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Abstract

In this thesis, a model to describe the interactions between hydrogen-like atoms and
intense laser pulses using the Dirac equation is developed. The modeling of these
interactions can be motivated by the advances in laser technology through the last
decades, which have increased the peak intensities of laser pulses by many orders
of magnitude. Improved understanding of how the pulses from the new lasers affect
hydrogen-like atoms might transmit to improved understanding of, and control over,
various states of matter exposed to intense electromagnetic radiation.

The Dirac equation for the isolated hydrogen-like atom, before interacting with the
laser pulse, was solved numerically through the expansion of the solution in both the
dual kinetic balance basis set and in the ideal basis set. Both basis sets were based
on B-splines. The ideal basis set was chosen as the preferred one, since the solutions
from the dual kinetic basis set displayed an oscillatory behavior at the boundary of the
domain. A small relativistic shift in the bound states and in the positive continuum was
identified.

The interaction matrix between the hydrogen-like atom and the laser pulse was then
calculated by expanding the time dependent solution of the system in the eigenstates
of the hydrogen-like atom. This was done both in the dipole approximation, and in an
approximation that goes beyond the dipole approximation.

The effect of the interaction with the laser pulse was calculated for both laser pulse
approximations using a short-time propagator with the Lanczos algorithm. The total
and energy differential photoionization probabilities were then calculated, and compared
with results from the Schrodinger equation with and without relativistic corrections. A
relativistic shift in both the total photoionization probability and in the locations of
the peaks in the energy differential probability plot for the dipole approximation was
identified. The transmission to the negative energy continuum states during the time of
propagation was shown to be the primary cause of the relativistic effects in the model.
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Chapter 1

Introduction

For centuries, scientists have been trying to understand the nature of light and matter,
and how they affect each other. In present times, several reasons for continuing this
pursuit can be given. First, new knowledge gained can give us a better idea of the how
the universe works, which in itself may be regarded as a desirable outcome. Second,
the knowledge may be used to develop technologies that can aid in solving global
challenges.

One of the key concepts in natural sciences is that a better understanding of the be-
havior of the smaller constituents of a physical object can give us a better understanding
of the whole. This concept is one of the motivations for doing theoretical and experi-
mental studies on the building blocks of nature, since the understanding gained might
translate to a better understanding of the behavior of larger objects.

1.1 The concept of the atom

Already in the ancient Greece, philosophers used philosophical reasoning to come up
with the idea that the matter that we surround ourselves with is composed of funda-
mental and indivisible objects, which they called atomos [1]. The theory was a purely
philosophical one, as there was no way of experimentally verifying it at the time.

In modern times, the idea of the atomos has been revisited, this time in better accord
with the scientific method. This modern theory is often accredited to the work done
by the chemist John Dalton at the beginning of the nineteenth century. In his work,
Dalton proposed that all elements should be composed of extremely small and identical
particles, atoms, and he made a system for calculating the weights of these particles
from chemical data [2]. Later, Niels Bohr proposed a model for the structure of these
atoms, in which they are described as consisting of a positively charged atomic nucleus
surrounded by negatively charged electrons, bound together by their mutual electrostatic
(Coulomb) attraction [3]. The model postulates that the electrons are confined to move
in orbits at a discrete set of distances away from the nucleus, and that the only way to
jump between these orbitals is by absorbing or emitting light. This model gave a pretty
good explanation of the absorption and emission spectra for hydrogen-like atoms, but
failed to explain the spectra for atoms with more than one electron. In hindsight, we
can say that the concepts in the Bohr model misrepresented reality; science needed a
new theory of the atom.
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The conceptual understanding of atoms was stood on its head when the atom was
depicted through the theory of quantum mechanics. One of the main tools used for
modeling the behavior of a quantum mechanical particle is the Schrodinger equation,
proposed by Erwin Schrodinger [4], which for a free massive particle, and in atomic
units, can be written as

OY(x1) 1
i— = =V (x0). (1.1)

When modeling the structure of atoms with the Schrodinger equation, the behavior of
the the electron is described by the equation, while the atomic nucleus is often assumed
to be stationary because of its high mass relative to the mass of the electron. The
Coulomb attraction that the electron has to the nucleus can then be introduced into the
equation (1.1) by making mathematical substitutions. The effect of other entities that
we want to introduce into the system, such as external electromagnetic radiation, can
also be introduced through mathematical substitutions.

In the Schrodinger equation, the mathematical description of the state of a system
is given by a wavefunction, which for the state of electrons in an atom take the shape
of orbitals. Orbitals are conceptually different from classical elliptic orbits in that
they give the probability of observing an electron anywhere in space, instead of giving
the definite positions of the electron. The treatment by the Schrodinger equation gave
results that agreed better with the experimentally measured properties of atoms than the
results from the Bohr model.

1.2 The concept of light

Christian Huygens is often regarded as one of the first proponents of the idea that light
behaves like waves [5]. James Clerk Maxwell gave a justification of this wave behavior
by treating light as oscillations in the electric and magnetic fields propagating at the
speed of light, ¢ [6]. Since non-zero electric and magnetic fields exert forces on charged
objects, light incident on atoms may interact with their electrons and change the state
of the system.

The electric and magnetic fields can be given a unified mathematical representation
through the definition of an electromagnetic scalar potential ® and an electromagnetic
vector potential A, which in atomic units are related to the electric and magnetic fields
through

0A
BE=-V¢-—, (1.2)

B=VxA, (1.3)

where E is the electric field and B is the magnetic field. These electromagnetic potentials
will be used to mathematically represent light in the remainder of this thesis.
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1.3 Interactions between atoms and intense laser light

A significant branch of the research on light-matter interactions is concerned with
interactions between atoms and intense laser pulses. When the electrons in atoms
interact with the oscillating electromagnetic field in an intense laser pulse, they start
moving back and forth in space, or quivering [7]. This quivering causes the electrons
to display “exotic” dynamics, such as peaks in the energy spectrum of the ionized
electrons, separated by the energy of the photons in the laser pulse [8]. The research
done on the dynamics of these electrons can be seen in context with the advances in
laser technology through the last decades, which have increased the obtainable peak
intensities of laser pulses by several orders of magnitude. Modern lasers are now able
to make electrons quiver with velocities that approach the speed of light relative to the
nucleus [9]. These high velocities motivate the use of Albert Einstein’s special theory
of relativity to describe the motion of the electrons, since the Newtonian description
breaks down at these velocities [10]. The Schrodinger equation (1.1) is not built on the
special theory of relativity in its original form, and hence other equations should be used
if the objective is to get an accurate description of interactions between hydrogen-like
atoms and these intense laser pulses.

1.4 Aim and approach

In this thesis, we will approach the problem of developing a model for interactions
between a hydrogen-like atom and intense laser pulses. The model will treat the electron
in the hydrogen-like atom both relativistically and quantum mechanically through the
use of the Dirac equation proposed by Paul Dirac [11], which for a free particle, and in
atomic units, can be written as

iatﬂ(x, 1)

o = [ca - p+mc*Bly(x,1). (1.4)

This equation can be understood as a relativistic alternative to the Schrodinger equation.
Since the equation incorporates relativistic effects, it will give a better representation
of systems where relativistic effects are significant. In the Dirac equation, the state of
the system is represented by a multicomponent function known as a spinor. Although
spinors and Schrodinger wavefunctions have different mathematical properties, they
correspond to similar observable physical quantities in systems where relativistic effects
are negligible.

