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Abstract

In this thesis, a model to describe the interactions between hydrogen-like atoms and
intense laser pulses using the Dirac equation is developed. The modeling of these
interactions can be motivated by the advances in laser technology through the last
decades, which have increased the peak intensities of laser pulses by many orders
of magnitude. Improved understanding of how the pulses from the new lasers affect
hydrogen-like atoms might transmit to improved understanding of, and control over,
various states of matter exposed to intense electromagnetic radiation.

The Dirac equation for the isolated hydrogen-like atom, before interacting with the
laser pulse, was solved numerically through the expansion of the solution in both the
dual kinetic balance basis set and in the ideal basis set. Both basis sets were based
on B-splines. The ideal basis set was chosen as the preferred one, since the solutions
from the dual kinetic basis set displayed an oscillatory behavior at the boundary of the
domain. A small relativistic shift in the bound states and in the positive continuum was
identified.

The interaction matrix between the hydrogen-like atom and the laser pulse was then
calculated by expanding the time dependent solution of the system in the eigenstates
of the hydrogen-like atom. This was done both in the dipole approximation, and in an
approximation that goes beyond the dipole approximation.

The effect of the interaction with the laser pulse was calculated for both laser pulse
approximations using a short-time propagator with the Lanczos algorithm. The total
and energy differential photoionization probabilitieswere then calculated, and compared
with results from the Schrödinger equation with and without relativistic corrections. A
relativistic shift in both the total photoionization probability and in the locations of
the peaks in the energy differential probability plot for the dipole approximation was
identified. The transmission to the negative energy continuum states during the time of
propagation was shown to be the primary cause of the relativistic effects in the model.
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Chapter 1

Introduction

For centuries, scientists have been trying to understand the nature of light and matter,
and how they affect each other. In present times, several reasons for continuing this
pursuit can be given. First, new knowledge gained can give us a better idea of the how
the universe works, which in itself may be regarded as a desirable outcome. Second,
the knowledge may be used to develop technologies that can aid in solving global
challenges.

One of the key concepts in natural sciences is that a better understanding of the be-
havior of the smaller constituents of a physical object can give us a better understanding
of the whole. This concept is one of the motivations for doing theoretical and experi-
mental studies on the building blocks of nature, since the understanding gained might
translate to a better understanding of the behavior of larger objects.

1.1 The concept of the atom

Already in the ancient Greece, philosophers used philosophical reasoning to come up
with the idea that the matter that we surround ourselves with is composed of funda-
mental and indivisible objects, which they called atomos [1]. The theory was a purely
philosophical one, as there was no way of experimentally verifying it at the time.

In modern times, the idea of the atomos has been revisited, this time in better accord
with the scientific method. This modern theory is often accredited to the work done
by the chemist John Dalton at the beginning of the nineteenth century. In his work,
Dalton proposed that all elements should be composed of extremely small and identical
particles, atoms, and he made a system for calculating the weights of these particles
from chemical data [2]. Later, Niels Bohr proposed a model for the structure of these
atoms, in which they are described as consisting of a positively charged atomic nucleus
surrounded by negatively charged electrons, bound together by their mutual electrostatic
(Coulomb) attraction [3]. The model postulates that the electrons are confined to move
in orbits at a discrete set of distances away from the nucleus, and that the only way to
jump between these orbitals is by absorbing or emitting light. This model gave a pretty
good explanation of the absorption and emission spectra for hydrogen-like atoms, but
failed to explain the spectra for atoms with more than one electron. In hindsight, we
can say that the concepts in the Bohr model misrepresented reality; science needed a
new theory of the atom.
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The conceptual understanding of atoms was stood on its head when the atom was
depicted through the theory of quantum mechanics. One of the main tools used for
modeling the behavior of a quantum mechanical particle is the Schrödinger equation,
proposed by Erwin Schrödinger [4], which for a free massive particle, and in atomic
units, can be written as

i
∂ψ(x, t)
∂t

= −
1

2m
∇2ψ(x, t). (1.1)

When modeling the structure of atoms with the Schrödinger equation, the behavior of
the the electron is described by the equation, while the atomic nucleus is often assumed
to be stationary because of its high mass relative to the mass of the electron. The
Coulomb attraction that the electron has to the nucleus can then be introduced into the
equation (1.1) by making mathematical substitutions. The effect of other entities that
we want to introduce into the system, such as external electromagnetic radiation, can
also be introduced through mathematical substitutions.

In the Schrödinger equation, the mathematical description of the state of a system
is given by a wavefunction, which for the state of electrons in an atom take the shape
of orbitals. Orbitals are conceptually different from classical elliptic orbits in that
they give the probability of observing an electron anywhere in space, instead of giving
the definite positions of the electron. The treatment by the Schrödinger equation gave
results that agreed better with the experimentally measured properties of atoms than the
results from the Bohr model.

1.2 The concept of light

Christian Huygens is often regarded as one of the first proponents of the idea that light
behaves like waves [5]. James Clerk Maxwell gave a justification of this wave behavior
by treating light as oscillations in the electric and magnetic fields propagating at the
speed of light, c [6]. Since non-zero electric and magnetic fields exert forces on charged
objects, light incident on atoms may interact with their electrons and change the state
of the system.

The electric and magnetic fields can be given a unified mathematical representation
through the definition of an electromagnetic scalar potential Φ and an electromagnetic
vector potential A, which in atomic units are related to the electric and magnetic fields
through

E = −∇φ − ∂A
∂t
, (1.2)

B = ∇ × A, (1.3)

whereE is the electric field andB is themagnetic field. These electromagnetic potentials
will be used to mathematically represent light in the remainder of this thesis.
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1.3 Interactions between atoms and intense laser light

A significant branch of the research on light-matter interactions is concerned with
interactions between atoms and intense laser pulses. When the electrons in atoms
interact with the oscillating electromagnetic field in an intense laser pulse, they start
moving back and forth in space, or quivering [7]. This quivering causes the electrons
to display “exotic” dynamics, such as peaks in the energy spectrum of the ionized
electrons, separated by the energy of the photons in the laser pulse [8]. The research
done on the dynamics of these electrons can be seen in context with the advances in
laser technology through the last decades, which have increased the obtainable peak
intensities of laser pulses by several orders of magnitude. Modern lasers are now able
to make electrons quiver with velocities that approach the speed of light relative to the
nucleus [9]. These high velocities motivate the use of Albert Einstein’s special theory
of relativity to describe the motion of the electrons, since the Newtonian description
breaks down at these velocities [10]. The Schrödinger equation (1.1) is not built on the
special theory of relativity in its original form, and hence other equations should be used
if the objective is to get an accurate description of interactions between hydrogen-like
atoms and these intense laser pulses.

1.4 Aim and approach

In this thesis, we will approach the problem of developing a model for interactions
between a hydrogen-like atom and intense laser pulses. Themodel will treat the electron
in the hydrogen-like atom both relativistically and quantum mechanically through the
use of the Dirac equation proposed by Paul Dirac [11], which for a free particle, and in
atomic units, can be written as

i
∂ψ(x, t)
∂t

=
[
cα · p + mc2β

]
ψ(x, t). (1.4)

This equation can be understood as a relativistic alternative to the Schrödinger equation.
Since the equation incorporates relativistic effects, it will give a better representation
of systems where relativistic effects are significant. In the Dirac equation, the state of
the system is represented by a multicomponent function known as a spinor. Although
spinors and Schrödinger wavefunctions have different mathematical properties, they
correspond to similar observable physical quantities in systems where relativistic effects
are negligible.

A fundamental assumption of our model will be that the interaction between the
hydrogen-like atom and the laser pulse happens in empty space, without any external
influences. The conventional way of mathematically representing empty space is as a
continuous mathematical space that extends infinitely in all directions. For the solution
of a differential equation, like the Schrödinger or Dirac equations, to be regarded as
exact in this space, it has to satisfy the differential equation at each of the infinitely
many points in the space. One approach to finding an exact solution of the differential
equation is through looking for a solution that is analytic. An analytic solution can be
written in terms of known functions and can also be verified to be a correct solution.
Unfortunately, very few model systems are known to have analytic solutions.
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In most of the cases where an analytic solution cannot be found, a numerical
approximation to the exact solution can still be made. In our model, we will find the
numerical solution of the Dirac equation for the isolated hydrogen-like atom by writing
the solution as a finite sum of known functions, evaluated at discrete points in a space
with finite extent. This method reduces the continuous problem to a discrete problem
that can be solved by the use of numerical methods. The way that the equation will be
discretized will be discussed in detail in the next chapter.

Modeling of interactions between hydrogen-like atoms and intense laser pulses using
the Dirac equation has been attempted multiple times in recent literature [12–18]. This
literature refers to several obstacles to the numerical solution of the Dirac equation, such
as the appearance of states that do not correlate with any physical quantities, known
as spurious states. Different methods for overcoming these obstacles have also been
described in the literature, such as methods concerning the choice of basis functions and
boundary conditions used in the numerical solution. A comparison between some of
thesemethods is done in this thesis, and themost promisingmethodwill be implemented
in our model.

In the following chapters, we will start by discussing the general properties of the
Dirac equation. The Coulomb and external laser potential will be introduced into the
Dirac equation through a process called minimal coupling. The Dirac equation for the
hydrogen-like atomwill then bewritten in a convenient form that exploits the symmetries
in our system, in particular by expressing the equation in spherical coordinates.

The process of solving the Dirac equation for the model system will then be split into
two parts. First, the Dirac equation for the hydrogen-like atom before the interaction
with the laser pulse will be treated. This equation will be solved by converting it
into a discrete problem, which will be solved using numerical methods. Second, the
interaction that the laser pulse has on the hydrogen-like atom will be treated. This will
be done by expressing the whole system in the basis of the solution states obtained in
the first part. A numerical propagator will then be used to model how the hydrogen-like
atom and laser pulse interact through time.

Finally, wewill discuss the results from these solutions. The results will be compared
with results from the Schrödinger equation to determine if the Dirac equation reveals
relativistic behaviors in hydrogen-like atoms subject to high intensity laser pulses.
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1.5 Units

Table 1.1: Atomic units, obtained from [19]. Atomic unit of angular frequency in SI units
derived from ω = E

~ , and of vector potential derived from A ∝ E0
ω .

Unit Symbol Value in SI units

Electron mass me 9.10938356 × 10−31 kg
Elementary charge e 1.6021766208 × 10−19 C
Reduced Planck’s constant ~ = h

2π 1.054571800 × 10−34 Js
Bohr radius a0 5.2917721067 × 10−11 m
Hartree energy Eh 4.359744650 × 10−18 J
Atomic unit of time 2.418884326509 × 10−17 s
Atomic unit of angular frequency 4.134137334 × 1016 s−1

Atomic unit of velocity 2.18769126277 × 106 ms−1

Atomic unit of electric field 5.142206707 × 1011 Vm−1

Atomic unit of vector potential 1.243840321 × 10−5 Vsm−1
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1.6 Conventions

Mathematical operation Effect

Hermitian conjugate of a matrix or vector (A†)i j = (A)
∗
ji(

a b

c d

)†
=

(
a∗ c∗

b∗ d∗

)
,

(
a

b

)†
=

(
a∗ b∗

)
Mathematical object Definition

Inner product of functions 〈A(x)|B(x)〉 :=
∫
Ω

A∗(x)B(x) dx

Inner product of vectors 〈A|B〉 := A†B

Anticommutator {A, B} := AB + BA

Hermitian matrix A such that A† = A

n-dimensional identity matrix In :=

©­­­­­­«
1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

ª®®®®®®¬n×n

Kronecker delta δi j := (In)i j =

{
1, i = j
0, otherwise

Pauli matrices σx :=

(
0 1

1 0

)
, σy :=

(
0 −i

i 0

)
, σz :=

(
1 0

0 −1

)



Chapter 2

Theory and methods

2.1 Prerequisites

2.1.1 Atomic units

Throughout this thesis, atomic units will be used. The system of atomic units can
be defined by the atomic unit of mass (the electron mass), the atomic unit of charge
(the elementary charge), the reduced Planck’s constant and the atomic unit of length
(the Bohr radius), which are all set to unity in the system. All other units, such as the
atomic unit of energy (Hartree, Ha), are derived from these four units using fundamental
physical relations. The atomic units relevant to this thesis, together with their value in
SI units, can be found in Table 1.1. The value used for the dimensionless fine structure
constant is α = 7.2973525664 × 10−3, obtained from [19]. The speed of light in the
atomic unit system is c = α−1 ≈ 137 a.u. of velocity.

