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Outline

The thesis consists of two parts. The first part focuses on motivation, background
and objectives of research for the thesis, and includes the setup of a mathematical
and a numerical model for multiphase, multicomponent fluid flow. Some calcula-
tion details are also given. These details serve as documentation of the in-house
simulator XPSIM, which has been a by-product of the work presented in the the-
sis. The second part contains research papers stemming from the first part, and
some ideas for further work.

A bibliography of references is included at the end of the thesis.

Part I: The Development of a Reservoir Simulator

Chapter 1 gives the basic motivation for the work presented in the thesis, and a
brief overview of the corresponding objectives of research.

The background for the thesis continues with Chapter 2, where a mathematical
model for multiphase, multicomponent fluid flow is set up. We here outline the
governing principles and the number of variables required to uniquely describe the
reservoir state, and consider the black-oil and compositional fluid characterization
models. Furthermore, the framework for a unified black-oil and compositional
model is discussed. For the rest of the thesis, the focus is on a unified formulation,
i.e., a compositional formulation which reduces to a black-oil formulation when
used with black-oil fluid properties.

A numerical model is presented in Chapter 3. Here, discretization and initial-
ization is considered, and iterative schemes for solving the governing equations
are set up. In addition, possible reformulations of the fluid flow equations, e.g.,
volume balance equations, are presented. We also give an overview of differ-
ent time schemes, including the IMPSAT scheme, which has been an important
subject of research in the thesis. Finally, we briefly discuss timestep selection,
convergence criteria and phase disappearance and reappearance.

Chapter 4 contains documentation of the in-house simulator XPSIM, and in-
cludes calculation details associated with the mathematical and numerical model
presented in Chapters 2 and 3.



Part II: Papers and Ideas for Further Work

Five research papers are included in the second part of the thesis, namely

Paper A: A Black-Oil and Compositional IMPSAT Simulator With Im-
proved Compositional Convergence. J. Hauk̊as, I. Aavatsmark and M.
Espedal. Included inProceedings of the 9th European Conference on the
Mathematics of Oil Recovery, Cannes, France, 30 August – 2 September
2004.

Paper B: A Volume Balance Consistent Compositional IMPSAT Formula-
tion With Relaxed Stability Constraints. J. Hauk̊as, I. Aavatsmark, M.
Espedal and E. Reiso. Submitted toComputational Geosciences, July 2005.

Paper C: Exact Volume Balance Versus Exact Mass Balance in Composi-
tional Reservoir Simulation. J. Hauk̊as, I. Aavatsmark, M. Espedal and
E. Reiso. Submitted toComputational Geosciences, December 2005.

Paper D: A Comparison of Two Different IMPSAT Models in Compositional
Simulation. J. Hauk̊as, I. Aavatsmark, M. Espedal and E. Reiso. Submitted
to SPE Journal, December 2005.

Paper E: Isothermal Gravity/Chemical Equilibrium Calculations . J. Hauk̊as
and S. G. Johnsen. Exam report for the summer schoolThermodynamic
Models: Fundamentals and Computational Aspects, IVC-SEP, Technical
University of Denmark, August 9 – 27, 2004. Evaluated and accepted by
Professors Michael L. Michelsen and Jørgen M. Mollerup at IVC-SEP.

An overview of the papers is given in Chapter 5, and some ideas for further
work are presented in Chapter 6.
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Part I

The Development of a Reservoir
Simulator





Chapter 1

Introduction

In this introductory chapter, we provide the basic motivation for the work pre-
sented in the thesis, and outline the corresponding objectives of research.

1.1 Basic Motivation

Reservoir simulation involves the use of computer programs (simulators) to de-
scribe the fluid flow processes in a reservoir. In the petroleum industry, predic-
tions made by reservoir simulators are for instance used in well planning, e.g., to
investigate the effect of different injection-production scenarios on the reservoir
performance, in production planning and optimization, and in estimation of reser-
voir parameters, i.e., inverse problems/history matching. With the development of
new and improved simulation techniques, and with more computational power at
hand, reservoir simulation has become an increasingly useful tool. Today, nearly
all major reservoir development decisions are based at least partially on simulation
results, [1].

Although reservoir simulation is a quite mature field of research, there is still
room for further improvements. However, we should keep in mind the trade-off
between the precision and flexibility with which the fluid flow processes are de-
scribed, and the computational effort needed for the calculations. From a mathe-
matical and numerical point of view, it is therefore important to develop improved
solution approaches that produce reliable results with reduced simulator runtime.
This is also the basic motivation for the work presented in the thesis.

1.2 Objectives of Research

The objectives of research for the thesis are associated with the use of a composi-
tional fluid characterization model, as motivated below. Important keywords are
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flexibility, efficiency and numerical stability.

1.2.1 Black-oil vs. compositional fluid characterization

Real reservoir fluids consist of hundreds of chemical components. However, to
limit the size of the computational system, components with similar chemical
properties may be grouped into a pseudo component, treated as a single unity.
With a black-oil fluid characterization model, the reservoir fluids other than water
are assumed to consist of only two (pseudo) components, an oil component and
a gas component. With a compositional fluid characterization model, the number
of (pseudo) components is in principle arbitrary.

Traditionally, black-oil simulation has been preferred to compositional simu-
lation. This is because of the prohibitively large runtimes with the conventional
compositional simulators, mainly due to the large system of primary equations
and variables, and the extensive computational effort required for the phase equi-
librium calculations. With a black-oil fluid characterization model, these calcula-
tions can be done quite simply, as the fluid behaviour is less complex than with a
compositional fluid characterization model.

However, in cases where compositional effects are important, e.g., in cases
where the fluid composition varies significantly in the reservoir, and/or the in-
jected fluids are very different from the fluids already present in the reservoir,
reliable simulation results can only be obtained with a compositional model. The
development of a more efficient numerical formulation for compositional fluid
flow is therefore a crucial objective of research.

In addition, we note that black-oil and compositional simulations have tradi-
tionally been performed with separate reservoir simulators. The reason for this is
the lack of a proper unified black-oil and compositional formulation, i.e., a com-
positional formulation which reduces to a black-oil formulation when used with
black-oil fluid properties, and preserves the conventional efficiency. Having a uni-
fied formulation would lead to a significant reduction in simulator development
and maintenance costs. Consequently, the development of a flexible, but efficient,
unified black-oil and compositional formulation is another important objective of
research.

1.2.2 The IMPSAT formulation

Many compositional formulations have been proposed in the literature, e.g., [2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The formulations differ in their choices of
primary variables and equations and approaches for solving the equations.

Experience shows that a solution of all primary equations with respect to all
primary variables simultaneously (fully implicitly) may often be computationally
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too demanding. The conventional compositional approach has therefore been an
IMPES formulation, e.g., [2, 3, 5, 6, 8]. Here, pressure is determined separately
(implicitly), while the other primary variables are determined by explicit updates.
Unfortunately, the explicit determination of variables may lead to stability prob-
lems, i.e., unphysical oscillations in the solution. To avoid an unstable solution,
timestep size must be restricted. Consequently, although IMPES is the fastest
approach on a per-timestep basis, timestep restrictions often severely reduce its
overall efficiency.