A fundamental assumption of our model will be that the interaction between the
hydrogen-like atom and the laser pulse happens in empty space, without any external
influences. The conventional way of mathematically representing empty space is as a
continuous mathematical space that extends infinitely in all directions. For the solution
of a differential equation, like the Schrodinger or Dirac equations, to be regarded as
exact in this space, it has to satisfy the differential equation at each of the infinitely
many points in the space. One approach to finding an exact solution of the differential
equation is through looking for a solution that is analytic. An analytic solution can be
written in terms of known functions and can also be verified to be a correct solution.
Unfortunately, very few model systems are known to have analytic solutions.
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In most of the cases where an analytic solution cannot be found, a numerical
approximation to the exact solution can still be made. In our model, we will find the
numerical solution of the Dirac equation for the isolated hydrogen-like atom by writing
the solution as a finite sum of known functions, evaluated at discrete points in a space
with finite extent. This method reduces the continuous problem to a discrete problem
that can be solved by the use of numerical methods. The way that the equation will be
discretized will be discussed in detail in the next chapter.

Modeling of interactions between hydrogen-like atoms and intense laser pulses using
the Dirac equation has been attempted multiple times in recent literature [12—18]. This
literature refers to several obstacles to the numerical solution of the Dirac equation, such
as the appearance of states that do not correlate with any physical quantities, known
as spurious states. Different methods for overcoming these obstacles have also been
described in the literature, such as methods concerning the choice of basis functions and
boundary conditions used in the numerical solution. A comparison between some of
these methods is done in this thesis, and the most promising method will be implemented
in our model.

In the following chapters, we will start by discussing the general properties of the
Dirac equation. The Coulomb and external laser potential will be introduced into the
Dirac equation through a process called minimal coupling. The Dirac equation for the
hydrogen-like atom will then be written in a convenient form that exploits the symmetries
in our system, in particular by expressing the equation in spherical coordinates.

The process of solving the Dirac equation for the model system will then be split into
two parts. First, the Dirac equation for the hydrogen-like atom before the interaction
with the laser pulse will be treated. This equation will be solved by converting it
into a discrete problem, which will be solved using numerical methods. Second, the
interaction that the laser pulse has on the hydrogen-like atom will be treated. This will
be done by expressing the whole system in the basis of the solution states obtained in
the first part. A numerical propagator will then be used to model how the hydrogen-like
atom and laser pulse interact through time.

Finally, we will discuss the results from these solutions. The results will be compared
with results from the Schrodinger equation to determine if the Dirac equation reveals
relativistic behaviors in hydrogen-like atoms subject to high intensity laser pulses.



1.5 Units 5

1.5 Units

Table 1.1: Atomic units, obtained from [19]. Atomic unit of angular frequency in SI units
derived from w = %, and of vector potential derived from A o %

Unit Symbol Value in SI units

Electron mass e 9.10938356 x 1073! kg
Elementary charge e 1.6021766208 x 1071 C
Reduced Planck’s constant h=4 1.054571800 x 10734 Js
Bohr radius ag 5.2917721067 x 10711 m
Hartree energy E, 4.359744650 x 10718 J
Atomic unit of time 2.418884326509 x 10717 s
Atomic unit of angular frequency 4.134137334 x 10%6 571
Atomic unit of velocity 2.18769126277 x 10° ms™!
Atomic unit of electric field 5.142206707 x 101 vm™!

Atomic unit of vector potential 1.243840321 x 107 Vsm™!
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1.6 Conventions

Mathematical operation Effect

Hermitian conjugate of a matrix or vector (A"); ;= (A);‘.i

T T
a b a* c* a
c d) b* d*) (b)
Mathematical object Definition
Inner product of functions (A(x)|B(x)) := fQ A*(x)B(x)dx
Inner product of vectors (A|B) := A'B
Anticommutator {A,B} := AB + BA
Hermitian matrix A suchthat AT = A
10 ... 0
01 ... 0
n-dimensional identity matrix I, =
00 ... 1
nxn
Kronecker delt Sii= (L) =4 P=
onecker delta o= (1) =
/ oy 0, otherwise

01 0 —i 1 0
Pauli matrices Oy = , Oy = Oy =
10 i 0 0 -1




Chapter 2

Theory and methods

2.1 Prerequisites

2.1.1 Atomic units

Throughout this thesis, atomic units will be used. The system of atomic units can
be defined by the atomic unit of mass (the electron mass), the atomic unit of charge
(the elementary charge), the reduced Planck’s constant and the atomic unit of length
(the Bohr radius), which are all set to unity in the system. All other units, such as the
atomic unit of energy (Hartree, Ha), are derived from these four units using fundamental
physical relations. The atomic units relevant to this thesis, together with their value in
ST units, can be found in Table 1.1. The value used for the dimensionless fine structure
constant is @ = 7.2973525664 x 1073, obtained from [19]. The speed of light in the
atomic unit system is ¢ = @~! ~ 137 a.u. of velocity.

2.1.2 Relativistic quantum mechanics

The motivation for using the Dirac equation instead of the Schrodinger equation for
describing the quantum mechanical behavior of particles at high velocities comes from
the theory of special relativity. In nonrelativistic (Newtonian) mechanics, the energy of
a classical (not quantum mechanical) free particle is given by

P
E=—, 2.1
™ 2.1)

where p is the momentum and m is the mass of the particle. This equation can be

quantized by inserting the quantum mechanical operators representing the energy and
momentum,

0
E=i—, = iV, 2.2
lat p l (2.2)

into the equation, and letting both sides of the equation act on the wavefunction y(x, t)
from the left. The obtained equation is then the Schrodinger equation

-alr//(x’t) _ _L 2
i = VA (). (2.3)
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From the Schrodinger equation solution ¢/(x, ¢), a non-negative scalar,

p=vx1)yxt), (2.4)

can be created. This scalar is interpreted as the probability density of the particle at the
point (x, t), that is [20],

(2.5)

(x.1)d {probability of finding particle }
P X = .

between x and x + dx, at time ¢
In relativistic mechanics, the energy of a classical particle is given by a different
equation,
E? =m?c* + pzcz. (2.6)
Taking the positive square root of this equation, we get

2 p’

E=mc"y[1+ . 2.7
By Taylor expanding /1 + m‘;—;, this equation can be written as
2 4
p p
E = mc*|1+ + +... 2.8
2m?c?  8mict (8
The first term in the Taylor expansion,
Ey = mc?, (2.9)

is independent of the momentum of the particle, and corresponds to the energy of the
particle at rest. This rest energy can be subtracted from relativistic energies when
comparing them with nonrelativistic energies, since nonrelativistic equations usually
do not include the rest energy of the particle. The second term in the expansion in (2.8),

Ei=—, (2.10)
2m

is identical to the nonrelativistic energy in (2.1). The terms beyond E, like

p4

Ey=———
8m3c?’

(2.11)
do not have counterparts in nonrelativistic mechanics. Hence, these terms give rela-
tivistic corrections to the energy in (2.1). Since p = mv, where v is the velocity of
the particle, the corrections from the terms in (2.8) have increasing powers of Z_z’ and
hence the later terms only become significant when the velocity v approaches the speed
of light c. Since the classical energy of a particle with high velocity gets corrected
when transitioning from nonrelativistic to relativistic mechanics, we can also expect the
quantized versions of the energy equations to get corrected.