2.1.2 Relativistic quantum mechanics

The motivation for using the Dirac equation instead of the Schrödinger equation for
describing the quantum mechanical behavior of particles at high velocities comes from
the theory of special relativity. In nonrelativistic (Newtonian) mechanics, the energy of
a classical (not quantum mechanical) free particle is given by

E =
p2

2m
, (2.1)

where p is the momentum and m is the mass of the particle. This equation can be
quantized by inserting the quantum mechanical operators representing the energy and
momentum,

E = i
∂

∂t
, p = −i∇, (2.2)

into the equation, and letting both sides of the equation act on the wavefunction ψ(x, t)
from the left. The obtained equation is then the Schrödinger equation

i
∂ψ(x, t)
∂t

= −
1

2m
∇2ψ(x, t). (2.3)



8 Theory and methods

From the Schrödinger equation solution ψ(x, t), a non-negative scalar,

ρ = ψ(x, t)∗ψ(x, t), (2.4)

can be created. This scalar is interpreted as the probability density of the particle at the
point (x, t), that is [20],

ρ(x, t) dx =

{
probability of finding particle
between x and x + dx , at time t

}
. (2.5)

In relativistic mechanics, the energy of a classical particle is given by a different
equation,

E2 = m2c4 + p2c2. (2.6)

Taking the positive square root of this equation, we get

E = mc2
√

1 +
p2

m2c2
. (2.7)

By Taylor expanding
√
1 +

p2

m2c2 , this equation can be written as

E = mc2
[
1 +

p2

2m2c2
+

p4

8m4c4
+ . . .

]
. (2.8)

The first term in the Taylor expansion,

E0 = mc2, (2.9)

is independent of the momentum of the particle, and corresponds to the energy of the
particle at rest. This rest energy can be subtracted from relativistic energies when
comparing them with nonrelativistic energies, since nonrelativistic equations usually
do not include the rest energy of the particle. The second term in the expansion in (2.8),

E1 =
p2

2m
, (2.10)

is identical to the nonrelativistic energy in (2.1). The terms beyond E1, like

E2 =
p4

8m3c2
, (2.11)

do not have counterparts in nonrelativistic mechanics. Hence, these terms give rela-
tivistic corrections to the energy in (2.1). Since p = mv, where v is the velocity of
the particle, the corrections from the terms in (2.8) have increasing powers of v2

c2 , and
hence the later terms only become significant when the velocity v approaches the speed
of light c. Since the classical energy of a particle with high velocity gets corrected
when transitioning from nonrelativistic to relativistic mechanics, we can also expect the
quantized versions of the energy equations to get corrected.

Quantization of the relativistic equation can be done in several ways. One is to
quantize a finite number of the terms in the Taylor expanded equation in (2.8) with the
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rest energy removed, and effectively obtaining a semi-relativistic Schrödinger equation.
Another way is to look for a full-relativistic alternative equation that incorporates all
the terms in the expansion.

One approach to finding the full-relativistic equation is by inserting the operators in
(2.2) into the squared energy equation (2.6), giving[

∂2

∂t2
− c2∇2 + m2c4

]
φ(x, t) = 0. (2.12)

This equation is known as the Klein-Gordon equation, and, contrary to the Schrödinger
equation, has a time derivative of second order. The density of the Klein-Gordon
equation is given by the scalar

ρ =
i

2mc

[
φ(x, t)∗

∂φ(x, t)
∂t

−
∂φ(x, t)∗

∂t
φ(x, t)

]
, (2.13)

which, contrary to the Schrödinger probability density, is not positive definite. Hence,
the density can hardly represent a probability density, which was a major obstacle to
the acceptance of the Klein-Gordon equation when it was first introduced [21]. The
possibility for the density to be negative is caused by the time derivative being of second
order.

A new quantum mechanical equation, the Dirac equation, grew out of a search for
a relativistic equation with a time derivative of first order.

2.1.3 Dirac equation

The Dirac equation, in atomic units, is given by [11]

i
∂ψ(x, t)
∂t

=
[
cα · p + mc2β

]
ψ(x, t), (2.14)

where the solutions ψ(x, t) are known as spinors. For reasons that will be presented
shortly, the Dirac equation is an equation with several components. In order for the
Dirac equation to give a valid description of relativistic particles, each component of
the spinors should satisfy the Klein-Gordon equation [22]. This can be shown to be the
case by moving all terms in the Dirac equation to the left hand side,[

i
∂

∂t
− cα · p − mc2β

]
ψ(x, t) = 0, (2.15)

and acting on the equation from the left by,

− i
∂

∂t
− cα · p − mc2β. (2.16)

Then, inserting p = −i∇, we obtain the n-component Klein-Gordon equation,[
∂2

∂t2
− c2∇2 + m2c4

]
Inψ(x, t) = 0, (2.17)
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as long as αi and β are n-dimensional matrices satisfying the following conditions{
αi, α j

}
= 2δi, j In, {αi, β} = 0, β2 = In, (2.18)

where i, j ∈ {1, 2, 3}. In addition, the Dirac equation should also satisfy the continuity
equation

∂ρ

∂t
+ ∇ · j, (2.19)

with
ρ = ψ†(x, t)ψ(x, t), j = ψ†(x, t)αψ(x, t), (2.20)

which gives the condition that the matrices αi and β should be Hermitian. For more
details, see [21, 22]. All these conditions can be satisfied by letting αi and β be certain
matrices with a dimension of at least four. The representation of the matrices that will
be used in this thesis is four-dimensional, and is given by

αi =

(
0 σi

σi 0

)
, β =

(
I2 0

0 −I2

)
, (2.21)

where σi are the Pauli matrices and I2 is the 2-dimensional identity matrix. Using this
four-dimensional representation of the α and β-matrices, the spinor ψ(x, t) in the Dirac
equation will be a four component complex function.

2.1.4 Interpretation of the Dirac equation

In quantum mechanics, we interpret the spinor as a function describing the state of a
spin-1/2 particle, like an electron. The scalar ρ from (2.20) plays the same role as in
the Schrödinger equation; it can be interpreted as the probability density of the particle
(2.5). Quantum mechanical obervables, like the position, momentum or energy of the
particle, are represented by Hermitian linear operators.

These operators yield real eigenvalueswhen acting on eigenfunctions of the operator,
which can be illustrated through the eigenvalue equation for an operator D,

D f = λ f , (2.22)

where f is the eigenfunction and λ is the eigenvalue of the operator.
Assuming that the state of the system is an eigenstate of the operator, its eigenvalue

will be the value of the observable in the system. As an example, one can consider the
Hamiltonian operator H, which is the operator representing the energy of the system.
Assuming that the system is the eigenstate ψn(x, t) with energy En, the Hamiltonian
eigenvalue equation can be written as

Hψn(x, t) = Enψn(x, t). (2.23)

The system can also be in a state that does not have a determined value of the observable,
but that can be represented by a linear combination of the eigenstates,

Ψ(x, t) =
∑

n

cnψn(x, t). (2.24)

The observed value of such a systemwill then be the eigenvalue of one of the eigenstates
ψn(x, t), with a probability given by the square of the coefficient cn. After observation,
the state of the system will then be in the eigenstate ψn(x, t). We say that through this
process, the state of the system has collapsed to one of the eigenstates.
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2.1.5 Setting up a matrix eigenvalue problem

A numerical approximation to the solution of a general eigenvalue problem like (2.22)
can be found by the method outlined in this section. First, one starts by expanding
the eigenfunction f in a set of linearly independent basis functions with corresponding
unknown coefficients,

f =
N∑

j=1

v j Fj, (2.25)

where the Fj are the basis functions and the v j are the coefficients. Inserting this
expanded solution into the general eigenvalue problem in (2.22), one obtains

D
N∑

j=1

v j Fj = λ

N∑
i=1

v j Fj . (2.26)

Multiplying this equation from the left by an arbitrary basis function in the basis set,
Fi and integrating over the domain of the basis functions, effectively doing an inner
product, one obtains the equation

N∑
j=1

〈Fi | D
��Fj

〉
v j = λ

N∑
j=1

〈
Fi

��Fj
〉
v j . (2.27)

If one defines the matrix D with elements

(D)i j = 〈Fi | D
��Fj

〉
, (2.28)

and the matrix S, also known as the overlap matrix, with elements

(S)i j =
〈
Fi

��Fj
〉
, (2.29)

the equation (2.27) can be written as a N × N generalized matrix eigenvalue problem

Dv = λSv. (2.30)

The vector of coefficients v is also known as the eigenvector of the matrix eigenvalue
problem, and is given by

v =

©­­­­­­«
v1

v2
...

vN

ª®®®®®®¬
. (2.31)

The eigenvalue problem in (2.30) can be solved for a set of these eigenvectors with
corresponding eigenvalues λ, using numerical methods found in many numerical li-
braries. The number of solutions of the eigenvalue problem is N , which is the same as
the number of linearly independent functions in the basis set.
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2.2 The modeled system

2.2.1 Minimal coupling

TheDirac equation, as stated in (2.14), describes themotion of a single free particle with
spin 1/2. This model of the free particle can be used as a starting point for describing
more complex physical systems, like systems where the particle is subject to forces.
The more complex systems can be modeled by making changes to the Dirac equation
that mathematically represent the different entities that one wants to introduce into the
free electron system.

In this thesis, the spin 1/2 particle that will be modeled with the Dirac equation is
the electron. Two different physical entities will be introduced into the free electron
system: a positive point charge, which represents a hydrogen-like nucleus, and a laser
pulse. We assume that the different entities in the new system only interact through the
electromagnetic force, and that the hydrogen-like nucleus is so heavy that the effects of
the electromagnetic forces on it are negligible. The interactions between the different
entities in the system will be treated within the first quantization treatment of quantum
mechanics, which means the number of particles in the system will be conserved under
interaction. This is done by letting all objects except for the electron be represented by
classical potentials. Since the electron is treated quantum mechanically and the other
entities treated classically, this is also known as a semi-classical treatment.

The classical potentials will be introduced into the free particle system using a
procedure called minimal coupling, which is valid as long as all charges in the system
are assumed to be point charges.

In minimal coupling, we make the substitutions [21]

i
∂

∂t
→ i

∂

∂t
− qΦ(x, t), (2.32)

where Φ is the scalar electromagnetic potential, and

p→ p − qA(x, t) (2.33)

where A(x, t) is the vector electromagnetic potential, and where q is the charge of the
considered particle. The minimally coupled Dirac equation from (2.14) will then take
the form

i
∂ψ(x, t)
∂t

=
(
cα · [p − qA(x, t)] + c2β + qΦ(x, t)I4

)
ψ(x, t). (2.34)

For an electron, q = −e = −1 a.u. and m = me = 1 a.u. The attraction to the
hydrogen-like nucleus with charge Z will be represented by a scalar Coulomb potential
Φ = Z

r , and the effect of the laser pulse will be represented by a time dependent vector
potential A(x, t) = A(η), where η is a function of x and t. The Dirac equation for the
hydrogen-like atom and laser pulse system will then take the form

i
∂ψ(x, t)
∂t

=

(
cα · [p + A(η)] + c2β −

Z
r

I4

)
ψ(x, t). (2.35)

The operator on the right hand side of the equation is the total Hamiltonian of the
system,

H(t) = cα · [p + A(η)] + c2β −
Z
r

I4. (2.36)
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This Hamiltonian will be split into two parts, one part describing the hydrogen-like
atom without the interaction with the laser pulse, H0, and one part describing the time
dependent interaction with the laser pulse, V(t),

H(t) = H0 + V(t), (2.37)

where
H0 = cα · p + c2β −

Z
r

I4, (2.38)

and
V(t) = cα · A(η). (2.39)

In this thesis, it will be assumed that the laser vector potential does not interact with the
system at t = 0. Then, V(0) = 0, giving

H(0) = H0. (2.40)

The solution of the Dirac equation with the Hamiltonian H0 can then be considered
separately, before introducing the interaction with the laser pulse.

