423  | 0 %              | -1 %        | 3 %         |
| 1984 | 408 525                             | 133 333   | // /28  | 3%               | 0%          | 0%          |
| 1985 | 543 828                             | 324 072   | 96 327  | 4%               | 2%          | 0%          |
| 1986 | 1 114 252                           | 412 683   | 219 993 | 7%               | 2%          | 0%          |
| 1987 | 307 425                             | 767 656   | 268 642 | 7%               | 4%          | 0%          |
| 1988 | 222 819                             | 215 720   | 490 161 | 9%               | 3%          | 2%          |
| 1989 | 180 066                             | 166 955   | 151 576 | 4 %              | 6%          | 0%          |
| 1990 | 249 968                             | 139 922   | 114 006 | 3%               | 2%          | 1%          |
| 1991 | 418 955                             | 200 700   | 105 559 | 2%               | ∠ %         | 0%          |
| 1992 | 748 962                             | 333 517   | 151 9/3 | 4%               | 1%          | 0%          |
| 1993 | 1 002 933                           | 5/6 112   | 238 980 |                  | ∠ %         | 0%          |
| 1994 | 890 184                             | 744 062   | 420 039 | 9%               | 8 %         | U %         |
| 1995 | 133 004                             | 204 808   | 470 U48 |                  | ю %<br>Т 0/ | 3%          |
| 1996 | 407 093                             | 341 918   | 344 124 | 3%               | / %         | ڻ ٽ<br>4 مز |
| 1997 | 705 234                             | 238 202   | 193 102 | 3%               | 0%          | 4 %         |
| 1998 | 836 301                             | 429 147   | 144 629 | ۷ ۲ ۷            | 1 %         | -1 %        |

## 3.7 F<sub>med</sub>

The estimated and the AFWG stock numbers at age three (*R*) were plotted against spawning stock biomasses (*SSB*) (figure 3.9). The middle points of *SSB/R* were found to be 0.90 for the estimated stock numbers at age three and 0.98 for the AFWG stock numbers at age three.  $F_{med}$  was calculated for both series.  $F_{med}$  calculated with the adjusted stock numbers was a little higher (0.03) than the  $F_{med}$  calculated with the AFWG stock numbers. The AFWG stock numbers at age three and spawning stock biomasses were collected from the AFWG report (ICES, 2000).



**Figure 3.9** Stock numbers at age three from table 3.6 ( $\Box$ ) and from the AFWG report ( $\Diamond$ ) (ICES, 2000) plotted against the spawning stock biomass (*SSB*) (ICES, 2000). The lines go through the middle point of each data series and the respective  $F_{med}$ 's are attached. Solid line belongs to the estimated numbers and the broken line to the AFWG numbers.

The estimations in this work indicate that it is possible to use landings data, stock numbers at age estimates and selection curves to estimate the total catch and thereby the discard rates. Compared with the few data from the literature, my estimates show similar trends in the discard rates. The results indicate that the discard rates in the bottom trawl fishery for Northeast Arctic cod have been substantial in the time period 1946 – 1998 and they also indicate that the USSR had a discarding practice. There is a decreasing trend in the discard rates, but the fluctuations are large. A relationship was found between mesh sizes in use and discard rates, and between total stock size and discard rates. The discard rates are shown to be a large source of error in the VPA and will thus influence research and assessment based on the VPA estimates.

#### 4.1 The available data

The lack of details in the data material is a weakness in these types of analysis. It would be preferable if the catch data at age were stratified by country, area and quarter of the year, if the information on trawls, mesh sizes and selection curves was more detailed, and if population parameters such as distribution and length at age were available for the whole period and for more than one time a year. However, this was not the case.

Members of the Arctic Fisheries Working Group (AFWG) have provided the catch at age data used in this work. Age compositions of the catches from different countries, areas and gears have been available to a varying degree. The age compositions of the catches from countries lacking this information have been calculated, by the AFWG,

using the age compositions available from other countries. Thus, the statistics may not reflect the true landings, for instance if the vessels from the different countries have different discarding practices. This influences the estimated discard rates. In general this problem involves the countries that are included in the group of others, but might be the explanation to the Norwegian and English discard rates close to zero estimated by method I.

Information on mesh sizes in use and selection curves is scarce. I have gathered information on the legal mesh sizes, but the actual mesh sizes in use may be quite different. In the beginning of the period it was common to use a double cod-end or a chafer for protection of the cod-end, which resulted in a decrease of the effective mesh size. Studies in the 1960s showed that the effective mesh size in double codends were up to 20% less than the legal mesh size (ICES, 1965b; Hylen, 1965a). Studies in the 1960s also showed that cod-ends made out of synthetic fibers, which became common in use at that time, have better (<10%) selection properties, i.e. retain less small fish, than cod-ends made out of manila, which was the common material prior to the 1960s (Margetts et al., 1964; ICES, 1965b; Holden, 1971). It is common to apply cod-end mesh selection to the whole trawl, but as pointed out by Dickson (1993), in addition to the cod-end mesh size, the length composition of the catch is determined by the fish available, otterboard effects, sweep and sand cloud effects and ground-gear. Sweep herding is more efficient for larger fish than small ones and the efficiency will vary with visibility (Engås & Godø, 1989b). Relatively more small cod escape beneath the fishing line than larger cod and a larger proportion with bobbins gear than with rockhopper gear (Engås & Godø, 1989a). Their experiments imply that only 50% of three year olds present in the fishing area enter

the trawl mouth when bobbins gear is used, but this will vary with respect to the length distribution at age. Large fish are able to leave the trawl mouth even after entering it (Wardle, 1986), and Huse et al. (2000) suggest a bell shaped selection curve for the total trawl. However, in lack of any better model, the sigmoid selection curve for the cod-end was used as a selection curve for the whole gear in method II and III.

For the years 1983 – 1999 survey data from the Norwegian bottom trawl surveys during winter were available. The bottom trawl survey data was chosen because the bottom trawl indices normally show better correlation with the converged VPA than the acoustic indices (ICES, 1999b) and because the indices are independent of the commercial catches. However it is important to remember that the coverage of threeand four-year old cod is poorer than for the older ages, especially prior to 1993 (Korsbrekke et al., 1999). This affects the indices and might affect the mean lengths at age. The larger fish in an age group conduct more extensive south- and westwards directed winter migration than smaller individuals (Nakken, 1994), thus an incomplete survey coverage of an age group (east- and northwards) will result in that the estimated mean length at age is too large. This may be a problem for three-year old cod prior to 1993 (Michalsen et al., 1998). Another problem is that the entire mature portion of the stock is not covered by the Norwegian bottom trawl survey due to the spawning migration (ICES, 2000). The survey indices were adjusted in method IIIb to avoid this problem. Other survey data were also available, but due to differences in survey methods and coverage it was decided not to use these data.

The general problems with the data material are mentioned above, while problems and scarcities of the data material affecting the different methods will be discussed later.

#### 4.2 Method I (No discarding in USSR catches)

In method I were the different countries' catches adjusted by the USSR catches and the estimated discard rates are high for the ages three, four and five. The assumptions in this method were: (1) that the USSR landings were representative for the USSR catches, i.e. the USSR had no discards, (2) that the catches by the different countries were taken at approximately the same time and place, and (3) that the trawls used had similar selection properties.

In earlier work the assumption of no USSR discards has been made (e.g. Hylen & Rørvik, 1983), which is a reasonable assumption due to the fact that the Soviet Union used most of the fish for their internal market, had fixed prices and the inner market presumably was large enough to absorb all the fish they could get (Jakobsen, 1999). Thus, one should expect that discarding of small fish would be limited or absent. However, very little small fish is present in the catch statistics in relation to the small mesh sizes that were in use. The validity of the USSR age distributions in the catches prior to 1964 was questioned by the AFWG in 1965 (ICES, 1965a). The reason for this was that the USSR applied catch-compositions from scouting vessels on commercial catches. There are also rumors that the USSR caught and landed more small fish than are present in the catch statistics. If this is true or if the USSR had a discarding practice the first assumption is wrong and the discard rates were estimated on false premises.

Fish stocks do in general have patchy distributions (Pennington, 1996) and have a tendency to be clustered by size (Pennington & Vølstad, 1994). The Northeast Arctic cod stock is distributed by size and age; small fish is distributed further north- and eastwards than larger fish (Nakken & Raknes, 1987; Ottersen et al., 1998; Michalsen, 1999), large fish tend to be in deeper water than smaller fish (ICES, 1965a) and the annual migrations vary, as the fish grow older (Bergstad et al., 1987). Thus, to be able to adjust one country's catch by the USSR catch data it is of high importance that the countries fished on the same proportions of the cod stock. This made the assumption that the trawlers from the different countries were distributed equally in both time and space necessary. Method I was run for the time period 1946 – 1976 and this was before the introduction of the national economic zones (NEZ) in 1977 (Halliday & Pinhorn, 1996), and before the quotas became effective. The first total allowable catch (TAC) for cod was introduced in 1975, but according to Nakken (1998) this was far too high and no effective management measures had been in operation for cod prior to the establishment of the NEZ. Thus, prior to 1977 trawlers from all countries could fish freely outside the 12 mile zone except for in some seasonal no trawling zones (Halliday & Pinhorn, 1996). Because the vessels could go where they wanted and because rumors of good fishing in one area spread fast due to the communication between the vessels on open radio bands, it is plausible that the vessels from the different countries were gathered in the same areas. On the other hand it is possible that vessels from the USSR would try to find good fishing grounds closer to their home ports and had a more easterly distribution than the western countries' vessels. This would probably cause differences in the catch compositions, which violates my assumption.

The final assumption was that the selection properties of the trawls used by the different countries were similar. It is not very likely that this was true for each vessel due to the many factors affecting the selection. Factors originating from the vessel, the trawling procedure, the trawl, the environment and the fish are all known to influence the size selection (Wileman et al., 1996). The factors originating from the environment and the fish will be similar if the second assumption is valid. The variance in selection due to vessel factors and trawling procedures will not be of any importance because of the large numbers of vessels and hauls in the pooled data, assuming that there were no general differences between the countries, for instance that one country in general had larger vessels with more engine power than another country. Length and engine power of a vessel are found to affect the catching efficiency (Salthaug & Godø, 2000), better efficiency is equivalent to larger catches and selectivity may be affected by catch size (Wileman et al., 1996). Differences in trawl characteristics such as mesh size, cod-end material and use of chafer will produce different selection properties. The use of chafer was assumed to be similar between the countries, but Norway used larger mesh sizes than the USSR after 1963 and the change from manila to synthetic fibers may have occurred at different times for the countries. The difference in mesh size between Norway and the USSR is a possible explanation to the high Norwegian discard rates for the years 1963 - 1976estimated by method I.

The strength of this method is that it is direct and easy to apply to the data. However, due to all the problems discussed above the results from method I are not given any credibility, most of all because of the doubts about the validity of the USSR catch compositions. Thus, method I is rejected as an adequate method for estimating

discards. Although the estimates are not reliable, they outline the differences and similarities between the countries in the landings of three-, four- and five-year old fish in relation to the landings of the six-year and older fish.

#### 4.3 The use of selection curves

In lack of any information on selection curves from the trawls in use, it was decided to establish the selection curves by equation (3) and (4) (from Halliday et al., 1999). These linear regression results were established from a number of cod-end selectivity experiments with different mesh sizes conducted on cod in the 1980s and 1990s. All the experiments included in the regressions were concerning cod-end material made out of synthetic fibers and without any type of chafers. The selection curves established are thus not representative for the manila trawls or the trawls with double cod-ends, which both were common prior to the mid-1960s. The lower selectivity in the trawls actually used, will cause the estimated discard rates to be too low. For the time period 1946 - 1953, when the legal mesh size was 80 mm, the effect will not be large since most of the fish at age three, four and five were retained in the cod-end anyway (table 3.2), but the effect may be larger for the years when the minimum mesh size was 110 mm. In this work the minimum legal mesh sizes were used, but in most cases during the recent decades the mean mesh size in a cod-end is larger than the minimum legal. Another problem is the use of sorting grids in the 1990s. Both these factors will cause an upward bias to the estimated discard rates. While the effect of the difference between legal and nominal mesh size is assumed to be small, the effect of a sorting grid is larger. The use of sorting grids was mostly experimental in the early 1990s, but according to Isaksen (1997) most of the Norwegian trawlers used the sorting grid on a voluntary basis in 1996 and it became mandatory both in Norwegian and Russian zones in 1997. The discard rates are thus overestimated for the years 1996 – 1998.

Cod-end size selection is related to the maximum girth of the fish. However, for most fish species there is a significant linear relationship between girth and length, and in selectivity experiments it is common to measure the length of the fish (Wileman et al., 1996). Thus, the selection properties are calculated with regard to length. The catch data were given in numbers at age, and to be able to estimate catch compositions, the selection curves had to be converted into selection at age. This was done by establishing the length at age distributions in the population and applying the selection curves at these distributions.

The length distribution at age in the population varies interannually and through the year. The annual length distributions at age in the start of the year were found by the survey data and the length distributions at age through the year were found by the method for a mixture of two normal distributions. This method is not common in use, but it seems appropriate in this case when it is assumed that the growth is linear, that the fishing mortality (F) is constant through the year and that the length distributions at age in the population are normal. Jørgensen (1992) suggested that cod has a seasonal growth curve with better growth during summer. However, due to the migration pattern of immature cod; feeding in cold water during summer/fall and feeding on capelin in warmer water during winter/spring (Godø & Michalsen, 2000), and due to the positive relationship between temperature and growth (Michalsen et al., 1998), it is reasonable to assume that cod has a more linear growth curve. Constant F is a common assumption, e.g. in the VPA, although it is wrong when the fishery is

seasonal and for the youngest ages which are recruited to the fishery as they grow. A variable F would influence the magnitude of p, which weighs the length distributions in equation (7) and (8). The values of F used to calculate p are taken from the AFWG report (ICES, 2000) and these values are too small because of the discarded catches. Thus, p is underestimated and the length distributions from the mixture method are biased upwards, which causes the discard rates to be overestimated. However, the errors caused by F are small and negligible. The assumption of normal length at age distributions in the population is reasonable and common.

Prior to 1983 there were no survey data available and averaged mean lengths at age and standard deviations from the mixture method were used. These averaged values are wrong for most years, due to the short-term (1 - 5 years) variation in mean length at age found by Jørgensen (1992). The averaged values may also be overestimated because of the bias in the estimated mean length at age from the surveys prior to 1993, as discussed above. The selection at age is directly dependent on the length at age distribution and any variation or bias in the length at age distribution will influence the selection at age. Thus, if the length distributions from the time period 1983 – 1992 are biased upwards, the estimated discard rates are overestimated both for this period and for the time period when the averaged values were used. However, Korsbrekke (1997) estimated the upward bias in the length at age from the surveys (1986 – 1993) to be less than 2% for age three and less than 1% for age four and five. A low bias like that has little effect on the estimated discard rates. The errors caused by using averaged mean lengths at age prior to 1983 are larger and may have contributed to the short-term variation in the estimated discard rates for these years.

Although there are many factors influencing the selection at age, the mesh size and the length at age distribution are the most important. Both these two factors are shown to influence the selection at age to a great extent (tables 3.2 and 3.3) and any errors in these factors will bias the estimated discard rates and violate the credibility of the estimates. There is little doubt that the mesh sizes and the length distributions used in method II and III are biased. The biases vary with time due to the sources of errors mentioned above and it is thus difficult to quantify the magnitude of these biases.

Other factors than selection at age that are important in estimating catch compositions are the abundance and the availability of the age groups. In method II and III it is assumed that all age groups are equally available to the trawl fleets. This is rarely the case, due to the different distribution of cod by size and age, the fishermen may avoid small fish as they target the larger fish. This is a serious source of error in method II and III, and is likely to be related to the abundance of large fish. However, it is reasonable that while searching for the larger fish they will encounter and catch small fish, but due to experience and communication between the vessels one cannot say that they fish randomly. Thus, it would be favorable if the distribution of the age groups and the distribution of the trawler fleets were included in the models, but the lack of data would cause problems. The area closure system will also contribute to fishermen's avoidance of small fish. However, according to Isaksen (1997), most fishing grounds open for commercial fishing will on average give a by-catch of undersized cod between 5 and 10% in number. The fact that fishermen strive to target large fish to maximize profits violates the assumption and may cause the estimated discard rates to be overestimates. The magnitude of this bias will vary from year to year, relative to year-class strength. Only catches taken in ICES fishing areas 1 and 2b

were adjusted and this may limit this bias. The effect of the abundance estimates, used in method II and III, on the catch compositions will be discussed later.

#### 4.3.1 Method II (The use of selection curves and VPA stock sizes)

For the first decades in the time period dealt with in this work, VPA estimates are the only source for abundance of the Northeast Arctic cod stock and these were used as input in the estimation of catch compositions. An obvious problem rises when VPA stock estimates, which depend on catch data, are used to estimate new catch compositions. Errors in the original catch data, caused by discards, will bias the estimates. To minimize this problem, the adjusting of the catches and the VPA estimates were put in a loop in such a way that the catches were adjusted three times in total. The adjusted catches converged rapidly and the differences between the two last adjustments were in general less than 1%. Thus, the bias caused by discards is small and negligible.

Although there are many sources of errors to the discard rates estimated by method II, the general trends for the time period 1946 – 1976 are corresponding with the expected results: decreases in discard rates due to increases in mesh sizes in use and the tendency towards keeping smaller fish in the 1960s (ICES, 1965a). The estimated discard rates are also similar to the estimates by Garrod (1967) and observations by Hylen (1965b; 1967a; 1967b; 1987) and Hylen & Smedstad (1974). The high USSR discard rates are not as expected, but the apparent lack of small fish in their landings may not be caused by discards. This may just as well be caused by errors in their sampling procedures, for instance will errors in the age determinations cause biases in their landing data.

For the years 1977 – 1981 were the age distributions from the pooled catch data, including all countries, areas and gears, assigned to Norwegian trawl and the other countries' catches. This will cause the estimated discard rates to be incorrect, but it is reasonable to assume that discards occurred during this period too. The differences in discard rates between the two groups are caused by the difference in mesh size. There is a problem occurring at the end of this period, which may cause the discard rates to be overestimated. The problem is that due to cold water in the Barents Sea and that the dominant year-class in the stock was relatively old, the cod stock had an extreme westerly distribution (Midttun et al., 1981) and caused the proportions of the total catches taken by conventional gears to increase. This affects the estimated discard rates the proportion of older fish in the catches. Norway and the other countries used different mesh sizes in the cod-ends, 130 and 120 mm respectively, and the bias will be larger for the countries that used 120 mm mesh size.

The estimated discard rates for the years 1982 – 1992 were more or less as expected, but the low values for three-year olds in 1986 and 1987 were not as expected. These values were expected to be higher due to the strong year-class in 1983 and due to reports of high discards for these years (Mehl, 1991; Nakken, 1994). One explanation to this is the low values for selection at age (table 3.3), but this does not explain it all. It is possible that when the VPA numbers at age are largely biased due to discards, the estimated discard rates were underestimated even though the method was run in a loop. Another factor that affects the results is discarding of fish older than five years due to poor condition.

# 4.3.2 Method III (The use of selection curves and bottom trawl survey abundance indices)

In method III were the indices from the bottom trawl surveys used as input for the age distribution of the stock. This was done to avoid the problems that occurred when VPA numbers were used to adjust the catches. The results from method IIIa and b were as expected in the 1980s, with higher values for three-year olds in 1986 and 1987 than method II. It was expected that the discard rates would be lower in the 1990s due to the discard ban, but the results showed no effect of the discard ban. There are two factors that may cause the discard rates to be overestimated during this period, the area closure system and the introduction of the sorting grids. The discard rates estimated for Norwegian trawl in 1985 and the following years may also be biased upwards because the pooled trawl catches include catches taken in area 2a. Normally, catches taken in area 2a contain relatively more large fish than catches in area 1 and 2b.

The discard rates estimated by method IIIb, when the mature proportion of the stock were added to the indices, were as expected lower than the discard rates from method IIIa.

#### 4.4 Correlation analysis

The negative relationship between mesh sizes in use and the total discard rates was as expected and supports the validity of the results. The positive relationship between stock sizes and total discard rates may be explained by the fact that larger fish is more marketable and gives better profit than small fish, and that when the stock is large and there is no problem in catching a lot of fish, the fishermen sort out and discard the

small fish in a larger degree than when the stock is small. In ICES (1965a) did the AFWG point out that there had been a tendency towards keeping smaller fish during the period from 1950 to 1963. The stock did also show a strong decline during this period. On the other hand, the fishermen may target the larger fish more effectively when the stock is large and thus decrease the proportions of small fish in the catches. The AFWG (ICES, 2000) suggests that due to reduced abundance of larger cod, the fishery target and catch smaller and smaller fish to fill the quota. This would cause the relationship between stock size and total discard rate to be misinterpreted and the discard rates to be overestimated when the stock is large.

### 4.5 Virtual Population Analysis (VPA)

New stock numbers at age three, four and five were estimated by traditional VPA using the adjusted catch numbers from method II (1946 –1982) and method IIIb (1983 – 1998) as input. The adjusted catches from these two methods were chosen because these seemed to produce the most reliable results. The estimated discard rates have large influence on the stock numbers estimated by VPA, especially at age three. The large variations in increases reflect the variations in the estimated discard rates.

## 4.6 F<sub>med</sub>

The calculation of  $F_{med}$  was done as an example to show how errors in the VPA, as indicated by the estimated discards, affect analysis based on the VPA estimates. The increase in numbers at age three caused a small increase in the value of  $F_{med}$ . The value calculated with numbers from the AFWG (ICES, 2000) deviates some from the

value in the report (0.46), but this is probably caused by different number of decimals used in the input data.

 $F_{med}$  has been used in the management of Northeast Arctic cod for the recent years and is a reference point for calculating the total allowable catch (ICES, 1999a). The  $F_{med}$  is thought of as an upper limit for the average exploitation rate of the cod stock (Toresen et al., 2000). The estimated magnitudes of spawning stock biomasses are also important in the calculation of  $F_{med}$  and in other spawning stock biomass (*SSB*) – recruitment (*R*) analysis (Jakobsen, 1992). Problems associated with using VPA-based estimates in *SSB* – *R* analysis are discussed in Marshall et al. (1998) and in Marshall et al. (2000) they suggests that the reproductive potential of the stock, i.e. the spawner quality and not only the spawner quantity, should be incorporated in *SSB* – *R* analysis and in the calculation of biological reference points.

### 4.7 Conclusions and suggestions for further work

The differences between estimated and official catch numbers give numbers of fish caught, but not reported, i.e. discarded fish, fish retained for industrial use or illegal landings. The estimates of discards in the present work are plausible as examined through comparison with earlier published reports on discards in the trawl fishery for Northeast Arctic cod and give some insight into the possible level of discards throughout the period. Results show that it is possible to estimate discard rates by using information on selectivity and stock abundance. Due to the geographical distribution of the Northeast Arctic cod by age and length, more reliable results might be obtained if information on distribution at age and more detailed information on the distribution of the trawler fleet were included in the methods. A factor describing the

availability of an age group to the trawl and a selection curve describing the selectivity of the whole trawl should also be included.

The magnitude of the discards may not be precise, but discards have undoubtedly taken place throughout the period. The results show that discards give a serious bias in the VPA, which is not accounted for in the assessment, and the Arctic Fisheries Working Group need to consider a revision of the catch numbers at age that are used in the VPA.

# Acknowledgements

I would like to thank my supervisors Odd Nakken and Øyvind Ulltang for their help. They have contributed with valuable ideas and useful advice. Especially, I would like to thank Odd Nakken for an interesting problem and for many clarifying discussions. Thanks to Bjarte Bogstad for providing me with the data and to Hans Petter Knudsen for sending me out at sea where I could learn more about trawling. I would also like to thank my fellow students for many good memories from the student years.