Quantization of the relativistic equation can be done in several ways. One is to
quantize a finite number of the terms in the Taylor expanded equation in (2.8) with the
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rest energy removed, and effectively obtaining a semi-relativistic Schrodinger equation.
Another way is to look for a full-relativistic alternative equation that incorporates all
the terms in the expansion.
One approach to finding the full-relativistic equation is by inserting the operators in
(2.2) into the squared energy equation (2.6), giving
82

— — V% + mPct

32 P(x,1) = 0. (2.12)

This equation is known as the Klein-Gordon equation, and, contrary to the Schrodinger
equation, has a time derivative of second order. The density of the Klein-Gordon
equation is given by the scalar

D9D) 99ty t)l’ (2.13)

_Ll ( Z)
p_2mc¢x’ ot ot

which, contrary to the Schrodinger probability density, is not positive definite. Hence,
the density can hardly represent a probability density, which was a major obstacle to
the acceptance of the Klein-Gordon equation when it was first introduced [21]. The
possibility for the density to be negative is caused by the time derivative being of second
order.

A new quantum mechanical equation, the Dirac equation, grew out of a search for
a relativistic equation with a time derivative of first order.

2.1.3 Dirac equation

The Dirac equation, in atomic units, is given by [11]

iawg:’ ) = [ca - p+mc*Bly(x 1), (2.14)

where the solutions y/(x, ) are known as spinors. For reasons that will be presented
shortly, the Dirac equation is an equation with several components. In order for the
Dirac equation to give a valid description of relativistic particles, each component of
the spinors should satisfy the Klein-Gordon equation [22]. This can be shown to be the
case by moving all terms in the Dirac equation to the left hand side,

.0 9
ZE —ca-p—-mcBlY(xt) =0, (2.15)

and acting on the equation from the left by,

—i% —ca-p-mc3B. (2.16)

Then, inserting p = —iV, we obtain the n-component Klein-Gordon equation,

82
e V2 mPct | Ly(x, 1) = 0, (2.17)
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as long as ; and B are n-dimensional matrices satisfying the following conditions

{ozi, aj} = 25”'[,1, {a/,-,[i’} =0, ,82 = In, (2.18)
where i, j € {1,2,3}. In addition, the Dirac equation should also satisfy the continuity
equation

dp .
=+ V-j, (2.19)
with
p=y xyx), j=y (x ey, (2.20)

which gives the condition that the matrices @; and S should be Hermitian. For more
details, see [21, 22]. All these conditions can be satisfied by letting a; and 8 be certain
matrices with a dimension of at least four. The representation of the matrices that will
be used in this thesis is four-dimensional, and is given by

a; = , PB= , (2.21)
g; 0 0 —12

where o; are the Pauli matrices and /5 is the 2-dimensional identity matrix. Using this
four-dimensional representation of the @ and S-matrices, the spinor ¥(x, t) in the Dirac
equation will be a four component complex function.

2.1.4 Interpretation of the Dirac equation

In quantum mechanics, we interpret the spinor as a function describing the state of a
spin-1/2 particle, like an electron. The scalar p from (2.20) plays the same role as in
the Schrodinger equation; it can be interpreted as the probability density of the particle
(2.5). Quantum mechanical obervables, like the position, momentum or energy of the
particle, are represented by Hermitian linear operators.

These operators yield real eigenvalues when acting on eigenfunctions of the operator,
which can be illustrated through the eigenvalue equation for an operator D,

Df = Af, (2.22)

where f is the eigenfunction and A is the eigenvalue of the operator.

Assuming that the state of the system is an eigenstate of the operator, its eigenvalue
will be the value of the observable in the system. As an example, one can consider the
Hamiltonian operator H, which is the operator representing the energy of the system.
Assuming that the system is the eigenstate ¥, (x,t) with energy E,, the Hamiltonian
eigenvalue equation can be written as

Hyy(x, 1) = Enn(x, ). (2.23)

The system can also be in a state that does not have a determined value of the observable,
but that can be represented by a linear combination of the eigenstates,

W(x, 1) = D cuthnlx,1). (2.24)
n
The observed value of such a system will then be the eigenvalue of one of the eigenstates
(%, 1), with a probability given by the square of the coefficient ¢,. After observation,
the state of the system will then be in the eigenstate ¢, (x, ). We say that through this
process, the state of the system has collapsed to one of the eigenstates.
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2.1.5 Setting up a matrix eigenvalue problem

A numerical approximation to the solution of a general eigenvalue problem like (2.22)
can be found by the method outlined in this section. First, one starts by expanding
the eigenfunction f in a set of linearly independent basis functions with corresponding
unknown coefficients,

N
f= Z vk, (2.25)
j=1

where the F; are the basis functions and the v; are the coefficients. Inserting this
expanded solution into the general eigenvalue problem in (2.22), one obtains

N N
DY viFj =1 v (2.26)
j=1 i=1

Multiplying this equation from the left by an arbitrary basis function in the basis set,
F; and integrating over the domain of the basis functions, effectively doing an inner
product, one obtains the equation

N
Z (FID|F)v; =24 Z (2.27)

j=1
If one defines the matrix D with elements
(D)i; = (F| D|F;), (2.28)
and the matrix S, also known as the overlap matrix, with elements
(8)y = (FilF}), (2.29)
the equation (2.27) can be written as a N X N generalized matrix eigenvalue problem
Dv = ASv. (2.30)

The vector of coeflicients v is also known as the eigenvector of the matrix eigenvalue
problem, and is given by
V1

Vv
v=| 1. (2.31)

VN

The eigenvalue problem in (2.30) can be solved for a set of these eigenvectors with
corresponding eigenvalues A, using numerical methods found in many numerical li-
braries. The number of solutions of the eigenvalue problem is N, which is the same as
the number of linearly independent functions in the basis set.
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2.2 The modeled system

2.2.1 Minimal coupling

The Dirac equation, as stated in (2.14), describes the motion of a single free particle with
spin 1/2. This model of the free particle can be used as a starting point for describing
more complex physical systems, like systems where the particle is subject to forces.
The more complex systems can be modeled by making changes to the Dirac equation
that mathematically represent the different entities that one wants to introduce into the
free electron system.

In this thesis, the spin 1/2 particle that will be modeled with the Dirac equation is
the electron. Two different physical entities will be introduced into the free electron
system: a positive point charge, which represents a hydrogen-like nucleus, and a laser
pulse. We assume that the different entities in the new system only interact through the
electromagnetic force, and that the hydrogen-like nucleus is so heavy that the effects of
the electromagnetic forces on it are negligible. The interactions between the different
entities in the system will be treated within the first quantization treatment of quantum
mechanics, which means the number of particles in the system will be conserved under
interaction. This is done by letting all objects except for the electron be represented by
classical potentials. Since the electron is treated quantum mechanically and the other
entities treated classically, this is also known as a semi-classical treatment.

The classical potentials will be introduced into the free particle system using a
procedure called minimal coupling, which is valid as long as all charges in the system
are assumed to be point charges.