2.2.2 Derivation of hydrogen-like radial equation

In this section, we will separate the radial and angular parts of the Dirac equation for
the electron in the hydrogen-like atom. The Dirac equation for this system is given by

i
∂ψ(x, t)
∂t

= H0ψ(x, t) =
[
cα · p + c2β −

Z
r

I4

]
ψ(x, t). (2.41)

We will look for stationary states of this system of the form

ψ(x, t) = e−iEtφ(x), (2.42)

so that E will be an eigenvalue of the Dirac Hamiltonian H0 from (2.38),

H0φ(x) = Eφ(x). (2.43)

Using the representation (2.21)

α =

(
0 σ

σ 0

)
, β =

(
I2 0

0 −I2

)
, (2.44)

the hydrogen-like Hamiltonian (2.38) can be written on the form

H0 =

( [
c2 − Z

r

]
I2 cσ · p

cσ · p
[
− c2 − Z

r

]
I2

)
. (2.45)

Since the scalar Coulomb potential Z
r is spherically symmetric, it is useful to express the

equation 2.43 in spherical coordinates. Following [21][Section 3.2.3], one can rewrite
the operator cσ · p in spherical coordinates as

cσ · p = −icσr

(
∂

∂r
+

K + 1

r

)
, (2.46)
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where the operator K is given by

K = −(1 + σ · l), (2.47)

with the operator l being the angular momentum operator from nonrelativistic quantum
mechanics [20],

l = −i(r × ∇). (2.48)

The Hamiltonian H0 does not commute with the operators l2, lz = ẑ · l and sz =
1
2σ

from nonrelativistic quantum mechanics, and hence the quantum numbers l, ml and ms
are not good quantum numbers for the states of the hydrogen-like atom in the Dirac
equation [21]. A good set of quantum numbers can be found through the eigenvalue
equation of the K-operator,

K χκ,µ(r̂) = κ χκ,µ(r̂). (2.49)

In this equation, the two-component function χκ,µ is called a spherical spinor, with
the vector r̂(θ, ϕ) giving the position on the unit sphere [23]. For more details on
the algebraic derivation of this relation, see for example [24]. The quantum number µ
corresponds to the projection of the total angularmomentumof the state along the z-axis,
and it is an eigenvalue of the jz-operator from nonrelativistic quantum mechanics,

jz χκ,µ(r̂) = µχκ,µ(r̂), (2.50)

where
jz = lz + sz = −i

(
x
∂

∂y
− y

∂

∂x

)
+

1

2
σz . (2.51)

The possible values that the two quantum numbers can take on are κ ∈ {±1,±2, . . .}
and µ ∈ {−|κ | + 1

2, . . . , |κ | −
1
2}. The spherical spinors χκ,µ, constitute a complete set of

two-component functions defined on the unit sphere [25], which are orthonormal with
respect to the inner product [21]〈

χκ′,µ′
��χκ,µ〉 = ∫

χ†κ′,µ′(r̂)χκ,µ(r̂) dr̂ = δκ′,κδµ′,µ. (2.52)

Inserting (2.46) into (2.45), we get that

H0 =

( [
c2 − Z

r

]
I2 −icσr

[
∂
∂r +

K+1
r

]
−icσr

[
∂
∂r +

K+1
r

] [
− c2 − Z

r

]
I2

)
. (2.53)

In a spherical coordinate system (r, θ, ϕ), eigenstates of the Hamiltonian in (2.53) have
the 4-spinor structure [21]

φ(x) =
1

r

(
P(r)χκ,µ(r̂)

iQ(r)χ−κ,µ(r̂)

)
. (2.54)

Since [21]
σr χκ,µ(r̂) = −χ−κ,µ(r̂), (2.55)

and since (
d
dr
+

1

r

)
f (r)
r
=

1

r
df (r)

dr
, (2.56)



2.2 The modeled system 15

−c2 c2
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Figure 2.1: Illustration of the analytic spectrum of the Dirac hydrogen-like Hamiltonian. An
infinite number of discrete bound states have energies in the region −c2 < E < c2. The positive
and negative continua have energies above c2 and below −c2, respectively.

(2.43) can be written as

(H0 − E)φ(x) =

( [
c2 − Z

r − E
]
I2 −icσr

[
∂
∂r +

K+1
r

]
−icσr

[
∂
∂r +

K+1
r

] [
− c2 − Z

r − E
]
I2

)
1

r

(
P(r)χκ,µ(r̂)

iQ(r)χ−κ,µ(r̂)

)
=
1

r

( [
c2 − Z

r − E
]
P(r)χκ,µ(r̂) + cσr

[
∂
∂r +

κ
r

]
Q(r)χ−κ,µ(r̂)

−icσr
[
∂
∂r +

κ
r

]
P(r)χκ,µ(r̂) + i

[
− c2 − Z

r − E
]
Q(r)χ−κ,µ(r̂)

)
=
1

r

( ( [
c2 − Z

r − E
]
P(r) + c

[
κ
r −

∂
∂r

]
Q(r)

)
χκ,µ(r̂)

i
(
c
[
κ
r +

∂
∂r

]
P(r) +

[
− c2 − Z

r − E
]
Q(r)

)
χ−κ,µ(r̂)

)
=0.

(2.57)

Non-zero factors can be removed from (2.57), and the equation can thus be written on
the two-component form(

c2 − Z
r c

[
κ
r −

d
dr

]
c
[
κ
r +

d
dr

]
−c2 − Z

r

) (
P(r)

Q(r)

)
= E

(
P(r)

Q(r)

)
= H0

(
P(r)

Q(r)

)
. (2.58)

Aswe can see, we were able to separate out the angular dependency of the hydrogen-like
Dirac equation by introducing the quantum number κ. The equation (2.58) is a system
of two coupled first order differential equations in only one variable; the radial variable
r . This equation will hereafter be referred to as the hydrogen-like radial equation. The
hydrogen-like radial equation was solved numerically on finite domains r ∈ [a, b], using
the method described in Section 2.3.

2.2.3 Dirac hydrogen-like spectrum

The Dirac equation allows solutions with negative energy. An illustration of the form of
the analytic spectrum of the Dirac hydrogen-like Hamiltonian on the domain r ∈ [0,∞]
is shown in Figure 2.1. As we can see, the hydrogen-like spectrum has a positive energy
continuum for E > c2 and a negative energy continuum for E < −c2. Between these
continua, discrete bound states can be found; states that are confined to the nucleus by
the Coulomb potential. The analytic solution of the hydrogen-like radial equation on
the domain r ∈ [0,∞) is often done in textbooks on relativistic quantum mechanics, and
gives the formula for the relativistic hydrogen-like bound state energies [26]

En,κ =
c2√

1 + Z2α2(
n+
√
κ2−Z2α2

)2 , (2.59)
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−c2 c2

Energy E [a.u.]

Figure 2.2: Illustration of the spectrum of the Dirac hydrogen-like Hamiltonian on a finite
domain and with a finite number of basis functions. A finite number of discrete bound states
have energies in the region −c2 < E < c2. The positive and negative discrete pseudocontinua
have energies above c2 and below −c2, respectively.

where n ∈ {0, 1, . . .} for positive κ, and n ∈ {1, 2, . . .} for negative κ.
In this thesis, the Dirac hydrogen-like equation will be numerically solved on a finite

domain r ∈ [a, b], and with a finite number of basis functions. When the domain is
finite, the states with energies above c2 and below −c2 will also be discrete. These states
will be referred to as the positive and negative pseudocontinuum states. The number of
energies in the numerical spectrum is also equal to the number of basis functions used in
the calculations, which means the number of energies will be finite in the calculations.
An illustration of the finite spectrum is given in Figure 2.2. Theoretically, the Dirac
equation does not have a lower bound on the spectrum, but we will refer to the bound
state with the lowest energy E > c2 as the ground state of the system. The energies in
the spectrum for a finite number of basis functions is fortunately centered around E = 0,
which means we get a good description of the behavior of the system for energies with
an absolute value lower than the maximum energy in the spectrum.

2.2.4 Connection to Schrödinger equation states

As we have seen, the Dirac quantum states can be labeled by the three quantum numbers
(n, κ, µ). The quantum number κ can be related to the total angular momentum quantum
number j through [23]

j = |κ | −
1

2
. (2.60)

In (2.58) the lower equation can be solved for Q(r), giving

Q(r) =
c

c2 + E + Z
r

[
d
dr
+
κ

r

]
P(r). (2.61)

Since the relativistic energy E for positive energy states includes the electron’s rest
energy c2, it can be written as E = c2 + E′, where E′ is the energy without the rest
energy. Inserting this relation into (2.61), one obtains

Q(r) =
c

2c2 + E′ + Z
r

[
d
dr
+
κ

r

]
P(r). (2.62)

The nonrelativistic limit of this equation can be found by letting c→∞, giving

Q(r) ≈
1

2c

[
d
dr
+
κ

r

]
P(r). (2.63)

and Q(r) → 0 for all r . The fact that Q(r) → 0 is the reason that the lower component
often is referred to as the small component of positive energy spinors. In the nonrela-
tivistic limit, the positive energy spinors behave like the upper component of the spinor
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only, which has a definite angular momentum l. The quantum number κ for the spinor
can then be related to the nonrelativistic quantum number l through [23]

l =
����κ + 1

2

���� − 1

2
. (2.64)

From (2.50), it can be seen that the quantum number µ is the same number as the
nonrelativistic eigenvalue of the jz-operator, m j . More information about the quantum
numbers l, j and m j can be found in textbooks on nonrelativistic quantum mechanics
like [20]. Given the relationships above, the Dirac bound states can be labeled by the
symbols commonly used for nonrelativistic orbitals,

Nl j, (2.65)

where N is the principal quantum number

N = n + |κ |, (2.66)

with n from (2.59), and the numerical value of l is exchanged with the letters commonly
used in nonrelativistic quantum mechanics l = s, p, d, f . . .. For example, the lowest
energy bound state of κ = −1 can be labeled as the 1s1/2-state, the lowest energy bound
state of κ = 1 can be labeled as the 2p1/2-state, and so on.

2.2.5 Pulse geometry

The laser light of extremely intense lasers are emitted in pulses, which in effect only
interact with the hydrogen-like atom for a finite amount of time. Mathematically, these
pulses can be modeled by choosing a mathematical function that is non-zero only inside
a finite region in space and time. We will choose a vector potential commonly used in
the literature [13, 27, 28],

A(η) =
E0

ω
sin2

( πη
ωT

)
sin(η + φ), 0 ≤ η ≤ ωT . (2.67)

where η = ωt −k · r. In this vector potential, the sin-function is the carrier of the pulse,
which has the carrier frequency ω and the wave vector k. The carrier is modulated
by the sin2-function, the envelope of the pulse, which has the period T . The scalar φ
is called the carrier-envelope phase, which gives the phase between the carrier and the
envelope functions. The vector E0 is the maximum electric field strength in the direction
of polarization. Assuming that the pulse is linearly polarized, giving E0 = E0ê, where
ê is the direction of propagation, (2.67) can be written as

A(η) =
E0

ω
sin2

( πη
ωT

)
sin(η + φ)ê, 0 ≤ η ≤ ωT

=A(η)ê.
(2.68)

The component A(η) of this vector potential satisfies the scalar electromagnetic wave
equation

1

c2
∂2A(η)
∂t2

− ∇2A(η) = 0. (2.69)
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Figure 2.3: Temporal profile of the pulse in (2.68) at r = 0. The electric field strength was set
to E0 = 400 a.u., the frequency to ω = 50 a.u. and the pulse was chosen to be a 15 cycle pulse,
that is T = 152πω a.u.

At the point r = 0 a.u., the laser pulse has the temporal profile in the polarization
direction shown in Figure 2.3. If we assume that the pulse is x-polarized and propagating
in the z-direction, we get

k =
ω

c
ẑ→ η = ω

(
t −

z
c

)
. (2.70)

The equation (2.68) will then take the form

A(η) =
E0

ω
sin2

[
π

T

(
t −

z
c

)]
sin

[
ω

(
t −

z
c

)
+ φ

]
x̂, 0 ≤ t −

z
c
≤ T . (2.71)

The full geometry of the pulse given in (2.71) is hard to implement into the numerical
methods used for solving the time dependent Dirac equation. Hence, approximations
to the pulse geometry is often used.

A commonly used approximation is the dipole approximation, which can be made
by letting η → ωt, removing all spatial dependency of the laser pulse except for the
direction of polarization. This gives

A(η) =
E0

ω
sin2

(
πt
T

)
sin(ωt + φ)x̂, 0 ≤ t ≤ T . (2.72)

In addition to treating the laser pulse with the dipole approximation, another approxi-
mation to the pulse geometry will be considered in this thesis. In this approximation,
hereafter referred to as the beyond dipole approximation, the full spatial dependency of
the vector potential function is retained. The approximation is done only on the domain
of the time variable t. If no approximation were to be made, the time variable would,
from (2.71), be limited by

z
c
≤ t ≤ T +

z
c
. (2.73)
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Figure 2.4: The geometry of the laser pulse with (a) the beyond dipole approximation and (b)
the dipole approximation. The pulses have the parameters E0 = 400 a.u., ω = 50 a.u. and
T = 152πω a.u.

Since the limits for the time variable is z-dependent, the area spanned by t and z will
have a skewed boundary. In the beyond dipole approximation, this z-dependency of the
boundary is neglected, giving the new limits on the boundary

0 < t < T . (2.74)

This gives the equation

A(η) =
E0

ω
sin2

[
π

T

(
t −

z
c

)]
sin

[
ω

(
t −

z
c

)
+ φ

]
x̂, 0 ≤ t ≤ T . (2.75)

This approximation has been implemented in a recent article [28], and has shown to
be successful for describing the ionization by a pulse with 15 optical cycles, that is
T = 152πω a.u.

The beyond dipole approximation will be treated by expanding the vector potential
function in spherical harmonics in Section 2.4.1, inspired by [28]. A figure of both the
dipole and beyond dipole approximations is shown in Figure 2.4. When solving the
time dependent Dirac equation, we will assume that the hydrogen-like atom system is
an eigenstate of the time dependent Hamiltonian at t = 0 and t = T . This assumption
will be valid as long as the vector potential is zero at these two times. From (2.72),
it can be seen that this is the case for the vector potential in the dipole approximation.
The vector potential with the beyond dipole approximation in (2.75), on the hand, is not
necessarily zero at t = 0 and t = T , see the the left panel of Figure 2.4, since the vector
potential also has a z-dependency. Nonetheless, since the electron in the ground state is
located close to the nucleus, and since the effect of the z-coordinate is scaled by 1/c, we
can assume that the influence of the laser potential is small enough at t = 0 and t = T
to treat it as if it was zero.
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2.3 Numerical solution of Dirac hydrogen-like radial equation

The first goal in the thesis is to solve the radial equation for the hydrogen-like system
numerically for any κ. This will be done by expanding the two-component solution of
the Dirac hydrogen-like radial equation (2.58) in a finite set of linearly independent basis
functions with unknown coefficients, just as is done for a general operator in Section
2.1.5.