# References

- Bergstad, O. A., T. Jørgesen & O. Dragesund (1987). Life history and ecology of the gadoid resources of the Barents Sea. Fisheries Research, 5 (2-3): 119-161.
- Bhattacharyya, G. K. & R. A. Johnson (1977). Statistical concepts and methods. John Wiley & Sons, New York, NY, 639 pp.
- Brander, K. (ed.) (1994). Spawning and life history information for North Atlantic cod stocks. ICES cooperative research report, no. 205. 150 pp.
- Crean, K. & D. Symes (1994). The discards problem: towards a European solution. Marine Policy, 18 (5): 422-434.
- DeAlteris, J. T. & D. M. Reifsteck (1993). Escapement and survival of fish from the codend of a demersal trawl. ICES marine science symposia, Copenhagen, 196: 128-131.
- Dickson, W. (1993). Estimation of the capture efficiency of trawl gear. I: Development of a theoretical model. Fisheries Research, 16: 239-253.
- Engås, A. & O. R. Godø (1989a). Escape of fish under the fishing line of a Norwegian sampling trawl and its influence on survey results. Journal du Conseil International pour l'Exploration de la Mer, 45 (3): 269-276.
- Engås, A. & O. R. Godø (1989b). The effect of different sweep lengths on the length composition of bottom-sampling trawl catches. Journal du Conseil International pour l'Exploration de la Mer, 45 (3): 263-268.
- Garrod, D. J. (1967). Population dynamics of the Arcto-Norwegian cod. Journal of the Fisheries Research Board of Canada, 24 (1): 145-183.
- Godø, O. R. & K. Michalsen (2000). Migratory behaviour of north-east Arctic cod, studied by use of data storage tags. Fisheries Research, 48 (2): 127-140.
- Halliday, R. G., C. G. Cooper, P. Fanning, W. M. Hickey & P. Gagnon (1999). Size selection of Atlantic cod, haddock and pollock (saithe) by otter trawls with square and diamond mesh codends of 130-155 mm mesh size. Fisheries Research, 41 (3): 255-271.
- Halliday, R. G. & A. T. Pinhorn (1996). North Atlantic fishery management systems: A comparison of management methods and resource trends. Journal of Northwest Atlantic Fishery Science, 20: 3-135.
- Hilborn, R. & C. J. Walters (1992). Quantitative fisheries stock assessment. Chapmann & Hall, New York, 570 pp.
- Holden, M. J. (ed.) (1971). Report of the ICES/ICNAF Working Groups on selectivity analysis. ICES cooperative research report series A, no. 25: 1-144.
- Huse, I., S. Løkkeborg & A. V. Soldal (2000). Relative selectivity in trawl, longline and gillnet fisheries for cod and haddock. ICES Journal of Marine Science, 57 (4): 1271-1282.
- Hylen, A. (1965a). Beskatningen av torsk- og hysebestanden i våre nordlige farvann. Fiskets Gang, no. 37: 539-543 (In Norwegian).
- Hylen, A. (1965b). Utkast av torsk fra norske trålfangster. Fiskets Gang, no. 30: 433-435 (In Norwegian, summary in English).
- Hylen, A. (1967a). Discarding of fish in North-East Atlantic. International Council for the Exploration of the Sea, Council Meeting 1967 / F: 35. 6 pp.

- Hylen, A. (1967b). On the estimation of cod and haddock discarded by trawlers using different chafers. ICES cooperative research report series B 1966: 65-76.
- Hylen, A. (1987). Størrelsesfordeling til trålfanget torsk 1987. Notat til Fiskeridirektøren, Havforskningsinstituttet, Bergen. 8 pp. (Unpublished paper in Norwegian).
- Hylen, A. & C. J. Rørvik (1983). Estimating the maturity ogive for Northeast Arctic cod by a modified mesh assessment model. Contribution to the PINRO/HI-symposium in Leningrad, September 1983, 36 pp.
- Hylen, A. & O. M. Smedstad (1974). Observations from the Barents Sea in spring 1973 on the discarding of cod and haddock caught in bottom and midwater trawls fitted with double cod ends. International Council for the Exploration of the Sea, Council Meeting 1974 / F: 45.8 pp.
- ICES (1965a). Arctic Fisheries Working Group. Report of meeting in Hamburg, 18-23 January 1965. ICES cooperative research report series B 1965, Annex 1: 15-32.
- ICES (1965b). The Liaison Committee's Report to the North-East Atlantic Fisheries Commission, 1965. ICES cooperative research report series B 1965. 187 pp.
- ICES (1999a). Comprehensive assessment of NE Arctic cod. Pp. 118-124. *In* Report of the Comprehensive Fishery Evaluation Working Group. International Council for the Exploration of the Sea, Council Meeting 1999 / D: 1. Ref. ACFM.
- ICES (1999b). Report of the Arctic Fisheries Working Group. International Council for the Exploration of the Sea, Council Meeting 1999 / ACFM: 3. 276 pp.
- ICES (2000). Report of the Arctic Fisheries Working Group. International Council for the Exploration of the Sea, Council Meeting 2000 / ACFM: 3. 312 pp.
- Isaksen, B. (1997). The Norwegian Approach to Reduce Bycatch and Avoid Discards. Papers presented at the Technical Consultation on Reduction of Wastage in Fisheries. Tokyo, Japan, 28 October - 1 November 1996. FAO Fisheries Report, No. 547, Rome, suppl.: 89-93.
- Jakobsen, T. (1992). Biological reference points for North-East Arctic cod and haddock. ICES marine science symposia, Copenhagen, 49: 155-166.
- Jakobsen, T. (1993). Management of Northeast Arctic cod: past, present and future? Pp. 321-338. In Kruse, G., D. M. Eggers, R. J. Marasco, C. Pautzke & T. J. Quinn (eds.): Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations, Anchorage, October 21-24, 1992. Alaska Sea Grant College Program, Fairbanks, Alaska, 1993, 825 pp.
- Jakobsen, T. (1999). Fisheries management in the Barents Sea. International Council for the Exploration of the Sea, Council Meeting 1999 / Q: 10. 11 pp.
- Jean, Y. (1963). Discards of fish at sea by Northern New Brunswick draggers. Journal of the Fisheries Research Board of Canada, 20 (2): 497-524.
- Jørgensen, T. (1992). Long-term changes in growth of North-east Arctic cod (*Gadus morhua*) and some environmental influences. ICES Journal of Marine Science, 49 (3): 263-277.
- Korsbrekke, K. (1997). Sampling gear selectivity and its effect on estimates of mean length at age. Proceedings of the 7<sup>th</sup> Russian/Norwegian Symposium: Gear Selection and Sampling Gears. Murmansk, 23-27 June 1997. 185-193.
- Korsbrekke, K., S. Mehl, O. Nakken & M. Pennington (1999). Acoustic and bottom trawl surveys; How much information do they provide for assessing the Northeast Arctic cod stock? International Council for the Exploration of the Sea, Council Meeting 1999 / J: 7. 14 pp.

- Løkkeborg, S. & A. V. Soldal (1995). Vulnerability to predation of small cod (*Gadus morhua*) that escape from a trawl. International Council for the Exploration of the Sea, Council Meeting 1995 / B: 15.7 pp.
- Margetts, A. R., G. Saetersdal, A. von Brandt & A. I. Treschev (1964). The 1959 International Arctic trawl mesh selection experiment. ICES cooperative research report series A, no. 2: 31-137.
- Marshall, C. T., O. S. Kjesbu, N. A. Yaragina, P. Solemdal & Ø. Ulltang (1998). Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? Canadian Journal of Fisheries and Aquatic Sciences, 55 (7): 1766-1783.
- Marshall, C. T., N. A Yaragina, B. Ådlandsvik & A. V. Dolgov (2000). Reconstructing the stockrecruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Canadian Journal of Fisheries and Aquatic Sciences, 57 (12): 2433-2442.
- McBride, M. M. & Å. Fotland (1996). Estimation of unreported catch in a commercial trawl fishery. Journal of Northwest Atlantic Fishery Science, 18: 31-41.
- McLaughlin, M. (1999). A compendium of common probability distributions. Regress +, Appendix A, Version 2.3, http://www.geocities.com/~mikemclaughlin/math\_stat/Dists/Compendium.html, 120 pp.
- Mehl, S. (1991). The Northeast Arctic cod stock's place in the Barents Sea ecosystem in the 1980s: an overview. Pp. 525-534. *In* Sakshaug, E., C. C. E. Hopkins & N. A. Øritsland (eds.): Proceedings of the Pro Mare Symposium on Polar Marine Ecology, Trondheim, 12.-16. May 1990. Polar Research 10 (2).
- Mehl, S. (1999). Botnfiskundersøkingar i Barentshavet vinteren 1999. Fisken & Havet, no. 13. 70 pp. (In Norwegian, summary in English).
- Michalsen, K. (1999). Distribution of gadoids in the Barents Sea; Impact on survey results. Dr. Scient. Thesis, Department of Fisheries and Marine Biology, University of Bergen, 1999. 36 pp.
- Michalsen, K., G. Ottersen & O. Nakken (1998). Growth of North-east Arctic cod (*Gadus morhua* L.) in relation to ambient temperature. ICES Journal of Marine Science, 55 (5): 863-877.
- Midttun, L., O. Nakken & A. Raknes (1981). Variasjoner i utbredelse av torsk i Barentshavet i perioden 1977-1981. Fisken & Havet, no. 4. 16 pp. (In Norwegian, abstract in English).
- Millar, R. B. (1993). Analysis of trawl selectivity studies (addendum): implementation in SAS. Fisheries Research, 17 (3-4): 373-377.
- Millar, R. B. & R. J. Fryer (1999). Estimating the size-selection curves of towed gears, traps, nets and hooks. Reviews in Fish Biology and Fisheries, 9 (1): 89-116.
- Millar, R. B. & S. J. Walsh (1992). Analysis of trawl selectivity studies with an application to trouser trawls. Fisheries Research, 13 (3): 205-220.
- Motos, L. (1998). Estimation of PA reference points for Northeast Arctic cod, haddock and saithe. Working paper to the Arctic Fisheries Working Group, Copenhagen 19-27 August 1998.
- Nakken, O. (1994). Causes of trends and fluctuations in the Arcto-Norwegian cod stock. ICES marine science symposia, Copenhagen, 198: 212-228.
- Nakken, O. (1998). Past, present and future exploitation and management of marine resources in the Barents Sea and adjacent areas. Fisheries Research, 37 (1-3): 23-35.
- Nakken, O. & A. Raknes (1987). The distribution and growth of Northeast Arctic cod in relation to bottom temperatures in the Barents Sea. Fisheries Research, 5 (2-3): 243-252.

- Ottersen, G., K. Michalsen & O. Nakken (1998). Ambient temperature and distribution of north-east Arctic cod. ICES Journal of Marine Science, 55 (1): 67-85.
- Pennington, M. (1996). Estimating the mean and variance from highly skewed marine data. Fishery Bulletin, 94 (3): 498-505.
- Pennington, M. & J. H. Vølstad (1994). Assessing the effect of intra-haul correlation and variable density on estimates of population characteristics from marine surveys. Biometrics 50: 725-732.
- Salthaug, A. & O. R. Godø (2001). Standardisation of commercial CPUE. Fisheries Research, 49 (3): 271-281.
- Schöne, R. (1999). Biological investigations onboard a German commercial trawler in the NE-Atlantic and observations on the fishery situation. Working paper to the Arctic Fisheries Working Group, Copenhagen, 23 August 1 September 1999, no. 4. 16 pp.
- Sissenwine, M. P. & J. G. Shepherd (1987). An alternative perspective on recruitment overfishing and biological reference points. Canadian Journal of Fisheries and Aquatic Sciences, 44 (4): 913-918.
- Soldal, A. V. (ed.) (1996). Bidødelighet i nordiske trålfiskerier. Volum 1: Feltforsøk. Nord, 1996 (16). 120 pp. (In Norwegian, summary in English).
- Soldal, A. V., A. Engås & B. Isaksen (1993). Survival of gadoids that escape from a demersal trawl. ICES marine science symposia, Copenhagen, 196: 122-127.
- Soldal, A. V. & A. Engås (1997). Survival of young gadoids excluded from a shrimp trawl by a rigid deflecting grid. ICES Journal of Marine Science, 54 (1): 117-124.
- Soldal, A. V., B. Isaksen, J. E. Marteinsson & A. Engås (1991). Scale damage and survival of cod and haddock escaping from a demersal trawl. International Council for the Exploration of the Sea, Council Meeting 1991 / B: 44. 12 pp.
- Toresen, R. et al. (2000). Havets ressurser 2000. Fisken og Havet, Særnr 1: 2000. 156 pp. (In Norwegian, summary in English).
- Wardle, C. S. (1986) Fish behaviour and fishing gear. Pp. 609-643. *In* Pitcher, T. J. (ed.): Behaviour of Teleost Fishes, second edition. Fish and Fisheries, No. 7. Chapman & Hall, London, 1993
- Wileman, D. A., R. S. T. Ferro, R. Fonteyne & R. B. Millar (eds.) (1996). Manual of methods of measuring the selectivity of towed fishing gear. ICES cooperative research report, no. 215. 126 pp.
# Appendix

**Table A** Catch numbers (1000) at age by country from the Arctic Fisheries Working Group and adjusted catch numbers from method (M.) I, II and III.

|       | 1946    |         |         | 1947    |           |         | 1948    |         |         | 1949        |               |          |
|-------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|-------------|---------------|----------|
|       | Norway  |         |         | Norway  |           |         | Norway  |         |         | Norway      |               |          |
| Age   | AFWG    | M. I    | M. II   | AFWG    | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG        | M. I          | M. II    |
| 3     | 55      | 546     | 2 820   | 54      | 72        | 4 269   | 35      | 35      | 5 851   | 146         | 149           | 5 948    |
| 4     | 236     | 927     | 1 998   | 876     | 1 368     | 5 592   | 302     | 302     | 4 158   | 533         | 836           | 4 335    |
| 5     | 467     | 1 240   | 1 399   | 2 293   | 4 620     | 3 896   | 1 992   | 3 180   | 5 397   | 1 752       | 3 177         | 3 177    |
| 6     | 663     |         |         | 3 190   |           |         | 4 153   |         |         | 5 653       |               |          |
| 7     | 810     |         |         | 3 908   |           |         | 8 439   |         |         | 5 635       |               |          |
| 8     | 1 956   |         |         | 2 507   |           |         | 4 335   |         |         | 4 519       |               |          |
| 9     | 20 941  |         |         | 6 964   |           |         | 3 504   |         |         | 2 785       |               |          |
| 10    | 9 246   |         |         | 27 727  |           |         | 4 565   |         |         | 2 544       |               |          |
| 11    | 6 408   |         |         | 11 498  |           |         | 14 334  |         |         | 3 294       |               |          |
| 12    | 7 912   |         |         | 4 344   |           |         | 3 281   |         |         | 8 989       |               |          |
| 13    | 4 666   |         |         | 5 540   |           |         | 1 798   |         |         | 2 085       |               |          |
| 14    | 1 801   |         |         | 3 439   |           |         | 2 243   |         |         | 1 347       |               |          |
| 15+   | 1 074   |         |         | 2 969   |           |         | 2 980   |         |         | 3 886       |               |          |
| Sum   | 56 236  | 58 191  | 61 694  | 75 310  | 78 146    | 85 843  | 51 960  | 53 148  | 65 038  | 43 168      | 44 900        | 54 197   |
|       | USSR    |         |         | USSR    |           |         | USSR    |         |         | USSR        |               |          |
| Age   | AFWG    | M. I    | M. II   | AFWG    | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG        | M. I          | M. II    |
| 3     | 2 676   |         | 16 027  | 224     |           | 15 349  | 8       |         | 18 269  | 320         |               | 22 476   |
| 4     | 4 353   |         | 11 358  | 4 324   |           | 20 104  | 509     |         | 12 981  | 2 072       |               | 16 383   |
| 5     | 5 322   |         | 7 687   | 14 613  |           | 14 613  | 8 447   |         | 16 603  | 9 429       |               | 11 753   |
| 6     | 8 270   |         |         | 17 148  |           |         | 19 798  |         |         | 24 698      |               |          |
| 7     | 6 200   |         |         | 14 612  |           |         | 27 930  |         |         | 27 730      |               |          |
| 8     | 4 603   |         |         | 3 653   |           |         | 6 682   |         |         | 9 274       |               |          |
| 9     | 9 375   |         |         | 4 250   |           |         | 4 303   |         |         | 3 991       |               |          |
| 10    | 6 879   |         |         | 5 964   |           |         | 1 309   |         |         | 1 033       |               |          |
| 11    | 1 822   |         |         | 6 634   |           |         | 3 200   |         |         | 1 980       |               |          |
| 12    | 511     |         |         | 1 566   |           |         | 1 182   |         |         | 1 033       |               |          |
| 13    | 305     |         |         | 1 044   |           |         | 885     |         |         | 554         |               |          |
| 14    | -       |         |         | 224     |           |         | 324     |         |         | 158         |               |          |
| 15+   | 301     |         |         | 299     |           |         | 426     |         |         | 316         |               |          |
| Sum   | 50 617  |         | 73 338  | 74 555  |           | 105 460 | 75 003  |         | 113 892 | 82 588      |               | 121 379  |
|       | England |         |         | England |           |         | England |         |         | England     |               |          |
| A.co. |         | MI      | мп      |         | MI        | мп      |         | MI      | мп      |             | MI            | мп       |
| Age   | 1 272   | 2 012   | 22 504  | 305     | 205       | 25 001  | AFWG    | 11/1.1  | 29 905  | AFWG<br>456 | IVI. I<br>514 | 12 176   |
| 3     | 5 420   | 2 912   | 23 394  | 7 3 29  | 7 2 2 9 0 | 23 991  | 2 802   | 2 902   | 20 095  | 2 692       | 9 940         | 43 170   |
| 4     | 12 099  | 12 099  | 10 / 20 | 7 320   | 24 744    | 24 044  | 2 092   | 2 092   | 20 551  | 21 917      | 20 663        | 2/ 097   |
| 5     | 7 280   | 12 000  | 13 17 1 | 24 744  | 24 / 44   | 24 / 44 | 20 102  | 19 001  | 27 555  | 63 003      | 29 003        | 24 907   |
| 7     | 6 448   |         |         | 29 049  |           |         | 23 102  |         |         | 45 106      |               |          |
| 8     | 8 171   |         |         | 6 350   |           |         | 9 409   |         |         | 14 455      |               |          |
| q     | 27 221  |         |         | 7 832   |           |         | 6 670   |         |         | 5 798       |               |          |
| 10    | 6 218   |         |         | 12 981  |           |         | 3 364   |         |         | 1 753       |               |          |
| 11    | 1 802   |         |         | 12 215  |           |         | 10 769  |         |         | 3 020       |               |          |
| 12    | 1 118   |         |         | 3 181   |           |         | 3 047   |         |         | 2 580       |               |          |
| 13    | 489     |         |         | 2 559   |           |         | 1 560   |         |         | 898         |               |          |
| 14    | 126     |         |         | 906     |           |         | 1 127   |         |         | 328         |               |          |
| 15+   | 210     |         |         | 995     |           |         | 995     |         |         | 627         |               |          |
| Sum   | 77 883  | 80 440  | 112 577 | 133 280 | 133 280   | 185 592 | 125 156 | 125 156 | 180 070 | 163 524     | 176 585       | 237 203  |
|       | Others  |         |         | Others  |           |         | Others  |         |         | Others      |               |          |
| Ane   | AFWG    | МТ      | мп      | AFWG    | МТ        | мп      | AFWG    | MI      | мп      | AFWG        | MI            | МШ       |
| 790   | 6       | 180     | 1 73/   | 36      | 36        | 2 352   | 5       | 5       | 2 773   | 68          | 74            | 1 113    |
| 4     | 367     | 464     | 1 229   | 663     | 663       | 3 081   | 169     | 169     | 1 970   | 519         | 1 047         | 3 239    |
| 5     | 1 028   | 1 028   | 1 029   | 2 240   | 2 240     | 2 240   | 1 533   | 1 533   | 2 577   | 2 216       | 3 029         | 2 570    |
| 6     | 374     | 1 020   | 1 020   | 2 630   | 2 240     | 2 240   | 2 930   | 1 000   | 2 0/1   | 7 143       | 0.020         | 2010     |
| 7     | 385     |         |         | 2 237   |           |         | 3 958   |         |         | 4 812       |               |          |
| . 8   | 640     |         |         | 565     |           |         | 1 056   |         |         | 1 479       |               |          |
| 9     | 2 308   |         |         | 672     |           |         | 760     |         |         | 633         |               |          |
| 10    | 275     |         |         | 1 007   |           |         | 576     |         |         | 276         |               |          |
| 11    | 60      |         |         | 1 046   |           |         | 1 737   |         |         | 323         |               |          |
| 12    | 33      |         |         | 258     |           |         | 436     |         |         | 553         |               |          |
| 13    | 0       |         |         | 186     |           |         | 248     |         |         | 120         |               |          |
| 14    | -       |         |         | 53      |           |         | 204     |         |         | 63          |               |          |
| 15+   | 0       |         |         | 63      |           |         | 265     |         |         | 114         |               |          |
| Sum   | 5 476   | 5 748   | 8 067   | 11 656  | 11 656    | 16 390  | 13 877  | 13 877  | 19 490  | 18 317      | 19 664        | 25 765   |
|       | Total   |         |         | Tetel   |           |         | Tatal   |         |         | Tatal       |               |          |
| ۵ле   | AEW/G   | мі      | мп      |         | мі        | мп      |         | м       | мп      |             | MI            | MU       |
| - 'YO | 4 009   | 6 315   | 44 175  | 710     | 727       | 47 962  | 140     | 140     | 55 788  | 991         | 1 057         | 76 043   |
|       | 10 387  | 12 091  | 31 305  | 13 192  | 13 683    | 62 821  | 3 872   | 3 872   | 30 630  | 6 808       | 12 795        | 55 420   |
| 5     | 18 906  | 19 679  | 23 286  | 43 890  | 46 217    | 45 492  | 31 054  | 32 241  | 52 130  | 35 214      | 45 298        | 42 487   |
| 6     | 16 596  | 10 01 0 | 20 200  | 52 017  | 10 211    | 10 102  | 55 983  | 52 271  | 52 150  | 100 497     | 10 200        | -12 -107 |
| 7     | 13 842  |         |         | 45 501  |           |         | 77 375  |         |         | 83 283      |               |          |
| 8     | 15 370  |         |         | 13 075  |           |         | 21 482  |         |         | 29 727      |               |          |
| 9     | 59 846  |         |         | 19718   |           |         | 15 236  |         |         | 13 207      |               |          |
| 10    | 22 618  |         |         | 47 679  |           |         | 9 814   |         |         | 5 606       |               |          |
| 11    | 10 093  |         |         | 31 393  |           |         | 30 040  |         |         | 8 617       |               |          |
| 12    | 9 574   |         |         | 9 349   |           |         | 7 945   |         |         | 13 154      |               |          |
| 13    | 5 460   |         |         | 9 330   |           |         | 4 491   |         |         | 3 657       |               |          |
| 14    | 1 927   |         |         | 4 622   |           |         | 3 898   |         |         | 1 895       |               |          |
| 15+   | 1 585   |         |         | 4 327   |           |         | 4 666   |         |         | 4 943       |               |          |
| Sum   | 190 212 | 194 996 | 255 676 | 294 801 | 297 637   | 393 285 | 265 997 | 267 184 | 378 489 | 307 597     | 323 736       | 438 544  |

Table A Continued.