In minimal coupling, we make the substitutions [21]

0 0
— — i— — qO(x 1), 2.32
i =i = qOx.1) 232
where @ is the scalar electromagnetic potential, and
P — p-qA(x1) (2.33)

where A(x,?) is the vector electromagnetic potential, and where ¢ is the charge of the
considered particle. The minimally coupled Dirac equation from (2.14) will then take

the form P

. X, !

i = (ca-[p—qAR D]+ B+ qPx D)y (x.1). (2.34)
For an electron, ¢ = —e = -1 au. and m = m, = 1 au. The attraction to the

hydrogen-like nucleus with charge Z will be represented by a scalar Coulomb potential
D = %, and the effect of the laser pulse will be represented by a time dependent vector
potential A(x,¢) = A(n), where 7 is a function of x and ¢. The Dirac equation for the
hydrogen-like atom and laser pulse system will then take the form

oy(x,t)
ar

The operator on the right hand side of the equation is the total Hamiltonian of the
system,

i ca-[p+An)]+c*B- %LL W(x,1). (2.35)

H) =ca - [p+An)]+ 3B - %14. (2.36)
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This Hamiltonian will be split into two parts, one part describing the hydrogen-like
atom without the interaction with the laser pulse, Hj, and one part describing the time
dependent interaction with the laser pulse, V(?),

H(t) = Hy + V(1), (2.37)
where
9 Z
Hy=ca -p+c - 714, (2.38)
and
V(t) = ca - A(n). (2.39)

In this thesis, it will be assumed that the laser vector potential does not interact with the
system at ¢ = 0. Then, V(0) = 0, giving

H(0) = H. (2.40)

The solution of the Dirac equation with the Hamiltonian Hy can then be considered
separately, before introducing the interaction with the laser pulse.

2.2.2 Derivation of hydrogen-like radial equation

In this section, we will separate the radial and angular parts of the Dirac equation for
the electron in the hydrogen-like atom. The Dirac equation for this system is given by

ia‘bgj’ D _ Hyy(x,t) = |ca-p+c?B - %14 w(x,1). (2.41)
We will look for stationary states of this system of the form
Y(xt) = e Flp(x), (2.42)
so that E will be an eigenvalue of the Dirac Hamiltonian H from (2.38),
Hyg(x) = E¢(x). (2.43)
Using the representation (2.21)
0 o L 0
a:((r 0)’ ,8=(0 _12), (2.44)
the hydrogen-like Hamiltonian (2.38) can be written on the form
2 -2\ co - p
Hy = ([ , .rg [ L %]12) ) (2.45)

Since the scalar Coulomb potential % is spherically symmetric, it is useful to express the
equation 2.43 in spherical coordinates. Following [21][Section 3.2.3], one can rewrite
the operator co - p in spherical coordinates as

, (6 K+1)
co -p=—icoy|—+ ,

2.46
or r ( )
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where the operator K is given by
K=-(1+0-1), (2.47)

with the operator 1 being the angular momentum operator from nonrelativistic quantum
mechanics [20],
1= —i(r x V). (2.48)

The Hamiltonian Hy does not commute with the operators 12, [, = z-1and s, = %0’
from nonrelativistic quantum mechanics, and hence the quantum numbers [, m; and m;
are not good quantum numbers for the states of the hydrogen-like atom in the Dirac
equation [21]. A good set of quantum numbers can be found through the eigenvalue

equation of the K-operator,
KXK,u(f') = K)(K,ﬂ(f‘)- (2.49)

In this equation, the two-component function y, , is called a spherical spinor, with
the vector #(6, ¢) giving the position on the unit sphere [23]. For more details on
the algebraic derivation of this relation, see for example [24]. The quantum number u
corresponds to the projection of the total angular momentum of the state along the z-axis,
and it is an eigenvalue of the j,-operator from nonrelativistic quantum mechanics,

jZXK,,u(f') = /J/\/K,u(f'), (2.50)
where
: 0 0 1
Je=L+s,=-i xa—yax —0'Z (2.51)
The possible values that the two quantum numbers can take on are k € {+1,+2,...}
and u € {—|«| + %, e k| = %} The spherical spinors y. ., constitute a complete set of

two-component functions defined on the unit sphere [25], which are orthonormal with
respect to the inner product [21]

<XK’,/1’|)(K,;1> = /)(Zf”u'(f')XK,u(f') df = OxkOp',p- (2.52)

Inserting (2.46) into (2.45), we get that

2 _Z i K+1
H, = ( =]l —icor [+ ]) . (2.53)

e [ £+ &) [-c- 2]

In a spherical coordinate system (r, 6, ¢), eigenstates of the Hamiltonian in (2.53) have
the 4-spinor structure [21]

1 P(r)xeu(®)
=3 iQ(r)xk,ﬂ@))' 29
Since [21]
Tr Xuu(®) = =X u(®), (2.55)
and since
( d 1)f(r) _1df() 56
dr r rodr
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N B8000 [[[.——

—C2 C2

Energy E [a.u.]

Figure 2.1: Illustration of the analytic spectrum of the Dirac hydrogen-like Hamiltonian. An
infinite number of discrete bound states have energies in the region —c? < E < ¢2. The positive

and negative continua have energies above ¢? and below —c?, respectively.
(2.43) can be written as
[62 - % - E]12 —icoy [% + @] 1 P(r)xu(®)
(HO - E)¢(X) = . 0 K+1 ) YA 1. o
—lCO‘r[E + T] [ -t -4 - E]12 F\iQ(r) x—«u(®)

1 ( (€2 = £ = E|P(r) Xy @) + o[£+ £] Q) Xy ®) )
—icor[£ + E]|P(r)xeu®) +i] — 2 = £ = E]Q(r) x-x u(®)

( ([ = £ = E]P(r) + c[£ = £]00") xeu(®)

i(c[f + %]P(r) + [ —c2- % - E]Q(r)))(_K,#(f“)

1
N

=0.
(2.57)

Non-zero factors can be removed from (2.57), and the equation can thus be written on
the two-component form

2-Z  c[E- di]) P(r) (P(r)) P(r)
’ d ’ =F = H . (2.58)
(C[f +al —=Z ]\ o) e

As we can see, we were able to separate out the angular dependency of the hydrogen-like
Dirac equation by introducing the quantum number «. The equation (2.58) is a system
of two coupled first order differential equations in only one variable; the radial variable
r. This equation will hereafter be referred to as the hydrogen-like radial equation. The
hydrogen-like radial equation was solved numerically on finite domains r € [a, b], using
the method described in Section 2.3.

2.2.3 Dirac hydrogen-like spectrum

The Dirac equation allows solutions with negative energy. An illustration of the form of
the analytic spectrum of the Dirac hydrogen-like Hamiltonian on the domain r € [0, o]
is shown in Figure 2.1. As we can see, the hydrogen-like spectrum has a positive energy
continuum for £ > ¢? and a negative energy continuum for E < —c?. Between these
continua, discrete bound states can be found; states that are confined to the nucleus by
the Coulomb potential. The analytic solution of the hydrogen-like radial equation on
the domain r € [0, ) is often done in textbooks on relativistic quantum mechanics, and
gives the formula for the relativistic hydrogen-like bound state energies [26]

C2

En« = , (2.59)

1+ A
\/ (n+ K2—22a/2)2
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—C2 C2

Energy E [a.u.]

Figure 2.2: Illustration of the spectrum of the Dirac hydrogen-like Hamiltonian on a finite
domain and with a finite number of basis functions. A finite number of discrete bound states
have energies in the region —c? < E < ¢2. The positive and negative discrete pseudocontinua
have energies above ¢? and below —c?, respectively.

where n € {0, 1, ...} for positive x, and n € {1, 2, ...} for negative «.