An alternative is the IMPSAT formulation. Here, pressure and saturations are
determined implicitly, while the other primary variables are determined by ex-
plicit updates. An IMPSAT approach is significantly more stable than an IMPES
approach, and may be substantially less expensive than a fully implicit approach,
[15]. Furthermore, pressure and saturations are the conventional black-oil pri-
mary variables, and an IMPSAT formulation is thus the natural basis for a uni-
fied black-oil and compositional formulation. The development of an efficient
IMPSAT formulation is therefore an interesting objective of research.

We note that, although some work on the IMPSAT formulation has been re-
ported in the literature, e.g., [9, 10, 12, 15, 16], a completely satisfactory set of
primary equations and variables in addition to the pressure and saturation part
has not yet been presented. The choice of primary variables and equations for an
IMPSAT formulation is an important issue in this thesis.

For completeness, we should also mention the adaptive implicit approach,
which involves different formulations (fully implicit, IMPES, IMPSAT) in the
solution of the fluid flow problem in different parts of the reservoir. Several
authors discuss adaptive implicit methods, e.g., [15, 16, 17, 18, 19, 20], but such
methods are not considered in this thesis.

Having outlined the motivation and objectives of research, the following chap-
ters are supposed to provide a background for the research papers included in the
thesis. The research papers focus on the development of a unified black-oil and
compositional formulation, within the framework of an improved IMPSAT for-
mulation. The background therefore includes the setup of a mathematical model
for multiphase, multicomponent fluid flow, some details on the black-oil and com-
positional fluid characterization models, and the setup of a numerical model for
solving the equations. In addition, calculation details necessary for the implemen-
tation of a compositional simulator are given.





Chapter 2

Mathematical Model

In this chapter, we give an overview of the mathematical basis for a reservoir sim-
ulator. We first present the governing principles, which are the general principles
of conservation and phase equilibrium. Furthermore, we consider the number of
variables required to uniquely determine the state of the reservoir system. We then
present the characteristic features of the black-oil and compositional fluid charac-
terization models, and let the framework for a unified black-oil and compositional
model conclude the chapter.

2.1 Governing Principles

In the following, we outline the governing principles that are common to any
reservoir simulator. The final form of the governing equations depends on the
fluid characterization model, and will be given in section 2.3.

2.1.1 Conservation of mass

The mathematical description of fluid flow is based on the principle of mass con-
servation (mass balance), i.e., that the accumulation of mass in some domain is
exactly balanced by the mass flowing through the boundary of the domain and
the contribution of sources/sinks within the domain. In reservoir simulation, the
principle applies to every (pseudo) component present in the fluids.

We letNc denote the number of components, and write theNc mass balance
equations in the form∫

Vb

∂

∂t

(
φ

n

VT

)
dV −

∫
Vb

q̂ dV +

∫
Sb

f̂ ·~n dS = 0. (2.1)

Here,φ is the porosity,n is theNc vector of component amounts,VT is the total
fluid volume,f̂ contains theNc component fluxes,̂q is theNc vector of source
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density rates, whileVb is some (bulk) volume with surfaceSb. The unit normal of
Sb is denoted~n. We note that each component flux in̂f is a vector in space. The
dot product in (2.1) is taken for each component flux, so thatf̂ ·~n is aNc vector.

The fluids should fill the pore space, i.e.,VT = φVb, see section 2.1.4. Con-
sequently,φn/VT = n/Vb, and the leftmost integral in (2.1) properly represents
the time derivative of the component amounts averaged overVb. Furthermore, the
porosityφ is usually assumed to be a function of pressurep and a (constant) rock
compressibilitycR,

φ = φ̃ [1 + cR (p− p̃)] . (2.2)

Here,φ̃ is the reference porosity, given at some reference pressurep̃.
The discussion of sources/sinks is postponed to Chapter 3, while the general

form of the flux term is outlined below.

2.1.2 Darcy’s law

The components are distributed in fluid phases, e.g., oil, gas and water phases.
Actually, fluid flow is characterized by flow of phases rather than flow of the
individual components. Darcy’s law is the relation between the gradient of the
potential of a phasej and the phase volumetric flow rateuj, and can be written

uj = −kj
r

µj
K
(
∇p +∇P j

c − ρjg∇D
)
. (2.3)

Here,K is the absolute permeability (tensor),kj
r is the phase relative permeability,

µj is the phase viscosity,p is the pressure of one of the phases,P j
c is the capillary

pressure between phasej and the phase to which the pressurep belongs,ρj is
the phase mass density,g is the acceleration of gravity, andD is the depth in the
reservoir. Note thatuj is associated with a direction in space.

Using Darcy’s law, thei-th component flux in (2.1) can be expressed by

f̂i =

Np∑
j=1

cj
iξ

juj = −
Np∑
j=1

cj
iξ

jkj
r

µj
K
(
∇p +∇P j

c − ρjg∇D
)
, (2.4)

whereNp is the number of phases,cj
i is the fraction of componenti in phasej,

while ξj is the phase density. Note that either mass fractions and mass densities
or mole fractions and molar densities can be used. Consequently, thei-th mass
balance equation can be given in the form∫

Vb

∂

∂t

(
φ

ni

VT

)
dV −

∫
Vb

q̂i dV

−
∫

Sb

Np∑
j=1

cj
iξ

jkj
r

µj
K
(
∇p +∇P j

c − ρjg∇D
)
·~n dS = 0. (2.5)
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The absolute permeabilityK is given as input to the reservoir simulator, while
the relative permeabilitieskj

r and the capillary pressuresP j
c are (tabulated) func-

tions of the saturations

Sj =
V j

Vp

. (2.6)

Here,V j is the phase volume andVp is the size of the pore volume. The calcula-
tion of the other terms in (2.5) depends on the fluid characterization model.

2.1.3 Conservation of energy

The principle of energy conservation governs temperature variations in the reser-
voir. However, in this work, we only consider isothermal reservoirs, i.e., reser-
voirs where the temperature is assumed to be constant. Consequently, the energy
conservation equation is redundant.

2.1.4 Conservation of volume

The volume balance principle requires that the fluids must fill the pore volume
exactly, i.e.,

VT = Vp = φVb. (2.7)

Using (2.6), we may alternatively express (2.7) by

Np∑
j=1

Sj = 1. (2.8)

2.1.5 Phase equilibrium

In addition to the conservation requirements, we require an instantaneous ther-
modynamic equilibrium locally in the reservoir. This requirement is due to the
assumption that the distribution of components in phases at equilibrium is a much
more rapid process than the fluid flow.

Generally, the conditions of thermodynamic equilibrium are based on the sec-
ond law of thermodynamics, which implies that an equilibrium state is a stationary
point of maximum entropy. Consequently, it can be shown that pressure, temper-
ature and theNc component chemical potentials must be uniform in all phases at
thermodynamic equilibrium. This corresponds to(Np − 1) (Nc + 2) independent
phase equilibrium conditions. Here, the influence of gravity and surface tension
is neglected. For more details, see for instance [21, 22].