| 1950             |         |          | 1951         |         |         | 1952             |         |         | 1953              |         |         |
|------------------|---------|----------|--------------|---------|---------|------------------|---------|---------|-------------------|---------|---------|
| Norway           |         |          | Norway       |         |         | Norway           |         |         | Norway            |         |         |
| AFWG             | M. I    | M. II    | AFWG         | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG              | M. I    | M. II   |
| 10               | 174     | 7 506    | 514          | 10 869  | 11 496  | 284              | 8 365   | 20 345  | 3 924             | 25 965  | 27 471  |
| 200              | 1 507   | 4 00 1   | 2 079        | 23 099  | 2 0 0 5 | 0 303            | 33 420  | 13 951  | 10 424            | 29 213  | 15 300  |
| 2 398            | 5 550   | 2 091    | 3 366        | 17 770  | 3 005   | 11 949           | 21 102  | 12 010  | 10.386            | 39 393  | 20 320  |
| 6 011            |         |          | 5 979        |         |         | 5 437            |         |         | 7 044             |         |         |
| 8 201            |         |          | 12 372       |         |         | 5 438            |         |         | 4 956             |         |         |
| 7 178            |         |          | 14 609       |         |         | 11 929           |         |         | 5 060             |         |         |
| 3 635            |         |          | 7 987        |         |         | 9 788            |         |         | 7 106             |         |         |
| 2 326            |         |          | 3 165        |         |         | 5 386            |         |         | 4 411             |         |         |
| 2 732            |         |          | 1 149        |         |         | 1 749            |         |         | 1 400             |         |         |
| 1 221            |         |          | 3 0 2 1      |         |         | 445              |         |         | 161               |         |         |
| 5 317            |         |          | 2 229        |         |         | 1 952            |         |         | 526               |         |         |
| 45 816           | 49 799  | 58 922   | 60 240       | 106 530 | 74 903  | 76 093           | 124 204 | 101 752 | 76 316            | 166 015 | 104 739 |
| USSR             |         |          | USSR         |         |         | USSR             |         |         | USSR              |         |         |
| AFWG             | M. I    | M. II    | AFWG         | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG              | M. I    | M. II   |
| 764              |         | 31 020   | 20 927       |         | 63 508  | 22 764           |         | 111 679 | 42 711            |         | 113 021 |
| 4 904            |         | 16 534   | 44 792       |         | 45 114  | 92 168           |         | 92 168  | 91 822            |         | 94 570  |
| 12 371           |         | 12 371   | 34 732       |         | 34 732  | 74 677           |         | 74 677  | 67 457            |         | 67 457  |
| 17 520<br>25 507 |         |          | 20 506       |         |         | 36716            |         |         | 27 025            |         |         |
| 12 842           |         |          | 4 871        |         |         | 5 957            |         |         | 4 965             |         |         |
| 5 419            |         |          | 1 580        |         |         | 3 237            |         |         | 1 638             |         |         |
| 2 426            |         |          | 526          |         |         | 1 335            |         |         | 734               |         |         |
| 1 658            |         |          | 384          |         |         | 813              |         |         | 293               |         |         |
| 507              |         |          | -            |         |         | 373              |         |         | -                 |         |         |
| 339              |         |          | -            |         |         | -                |         |         | -                 |         |         |
| 169<br>130       |         |          | -            |         |         | -                |         |         | -                 |         |         |
| 84 556           |         | 126 441  | 140 316      |         | 183 218 | 260 253          |         | 349 168 | 244 546           |         | 317 604 |
| England          |         |          | England      |         |         | England          |         |         | England           |         |         |
| AFWG             | M. I    | M. II    | AFWG         | M. I    | M. II   | ĂFWG             | M. I    | M. II   | AFWG              | M. I    | M. II   |
| 451              | 899     | 33 819   | 11 335       | 18 437  | 53 082  | 851              | 15 954  | 37 438  | 603               | 24 395  | 22 586  |
| 5 166            | 5 209   | 18 026   | 26 848       | 44 003  | 31 459  | 16 593           | 68 898  | 27 979  | 4 148             | 48 587  | 12 579  |
| 14 077           | 14 077  | 14 077   | 23 030       | 37 836  | 23 030  | 20 269           | 51 463  | 20 269  | 18 327            | 40 366  | 18 327  |
| 22 910           |         |          | 20 653       |         |         | 19 226           |         |         | 13 591            |         |         |
| 14 412           |         |          | 17 524       |         |         | 6 915            |         |         | 5 081             |         |         |
| 5 680            |         |          | 5 650        |         |         | 6 817            |         |         | 2 735             |         |         |
| 2 450            |         |          | 1 479        |         |         | 3 236            |         |         | 1 853             |         |         |
| 1 583            |         |          | 470          |         |         | 1 521            |         |         | 621               |         |         |
| 581              |         |          | 94           |         |         | 1 064            |         |         | 244               |         |         |
| 518              |         |          | 65           |         |         | 58               |         |         | 52                |         |         |
| 186              |         |          | 214          |         |         | 14               |         |         | 8                 |         |         |
| 95 486           | 95 977  | 141 714  | 121 430      | 160 493 | 167 788 | 93 266           | 191 867 | 141 239 | 53 065            | 143 334 | 83 479  |
| Others           |         |          | Others       |         |         | Others           |         |         | Others            |         |         |
| AFWG             | M. I    | M. II    | AFWG         | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG              | M. I    | M. II   |
| 57               | 85      | 3 860    | 1 911        | 2 940   | 7 135   | 200              | 4 779   | 10 326  | 174               | 8 172   | 7 243   |
| 628              | 631     | 2 057    | 4 205        | 6 436   | 4 472   | 3 590            | 19 612  | 7 342   | 1 265             | 16 636  | 4 034   |
| 1 569            | 1 569   | 1 569    | 3 390        | 5 110   | 3 390   | 5 440            | 15 720  | 5 440   | 5 730             | 13 350  | 5 730   |
| 2 405            |         |          | 2 342        |         |         | 5 936            |         |         | 4 498             |         |         |
| 3 859            |         |          | 2 034        |         |         | 5 099            |         |         | 2 019             |         |         |
| 3 30Z            |         |          | 2 422        |         |         | 2 200            |         |         | 1 1 2 6           |         |         |
| 662              |         |          | 596          |         |         | 1 293            |         |         | 860               |         |         |
| 452              |         |          | 192          |         |         | 608              |         |         | 311               |         |         |
| 313              |         |          | 44           |         |         | 379              |         |         | 109               |         |         |
| 389              |         |          | 30           |         |         | 24               |         |         | 24                |         |         |
| 87               |         |          | 86           |         |         | 8                |         |         | 4                 |         |         |
| 205<br>15 410    | 15 441  | 20 642   | 45<br>18 969 | 23 949  | 24 459  | 33<br>27 245     | 58 127  | 41 123  | 12<br>17 994      | 48 982  | 27 831  |
| Total            |         |          | Total        |         |         | Total            |         |         | Total             |         |         |
| AFWG             | M. I    | M. II    | AFWG         | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG              | M. I    | M. II   |
| 1 281            | 1 922   | 76 204   | 34 687       | 53 174  | 135 220 | 24 099           | 51 861  | 179 787 | 47 413            | 101 243 | 170 321 |
| 10 954           | 12 251  | 40 618   | 77 924       | 118 330 | 86 661  | 120 704          | 214 098 | 141 441 | 107 659           | 216 259 | 126 483 |
| 29 045           | 31 613  | 30 909   | 64 013       | 95 454  | 64 157  | 113 203          | 169 641 | 113 203 | 112 041           | 160 567 | 112 041 |
| 45 232           |         |          | 46 866       |         |         | /3 827           |         |         | 55 500            |         |         |
| 02 5/9<br>39 037 |         |          | 33 674       |         |         | 49 309<br>20 562 |         |         | 22 / 42<br>16 863 |         |         |
| 19 481           |         |          | 23 510       |         |         | 20 302           |         |         | 10 559            |         |         |
| 9 173            |         |          | 10 589       |         |         | 15 651           |         |         | 10 553            |         |         |
| 6 019            |         |          | 4 211        |         |         | 8 327            |         |         | 5 637             |         |         |
| 4 133            |         |          | 1 288        |         |         | 3 565            |         |         | 1 752             |         |         |
| 6 749            |         |          | 1 002        |         |         | 647              |         |         | 468               |         |         |
| 1 663            |         |          | 3 322        |         |         | 467              |         |         | 173               |         |         |
| 5 923<br>241 260 | 245 774 | 3/17 710 | 2 333        | 421 200 | 450 369 | 2 048            | 634 152 | 633 383 | 561<br>301 021    | 602 879 | 533 653 |
| 241 209          | 240774  | 341 / 19 | 340 999      | 431 200 | 400 300 | 400 007          | 034 452 | 033 282 | 391 921           | 002 8/8 | JJJ 052 |

| Tabla | ٨ | Continued |  |
|-------|---|-----------|--|
| гаше  | A | Commuea   |  |

| 1954    |         |         | 1955    |         |         | 1956    |         |         | 1957    |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Norway  |         |         | Norway  |         |         | Norway  |         |         | Norway  |         |         |
| AFWG    | MI      | M II    | AFWG    | MI      | MI      | AFWG    | MI      | MI      | AFWG    | MI      | MI      |
| 2 2 4 4 | 101.1   | 101.11  | 47      | IVI. 1  | TVI. 11 | AI WG   | 101.1   | 10.050  | 4 704   | 101.1   | 17 101  |
| 2 341   | 2 341   | 8072    | 17      | 991     | 5 4 3 4 | 469     | 2 390   | 10 959  | 1 794   | 6 052   | 17 131  |
| 19 386  | 25 493  | 21 807  | 1 409   | 8 404   | 14 962  | 1 292   | 5 541   | 8 930   | 2 821   | 11 966  | 12 271  |
| 11 907  | 22 766  | 12 743  | 25 785  | 33 985  | 25 785  | 12 203  | 25 526  | 15 194  | 3 953   | 7 858   | 5 730   |
| 8 037   |         |         | 10 870  |         |         | 36 211  |         |         | 13 /01  |         |         |
| 0 0 0 7 |         |         | 19079   |         |         | 30 211  |         |         | 13 491  |         |         |
| 6 085   |         |         | 17 005  |         |         | 12 573  |         |         | 23 006  |         |         |
| 5 564   |         |         | 7 389   |         |         | 15 505  |         |         | 9 771   |         |         |
| 5 256   |         |         | 5.840   |         |         | 8 385   |         |         | 0.075   |         |         |
| 3 2 3 0 |         |         | 1 0 0 0 |         |         | 4 070   |         |         | 0 1 1 0 |         |         |
| 4 485   |         |         | 4 362   |         |         | 4 673   |         |         | 3 448   |         |         |
| 4 181   |         |         | 2 156   |         |         | 2 824   |         |         | 1 595   |         |         |
| 1 881   |         |         | 1 931   |         |         | 1 266   |         |         | 798     |         |         |
| 765     |         |         | 740     |         |         | 1 178   |         |         | 312     |         |         |
| 100     |         |         | 740     |         |         | 1 170   |         |         | 074     |         |         |
| 236     |         |         | 319     |         |         | 386     |         |         | 274     |         |         |
| 284     |         |         | 251     |         |         | 166     |         |         | 168     |         |         |
| 70 409  | 87 375  | 79 396  | 87 083  | 103 254 | 106 053 | 97 131  | 116 624 | 118 249 | 70 503  | 87 812  | 97 069  |
|         |         |         |         |         |         |         |         |         |         |         |         |
| LICED   |         |         | LICED   |         |         | LICED   |         |         | LICED   |         |         |
| USSK    |         |         | USSK    |         |         | USSK    |         |         | USSK    |         |         |
| AFWG    | M. I    | M. II   |
| 8 494   |         | 51 458  | 3 833   |         | 25 768  | 10 068  |         | 50 087  | 12 252  |         | 40 454  |
| 124 815 |         | 139 008 | 31 611  |         | 70 945  | 21.036  |         | 40 817  | 20 295  |         | 28 978  |
| 124 015 |         | 133 000 | 407.047 |         | 10 343  | 21 000  |         | 40 017  | 20 233  |         | 20 370  |
| 110 965 |         | 110 965 | 127 947 |         | 127 947 | 90 101  |         | 90 101  | 13 850  |         | 14 527  |
| 63 397  |         |         | 96 264  |         |         | 129 688 |         |         | 32 177  |         |         |
| 24 111  |         |         | 37 302  |         |         | 44 803  |         |         | 31 511  |         |         |
| 0.619   |         |         | 12 0/0  |         |         | 15 251  |         |         | 17 226  |         |         |
| 9010    |         |         | 13 949  |         |         | 0.040   |         |         | 17 230  |         |         |
| 4 094   |         |         | 4721    |         |         | 2 948   |         |         | 3 360   |         |         |
| 2 355   |         |         | 2 508   |         |         | 1 457   |         |         | 1 425   |         |         |
| 1 308   |         |         | 959     |         |         | 603     |         |         | 930     |         |         |
| 1000    |         |         | 40      |         |         | 000     |         |         | 201     |         |         |
| 165     |         |         | 12      |         |         | 265     |         |         | 231     |         |         |
| 19      |         |         | -       |         |         | -       |         |         | -       |         |         |
| 19      |         |         | -       |         |         | -       |         |         | -       |         |         |
| 19      |         |         | -       |         |         | -       |         |         | -       |         |         |
| 349 399 |         | 406 556 | 319 106 |         | 380 375 | 316 340 |         | 376 140 | 133 267 |         | 170 830 |
| England |         |         | England |         |         | England |         |         | England |         |         |
| England |         |         | England |         |         | England |         |         | England |         |         |
| AFWG    | M. I    | M. II   |
| 571     | 2 291   | 9 164   | 36      | 1 410   | 7 470   | 15      | 1 653   | 15 650  | 1 434   | 7 755   | 15 640  |
| 9 092   | 34 200  | 24 756  | 3 4 5 9 | 15 109  | 20 589  | 1 114   | 6 431   | 12 834  | 5 501   | 7 065   | 11 316  |
| 10 002  | 20 0 40 | 10,000  | 24.050  | 55 004  | 40 405  | 10.042  | 20 020  | 24 4 20 | 5 500   | F 077   | 5 600   |
| 18 099  | 30 840  | 18 099  | 34 950  | 55 664  | 43 125  | 18 643  | 30 838  | 21 128  | 5 508   | 5 8/ /  | 5 662   |
| 22 857  |         |         | 29 566  |         |         | 55 213  |         |         | 15 695  |         |         |
| 7 485   |         |         | 18 666  |         |         | 16 375  |         |         | 19 298  |         |         |
| 3 216   |         |         | 5 347   |         |         | 11 241  |         |         | 6 606   |         |         |
| 4 700   |         |         | 4 000   |         |         | 2 0 4 7 |         |         | 0 000   |         |         |
| 1720    |         |         | 1 992   |         |         | 2 047   |         |         | 2 657   |         |         |
| 1 203   |         |         | 1 519   |         |         | 736     |         |         | 738     |         |         |
| 871     |         |         | 600     |         |         | 259     |         |         | 313     |         |         |
| 200     |         |         | 275     |         |         | 22      |         |         | 02      |         |         |
| 209     |         |         | 275     |         |         | 32      |         |         | 93      |         |         |
| 80      |         |         | 63      |         |         | 70      |         |         | 17      |         |         |
| 9       |         |         | 25      |         |         | 34      |         |         | 8       |         |         |
| 12      |         |         | 33      |         |         | 6       |         |         | 15      |         |         |
| 6E 420  | 104 007 | 00 607  | 06 520  | 120 207 | 120.270 | 105 796 | 120 025 | 125 627 | E0 002  | 66 227  | 70 070  |
| 05 450  | 104 997 | 09 007  | 90 550  | 130 207 | 129 270 | 105 760 | 130 933 | 133 027 | 30 003  | 00 337  | 10210   |
|         |         |         |         |         |         |         |         |         |         |         |         |
| Others  |         |         | Others  |         |         | Others  |         |         | Others  |         |         |
| AFWG    | MI      | MI      | AFWG    | MI      | MI      | AFW/G   | MI      | MI      | AFWG    | MI      | MI      |
| 66      | 970     | 2,600   | 15      | 750     | 2 500   | 62      | 1 079   | 0.000   | 1 940   | 2 026   | 11 040  |
| 00      | 019     | 2 099   | 15      | 152     | 3 399   | 02      | 1970    | 9 000   | 1 040   | 3 920   | 11 940  |
| 1 878   | 12 798  | 7 291   | 1 173   | 6 522   | 9 908   | 730     | 4 681   | 7 335   | 5 315   | 6 867   | 8 647   |
| 5 424   | 11 448  | 5 424   | 13 152  | 26 295  | 19 245  | 8 856   | 21 917  | 12 463  | 3 871   | 4 660   | 4 369   |
| 6 460   |         |         | 15 627  |         |         | 20 315  |         |         | 0 330   |         |         |
| 0 400   |         |         | 14 057  |         |         | 10 000  |         |         | 10 000  |         |         |
| 2 955   |         |         | 11.057  |         |         | 13 033  |         |         | 13 218  |         |         |
| 1 315   |         |         | 3 766   |         |         | 8 995   |         |         | 5 600   |         |         |
| 715     |         |         | 1 160   |         |         | 1 606   |         |         | 2 455   |         |         |
| 513     |         |         | 1 092   |         |         | 600     |         |         | 607     |         |         |
| 010     |         |         | 1032    |         |         | 000     |         |         | 007     |         |         |
| 391     |         |         | 425     |         |         | 266     |         |         | 395     |         |         |
| 95      |         |         | 188     |         |         | 73      |         |         | 99      |         |         |
| 33      |         |         | 64      |         |         | 44      |         |         | 18      |         |         |
| 1       |         |         | 11      |         |         | 28      |         |         | 17      |         |         |
| 4       |         |         | 11      |         |         | 20      |         |         | 17      |         |         |
| 6       |         |         |         |         |         | (       |         |         | 11      |         |         |
| 19 855  | 37 612  | 27 900  | 47 731  | 66 958  | 66 141  | 63 616  | 82 543  | 82 765  | 42 785  | 47 212  | 56 715  |
| Total   |         |         | Total   |         |         | Total   |         |         | Total   |         |         |
|         |         |         |         |         |         |         |         |         |         |         |         |
| AFWG    | M. I    | M. II   |
| 11 473  | 14 005  | 71 393  | 3 901   | 6 986   | 42 271  | 10 614  | 16 089  | 85 696  | 17 321  | 29 986  | 85 166  |
| 155 171 | 197 306 | 192 862 | 37 652  | 61 646  | 116 404 | 24 172  | 37 688  | 69.916  | 33 932  | 46 193  | 61 212  |
| 1/6 205 | 176 019 | 1/7 001 | 201 924 | 2/2 011 | 216 102 | 120 802 | 17/ 201 | 139 996 | 27 100  | 22 245  | 20 200  |
| 140 353 | 110 010 | 171 201 | 404 004 | 273 311 | 210 102 | 120 000 | 17- 301 | 100 000 | 21 102  | 52 245  | 20,209  |
| 100 /51 |         |         | 161 336 |         |         | 250 427 |         |         | 70 702  |         |         |
| 40 635  |         |         | 84 031  |         |         | 86 785  |         |         | 87 034  |         |         |
| 19 713  |         |         | 30 451  |         |         | 51 091  |         |         | 39 213  |         |         |
| 11 701  |         |         | 12 712  |         |         | 1/ 007  |         |         | 17 746  |         |         |
| 11/91   |         |         | 13/13   |         |         | 14 907  |         |         | 17 740  |         |         |
| 8 557   |         |         | 9 481   |         |         | 7 466   |         |         | 6 219   |         |         |
| 6 751   |         |         | 4 140   |         |         | 3 952   |         |         | 3 232   |         |         |
| 2 370   |         |         | 2 /06   |         |         | 1 656   |         |         | 1 221   |         |         |
| 2 370   |         |         | 2 400   |         |         | 1 000   |         |         | 1 44 1  |         |         |
| 896     |         |         | 867     |         |         | 1 292   |         |         | 347     |         |         |
| 268     |         |         | 355     |         |         | 448     |         |         | 299     |         |         |
| 321     |         |         | 284     |         |         | 179     |         |         | 194     |         |         |
| EOE 000 | 570 202 | 602 520 | 550 450 | 610 605 | 691 020 | 592 972 | 646 442 | 712 702 | 204 620 | 224 620 | 102 002 |

| 4050             |         |         | 4050           |         |         | 1000             |         |         | 1001             |         |         |
|------------------|---------|---------|----------------|---------|---------|------------------|---------|---------|------------------|---------|---------|
| 1958             |         |         | 1959           |         |         | 1960             |         |         | 1961             |         |         |
| Norway           |         |         | Norway         |         |         | Norway           |         |         | Norway           |         |         |
| AFWG             | M. I    | M. II   | AFWG           | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG             | M. I    | M. II   |
| 10 502           | 11 322  | 16 320  | 2 917          | 10 672  | 15 872  | 1 708            | 10 424  | 12 311  | 5 983            | 12 481  | 24 324  |
| 29 944           | 32 481  | 35 098  | 9 2 1 2        | 22 060  | 13 894  | 10 511           | 23 416  | 13 002  | 25 960           | 33 013  | 28 193  |
| 14 156           | 19 235  | 14 652  | 22 934         | 35 519  | 22 934  | 9 223            | 13 885  | 9 223   | 26 927           | 26 927  | 26 927  |
| 11 220           | 10 200  |         | 11 541         | 00 0.10 | 22 00 . | 12 702           |         | 0 220   | 7 661            | 20 02.  | 20 02.  |
| 10 507           |         |         | 4 400          |         |         | 12 1 92<br>E 200 |         |         | 0 450            |         |         |
| 10 527           |         |         | 4 406          |         |         | 5 260            |         |         | 8 153            |         |         |
| 11 761           |         |         | 6 322          |         |         | 1 874            |         |         | 5 370            |         |         |
| 6 504            |         |         | 14 513         |         |         | 4 042            |         |         | 2 909            |         |         |
| 6 093            |         |         | 6 297          |         |         | 8 918            |         |         | 4 962            |         |         |
| 1 769            |         |         | 2 4 9 5        |         |         | 3 405            |         |         | 4 747            |         |         |
| 602              |         |         | 242            |         |         | 1 267            |         |         | 1 206            |         |         |
| 152              |         |         | 104            |         |         | 207              |         |         | 1 3 3 0          |         |         |
| 100              |         |         | 194            |         |         | 232              |         |         | 404              |         |         |
| 13               |         |         | 98             |         |         | 154              |         |         | 266              |         |         |
| 184              |         |         | 77             |         |         | 275              |         |         | 234              |         |         |
| 103 528          | 111 964 | 114 997 | 81 847         | 115 036 | 99 484  | 59 679           | 85 961  | 72 775  | 95 052           | 108 604 | 115 626 |
|                  |         |         |                |         |         |                  |         |         |                  |         |         |
| USSR             |         |         | USSR           |         |         | USSR             |         |         | USSR             |         |         |
| AFWG             | M. I    | M. II   | AFWG           | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG             | M. I    | M. II   |
| 16 769           |         | 33 011  | 24 253         |         | 51 380  | 23 416           |         | 45 045  | 35 378           |         | 74 146  |
| 72 208           |         | 86 567  | 49 272         |         | 50 122  | 52 420           |         | 52 420  | 92 01 2          |         | 82 012  |
| 73 390           |         | 00 307  | 40 27 3        |         | 30 122  | JZ 430           |         | JZ 430  | 02 913           |         | 02 913  |
| 33 202           |         | 3/6/4   | ///84          |         | // /84  | 31 116           |         | 31 116  | 63 697           |         | 63 697  |
| 17 481           |         |         | 24 971         |         |         | 28 811           |         |         | 28 694           |         |         |
| 15 710           |         |         | 7 672          |         |         | 10 070           |         |         | 17 629           |         |         |
| 12 283           |         |         | 4 764          |         |         | 3 821            |         |         | 7 932            |         |         |
| 3 402            |         |         | 2 817          |         |         | 1 408            |         |         | 1 796            |         |         |
| 1 900            |         |         | 1 26/          |         |         | 975              |         |         | 9/12             |         |         |
| 1 900            |         |         | 1 204          |         |         | 575              |         |         | 942              |         |         |
| 739              |         |         | 389            |         |         | 559              |         |         | 242              |         |         |
| 164              |         |         | -              |         |         | 300              |         |         | 153              |         |         |
| -                |         |         | -              |         |         | 29               |         |         | 242              |         |         |
| -                |         |         | -              |         |         | -                |         |         | -                |         |         |
| -                |         |         | -              |         |         | 29               |         |         | -                |         |         |
| 175 0/18         |         | 208 031 | 102 187        |         | 221 163 | 152 96/          |         | 17/ 503 | 230 618          |         | 278 386 |
| 175 040          |         | 200 331 | 132 107        |         | 221 105 | 132 304          |         | 174 555 | 200 010          |         | 270 300 |
| <b>F</b> mailand |         |         | <b>Fuelend</b> |         |         | Fuelend          |         |         | England          |         |         |
| England          |         |         | England        |         |         | England          |         |         | England          |         |         |
| AFWG             | M. I    | M. II   | AFWG           | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG             | M. I    | M. II   |
| 2 491            | 12 960  | 12 727  | 3 779          | 24 130  | 22 738  | 9 232            | 15 618  | 23 823  | 2 518            | 16 279  | 23 309  |
| 22 959           | 55 675  | 27 112  | 16 689         | 46 707  | 21 076  | 26 773           | 36 500  | 26 918  | 19 491           | 40 656  | 24 238  |
| 16 720           | 17 543  | 16 720  | 40 274         | 73 765  | 40 274  | 18 818           | 22 257  | 18 818  | 28 766           | 32 377  | 28 766  |
| 9 152            |         | 10120   | 12 657         |         | 10 21 1 | 20 702           | 22 201  | 10 0 10 | 12 802           | 02 0    | 20.00   |
| 0 132            |         |         | 4 070          |         |         | 20102            |         |         | 14 074           |         |         |
| 9 024            |         |         | 4 870          |         |         | 5 914            |         |         | 11 2/4           |         |         |
| 7 772            |         |         | 5 251          |         |         | 2 006            |         |         | 3 302            |         |         |
| 2 165            |         |         | 4 091          |         |         | 1 353            |         |         | 869              |         |         |
| 1 316            |         |         | 1 420          |         |         | 1 172            |         |         | 609              |         |         |
| 399              |         |         | 562            |         |         | 388              |         |         | 370              |         |         |
| 06               |         |         | 02             |         |         | 157              |         |         | 0/0              |         |         |
| 90               |         |         | 93             |         |         | 137              |         |         | 94               |         |         |
| 47               |         |         | 25             |         |         | 44               |         |         | 138              |         |         |
| 30               |         |         | 38             |         |         | 13               |         |         | -                |         |         |
| 31               |         |         | 16             |         |         | 28               |         |         | 12               |         |         |
| 71 200           | 115 208 | 85 589  | 89 771         | 173 631 | 113 117 | 86 600           | 106 151 | 101 336 | 80 245           | 118 782 | 105 783 |
|                  |         |         |                |         |         |                  |         |         |                  |         |         |
| Others           |         |         | Others         |         |         | Others           |         |         | Others           |         |         |
| AFWG             | MI      | MI      | AFWG           | MI      | MI      | AFWG             | MI      | MI      | AFWG             | MI      | MI      |
| 1 457            | 2 010   | 5 103   | 1 360          | 2 6 4 2 | 5 222   | 3 527            | 3 059   | 7 210   | 1 500            | 2 200   | 1 244   |
| 7 437            | 2 010   | 3 103   | 1 300          | 2 042   | 1 0 0 0 | 5 527            | 3 900   | 7 2 19  | 1 399            | 2 390   | 4 244   |
| 7 276            | 8 708   | 11 074  | 3769           | 5 843   | 4 808   | 8 151            | 8 808   | 8 160   | 4 292            | 5 198   | 4 395   |
| 6 972            | 7 089   | 7 028   | 7 292          | 9 312   | 7 292   | 5 065            | 5 297   | 5 065   | 4 069            | 4 069   | 4 069   |
| 3 785            |         |         | 4 311          |         |         | 5 120            |         |         | 2 010            |         |         |
| 3 119            |         |         | 1 544          |         |         | 1 874            |         |         | 1 684            |         |         |
| 3 970            |         |         | 1 398          |         |         | 727              |         |         | 771              |         |         |
| 1 267            |         |         | 1 607          |         |         | 120              |         |         | 217              |         |         |
| 1 207            |         |         | 1 697          |         |         | 438              |         |         | 217              |         |         |
| 1 166            |         |         | 503            |         |         | 611              |         |         | 265              |         |         |
| 382              |         |         | 302            |         |         | 151              |         |         | 202              |         |         |
| 208              |         |         | 62             |         |         | 119              |         |         | 39               |         |         |
| 52               |         |         | 35             |         |         | 29               |         |         | 46               |         |         |
| 6                |         |         | 25             |         |         | 25               |         |         | 14               |         |         |
| 0                |         |         | 20             |         |         | 20               |         |         | 14               |         |         |
| 20.070           | 24 772  | 27 470  | 22.207         | 07.004  | 07 040  | 21               | 07 405  | 20 500  | 45 000           | 10.000  | 17 001  |
| 29 670           | 31772   | 3/ 1/0  | 22 307         | 27 004  | 21 310  | 23 604           | 27 100  | 29 500  | 15 255           | 10 930  | 17 901  |
| _                |         |         | _              |         |         | _                |         |         | _                |         |         |
| Total            |         |         | Total          |         |         | Total            |         |         | Total            |         |         |
| AFWG             | M. I    | M. II   | AFWG           | M. I    | M. II   | AFWG             | M. I    | M. II   | AFWG             | M. I    | M. II   |
| 31 219           | 43 060  | 67 161  | 32 308         | 61 697  | 95 321  | 37 882           | 53 416  | 88,398  | 45 478           | 66 528  | 126 023 |
| 133 576          | 170 262 | 150 951 | 77 040         | 122 802 | 80 000  | 07 965           | 121 152 | 100 511 | 122 656          | 161 701 | 120 720 |
| 74 054           | 77 070  | 100 001 | 11 942         | 122 000 | 440.004 | 31 000           | 70 554  | 00 011  | 102 000          | 101 /01 | 100 100 |
| /1051            | 11 070  | 10014   | 140 284        | 190 380 | 140 284 | 04 222           | 12 554  | 04 222  | 123 459          | 127 070 | 123 459 |
| 40 737           |         |         | 53 480         |         |         | 67 425           |         |         | 51 167           |         |         |
| 38 380           |         |         | 18 498         |         |         | 23 118           |         |         | 38 740           |         |         |
| 35 786           |         |         | 17 735         |         |         | 8 428            |         |         | 17 375           |         |         |
| 13 338           |         |         | 23 118         |         |         | 7 240            |         |         | 5 791            |         |         |
| 10 475           |         |         | 0 / 92         |         |         | 11 675           |         |         | 6 779            |         |         |
| 2 200            |         |         | 3 403          |         |         | 1 0/0            |         |         | 0 / / O<br>E EC4 |         |         |
| 3 289            |         |         | 3748           |         |         | 4 504            |         |         | 100 C            |         |         |
| 1 070            |         |         | 996            |         |         | 1 844            |         |         | 1 682            |         |         |
| 252              |         |         | 254            |         |         | 354              |         |         | 910              |         |         |
| 49               |         |         | 161            |         |         | 192              |         |         | 280              |         |         |
| 224              |         |         | 103            |         |         | 359              |         |         | 271              |         |         |
| 379 446          | 433 992 | 446 687 | 386 112        | 508 537 | 461 083 | 325 107          | 372 261 | 378 269 | 430 148          | 483 934 | 517 776 |
|                  |         |         |                |         |         |                  |         |         |                  |         |         |