2.3.1 Comment on the choice of basis set

The radial Dirac equation (2.58) is a two component equation, and hence the basis
functions need to span the space of two component functions. Extra care is needed
when choosing the basis functions for solving the radial Dirac equation, since naive
choices of basis functions have been shown to give spurious states in the solution space
[29]. For more detail on the cause of the spurious states, see [30].

Several methods that aim to remove the spurious states have been proposed in
the literature, one of the most renowned being the method of dual kinetic balance
introduced by Shabaev et. al.[31]. In the dual kinetic balance basis set, the components
of the basis functions are related by the same relation that the components of the solution
of the radial equation have in the nonrelativistic limit, like in (2.63) for positive energy
states. Although the method in practice often removes the spurious states from the
spectrum, Lewin and Séré argue that there is no rigorous ground to believe that the
method of dual kinetic balance removes all spurious states from the spectrum [30]. In
our studies, we have also experienced apparent problems at the boundary of the domain
when using the dual kinetic balance basis set, which will be demonstrated in Section
3.1.1. The details of how the dual kinetic basis set is constructed will not be given in
this thesis, but can be found in the article by Shabaev et. al.[31].

A different article by Munger gives an alternative remedy to the problem of spurious
states, where the Dirac radial hydrogen-like Hamiltonian is transformed by a similar-
ity transformation [32]. The article argues formally that the transformed Hamiltonian
operator has a spectrum that converges to the proper spectrum without spurious eigen-
values when the size of the domain and the number of basis functions approach infinity.
The solutions of the similarity transformed Hamiltonian can then be transformed back
to the usual Dirac solutions by applying the inverse transformation.

2.3.2 Ideal basis set

The procedure for setting up the eigenvalue problem with the ideal basis set is outlined
in the following section. For more details, refer to [32].

In [32, Section X], it is argued that two different similarity transformations should
be used for the different signs of κ, to avoid missing or added states in the solution
space. The operator h, used for positive κ, and the operator h̃, used for negative κ, are
found by the similarity transformations

h = UHαU−1, h̃ = ŨHαŨ−1, (2.76)

respectively, where Hα is the hydrogen-like radial Hamiltonian H from (2.58) multiplied
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by α2, having the eigenvalues ε = α2E . The unitary matrices U and Ũ are given by

U = ©­«
√

κ−γ
2κ sgn (κ)

√
κ+γ
2κ

− sgn (κ)
√

κ+γ
2κ

√
κ−γ
2κ

ª®¬ , Ũ = ©­«
√

κ+γ
2κ sgn (κ)

√
κ−γ
2κ

− sgn (κ)
√

κ−γ
2κ

√
κ+γ
2κ

ª®¬ , (2.77)

where
γ =

√
κ2 − (Zα)2. (2.78)

Applying these unitary transformations, the operators h and h̃ in (2.76) can be written
as

h =

(
η(κ) B(κ)

B†(κ) −η(κ) − A

)
, h̃ =

(
η(−κ) −B†(−κ)

−B(−κ) −η(−κ) − A

)
, (2.79)

where

η(κ) = −
γ

κ
, A =

2Zα2

r
, B(κ) = −α

(
Z
κ
+
γ

r
+

d
dr

)
, B†(κ) = −α

(
Z
κ
+
γ

r
−

d
dr

)
.

(2.80)
The solutions Φ and Φ̃ of the eigenvalue problems

hΦ = εΦ, h̃Φ̃ = εΦ̃ (2.81)

will be expanded in two different basis sets of 2N functions,

Wk =

(
B(κ)wk

0

)
, Wk+N =

(
0

wk

)
, W̃k =

(
−B†(−κ)wk

0

)
, W̃k+N =

(
0

wk

)
, (2.82)

where k = 1, . . . , N and the wk are linearly independent functions forming a basis for
the Sobolev space of square integrable functions and first derivatives. The Dirichlet
boundary conditions is imposed on the functions, in other words wk(a) = wk(b) = 0.
Using the method described in Section 2.1.5, the eigenvalue problems in (2.81) can be
written on the matrix forms [32](

η(κ)M(κ) M(κ)

M(κ) −η(κ)U − A

) (
Φ1

Φ2

)
= ε

(
M(κ) 0

0 U

) (
Φ1

Φ2

)
,(

η(−κ)M̃(κ) M̃(κ)

M̃(κ) −η(−κ)U − A

) (
Φ̃1

Φ̃2

)
= ε

(
M̃(κ) 0

0 U

) (
Φ̃1

Φ̃2

)
,

(2.83)

where

Mj k(κ) =
〈
B(κ)w j

��B(κ)wk
〉
, M̃j k(κ) =

〈
B†(−κ)w j

��B†(−κ)wk
〉

(2.84)

and
U j k =

〈
w j

��wk
〉
, A j k =

〈
w j

�� A |wk〉 . (2.85)

The solutions Φ and Φ̃ be transformed to solutions ψ of the original Hamiltonian H0

through the unitary transformation

ψ = − sgn (ε)U−1(κ)Φ, ψ = sgn (ε)Ũ−1(κ)Φ̃. (2.86)
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2.3.3 B-splines

The linearly independent functions wk that will be used to construct the basis sets in
(2.82) for solving the radial Dirac equation are the piecewise polynomials called B-
splines. For details on these functions, see [33]. The B-splines have finite support, and
properties that make them suitable for atomic physics calculations [34].

Cox-de Boor recursion relation

The B-splines are often created using the Cox-de Boor recursion relation, which can be
stated as follows [34]. The n1 first order B-splines defined on the n1 + 1 knot points ti,
where ti ≤ ti+1, are given by

B1
i (x) =

{
1, ti ≤ x < ti+1
0, otherwise

. (2.87)

The nk = nk−1−1B-splines of order k are built recursively from the first order B-splines
by the equation

Bk
i (x) =

x − ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x). (2.88)

As can be deduced from the above recursion relation, the B-splines of order k are only
non-zero on the interval [ti, ti+k], which gives them the finite support. The ordered set of
points t1 ≤ t2 ≤ . . . ≤ tn+k is called the knot vector. As can be seen from the definition
of the B-splines, there is a freedom in the choice of the knot vector; the only demand is
that the values of the knot points should be nondecreasing. In this thesis, a convention
for the knot vector called the open uniform knot vector will be used in the calculations.
The open uniform knot vector has k coinciding knot points at each of the end points of
the domain, or, in other words

ti = t1, i ≤ k
ti+1 − ti = const., k ≤ i ≤ n

ti = tk+n, i ≥ n + 1.

(2.89)

The derivative of a B-spline of order k is given by the recursion relation

DBk
i (x) =

k − 1

ti+k−1 − ti
Bk−1

i (x) −
k − 1

ti+k − ti+1
Bk−1

i+1 (x). (2.90)

We will integrate the products of the B-splines used for making the matrices in (2.83)
using the Gauss-Legendre quadrature.

Gauss-Legendre quadrature

The following properties of the Gauss-Legendre quadrature are taken from [35, Sec-
tion 8.5]. The integral of a function f (x) on the interval x ∈ [−1, 1] can be approximated
by the quadrature formula ∫ 1

−1

f (x) dx =
n∑

i=1

wi f (xi) + E, (2.91)
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Figure 2.5: 12 B-splines of order 6 defined on Gauss-Legendre points on the domain r ∈ [0, 60]
a.u.

where the Gauss-Legendre points xi are the ith zeros of the nth Legendre polynomial
Pn(x), and the Gauss-Legendre weights wi are given by the formula

wi =
2(1 − x2i )

(n + 1)2Pn+1(xi)
2
. (2.92)

The error E in (2.91) is given by

E =
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ξ), (2.93)

for some ξ. Since the 2n’th derivative f (2n)(ξ) of a polynomial f of order less than or
equal to 2n (degree 2n − 1) is zero, a polynomial of order 2n will be integrated exactly
by (2.91).

Since B-splines of order k are polynomials of order k on the intervals [ti, ti+1], the
Gauss-Legendre quadrature of order k integrates the product BiB j , which is of order 2k,
exactly [34]. When making the matrices for the eigenvalue problems in (2.83), the the
maximum order polynomials that should be integrated is 2k, which means the results
should be exact when using k Gauss-Legendre points. k Gauss-Legendre points were
therefore used for making and integrating B-splines of order k. The variable of the
integral was changed from [−1, 1] to [ti, ti+1], to be able to integrate over the domain
used for the solution. A plot of 12 B-splines of order 6, using the open uniform knot
vector convention and 6 Gauss-Legendre points in each knot point interval [ti, ti+1] is
shown in Figure 2.5. The Dirichlet boundary conditions are imposed by removing the
first and last B-splines in the set. This is made possible since Bi(a) = Bi(b) = 0 for
i = 2, . . . , n − 1.
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2.4 Numerical solution of the interaction with the laser pulse

The goal of this section is to be able to calculate the time dependent effect of an intense
laser pulse on the hydrogen-like atom system. The section follows [36] to some extent.
The equation that describes the time evolution of the hydrogen-like atom and laser pulse
system is

i
∂Ψ(t)
∂t
= H(t)Ψ(t), (2.94)

where H(t) is the Hamiltonian from (2.37) and Ψ(t) is the state of the system. The time
evolution of the system described by this equation can be written formally by the use of
the time-evolution operator U(t1, t0), which evolves the state from t = t0 to t = t1 [36],

Ψ(t1) = U(t1, t0)Ψ(t0) = T exp

[
− i

∫ t1

t0
H(t) dt

]
Ψ(t0), (2.95)

where T is the time-ordering operator. When doing the time propagation numerically,
the propagation is usually performed with a series of time steps ∆t. If the size of
the time steps is chosen to be so small that the variation of the Hamiltonian over the
interval [t, t +∆t) is negligible, the time-evolution operator can be approximated by the
short-time propagator

U(t + ∆t, t) ≈ exp[−i∆tH(t)], (2.96)

which gives
Ψ(t + ∆t) ≈ exp[−i∆tH(t)]Ψ(t). (2.97)

This short-time propagator can be applied consecutively to propagate the state of the
hydrogen-like atom and laser pulse system in steps from t = t0 to t = t1,

U(t1, t0) ≈ U(t1, t1 − ∆t) . . .U(t0 + 2∆t, t0 + ∆t)U(t0 + ∆t, t0). (2.98)

The Hamiltonian operator in the short-time propagator (2.97) will be treated explicitly
by writing it on matrix form. This will be done by expanding Ψ(t) in the finite set of
M eigenstates for the hydrogen-like atom ψ j , with quantum numbers (n j, κ j, µ j), found
in Section 2.3. Each eigenstate ψ j will have the corresponding coefficient c j(t) in the
expansion. Then, using the method in Section 2.1.5, one obtains the Hamiltonian on
matrix form,

H(t) = H0 + V(t), (2.99)

where the elements of H0 and V(t) will be given shortly. The state of the system is then
represented by the coefficient vector

|Ψ(t)〉 =

©­­­­­­«
c1(t)

c2(t)
...

cM(t)

ª®®®®®®¬
, (2.100)

where each coefficient c j(t) is related to the hydrogen-like eigenstate ψ j . The state of
the electron in the hydrogen-like system at t = 0 is defined through the choice of the
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coefficients c j(0). The Hamiltonian matrix in (2.99) will be used as the Hamiltonian
operator and Ψ will be used as the state in the short-time propagator in (2.97), giving

|Ψ(t + ∆t)〉 ≈ exp[−i∆tH(t)] |Ψ(t)〉 . (2.101)

More information of how this short-time propagator will be applied at each time step
will be given in Section 2.4.2.

Following Section 2.1.5, the elements of the matrix H0 in (2.99) can be given by

(H0)i j = 〈ψi | H0

��ψ j
〉
= E jδi j . (2.102)

As can be seen, this matrix is a diagonal matrix containing energies of the states found
in Section 2.3. A way of calculating the interaction matrix elements (V(t))i j for both
the dipole and beyond-dipole approximations will be shown in the following section.

2.4.1 Interaction matrix elements

The part of the Hamiltonian describing the interaction with the laser pulse is, from
(2.39), given by

V(t) = cα · A(η). (2.103)

Following Section 2.1.5, the elements of the matrix V(t) in (2.99) can be given by

(V(t))i j = 〈ψi |V(t)
��ψ j

〉
= 〈ψi | cα · A(η)

��ψ j
〉

=

∫ [
1

r

(
P∗ni,κi(r)χ

†
κi,µi(r̂) −iQ∗ni,κi(r)χ

†
−κi,µi(r̂)

) (
0 cA(η)σ · ê

cA(η)σ · ê 0

)
×

1

r

(
Pnj,κj (r)χκj,µj (r̂)

iQnj,κj (r)χ−κj,µj (r̂)

) ]
dr

=ic
∫

1

r2
P∗ni,κi(r)Qnj,κj (r)A(η)χ

†
κi,µi
(r̂)σ · êχ−κj,µj (r̂) dr

− ic
∫

1

r2
Q∗ni,κi(r)Pnj,κj (r)A(η)χ

†
−κi,µi
(r̂)σ · êχκj,µj (r̂) dr .