In this thesis, the Dirac hydrogen-like equation will be numerically solved on a finite
domain r € [a, b], and with a finite number of basis functions. When the domain is
finite, the states with energies above c? and below —c? will also be discrete. These states
will be referred to as the positive and negative pseudocontinuum states. The number of
energies in the numerical spectrum is also equal to the number of basis functions used in
the calculations, which means the number of energies will be finite in the calculations.
An illustration of the finite spectrum is given in Figure 2.2. Theoretically, the Dirac
equation does not have a lower bound on the spectrum, but we will refer to the bound
state with the lowest energy E > c¢? as the ground state of the system. The energies in
the spectrum for a finite number of basis functions is fortunately centered around E = 0,
which means we get a good description of the behavior of the system for energies with
an absolute value lower than the maximum energy in the spectrum.

2.2.4 Connection to Schrdodinger equation states

As we have seen, the Dirac quantum states can be labeled by the three quantum numbers
(n, , ). The quantum number « can be related to the total angular momentum quantum
number j through [23]

. 1
In (2.58) the lower equation can be solved for Q(r), giving
c d «
= ————=|—+ —|P(r). 2.61
00 = ozl )P @.61)

Since the relativistic energy E for positive energy states includes the electron’s rest
energy c?, it can be written as E = ¢ + E’, where E’ is the energy without the rest
energy. Inserting this relation into (2.61), one obtains

d «

_+_

-+~ [P(). (2.62)

2c2 + E' + £
The nonrelativistic limit of this equation can be found by letting ¢ — oo, giving

d LK
dr r
and Q(r) — 0 for all . The fact that Q(r) — 0 is the reason that the lower component
often is referred to as the small component of positive energy spinors. In the nonrela-

tivistic limit, the positive energy spinors behave like the upper component of the spinor

P(r). (2.63)

1
Qr) ~ —
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only, which has a definite angular momentum /. The quantum number « for the spinor
can then be related to the nonrelativistic quantum number / through [23]

1
K+ =
2

! 2.64
- (2.64)

[ =

From (2.50), it can be seen that the quantum number u is the same number as the
nonrelativistic eigenvalue of the j,-operator, m;. More information about the quantum
numbers /, j and m; can be found in textbooks on nonrelativistic quantum mechanics
like [20]. Given the relationships above, the Dirac bound states can be labeled by the
symbols commonly used for nonrelativistic orbitals,

NI; (2.65)
where N is the principal quantum number
N =n+ |k|, (2.66)

with n from (2.59), and the numerical value of / is exchanged with the letters commonly
used in nonrelativistic quantum mechanics [ = s, p,d, f .... For example, the lowest
energy bound state of k = —1 can be labeled as the 15, /,-state, the lowest energy bound
state of k = 1 can be labeled as the 2p, /»-state, and so on.

2.2.5 Pulse geometry

The laser light of extremely intense lasers are emitted in pulses, which in effect only
interact with the hydrogen-like atom for a finite amount of time. Mathematically, these
pulses can be modeled by choosing a mathematical function that is non-zero only inside
a finite region in space and time. We will choose a vector potential commonly used in
the literature [13, 27, 28],

E
AG) = = sin? (ST sin(n + ¢), 0 < < o, .67
w wT

where n = wt —k -r. In this vector potential, the sin-function is the carrier of the pulse,
which has the carrier frequency w and the wave vector k. The carrier is modulated
by the sin?-function, the envelope of the pulse, which has the period 7. The scalar ¢
is called the carrier-envelope phase, which gives the phase between the carrier and the
envelope functions. The vector Ej is the maximum electric field strength in the direction
of polarization. Assuming that the pulse is linearly polarized, giving Ey = Eyé, where
é is the direction of propagation, (2.67) can be written as

E
A(n) =— sin? (ﬂ) sin(n + ¢)e, 0<n<wT
w wT
=A(n)e.

The component A(7) of this vector potential satisfies the scalar electromagnetic wave
equation

(2.68)

1.9°A(n)

S o —V2A(n) = 0. (2.69)
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-6 F “ U H .

| | | | | |
0 02 04 06 08 1 1.2 14 16 1.8
Time [a.u.]

Vector potential in polarization direction [a.u.]

Figure 2.3: Temporal profile of the pulse in (2.68) at r = 0. The electric field strength was set
to Eg = 400 a.u., the frequency to w = 50 a.u. and the pulse was chosen to be a 15 cycle pulse,
thatis 7" = 15%” a.u.

At the point » = 0 a.u., the laser pulse has the temporal profile in the polarization
direction shown in Figure 2.3. If we assume that the pulse is x-polarized and propagating
in the z-direction, we get

c
The equation (2.68) will then take the form

A(n) = %Sin2 [%(l‘ - E)l sin [w(t — %) + ¢

c

w <
k = —i—)n:a)(t——). (2.70)
c

% 0<ti-Z2<T. 2.71)
C

The full geometry of the pulse given in (2.71) is hard to implement into the numerical
methods used for solving the time dependent Dirac equation. Hence, approximations
to the pulse geometry is often used.

A commonly used approximation is the dipole approximation, which can be made
by letting n — wt, removing all spatial dependency of the laser pulse except for the
direction of polarization. This gives

E t
A(n) = L sin? (%) sin(wt + @)%, 0<t<T. (2.72)
w

In addition to treating the laser pulse with the dipole approximation, another approxi-
mation to the pulse geometry will be considered in this thesis. In this approximation,
hereafter referred to as the beyond dipole approximation, the full spatial dependency of
the vector potential function is retained. The approximation is done only on the domain
of the time variable 7. If no approximation were to be made, the time variable would,
from (2.71), be limited by

<t<T+

O N
O 1N

(2.73)
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Figure 2.4: The geometry of the laser pulse with (a) the beyond dipole approximation and (b)
the dipole approximation. The pulses have the parameters Ey = 400 a.u., w = 50 a.u. and
T = 15%” a.u.

Since the limits for the time variable is z-dependent, the area spanned by ¢ and z will
have a skewed boundary. In the beyond dipole approximation, this z-dependency of the
boundary is neglected, giving the new limits on the boundary

0<t<T. (2.74)

A | R R A

This approximation has been implemented in a recent article [28], and has shown to
be successful for describing the ionization by a pulse with 15 optical cycles, that is
T =152 au.

The beyond dipole approximation will be treated by expanding the vector potential
function in spherical harmonics in Section 2.4.1, inspired by [28]. A figure of both the
dipole and beyond dipole approximations is shown in Figure 2.4. When solving the
time dependent Dirac equation, we will assume that the hydrogen-like atom system is
an eigenstate of the time dependent Hamiltonian at # = 0 and r = 7. This assumption
will be valid as long as the vector potential is zero at these two times. From (2.72),
it can be seen that this is the case for the vector potential in the dipole approximation.
The vector potential with the beyond dipole approximation in (2.75), on the hand, is not
necessarily zero at = 0 and ¢t = T, see the the left panel of Figure 2.4, since the vector
potential also has a z-dependency. Nonetheless, since the electron in the ground state is
located close to the nucleus, and since the effect of the z-coordinate is scaled by 1/c, we
can assume that the influence of the laser potential is small enough atz =0andt =T
to treat it as if it was zero.