#### Table A Continued.

Table A Continued.

| 1962           |         |         | 1963      |         |                   | 1964           |         |         | 1965           |         |         |
|----------------|---------|---------|-----------|---------|-------------------|----------------|---------|---------|----------------|---------|---------|
| Norway         |         |         | Norway    |         |                   | Norway         |         |         | Norway         |         |         |
| AFWG           | M. I    | M. II   | AFWG      | M. I    | M. II             | AFWG           | M. I    | M. II   | AFWG           | M. I    | M. II   |
| 799            | 17 449  | 14 190  | 345       | 2 951   | 5 888             | 357            | 3 121   | 3 977   | 4 169          | 7 135   | 12 329  |
| 9 567          | 58 133  | 19 923  | 8 382     | 20 201  | 18 656            | 7 837          | 21 745  | 11 547  | 5 919          | 16 881  | 12 206  |
| 17 351         | 48 216  | 17 351  | 29 179    | 36 852  | 29 179            | 18 198         | 38 282  | 18 260  | 24 365         | 41 795  | 24 365  |
| 16 552         |         |         | 14 163    |         |                   | 12 476         |         |         | 23 713         |         |         |
| 6 527          |         |         | 7 718     |         |                   | 4 344          |         |         | 8 434          |         |         |
| 8 812          |         |         | 6 6 1 4   |         |                   | 3 797          |         |         | 3 811          |         |         |
| 4 904          |         |         | 7 011     |         |                   | 4 577          |         |         | 2 578          |         |         |
| 1 966          |         |         | 2 550     |         |                   | 2 306          |         |         | 1 171          |         |         |
| 1 000          |         |         | 2 3 3 0   |         |                   | 2 300          |         |         | 722            |         |         |
| 2 121          |         |         | 980       |         |                   | 443            |         |         | 733            |         |         |
| 1 291          |         |         | 959       |         |                   | 150            |         |         | 119            |         |         |
| 261            |         |         | 450       |         |                   | 338            |         |         | 65             |         |         |
| 185            |         |         | 125       |         |                   | 208            |         |         | 88             |         |         |
| 179            |         |         | 116       |         |                   | 60             |         |         | 186            |         |         |
| 70 416         | 166 496 | 94 162  | 79 492    | 101 589 | 95 309            | 55 091         | 91 846  | 62 484  | 75 351         | 106 709 | 89 799  |
|                |         |         |           |         |                   |                |         |         |                |         |         |
| USSR           |         |         | USSR      |         |                   | USSR           |         |         | USSR           |         |         |
| AFWG           | M. I    | M. II   | AFWG      | M. I    | M. II             | AFWG           | M. I    | M. II   | AFWG           | M. I    | M. II   |
| 37 797         |         | 90 599  | 11 740    |         | 44 252            | 4 485          |         | 17 512  | 6 071          |         | 24 327  |
| 130 466        |         | 138 356 | 81 167    |         | 109 201           | 32 624         |         | 39 610  | 14 180         |         | 18 756  |
| 113 812        |         | 113 812 | 136 081   |         | 136 081           | 62 514         |         | 62 514  | 37 903         |         | 37 903  |
| 48 849         |         |         | 62 793    |         |                   | 27 343         |         |         | 25 406         |         |         |
| 13 574         |         |         | 20 132    |         |                   | 7 768          |         |         | 6 870          |         |         |
| 7 297          |         |         | 6 958     |         |                   | 2 483          |         |         | 2 244          |         |         |
| 1 726          |         |         | 2 160     |         |                   | 671            |         |         | 519            |         |         |
| 507            |         |         | 872       |         |                   | /18            |         |         | 21/            |         |         |
| 151            |         |         | 072       |         |                   | 241            |         |         | 214            |         |         |
| 151            |         |         | -         |         |                   | 241            |         |         | 328            |         |         |
| 76             |         |         | -         |         |                   | -              |         |         | -              |         |         |
| 76             |         |         | -         |         |                   | -              |         |         | -              |         |         |
| -              |         |         | -         |         |                   | -              |         |         | -              |         |         |
| -              |         |         | -         |         |                   | 101            |         |         | -              |         |         |
| 354 331        |         | 415 023 | 321 903   |         | 382 450           | 138 648        |         | 158 661 | 93 735         |         | 116 567 |
|                |         |         |           |         |                   |                |         |         |                |         |         |
| England        |         |         | England   |         |                   | England        |         |         | England        |         |         |
| AFWG           | M. I    | M. II   | AFWG      | M. I    | M. II             | AFWG           | M. I    | M. II   | AFWG           | M. I    | M. II   |
| 2 125          | 13 943  | 22 239  | 690       | 3 506   | 9 615             | 343            | 2 089   | 5 535   | 5 430          | 5 769   | 12 913  |
| 24 243         | 49 646  | 31 397  | 13 919    | 17 274  | 23 889            | 4 624          | 15 529  | 12 533  | 5 813          | 8 693   | 10 482  |
| 30 419         | 45 645  | 30 419  | 33 632    | 33 632  | 33 632            | 15 680         | 32 197  | 15 693  | 15 944         | 23 463  | 15 944  |
| 21 168         |         |         | 15 422    |         |                   | 17 897         |         |         | 19 235         |         |         |
| 7 274          |         |         | 6 382     |         |                   | 7 107          |         |         | 9 762          |         |         |
| 4 008          |         |         | 2 162     |         |                   | 2 505          |         |         | 2 1 4 0        |         |         |
| 4 908          |         |         | 2 102     |         |                   | 2 303          |         |         | 2 149          |         |         |
| 1 094          |         |         | 1431      |         |                   | 095            |         |         | 343            |         |         |
| 290            |         |         | 388       |         |                   | 582            |         |         | 38             |         |         |
| 267            |         |         | 29        |         |                   | 55             |         |         | 23             |         |         |
| 156            |         |         | 58        |         |                   | 9              |         |         | 9              |         |         |
| 39             |         |         | 28        |         |                   | 28             |         |         | -              |         |         |
| 39             |         |         | 2         |         |                   | 33             |         |         | 2              |         |         |
| 32             |         |         | 38        |         |                   | 12             |         |         | 4              |         |         |
| 92 054         | 144 501 | 119 321 | 74 201    | 80 372  | 93 097            | 49 570         | 78 739  | 62 684  | 58 752         | 69 490  | 70 904  |
|                |         |         |           |         |                   |                |         |         |                |         |         |
| Others         |         |         | Others    |         |                   | Others         |         |         | Others         |         |         |
| AFWG           | MI      | MI      | AFWG      | MI      | MI                | AFWG           | MI      | MI      | AFWG           | MI      | MI      |
| 1 695          | 2 923   | 4 557   | 421       | 567     | 2 067             | 112            | 210     | 430     | 55             | 55      | 55      |
| 6 200          | 0.570   | 6 4 2 4 | 3 5 1 6   | 4 000   | 5 1 2 1           | 927            | 1 267   | 071     | 97             | 97      | 97      |
| 0 2 90         | 3 370   | 5 0 424 | 0.050     | 4 000   | 5 121             | 1 550          | 1 307   | 1 5 5 0 | 07             | 07      | 07      |
| 5 659          | 1 153   | 5 659   | 0 0 0 0 0 | 6 830   | 0 000             | 1 228          | 2 324   | 1 228   | 67             | 87      | 87      |
| 2 892          |         |         | 3 120     |         |                   | 859            |         |         | 157            |         |         |
| 922            |         |         | 1 286     |         |                   | 423            |         |         | 378            |         |         |
| 980            |         |         | 487       |         |                   | 377            |         |         | 234            |         |         |
| 232            |         |         | 372       |         |                   | 253            |         |         | 129            |         |         |
| 65             |         |         | 73        |         |                   | 247            |         |         | 44             |         |         |
| 65             |         |         | 12        |         |                   | 45             |         |         | 77             |         |         |
| 124            |         |         | 8         |         |                   | 13             |         |         | 3              |         |         |
| 16             |         |         | 20        |         |                   | 21             |         |         | 2              |         |         |
| 56             |         |         | 2         |         |                   | 23             |         |         | 1              |         |         |
| q              |         |         | 11        |         |                   | 12             |         |         | 15             |         |         |
| 19 003         | 25 605  | 22 000  | 15 986    | 16 789  | 19 237            | 4 769          | 6 172   | 5 230   | 1 269          | 1 269   | 1 269   |
|                |         |         |           |         |                   |                |         |         |                |         |         |
| Total          |         |         | Total     |         |                   | Total          |         |         | Total          |         |         |
|                | NA 1    | NA 11   |           | NA 1    | NA 11             |                | M 1     | NA 11   |                | NA 1    | NA 11   |
| 12 446         | IVI. 1  | 121 EOE | 12 106    | 19 764  | IVI. II<br>61 900 | F 207          | IVI. I  | 1VI. II | 15 705         | 10 020  | 10 624  |
| 42 410         | 12 112  | 101 000 | 13 190    | 10/04   | 450 000           | 5 297          | 9 905   | 21 403  | 10/20          | 19 029  | 49 024  |
| 1/0 566        | 247 814 | 196 100 | 106 984   | 122 642 | 100 808           | 45 912         | /1 265  | 04 001  | 25 999         | 39 841  | 41 531  |
| 167 241        | 215 425 | 167 241 | 205 550   | 213 395 | 205 550           | 97 950         | 135 318 | 98 026  | 78 299         | 103 247 | 78 299  |
| 89 461         |         |         | 95 498    |         |                   | 58 575         |         |         | 68 511         |         |         |
| 28 297         |         |         | 35 518    |         |                   | 19 642         |         |         | 25 444         |         |         |
| 21 996         |         |         | 16 221    |         |                   | 9 162          |         |         | 8 438          |         |         |
| 7 956          |         |         | 11 894    |         |                   | 6 196          |         |         | 3 569          |         |         |
| 2 728          |         |         | 3 883     |         |                   | 3 553          |         |         | 1 467          |         |         |
| 2 603          |         |         | 1 021     |         |                   | 784            |         |         | 1 161          |         |         |
| 1 647          |         |         | 1 025     |         |                   | 172            |         |         | 131            |         |         |
| 392            |         |         | 1020      |         |                   | 387            |         |         | 67             |         |         |
| 252            |         |         | 120       |         |                   | 261            |         |         | 01             |         |         |
| 200            |         |         | 129       |         |                   | 204            |         |         | 31             |         |         |
| 220<br>535 804 | 600 033 | 650 507 | 491 582   | 520 653 | 590 002           | 100<br>248 078 | 315 406 | 280 058 | 205<br>229 107 | 271 203 | 278 538 |
| 000 004        | 000 000 | 000 001 |           | JEV UJJ | 000 002           | 270 010        | 010 400 | 200 000 | 660 101        | 611600  | 210 000 |

Table A Continued.

| 1966    |         |         | 1967      |         |         | 1968          |         |         | 1969          |          |         |
|---------|---------|---------|-----------|---------|---------|---------------|---------|---------|---------------|----------|---------|
| Norway  |         |         | Norway    |         |         | Norway        |         |         | Norway        |          |         |
| AFWG    | M. I    | M. II   | AFWG      | M. I    | M. II   | AFWG          | M. I    | M. II   | AFWG          | M. I     | M. II   |
| 7 348   | 21 981  | 14 921  | 5 081     | 24 619  | 9 992   | 437           | 437     | 1 224   | 254           | 254      | 1 349   |
| 12 220  | 22.601  | 16 752  | 20.016    | 70 247  | 20 016  | 15 764        | 16 914  | 19 720  | 4 059         | E 002    | E 470   |
| 12 239  | 23 02 1 | 10755   | 20 910    | 19 347  | 20 910  | 15 7 64       | 10 0 14 | 10 7 29 | 4 906         | 5 003    | 5470    |
| 7 564   | 14 480  | 8 145   | 11 097    | 34 770  | 14 615  | 28 967        | 28 967  | 28 967  | 46 204        | 46 204   | 46 204  |
| 12 907  |         |         | 5 106     |         |         | 8 872         |         |         | 30 578        |          |         |
| 12 587  |         |         | 8 620     |         |         | 3 361         |         |         | 7 803         |          |         |
| 8 438   |         |         | 9 882     |         |         | 8 412         |         |         | 5 269         |          |         |
| 2 023   |         |         | 4 309     |         |         | 7 088         |         |         | 8 289         |          |         |
| 2 323   |         |         | 4 000     |         |         | 1 000         |         |         | 0 200         |          |         |
| 999     |         |         | 1014      |         |         | 1 609         |         |         | 2 931         |          |         |
| 291     |         |         | 485       |         |         | 366           |         |         | 714           |          |         |
| 180     |         |         | 191       |         |         | 91            |         |         | 70            |          |         |
| 61      |         |         | 200       |         |         | 114           |         |         | -             |          |         |
| 5       |         |         | 33        |         |         | 58            |         |         | 16            |          |         |
| 120     |         |         | 46        |         |         | 22            |         |         | 19            |          |         |
| 05 000  | 00 500  | 70.004  | 74 000    | 100.004 | 02 444  | 75 474        | 70.000  | 70.004  | 107 104       | 407 4 40 | 100 711 |
| 00 002  | 98 293  | 10 331  | 74 982    | 168 624 | 63 411  | /51/1         | 76 222  | 78 924  | 107 104       | 107 149  | 108711  |
|         |         |         |           |         |         |               |         |         |               |          |         |
| USSR    |         |         | USSR      |         |         | USSR          |         |         | USSR          |          |         |
| AFWG    | M. I    | M. II   | AFWG      | M. I    | M. II   | AFWG          | M. I    | M. II   | AFWG          | M. I     | M. II   |
| 38 824  |         | 53 526  | 26 295    |         | 50 971  | 2 150         |         | 14 932  | 1 360         |          | 10 636  |
| 32 674  |         | 41 258  | 108 732   |         | 111 739 | 138 922       |         | 171 988 | 14 768        |          | 25 676  |
| 10 010  |         | 22.000  | E1 000    |         | F1 000  | 204 405       |         | 204.070 | 120 100       |          | 140 010 |
| 19 940  |         | 22 089  | 51099     |         | 51 099  | 204 105       |         | 204 976 | 130 108       |          | 149 312 |
| 20 383  |         |         | 13 915    |         |         | 91 582        |         |         | 107 237       |          |         |
| 15 222  |         |         | 14 676    |         |         | 21 196        |         |         | 62 395        |          |         |
| 4 151   |         |         | 12 021    |         |         | 6 258         |         |         | 19 418        |          |         |
| 894     |         |         | 5 185     |         |         | 3 120         |         |         | 3 763         |          |         |
| 157     |         |         | 016       |         |         | 1 407         |         |         | 1 260         |          |         |
| 157     |         |         | 915       |         |         | 1 407         |         |         | 1 360         |          |         |
| 24      |         |         | 90        |         |         | 162           |         |         | 822           |          |         |
| 109     |         |         | 90        |         |         | -             |         |         | 285           |          |         |
| -       |         |         | -         |         |         | -             |         |         | 95            |          |         |
| -       |         |         | -         |         |         | -             |         |         | -             |          |         |
| _       |         |         | _         |         |         | _             |         |         | _             |          |         |
| 122 270 |         | 157 014 | 222.010   |         | 260 701 | 469 002       |         | E1E 601 | 247 614       |          | 200 000 |
| 132 378 |         | 157 814 | 233 018   |         | 260 701 | 468 902       |         | 515 621 | 347 611       |          | 380,999 |
|         |         |         |           |         |         |               |         |         |               |          |         |
| England |         |         | England   |         |         | England       |         |         | England       |          |         |
| AFWG    | M. I    | M. II   | AFWG      | M. I    | M. II   | AFWG          | M. I    | M. II   | AFWG          | M. I     | M. II   |
| 9 485   | 19 558  | 14 534  | 2 969     | 7 911   | 7 488   | 1 121         | 1 121   | 2 360   | 610           | 610      | 2 484   |
| 10 200  | 13 550  | 12 040  | 2 303     | 24 5 40 | 22 020  | 10.040        | 10.040  | 2 300   | 4 0 4 0       | 4 0 4 0  | 2 404   |
| 10 296  | 13679   | 13 640  | 22 038    | 31 546  | 22 038  | 19 848        | 19 848  | 22 417  | 4 249         | 4 249    | 6911    |
| 6 893   | 8 675   | 7 192   | 6 967     | 12 295  | 8 194   | 34 773        | 34 773  | 34 773  | 50 617        | 50 617   | 50 617  |
| 8 923   |         |         | 2 967     |         |         | 6 577         |         |         | 36 529        |          |         |
| 8 999   |         |         | 2 827     |         |         | 2 128         |         |         | 6 562         |          |         |
| 5 111   |         |         | 2 967     |         |         | 1 701         |         |         | 1 /62         |          |         |
| 4 005   |         |         | 4 705     |         |         | 1 240         |         |         | 1 402         |          |         |
| 1 085   |         |         | 1765      |         |         | 1 340         |         |         | 1021          |          |         |
| 254     |         |         | 367       |         |         | 592           |         |         | 559           |          |         |
| 51      |         |         | 103       |         |         | 116           |         |         | 227           |          |         |
| 70      |         |         | 22        |         |         | 26            |         |         | 27            |          |         |
| 13      |         |         | 23        |         |         | 8             |         |         | 12            |          |         |
| 15      |         |         | 25        |         |         | 0             |         |         | 12            |          |         |
| 3       |         |         |           |         |         | 9             |         |         | 0             |          |         |
| 24      |         |         | 9         |         |         | 14            |         |         | 17            |          |         |
| 51 540  | 66 778  | 60 232  | 43 031    | 62 811  | 48 778  | 68 253        | 68 253  | 72 061  | 101 898       | 101 898  | 106 434 |
|         |         |         |           |         |         |               |         |         |               |          |         |
| Others  |         |         | Others    |         |         | Others        |         |         | Others        |          |         |
|         | M 1     | NA 11   |           | M 1     | NA 11   |               | M 1     | NA 11   |               |          | NA 11   |
| AFWG    | IVI. I  | M. II   | AFWG      | IVI. I  | IVI. II | AFWG          | IVI. I  | IVI. II | AFWG          | IVI. I   | IVI. II |
| 280     | 384     | 518     | 122       | 122     | 128     | 2             | 2       | 5       | 83            | 83       | 296     |
| 436     | 549     | 505     | 362       | 362     | 362     | 51            | 51      | 53      | 570           | 570      | 1 049   |
| 279     | 345     | 279     | 72        | 97      | 131     | 116           | 116     | 116     | 5 583         | 5 583    | 6 336   |
| 326     |         |         | 73        |         |         | 21            |         |         | 6 895         |          |         |
| 320     |         |         | 170       |         |         | 21            |         |         | 0 000         |          |         |
| 302     |         |         | 172       |         |         | 10            |         |         | 2 603         |          |         |
| 467     |         |         | 269       |         |         | 28            |         |         | 840           |          |         |
| 176     |         |         | 64        |         |         | 49            |         |         | 390           |          |         |
| 84      |         |         | 33        |         |         | 49            |         |         | 242           |          |         |
| 1/      |         |         | 9         |         |         | 13            |         |         | 1/0           |          |         |
| 14      |         |         | 10        |         |         | 15            |         |         | 170           |          |         |
| 44      |         |         | 13        |         |         | 5             |         |         | 32            |          |         |
| 4       |         |         | 2         |         |         | 2             |         |         | 14            |          |         |
| 1       |         |         | 0         |         |         | 3             |         |         | 1             |          |         |
| 4       |         |         | 3         |         |         | 1             |         |         | 11            |          |         |
| 2 475   | 2 760   | 2 783   | 1 194     | 1 2 1 9 | 1 260   | 355           | 355     | 361     | 17 414        | 17 414   | 18 861  |
|         |         |         |           |         |         |               |         |         |               |          |         |
| Tet-I   |         |         | Tet-1     |         |         | Tet-I         |         |         | Tet-1         |          |         |
| Iotal   |         |         | Iotal     |         |         | Iotal         |         |         | Iotal         |          |         |
| AFWG    | M. I    | M. II   | AFWG      | M. I    | M. II   | AFWG          | M. I    | M. II   | AFWG          | M. I     | M. II   |
| 55 937  | 80 748  | 83 500  | 34 467    | 58 947  | 68 579  | 3 710         | 3 710   | 18 521  | 2 307         | 2 307    | 14 766  |
| 55 645  | 70 523  | 72 157  | 160 048   | 219 988 | 163 055 | 174 585       | 175 635 | 213 187 | 24 545        | 24 590   | 39 106  |
| 21 676  | 13 110  | 37 705  | 60 224    | 08 260  | 74 040  | 267 061       | 267 061 | 268 833 | 228 512       | 228 512  | 252 /60 |
| 40 500  | +3 440  | 51 / 05 | 00 204    | 30 200  | 14 040  | 107 050       | 201 301 | 200 032 | 200 012       | 200 012  | 202 409 |
| 42 539  |         |         | 22 061    |         |         | 107 052       |         |         | 181 239       |          |         |
| 37 170  |         |         | 26 295    |         |         | 26 701        |         |         | 79 363        |          |         |
| 18 500  |         |         | 25 140    |         |         | 16 398        |         |         | 26 989        |          |         |
| 5 078   |         |         | 11 323    |         |         | 11 597        |         |         | 13 463        |          |         |
| 1 /0/   |         |         | 2 2 2 2 0 |         |         | 2 657         |         |         | 5 002         |          |         |
| 1 494   |         |         | 2 328     |         |         | 3 007         |         |         | 1 010         |          |         |
| 380     |         |         | 687       |         |         | 658           |         |         | 1 912         |          |         |
| 403     |         |         | 316       |         |         | 122           |         |         | 414           |          |         |
| 78      |         |         | 225       |         |         | 124           |         |         | 121           |          |         |
| Q       |         |         | 40        |         |         | 70            |         |         | 23            |          |         |
| 1/10    |         |         | 59        |         |         | 10            |         |         | 16            |          |         |
| 252 055 | 300 509 | 200 160 | 352 225   | 465 672 | 30/ 1/0 | 4/<br>612 692 | 613 733 | 666 067 | 40<br>57/ 027 | 574 072  | 615 005 |
| 202 000 | 200 200 | 233 100 | JJZ ZZD   | 403012  | 334 149 | 012 002       | 013/32  | 000 907 | J14 UZ1       | JIH U/2  | 010 000 |