(2.104)

For x-polarized light, where ê = x̂, this gives

(V(t))i j =ic
∫

1

r2
P∗ni,κi(r)Qnj,κj (r)A(η)χ

†
κi,µi
(r̂)σx χ−κj,µj (r̂) dr

− ic
∫

1

r2
Q∗ni,κi(r)Pnj,κj (r)A(η)χ

†
−κi,µi
(r̂)σx χκj,µj (r̂) dr .

(2.105)

Using

χκ,µ(r̂) =
©­«sgn (−κ)

√
κ+ 1

2−µ

2κ+1 Y
µ− 1

2

l (r̂)√
κ+ 1

2+µ

2κ+1 Y
µ+ 1

2

l (r̂)

ª®¬ , (2.106)
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and l =
��κ + 1

2

�� − 1
2 from [23], the spherical spinor can be written as

χκ,µ(r̂) =
©­­«
sgn (−κ)

√
κ+ 1

2−µ

2κ+1 Y
µ− 1

2

|κ+ 1
2 |−

1
2

(r̂)√
κ+ 1

2+µ

2κ+1 Y
µ+ 1

2

|κ+ 1
2 |−

1
2

(r̂)

ª®®®¬ . (2.107)

Also, for negative κ,

χ−κ,µ(r̂) =
©­­«
sgn (κ)

√
−κ+ 1

2−µ

−2κ+1 Y
µ− 1

2

|−κ+ 1
2 |−

1
2

(r̂)√
−κ+ 1

2+µ

−2κ+1 Y
µ+ 1

2

|−κ+ 1
2 |−

1
2

(r̂)

ª®®®¬
=

©­­«
sgn (κ)

√
κ− 1

2+µ

2κ−1 Y
µ− 1

2

|κ− 1
2 |−

1
2

(r̂)√
κ− 1

2−µ

2κ−1 Y
µ+ 1

2

|κ− 1
2 |−

1
2

(r̂)

ª®®®¬ .
(2.108)

These identities can be used together with the Pauli matrix in the x-direction

σx =

(
0 1

1 0

)
, (2.109)

to write

χ†κi,µi(r̂)σx χ−κj,µj (r̂) = sgn (−κi)

√
κi +

1
2 − µi

2κi + 1
Y
µi−

1
2

|κi+ 1
2 |−

1
2

∗(r̂)

√
κ j −

1
2 − µ j

2κ j − 1
Y
µj+

1
2

|κj− 1
2 |−

1
2

(r̂)

+

√
κi +

1
2 + µi

2κi + 1
Y
µi+

1
2

|κi+ 1
2 |−

1
2

∗(r̂) sgn (κ j)

√
κ j −

1
2 + µ j

2κ j − 1
Y
µj−

1
2

|κj− 1
2 |−

1
2

(r̂)

= sgn (−κi)

√
(κi +

1
2 − µi)(κ j −

1
2 − µ j)

(2κi + 1)(2κ j − 1)
Y
µi−

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj+

1
2

|κj− 1
2 |−

1
2

(r̂)

+ sgn (κ j)

√
(κi +

1
2 + µi)(κ j −

1
2 + µ j)

(2κi + 1)(2κ j − 1)
Y
µi+

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj−

1
2

|κj− 1
2 |−

1
2

(r̂)

(2.110)
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and

χ†−κi,µi(r̂)σx χκj,µj (r̂) = sgn (κi)

√
κi −

1
2 + µi

2κi − 1
Y
µi−

1
2

|κi− 1
2 |−

1
2

∗(r̂)

√
κ j +

1
2 + µ j

2κ j + 1
Y
µj+

1
2

|κj+ 1
2 |−

1
2

(r̂)

+

√
κi −

1
2 − µi

2κi − 1
Y
µi+

1
2

|κi− 1
2 |−

1
2

∗(r̂) sgn (−κ j)

√
κ j +

1
2 − µ j

2κ j + 1
Y
µj−

1
2

|κj+ 1
2 |−

1
2

(r̂)

= sgn (κi)

√
(κi −

1
2 + µi)(κ j +

1
2 + µ j)

(2κi − 1)(2κ j + 1)
Y
µi−

1
2

|κi− 1
2 |−

1
2

∗(r̂)Y
µj+

1
2

|κj+ 1
2 |−

1
2

(r̂)

+ sgn (−κ j)

√
(κi −

1
2 − µi)(κ j +

1
2 − µ j)

(2κi − 1)(2κ j + 1)
Y
µi+

1
2

|κi− 1
2 |−

1
2

∗(r̂)Y
µj−

1
2

|κj+ 1
2 |−

1
2

(r̂).

(2.111)

Inserting these relations into the interaction term (2.105), we get

(V(t))i j = ic
∫

1

r2
P∗ni,κi(r)Qnj,κj (r)A(η)

×

(
sgn (−κi)

√
(κi +

1
2 − µi)(κ j −

1
2 − µ j)

(2κi + 1)(2κ j − 1)
Y
µi−

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj+

1
2

|κj− 1
2 |−

1
2

(r̂)

+ sgn (κ j)

√
(κi +

1
2 + µi)(κ j −

1
2 + µ j)

(2κi + 1)(2κ j − 1)
Y
µi+

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj−

1
2

|κj− 1
2 |−

1
2

(r̂)

)
dr

− ic
∫

1

r2
Q∗ni,κi(r)Pnj,κj (r)A(η)

×

(
sgn (κi)

√
(κi −

1
2 + µi)(κ j +

1
2 + µ j)

(2κi − 1)(2κ j + 1)
Y
µi−

1
2

|κi− 1
2 |−

1
2

∗(r̂)Y
µj+

1
2

|κj+ 1
2 |−

1
2

(r̂)

+ sgn (−κ j)

√
(κi −

1
2 − µi)(κ j +

1
2 − µ j)

(2κi − 1)(2κ j + 1)
Y
µi+

1
2

|κi− 1
2 |−

1
2

∗(r̂)Y
µj−

1
2

|κj+ 1
2 |−

1
2

(r̂)

)
dr .

(2.112)

Dipole approximation

If we use the dipole approximation of the vector potential given in (2.72), (2.112) can
be written as

(V(t))i j = f (t)(G)i j, (2.113)

where
f (t) =

E0

ω
sin2

(πt
T

)
sin(ωt + φ) (2.114)
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and

(G)i j =ic
∫

P∗ni,κi(r)Qnj,κj (r) dr δ|κi+ 1
2 |,|κj−

1
2 |

×

(
sgn (−κi)

√
(κi +

1
2 − µi)(κ j −

1
2 − µ j)

(2κi + 1)(2κ j − 1)
δµi,µj+1

+ sgn (κ j)

√
(κi +

1
2 + µi)(κ j −

1
2 + µ j)

(2κi + 1)(2κ j − 1)
δµi,µj−1

)
− ic

∫
Q∗ni,κi(r)Pnj,κj (r) dr δ|κi− 1

2 |,|κj+
1
2 |

×

(
sgn (κi)

√
(κi −

1
2 + µi)(κ j +

1
2 + µ j)

(2κi − 1)(2κ j + 1)
δµi,µj+1

+ sgn (−κ j)

√
(κi −

1
2 − µi)(κ j +

1
2 − µ j)

(2κi − 1)(2κ j + 1)
δµi,µj−1

)
.

(2.115)

The equation (2.115) was implemented in the code, and was used to calculate the
stationary part of the dipole approximation interaction matrix.
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Beyond dipole approximation

Through repeated use of trigonometric identities, the beyond dipole vector potential
component in (2.75) can be written as

A(η) =
E0

ω
sin2

(πt
T
−
πz
cT

)
sin(ωt − kz + φ)

=
E0

ω

[
−

1

4
sin

(
ωt +

2πt
T
− kz −

2πz
cT
+ φ

)
−

1

4
sin

(
ωt −

2πt
T
− kz +

2πz
cT
+ φ

)
+

1

2
sin(ωt − kz + φ)

]
= −

E0

4ω
sin

(
ωt +

2πt
T
+ φ

)
cos

(
kz +

2πz
cT

)
+

E0

4ω
cos

(
ωt +

2πt
T
+ φ

)
sin

(
kz +

2πz
cT

)
−

E0

4ω
sin

(
ωt −

2πt
T
+ φ

)
cos

(
kz −

2πz
cT

)
+

E0

4ω
cos

(
ωt −

2πt
T
+ φ

)
sin

(
kz −

2πz
cT

)
+

E0

2ω
sin(ωt + φ) cos(kz)

−
E0

2ω
cos(ωt + φ) sin(kz).

(2.116)

This can also be written on a simpler form

A(η) =
6∑

α=1

fα(t)gα(Cαz), (2.117)

where fα(t) are the time dependent parts of the terms including coefficients, gα are
trigonometric functions (sine or cosine function) and Cα are constants, all of which can
be identified from (2.116). Assuming ω > 2π

T , which is the same as assuming that the
length of the envelope is greater than double the wavelength of the carrier, and also
assuming that φ = 0, Cα will be strictly positive for all α. We want to expand the
space-dependent trigonometric functions in terms of spherical harmonics. Using the
spherical harmonic expansion of plane waves [37],

eik·r = 4π

∞∑
l=0

l∑
m=−l

il jl(kr)Y m
l
∗(k̂)Y m

l (r̂), (2.118)
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and with ẑ being a unit vector in the z-direction [37], we can write

sin(Cαz) =
1

2i

(
eiCαz − e−iCαz

)
=
1

2i

(
eiCαr ẑ·r̂ − e−iCαr ẑ·r̂

)
=
1

2i

(
4π

∞∑
l=0

l∑
m=−l

il jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂)

− 4π

∞∑
l=0

l∑
m=−l

(−i)l jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂)
)

= 4π

∞∑
l=1,3,5,...

l∑
m=−l

il−1 jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂)

(2.119)

and

cos(Cαz) =
1

2

(
eiCαz + e−iCαz

)
=
1

2

(
eiCαr ẑ·r̂ + e−iCαr ẑ·r

)
=
1

2

(
4π

∞∑
l=0

l∑
m=−l

il jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂)

+ 4π

∞∑
l=0

l∑
m=−l

(−i)l jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂)
)

=4π

∞∑
l=0,2,4,...

l∑
m=−l

il jl(Cαr)Y m
l
∗(ẑ)Y m

l (r̂).

(2.120)

From the definition of spherical harmonics commonly used in physics, which is also
given in the ISO standard 80000-2:2009 [38], θ(ẑ) = 0. Using the relation [39,
Eq. 14.30.4]

Y m
l (0, ϕ) =

{√
2l+1
4π , m = 0,

0, m = 1, 2, . . . ,
(2.121)

the equations (2.119) and (2.120) can be written as

sin(Cαz) =
∞∑

l=1,3,5,...

il−1
√
4π(2l + 1) jl(Cαr)Y 0

l (r̂) (2.122)

and

cos(Cαz) =
∞∑

l=0,2,4,...

il
√
4π(2l + 1) jl(Cαr)Y 0

l (r̂). (2.123)

Inserting (2.122) and (2.123) into (2.117), we get

A(η) =
6∑

α=1

fα(t)gα(Cαz), (2.124)
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where

gα(Cαz) =

{∑∞
l=1,3,5,... i

l−1
√
4π(2l + 1) jl(Cαr)Y 0

l (r̂), gα(Cαz) = sin(Cαz)∑∞
l=0,2,4,... i

l
√
4π(2l + 1) jl(Cαr)Y 0

l (r̂), gα(Cαz) = cos(Cαz).
(2.125)

Using this relation we can write the interaction term from (2.112) as

(V(t))i j =

6∑
α=1

fα(t)(Gα)i j, (2.126)

where

(Gα)i j =



∞∑
l=1,3,5,...

[
i
∫

P∗ni,κi(r)Qnj,κj (r) jl(Cαr) dr (Ki, j,l + Li, j,l)

i
∫

Q∗ni,κi(r)Pnj,κj (r) jl(Cαr) dr (Mi, j,l + Ni, j,l)

], gα(Cαz) = sin(Cαz),

∞∑
l=0,2,4,...

[
−

∫
P∗ni,κi(r)Qnj,κj (r) jl(Cαr) dr (Ki, j,l + Li, j,l)

−

∫
Q∗ni,κi(r)Pnj,κj (r) jl(Cαr) dr (Mi, j,l + Ni, j,l)

], gα(Cαz) = cos(Cαz).