The form of the conditions of thermodynamic equilibrium depends on the fluid
characterization model, see section 2.3.
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2.2 State Variables

In the governing principles outlined above, many different variables are used to
describe the state of the reservoir system, i.e., pressure, component amounts, vol-
umes, densities, etc. However, due to the relations between the variables, e.g., the
phase equilibrium relations, only a minimum number of independent state vari-
ables is required to uniquely determine the state.

The state variables are classified as either intensive or extensive variables. Ex-
tensive variables, for instance volumes and component amounts, depend on the
extent of the system, while intensive variables, for instance pressure, mass/mole
fractions and densities, do not.

In the following, we consider the number of independent state variables. We
note that this number corresponds to the number of primary variables in the math-
ematical model.

2.2.1 Gibbs’ phase rule

A thermodynamic postulate says that, in order to describe the state of a simple
single-phase system ofNc components, we must giveNc + 2 independent vari-
ables. However, if we only want to describe the intensive properties, it is sufficient
to giveNc + 1 independent intensive variables.

If Np phases are at equilibrium, all of the intensive properties of all the phases
will be determined byNp(Nc + 1) intensive variables. At the same time, the
(Np − 1)(Nc + 2) phase equilibrium conditions must be fulfilled. Consequently,
the number of degrees of freedom is

Np(Nc + 1)− (Np − 1)(Nc + 2) = Nc −Np + 2. (2.9)

This is traditionally referred to asGibbs’ phase rule, [23]. By givingNc−Np +2
intensive variables, we may determine the intensive properties of all the phases.

However, we must also determine the relative amounts of each phase, e.g., the
saturations. Due to the volume balance requirement (2.8), onlyNp−1 saturations
are needed, and the number of independent variables becomes

Nc −Np + 2 + (Np − 1) = Nc + 1. (2.10)

To determine extensive properties, another variable must be added, and at least
one of theNc + 2 independent variables must be an extensive one. For an isother-
mal model, where temperature is a constant parameter rather than a variable, these
numbers reduce toNc andNc + 1.

In reservoir simulation, the bulk volumeVb, which is an extensive quantity,
is usually known. Consequently, for an isothermal model, the state is uniquely
described in terms ofNc independent primary variables plusVb.
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2.3 Fluid Characterization Models

Two different fluid characterization models are used in reservoir simulation, the
black-oil model and the compositional model. In the following, we consider the
characteristic features of these two models. For both models, we assume that the
water phase only consists of water, and that the water component is not present in
the oil and gas phases. Consequently, the only phase equilibrium that needs to be
considered is the one between oil and gas.

2.3.1 The black-oil fluid characterization model

In a black-oil model, the number of components other than water is limited to two
(pseudo) components, an oil component and a gas component. The oil, gas and
water components are referred to by subscriptso, g andw, respectively, while the
oil, gas and water phases are referred to by superscriptso, g andw, respectively.

In the classical black-oil model, see for instance [24, 25], the gas component
is allowed to dissolve in the oil phase, but the oil component is not allowed to
exist in the gas phase. However, in the modified black-oil model, e.g., [24, 26],
the oil and gas components may be present in both the oil and gas phases. For
generality, we consider the modified black-oil model, from which the classical
black-oil model can be obtained by cancelling some of the terms.

Characteristic features

A characteristic feature of the black-oil model is the use of standard conditions,
usually a pressure of 1 atmosphere and a temperature of 15.5◦C. At standard con-
ditions, the oil component coincides with the oil phase, while the gas component
coincides with the gas phase. The densities of oil, gas and water at standard con-
ditions,ξo

s , ξg
s andξw

s , are given (input) parameters. We note that the conventional
black-oil fluid characterization is in terms of masses and mass densities rather
than moles and molar densities.

The oil and gas volumes at reservoir conditions are denotedV o
r andV g

r , re-
spectively. Taken to standard conditions,V o

r corresponds to an oil volumeV o
s

and a gas volumeV dg
s (dissolved gas). This is due to the fact that gas boils out

of the oil phase when pressure is lowered. As illustrated in the phase diagram in
Figure 2.1, this process takes place to the left of the critical point.

Similarly, V g
r corresponds to a gas volumeV g

s and an oil volumeV vo
s (va-

porized oil) at standard conditions. Here, oil appears from the gas phase when
pressure is lowered. Referring to Figure 2.1, this process takes place in the region
to the right of the critical point, often referred to as the retrograde gas condensate
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CP

Two phase region

Single phase oil Single phase gas

T

p

Gas boils out
of the oil phase

Oil appears from the gas phase
(retrograde gas condensate region)

Figure 2.1: Phase diagram wherep is pressure andT is the absolute temperature.
At the critical point (CP), the phases are truly indistinguishable. Going from single
phase to two phase by a lowering of the pressure corresponds to gas boiling out of
the oil phase to the left of the critical point, and oil appearing from the gas phase
to the right of the critical point, i.e., in the retrograde gas condensate region.

region. We note that retrograde gas condensate cases are included in the modified
black-oil model, but not in the classical black-oil model.

For the water phase, the volumes at reservoir and standard conditions are de-
notedV w

r andV w
s , respectively.

Based on the above notation, it is convenient to introduce the formation vol-
ume factors (FVFs),

Bo =
V o

r

V o
s

, Bg =
V g

r

V g
s

, Bw =
V w

r

V w
s

, (2.11)

and the solution gas/oil ratio and the vaporized oil/gas ratio,

Rs =
V dg

s

V o
s

, Rv =
V vo

s

V g
s

, (2.12)

respectively.
If both the oil and gas phases are present at reservoir conditions, the number

of phases equals the number of components, and the intensive properties of the
phases are determined byNc−Np +2 = 2 intensive variables, according to (2.9).
A natural choice of state variables is pressure and temperature, where tempera-
ture is constant for an isothermal model. Consequently, all the parameters (2.11),
(2.12) can be given as functions of pressure. Here, the ratios (2.12) represent the
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phase equilibrium conditions between oil and gas. The case where both oil and
gas are present is referred to as the saturated black-oil case.

On the other hand, if the gas phase is absent at reservoir conditions, the re-
maining oil phase is referred to as undersaturated oil. We then need to specify
three intensive variables to uniquely determine the intensive phase properties. A
natural choice is pressure, temperature and the solution gas/oil ratioRs, which
represents the composition of the oil phase. Consequently, for undersaturated oil,
the oil formation volume factorBo depends on both pressure andRs.

Similarly, if the oil phase is absent at reservoir conditions, the remaining
gas phase is referred to as supercritical or undersaturated gas. Here, the natural
choice of independent state variables is pressure, temperature and the vaporized
oil/gas ratioRv, which represents the composition of the gas phase. For supercrit-
ical/undersaturated gas, the gas formation volume factorBg thus depends on both
pressure andRv.

Black-oil primary variables

To determine the relative phase amounts,Np − 1 saturationsSp are used. In
addition, we assume that the bulk volumeVb is known. Hence, the conventional
set ofNc black-oil primary variables is

up =

 p

Sp

R

 , (2.13)

whereR = Rs for undersaturated oil andR = Rv for supercritical/undersaturated
gas. In the saturated black-oil case,R is redundant as a primary variable.