This gives the equation

E
A(n) = = sin? % 0<r<T. (2.75)
w
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2.3 Numerical solution of Dirac hydrogen-like radial equation

The first goal in the thesis is to solve the radial equation for the hydrogen-like system
numerically for any k. This will be done by expanding the two-component solution of
the Dirac hydrogen-like radial equation (2.58) in a finite set of linearly independent basis
functions with unknown coefficients, just as is done for a general operator in Section
2.1.5.

2.3.1 Comment on the choice of basis set

The radial Dirac equation (2.58) is a two component equation, and hence the basis
functions need to span the space of two component functions. Extra care is needed
when choosing the basis functions for solving the radial Dirac equation, since naive
choices of basis functions have been shown to give spurious states in the solution space
[29]. For more detail on the cause of the spurious states, see [30].

Several methods that aim to remove the spurious states have been proposed in
the literature, one of the most renowned being the method of dual kinetic balance
introduced by Shabaev et. al.[31]. In the dual kinetic balance basis set, the components
of the basis functions are related by the same relation that the components of the solution
of the radial equation have in the nonrelativistic limit, like in (2.63) for positive energy
states. Although the method in practice often removes the spurious states from the
spectrum, Lewin and Séré argue that there is no rigorous ground to believe that the
method of dual kinetic balance removes all spurious states from the spectrum [30]. In
our studies, we have also experienced apparent problems at the boundary of the domain
when using the dual kinetic balance basis set, which will be demonstrated in Section
3.1.1. The details of how the dual kinetic basis set is constructed will not be given in
this thesis, but can be found in the article by Shabaev et. al.[31].

A different article by Munger gives an alternative remedy to the problem of spurious
states, where the Dirac radial hydrogen-like Hamiltonian is transformed by a similar-
ity transformation [32]. The article argues formally that the transformed Hamiltonian
operator has a spectrum that converges to the proper spectrum without spurious eigen-
values when the size of the domain and the number of basis functions approach infinity.
The solutions of the similarity transformed Hamiltonian can then be transformed back
to the usual Dirac solutions by applying the inverse transformation.

2.3.2 Ideal basis set

The procedure for setting up the eigenvalue problem with the ideal basis set is outlined
in the following section. For more details, refer to [32].

In [32, Section X], it is argued that two different similarity transformations should
be used for the different signs of «, to avoid missing or added states in the solution
space. The operator h, used for positive «, and the operator /4, used for negative «, are
found by the similarity transformations

h=UHU', h=UH, U, (2.76)

respectively, where H,, is the hydrogen-like radial Hamiltonian H from (2.58) multiplied
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by a2, having the eigenvalues € = o?E. The unitary matrices U and U are given by

K=y K+’}’ K+’y K=Yy
~ T sgn (k)| 5 - N sgn (K)+/ 50
U - K+’)/ K=y ’ U - K=y K+)/ ? (277)
—sgn (k) 3¢ T3 —sgn (k) 3¢ T3
where
y = VK* = (Za). (2.78)

Applying these unitary transformations, the operators 4 and / in (2.76) can be written

B - - ~B7(-
L R ) e
B'(k) —n(k)—A —B(-«) -n(-x)—A
where
2Za? z d z d
7](K)=—Z, A= a’ B(K):—a—+z+—, BT(K)=—Q’—+Z——.
K r kK r dr kK r dr
- (2.80)
The solutions ® and @ of the eigenvalue problems
hd = ed, hd =ed (2.81)

will be expanded in two different basis sets of 2N functions,

_RT(_
Wk=(B(K)W"), Wk+N=(O), Wk=( B K)W"), Wk+N=(O), (2.82)
0 Wk 0 Wk

where kK = 1,..., N and the wy are linearly independent functions forming a basis for
the Sobolev space of square integrable functions and first derivatives. The Dirichlet
boundary conditions is imposed on the functions, in other words wy(a) = wi(b) = 0.
Using the method described in Section 2.1.5, the eigenvalue problems in (2.81) can be
written on the matrix forms [32]

(n(K)M(K) M(x) o _ (M(K) 0\ (@,
M) -n(x)U - A \D, 0 Ul\Dy)’
~ - s 5 B (2.83)
n(=k)M (k) M (k) @) _ . M(k) 0) [y
M)  -n(-x)U — A \D, 0 Ul\dy)
where
Mii(x) = (B(x)wj|B(K)wi) ,  Mjr(x) = (BT (=c)w}| BT (=)wy ) (2.84)
and
Ujr = <wj|wk>, Ajp = <Wj|A |wi) . (2.85)

The solutions ® and ® be transformed to solutions i of the original Hamiltonian Hj
through the unitary transformation

Y = —sgn(e)U N (k)D, ¢ =sgn(e)U (k)d. (2.86)
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2.3.3 B-splines

The linearly independent functions wy that will be used to construct the basis sets in
(2.82) for solving the radial Dirac equation are the piecewise polynomials called B-
splines. For details on these functions, see [33]. The B-splines have finite support, and
properties that make them suitable for atomic physics calculations [34].

Cox-de Boor recursion relation

The B-splines are often created using the Cox-de Boor recursion relation, which can be
stated as follows [34]. The n; first order B-splines defined on the n, + 1 knot points t;,
where #; < t;11, are given by

Blx)= b f=¥<ta (2.87)
! 0, otherwise

The ny = nix—; —1 B-splines of order & are built recursively from the first order B-splines
by the equation

B(x) = .x—tl.Bik_l(x) + W—?Bf;ll(x). (2.88)
i+k—=1 — 4 livk — li+1

As can be deduced from the above recursion relation, the B-splines of order k are only
non-zero on the interval [#;, #;+x ], which gives them the finite support. The ordered set of
points #; < to < ... < t,4 is called the knot vector. As can be seen from the definition
of the B-splines, there is a freedom in the choice of the knot vector; the only demand is
that the values of the knot points should be nondecreasing. In this thesis, a convention
for the knot vector called the open uniform knot vector will be used in the calculations.
The open uniform knot vector has k coinciding knot points at each of the end points of
the domain, or, in other words

i =1, i<k
tiy1—ti=const, k<i<n (2.89)
The derivative of a B-spline of order k is given by the recursion relation
k—1

I—B."‘l(x) - LB.k—l(x). (2.90)

koo _
DBi ()C) - i i+1
itk—1 — I livk — Tiv1

We will integrate the products of the B-splines used for making the matrices in (2.83)
using the Gauss-Legendre quadrature.
Gauss-Legendre quadrature

The following properties of the Gauss-Legendre quadrature are taken from [35, Sec-
tion 8.5]. The integral of a function f(x) on the interval x € [—1, 1] can be approximated
by the quadrature formula

1 n
[1 f(x)dx = izzlw,-f(x,-) + E, (2.91)
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Figure 2.5: 12 B-splines of order 6 defined on Gauss-Legendre points on the domain r € [0, 60]

a.u.

where the Gauss-Legendre points x; are the ith zeros of the nth Legendre polynomial
P,(x), and the Gauss-Legendre weights w; are given by the formula

201~ x) 2.92
M G PP 272
The error E in (2.91) is given by
92n+1 ()4
) ) (2.93)

T @n+ D)

for some &. Since the 2n’th derivative (&) of a polynomial f of order less than or
equal to 2n (degree 2n — 1) is zero, a polynomial of order 2n will be integrated exactly
by (2.91).