(2.127)
The constants Ki, j,l , Li, j,l , Mi, j,l and Ni, j,l in (2.127) are given by

Ki, j,l =c sgn (−κi)il−1

√
4π(2l + 1)(κi +

1
2 − µi)(κ j −

1
2 − µ j)

(2κi + 1)(2κ j − 1)

×

∫
Y
µi−

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj+

1
2

|κj− 1
2 |−

1
2

(r̂)Y 0
l (r̂) dr̂ ,

(2.128)

Li, j,l =c sgn (κ j)il−1

√
4π(2l + 1)(κi +

1
2 + µi)(κ j −

1
2 + µ j)

(2κi + 1)(2κ j − 1)

×

∫
Y
µi+

1
2

|κi+ 1
2 |−

1
2

∗(r̂)Y
µj−

1
2

|κj− 1
2 |−

1
2

(r̂)Y 0
l (r̂) dr̂ ,

(2.129)

Mi, j,l = − c sgn (κi)il−1

√
4π(2l + 1)(κi −

1
2 + µi)(κ j +
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2 + µ j)
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(2.130)

Ni, j,l = − c sgn (−κ j)il−1

√
4π(2l + 1)(κi −

1
2 − µ)(κ j +

1
2 − µ j)
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1
2

|κj+ 1
2 |−

1
2

(r̂)Y 0
l (r̂) dr̂ .

(2.131)
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Using a formula for the integral of the triple product of spherical harmonics (the Gaunt
integral) [39, Eq. 34.3.22],∫

Y m1

l1
(r̂)Y m2

l2
(r̂)Y m3

l3
(r̂) dr̂ =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)
,

(2.132)
where the bracket symbols are the Wigner 3 j-symbols, together with the relation [39,
Eq. 14.30.6]

Y m
l
∗ = (−1)mY−m

l , (2.133)

we get ∫
Y m1

l1
∗(r̂)Y m2

l2
(r̂)Y m3

l3
(r̂) dr̂ =(−1)m1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
−m1 m2 m3

)
.

(2.134)

A useful property of the Wigner 3 j-symbols are that they have the value of zero unless
the following two conditions are satisfied [39, Eq. 34.2.1, Eq. 34.2.3]

m′1 + m′2 + m′3 = 0,��l′1 − l′2
�� ≤ l′3 ≤ l′1 + l′2,

(2.135)

where them′i are the lower and the l′i are the upper components of theWigner 3 j-symbols.
We can use (2.134) and (2.135) to rewrite (2.128) as

Ki, j,l =c(−1)µi+
l
2 (2l + 1) sgn (κi)

√����κi +
1

2
− µi

��������κ j −
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2
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����
×
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�� − 1
2
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2

�� − 1
2 l
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) (��κi +
1
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�� − 1
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��κ j −
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�� − 1
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−µi +
1
2 µ j +

1
2 0

)
,

(2.136)

with corresponding selection rules

µ j = µi − 1,

��������κi +
1

2

���� − ����κ j −
1

2

�������� ≤ l ≤
����κi +

1

2

���� + ����κ j −
1

2

���� − 1. (2.137)

We do the same with (2.129),

Li, j,l =c(−1)µi+
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2 (2l + 1) sgn (κ j)
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where

µ j = µi + 1,

��������κi +
1

2

���� − ����κ j −
1

2

�������� ≤ l ≤
����κi +

1

2

���� + ����κ j −
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2

���� − 1, (2.139)
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with (2.130),
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where

µ j = µi − 1,
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�������� ≤ l ≤
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���� − 1, (2.141)

and with (2.131),

Ni, j,l =c(−1)µi+
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where

µ j = µi + 1,

��������κi −
1

2

���� − ����κ j +
1

2

�������� ≤ l ≤
����κi −

1

2

���� + ����κ j +
1

2

���� − 1. (2.143)

In the simplifications done above, we have used the property that µ ∈
[
− |κ |+ 1

2, |κ | −
1
2

]
.

The equation (2.127) with the constants Ki, j,l , Li, j,l , Mi, j,l and Ni, j,l was implemented in
the code, and was used to calculate the stationary part of the beyond dipole approxima-
tion interaction matrix.

Interaction matrix

Inserting the elements of H0 from (2.102) and the elements of V(t) from either (2.113)
or (2.126) the total Hamiltonian matrix in (2.99) can be written as

H(t) = H0 +
∑
α

fα(t)Gα. (2.144)

This matrix is used in the matrix form of the short-time propagator in (2.101).

2.4.2 Krylov space short-time propagator

This section follows [36] to some extent. The matrix exponentiation in (2.101) can
be done through expressing the exponential in a Krylov subspace, which is motivated
by the Taylor expansion of the matrix exponential in the matrix form of the short-time
propagator in (2.101),

exp[−i∆tH(t)] |Ψ(t)〉 =
∞∑

k=1

(−i∆t)k−1

(k − 1)!
[H(t)]k−1 |Ψ(t)〉 , (2.145)
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which can be approximated by truncating the expansion to the order L

exp[−i∆tH(t)] |Ψ(t)〉 ≈
L∑

k=1

(−i∆t)k−1

(k − 1)!
[H(t)]k−1 |Ψ(t)〉 . (2.146)

All the terms in this truncated expansion live in the Krylov subspace KL(H(t), |Ψ(t)〉)
of order L, which is spanned by the images of the vector |Ψ(t)〉 under the first L powers
of H(t),
KL(H(t), |Ψ(t)〉) = span

{
|Ψ(t)〉 , H(t) |Ψ(t)〉 , H2(t) |Ψ(t)〉 , . . . , [H(t)]L−1 |Ψ(t)〉

}
.

(2.147)
In this subspace, a orthonormal set of Krylov subspace basis vectors {|qk(t)〉}Lk=1 can
be created. Then, the short-time propagator can be rewritten as

|Ψ(t + ∆t)〉 ≈
L∑

k=1

L∑
j=1

|qk(t)〉 〈qk(t)| exp[−i∆tH(t)]
��q j(t)

〉 〈
q j(t)

�� |Ψ(t)〉
=

L∑
k=1

|qk(t)〉 bk(t),

(2.148)

where

bk(t) =
L∑

j=1

〈qk(t)| exp[−i∆tH(t)]
��q j(t)

〉 〈
q j(t)

��Ψ(t)〉 , k ∈ {1, . . . , L}. (2.149)

The above expressions can be simplified by arranging the basis vectors {|qk(t)〉}Lk=1 as
column vectors in a matrix Q(t), and by creating a matrix h(t) with the elements

(h(t))i j = 〈qk(t)| exp[−i∆tH(t)]
��q j(t)

〉
. (2.150)

Then, if we let the first Krylov vector be

|q1〉 =
|Ψ(t)〉√
〈Ψ(t)|Ψ(t)〉

, (2.151)

and let it be orthogonal to the rest of the Krylov vectors, the short-time propagator in
(2.148) can be simplified to

|Ψ(t + ∆t)〉 ≈ Q(t)bL(t), (2.152)

where
(bL(t))k =

√
〈Ψ(t)|Ψ(t)〉 exp[−i∆th(t)]k1. (2.153)

Since the matrix H(t) is Hermitian, the Lanczos algorithm can be used to find the
matrices Q(t) and h(t) at each time step. A thorough survey of the Lanczos algorithm
can be found in [40]. Thematrix h(t) from the Lanczos algorithmwill be tridiagonal and
of dimension L, which makes the exponential exp[−i∆th(t)] easy to evaluate, especially
for small Krylov space orders L. A pseudocode of the Lanczos algorithm used in this
thesis is given in Algorithm 1. To remedy orthogonality losses due to finite precision
arithmetic, each Krylov vector is reorthogonalized twice against the previous vectors in
the Krylov space. From experience, the Hamiltonian matrix and state vector products
are by far the most time-consuming operations in the algorithm, and the time added by
reorthogonalizing twice is trivial.
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Algorithm 1 pseudocode of Lanczos algortithm with double reorthogonalization, based on
[40]. The set of diagonal elements {dk} and off-diagonal elements {ok} constitute the Krylov
Hamiltonian matrix h. The matrix Q with column vectors |qi〉 constitute the matrix Q in
H = QhQ†.

|p〉 = |ψ(t)〉 /
√
〈ψ(t)|ψ(t)〉

|q1〉 = |p〉
for k = 1 to L do
|z〉 = H(t) |p〉
dk = 〈p|z〉 {Diagonal element k of h(t).}
|z〉 = |z〉 −

∑k
i=1 |qi〉 〈qi |z〉 {Reorthogonalization.}

|z〉 = |z〉 −
∑k

i=1 |qi〉 〈qi |z〉 {Double reorthogonalization.}
if k , L then

ok =
√
〈z|z〉 {Off-diagonal element k of h(t).}

|p〉 = |z〉 /ok
|qk+1〉 = |p〉

end if
end for

2.4.3 Total photoionization probability

After interaction with the laser pulse, the probability that the electron has made a
transition to the state with the quantum numbers (n j, κ j, µ j), where n j is the quantum
number indexing the different energy solutions for a given κ on a finite domain, at the
time t is given by

Pj =
��c j(t)

��2, (2.154)

where the coefficient c j(t) can be found from the state vector (2.100) after propagating
the system to the time t. These probabilities are additive; they can be added up to
give the total probability of transition to a given set of states. The probability that the
electron has made transition to any of the positive pseudocontinuum states can then be
given by

Ppos =
∑
j∈C

��c j(t)
��2, (2.155)

where C is the set of j such that Enj > c2. This numerically calculated probability
approximates the probability that the electron has made a transition to the analytical
positive continuum (see Section 2.2.3). An electron that has made the transition to the
positive continuum after interaction with a laser pulse has been photoionized by the
pulse. Hence, the probability in (2.155) at time T approximates the photoionziation
probability. Similarly, the probability that the electron has made a transition to any of
the negative pseudocontinuum states can be given by

Pneg =
∑
j∈C̃

��c j(T)
��2, (2.156)

where C̃ is the set of j such that Enj < −c2.
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2.4.4 Energy differential photoionization probability

The energy differential probability for transition to the state with the quantum numbers
(n j, κ j, µ j) at the time t can be given by

dPj

dEnj

=
��c j(t)

��2ρ(Enj ), (2.157)

where ρ is the density of states, which can be approximated using the formula [34]

ρ(Enj ) =
2

Enj+1 − Enj−1
, (2.158)

where Enj+1 and Enj−1 are the energy levels adjacent to Enj in the same (κ, µ)-channel.
The energy differential probabilities for the different (κ j, µ j)-channels can be added
up to give the total energy differential transition probability for a given energy. The
set of E j-values are discrete and κ-dependent, so care needs to be taken when adding
up the energy differential probabilities. In this thesis, the addition is done by first
interpolating the energy differential probabilities on a given energy value grid, before
adding up the grid values of the differential probabilities. By the same reasoning as in
Section 2.4.3, the energy differential transition probability to all (κ j, µ j)-channels in the
positive pseudocontinuum approximates the analytic energy differential probability of
photoionization. The differential probability of photoionization can also be interpreted
as the expected energy distribution of photoionized electrons. This energy distribution
can be found by doing many independent measurements on the energy of the electron
after interaction with the laser pulse, in identically prepared systems.

2.5 Numerical methods

The code for creating the basis set, solving the hydrogen-like atom system, calculating
the interaction elements and propagating the hydrogen-like atom and laser pulse system
was written in the MATLAB language for this thesis.

In the code, the use of for-loops was avoided whenever possible, by writing math-
ematical equations on matrix and vector form and by using the MATLAB function
mtimes to calculate matrix and vector products. The code uses the MATLAB func-
tion eig to solve the eigenvalue problems in (2.83). Both mtimes and eig use highly
optimized numerical libraries which spread the load on multiple threads to reduce the
computation time.

The full Hamiltonian matrix H(t) and the state vector |Ψ(t)〉 was stored in sparse
form (storing only non-zero elements) using the MATLAB sparse object. The matrix-
vector and matrix-matrix products in the time propagator was done using the mtimes
function, which exploited the sparsity of the matrix and vector. The evaluation of
sparse matrix-vector products with the mtimes function does unfortunately not use
multithreading. From experience, the sparse vector-matrix products still perform better
than full matrix-vector products for our calculations.

The exponentiation exp[−i∆th(t)] in the time propagator was done using the MAT-
LAB function expm.



Chapter 3

Results and discussion

The code developed for this thesis was used to numerically model the hydrogen atom,
and its interaction with intense laser pulses. In the following chapter, the results from
the model are presented. The code was set to model the hydrogen atom by setting the
nuclear charge to Z = 1, but other hydrogen-like atoms (ions with one electron) could
be modeled just as easily by setting Z to other values. The labeling of the bound states
in the model are done with the convention in (2.65), and all energies are given by the
energy without the rest energy c2 of the electron.

3.1 Numerical solution of the hydrogen radial equation

In this section, the results from modeling the hydrogen atom before the interaction with
the laser pulse is presented. The modeling was done by solving matrix eigenvalue
problems with basis sets containing B-splines of order 6 with an open uniform knot
vector. This order was found sufficient since the use of higher order B-splines did not
improve the results significantly. First, a comparison between the solutions of the Dirac
hydrogen radial equation using the ideal basis set and the dual kinetic balance basis set
presented in Section 2.3, is given.