Table A Continued.

| 1970       |         |         | 1971    |         |         | 1972    |         |         | 1973    |         | _        |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|
| Norway     |         |         | Norway  |         |         | Norway  |         |         | Norway  |         |          |
| AFWG       | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II    |
| 1 843      | 1 847   | 3 917   | 930     | 4 431   | 5 894   | 7 186   | 17 572  | 13 807  | 9.034   | 127 718 | 16 847   |
| 0 400      | 0 700   | 5 050   | 2 400   | 7 002   | 6 420   | 10 1 10 | 22 022  | 10 007  | 22 702  | 20.010  | 25 4 49  |
| 2 1 2 2    | 2733    | 5 252   | 3 489   | 7 003   | 6 4 3 0 | 10 143  | 32 032  | 10 675  | 23 792  | 39 213  | 25 148   |
| 9 357      | 9 395   | 9 501   | 4 521   | 6 623   | 4 675   | 8 092   | 19 626  | 8 462   | 17 681  | 18 367  | 18 108   |
| 49 510     |         |         | 5 297   |         |         | 6 224   |         |         | 5 645   |         |          |
| 31 301     |         |         | 34 369  |         |         | 5 662   |         |         | 2 601   |         |          |
| 10 595     |         |         | 29 720  |         |         | 27 494  |         |         | 7 386   |         |          |
| 4 135      |         |         | 5 601   |         |         | 16 155  |         |         | 16 746  |         |          |
| 4 155      |         |         | 1 005   |         |         | 10 100  |         |         | 0 170   |         |          |
| 2 067      |         |         | 1 085   |         |         | 2 465   |         |         | 3 478   |         |          |
| 740        |         |         | 545     |         |         | 723     |         |         | 497     |         |          |
| 115        |         |         | 266     |         |         | 151     |         |         | 106     |         |          |
| 55         |         |         | 71      |         |         | 159     |         |         | 75      |         |          |
| 12         |         |         | -       |         |         | 2       |         |         | 44      |         |          |
| <u>-</u> . |         |         | -       |         |         |         |         |         | 27      |         |          |
| 111 050    | 112 510 | 117 206 | 0E 004  | 05 100  | 04 042  | 01 1EC  | 100 065 | 01 070  | 07 110  | 221 004 | 06 709   |
| 111 000    | 112 510 | 117 200 | 00 904  | 95 100  | 94 043  | 04 400  | 120 200 | 91 97 9 | 0/ 112  | 221 904 | 90708    |
|            |         |         |         |         |         |         |         |         |         |         |          |
| USSR       |         |         | USSR    |         |         | USSR    |         |         | USSR    |         |          |
| AFWG       | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II    |
| 2 478      |         | 9 400   | 3 176   |         | 9 724   | 12 620  |         | 27 789  | 256 235 |         | 256 235  |
| 3 737      |         | 9 742   | 4 760   |         | 7 691   | 23 480  |         | 25 861  | 78 252  |         | 155 595  |
| 9.073      |         | 11 134  | 4 1 1 8 |         | 4 912   | 14 474  |         | 14 950  | 32 264  |         | 52 916   |
| 26 591     |         | 11 104  | 2 069   |         | 4012    | 4 100   |         | 14 000  | 10 606  |         | 02 010   |
| 30 30 1    |         |         | 2 000   |         |         | 4 190   |         |         | 10 000  |         |          |
| 41 /54     |         |         | 9 306   |         |         | 1 406   |         |         | 3 576   |         |          |
| 16 631     |         |         | 14 151  |         |         | 4 246   |         |         | 448     |         |          |
| 3 843      |         |         | 4 988   |         |         | 4 652   |         |         | 514     |         |          |
| 708        |         |         | 1 033   |         |         | 1 848   |         |         | 343     |         |          |
| 150        |         |         | 115     |         |         | 430     |         |         | 106     |         |          |
| 150        |         |         | 115     |         |         | 439     |         |         | 100     |         |          |
| 17         |         |         | 46      |         |         | 179     |         |         | 68      |         |          |
| -          |         |         | 1       |         |         | 128     |         |         | 1       |         |          |
| -          |         |         | 11      |         |         | 93      |         |         | 1       |         |          |
| -          |         |         | -       |         |         | 33      |         |         | -       |         |          |
| 114 972    |         | 129 960 | 43 773  |         | 54 046  | 67 788  |         | 85 814  | 382 414 |         | 480 409  |
| 114 072    |         | 120 000 | 40110   |         | 0-10-10 | 01 100  |         | 00 014  | 002 414 |         | 400 400  |
| England    |         |         | England |         |         | England |         |         | England |         |          |
| England    |         |         | England |         |         | England |         |         | England |         |          |
| AFWG       | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II    |
| 2 071      | 2 071   | 4 342   | 2 663   | 2 663   | 3 849   | 13 240  | 13 240  | 13 240  | 13 554  | 72 631  | 16 377   |
| 3 482      | 3 482   | 4 976   | 3 681   | 3 681   | 3 970   | 9 114   | 9 114   | 9 415   | 20 415  | 23 538  | 20 735   |
| 4 752      | 4 752   | 5 507   | 1 808   | 2 411   | 2 103   | 2 824   | 4 233   | 3 268   | 7 385   | 9 466   | 8 195    |
| 35.017     |         |         | 1 212   |         |         | 1 095   |         |         | 3 156   |         |          |
| 12 950     |         |         | 0 1 1 2 |         |         | E 0 E   |         |         | 701     |         |          |
| 12 009     |         |         | 9113    |         |         | 000     |         |         | 701     |         |          |
| 2 336      |         |         | 4 264   |         |         | 2 377   |         |         | 370     |         |          |
| 364        |         |         | 624     |         |         | 1 025   |         |         | 1 323   |         |          |
| 245        |         |         | 132     |         |         | 127     |         |         | 471     |         |          |
| 192        |         |         | 47      |         |         | 22      |         |         | 41      |         |          |
| 73         |         |         | 57      |         |         | 10      |         |         | 10      |         |          |
| 73         |         |         | 57      |         |         | 10      |         |         | 10      |         |          |
| 30         |         |         | 29      |         |         | 17      |         |         | 2       |         |          |
| 15         |         |         | 20      |         |         | 15      |         |         | 8       |         |          |
| 15         |         |         | 12      |         |         | 9       |         |         | 19      |         |          |
| 61 451     | 61 451  | 65 972  | 23 662  | 24 265  | 25 433  | 30 460  | 31 869  | 31 205  | 47 455  | 111 737 | 51 407   |
|            |         |         |         |         |         |         |         |         |         |         |          |
| Others     |         |         | Others  |         |         | Others  |         |         | Others  |         |          |
| AFWG       | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II    |
| 773        | 773     | 2 169   | 985     | 1 379   | 3 008   | 2 4 9 0 | 2 490   | 3 577   | 15 439  | 25 514  | 15 761   |
| 1 452      | 1 452   | 2 600   | 1 910   | 2 267   | 2 667   | 2 602   | 2 744   | 2 007   | 0.024   | 0.024   | 10 1 4 2 |
| 1400       | 1 400   | 2 009   | 1 010   | 2 207   | 2 007   | 2 093   | 3 / 44  | 2 007   | 9 034   | 9 034   | 12 143   |
| 2 632      | 2 689   | 2 961   | 1 384   | 1 817   | 1 499   | 1 441   | 2 199   | 1 515   | 3 670   | 3 843   | 4 344    |
| 16 728     |         |         | 950     |         |         | 580     |         |         | 1 163   |         |          |
| 10 509     |         |         | 6 504   |         |         | 264     |         |         | 370     |         |          |
| 2 359      |         |         | 3 869   |         |         | 768     |         |         | 124     |         |          |
| 592        |         |         | 790     |         |         | 483     |         |         | 546     |         |          |
| 220        |         |         | 195     |         |         | 132     |         |         | 206     |         |          |
| 229        |         |         | 105     |         |         | 132     |         |         | 200     |         |          |
| 151        |         |         | 55      |         |         | 31      |         |         | 34      |         |          |
| 56         |         |         | 48      |         |         | 13      |         |         | 11      |         |          |
| 21         |         |         | 48      |         |         | 11      |         |         | 4       |         |          |
| 12         |         |         | 12      |         |         | 11      |         |         | 6       |         |          |
| 1/         |         |         | 12      |         |         | 6       |         |         | 11      |         |          |
| 35 529     | 25 594  | 29 / 99 | 16 652  | 17 027  | 10 6/9  | 8 022   | 10 732  | 10 277  | 20 621  | 40.960  | 24 726   |
| 00 020     | 00 004  | 00 400  | 10 002  | 11 001  | 10 040  | 0 022   | 10 102  | 10 211  | 00 02 1 | 40 000  | 04720    |
| Tet-I      |         |         | Tet-I   |         |         | Tat-I   |         |         | Tat-1   |         |          |
| Iotal      |         |         | Iotal   |         |         | Iotal   |         |         | Iotal   |         |          |
| AFWG       | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II   | AFWG    | M. I    | M. II    |
| 7 165      | 7 169   | 19 829  | 7 754   | 11 649  | 22 475  | 35 536  | 45 922  | 58 413  | 294 262 | 482 099 | 305 220  |
| 10 794     | 11 404  | 22 658  | 13 740  | 17 711  | 20 758  | 45 430  | 68 371  | 48 838  | 131 493 | 150 037 | 213 621  |
| 25 814     | 25 909  | 29 104  | 11 831  | 14 969  | 13 190  | 26 831  | 40 531  | 28 195  | 61 000  | 63 941  | 83 563   |
| 137 936    | 20 000  | 20 104  | 0 5 2 7 |         |         | 12 090  |         | 20 100  | 20 570  | 00 041  | 0000     |
| 137 030    |         |         | 9 927   |         |         | 12 009  |         |         | 20 370  |         |          |
| 96 423     |         |         | 59 292  |         |         | 7 917   |         |         | 7 248   |         |          |
| 31 921     |         |         | 52 004  |         |         | 34 885  |         |         | 8 328   |         |          |
| 8 934      |         |         | 12 093  |         |         | 22 315  |         |         | 19 129  |         |          |
| 3 249      |         |         | 2 435   |         |         | 4 572   |         |         | 4 498   |         |          |
| 1 233      |         |         | 762     |         |         | 1 215   |         |         | 678     |         |          |
| 1 200      |         |         | 102     |         |         | 1 210   |         |         | 405     |         |          |
| 261        |         |         | 417     |         |         | 353     |         |         | 195     |         |          |
| 106        |         |         | 149     |         |         | 315     |         |         | 82      |         |          |
| 39         |         |         | 43      |         |         | 121     |         |         | 59      |         |          |
| 35         |         |         | 24      |         |         | 48      |         |         | 60      |         |          |
| 323 809    | 324 517 | 351 627 | 170 071 | 181 075 | 193 170 | 191 626 | 238 653 | 219 275 | 547 602 | 756 923 | 663 250  |

## Table A Continued.

| 1974     |           |         | 1975    |         |         | 1976            |          |         |
|----------|-----------|---------|---------|---------|---------|-----------------|----------|---------|
| Norway   |           |         | Norway  |         |         | Norway          |          |         |
| AFWG     | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG            | M. I     | M. II   |
| 1 845    | 56 218    | 8 021   | 3 435   | 13 634  | 10 862  | 10 967          | 40 657   | 12 385  |
| 5/ 001   | 1/6 79/   | 5/ 001  | 8 778   | 16 452  | 18 596  | 20 571          | 17 122   | 24 716  |
| 27 024   | 76 077    | 46 642  | 65.009  | 65 009  | 6E 009  | 20 37 1         | 22 270   | 24710   |
| 37 024   | 10011     | 40 042  | 05 008  | 05 006  | 05 008  | 21 142          | 32 210   | 21 390  |
| 15 755   |           |         | 30 984  |         |         | 50 653          |          |         |
| 4 597    |           |         | 9 969   |         |         | 17 289          |          |         |
| 1 691    |           |         | 4 537   |         |         | 6 416           |          |         |
| 1 827    |           |         | 1 509   |         |         | 2 520           |          |         |
| 4 612    |           |         | 1 207   |         |         | 576             |          |         |
| 4 012    |           |         | 1 207   |         |         | 570             |          |         |
| 1 867    |           |         | 1 404   |         |         | 234             |          |         |
| 298      |           |         | 475     |         |         | 324             |          |         |
| 142      |           |         | 206     |         |         | 93              |          |         |
| 76       |           |         | 13      |         |         | 18              |          |         |
| 41       |           |         | 32      |         |         | 33              |          |         |
| 105 500  | 200.005   | 140 501 | 107 557 | 145 400 | 144 004 | 120.020         | 100 504  | 100 047 |
| 125 500  | 309 995   | 140 561 | 12/ 55/ | 145 430 | 144 601 | 130 636         | 196 504  | 130 047 |
|          |           |         |         |         |         |                 |          |         |
| USSR     |           |         | USSR    |         |         | USSR            |          |         |
| AFWG     | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG            | M. I     | M. II   |
| 79 764   |           | 89 200  | 31 028  |         | 36 196  | 60 267          |          | 63 728  |
| 253 970  |           | 254 887 | 35 553  |         | 46 851  | 70 542          |          | 73 040  |
| 110 722  |           | 142 540 | 02 141  |         | 108 227 | 46 103          |          | 16 766  |
| 119723   |           | 142 349 | 92 141  |         | 100 227 | 40 195          |          | 40700   |
| 22 /4/   |           |         | 63 060  |         |         | 37 593          |          |         |
| 5 887    |           |         | 14 976  |         |         | 23 800          |          |         |
| 2 078    |           |         | 3 585   |         |         | 6 465           |          |         |
| 503      |           |         | 841     |         |         | 1 215           |          |         |
| 110      |           |         | 2/13    |         |         | 208             |          |         |
| 110      |           |         | 240     |         |         | 230             |          |         |
| 0        |           |         | 243     |         |         | 213             |          |         |
| 0        |           |         | -       |         |         | 1               |          |         |
| 0        |           |         | -       |         |         | 1               |          |         |
| 0        |           |         | -       |         |         | -               |          |         |
| 0        |           |         | -       |         |         | -               |          |         |
| 494 792  |           | 517 061 | 241 670 |         | 274 222 | 246 648         |          | 253 190 |
| 404 / 02 |           | 517 901 | 241 070 |         | 214 222 | 240 040         |          | 203 100 |
|          |           |         |         |         |         |                 |          |         |
| England  |           |         | England |         |         | England         |          |         |
| AFWG     | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG            | M. I     | M. II   |
| 1 591    | 13 656    | 5 981   | 4 896   | 4 896   | 8 084   | 6 833           | 11 575   | 7 691   |
| 37 780   | 37 780    | 37 780  | 7 173   | 7 173   | 10 583  | 12 783          | 1/ 569   | 13 032  |
| 14 050   | 10 525    | 17 500  | 24 614  | 24 64 4 | 24 64 4 | 12 705<br>E 04E | 0 100    | 7 002   |
| 14 859   | 18 535    | 17 589  | 34 614  | 34 614  | 34 614  | 5 945           | 9 102    | 7 262   |
| 3 841    |           |         | 9 526   |         |         | 14 523          |          |         |
| 871      |           |         | 1 345   |         |         | 2 336           |          |         |
| 208      |           |         | 255     |         |         | 303             |          |         |
| 61       |           |         | 50      |         |         | 90              |          |         |
| 247      |           |         | 20      |         |         | 17              |          |         |
| 247      |           |         | 23      |         |         | 17              |          |         |
| 89       |           |         | 91      |         |         | 12              |          |         |
| 12       |           |         | 36      |         |         | 36              |          |         |
| 2        |           |         | 1       |         |         | 22              |          |         |
| 2        |           |         | 1       |         |         | 1               |          |         |
| 6        |           |         | 1       |         |         | 7               |          |         |
| 50 500   | 75 240    | CC C00  | 50.015  | E0.01E  | 64 642  | 12 017          | 50 000   | 45 044  |
| 29 269   | 15 310    | 00 009  | 56 015  | 56 015  | 64 613  | 42 917          | 52 602   | 45 341  |
|          |           |         |         |         |         |                 |          |         |
| Others   |           |         | Others  |         |         | Others          |          |         |
| AFWG     | M. I      | M. II   | AFWG    | M. I    | M. II   | AFWG            | M. I     | M. II   |
| 8 655    | 14 466    | 16 140  | 5 923   | 7 343   | 9 656   | 7 269           | 10 141   | 8 409   |
| 00 626   | 00.015    | 00 636  | 0 020   | 9 051   | 12 646  | 10 445          | 14 202   | 11 000  |
| 90 030   | 90 915    | 90 030  | 0 2 94  | 0 901   | 12 040  | 10 445          | 14 203   | 11 000  |
| 31 367   | 31 439    | 40 767  | 34 882  | 34 882  | 35 129  | 6 713           | 9 079    | 7 603   |
| 4 663    |           |         | 14 997  |         |         | 15 467          |          |         |
| 1 275    |           |         | 3 231   |         |         | 4 447           |          |         |
| 392      |           |         | 976     |         |         | 779             |          |         |
| 122      |           |         | 221     |         |         | 216             |          |         |
| 132      |           |         |         |         |         | 210             |          |         |
| 030      |           |         | 01      |         |         | 44              |          |         |
| 171      |           |         | 189     |         |         | 38              |          |         |
| 13       |           |         | 64      |         |         | 81              |          |         |
| 7        |           |         | 23      |         |         | 23              |          |         |
| 5        |           |         |         |         |         | 7               |          |         |
| 10       |           |         | 4       |         |         | 1.4             |          |         |
| 10       | 111 100   | 454.050 | 1       | 70.000  | 77.040  | 14              | E 4 500  | 40.040  |
| 13/ 9/0  | 144 133   | 154 856 | 68 883  | 10 960  | 11 216  | 45 544          | 54 539   | 49 016  |
|          |           |         |         |         |         |                 |          |         |
| Total    |           |         | Total   |         |         | Total           |          |         |
| AFWG     | MI        | M. II   | AFWG    | MI      | МΙ      | AFWG            | MI       | M. II   |
| 01 955   | 164 105   | 110 2/2 | 15 292  | 56 001  | 64 709  | 85 336          | 122 620  | 02 212  |
| 50016    | 104 105   | 119 342 | 40 202  | 00 901  | 04 / 90 | 00 330          | 122 039  | 32 213  |
| 43/ 3//  | 529 459   | 438 294 | 29 / 98 | 08 129  | 00 0/0  | 114 341         | 140 / 30 | 122 0/0 |
| 203 773  | 245 775   | 247 548 | 226 645 | 226 645 | 242 978 | 79 993          | 96 644   | 83 021  |
| 47 006   |           |         | 118 567 |         |         | 118 236         |          |         |
| 12 630   |           |         | 29 521  |         |         | 47 872          |          |         |
| 0.02 1   |           |         | 0 353   |         |         | 13 063          |          |         |
| + 508    |           |         | 0.004   |         |         | 10 500          |          |         |
| 2 523    |           |         | 2 621   |         |         | 4 050           |          |         |
| 5 607    |           |         | 1 554   |         |         | 935             |          |         |
| 2 127    |           |         | 1 927   |         |         | 557             |          |         |
| 323      |           |         | 575     |         |         | 442             |          |         |
| 151      |           |         | 220     |         |         | 130             |          |         |
| 101      |           |         | 200     |         |         | 139             |          |         |
| 83       |           |         | 15      |         |         | 26              |          |         |
| 63       |           |         | 37      |         |         | 54              |          |         |
| 807 888  | 1 014 221 | 880 066 | 496 125 | 516 075 | 560 853 | 465 945         | 552 293  | 484 185 |

Table A Continued.

| 1977          |         | 1978          |         | 1979          |         | 1980         |         | 1981         |         |
|---------------|---------|---------------|---------|---------------|---------|--------------|---------|--------------|---------|
| Norway trawl  |         | Norway trawl  |         | Norway trawl  |         | Norway trawl |         | Norway trawl |         |
| AFWG          | M. II   | AFWG          | M. II   | AFWG          | M. II   | AFWG         | M. II   | AFWG         | M. II   |
| 7 264         | 7 975   | 17 938        | 17 938  | 2 733         | 4 635   | 835          | 2 041   | 553          | 1 583   |
| 30 932        | 30 932  | 10 332        | 17 283  | 24 619        | 26 951  | 3 650        | 6 533   | 1 536        | 3 261   |
| 25 011        | 25 011  | 20 140        | 20 140  | 13 878        | 14 899  | 17 514       | 17 699  | 3 375        | 5 024   |
| 9 709         |         | 12 932        |         | 10 149        |         | 8 558        |         | 10 292       |         |
| 11 341        |         | 5 782         |         | 5 343         |         | 3 773        |         | 3 535        |         |
| 4 281         |         | 7 242         |         | 2 629         |         | 1 590        |         | 1 612        |         |
| 1 038         |         | 2 141         |         | 3 487         |         | 749          |         | 692          |         |
| 279           |         | 279           |         | 567           |         | 683          |         | 213          |         |
| 112           |         | 208           |         | 136           |         | 145          |         | 143          |         |
| 50            |         | 102           |         | 33            |         | 17           |         | 18           |         |
| 22            |         | 170           |         | 19            |         | 5            |         | 6            |         |
| 17            |         | 11            |         | 12            |         | 6            |         | 0            |         |
| 10            |         | 12            |         | 14            |         | 2            |         | 0            |         |
| 90 067        | 90 779  | 77 288        | 84 239  | 63 618        | 68 874  | 37 526       | 41 800  | 21 976       | 26 380  |
| Others        |         | Others        |         | Others        |         | Others       |         | Others       |         |
| AFWG          | M. II   | AFWG          | M. II   | AFWG          | M. II   | AFWG         | M. II   | AFWG         | M. II   |
| 22 582        | 35 891  | 37 862        | 41 982  | 2 845         | 6 779   | 1 523        | 5 550   | 1 035        | 4 491   |
| 96 163        | 96 163  | 21 808        | 39 443  | 25 629        | 30 697  | 6 656        | 13 836  | 2 876        | 7 204   |
| 77 756        | 77 756  | 42 508        | 42 508  | 14 447        | 14 447  | 31 936       | 31 936  | 6 320        | 9 204   |
| 30 185        |         | 27 295        | 12 000  | 10 566        |         | 15 605       | 0.000   | 19 270       | 0 20 .  |
| 35 258        |         | 12 204        |         | 5 562         |         | 6 881        |         | 6 619        |         |
| 13 310        |         | 15 285        |         | 2 737         |         | 2 899        |         | 3 017        |         |
| 3 227         |         | 4 519         |         | 3 630         |         | 1 366        |         | 1 296        |         |
| 867           |         | 589           |         | 590           |         | 1 2/15       |         | 308          |         |
| 3/18          |         | /30           |         | 1/1           |         | 264          |         | 268          |         |
| 155           |         | 214           |         | 3/            |         | 204          |         | 200          |         |
| 70            |         | 214           |         | 20            |         | 0            |         | 11           |         |
| 52            |         | 339           |         | 13            |         | 10           |         | 1            |         |
| 31            |         | 23            |         | 15            |         | 10           |         | 0            |         |
| 280 003       | 293 313 | 163 131       | 184 886 | 66 228        | 75 230  | 68 429       | 79 636  | 41 144       | 51 812  |
| Total         |         | Total         |         | Total         |         | Total        |         | Total        |         |
| AFWG          | МЛ      | AFWG          | мп      | AFW/G         | мп      | AFWG         | мп      | AFWG         | мп      |
| 30 50/        | 53 615  | 78 822        | 82 0/2  | 8 600         | 1/ /27  | 3 011        | Q 1/2   | 3 /07        | 7 802   |
| 168 600       | 168 600 | 15 400        | 60 086  | 77 494        | 9/ 99/  | 17.096       | 27 150  | 0.466        | 15 510  |
| 126 325       | 136 335 | 99 405        | 88 405  | 12 677        | 44 609  | 91 096       | 92 171  | 20 803       | 25 227  |
| 52 025        | 130 333 | 56 922        | 00 495  | 43 077        | 44 050  | 40.061       | 02 17 1 | 63 433       | 20 001  |
| 52 525        |         | 36 407        |         | 16 015        |         | 40 001       |         | 03 433       |         |
| 22 220        |         | 23 407        |         | 0 0 13        |         | 7 4 4 2      |         | 21700        |         |
| 23 330        |         | 0 409         |         | 0 274         |         | 7 442        |         | 9 933        |         |
| 1 501         |         | 3 400         |         | 10 974        |         | 3 300        |         | 4 207        |         |
| 1 521         |         | 1 22/         |         | CO 1 1        |         | 3 190        |         | 1311         |         |
| 610           |         | 913           |         | 427           |         | 6/8          |         | 882          |         |
| 2/1           |         | 446           |         | 103           |         | 79           |         | 109          |         |
| 122           |         | /48           |         | 59            |         | 24           |         | 3/           |         |
| 92            |         | 48            |         | 38            |         | 26           |         | 3            |         |
| 54<br>490 951 | 504 972 | 51<br>339 609 | 368 315 | 45<br>200 224 | 214 481 | 8<br>175 669 | 191 150 | 135 440      | 150 513 |