Black-oil mass balance equations

The black-oil mass balance equations can be expressed explicitly in terms of pres-
sure, FVFs, saturations and the ratiosRs andRv, as shown in the following.

At reservoir conditions, the oil phase contains some amountno
g of the gas

component, and some amountno
o of the oil component, namely

no
g = ξg

s V dg
s = ξg

s Rs
V o

r

Bo
, no

o = ξo
s V o

s = ξo
s

V o
r

Bo
. (2.14)

Correspondingly, the gas phase contains

ng
g = ξg

s V g
s = ξg

s

V g
r

Bg
, ng

o = ξo
s V vo

s = ξo
s Rv

V g
r

Bg
. (2.15)
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Furthermore, the water phase consists of water only, so that

nw = nw = ξw
s V w

s = ξw
s

V w
r

Bw
. (2.16)

The oil, gas and water mass balance equations thus involve

φ
no

VT

= φ
no

o + ng
o

VT

= φ

(
ξo
s

So

Bo
+ ξo

s Rv
Sg

Bg

)
(2.17)

φ
ng

VT

= φ
ng

g + no
g

VT

= φ

(
ξg
s

Sg

Bg
+ ξg

s Rs
So

Bo

)
, (2.18)

φ
nw

VT

= φ ξw
s

Sw

Bw
, (2.19)

where (2.6) and (2.7) have been used. Furthermore, (mass) densities are given by

ξo =
no

g + no
o

V o
r

=
ξg
s Rs + ξo

s

Bo
, ξg =

ng
g + ng

o

V g
r

=
ξg
s + ξo

s Rv

Bg
, (2.20)

ξw =
nw

V w
r

=
ξw
s

Bw
, (2.21)

while the flux terms (2.4) depend on the calculation of

co
o ξo =

no
o

V o
r

=
ξo
s

Bo
, cg

o ξg =
ng

o

V g
r

=
ξo
s Rv

Bg
, (2.22)

co
g ξo =

no
g

V o
r

=
ξg
s Rs

Bo
, cg

g ξg =
ng

g

V g
r

=
ξg
s

Bg
, (2.23)

cw
w ξw = ξw =

ξw
s

Bw
. (2.24)

Consequently, using (2.5), the oil mass balance equation can be written∫
Vb

∂

∂t

[
φ

(
ξo
s

So

Bo
+ ξo

s Rv
Sg

Bg

)]
dV −

∫
Vb

q̂o dV

−
∫

Sb

ξo
sk

o
r

Boµo
K

(
∇p +∇P o

c −
ξg
s Rs + ξo

s

Bo
g∇D

)
·~n dS

−
∫

Sb

ξo
s Rvk

g
r

Bgµg
K

(
∇p +∇P g

c −
ξg
s + ξo

s Rv

Bg
g∇D

)
·~n dS = 0, (2.25)
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the gas mass balance is expressed by∫
Vb

∂

∂t

[
φ

(
ξg
s

Sg

Bg
+ ξg

s Rs
So

Bo

)]
dV −

∫
Vb

q̂g dV

−
∫

Sb

ξg
sk

g
r

Bgµg
K

(
∇p +∇P g

c −
ξg
s + ξo

s Rv

Bg
g∇D

)
·~n dS

−
∫

Sb

ξg
s Rsk

o
r

Boµo
K

(
∇p +∇P o

c −
ξg
s Rs + ξo

s

Bo
g∇D

)
·~n dS = 0, (2.26)

while the water mass balance is given by∫
Vb

∂

∂t

[
φξw

s

Sw

Bw

]
dV −

∫
Vb

q̂w dV

−
∫

Sb

ξw
s kw

r

Bwµw
K

(
∇p +∇Pw

c − ξw
s

Bw
g∇D

)
·~n dS = 0. (2.27)

Here, porosity is given by (2.2), the densities at standard conditions are con-
stant parameters, relative permeabilities and capillary pressures are functions of
the saturations, while viscosities are given as (tabulated) functions of pressure.
The phase equilibrium conditions are inherent in the parametersRs andRv, while
phase reappearance and disappearance can be controlled by tables of bubblepoint
and dewpoint pressures. The black-oil mass balance equations areNc primary
equations to be solved with respect to theNc primary variables (2.13).

We note that the oil, gas and water mass balance equations may be divided
by the standard densitiesξo

s , ξg
s andξw

s , respectively. The resulting equations then
represent balances on “standard volumes” rather than mass balances, [24].

2.3.2 The compositional fluid characterization model

In a compositional model, the number of components is arbitrary. This allows for
a more flexible fluid description than with a black-oil model, but adds complexity
to the calculations, as shown in the following.

General component characterization

The compositional fluid characterization model is based on a general component
characterization. For a (pseudo) component present in the oil and gas phases, a
sufficient set of characteristic component properties is

• critical temperatureTc,i,

• critical pressurepc,i,
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• critical molar volumeVc,i,

• molar massMi,

• acentric factorωi,

• binary interaction coefficientsdi,k between componentsi andk.

For water, the required input properties are the molar massMw, the molar density
ξ̃w at some reference pressurep̃ and the (constant) water compressibilitycw.

Tables of component properties can for instance be found in [27]. The proper-
ties are used as parameters in phase equilibrium calculations, density calculations
and viscosity calculations, as outlined below.

Phase equilibrium

In a compositional model, the number of (pseudo) components in the oil and gas
phases exceeds two, and no simple equilibrium relations of the form (2.12) can be
proposed. Consequently, the general phase equilibrium conditions, i.e., equalities
of component chemical potentials in all phases, must be considered.

The chemical potentialµj
i of componenti in phasej can be expressed by

µj
i = µid

i (T, p0) + RT ln
f j

i

p0

, (2.28)

whereµid
i is the ideal-gas contribution,R = 8.3145 J/(K mol) is the universal gas

constant,T is the absolute temperature,f j
i is the fugacity of componenti in phase

j andp0 is some constant reference pressure, see for instance [21]. The fugacity
f j

i is interpreted as the tendency of componenti to escape from phasej, and is
often written in the form

f j
i = pcj

iφ
j
i , (2.29)

whereφj
i denotes the fugacity coefficient of componenti in phasej.

For an equilibrium between two phaseso andg, the equality of chemical po-
tentials is equivalent to the fugacity equality

f o
i − f g

i = 0, (2.30)

and to the equality
cg
i

co
i

=
φo

i

φg
i

, (2.31)

when (2.29) and the requirement of uniform pressure in the phases is used.
Expressions for chemical potentials, fugacities and fugacity coefficients are

generally obtained from a state function, e.g., the Gibbs energy function or the
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Helmholtz energy function, see [22]. However, the complexity of the general state
functions has motivated the use of cubic equations of state, which approximate
the thermodynamic behaviour and thereby the general state functions. A cubic
equation of state for a phasej can be written(

Zj
)3

+ c2

(
Zj
)2

+ c1Z
j + c0 = 0, (2.32)

and is solved with respect to the so-called compressibility factorZj, defined by

Zj =
pV j

njRT
. (2.33)

Here,nj is the number of moles of phasej. The coefficientsc2, c1 andc0 depend
on pressure, temperature and phase mole fractionscj

i , and are based on empirical
component mixing rules that take the characteristic component properties into ac-
count. Consequently, the fugacities and fugacity coefficients of (2.29), calculated
with the use of a cubic equation of state, also depend on pressure, temperature and
phase mole fractions.