3.1.1 Comparison between ideal basis set and dual kinetic balance

In the early versions of the code for solving the Dirac hydrogen radial equation, the dual
kinetic balance basis set [31] was used for setting up the matrix eigenvalue problem. In
the later versions, it was changed to the ideal basis set [32]. The main reason for aban-
doning the dual kinetic balance basis set was that we always found that some of the states
solved using this basis set displayed an odd oscillatory behavior near the boundary of
the domain. Depending on which basis functions that was removed when implementing
the boundary conditions, this oscillatory behavior could be shifted between different
states, but no way of removing the behavior on all the states simultaneously was found.
When using the ideal basis set, on the other hand, the oscillatory behavior apparently
disappeared on all of the solutions simultaneously.

A comparison of a negative pseudocontinuum state solved with the two different
basis sets is shown in Figure 3.1. The oscillatory behavior that occurs when using
the dual kinetic balance basis was seemingly more apparent for small domain sizes, so
the domain r ∈ [0, 30] a.u. was chosen. The fact that the oscillation appears at the
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Figure 3.1: The function P(r) of the negative pseudocontinuum state with the highest energy
from the solution of the Dirac hydrogen equation with κ = −1. Shown using both the ideal
basis set and the dual kinetic balance basis set. Both basis sets contained 1000 basis functions
on the domain r ∈ [0, 30] a.u. The state is displayed in the interval r ∈ [28, 30] a.u.

boundary indicates that wrong boundary conditions are imposed when using the dual
kinetic balance basis set. For this reason, the ideal basis set was chosen as the basis set
for all the solutions in the remainder of this chapter.

3.1.2 Radial probability density and energy of bound states

The ideal basis set was used to solve the Dirac equation for κ = −1 on the domain
r ∈ [0, 100] a.u. using the method in Section 2.3.2. The radial probability density
r2

[
|P(r)|2 + |Q(r)|2

]
can be used for visualizing the shape of the states, and is plotted

for the the first five bound states in Figure 3.2. As can be inferred from the figure, the
electron has a higher probability for being located close to the nucleus for lower values
of the principal quantum number given by (2.66). The energy of these five states is
shown in Table 3.1, together with analytical energies from (2.59). As can be seen from
the table, the energies from the numerical solutions have a reasonably small difference
to the analytical bound state energies, demonstrating that machine precision has been
achieved. The 5s1/2 state, on the other hand, is not well represented in the solution, and
is only included to demonstrate that the domain needs to be larger to properly represent
bound states with higher principal quantum numbers.
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Figure 3.2: The radial probability density of the first five bound states for κ = −1. Solved using
2000 basis functions on the domain r ∈ [0, 100] a.u.

Table 3.1: The numerical and analytical energies of the first five bound states of the Dirac
equation with κ = −1. The numerical values are found by using the ideal basis set with 2000
basis functions and r ∈ [0, 100] a.u. The analytical values are found by using (2.59). The
larger difference between the 5s1/2 numerical and analytic energies is due to the fact that the
state is not properly represented on the finite domain used in the solution.

State Numerical energy [a.u.] Analytical energy [a.u.] Absolute energy difference [a.u.]

1s1/2 -0.5000066565881 -0.5000066565952 0.0000000000071
2s1/2 -0.1250020801890 -0.1250020801894 0.0000000000004
3s1/2 -0.0555562951740 -0.0555562951784 0.0000000000044
4s1/2 -0.0312503380301 -0.0312503380296 0.0000000000005
5s1/2 -0.0200001525664 -0.0200001810578 0.0000000284914
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Figure 3.3: The radial probability density of the first five bound states for the Schrödinger
equation with l = 0. Solved using 2000 basis functions on the domain r ∈ [0, 100] a.u., with
boundary conditions R(0) = R(100) = 0.

3.1.3 Difference between Dirac and Schrödinger hydrogen states

To identify relativistic effects in the Dirac equation bound states, they are compared with
the Schrödinger equation bound states. The Schrödinger radial equation for hydrogen-
like atoms, in atomic units, is given by [20][

−
1

2

d2

dr2
−

Z
r
+

l(l + 1)

2r2

]
u(r) = Eu(r), (3.1)

where u(r) = rR(r). The solution u(r) of radial equation (3.1) was expanded in a
finite basis of B-splines of order 6, with an open uniform knot vector, and the matrix
eigenvalue problem that comes from using the procedure in Section 2.1.5 was solved.
The boundary conditions

u(a) = u(b) = 0 (3.2)

on the end points a and b of the domain were imposed by removing the first and last
B-splines in the set B-splines with an open uniform knot vector. The states are labeled
with the principal quantum number N , with the ground state having N = 1.

Bound states

The radial probability density r2 |R(r)|2 was used to visualize the shape of the first five
bound states from the solution of (3.1) with l = 0 and with 2000 basis functions on
r ∈ [0, 100] a.u. The radial probability densities are plotted in Figure 3.3. By comparing
this figure to Figure 3.2, it can be seen that the plots of the radial probability density
from the Dirac and Schrödinger solutions are virtually indistinguishable. To get a better
comparison between the states, the energies of the five first bound states from the Dirac
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Table 3.2: The energies of the five first bound states from theDirac equation for with κ = −1 and
from the Schrödinger equation with l = 0. All solutions are done using 2000 basis functions
and r ∈ [0, 100] a.u. The 5s1/2 is marked in red since the state is not properly represented on
the finite domain used in the solution.

State Dirac energy [a.u.] Schrödinger energy [a.u.] Absolute energy difference [a.u.]

1s1/2 -0.5000066565881 -0.5000000000000 0.0000066565881
2s1/2 -0.1250020801890 -0.1250000000000 0.0000020801890
3s1/2 -0.0555562951740 -0.0555555555555 0.0000007396185
4s1/2 -0.0312503380301 -0.0312499999996 0.0000003380305
5s1/2 -0.0200001525664 -0.0199999715037 0.0000001810627

equation with κ = −1 and from the Schrödinger equation with l = 0 are displayed in
Table 3.2. As can be seen from the table, the numerically solved bound state energies
from the Dirac equation have a lower value than the Schrödinger ones. The relativistic
correction is small; five orders of magnitude smaller than the energies. The ground
state is the bound state with the largest correction, and the correction falls off with
increasing principal quantum number, given by (2.66). This can be seen in context with
the observation made in Section 3.1.2, that the electron has a higher probability for
being located close to the nucleus for low principal quantum numbers. The relativistic
corrections to the bound states can then be explained by analogy to the behavior of
the classical electron: a classical electron bound very close to the nucleus would have
centripetal velocities in the regime where relativistic effects would be apparent.

The difference between the Dirac and Schrödinger energies in Table 3.2 are signif-
icantly larger than the difference between the numerical and analytical Dirac energies
from Table 3.1. Hence, the solution using the ideal basis set and 2000 basis functions
gives a good representation of relativistic effects in the bound states.

Pseudocontinuum states

Another question that can be asked is whether relativistic effects occur in the pseudo-
continuum states or not. Since the probability densities and energies of the positive
pseudocontinuum states are boundary condition dependent, they should not be com-
pared directly when boundary conditions of two solutions are different. The boundary
conditions used in the Dirac solution (see Section 2.3.2) are in fact different from the
boundary conditions (3.2) used in the Schrödinger equation solution, so a different
method of comparing the postive pseudocontinua should be used. A quantity that is
independent of the boundary conditions used is the density of states in the pseudocon-
tinuum. The density of states for the positive pseudocontinuum states was calculated
using (2.158) for both the Dirac and Schrödinger solutions, and plotted in Figure 3.4.
As can be seen from the figure, there is a identifiable although small relativistic correc-
tion to the density of positive pseudocontinuum states that happens at higher energies;
the density of states gets higher when including relativistic effects. This increased den-
sity can be explained by a negative relativistic correction to the energies that increases
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Figure 3.4: The density of the positive pseudocontinuum states for the Dirac and Schrödinger
equation solutions. Solved using 6000 basis functions and κ = −1 for the Dirac equation, and
3000 basis functions and l = 0 for the Schrödinger equation. In both solutions, the domain
r ∈ [0, 100] a.u. was used.

for higher energies, effectively condensing the same number of pseudocontinuum states
into a smaller energy range. The relativistic correction at higher energies corresponds
well with the classical picture: if the energy of a classical electron is high enough, the
velocity of the particle is in a regime where relativistic effects would be apparent.

3.2 Numerical solution of the interaction with the laser pulse

In this section, the results from modeling the interactions between the hydrogen atom
and intense laser pulses are presented. For the Dirac equation, the solution was done
using the method in Section 2.4. In all these Dirac equation solutions, the ideal basis
set with B-splines of order 6, with an open uniform knot vector, was used for finding the
hydrogen atom eigenstates. The accuracy of the eigenstates is lower for the eigenstates
with the highest and lowest energies. Therefore, half of the positive and negative energy
states were discarded before propagation. The maximum energies given in this section
are the maximum energies after the removal of half of the eigenstates. The propagation
was done using 2000 time steps ∆t and a Krylov space of dimension L = 10, which
seemingly gave a negligible error compared to the error caused by the other parameters
in the model.

The results from the solution of theDirac equationwill be comparedwith results from
the Schrödinger equation with and without relativistic corrections from [28, 41, 42].
The Hamiltonian operator that is used in these calculations was derived from the Taylor
expanded relativistic energy equation in (2.8). If the minimal coupling procedure is
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used in (2.8) (see Section 2.2.1), one obtains

H = −
Z
r
+
(p + A)2

2
−
(p + A)4

8c2
+ . . . . (3.3)

Inserting the quantum mechanical energy and momentum operators from (2.2) into this
equation, and truncating the series, one obtains the Hamiltonian that can be used for
finding numerical solutions. When truncating the series at (p+A)

2

2 , the nonrelativistic
minimally coupled Schrödinger Hamiltonian emerges. The term (p+A)4

8c2 will then give
the first order relativistic correction to this Hamiltonian. We will refer to this term
as the p4-correction. The Hamiltonian in (3.3) does not include spin effects, which
are inherent in the Dirac equation. Therefore, hrough the comparison with the results
from the Dirac equation, we will be be able to determine whether spin effects play a
significant role in the the interactions or not. For more information about spin effects,
see a standard textbook on quantum mechanics like [20].

In all the solutions, the electron was prepared in the ground state in the hydrogen
atom by setting the coefficient corresponding to the ground state in the state vector
(2.100) to 1 at t = 0, and the rest of the coefficients to 0. The initial state of the Dirac
equation will be chosen to be the state with n = 0, κ = −1 and µ = 1/2, since the two
states with µ ± 1 are degenerate; they both have the same ground state energy. In the
Schrödinger equation, the ground state is the state with N = 1, l = 0 and m = 0. In all
the calculations, the angular frequency of the carrier in the laser pulse was set to ω = 50
a.u. and the pulse length was set to 15 optical cycles, that is T = 152πω a.u.

3.2.1 Total photoionization probability

The total photoionization probabilities were calculated using (2.155) at time t = T , for
electric field strengths in the range E0 ∈ [0, 1000] a.u. The number of κ-channels that
should be included in the eigenstate basis before propagation is, from experience, related
to the electric field strength of the laser pulse; higher electric field strengths require
more κ-channels for the photoionization probabilities to converge. Therefore, to reduce
the computational time needed for calculating all the photoionization probabilities, the
number of κ-channels in the eigenstate basis was set to vary with different electric field
strengths E0. The κ-channels used in the solutions, together with the results for the total
photoionization probabilities, are shown in Table 3.3. The photoionization probabilities
fromTable 3.3 is plottedwith respect to electric field strength in Figure 3.5. Results from
the Schrödinger equation with and without relativistic corrections [41] are also plotted
in the figure. In the figure, a notable negative relativistic shift in the photoionization
probabilities can be identified for higher electric field strengths E0. Hence, models
describing photoionization at these electric field strengths should preferably incorporate
relativistic effects. As can also be seen from the figure, the photoionization probabilities
from the Dirac equation correspond well with the probabilities from the p4-corrected
Schrödinger equation for electric field strengths up to E0 = 1000 a.u. This means that
corrections due to spin effects and to the higher order terms in (3.3) are small compared
to the p4-correction for all of these electric field strengths. As the electric field strength
increases further, one can, from (3.3), expect the p4-corrected probabilities to also start
deviating from theDirac probabilities. Then, higher orders corrections from (3.3) would
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Table 3.3: The total probabilities for photoionization to states with energies below E = 380
for the solution of the Dirac equation with different electric field strengths E0. The maximum
energy in the channel with κ = −1was E = 380 a.u., and the domain used in all the calculations
was r ∈ [0, 55] a.u. The decimals included in the photoionization probabilities are the decimals
that match when comparing these results to the ones obtained when only including energies
below E = 330 a.u.

electric field strength [a.u.] Range for κ Photoionization probability

100 {−6, . . . ,−1, 1, . . . , 5} 0.00011
200 {−7, . . . ,−1, 1, . . . , 6} 0.00043
300 {−8, . . . ,−1, 1, . . . , 7} 0.00090
400 {−9, . . . ,−1, 1, . . . , 8} 0.00145
500 {−10, . . . ,−1, 1, . . . , 9} 0.00202
600 {−11, . . . ,−1, 1, . . . , 10} 0.00254
700 {−12, . . . ,−1, 1, . . . , 11} 0.00298
800 {−13, . . . ,−1, 1, . . . , 12} 0.00335
900 {−14, . . . ,−1, 1, . . . , 13} 0.00368
1000 {−15, . . . ,−1, 1, . . . , 14} 0.00404
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Figure 3.5: The ionization probability plotted with respect to electric field strength for the
Dirac equation, and for the Schrödinger equation with and without the p4-correction [41]. The
Dirac equation was solved using κ in Table 3.3, and the Schrödinger equation was solved using
l ∈ {0, . . . , 14}. The maximum energy in the channel with κ = −1 and l = 0 was E = 380 a.u.
The domain used in all the solution was r ∈ [0, 55] a.u.