| Table A  | Continued |
|----------|-----------|
| I able A | Commueu.  |

| 1982   |              | 1983       |         |                  |           | 1984       |        |                    |           |
|--------|--------------|------------|---------|------------------|-----------|------------|--------|--------------------|-----------|
| Norway |              | Norway     |         |                  |           | Norway     |        |                    |           |
| AFWG   | M. II        | AFWG       | M. II   | M. Illa          | M. IIIb   | AFWG       | M. II  | M. IIIa            | M. IIIb   |
| 4 098  | 4 098        | 1 125      | 2 737   | 1 444            | 1 146     | 4 750      | 8 139  | 8 626              | 7 53      |
| 12 127 | 12 127       | 6 887      | 6 887   | 8 184            | 6 952     | 9 056      | 9 899  | 9 750              | 9 05      |
| 13 243 | 13 246       | 15 235     | 15 235  | 15 748           | 15 235    | 12 182     | 12 205 | 12 362             | 12 31     |
| 23 215 |              | 13 852     |         |                  |           | 16 774     |        |                    |           |
| 33 589 |              | 14 986     |         |                  |           | 13 813     |        |                    |           |
| 6 798  |              | 16 182     |         |                  |           | 7 674      |        |                    |           |
| 2 462  |              | 2 223      |         |                  |           | 5 629      |        |                    |           |
| 2 402  |              | 2 223      |         |                  |           | 711        |        |                    |           |
| 044    |              | 000        |         |                  |           | 105        |        |                    |           |
| 229    |              | 219        |         |                  |           | 195        |        |                    |           |
| 174    |              | 68         |         |                  |           | 137        |        |                    |           |
| 24     |              | 50         |         |                  |           | 41         |        |                    |           |
| 5      |              | 17         |         |                  |           | 12         |        |                    |           |
| 4      |              | 4          |         |                  |           | 7          |        |                    |           |
| 96 612 | 96 615       | 71 434     | 73 046  | 73 563           | 71 519    | 70 981     | 75 236 | 75 732             | 73 89     |
| IISSR  |              | USSR       |         |                  |           | LISSR      |        |                    |           |
|        | MU           | AE\N/C     | N4 11   | M IIIo           | МШЬ       |            | M 11   | M IIIo             | мшь       |
| 2 950  | 2 210        | E10        | 054     | 1VI. 1110<br>EED | E10       | 042        | 2 100  | 1VI. IIIa<br>2 202 | 1 00      |
| Z 000  | 5519         | 210        | 904     | 222              | 212       | 942        | 2 109  | 2 392              | 1 90      |
| 5 203  | 101          | 2 /92      | 2 /92   | 2 / 92           | 2 /92     | 2 234      | 2 234  | 2 234              | 2 23      |
| 3 180  | 3 924        | 2 354      | 2 354   | 2706             | 2 410     | 3 352      | 3 352  | 3 352              | 3 35      |
| 2 449  |              | 1 059      |         |                  |           | 1 776      |        |                    |           |
| 4 558  |              | 635        |         |                  |           | 497        |        |                    |           |
| 833    |              | 480        |         |                  |           | 154        |        |                    |           |
| 220    |              | 139        |         |                  |           | 85         |        |                    |           |
| 24     |              | 57         |         |                  |           | 38         |        |                    |           |
| 19     |              | 32         |         |                  |           | 24         |        |                    |           |
| 52     |              | 11         |         |                  |           | 4          |        |                    |           |
| -      |              | -          |         |                  |           | -          |        |                    |           |
| -      |              | -          |         |                  |           | -          |        |                    |           |
| -      | 21 5/9       | -<br>8.071 | 8 513   | 8 /63            | 8 127     | -<br>9.106 | 10 353 | 10 556             | 10.07     |
| 10 000 | 21010        | 0011       | 0010    | 0 100            | 0.21      | 0.00       | 10 000 | 10 000             |           |
| Others |              | Others     |         |                  |           | Others     |        |                    |           |
| AFWG   | M. II        | AFWG       | M. II   | M. IIIa          | M. IIIb   | AFWG       | M. II  | M. IIIa            | M. IIIt   |
| 2 000  | 2 261        | 1 267      | 2 044   | 1 559            | 1 476     | 1 250      | 2 132  | 2 327              | 1 86      |
| 3 603  | 4 132        | 8 082      | 8 802   | 9 169            | 8 884     | 2 950      | 3 006  | 2 986              | 2 95      |
| 2 922  | 2 956        | 3 075      | 4 440   | 6 156            | 5 036     | 3 273      | 3 273  | 3 273              | 3 27      |
| 2 420  |              | 2 206      |         |                  |           | 1 536      |        |                    |           |
| 4 349  |              | 1 250      |         |                  |           | 835        |        |                    |           |
| 764    |              | 1 178      |         |                  |           | /59        |        |                    |           |
| 106    |              | 120        |         |                  |           | 274        |        |                    |           |
| 190    |              | 125        |         |                  |           | 2/4        |        |                    |           |
| 40     |              | 41         |         |                  |           | 34         |        |                    |           |
| 23     |              | 8          |         |                  |           | 13         |        |                    |           |
| 34     |              | 4          |         |                  |           | 12         |        |                    |           |
| 3      |              | 8          |         |                  |           | 8          |        |                    |           |
| - 1    |              | 3          |         |                  |           | - 1        |        |                    |           |
| 16 355 | 17 179       | 17 252     | 20 114  | 21 713           | 20 224    | 10 645     | 11 583 | 11 758             | 11 25     |
| Total  |              | Total      |         |                  |           | Total      |        |                    |           |
| IOTAI  | <b>NA</b> 12 | Iotal      |         |                  |           | Iotal      |        |                    |           |
| AFWG   | IVI. II      | AFWG       | IVI. II | IVI. IIIA        | IVI. IIID | AFWG       | M. II  | IVI. IIIA          | IVI. IIIt |
| 8 948  | 9 678        | 2 904      | 5 735   | 3 556            | 3 134     | 6 942      | 12 460 | 13 346             | 11 30     |
| 20 933 | 22 410       | 17 761     | 18 481  | 20 146           | 18 627    | 14 240     | 15 140 | 14 970             | 14 24     |
| 19 345 | 20 125       | 20 664     | 22 029  | 24 610           | 22 682    | 18 807     | 18 830 | 18 987             | 18 93     |
| 28 084 |              | 17 117     |         |                  |           | 20 086     |        |                    |           |
| 42 496 |              | 16 871     |         |                  |           | 15 145     |        |                    |           |
| 8 395  |              | 17 840     |         |                  |           | 8 287      |        |                    |           |
| 2 878  |              | 2 491      |         |                  |           | 5 988      |        |                    |           |
| 708    |              | 684        |         |                  |           | 783        |        |                    |           |
| 271    |              | 259        |         |                  |           | 232        |        |                    |           |
| 260    |              | 200        |         |                  |           | 153        |        |                    |           |
| 200    |              | 59         |         |                  |           | 100        |        |                    |           |
| 21     |              | 00         |         |                  |           | 49         |        |                    |           |
| Э      |              | 20         |         |                  |           | 12         |        |                    |           |
| 5      |              |            |         |                  |           | ~          |        |                    |           |

Table A Continued.

| 1985                                                           |         |           |           | 1986                                |         |           |         | 1987                                |         |           |         |
|----------------------------------------------------------------|---------|-----------|-----------|-------------------------------------|---------|-----------|---------|-------------------------------------|---------|-----------|---------|
| Norway trawl                                                   |         |           |           | Norway trawl                        |         |           |         | Norway trawl                        |         |           |         |
|                                                                | NA 11   | M IIIo    | M IIIb    |                                     | M 11    | M IIIo    | M IIIb  |                                     | M 11    | M IIIo    | M IIIb  |
| AFWG                                                           | 101.11  | IVI. 111d | IVI. IIID | AFWG                                | 7 200   | IVI. 111d |         | AFWG                                | 101.11  | IVI. 111d |         |
| 4 623                                                          | 8 286   | 6 100     | / 010     | 4 844                               | 7 360   | 15 613    | 14 7 37 | 4 603                               | 4 603   | 93/8      | 6 934   |
| 9 723                                                          | 9 730   | 13 191    | 12 374    | 17 326                              | 19 222  | 17 617    | 17 326  | 56 628                              | 56 628  | 63 868    | 60 739  |
| 4 490                                                          | 4 490   | 4 490     | 4 490     | 16 356                              | 16 356  | 16 356    | 16 356  | 32 502                              | 42 379  | 32 502    | 32 502  |
| 4 260                                                          |         |           |           | 5 066                               |         |           |         | 13 653                              |         |           |         |
| 2 258                                                          |         |           |           | 2 836                               |         |           |         | 1 835                               |         |           |         |
| 628                                                            |         |           |           | 825                                 |         |           |         | 1 029                               |         |           |         |
| 263                                                            |         |           |           | 78                                  |         |           |         | 185                                 |         |           |         |
| 82                                                             |         |           |           | 239                                 |         |           |         | 99                                  |         |           |         |
| 15                                                             |         |           |           | 83                                  |         |           |         | 34                                  |         |           |         |
| 15                                                             |         |           |           | 44                                  |         |           |         | 54                                  |         |           |         |
| 1                                                              |         |           |           | 44                                  |         |           |         | 54                                  |         |           |         |
| 11                                                             |         |           |           | 2                                   |         |           |         | 5                                   |         |           |         |
| 11                                                             |         |           |           | 1                                   |         |           |         | 49                                  |         |           |         |
|                                                                |         |           |           | 9                                   |         |           |         | 3                                   |         |           |         |
| 26 365                                                         | 30 035  | 33 378    | 32 011    | 47 709                              | 52 120  | 58 969    | 57 602  | 110 679                             | 120 556 | 122 693   | 119 121 |
| USSR                                                           |         |           |           | USSR                                |         |           |         | USSR                                |         |           |         |
| AFWG                                                           | M. II   | M. IIIa   | M. IIIb   | AFWG                                | M. II   | M. IIIa   | M. IIIb | AFWG                                | M. II   | M. IIIa   | M. IIIb |
| 5 041                                                          | 14 185  | 13 674    | 12 984    | 11 749                              | 15 197  | 27 593    | 26 221  | 4 049                               | 5 320   | 10 714    | 10 381  |
| 18 499                                                         | 18 499  | 18 566    | 18 547    | 21 925                              | 31 350  | 27 396    | 27 115  | 48 089                              | 49 832  | 61 820    | 59 672  |
| 10 182                                                         | 10 182  | 10 182    | 10 182    | 41 240                              | 41 240  | 41 240    | 41 240  | 37 535                              | 44 516  | 37 535    | 37 535  |
| 2 863                                                          |         |           |           | 12 012                              | -       | -         | -       | 34 959                              |         |           |         |
| 1 024                                                          |         |           |           | 2 708                               |         |           |         | 8 574                               |         |           |         |
| 291                                                            |         |           |           | 567                                 |         |           |         | 901                                 |         |           |         |
| 201                                                            |         |           |           | 87                                  |         |           |         | 127                                 |         |           |         |
| 20                                                             |         |           |           | 50                                  |         |           |         | 127                                 |         |           |         |
| 30                                                             |         |           |           | 09                                  |         |           |         | 90                                  |         |           |         |
| 0                                                              |         |           |           | 22                                  |         |           |         | 37                                  |         |           |         |
| -                                                              |         |           |           | 3                                   |         |           |         | 11                                  |         |           |         |
| -                                                              |         |           |           | 1                                   |         |           |         | 2                                   |         |           |         |
| -                                                              |         |           |           | -                                   |         |           |         | -                                   |         |           |         |
| -                                                              |         |           |           | -                                   |         |           |         | -                                   |         |           |         |
| 38 013                                                         | 47 157  | 46 713    | 46 005    | 90 373                              | 103 245 | 111 688   | 110 036 | 134 379                             | 144 373 | 154 776   | 152 294 |
| Others                                                         |         |           |           | Others                              |         |           |         | Others                              |         |           |         |
| AFWG                                                           | M. II   | M. IIIa   | M. IIIb   | AFWG                                | M. II   | M. IIIa   | M. IIIb | AFWG                                | M. II   | M. IIIa   | M. IIIb |
| 4 549                                                          | 4 931   | 4 911     | 4 883     | 4 685                               | 5 713   | 7 390     | 7 011   | 3 029                               | 3 191   | 3 579     | 3 557   |
| 4 160                                                          | 5 112   | 6 310     | 6 035     | 12 065                              | 12 090  | 12 065    | 12 065  | 18 244                              | 18 244  | 20 076    | 19 242  |
| 2 615                                                          | 2 615   | 2 615     | 2 615     | 5 515                               | 7 895   | 7 282     | 7 239   | 12 996                              | 16 071  | 12 996    | 12 996  |
| 2 505                                                          | 2010    | 2010      | 2010      | 1 460                               | 1 000   | 1 202     | 1 200   | 2 721                               | 10 07 1 | 12 000    | 12 000  |
| 2 303                                                          |         |           |           | 1 400                               |         |           |         | 5751                                |         |           |         |
| 337                                                            |         |           |           | 246                                 |         |           |         | 350                                 |         |           |         |
| 219                                                            |         |           |           | 240                                 |         |           |         | 250                                 |         |           |         |
| 82                                                             |         |           |           | 86                                  |         |           |         | 34                                  |         |           |         |
| 52                                                             |         |           |           | 26                                  |         |           |         | 4                                   |         |           |         |
| 5                                                              |         |           |           | 39                                  |         |           |         | -                                   |         |           |         |
| -                                                              |         |           |           | 2                                   |         |           |         | 11                                  |         |           |         |
| 5                                                              |         |           |           | 2                                   |         |           |         | -                                   |         |           |         |
| 5                                                              |         |           |           | -                                   |         |           |         | -                                   |         |           |         |
| -<br>15 194                                                    | 16 528  | 17 705    | 17 402    | -<br>25 303                         | 28 737  | 29 776    | 29 353  | 2<br>38 859                         | 42 096  | 41 241    | 40 385  |
| Total                                                          |         |           |           | Total                               |         |           |         | Tota!                               |         |           |         |
| Iotal                                                          |         | M 111-    |           | Iotal                               |         | M. 111-   |         | Iotal                               |         | M 111-    |         |
| AFWG                                                           | IVI. II | IVI. IIIA | IVI. IIID | AFWG                                | M. II   | IVI. IIIa |         | AFWG                                | IVI. II | IVI. IIIa |         |
| 24 634                                                         | 37 824  | 37 173    | 35 906    | 29 490                              | 36 482  | 59 009    | 56 181  | 13 648                              | 15 081  | 25 638    | 24 839  |
| 45 769                                                         | 46 728  | 51 454    | 50 343    | 71 746                              | 83 091  | 77 507    | 76 936  | 137 090                             | 138 833 | 159 893   | 153 782 |
| 27 806                                                         | 27 806  | 27 806    | 27 806    | 77 454                              | 79 834  | 79 221    | 79 178  | 98 206                              | 118 138 | 98 206    | 98 206  |
| 19 418                                                         |         |           |           | 25 040                              |         |           |         | 61 416                              |         |           |         |
| 11 639                                                         |         |           |           | 11 675                              |         |           |         | 13 717                              |         |           |         |
| 0 7 17                                                         |         |           |           | 4 058                               |         |           |         | 3 866                               |         |           |         |
| 3747                                                           |         |           |           | 976                                 |         |           |         | 911                                 |         |           |         |
| 3 747<br>1 527                                                 |         |           |           | 310                                 |         |           |         |                                     |         |           |         |
| 3 747<br>1 527<br>768                                          |         |           |           | 726                                 |         |           |         | 455                                 |         |           |         |
| 3 747<br>1 527<br>768<br>137                                   |         |           |           | 726<br>557                          |         |           |         | 455<br>187                          |         |           |         |
| 3 747<br>1 527<br>768<br>137<br>36                             |         |           |           | 726<br>557<br>136                   |         |           |         | 455<br>187<br>227                   |         |           |         |
| 3 747<br>1 527<br>768<br>137<br>36<br>21                       |         |           |           | 726<br>557<br>136                   |         |           |         | 455<br>187<br>227                   |         |           |         |
| 3 747<br>1 527<br>768<br>137<br>36<br>31                       |         |           |           | 726<br>557<br>136<br>28             |         |           |         | 455<br>187<br>227<br>21             |         |           |         |
| 3 747<br>1 527<br>768<br>137<br>36<br>31<br>32                 |         |           |           | 726<br>557<br>136<br>28<br>34       |         |           |         | 455<br>187<br>227<br>21<br>59       |         |           |         |
| 3 747<br>1 527<br>768<br>137<br>36<br>31<br>32<br>8<br>135 553 | 140 704 | 459 770   | 151 202   | 726<br>557<br>136<br>28<br>34<br>13 | 242 650 | 259.094   | 255 520 | 455<br>187<br>227<br>21<br>59<br>20 | 252.024 | 264 610   | 257 705 |

| Tabla A  | Continued |
|----------|-----------|
| I able A | Commuea.  |

| 1988         |         |         |         | 1989          |         |         |         | 1990         |        |         |         |
|--------------|---------|---------|---------|---------------|---------|---------|---------|--------------|--------|---------|---------|
| Norway trawl |         |         |         | lorway trawl  |         |         | 1       | Norway trawl |        |         |         |
| AFWG         | M. II   | M. IIIa | M. IIIb | AFWG          | M. II   | M. IIIa | M. IIIb | AFWG         | M. II  | M. IIIa | M. IIIb |
| 5 962        | 5 962   | 5 962   | 5 962   | 1 437         | 2 243   | 1 907   | 1 788   | 133          | 1 898  | 1 041   | 892     |
| 7 017        | 7 017   | 8 532   | 7 559   | 3 951         | 3 951   | 6 242   | 5 912   | 2 167        | 2 167  | 2 394   | 2 167   |
| 35 415       | 38 776  | 46 757  | 42 735  | 7 728         | 7 728   | 7 728   | 7 728   | 3 585        | 3 585  | 3 585   | 3 585   |
| 15 812       | 30770   | 40757   | 42 7 55 | 16 054        | 1 120   | 1120    | 1120    | 2 966        | 0.000  | 0.000   | 5 505   |
| 6 222        |         |         |         | 3 360         |         |         |         | 2 078        |        |         |         |
| 0 232        |         |         |         | 711           |         |         |         | 200          |        |         |         |
| 203          |         |         |         | 110           |         |         |         | 269          |        |         |         |
| 144          |         |         |         | 140           |         |         |         | 47           |        |         |         |
| 25           |         |         |         | 66            |         |         |         | 16           |        |         |         |
| 4            |         |         |         | 18            |         |         |         | 3            |        |         |         |
| 14           |         |         |         | -             |         |         |         | -            |        |         |         |
| 26           |         |         |         |               |         |         |         | -            |        |         |         |
| -            |         |         |         | 4             |         |         |         | -            |        |         |         |
| -<br>70 934  | 74 295  | 83 791  | 78 796  | 3<br>33 472   | 34 278  | 36 233  | 35 784  | -<br>12 284  | 14 049 | 13 419  | 13 043  |
| USSR         |         |         |         | USSR          |         |         |         | USSR         |        |         |         |
| AEWIG        | M II    | M IIIo  | M IIIb  | AEWIG         | M 11    | M IIIo  | МШЬ     | AEWIG        | M II   | M IIIo  | M IIIb  |
| 2 10/        | 3 500   | 7 766   | 6 013   | 2 674         | 5 016   | 4 072   | 4 700   | 383          | 3 644  | 2 12/   | 1 999   |
| 2 194        | 12 020  | 15 100  | 12 020  | 2 0/4         | 0.011   | 4 97 3  | 4709    | 1 466        | 2 200  | 4 4 5 2 | 1 000   |
| 10 090       | 13 039  | 15 103  | 13 939  | 9911          | 9911    | 14 537  | 13 917  | 1 400        | 3 390  | 4 153   | 3 636   |
| 63 355       | 63 355  | 64 679  | 63 799  | 18 044        | 18 044  | 18 044  | 18 044  | 4 7 76       | 4 786  | 5 865   | 5 320   |
| 18 / 55      |         |         |         | 29 720        |         |         |         | 8 957        |        |         |         |
| 7 818        |         |         |         | 12 786        |         |         |         | 9875         |        |         |         |
| 1730         |         |         |         | 1 521         |         |         |         | 2 519        |        |         |         |
| 442          |         |         |         | 140           |         |         |         | 204          |        |         |         |
| 215          |         |         |         | 47            |         |         |         | 49           |        |         |         |
| 53           |         |         |         | 11            |         |         |         | 14           |        |         |         |
| 12           |         |         |         | -             |         |         |         | 2            |        |         |         |
| 3            |         |         |         | -             |         |         |         | -            |        |         |         |
| -            |         |         |         | -             |         |         |         | -            |        |         |         |
| -<br>104 667 | 108 931 | 116 576 | 113 678 | -<br>74 854   | 78 096  | 81 779  | 80 895  | -<br>28 245  | 33 446 | 33 772  | 32 466  |
|              |         |         |         |               |         |         |         |              |        |         |         |
| Others       |         |         |         | Others        |         |         |         | Others       |        |         |         |
| AFWG         | M. II   | M. IIIa | M. IIIb | AFWG          | M. II   | M. IIIa | M. IIIb | AFWG         | M. II  | M. IIIa | M. IIIb |
| 343          | 619     | 1 444   | 1 267   | 149           | 1 249   | 1 053   | 991     | 376          | 1 090  | 628     | 582     |
| 3 043        | 3 605   | 3 755   | 3 669   | 1 376         | 2 253   | 3 445   | 3 284   | 988          | 1 207  | 1 388   | 1 242   |
| 16 938       | 16 938  | 17 915  | 17 203  | 3 073         | 3 809   | 3 576   | 3 543   | 1 765        | 1 765  | 2 134   | 1 938   |
| 5 003        |         |         |         | 14 738        |         |         |         | 2 145        |        |         |         |
| 977          |         |         |         | 2 762         |         |         |         | 2 601        |        |         |         |
| 138          |         |         |         | 294           |         |         |         | 861          |        |         |         |
| 62           |         |         |         | 30            |         |         |         | 123          |        |         |         |
| 6            |         |         |         | 15            |         |         |         | 33           |        |         |         |
| 1            |         |         |         | -             |         |         |         | 5            |        |         |         |
| 2            |         |         |         | -             |         |         |         | 2            |        |         |         |
| 1            |         |         |         | -             |         |         |         | -            |        |         |         |
| -            |         |         |         | -             |         |         |         | -            |        |         |         |
| -            |         |         |         | -             |         |         |         | 2            |        |         |         |
| 26 514       | 27 351  | 29 304  | 28 330  | 22 437        | 25 150  | 25 913  | 25 658  | 8 901        | 9 834  | 9 922   | 9 534   |
| Total        |         |         |         | Total         |         |         |         | Total        |        |         |         |
| AFWG         | M. II   | M. IIIa | M. IIIb | AFWG          | M. II   | M. IIIa | M. IIIb | AFWG         | M. II  | M. IIIa | M. IIIb |
| 9 828        | 11 418  | 16 501  | 15 471  | 5 085         | 10 233  | 8 758   | 8 313   | 1 911        | 7 650  | 4 821   | 4 382   |
| 22 774       | 26 285  | 30 014  | 27 791  | 17 313        | 18 190  | 26 299  | 25 188  | 7 551        | 9 700  | 10 866  | 9 977   |
| 135 347      | 138 708 | 148 990 | 143 375 | 32 165        | 32 901  | 32 668  | 32 635  | 12 999       | 13 009 | 14 457  | 13 717  |
| 54 379       | 100100  | 110 000 |         | 81 756        | 02 001  | 02 000  | 02 000  | 17 827       |        |         |         |
| 21 015       |         |         |         | 27 854        |         |         |         | 30.007       |        |         |         |
| 3 304        |         |         |         | 5 501         |         |         |         | 6 810        |        |         |         |
| 1 236        |         |         |         | 827           |         |         |         | 828          |        |         |         |
| 200          |         |         |         | 200           |         |         |         | 170          |        |         |         |
| 106          |         |         |         | 290           |         |         |         | 50           |        |         |         |
| 100          |         |         |         | 41            |         |         |         | 09<br>1E     |        |         |         |
| 09           |         |         |         | 13            |         |         |         | 15           |        |         |         |
| 43           |         |         |         | -             |         |         |         | 6            |        |         |         |
| 14           |         |         |         | 11            |         |         |         | 5            |        |         |         |
| ວ<br>248 510 | 256 973 | 276 065 | 267 199 | סו<br>170 872 | 177 633 | 184 034 | 182 446 | ∠<br>78 199  | 86 098 | 85 882  | 83 813  |
| 2-10 010     | 200 010 | 210 000 | 201 100 | 110 012       | 111 000 |         | 102 770 | 10 100       | 00 000 | 00 002  | 00 0 10 |