We note that (2.32) has three roots, some of them possibly complex. How-
ever, the equilibrium solution should correspond to a stationary point of minimum
Gibbs energy, which is a equivalent to a entropy maximum, see [22]. Conse-
quently, the smallest real root is usually chosen for the oil phase, while the largest
real root is usually chosen for the gas phase.

Many different cubic equations of state have been proposed, and an overview
can for instance be found in [26]. In reservoir simulation, the Peng-Robinson
equation of state, [28], is commonly used. Details on the calculation of com-
pressibility factors, fugacities and fugacity coefficients with the Peng-Robinson
equation of state are provided in section 4.4.

Density and viscosity calculations

In a compositional model, the molar densities and mass densities of the oil and
gas phases are calculated by

ξj =
nj

V j
=

p

RTZj
, ρj = ξj

Nc∑
i=1

cj
iMi, (2.34)

where (2.33) is used. Furthermore, water densities are calculated by

ξw = ξ̃w (1 + cw(p− p̃)) , ρw = Mwξw. (2.35)

The viscosities of the oil and gas phases are assumed to depend on pressure,
temperature and phase mole fractions, and may for instance be calculated by the
Lohrenz-Bray-Clark (LBC) method, [29]. Details on the LBC method are given
in section 4.5. The water viscosity is most often assumed to be constant. Alterna-
tively, it can be given as a function of pressure.
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Note We note that fugacities, densities and viscosities are given in terms of
pressure, temperature and the phase mole fractionscj

i . Alternatively, since

cj
i =

nj
i

nj
, nj =

Nc∑
k=1

nj
k, (2.36)

wherenj
i is the mole number of componenti in phasej, we may express fu-

gacities, densities and viscosities in terms of pressure, temperature and the mole
numbers of the components in all the phases,

nj =
[
n1

1, n
1
2, . . . , n

1
Nc

, . . . . . . n
Np

1 , n
Np

2 , . . . , n
Np

Nc

]T
. (2.37)

The mole fractionscj
i are required to sum to unity, while the mole numbersnj

i are
not. Consequently, the use of (2.37) may be computationally convenient.

Compositional mass balance equations

The compositional mass balance equations involve the calculation of

φ
ni

VT

=
φ

VT

Np∑
j=1

cj
iξ

jV j = φ

Np∑
j=1

cj
iξ

jSj, (2.38)

where (2.6) and (2.7) have been used. Consequently, (2.5) can be written∫
Vb

∂

∂t

[
φ

Np∑
j=1

cj
iξ

jSj

]
dV −

∫
Vb

q̂i dV

−
∫

Sb

Np∑
j=1

cj
iξ

jkj
r

µj
K
(
∇p +∇P j

c − ρjg∇D
)
·~n dS = 0. (2.39)

Here, porosity is given by (2.2), densities are calculated by (2.34) and (2.35),
relative permeabilities and capillary pressures are functions of the saturations, oil
and gas viscosities may be calculated as functions of pressure, temperature and
phase mole fractions, while the water viscosity is constant or a function of pres-
sure. We note that the only non-zerocj

i in the water mass balance equation is the
fraction of water in the water phase,cw

w = 1.
Unfortunately, unlike the black-oil mass balance equations, the compositional

mass balance equations cannot be written explicitly in terms of onlyNc primary
variables. This is due to the complexity and nonlinear nature of the phase equi-
librium conditions (2.30). Consequently, the notion of primary and secondary
variables must be introduced, as outlined below.
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Compositional primary and secondary variables

The mass balance equations (2.39) can clearly be written explicitly in terms of
pressure, saturations and component mole fractions. An alternative set of variables
is pressure and the phase mole numbersnj , due to (2.36) and

Sj =
V j

Vp

=
nj

ξjφVb

= Sj
(
p, nj

)
. (2.40)

Generally, we letu contain a set of variables such that all properties (and
equations) can be written explicitly in terms ofu. The setu can be separated into
two parts,

u =

[
up

us

]
, (2.41)

whereup containsNc primary variables, whileus containsNs secondary vari-
ables. We require that the primary variables are independent, i.e., that a primary
variable cannot be expressed in terms of the other primary variables. In an isother-
mal model where the bulk volumeVb is known, theNc primary variables then
uniquely determine all the properties of the system, as outlined in section 2.2.1.
However, the determination of the secondary variablesus depends onNs relations

rs (u) = 0, (2.42)

which, due to the phase equilibrium relations, contain inherent nonlinearities.
The solution of a set of nonlinear equations requires an iterative approach.

With such an approach, theNc primary variables can be determined by solving
the Nc mass balance equations, while theNs secondary variables can be deter-
mined by solving theNs secondary relations (2.42). Iterative solution schemes
are discussed in section 3.3.

The need for an iterative solution of the phase equilibrium equations is a char-
acteristic feature of the compositional model, and is one of the reasons why black-
oil simulators may be significantly more efficient than compositional simulators.

Note We note that there is a certain amount of freedom involved in the choice of
u. The only requirements onu are that the primary variables must be independent,
that there must existNs independent relations of the form (2.42) that relate the
secondary variables to the primary variables, and that we must be able to express
all properties explicitly in terms ofu. The choice of primary variablesup is
especially important, as it determines the properties of the iterative scheme for
solving the fluid flow equations.
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2.4 Unified Black-Oil and Compositional Model

Although the phase equilibrium is treated differently in the black-oil and compo-
sitional models, the primary equations of both models are mass balance equations.
However, the conventional compositional primary variables are pressure and com-
ponent mole numbers (or overall mole fractions), e.g., [6], while the conventional
black-oil primary variables are given by (2.13). Both sets are chosen for com-
putational efficiency. Still, the development of an efficient unified black-oil and
compositional model is an important objective of research, since such a model
would reduce the simulator development and maintenance costs significantly. A
framework for a unified black-oil and compositional model is given below.

2.4.1 General framework

For a unified black-oil and compositional model, the compositional primary vari-
ables must include the set (2.13). This is obtained by

up =


p

Sp

xp

 , (2.43)

whereSp containsNp − 1 saturations, whilexp containsNc − Np additional
variables. Here, the general black-oil case is included, provided thatxp reduces
to the solution gas/oil ratioRs in the undersaturated oil case, and to the vaporized
oil/gas ratioRv in the supercritical/undersaturated gas case.

The choice ofxp for the compositional part of the model is one of the main
issues in this thesis. Generally, we may assume that

xp = xp

(
p, nj

)
, (2.44)

since all properties can be written explicitly in terms of pressure and the phase
mole numbers. The variablesxp should ideally be chosen so that the efficiency
of the resulting iterative scheme is comparable to or better than the efficiency of
the conventional compositional scheme. Different choices ofxp are discussed in
Papers A and B, included at the end of the thesis.