Since B-splines of order k are polynomials of order k on the intervals [#;, #;+1], the
Gauss-Legendre quadrature of order k integrates the product B; B;, which is of order 2k,
exactly [34]. When making the matrices for the eigenvalue problems in (2.83), the the
maximum order polynomials that should be integrated is 2k, which means the results
should be exact when using k Gauss-Legendre points. k Gauss-Legendre points were
therefore used for making and integrating B-splines of order k. The variable of the
integral was changed from [—1, 1] to [#;, #;+1], to be able to integrate over the domain
used for the solution. A plot of 12 B-splines of order 6, using the open uniform knot
vector convention and 6 Gauss-Legendre points in each knot point interval [, #;+1] is
shown in Figure 2.5. The Dirichlet boundary conditions are imposed by removing the
first and last B-splines in the set. This is made possible since B;(a) = B;(b) = 0 for
i=2...,n—1.
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2.4 Numerical solution of the interaction with the laser pulse

The goal of this section is to be able to calculate the time dependent effect of an intense

laser pulse on the hydrogen-like atom system. The section follows [36] to some extent.

The equation that describes the time evolution of the hydrogen-like atom and laser pulse

system is

0¥(¢)
ot

where H(?) is the Hamiltonian from (2.37) and W(¢) is the state of the system. The time
evolution of the system described by this equation can be written formally by the use of
the time-evolution operator U(ty, ty), which evolves the state from ¢t = £y to t = 11 [36],

i = H(t)¥(z), (2.94)

\P(ll) = U(ll, lo)l}l(to) = Texp [ -1 / 1 H(l) dr l\P(lo), (2.95)

where 7 is the time-ordering operator. When doing the time propagation numerically,
the propagation is usually performed with a series of time steps A¢. If the size of
the time steps is chosen to be so small that the variation of the Hamiltonian over the
interval [z, ¢ + At) is negligible, the time-evolution operator can be approximated by the
short-time propagator

U(t + At, t) =~ exp[—iAtH(1)], (2.96)

which gives
Y(r + Ar) = exp|—iAtH(t)]¥(¢). (2.97)

This short-time propagator can be applied consecutively to propagate the state of the
hydrogen-like atom and laser pulse system in steps from t = ¢y to ¢ = ¢y,

U(ty, tg) =~ U(t, 1 — Ar) ... U(ty + 2At, ty + At)U(tg + At 1p). (2.98)

The Hamiltonian operator in the short-time propagator (2.97) will be treated explicitly
by writing it on matrix form. This will be done by expanding W¥(¢) in the finite set of
M eigenstates for the hydrogen-like atom ;, with quantum numbers (n;, j, 11;), found
in Section 2.3. Each eigenstate ¢; will have the corresponding coefficient c;(¢) in the
expansion. Then, using the method in Section 2.1.5, one obtains the Hamiltonian on
matrix form,

H(r) = Hy + V(2), (2.99)

where the elements of Hy and V(¢) will be given shortly. The state of the system is then
represented by the coeflicient vector

c1(t)

co(t)

|'¥(1)) = (2.100)
cm(t)

where each coeflicient ¢;(z) is related to the hydrogen-like eigenstate ;. The state of
the electron in the hydrogen-like system at ¢ = 0 is defined through the choice of the
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coefficients ¢;(0). The Hamiltonian matrix in (2.99) will be used as the Hamiltonian
operator and ¥ will be used as the state in the short-time propagator in (2.97), giving

|W(t + At)) ~ exp[—iAtH(t)] |W(2)) . (2.101)

More information of how this short-time propagator will be applied at each time step
will be given in Section 2.4.2.
Following Section 2.1.5, the elements of the matrix Hy in (2.99) can be given by

(Ho)ij = (¥l Ho ¢;) = E;6;;. (2.102)

As can be seen, this matrix is a diagonal matrix containing energies of the states found
in Section 2.3. A way of calculating the interaction matrix elements (Vt));; for both
the dipole and beyond-dipole approximations will be shown in the following section.

2.4.1 Interaction matrix elements

The part of the Hamiltonian describing the interaction with the laser pulse is, from
(2.39), given by
V(t) = ca - A(n). (2.103)

Following Section 2.1.5, the elements of the matrix V(z) in (2.99) can be given by

V()i = Wil VO ;)
= (Wil ca - A() |v;)

— / [% (P;i,,(i(r))(:,.,#i(f) —iQ5. (1 )XTKi’#i(f))(

]dr

. 1 k A A A
=zc/ ﬁPni,Ki(r)an,KJ.(r)A(n)XZi’m(r)O' @Yy, (F) dr

0 cA(n)o - é
cA(n)o - & 0
% 1 ( Pnj,Kj(r)XKj,/Jj(f')
r iQi’lj,Kj(r)X—K[,/lj(f‘)

. 1 % - P r
- lC/ }"_QQl’li,Ki(r)Pnj,Kj(r)A(n)XjKi,ﬂi (B)o - €Xkjj (£)dr.
(2.104)

For x-polarized light, where é = %, this gives

1
VO =iE [ 25 )00 ADN D00
(2.105)

. 1 * T 'y
- lC/ }"_2Qni,Ki(r)Pnj’Kj(r)A(n)XjKi’ﬂi(r)O-XXKj’#j(r) dr.

PSS
sen (COV (2.106)

+3 ’
YR (1)

Using

Xk,u(f') =

K+i+p
2k+1
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and [ = |/< + %| — % from [23], the spherical spinor can be written as

1()

sgn (=) 2K+1 |Jr -1

Xiepu(®) = (2.107)
K+ +/1 ,u+
VIO
Also, for negative «,
tyHyHT
. sgn (k) % | 21| 1()
Xeeul®) = N
oK+l | k+d|-1 1 (F)
(2.108)
+
SgD(K) - 2 #Yllz 2| 1()
B K—1—p ;1+
RO
These identities can be used together with the Pauli matrix in the x-direction
01
Oy = , (2.109)
10
to write
/‘ll 2 'u] ,u] 2
XKl i )% X =k g0, (B) = sgn (—k; \f |K+ -1 \/ -1 _;( )
iTo 2
1
Kl'+—+/Ji M+2 2 ,uJ Ui—x
_— ! Y J 2 A
et My ®sm b T
( - ,ui)(Kj ,u]) ,u 2 ui+
— i Y J 2
sgn( Kl (2K1 n 1)(2KJ — 1) |K %|_ ( ) j_§ _%( )

(ki + 3+ pi)(k; — 3 + 1) _ w5
el (Kj)\/ (2k; + 1)(2k; — 1) | 1| L O K3 —%( ?

(2.110)
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and

/ ; " /KJ Tt
/\/—K, yl( )O-XXK] ﬂJ(r) =sgh (Kl |l:—; -3 2k; +1 Y|7<j z| 1(r)
t J
1
— Hi ﬂl * . Kj —H /'t] 2
\’ _1 .__ _l (r)Sgn( KJ) \/ 2Kj+ |KJ 2| 1( )

(ki = +:ul)(K]+ +,u]) yh~ i wi+3
‘Sg“("l\/ (2K,—1)(2KJ+1) Yoty ey

- :Ul)(KJ ,u]) ,u,+2 Hj— 2
+ sgn( K])\/ (2Kz — 1)(2K] n 1) |Ki—§ -1 ( )Y K; 2| 1( )

(2.111)

Inserting these relations into the interaction term (2.105), we get
: -
VO =ic [ 2550 )00, 0)AG)

(Ki + % - ,ui)(Kj ,u]) ,ul 2 M+ 2
sgn (_Ki)\/ (2K; + 1)(2/(] — 1) | | 1 ( )Y 1 _l( )

Ki—3

(ki + % + wi)(kj — + 1) #z+2 Hj= 2
i Sgn(Kf)\/ (2 + 1)(2K; — 1) Yty Oy -(r))

s / L0 (1) Pay s (MAM)
r

(Ki_%"'/li)(’(j"'%"'ﬂj) Hi— 2 i+ 2
X (Sgn(Ki)\/ (2K; — 1)(2Kj T ) Y|K,'—§ -1 ( )Y k+L|-1 1( )

(ki = :ul)(Kj ,U]) i+ 11
+Sgn(_K")\/ (2/<,—1)(2/<,+1) Ylm—% -3 (r)YIJ +3]- l(r)) .