| 1991         Norway tawi                                                                                                                                                                                                                                                         | Т            | able A C | Continued | l.      |              |         |         |         |              |         |         |              |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|---------|--------------|---------|---------|---------|--------------|---------|---------|--------------|---------|---------|
| Norw prime         H, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1991         |          |           |         | 1992         |         |         |         | 1993         |         |         | 1994         |         |         |
| APYCS         M. IIII         M. IIIII         M. IIIII         M. IIIIII         M. IIIIIII         M. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Norway trawl |          |           |         | Norway trawl |         |         |         | Norway trawl |         |         | Norway trawl |         |         |
| 1         3         2         5         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFWG         | M. II    | M. IIIa   | M. IIIb | AFWG         | M. II   | M. IIIa | M. IIIb | AFWG         | M. IIIa | M. IIIb | AFWG         | M. IIIa | M. IIIb |
| 3 4 26         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426         3 426 <t< td=""><td>1 335</td><td>2 663</td><td>1 693</td><td>1 640</td><td>3 758</td><td>5 576</td><td>7 421</td><td>6 431</td><td>2 881</td><td>5 783</td><td>5 396</td><td>1 655</td><td>4 753</td><td>4 347</td></t<>                                                                                                                                                                                                     | 1 335        | 2 663    | 1 693     | 1 640   | 3 758        | 5 576   | 7 421   | 6 431   | 2 881        | 5 783   | 5 396   | 1 655        | 4 753   | 4 347   |
| 1 2.20       3 2.20       3 2.20       3 2.20       3 2.20       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21       3 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 284        | 3 284    | 3 284     | 3 284   | 5 761        | 5 761   | 5 761   | 5 761   | 8 436        | 10 917  | 10 102  | 13 420       | 22 143  | 20 435  |
| B80         2 207         3 001         1 1 400           1 229         1 018         1 11         1 120           1 24         1 038         1 11         1 020           1 24         1 04         1 04         1 020           1 44         1 04         1 04         1 020           1 1         1 020         66         1 05           1 1         1 020         1 020         1 020           1 1         1 020         1 020         1 020           1 1777         1 3 105         1 2 135         1 2 08         2 1 144         2 2 952         2 1 962         2 3 31         3 3 755         3 2 552         5 4 726         66 547         6 4 433           1 1777         1 3 105         1 2 135         1 2 08         1 1 059         1 3 05         3 2 552         3 2 7 3 3 387         3 384         3 344         3 344         3 344         3 344         3 344         3 344         3 344         3 344         3 344         3 346         3 346         3 346         3 346         3 346         3 346         3 346         3 346         3 4477         4 2 777         2 4 777         2 4 777         2 4 777         2 4 777         2 4 777         2 4 777 <t< td=""><td>3 280</td><td>3 280</td><td>3 280</td><td>3 280</td><td>3 281</td><td>3 318</td><td>3 281</td><td>3 281</td><td>8 251</td><td>8 251</td><td>8 251</td><td>23 039</td><td>23 039</td><td>23 039</td></t<>                                                                                                                                                                                                                                                                          | 3 280        | 3 280    | 3 280     | 3 280   | 3 281        | 3 318   | 3 281   | 3 281   | 8 251        | 8 251   | 8 251   | 23 039       | 23 039  | 23 039  |
| 970         1538         1281         1886           1224         163         163         161         163           6         163         2007         468         337           7         122         33         166         337           1         122         33         12         1         12           1         177         13105         12 135         12082         21144         22 952         21982         2357         33755         32 2552         54725         68 547         64 433           ANNS         M.III         M.IIII         M.IIII         M.IIII         M.IIII         M.IIII         M.IIII         M.IIII         M.IIIII         M.IIIII         M.IIIII         M.IIIIII         M.IIIII         M.IIIIII         M.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 649        |          |           |         | 2 287        |         |         |         | 3 081        |         |         | 11 440       |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 870          |          |           |         | 1 538        |         |         |         | 1 261        |         |         | 1 846        |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 228        |          |           |         | 1 018        |         |         |         | 1 121        |         |         | 1 020        |         |         |
| 6         185         2007         453           1         12         453         12           1         1         1         1         1           11777         13 105         12 15         12 082         21 144         22 952         21 962         23 31         33 755         32 552         54 726         66 547         64 433           Rusia         Rusia         Rusia         Rusia         Rusia         Rusia         Rusia         Rusia         Rusia         33 137         51 30 68         31 37         51 401         43 78         K IIIa         M. IIIb         AFWG         M. II         M. IIb         AFWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124          |          |           |         | 1 434        |         |         |         | 811          |         |         | 761          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6            |          |           |         | 168          |         |         |         | 2 007        |         |         | 458          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |          |           |         | 32           |         |         |         | 460          |         |         | 937          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |          |           |         | 12           |         |         |         | 58           |         |         | 136          |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |          |           |         | -            |         |         |         | 3            |         |         | 12           |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |          |           |         | -            |         |         |         | 1            |         |         | 1            |         |         |
| Russia<br>AFWG         M. III<br>M. IIIa<br>Sec         Russia<br>AFWG         M. IIIa<br>M. IIIa<br>Sec         M. IIIa<br>M. IIIa<br>Sec         M. IIIa<br>M. IIIa<br>Sec         M. IIIa<br>M. IIIa<br>Sec         N. IIIa<br>AFWG         M. IIIa<br>M. IIIa<br>Sec         N. IIIa<br>Sec         N. IIIa<br>Sec         A. IIIa<br>Sec         N. IIIa<br>M. IIIa<br>Sec         A. IIIa<br>Sec         A. IIIa<br>Sec         M. IIIa<br>Sec | -<br>11 777  | 13 105   | 12 135    | 12 082  | -<br>19 289  | 21 144  | 22 952  | 21 962  | -<br>28 371  | 33 755  | 32 552  | 1<br>54 726  | 66 547  | 64 433  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Russia       |          |           |         | Russia       |         |         |         | Russia       |         |         | Russia       |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AFWG         | MI       | M IIIa    | M IIIb  | AFWG         | МШ      | M Illa  | M IIIb  | AFWG         | M Illa  | M IIIb  | AFWG         | M IIIa  | M IIIb  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 563        | 7 087    | 4 673     | 4 556   | 9 132        | 17 018  | 21 843  | 19 4 18 | 4 260        | 18 976  | 17 973  | 3 287        | 13 968  | 13 050  |
| 6 915         6 938         7 764         7 148         11 725         13 109         12 373         12 113         39 344         39 348         39 348         29 78         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878         42 878                                                                                                                                                                                                                                                                                                                                                                                    | 3 853        | 6 622    | 6 621     | 6 262   | 14 276       | 16 391  | 16 737  | 16 073  | 23 357       | 32 125  | 30 408  | 31 137       | 51 401  | 48 375  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 915        | 6 938    | 7 764     | 7 1/8   | 11 725       | 13 109  | 12 373  | 12 113  | 30 3/8       | 30 3/8  | 30 3/8  | 12 878       | 12 878  | 40 57 5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 887       | 0 350    | 1 104     | 7 140   | 11 232       | 10 100  | 12 575  | 12 115  | 21 203       | 55 540  | 55 540  | 30 072       | 42 070  | 42 070  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 267       |          |           |         | 7 820        |         |         |         | 6 /67        |         |         | 21 801       |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 059        |          |           |         | 5 881        |         |         |         | 3 10/        |         |         | 3 647        |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 701          |          |           |         | 3 852        |         |         |         | 2 019        |         |         | 1 237        |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 731          |          |           |         | 5 052        |         |         |         | 1 779        |         |         | 505          |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16           |          |           |         | 60           |         |         |         | 1770         |         |         | 167          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10           |          |           |         | 10           |         |         |         | 12           |         |         | 40           |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4            |          |           |         | 10           |         |         |         | 13           |         |         | 40           |         |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - '          |          |           |         | -            |         |         |         | - 2          |         |         | - 5          |         |         |
| 38 427         47 742         46 154         45 062         64 688         76 074         80 508         77 159         101 619         125 103         122 383         134 866         165 811         161 867           Others         Others         Others         Others         Others         Others         Others           AFWG         M. II         M. III         M. III         M. III         M. III         M. III         M. III         AFWG         M. III                                                                                                                                                                                                                                                                                                                                                                                                        | -            |          |           |         | -            |         |         |         | -            |         |         | -            |         |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 427       | 47 742   | 46 154    | 45 062  | 64 688       | 76 074  | 80 508  | 77 159  | 101 619      | 125 103 | 122 383 | 134 866      | 165 811 | 161 867 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Others       |          |           |         | Others       |         |         |         | Others       |         |         | Others       |         |         |
| 450       1 327       856       831       1 897       3 257       4 209       3 776       1 570       4 056       3 3 25       760       4 080       3 3 776         763       1 1943       1 243       1 243       1 243       1 243       1 243       2 456       2 456       2 456       2 456       4 248       5 092       4 885       19 378       19 378       19 378         1 397       1 243       1 243       1 243       2 456       2 456       2 456       4 248       5 092       4 885       19 378       19 378       19 378         1 397       1 283       1 243       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 456       2 4577       2 4 417       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AFWG         | M. II    | M. IIIa   | M. IIIb | AFWG         | M. II   | M. Illa | M. IIIb | AFWG         | M. Illa | M. IIIb | AFWG         | M. IIIa | M. IIIb |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450          | 1 327    | 856       | 831     | 1 895        | 3 257   | 4 209   | 3 718   | 1 570        | 4 056   | 3 825   | 760          | 4 080   | 3 776   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 763          | 1 197    | 1 183     | 1 106   | 3 976        | 3 976   | 3 976   | 3 976   | 5 430        | 6 751   | 6 328   | 7 558        | 16 399  | 15 321  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 243        | 1 243    | 1 283     | 1 243   | 2 456        | 2 456   | 2 456   | 2 456   | 4 248        | 5 092   | 4 885   | 19 378       | 19 378  | 19 378  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 397        |          |           |         | 1 072        |         |         |         | 2 817        |         |         | 7 438        |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 082        |          |           |         | 904          |         |         |         | 2 205        |         |         | 2 882        |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 080        |          |           |         | 736          |         |         |         | 1 267        |         |         | 2 016        |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 413          |          |           |         | 910          |         |         |         | 885          |         |         | 1 425        |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89           |          |           |         | 200          |         |         |         | 1 777        |         |         | 1 032        |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6            |          |           |         | 26           |         |         |         | 296          |         |         | 1 787        |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |          |           |         | 18           |         |         |         | 95           |         |         | 207          |         |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |          |           |         | 2            |         |         |         | 15           |         |         | 34           |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |          |           |         | 4            |         |         |         | 15           |         |         | 7            |         |         |
| 7 523       8 834       8 388       8 247       12 199       13 561       14 513       14 022       20 626       25 277       24 417       44 523       56 685       55 302         Total       Total       Total       Total       Total       Total       Total       Total       Total         AFWG       M. II       M. IIIa       M. IIIb       AFWG       M. IIIa       <                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            |          |           |         | -            |         |         |         | 6            |         |         | -            |         |         |
| Total         Total         Total         Total         Total         Total         Total         Total           AFWG         M. II         M. IIIa         M. IIIb         AFWG         M. II         M. IIIa         M. II                                                                                                                                                                                                                                                                                                                                                                    | 7 523        | 8 834    | 8 388     | 8 247   | 12 199       | 13 561  | 14 513  | 14 022  | 20 626       | 25 277  | 24 417  | 44 523       | 56 685  | 55 302  |
| AFWG         M. II         M. IIIa         M. IIIb         AFWG         M. II         M. IIIa         M. IIIa<                                                                                                                                                                                                                                                                                                                                                   | Total        |          |           |         | Total        |         |         |         | Total        |         |         | Total        |         |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFWG         | M. II    | M. IIIa   | M. IIIb | AFWG         | M. II   | M. Illa | M. IIIb | AFWG         | M. Illa | M. IIIb | AFWG         | M. IIIa | M. IIIb |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 963        | 12 692   | 8 837     | 8 642   | 21 835       | 32 902  | 40 522  | 36 617  | 10 094       | 30 199  | 28 578  | 6 531        | 23 630  | 22 002  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 933       | 14 136   | 14 121    | 13 685  | 36 015       | 38 130  | 38 476  | 37 812  | 46 182       | 58 752  | 55 797  | 59 444       | 97 273  | 91 460  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 467       | 16 490   | 17 356    | 16 700  | 27 494       | 28 914  | 28 142  | 27 882  | 63 578       | 64 421  | 64 215  | 102 548      | 102 548 | 102 548 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 342       |          |           |         | 23 392       |         |         |         | 33 623       |         |         | 59 766       |         |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 479       |          |           |         | 18 351       |         |         |         | 14 866       |         |         | 32 504       |         |         |
| 3 888       18 321       6 571       6 163         428       2 529       12 593       3 671         48       2 64       1 749       7 528         12       82       377       995         1       3       63       121         2       9       22       19         2       1       7       4         101 757       112 712       109 708       108 421       161 837       176 439       183 633       178 804       199 174       232 692       227 910       289 313       344 241       336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 193       |          |           |         | 13 541       |         |         |         | 9 449        |         |         | 10 019       |         |         |
| 428       2529       12593       3671         48       264       1749       7528         12       82       377       995         1       3       63       121         9       22       19       1         101757       112 712       109 708       108 421       161 837       176 439       183 633       178 804       199 174       232 692       227 910       289 313       344 241       336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 888        |          |           |         | 18 321       |         |         |         | 6 571        |         |         | 6 163        |         |         |
| 10     264     1749     7528       12     82     377     995       1     3     63     121       2     1     9     22     19       2     1     7     4       101 757     112 712     109 708     108 421     161 837     176 439     183 633     178 804     199 174     232 692     227 910     289 313     344 241     336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 428          |          |           |         | 2 529        |         |         |         | 12 593       |         |         | 3 671        |         |         |
| 12     82     377     995       1     3     63     121       1     9     22     19       2     1     7     4       101 757     112 712     109 708     108 421     161 837     176 439     183 633     178 804     199 174     232 692     227 910     289 313     344 241     336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48           |          |           |         | 264          |         |         |         | 1 749        |         |         | 7 528        |         |         |
| 1     3     63     121       1     9     22     19       2     1     7     4       101 757     112 712     109 708     108 421     161 837     176 439     183 633     178 804     199 174     232 692     227 910     289 313     344 241     336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12           |          |           |         | 82           |         |         |         | 377          |         |         | 995          |         |         |
| 1     9     22     19       2     1     7     4       101 757     112 712     109 708     108 421     161 837     176 439     183 633     178 804     199 174     232 692     227 910     289 313     344 241     336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |          |           |         | 2            |         |         |         | 63           |         |         | 121          |         |         |
| 2 1<br>101 757 112 712 109 708 108 421 161 837 176 439 183 633 178 804 199 174 232 692 227 910 289 313 344 241 336 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1            |          |           |         | 9            |         |         |         | 22           |         |         | 19           |         |         |
| <u>101 757 112 712 109 708 108 421 161 837 176 439 183 633 178 804 199 174 232 692 227 910 289 313 344 241 336 800</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2            |          |           |         | 1            |         |         |         | 7            |         |         | 4            |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 757      | 112 712  | 109 708   | 108 421 | 161 837      | 176 439 | 183 633 | 178 804 | 199 174      | 232 692 | 227 910 | 289 313      | 344 241 | 336 800 |

### Table A Continued.

| 1995         |         |         | 1996         |         |         | 1997         |         |         | 1998         |         |         |
|--------------|---------|---------|--------------|---------|---------|--------------|---------|---------|--------------|---------|---------|
| Norway trawl |         |         |
| AFWG         | M. IIIa | M. IIIb |
| 710          | 3 423   | 3 326   | 1 204        | 2 342   | 2 119   | 1 539        | 5 395   | 4 921   | 3 796        | 8 660   | 7 757   |
| 8 442        | 11 357  | 10 958  | 3 871        | 6 299   | 5 701   | 3 608        | 6 232   | 5 684   | 12 028       | 15 356  | 13 787  |
| 22 533       | 29 133  | 28 370  | 9 338        | 14 997  | 13 632  | 6 628        | 13 660  | 12 544  | 6 154        | 6 857   | 6 154   |
| 19 827       |         |         | 18 584       |         |         | 14 682       |         |         | 8 050        |         |         |
| 5 167        |         |         | 10 470       |         |         | 17 715       |         |         | 8 099        |         |         |
| 559          |         |         | 1 350        |         |         | 5 227        |         |         | 5 473        |         |         |
| 438          |         |         | 298          |         |         | 384          |         |         | 1 217        |         |         |
| 70           |         |         | 185          |         |         | 95           |         |         | 138          |         |         |
| 35           |         |         | 88           |         |         | 40           |         |         | 20           |         |         |
| 223          |         |         | 31           |         |         | 19           |         |         | 2            |         |         |
| -            |         |         | 131          |         |         | 27           |         |         | 6            |         |         |
| -            |         |         | 5            |         |         | 30           |         |         | 1<br>4       |         |         |
| 58 004       | 70 233  | 68 972  | 45 555       | 54 780  | 52 595  | 49 994       | 63 506  | 61 367  | 44 988       | 53 883  | 50 708  |
| Russia       |         |         | Russia       |         |         | Russia       |         |         | Russia       |         |         |
| AFWG         | M. IIIa | M. IIIb |
| 3 374        | 10 990  | 10 784  | 2 597        | 9 191   | 8 515   | 6 448        | 19 971  | 18 494  | 22 085       | 33 159  | 30 576  |
| 21 798       | 34 395  | 33 607  | 18 391       | 25 616  | 23 992  | 24 676       | 24 806  | 24 676  | 55 218       | 55 218  | 55 218  |
| 58 208       | 60 921  | 59 730  | 53 994       | 55 287  | 53 994  | 50 343       | 50 343  | 50 343  | 32 199       | 32 199  | 32 199  |
| 40 809       |         |         | 51 612       |         |         | 49 588       |         |         | 22 479       |         |         |
| 13 300       |         |         | 16 809       |         |         | 22 518       |         |         | 12 291       |         |         |
| 3 023        |         |         | 2 352        |         |         | 4 222        |         |         | 3 821        |         |         |
| 684          |         |         | 364          |         |         | 488          |         |         | 559          |         |         |
| 345          |         |         | 164          |         |         | 99           |         |         | 88           |         |         |
| 146          |         |         | 34           |         |         | 34           |         |         | 34           |         |         |
| 21           |         |         | 10           |         |         | 10           |         |         | 13           |         |         |
| 1            |         |         | -            |         |         | -            |         |         | 1            |         |         |
| -            |         |         | -            |         |         | -            |         |         | -            |         |         |
| 141 709      | 164 636 | 162 450 | 146 327      | 161 439 | 157 846 | 158 426      | 172 079 | 170 472 | 148 788      | 159 862 | 157 279 |
| Others       |         |         | Others       |         |         | Others       |         |         | Others       |         |         |
| AFWG         | M. IIIa | M. IIIb |
| 142          | 3 462   | 3 381   | 700          | 2 056   | 1 879   | 600          | 3 239   | 2 984   | 3 047        | 4 988   | 4 541   |
| 7 570        | 11 123  | 10 817  | 3 559        | 5 711   | 5 492   | 2 297        | 3 587   | 3 473   | 8 672        | 9 077   | 8 841   |
| 19 988       | 23 845  | 23 397  | 10 831       | 14 032  | 13 622  | 4 102        | 6 984   | 6 482   | 5 067        | 5 067   | 5 067   |
| 19 285       |         |         | 14 615       |         |         | 8 042        |         |         | 4 715        |         |         |
| 3 809        |         |         | 9 057        |         |         | 8 599        |         |         | 5 258        |         |         |
| 557          |         |         | 1 913        |         |         | 6 549        |         |         | 2 414        |         |         |
| 523          |         |         | 243          |         |         | 1 490        |         |         | 351          |         |         |
| 289          |         |         | 125          |         |         | 363          |         |         | 67           |         |         |
| 367          |         |         | 108          |         |         | 15           |         |         | 16           |         |         |
| 260          |         |         | 57           |         |         | 67           |         |         | 9            |         |         |
| 56           |         |         | 221          |         |         | 28           |         |         | 9            |         |         |
| - 4          |         |         | 25<br>-      |         |         | 57           |         |         | 9<br>1       |         |         |
| 52 850       | 63 580  | 62 745  | 41 454       | 48 164  | 47 357  | 32 207       | 39 019  | 38 147  | 29 635       | 31 981  | 31 298  |
| Total        |         |         | Total        |         |         | Total        |         |         | Total        |         |         |
| AFWG         | M. IIIa | M. IIIb | AFWG         | M. Illa | M. IIIb | AFWG         | M. IIIa | M. IIIb | AFWG         | M. IIIa | M. IIIb |
| 4 888        | 18 538  | 18 153  | 7 729        | 16 818  | 15 741  | 11 058       | 31 077  | 28 870  | 31 728       | 49 607  | 45 674  |
| 42 696       | 61 761  | 60 267  | 29 146       | 40 951  | 38 510  | 35 128       | 39 172  | 38 379  | 88 945       | 92 677  | 90 873  |
| 115 681      | 128 852 | 126 448 | 81 833       | 91 986  | 88 918  | 67 855       | 77 769  | 76 150  | 48 073       | 48 776  | 48 073  |
| 98 774       |         |         | 101 939      |         |         | 83 914       |         |         | 40 667       |         |         |
| 32 126       |         |         | 55 200       |         |         | 69 064       |         |         | 35 053       |         |         |
| 7 356        |         |         | 10 654       |         |         | 29 229       |         |         | 26 665       |         |         |
| 3 022        |         |         | 2 041        |         |         | 4 688        |         |         | 6 722        |         |         |
| 1 / 30       |         |         | 942          |         |         | 1 180        |         |         | 892          |         |         |
| 1 1/8        |         |         | 470          |         |         | 370          |         |         | 197          |         |         |
| 1 920        |         |         | 230          |         |         | 211          |         |         | 10           |         |         |
| 223          |         |         | 822          |         |         | 114          |         |         | 42           |         |         |
| 41           |         |         | 00           |         |         | 240          |         |         | 20           |         |         |
| 1            |         |         | 1            |         |         | -            |         |         | 36           |         |         |

**Table B** Mean lengths at age and standard deviations from Norwegian bottom trawl surveys. The natural mortality rate, M, and the fishing mortality rate, F, used to calculate p are gathered from the AFWG report (ICES, 2000). Mean lengths at age and standard deviations calculated by the method for a mixture of two normal distributions where p weighs the distributions.