3.2 Numerical solution of the interaction with the laser pulse 45

0 50 100 150 200 250

10−8

10−7

10−6

10−5

10−4

10−3

Energy [a.u.]

En
er
gy

di
ffe

re
nt
ia
lp

ro
ba
bi
lit
y
[H

a−
1
] Dirac

Schrödinger with p4-correction
Schrödinger without p4-correction

Figure 3.6: The energy differential photoionization probability with the dipole approximation
from the Dirac equation with κ ∈ {−15, . . . ,−1, 1, . . . , 14}, the Schrödinger equation with rela-
tivistic corrections with l ∈ {0, . . . , 14} [41], and the Schrödinger equation without relativistic
corrections with l ∈ {0, . . . , 14} [41]. The vertical axis of the plot is logarithmic. The electric
field strength used was E0 = 1000 a.u., and the maximum energy in the channel with κ = −1
was E = 380 a.u. The domain used in all the solutions was r ∈ [0, 55] a.u.

have to be incorporated into the Schrödinger equation to keep the good correspondence
with the Dirac equation.

3.2.2 Energy differential photoionization probability

The energy differential photoionization probability after interaction with the laser pulse
was calculated using (2.157) for different electric field strengths, and for both the dipole
and the beyond dipole approximations.

Dipole appoximation

In Figure 3.6, the energy differential photoionization probability with the dipole approx-
imation, for the electric field strength E0 = 1000 a.u., is plotted for the Dirac equation,
together with results from the Schrödinger equation with and without the p4-correction
[41]. Compared to the results from the Schrödinger equation without the p4-correction,
the peaks in the differential probability plot are shifted to the right for the results for
both the Dirac equation and the Schrödinger results with the p4-correction. Since the
results from the Dirac equation and the Schrödinger equation with the p4-correction
correspond very well, most of the shift can be attributed to the p4-correction, and not
to spin effects or higher order relativistic corrections.

Energy differential photoionization probabilities from the solution of the Dirac
equation with the dipole approximation at the electric field strengths E0 = 400, 600, 800
are plotted in Figure 3.7. From the figure, it can be seen that the area under the later
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Figure 3.7: The energy differential photoionization probability with the dipole approximation
from the Dirac equation at varying electric field strengths E0. The vertical axis of the plot is
logarithmic. The maximum energy in the channel with κ = −1 was E = 380 a.u. after removal
of half of the eigenstates. The domain used in all the solutions was r ∈ [0, 55] a.u.

peaks in the energy differential photoionization probability plot is larger for higher
electric field strengths E0. Hence, the electron has a larger probability of having a
higher energy for higher electric field strengths. Since classical electrons with higher
energies travel further during the time of propagation, the domain used for the solution
should be increased, to not get reflection effects when high energy electrons hit the
boundary of the domain.

The later peaks in the photoionization spectrum can be intuitively understood to
give the probability of the absorption of several photons (one for each peak). For the
absorption of many photons, the electron can do many jumps between (κ, µ)-channels,
which justifies the higher number of κ-channels in the the eigenstate basis needed for
convergence at higher electric field strengths.

Beyond dipole approximation

In Figure 3.8, the energy differential probabilities for the beyond dipole approximation,
for the electric field strength E0 = 400 a.u., was plotted for the Dirac equation, together
with results from the Schrödinger equation with both the dipole and beyond dipole
approximations. As can be seen from the figure, the magnitude of the energy differential
cross section at lower energies differs significantly between the dipole and beyond dipole
approximations. The probability for ionization to all positive pseudocontinuum states
with energies below E = 180 a.u. for the results in Figure 3.8 is Ppos = 0.0027. The
decimals included in this probability are the decimals that match when comparing these
results to the ones obtained when only including energies below E = 130 a.u. This
photoionization probability is almost a factor two larger than the dipole approximation
one at Ppos = 0.00145 fromTable 3.3. This factor can be attributed to the large difference
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Figure 3.8: The energy differential photoionization probability from the Dirac equation with
the beyond dipole approximation κ ∈ {−12, . . . ,−1, 1, . . . , 11}, the Schrödinger equation with
the beyond dipole approximation [28, 42], and the Schrödinger equation with the dipole
approximation [28, 42]. The vertical axis of the plot is logarithmic. The electric field strength
used was E0 = 400 a.u. and the maximum energy in the channel with κ = −1 was E = 180 a.u.
The domain used in all the solutions was r ∈ [0, 30] a.u.

in the differential photoionization probabilities at low energies.
The results from the Dirac equation implementation of the beyond dipole approxi-

mations coincide well with the results from the Schrödinger equation ones [28, 42] in
Figure 3.8. This indicates that the theoretical treatment of the beyond dipole approx-
imation in Section 2.4.1 is valid, and that the approximation has been implemented
correctly in the code.

The plot in Figure 3.8 unfortunately only includes two peaks, and the second peak
also displays an unwanted oscillatory behavior. Hence, any peak shifts due to the
inclusion of relativistic effects in the model is hard to discern, since the shifts can be
expected to mainly be visible in the peaks with higher energies, and for higher electric
field strengths, see Section 3.2.2. A plot of the first peak of the differential probabilities
in 3.8 is displayed in Figure 3.9. As can be seen from the figure, the first peak from
the Dirac equation solution with the beyond dipole approximation shows modest signs
of being shifted to the right relative to the Schrödinger equation solution with same
approximation, but the effect is so small that the existence of the shift should not be
concluded from the results. If one wants conclusive results, the maximum available
energy and/or electric field strength of the pulse should be increased. The reason for not
increasing these parameters in the model was due to limitations in the computational
resources that were available for this thesis. The numerical solution of the Dirac
equation with the beyond dipole approximation in Figure 3.8 ran for 60 hours on the
workstation “IFT040070” at UiB, and used up to 240 GB RAM. Increasing either the
size of the domain, the number of basis functions or the number of allowable κ-values
(needed for convergence at higher electric field strengths, see Section 3.2.2) increases
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Figure 3.9: The first peak in the energy differential photoionization probability from the Dirac
equation with the beyond dipole approximation with κ ∈ {−12, . . . ,−1, 1, . . . , 11}, and the
Schrödinger equation with the beyond dipole approximation [28, 42]. The vertical axis of the
plot is logarithmic. The electric field strength used was E0 = 400 a.u. and the maximum
energy in the channel with κ = −1 was E = 180 a.u. The domain used in all the solutions was
r ∈ [0, 30] a.u.

the dimension of the problem substantially. On the machine “IFT040070”, which had
a total of 251 GB physical RAM available, attempts at increasing the dimensionality
made the process crash.

Exclusion of negative energy states in the calculation

A question that has appeared in the literature is whether the negative pseudocontinuum
states play a role during the interaction with the laser pulse or not. The inclusion of the
negative pseudocontinuum states was found to be important when using a pulse with a
carrier angular frequency of 2 a.u., a duration of five optical cycles, and a electric field
strength of 30 a.u. [27]. In order to test whether this holds true for the pulse parameters
used in this thesis, the Dirac equation was solved with the negative pseudocontinuum
states removed before propagating. Otherwise, the solution was done in the same way
as the Dirac solution in Figure 3.6. The energy differential photoionization probability
with the negative pseudocontinuum removed is plotted in Figure 3.10, together with the
result from the regular Dirac solution from Figure 3.6 for comparison. Compared to
the regular Dirac equation solution, the peaks in the energy differential photoionization
probability plot gets shifted to the left when removing the negative pseudocontinuum
states. Hence, we can see that these states have to be included to give a correct solution
the Dirac equation. To explain why the negative pseudocontinuum is needed in the
solution, the time resolved transition to the positive and negative pseudocontinua were
calculated using (2.155) and (2.156), respectively, at each time step. The results are
plotted in Figure 3.11. This figure shows that the electron is transmitted to the negative
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Figure 3.10: The energy differential photoionization probability with the dipole approx-
imation from the Dirac equation with and without negative pseudocontinuum states and
κ ∈ {−15, , . . . ,−1, 1, . . . , 14}. The vertical axis of the plot is logarithmic. The electric
field strength used was E0 = 1000 a.u., and the maximum energy in the channel with κ = −1
was E = 380 a.u. The domain used in the solution was r ∈ [0, 55] a.u.
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Figure 3.11: The transition probability to the positive and negative pseudocontinua of the Dirac
equation for κ ∈ {−15, . . . ,−1, 1, . . . , 14}, plotted with respect to time of propagation. The
electric field strength used was E0 = 1000 a.u., and the maximum energy in the channel with
κ = −1 was E = 380 a.u. The domain used in the solution was r ∈ [0, 55] a.u.
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Figure 3.12: The energy differential photoionization probability with the dipole approximation
for the Dirac equation without negative pseudocontinuum states κ ∈ {−15, . . . ,−1, 1, . . . , 14},
and the Schrödinger equation without relativistic corrections with l ∈ {0, . . . , 14} [41]. The
vertical axis of the plot is logarithmic. The electric field strength used was E0 = 1000 a.u., and
the maximum energy in the channel with κ = −1 was E = 380 a.u. The domain used in the
solution was r ∈ [0, 55] a.u.

pseudocontinuum states during the interaction with the laser pulse, but also that the
electron leaves the states towards the end of the pulse. This transmission effect is
not included when the negative pseudocontinuum states are removed from the solution
space prior to propagation, which is the reason for the different results in Figure 3.10.

The energy differential photoionization probability for the Dirac solution without
the negative pseudocontinuum states is plotted together with the same result for the
nonrelativistic Schrödinger equation in Figure 3.12. As can be seen from the figure,
these two results correspond very well. This result can be used to argue that the effect
of the relativistic corrections to the field free eigenenergies and eigenstates, that is,
relativistic structure effects, play a minor role relative to the corrections due to the
inclusion of the negative pseudocontinuum states in the propagation.



Chapter 4

Conclusion and future scope

In this thesis, the Dirac equation for the hydrogen atom before interaction with the laser
pulse was solved through the expansion of the solution in both the dual kinetic balance
basis set [31] and with the ideal basis set, based on B-splines The solution done with
the ideal basis set was chosen since it gave a better behavior at the boundaries of the
domain. A small relativistic shift was identified in both the lower energy bound states
and higher energy pseudocontinuum states.

The Dirac equation describing the interaction between the hydrogen atom and lin-
early polarized laser pulses was solved through the use of a short-time propagator with
the Lanczos method. A notable relativistic shift in the total photoionization probability
and in the locations of the peaks in the peaks in the energy differential probability plot
was identified was identified for the dipole approximation. The results corresponded
well with result obtained from the Schrödinger equation with p4-corrections, which
implies that spin effects and higher order relativistic corrections play a minor role for
the considered pulse parameters. The transmission to the negative pseudocontinuum
states was shown to be responsible for almost all of the relativistic effects for high field
strengths.

A theoretical treatment of the beyond dipole approximation was developed and
implemented, and the results were shown to correspond well with the results from [28,
42]. Since [28] argues that the correction to the dipole approximation photoionization
probabilities in the Schrödinger gets large for high field strengths E0, we can expect the
same to happen in the Dirac equation. Hence, the beyond dipole approximation should
be used instead of the dipole approximation for higher field strengths. Unfortunately,
this requires a much larger eigenstate basis, which increases the computational and
memory demands significantly. Therefore, based on the present analysis, we were not
able to conclude whether the relativistic shifts observed in the dipole approximation
should be present in the actual system.

The main bottleneck of the code developed for this thesis is the sparse matrix-
vector products in the Lanczos propagator. The calculation of these products gives
high processing and memory demands for a large eigenstate basis. From experience,
MATLAB currently (release R2018a) does not use multithreading when calculating
these products with the mtimes function. Hence, the calculations using the MATLAB
code should preferably be run at a computer with high single-core performance (modern
CPU infrastructure and high clock speeds).

Amore involvedway to speed up the calculations would be to use numerical methods
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that use multithreading for sparse matrix-vector products, which has been demonstrated
in literature [43]. Then, the computation time could be greatly reduced by running the
code at high performing computing (HPC) clusters with many CPU cores.
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