In addition to the choice of primary variables (2.43), we must choose a set of
Ns secondary variablesus so that all properties can be written explicitly in terms
of the primary and secondary variables. One alternative is to choose

us = nj . (2.45)
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With this choice,Ns = Np Nc. TheNs required relations (2.42) could then be the
(Np − 1) Nc phase equilibrium conditions, theNp volume relations

φVbS
j − nj

ξj
= 0, j = 1, . . . , Np, (2.46)

plus theNc−Np relations (2.44). However, other sets of secondary variables and
equations may of course be used.

We note that the specification of theNs relations (2.42) may imply a choice
between exact volume balance and exact mass balance, as discussed in Paper C.

For the rest of the thesis, the main focus is on the compositional part of a
unified black-oil and compositional model. Consequently, we do not discuss the
black-oil model any further, but assume that the compositional model reduces to
the conventional black-oil model when used with black-oil fluid properties.

We also note that the mathematical model presented above is complete once
a set of initial and boundary conditions are given. Initialization is discussed in
section 3.2, and we use no-flow boundary conditions.





Chapter 3

Numerical Model

In this chapter, we present a numerical model for solving the equations presented
in Chapter 2. We first set up a discretization of the mass balance equations, and
outline a procedure for determining the initial state. We then propose an itera-
tive solution of the equations. In addition, we consider a reformulation of the
mass balance equations into volume balance equations and additional conserva-
tion equations, and different time schemes, i.e., fully implicit (FIM), pressure im-
plicit (IMPES) and pressure and saturation implicit (IMPSAT). Finally, we discuss
timestep selection, convergence criteria and phase disappearance/reappearance.

3.1 Discretization

In the following, we present a discretization of the mass balance equations (2.1)
in time and space, including a general flux discretization and a simple well dis-
cretization. The framework is a general control-volume discretization.

3.1.1 Control-volume discretization

In a control-volume discretization, the reservoir is divided into gridblocks, gen-
erally of varying sizeVb. The mass balance equations (2.1) apply to every grid-
block, and the same expression for the flux through an interface is used for both
gridblocks incident on the interface. Consequently, the discretization yields both
local and global mass conservation.

Furthermore, the variables of a gridblock are assumed to represent an average
over the gridblock, and are assigned to the centre of the gridblock. AssumingVb

to be fixed in time, the accumulation term of (2.1) becomes∫
Vb

∂

∂t

(
φ

n

VT

)
dV =

∂

∂t

(
φ

n

VT

)∫
Vb

dV =
∂

∂t

(
φ

n

VT

)
Vb =

∂n

∂t
, (3.1)
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whereVT = φVb has been used. The other terms in (2.1) are

f =

∫
Sb

f̂ ·~n dS, q =

∫
Vb

q̂ dV = q̂ Vb. (3.2)

Consequently,f andq areNc vectors of component flow rates and source rates,
respectively. Discretizations of these terms are outlined in sections 3.1.3 and 3.1.4.

3.1.2 Time discretization

We assume that the reservoir state is known at some timetn−1, possibly by the
initialization procedure presented in section 3.2, and aim at determining the state
at a later timetn = tn−1 + ∆t, where∆t is the timestep. The conventional mass
conservative discretization of the time derivative (3.1) is

∂n

∂t
' ∆n

∆t
=

nn − nn−1

∆t
, (3.3)

where superscriptsn andn − 1 denote evaluation at time levelstn andtn−1, re-
spectively. Consequently, the discretized version of (2.1) can be written

rc = ∆n + (f − q) ∆t = 0. (3.4)

The source termsq are usually evaluated at time leveltn. The time level at which
the interblock flow termsf are evaluated is discussed in section 3.5.

3.1.3 Flux discretization

According to (2.4), the interblock flow termsf = [f1, . . . , fNc ]
T are given by

fi =

∫
Sb

f̂i ·~n dS = −
∫

Sb

Np∑
j=1

cj
iξ

jkj
r

µj

(
K∇Ψj

)
·~n dS, (3.5)

where
∇Ψj = ∇p +∇P j

c − ρjg∇D. (3.6)

We assume that the surfaceSb consists of interfacesSγ with unit normals~nγ.
For each interface, we let the discretized flow ratef j

i,γ of componenti in phasej
be denoted

f j
i,γ = Λj

i,γT
j
γ , (3.7)

and calculate the discretized component flow ratefi as the sum of (3.7) over all
phases and interfaces. Here,Λj

i,γ is the generalized mobility over the interface,
defined by

Λj
i,γ =

cj
iξ

jkj
r

µj
. (3.8)
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For stability reasons, the generalized mobility is evaluated upstream, i.e., in the
gridblock for whichf j

i,γ is an outflux. Consequently, it is taken outside the integral
sign of (3.5). Furthermore,T j

γ is referred to as the phase flow factor through the
interface, and defines an integral approximation

T j
γ =

∑
η ∈Iγ

tη,γΨ
j
η,γ ≈ −

∫
Sγ

(
K∇Ψj

)
·~nγ dS. (3.9)

The index setIγ represents the set of gridblocks used in the approximation, re-
ferred to as the flux molecule of the interface. The quantitytη,γ is called the
transmissibility of gridblockη in the flux molecule, while

Ψj
η,γ = pη + P j

c,η − ρj
γ g Dη. (3.10)

Here, pη is the pressure of gridblockη, while P j
c,η is the capillary pressure of

phasej in that gridblock,g is the acceleration of gravity andDη is the gridblock
depth. The quantityρj

γ should be a representative mass density of phasej flowing
through the interface. A proper choice is the saturation weighted average of the
mass densities in the two gridblocks incident on the interface, here denoted with
subscriptsα andβ, i.e.,

ρj
γ =

Sj
α ρj

α + Sj
β ρj

β

Sj
α + Sj

β

. (3.11)

The transmissibilitiestη,γ depend on the absolute permeabilities of the grid-
blocks in the flux molecule and the grid geometry of the flux molecule, and
can for instance be calculated by the multipoint flux approximation (MPFA) O-
method, [30]. For a quadrilateral grid, this method generally leads to a 6-point
flux molecule in 2D and an 18-point flux molecule in 3D. Consequently, since the
interblock flow termsf involve a sum of contributions from all interfaces of a
gridblock, these terms may depend on potential values (3.10) from 9 gridblocks
in 2D and from 27 gridblocks in 3D.

The MPFA O-method handles grid skewness and heterogeneities and
anisotropies in the permeability field in a proper way. For details, see [30].

3.1.4 Well discretization

The source termsq = [q1, . . . , qNc ]
T in (3.4) are due to wells in the reservoir. For

simplicity, we only consider vertical wells with a single block-centred connection,
and two types of well control, fixed bottom hole pressure (for production wells)
and fixed single phase surface rate (for injection wells).