| Year | Age     | Grouped dat      | a             |        |        |      | Mixture          |        |
|------|---------|------------------|---------------|--------|--------|------|------------------|--------|
|      | (years) | mean length (cm) | st.dev        | М      | F      | р    | mean length (cm) | st.dev |
| 1983 | 3       | 34.23            | 3.67          | 0.2000 | 0.0208 | 0.53 | 41.17            | 8.33   |
|      | 4       | 46.06            | 4.78          | 0.2000 | 0.2049 | 0.55 | 50.83            | 7.62   |
|      | 5       | 54.66            | 4.45          | 0.2000 | 0.3296 | 0.57 | 59.87            | 7.46   |
|      | 6       | 63.19            | 5.48          | 0.2000 | 0.5030 | 0.59 | 68.11            | 7.63   |
|      | 7       | 73.22            | 4 62          | 0.2000 | 0 7803 | 0.62 | 75.97            | 6 60   |
|      | 8       | 78.70            | 6.74          | 0.2000 | 0.7000 | 0.02 | 10.01            | 0.00   |
| 1084 | з       | 34.90            | 4 37          | 0 2006 | 0 0195 | 0.53 | 41 56            | 8 24   |
| 1504 | 1       | 48 02            | 4.07          | 0.2000 | 0.0100 | 0.53 | 54 72            | 7 91   |
|      | -4<br>5 | 40.52            | 6.25          | 0.2000 | 0.1201 | 0.54 | 62 12            | 0.46   |
|      | 5       | 50.07            | 0.20          | 0.2000 | 0.3094 | 0.50 | 70.12            | 9.40   |
|      | 0       | 00.03            | 4.60          | 0.2000 | 0.0200 | 0.60 | 72.44            | 0.01   |
|      | 8       | 75.08<br>80.42   | 3.88<br>6.88  | 0.2000 | 1.1334 | 0.66 | 77.21            | 5.35   |
|      |         |                  |               |        |        |      |                  |        |
| 1985 | 3       | 40.53            | 5.30          | 0.2004 | 0.0533 | 0.53 | 44.98            | 7.00   |
|      | 4       | 49.00            | 4.19          | 0.2000 | 0.1722 | 0.55 | 54.05            | 6.79   |
|      | 5       | 61.54            | 5.05          | 0.2000 | 0.3805 | 0.57 | 65.45            | 6.61   |
|      | 6       | 71.43            | 5.64          | 0.2000 | 0.6070 | 0.60 | 75.14            | 6.90   |
|      | 7       | 81.17            | 4.78          | 0.2000 | 0.9148 | 0.63 | 83.50            | 4.87   |
|      | 8       | 81.26            | 5.42          |        |        |      |                  |        |
| 1986 | 3       | 33.99            | 4.58          | 0.3122 | 0.0328 | 0.54 | 37.36            | 5.90   |
|      | 4       | 50.03            | 4 96          | 0 2000 | 0 2134 | 0.55 | 52.98            | 6.36   |
|      | 5       | 60.00            | 3.58          | 0.2000 | 0.2104 | 0.50 | 62.85            | 5 30   |
|      | 5       | 70.66            | 4.50          | 0.2000 | 0.4301 | 0.53 | 72.00            | 0.72   |
|      | 0       | 70.00            | 4.52          | 0.2000 | 0.7155 | 0.01 | 72.09            | 9.75   |
|      | /       | 80.66            | 4.51          | 0.2000 | 0.9458 | 0.64 | 81.78            | 4.10   |
|      | 8       | 87.50            | -             |        |        |      |                  |        |
| 1987 | 3       | 31.91            | 3.90          | 0.2583 | 0.0554 | 0.54 | 35.20            | 5.26   |
|      | 4       | 41.36            | 4.65          | 0.2000 | 0.2282 | 0.55 | 44.19            | 5.69   |
|      | 5       | 56.60            | 6.02          | 0.2000 | 0.5108 | 0.59 | 56.95            | 6.34   |
|      | 6       | 66.69            | 4.95          | 0.2000 | 0.9443 | 0.64 | 69.39            | 7.02   |
|      | 7       | 75.60            | 14.00         | 0.2000 | 1.1596 | 0.66 | 76.10            | 12.51  |
|      | 8       | 83.75            | 2.16          |        |        |      |                  |        |
| 1988 | 3       | 30.12            | 3.35          | 0.2087 | 0.0546 | 0.53 | 34.86            | 6.11   |
|      | 4       | 39.05            | 3.84          | 0.2000 | 0 1274 | 0.54 | 42.85            | 5.62   |
|      | 5       | 47 70            | 1 85          | 0.2000 | 0.1274 | 0.57 | 42.00<br>51 57   | 6.57   |
|      | 5       | 47.70            | 4.00          | 0.2000 | 0.3000 | 0.57 | 01.07            | 0.57   |
|      | 6       | 57.40            | 0.75          | 0.2000 | 0.5981 | 0.60 | 61.65            | 8.19   |
|      | 1       | 74.11            | 7.60          | 0.2000 | 1.0655 | 0.65 | 77.06            | 1.13   |
|      | 8       | 77.06            | 8.90          |        |        |      |                  |        |
| 1989 | 3       | 34.05            | 2.97          | 0.2000 | 0.0330 | 0.53 | 40.38            | 7.77   |
|      | 4       | 40.26            | 3.49          | 0.2000 | 0.1291 | 0.54 | 46.61            | 8.01   |
|      | 5       | 47.33            | 3.80          | 0.2000 | 0.2664 | 0.56 | 53.44            | 7.98   |
|      | 6       | 56.71            | 4.79          | 0.2000 | 0.3985 | 0.57 | 61.93            | 8.15   |
|      | 7       | 67.86            | 5.86          | 0.2000 | 0.7158 | 0.61 | 72.13            | 8.04   |
|      | 8       | 82.50            | 4.21          |        |        |      | -                |        |
| 1990 | 3       | 39.21            | 4,55          | 0.2000 | 0.0087 | 0.53 | 45.30            | 8.08   |
|      | ۵<br>۵  | 47 51            | 4 72          | 0.2000 | 0.0627 | 0.53 | 53 30            | 8 01   |
|      |         | 5/ 00            | 1 71          | 0.2000 | 0.0027 | 0.50 | 60.00            | 8 50   |
|      | 5       | 54.03            | +./ I<br>/ 20 | 0.2000 | 0.1001 | 0.04 | 00.29            | 0.08   |
|      | 0       | 01.14            | 4.30          | 0.2000 | 0.2317 | 0.55 | 70.00            | 7.70   |
|      | 7<br>8  | 78.84            | 6.23<br>6.22  | 0.2000 | 0.2485 | 0.50 | 12.83            | 1.04   |
| 4004 | ~       | 40.00            | 0.00          | 0.0050 | 0.0404 | 0.50 | 40.40            | 0.04   |
| 1991 | 3       | 42.96            | 0.38          | 0.2050 | 0.0134 | 0.53 | 46.48            | o.94   |
|      | 4       | 52.06            | 5.27          | 0.2000 | 0.0631 | 0.53 | 56.06            | 6.88   |
|      | 5       | 59.90            | 5.49          | 0.2000 | 0.1887 | 0.55 | 63.92            | 7.20   |
|      | 6       | 67.62            | 5.95          | 0.2000 | 0.3225 | 0.56 | 71.49            | 7.22   |
|      | 7       | 72.80            | 6.03          | 0.2000 | 0.4259 | 0.58 | 76.89            | 7.16   |
|      | 8       | 77.66            | 6.39          |        |        |      |                  |        |
|      |         |                  |               |        |        |      |                  |        |

Table B Continued.

| Year | Age     | Grouped dat      | а      |        |        |      | Mixture          |        |
|------|---------|------------------|--------|--------|--------|------|------------------|--------|
|      | (years) | mean length (cm) | st.dev | М      | F      | р    | mean length (cm) | st.dev |
| 1992 | 3       | 40.39            | 5.22   | 0.2068 | 0.0341 | 0.53 | 45.47            | 7.58   |
|      | 4       | 50.41            | 5.22   | 0.2000 | 0.1277 | 0.54 | 54.55            | 6.76   |
|      | 5       | 60.63            | 5.52   | 0.2000 | 0.2224 | 0.55 | 64.25            | 7.19   |
|      | 6       | 68.80            | 5.88   | 0.2000 | 0.4446 | 0.58 | 72.18            | 7.15   |
|      | 7       | 76.51            | 5.41   | 0.2000 | 0.5411 | 0.59 | 79.27            | 5.99   |
|      | 8       | 82.47            | 4.18   |        |        |      |                  |        |
|      |         |                  |        |        |        |      |                  |        |
| 1993 | 3       | 35.84            | 4.73   | 0.2656 | 0.0127 | 0.53 | 40.12            | 7.04   |
|      | 4       | 51.20            | 5.45   | 0.2030 | 0.0944 | 0.54 | 53.30            | 7.08   |
|      | 5       | 59.42            | 4.84   | 0.2026 | 0.3468 | 0.57 | 61.79            | 7.20   |
|      | 6       | 68.72            | 6.45   | 0.2000 | 0.4630 | 0.58 | 70.73            | 7.18   |
|      | 7       | 76.83            | 6.05   | 0.2000 | 0.5685 | 0.59 | 78.31            | 7.15   |
|      | 8       | 83.24            | 4.32   |        |        |      |                  |        |
|      |         |                  |        |        |        |      |                  |        |
| 1994 | 3       | 30.64            | 5.29   | 0.3967 | 0.0096 | 0.55 | 35.98            | 7.99   |
|      | 4       | 45.03            | 5.96   | 0.2942 | 0.1043 | 0.55 | 49.32            | 7.43   |
|      | 5       | 55.74            | 7.93   | 0.2266 | 0.3164 | 0.57 | 59.53            | 9.02   |
|      | 6       | 64.89            | 8.49   | 0.2048 | 0.6449 | 0.60 | 68.77            | 9.66   |
|      | 7       | 73.52            | 7.21   | 0.2000 | 1.1633 | 0.66 | 74.61            | 7.39   |
|      | 8       | 80.48            | 8.03   |        |        |      |                  |        |
| 1005 | 2       | 20.90            | 6 4 2  | 0 7004 | 0.0102 | 0.50 | 24.44            | 0.00   |
| 1995 | 3       | 29.80            | 6.13   | 0.7281 | 0.0103 | 0.59 | 34.44            | 8.22   |
|      | 4       | 42.52            | 5.50   | 0.3975 | 0.0982 | 0.56 | 45.71            | 6.63   |
|      | 5       | 54.56            | 5.41   | 0.2080 | 0.3200 | 0.57 | 57.69            | 6.69   |
|      | 6       | 64.50            | 7.87   | 0.2001 | 0.5816 | 0.60 | 67.63            | 8.44   |
|      | /       | 74.67            | 8.23   | 0.2000 | 0.8970 | 0.63 | 77.38            | 8.02   |
|      | 8       | 76.70            | 7.29   |        |        |      |                  |        |
| 1996 | 3       | 28.39            | 5.32   | 0 6271 | 0 0229 | 0.58 | 33 94            | 8.36   |
| 1000 | 4       | 41 13            | 5.91   | 0 4235 | 0 1167 | 0.57 | 45 40            | 7.35   |
|      | 5       | 49 79            | 5 64   | 0 2774 | 0 3202 | 0.57 | 53.99            | 7 18   |
|      | 6       | 61 77            | 5.96   | 0.2056 | 0.5157 | 0.59 | 65.00            | 7.02   |
|      | 7       | 72.23            | 7.02   | 0.2000 | 0.7606 | 0.62 | 74.63            | 7.07   |
|      | 8       | 82.01            | 4 96   | 0.2000 | 0.7000 | 0.02 | 74.00            | 1.01   |
|      | 0       | 02.01            | 4.00   |        |        |      |                  |        |
| 1997 | 3       | 30.78            | 4.03   | 0.5287 | 0.0225 | 0.57 | 35.27            | 6.69   |
|      | 4       | 41.58            | 5.14   | 0.2943 | 0.1944 | 0.56 | 45.92            | 6.86   |
|      | 5       | 50.97            | 4.93   | 0.2097 | 0.5297 | 0.59 | 54.38            | 6.46   |
|      | 6       | 59.65            | 4.74   | 0.2018 | 0.6774 | 0.61 | 63.05            | 6.37   |
|      | 7       | 69.63            | 5.70   | 0.2000 | 0.7738 | 0.62 | 72.12            | 6.73   |
|      | 8       | 78.46            | 5.22   |        |        |      |                  |        |
|      |         |                  | -      |        |        |      |                  |        |
| 1998 | 3       | 31.28            | 4.82   | 0.5186 | 0.0510 | 0.57 | 35.42            | 6.82   |
|      | 4       | 41.18            | 4.55   | 0.3339 | 0.2780 | 0.58 | 45.40            | 6.71   |
|      | 5       | 51.44            | 4.37   | 0.2193 | 0.4640 | 0.58 | 55.21            | 6.58   |
|      | 6       | 59.30            | 5.08   | 0.2105 | 0.6990 | 0.61 | 63.79            | 7.41   |
|      | 7       | 68.29            | 4.80   | 0.2000 | 0.6940 | 0.61 | 72.16            | 6.96   |
|      | 8       | 76.13            | 6.32   |        |        |      |                  |        |
| 1999 | 3       | 29 41            | 4 19   |        |        |      |                  |        |
|      | ۵<br>۵  | 40 91            | 4.93   |        |        |      |                  |        |
|      | 5       | 51 11            | 4 60   |        |        |      |                  |        |
|      | 6       | 60 50            | 5 40   |        |        |      |                  |        |
|      | 7       | 70.83            | 4,38   |        |        |      |                  |        |
|      | 8       | 78 17            | 5.35   |        |        |      |                  |        |
|      | 5       |                  | 0.00   |        |        |      |                  |        |

| N                                                           | Norwegian bottom trawl survey indices, I (used in method IIIa). |                |                |                |                 |                  |                |                 |         |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------|----------------|----------------|----------------|-----------------|------------------|----------------|-----------------|---------|--|--|--|
| Age                                                         | 1983                                                            | 1984           | 1985           | 1986           | 1987            | 1988             | 1989           | 1990            | 1991    |  |  |  |
| 3                                                           | 24 945                                                          | 97 485         | 166 794        | 805 001        | 240 381         | 148 028          | 46 370         | 28 340          | 45 860  |  |  |  |
| 4                                                           | 52 342                                                          | 28 276         | 125 977        | 143 934        | 391 143         | 80 485           | 75 860         | 34 870          | 33 670  |  |  |  |
| 5                                                           | 43 328                                                          | 21 439         | 19 922         | 64 136         | 54 346          | 173 309          | 37 800         | 34 600          | 25 660  |  |  |  |
| 6                                                           | 16 961                                                          | 11 739         | 7 657          | 8 297          | 15 694          | 20 476           | 90 190         | 20 570          | 21 500  |  |  |  |
| 7                                                           | 5 817                                                           | 4 069          | 3 150          | 1 833          | 1 722           | 3 582            | 9 820          | 27 230          | 12 130  |  |  |  |
| 8                                                           | 2 995                                                           | 291            | 105            | 53             | 265             | 401              | 820            | 1 420           | 12 140  |  |  |  |
| 9                                                           | 770                                                             | -              | 13             | -              | -               | 26               | -              | 20              | 180     |  |  |  |
| 10                                                          | 13                                                              | -              | -              | 26             | -               | -                | 20             | -               | -       |  |  |  |
| Sum                                                         | 147 171                                                         | 163 299        | 323 618        | 1 023 280      | 703 551         | 426 307          | 260 880        | 147 050         | 151 140 |  |  |  |
|                                                             |                                                                 |                |                |                |                 |                  |                |                 |         |  |  |  |
| Proportion mature at age in the indices.                    |                                                                 |                |                |                |                 |                  |                |                 |         |  |  |  |
| 3                                                           | -                                                               | 0.00           | 0.00           | 0.00           | -               | -                | 0.02           | 0.02            | 0.00    |  |  |  |
| 4                                                           | 0.01                                                            | 0.00           | 0.01           | 0.01           | 0.01            | -                | 0.01           | 0.03            | 0.08    |  |  |  |
| 5                                                           | 0.01                                                            | 0.02           | 0.04           | 0.03           | 0.04            | -                | 0.05           | 0.05            | 0.19    |  |  |  |
| 6                                                           | 0.01                                                            | 0.05           | 0.13           | 0.08           | 0.06            | -                | 0.15           | 0.16            | 0.33    |  |  |  |
| 7                                                           | 0.04                                                            | 0.05           | 0.14           | 0.11           | 0.21            | -                | 0.34           | 0.43            | 0.55    |  |  |  |
| 8                                                           | 0.08                                                            | 0.25           | 0.67           | 0.22           | 0.61            | -                | 0.57           | 0.59            | 0.79    |  |  |  |
| 9                                                           | 0.07                                                            | 1.00           | 1.00           | 0.33           | 1.00            | -                | 1.00           | 0.51            | 0.89    |  |  |  |
| 10                                                          | -                                                               | -              | 0.33           | -              | -               | -                | 1.00           | 1.00            | 1.00    |  |  |  |
|                                                             |                                                                 |                |                |                |                 |                  |                |                 |         |  |  |  |
| Proportion mature at age from the AFWG report (ICES, 2000). |                                                                 |                |                |                |                 |                  |                |                 |         |  |  |  |
| 3                                                           | 0.01                                                            | -              | -              | -              | -               | -                | -              | -               | -       |  |  |  |
| 4                                                           | 0.08                                                            | 0.05           | 0.01           | 0.05           | 0.01            | 0.02             | -              | 0.01            | 0.04    |  |  |  |
| 5                                                           | 0.10                                                            | 0.18           | 0.09           | 0.08           | 0.07            | 0.05             | 0.05           | 0.05            | 0.06    |  |  |  |
| 6                                                           | 0.30                                                            | 0.31           | 0.36           | 0.19           | 0.18            | 0.33             | 0.18           | 0.21            | 0.28    |  |  |  |
| 7                                                           | 0.73                                                            | 0.56           | 0.55           | 0.53           | 0.22            | 0.53             | 0.41           | 0.58            | 0.65    |  |  |  |
| 8                                                           | 0.88                                                            | 0.90           | 0.85           | 0.71           | 0.46            | 0.62             | 0.69           | 0.77            | 0.83    |  |  |  |
| 9                                                           | 0.97                                                            | 0.99           | 0.96           | 0.62           | 0.50            | 1.00             | 0.85           | 0.86            | 0.97    |  |  |  |
| 10                                                          | 1.00                                                            | 1.00           | 0.90           | 0.90           | 0.75            | 1.00             | 1.00           | 0.98            | 1.00    |  |  |  |
| 11                                                          | 1.00                                                            | 1.00           | 1.00           | 1.00           | 1.00            | 1.00             | 1.00           | 1.00            | 1.00    |  |  |  |
| 12                                                          | 1.00                                                            | 1.00           | 1.00           | 1.00           | 1.00            | 1.00             | 1.00           | 1.00            | 1.00    |  |  |  |
| 13                                                          | 1.00                                                            | 1.00           | 1.00           | 1.00           | 1.00            | 1.00             | 1.00           | 1.00            | 1.00    |  |  |  |
| 14                                                          | 1.00                                                            | 1.00           | 1.00           | 1.00           | 1.00            | 1.00             | 1.00           | 1.00            | 1.00    |  |  |  |
| 15                                                          | 1.00                                                            | 1.00           | 1.00           | 1.00           | 1.00            | 1.00             | 1.00           | 1.00            | 1.00    |  |  |  |
|                                                             |                                                                 |                |                |                |                 |                  |                |                 |         |  |  |  |
| F                                                           | Proportion of 8                                                 | 3-year and old | er fish in the | traditional VP | A (ICES, 2000   | 0).              |                |                 |         |  |  |  |
| 8+                                                          | 0.0781                                                          | 0.0345         | 0.0123         | 0.0065         | 0.0070          | 0.0081           | 0.0149         | 0.0363          | 0.1151  |  |  |  |
|                                                             | adlaaa f - "                                                    |                |                |                | aution of O     | م میر مارا میر م |                | 4h a al 1111- \ |         |  |  |  |
|                                                             | ndices, I, adji                                                 | usted accordin | ig to maturity | and the prop   | ortion of 8-yea | ar and older fis | sn (used in me |                 | 45.000  |  |  |  |
| 3                                                           | 25 197                                                          | 97 358         | 166 460        | 803 391        | 240 381         | 148 028          | 45 484         | 27 855          | 45 823  |  |  |  |
| 4                                                           | 56 592                                                          | 29 663         | 126 448        | 149 919        | 390 471         | 82 128           | 75 170         | 34 134          | 32 376  |  |  |  |
| 5                                                           | 4/6/5                                                           | 25 515         | 20 931         | 67 629         | 56 327          | 182 431          | 37 971         | 34 669          | 22 024  |  |  |  |
| 6                                                           | 24 022                                                          | 16 178         | 10 375         | 9 409          | 1/929           | 30 561           | 93 193         | 21 921          | 19 935  |  |  |  |
| 7                                                           | 20 788                                                          | 8 810          | 6 013          | 3 478          | 1 736           | 7 621            | 11 040         | 37 260          | 15 745  |  |  |  |
| 8+                                                          | 14 763                                                          | 6 344          | 4 110          | 6 723          | 5 007           | 3 685            | 3 964          | 5 877           | 17 671  |  |  |  |
| Sum                                                         | 189 037                                                         | 183 868        | 334 338        | 1 040 548      | 711 852         | 454 454          | 266 822        | 161 716         | 153 574 |  |  |  |

Table C Data from the Norwegian bottom trawl surveys used in method III.

| Norwegian bottom trawl survey indices, I (used in method IIIa). |                 |                 |                   |                |                  |                  |                |  |  |  |  |
|-----------------------------------------------------------------|-----------------|-----------------|-------------------|----------------|------------------|------------------|----------------|--|--|--|--|
| Age                                                             | 1992            | 1993            | 1994              | 1995           | 1996             | 1997             | 1998           |  |  |  |  |
| 3                                                               | 158 260         | 273 900         | 296 500           | 274 620        | 170 040          | 238 033          | 395 987        |  |  |  |  |
| 4                                                               | 57 710          | 140 130         | 310 190           | 241 430        | 115 380          | 64 009           | 181 269        |  |  |  |  |
| 5                                                               | 17 820          | 72 480          | 147 400           | 255 940        | 137 170          | 70 431           | 36 514         |  |  |  |  |
| 6                                                               | 12 830          | 15 810          | 50 520            | 76 740         | 106 130          | 52 697           | 25 919         |  |  |  |  |
| 7                                                               | 7 640           | 6 090           | 8 980             | 18 060         | 23 360           | 28 299           | 17 790         |  |  |  |  |
| 8                                                               | 3 980           | 2 970           | 2 000             | 1 810          | 2 140            | 4 924            | 8 260          |  |  |  |  |
| 9                                                               | 1 340           | 790             | 940               | 350            | 140              | 478              | 622            |  |  |  |  |
| 10                                                              | 50              | 960             | 40                | 80             | 60               | 125              | -              |  |  |  |  |
| Sum                                                             | 259 630         | 513 130         | 816 570           | 869 030        | 554 420          | 458 996          | 666 361        |  |  |  |  |
| P                                                               | Proportion mat  | ure at age in t | he indices.       |                |                  |                  |                |  |  |  |  |
| 3                                                               | 0.00            | -               | 0.00              | -              | 0.00             | -                | 0.00           |  |  |  |  |
| 4                                                               | 0.02            | 0.04            | 0.01              | 0.01           | -                | -                | 0.01           |  |  |  |  |
| 5                                                               | 0.11            | 0.09            | 0.09              | 0.07           | 0.02             | 0.01             | 0.05           |  |  |  |  |
| 6                                                               | 0.40            | 0.29            | 0.23              | 0.34           | 0.20             | 0.13             | 0.19           |  |  |  |  |
| 7                                                               | 0.57            | 0.59            | 0.45              | 0.57           | 0.48             | 0.50             | 0.42           |  |  |  |  |
| 8                                                               | 0.83            | 0.90            | 0.75              | 0.74           | 0.76             | 0.89             | 0.69           |  |  |  |  |
| 9                                                               | 0.96            | 0.86            | 0.87              | 0.93           | 1.00             | 1.00             | 0.87           |  |  |  |  |
| 10                                                              | 1.00            | 0.96            | 1.00              | 0.97           | 1.00             | 0.90             | 1.00           |  |  |  |  |
| Proportion mature at age from the AFWG report (ICES, 2000).     |                 |                 |                   |                |                  |                  |                |  |  |  |  |
| 3                                                               | 0.01            | -               | -                 | -              | -                | -                | -              |  |  |  |  |
| 4                                                               | 0.01            | 0.03            | 0.01              | -              | -                | -                | 0.01           |  |  |  |  |
| 5                                                               | 0.12            | 0.09            | 0.11              | 0.07           | 0.02             | 0.02             | 0.04           |  |  |  |  |
| 6                                                               | 0.43            | 0.30            | 0.33              | 0.33           | 0.26             | 0.14             | 0.19           |  |  |  |  |
| 7                                                               | 0.75            | 0.61            | 0.60              | 0.62           | 0.63             | 0.56             | 0.44           |  |  |  |  |
| 8                                                               | 0.93            | 0.91            | 0.81              | 0.74           | 0.83             | 0.82             | 0.82           |  |  |  |  |
| 9                                                               | 0.97            | 0.97            | 0.97              | 0.95           | 0.98             | 0.95             | 0.93           |  |  |  |  |
| 10                                                              | 1.00            | 0.99            | 0.99              | 0.98           | 1.00             | 0.95             | 0.98           |  |  |  |  |
| 11                                                              | 1.00            | 1.00            | 0.99              | 1.00           | 1.00             | 0.95             | 1.00           |  |  |  |  |
| 12                                                              | 1.00            | 1.00            | 1.00              | 1.00           | 1.00             | 1.00             | 1.00           |  |  |  |  |
| 13                                                              | 1.00            | 1.00            | 1.00              | 1.00           | 1.00             | 1.00             | 1.00           |  |  |  |  |
| 14                                                              | 1.00            | 1.00            | 1.00              | 1.00           | 1.00             | 1.00             | 1.00           |  |  |  |  |
| 15                                                              | 1.00            | 1.00            | 1.00              | 1.00           | 1.00             | 1.00             | 1.00           |  |  |  |  |
| P                                                               | Proportion of 8 | -vear and olde  | r fish in the tra | aditional VPA  | (ICES 2000)      |                  |                |  |  |  |  |
| 8+                                                              | 0.0687          | 0.0372          | 0.0223            | 0.0136         | 0.0186           | 0.0342           | 0.0384         |  |  |  |  |
| _                                                               |                 |                 |                   |                |                  |                  |                |  |  |  |  |
| Ir                                                              | ndices, Î, adju | sted according  | g to maturity a   | nd the proport | tion of 8-year a | and older fish ( | used in IIIb). |  |  |  |  |
| 3                                                               | 159 347         | 273 900         | 295 106           | 274 620        | 169 989          | 238 033          | 395 512        |  |  |  |  |
| 4                                                               | 57 220          | 138 974         | 311 569           | 239 812        | 115 380          | 64 009           | 181 489        |  |  |  |  |
| 5                                                               | 17 982          | 72 735          | 150 795           | 256 573        | 137 758          | 70 913           | 36 297         |  |  |  |  |
| 6                                                               | 13 406          | 16 142          | 58 294            | 75 366         | 115 237          | 53 536           | 25 801         |  |  |  |  |
| 7                                                               | 13 239          | 6 327           | 12 309            | 20 574         | 32 742           | 32 029           | 18 495         |  |  |  |  |
| 8+                                                              | 19 276          | 19 616          | 18 856            | 11 956         | 10 819           | 16 236           | 26 225         |  |  |  |  |
| Sum                                                             | 280 470         | 527 694         | 846 929           | 878 901        | 581 925          | 474 756          | 683 819        |  |  |  |  |

#### Table C Continued.