(2.112)

Dipole approximation

If we use the dipole approximation of the vector potential given in (2.72), (2.112) can
be written as

(V(@))ij = f()(G)ij, (2.113)

where

f(t) = % sin? (%t) sin(wt + @) (2.114)
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and

2

(ki + 5 = ) (kj — 5 — 1)
8 (Sgn (_Ki)\/ (2K + 1)(2k; — 1) Qo1

(ki + 5 + ) (Kj = 5 + 1)
+sgn<K,.>\/ — 5,

(@ =i [ P00 ()07 8]y

(2K,‘ + 1)(2Kj — 1)
(2.115)

_ic/Q;kli,Ki(r)P”j’Kj(r)drélki—%|,|Kj+%|

(ki = 5 + ui)(Kj + 3 + 1))
% (Sgn (Ki)\/ -+ 1) ket

(ki = 5 = Hi)(K; + 5 = 1))
sen (_Kf)\/ (2&; — 1)(2k; + 1) Opitj=1 |

The equation (2.115) was implemented in the code, and was used to calculate the
stationary part of the dipole approximation interaction matrix.
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Beyond dipole approximation

Through repeated use of trigonometric identities, the beyond dipole vector potential
component in (2.75) can be written as

A(n) =— sin

Ey 2(7rt nz

w T T

E
+ sin(wt + ¢) cos(kz)
2w

E,
_ =0 cos(wt + @) sin(kz).
2w

This can also be written on a simpler form

6
A() = D fal)ga(Caz),
a=1

— - —) sin(wt — kz + ¢@)

E, 1 2mt 2r
== - =sin wt+——kz——z+¢
w T cT
1 2t 2
— —sin wt—i—kz+ﬂ+¢
4 T cT
I
+§sm(wt—kz+¢)
E 2t 2
S wt + — + ¢ | cos kz+—Z
4w T cT
E, 2mt 2
+ =2 cos wt + — + ¢ | sin kz+—Z
4w T cT
E, 2mt 2
— sin wt — — + ¢ | cos kz——Z
4w T cT
E, 2t 2
+ =2 cos wt — — + ¢|sin kz——z
4w T cT

(2.116)

(2.117)

where f,(t) are the time dependent parts of the terms including coefficients, g, are
trigonometric functions (sine or cosine function) and C, are constants, all of which can
be identified from (2.116). Assuming w > 27” which is the same as assuming that the
length of the envelope is greater than double the wavelength of the carrier, and also
assuming that ¢ = 0, C, will be strictly positive for all . We want to expand the
space-dependent trigonometric functions in terms of spherical harmonics. Using the
spherical harmonic expansion of plane waves [37],

eik

T =Adnr i
1=0

l

m=-—1

O ik @),

(2.118)
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and with z being a unit vector in the z-direction [37], we can write

1/, .
sin(Cyz) =5(61C"Z — e_’c”z)
:i( iCartd _ e—iCari-f)
21
o |
1 e . .
=—(4r D D i Car™ @Y )
P20 me (2.119)
o |

xS D G Or)

[=0 m=-1
00 l
—an > YT Can) Y @)Y ()
[=1,3,5,... m=—I

and

1/ . .
cos(Cyp2) =3 (e’c"z + e_lc"z)

L[ icorit  —iCors
25(elC(,rzr +e iCqori r)

00 l
(4 ) Z i ji(Cor Y™ (@)Y, ()
120 m (2.120)

by Z (=) Jl Car Y™ @)Y @)
=0 m=-1
00 l
=i Y G @Y @),

[1=0,2,4,... m=—1
From the definition of spherical harmonics commonly used in physics, which is also
given in the ISO standard 80000-2:2009 [38], 6(z) = 0. Using the relation [39,
Eq. 14.30.4]

2+1 _
0. = 4V " . (2.121)
0, m=12...,
the equations (2.119) and (2.120) can be written as
sin(Coz) = . WAl + 1)ji(Car)Y () (2.122)
[1=1,3,5,...
and .
cos(Caz) = Y iNARQI+ 1)ji(Car)Y(R). (2.123)
1=0,2,4,...

Inserting (2.122) and (2.123) into (2.117), we get

6
A() =D fulD)8a(Ca2), (2.124)
a=1
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where
B R ss T WVARCL+ Dji(Car)Y (), 8a(Caz) = sin(Caz)
8a(Caz) =10 7 . 0 (2.125)
2120,2,4,__,1 V47T(21 + 1)]1(Car)Y1 (&), 8a(Coz) = cos(Cyz).
Using this relation we can write the interaction term from (2.112) as
6
(V@i = | fal)(Gaijy (2.126)
a=1

where

Z [l / P:;,-,Ki(F)an,Kj(i’)jl(CaI’) dr (Ki,j,l + Li,j,l)

[=1,35,...

ot

i/Q:;,Ki(F)Pnj,xj(”)jl(car) dr (M; ;1 +Ni,j,l)]
(Go)ij =9 o
Z [ - /P;zki,/(i(F)an,Kj(r)jl(Ca’r) dr (Ki,j,l + Li,j,l)

1=0,2,4,...

N

B / in,Ki(F)P"j,Kj(r)jl(Ca/r) dr (Mi,j,l + ]Vi,j,l)

The constants K; ;;, L; j;, M; j; and N; ;; in (2.127) are given by

L 1
K, =esan (—)il1y [T DG o~ i)l — 5 1)
v l (2; + 1)(2k; — 1)

./ |ﬂi z| ( )Y#J._f|_1(r)YO(I‘) dr,

Lt =c s (it | T DK+ 5+ )k — 5+ 1)
i,j,l =CSg J (2Kl' n 1)(2Kj — 1)

/Yﬂl 1| 1 ()Yﬂ{_f| 1( )Yo(r)dr

M;j; = — csgn (k)i 4m(2l + Dk = 5+ )k + 5+ 1))
ij,l = g i 2~ 1)(2Kj 5

Nojs = — csn (orpyi1y | TR DU = 5 — WK + 5 = 1)
i,j,l = g J (2Ki ~ 1)(2Kj n 1)

/th 2 uj % R O R R
X |K ( )Y l|_l(r)Y1 (I‘) dr,
2 2

1
/ |#1+2 ( )Yﬂj ;_%(f’)Yzﬂ(f“) di .

. 8a(Cyz) = sin(Cyz),

’ga'(Ca/Z) = COS(Ca,Z),

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)
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Using a formula for the integral of the triple product of spherical harmonics (the Gaunt
integral) [39, Eq. 34.3.22],

JRACRCIACE:

2

_ (2[1 + 1)(212 + 1)(2[3 + 1) ll lQ 13 ll 12 13
dm 0 0 0

mp msy ms