The flow path between the well bore of a well and a gridblock in which the
well is completed is called a well connection. The component source rate due to
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a well connectionw can generally be written

qi = −
Np∑
j=1

Λj
wi Tw

(
p + P j

c − pw − ph

)
, (3.12)

whereΛj
wi is the generalized mobility of the connection,Tw is the connection

transmissibility factor,p is the gridblock pressure,P j
c is the gridblock capillary

pressure of phasej, while pw is the well bottom hole pressure andph is the well
bore pressure head between the connection and the bottom hole datum depth.
For wells with a single block-centred connection, the location of the connection
coincides with the bottom hole datum depth, andph is zero. For simplicity, we
also neglect capillary pressures.

For production wells, the generalized mobilityΛj
wi of the connection equals

the generalized mobility of the gridblock,

Λj
wi =

cj
iξ

jkj
r

µj
, (3.13)

corresponding to an upstream evaluation. For injection wells, it is calculated as
the total generalized mobility of the injected phases in the gridblock,

Λj
wi =

Np,inj∑
k=1

ck
i ξ

kkk
r

µk
. (3.14)

For both types of wells, the connection transmissibility factor is given by

Tw =
2πKh

ln (r0/rw)
, (3.15)

where2π indicates that the connection is block-centred,Kh is the effective per-
meability times net thickness of the connection,r0 is the so-called pressure equiv-
alent radius andrw is the well bore radius.

For vertical wells, the effective permeability is calculated as the geometric
mean of thex- andy-direction permeabilities,Kx andKy, and the net thickness
is represented by the vertical dimension of the gridblock,∆z, so that

Kh = (KxKy)
1/2 ∆z. (3.16)

The pressure equivalent radiusr0 is defined as the distance from the well at which
the local pressure equals the (average) gridblock pressure, and is given by, [31],

r0 = 2 · 0.1403649 ·
[
∆x2(Ky/Kx)

1/2 + ∆y2(Kx/Ky)
1/2
]1/2

(Ky/Kx)1/4 + (Kx/Ky)1/4
. (3.17)
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The expression (3.17), referred to as Peaceman’s formula, is valid for rectangular
gridblocks in which the anisotropies in the permeability are aligned with the grid,
and the well is assumed to penetrate the full thickness of the block, perpendicu-
larly to two of its faces, [31, 32]. Here,∆x and∆y are the horizontal dimensions
of the gridblock.

Fixed bottom hole pressure control (production wells)

For production wells, we may specify a fixed value of the bottom hole pressure
pw which is below the gridblock pressurep. Consequently, if the state of the
gridblock is known, component source rates are readily calculated from (3.12),
with ph = 0 andP j

c = 0.

Fixed single phase surface rate control (injection wells)

For injection wells, we may specify a single phase volumetric rateQk
s at surface

conditions, together with the overall compositionz = [z1, . . . , zNc ]
T of the in-

jected phasek. Here,zi is the fraction of componenti to the total amount of
injected fluid. Surface conditions usually refer to a pressure of 1 atmosphere and
a temperature of 15.5◦C. By a conventional phase equilibrium calculation with
z and the surface conditions, see section 3.2.2, we may determine the densityξk

s ,
and thereby the component rates

qi = zi ξ
k
s Qk

s . (3.18)

We note that the component rates are the same at both surface conditions and
reservoir conditions.

3.2 Initialization

Before we can start a simulation run, we must specify the initial reservoir state, as
outlined in the following.

3.2.1 General requirements

For a proper initialization, the phases should be at thermodynamic equilibrium,
and no fluid flow should occur unless wells are introduced in the reservoir.

The phase equilibrium is determined by (2.30). In addition, due to Darcy’s
law (2.3), the hydrostatic equilibrium condition

∆p− ρjg ∆D = 0 (3.19)
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CP

Two phase region

Single phase oil Single phase gas

T

p

λg = 0 λg = 1

λg ∈ (0, 1)

Figure 3.1: Phase diagram for some overall mole fractionsz. The critical point
(CP) is the point at which the phases are truly indistinguishable.

must also be fulfilled. In (3.19), the operator∆ gives the difference between
values of two neighbouring gridblocks, and we have neglected capillary pressures.

If gravity is not included, e.g., for horizontal flow, (3.19) requires the initial
pressure to be uniform in the reservoir. Consequently, only the phase equilibrium
condition (2.30) must be considered, and we may use a conventional two-phase
equilibrium calculation for the initialization of the oil and gas phases. In addition,
the initial water saturation must be specified. However, if gravity is included,
we should use a gravity/chemical equilibrium calculation. Both procedures are
discussed below.

3.2.2 Conventional two-phase equilibrium

A conventional two-phase equilibrium calculation is based on a specification of
pressure, temperature and the overall mole fractionsz of the components that may
be present in the two phases. The result of the calculations are the overall phase
fractionsλ = [λo, λg]T and the phase mole fractionsc = [co, cg], where

λj =
nj

no + ng
, cj =

[
cj
1, . . . , c

j
Nc

]T
. (3.20)

The phase fractionλg can be illustrated in a phase diagram for the overall mole
fractionsz, see Figure 3.1. We observe thatλg is determined by a specification of
pressure and temperature in the phase diagram.
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The Rachford-Rice equation

The overall mole fractionsz = [z1, . . . , zNc ]
T can be expressed by

zi = λoco
i + λgcg

i = (1− λg) co
i + λgcg

i = (1− λg + λgKi) co
i , (3.21)

where we have introduced the K-values

Ki =
cg
i

co
i

. (3.22)

From (3.21) we deduce that

co
i =

zi

1 + (Ki − 1) λg
. (3.23)

Furthermore, since the phase mole fractions must sum to unity, we find that

Nc∑
i=1

(co
i − cg

i ) = 0 ⇔
Nc∑
i=1

(Ki − 1) co
i = 0, (3.24)

which may be combined with (3.21) to yield

Nc∑
i=1

(Ki − 1) zi

1 + (Ki − 1) λg
= 0. (3.25)

Equation (3.25) is often referred to as the Rachford-Rice equation, due to [33].

Successive substitution

According to (2.31), the phase equilibrium is determined by

Ki =
φo

i

φg
i

, (3.26)

where (3.22) has been used. If an estimate for the K-values is known, we may
determineλg from (3.25) and phase mole fractions from (3.23) and (3.22). Con-
sequently, we have an estimate of the phase equilibrium.

Initial K-values can be obtained with the Wilson correlation,

ln Ki = ln
pc,i

p
+ 5.373 (1 + ωi)

(
1− Tc,i

T

)
, (3.27)

see for instance [22], while subsequent K-value estimates can be obtained by
calculating the fugacity coefficientsφj

i as functions of pressure, temperature and
phase mole fractions, see section 4.4, and using (3.26).
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However, we note thatλg as determined by (3.25) may not be in(0, 1). If
λg ≤ 0, we should setλg = 0 and conclude that the equilibrium is a single phase
oil equilibrium, i.e.,co

i = zi. If λg ≥ 1, we should setλg = 1 and conclude
that the equilibrium is a single phase gas equilibrium, i.e.,co

i = zi. Due to the
nonlinear nature of (3.25), a careful solution strategy is required, see [22].

The approach outlined above is referred to as successive substitution, and ex-
perience shows that the estimates eventually converge to the proper equilibrium
solution. Unfortunately, the convergence may be slow, especially near the critical
point. Some acceleration techniques have therefore been proposed. Alternatively,
the successive substitution approach can be used to obtain a proper initial estimate
for a solution of (2.30) by Newton’s method. For further details on (accelerated)
successive substitution and other methods for efficient calculation of a two-phase
equilibrium, we refer to [22].

Note To determine the oil and gas saturations, we use (2.33) in the form

nj =
pφVbS

j

RTZj
(3.28)

and the definition ofλj in (3.20) to derive

λgZgSo − λoZoSg = 0. (3.29)

Here,Zj = Zj (p, cj) is determined by a solution of the cubic equation of state
(2.32). Since the saturations must sum to unity, we find that

Sj =
λjZj

λoZo + λgZg
(1− Sw) . (3.30)

for j = o, g, whereSw is given as input. Consequently, since pressure, saturations
and the phase mole fractions are known, all fluid properties can be calculated.

3.2.3 Gravity/chemical equilibrium

In a reservoir at gravity/chemical equilibrium, the components and phases are
distributed with depth according to their (average) molar mass. Consequently, the
gas phase is situated above the oil and water phases, and the oil phase is situated
above the water phase. The interface between the gas and oil phases is referred
to as the gas-oil contact (GOC), while the interface between the oil phase and the
water phase is referred to as the water-oil contact (WOC).

In the following, for simplicity, we neglect capillary pressures. Consequently,
the contacts between the phases are sharp, and there is no two-phase equilibrium
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in the reservoir initially. Furthermore, all saturations attain their maximum values
wherever they are present. The positions of the gas-oil and water-oil contacts are
required as input for the initialization.

For the oil and gas phases, the distribution of components with depthD within
the reservoir is determined by

f j
i (D)− f j

i (Dref) e
Mig

RT
(D−Dref) = 0, (3.31)

wheref j
i (D) is the fugacity at depthD, while f j

i (Dref) is a known fugacity at
some reference depthDref . A derivation of (3.31) from a general thermodynamic
equilibrium requirement is given in Paper E, which is included at the end of the
thesis. The relations (3.31) can be linearized and solved with respect to pressure
and the overall mole fractions at depthD. Here, the calculation of reference
fugacities relies on a specification of pressure and mole fractions at depthDref .

Actually, a solution of (3.31) satisfies the hydrostatic equilibrium condition
(3.19). Furthermore, the amount of heavier components increases with depth,
while the amount of lighter components decreases with depth. For further details,
we refer to Paper E.

Below the water-oil contact, we may solve (3.19) directly with respect to pres-
sure, since the water density is given as a linear function of pressure, (2.35).

Note A stringent gravity/chemical equilibrium with the use of (3.31) is not al-
ways considered in a reservoir simulator. More commonly, the initial overall
composition versus depth and pressure at some reference depth are given, and
an approximate solution of (3.19) is sought by a successive substitution approach,
i.e., by repeated estimates of pressure and densities, see for instance [16]. Conse-
quently, if the given overall composition versus depth is in accordance with (3.31),
the corresponding initial equilibrium is good. Otherwise, for instance if the same
initial overall composition is used for all depths, the initial state may be far from
equilibrium. A poor initial equilibrium could lead to initial convergence problems
when solving the mass balance and phase equilibrium equations.

3.3 Iterative Solution Schemes

A characteristic feature of the compositional mass balance and phase equilibrium
equations presented in Chapter 2 is that they are nonlinear with respect to any set
of state variables. Consequently, in order to solve the equations, we must linearize
them and use an iterative solution approach.

In the following, we present a general Newton-Raphson scheme for solving
the nonlinear equations that determine the reservoir state. We present one version
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which includes both primary and secondary equations and variables in a simulta-
neous iteration, and another version which involves a splitting of the scheme into
a primary and a secondary iteration.

3.3.1 Simultaneous Newton-Raphson iteration

With no lack of generality, we use the notation introduced in section 2.3.2 and
assume that all of the equations can be expressed explicitly in terms of

u =

[
up

us

]
, (3.32)

whereup is aNc vector of primary variables, whileus is aNs vector of secondary
variables. Furthermore, we assume thatNc primary equations

rp (u) = 0 (3.33)

are chosen, together withNs secondary relations

rs (u) = 0. (3.34)

The primary equations are the discretized mass balance equations (3.4), pos-
sibly reformulated, see section 3.4. The secondary relations contain the phase
equilibrium conditions (2.30) and possibly some other relations, see section 2.4.

In order to set up a Newton-Raphson scheme, we assume that some guessu(k)

for the solution of (3.33) and (3.34) is known. The guess could for instance be
the current state. We then linearize the equations in a neighbourhoodu(k+1) =
u(k) + ∆u(k+1) of the guess, i.e.,

r(k+1)
p = r(k)

p +

(
∂rp

∂up

)(k)

us

∆u(k+1)
p +

(
∂rp

∂us

)(k)

up

∆u(k+1)
s + εp, (3.35)

r(k+1)
s = r(k)

s +

(
∂rs

∂up

)(k)

us

∆u(k+1)
p +

(
∂rs

∂us

)(k)

up

∆u(k+1)
s + εs. (3.36)

Here, subscriptsus andup indicates which variables are kept fixed in the partial
differentiation. The termsεp andεs are of order

O
((

∆u(k+1)
)2)

. (3.37)

Furthermore, by settingr(k+1)
p = 0 andr

(k+1)
s = 0 and neglectingεp andεs, we

obtain (
∂rp

∂up

)(k)

us

∆u(k+1)
p +

(
∂rp

∂us

)(k)

up

∆u(k+1)
s = −r(k)

p , (3.38)
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and (
∂rs

∂up

)(k)

us

∆u(k+1)
p +

(
∂rs

∂us

)(k)

up

∆u(k+1)
s = −r(k)

s . (3.39)

Equations (3.38) and (3.39) areNc+Ns linear equations in theNc+Ns solution
changes∆u(k+1), and can be used to determine a new solution guessu(k+1). If
the new guess is not a satisfactory solution, we proceed to the next iteration level,
thus repeating the linearization and determining yet another solution guess.

Provided that the initial guessu(0) is sufficiently close to the solution of (3.33)
and (3.34), the Newton-Raphson scheme (3.38) and (3.39) converges to the solu-
tion of these equations. Furthermore, provided that the derivatives ofrp andrs

are calculated correctly (analytically),

∆u(k+1) = O
((

∆u(k)
)2)

, (3.40)

i.e., the convergence is quadratic.

3.3.2 Primary and secondary Newton-Raphson iteration

The Newton-Raphson scheme (3.38), (3.39) solves both the primary and sec-
ondary equations simultaneously. Alternatively, we may use the implicit rela-
tionship

us = us (up) (3.41)

to split the scheme into a primary and a secondary iteration.
Let us assume thatu, consisting ofup andus, corresponds to a solution of

the secondary equations (3.34), but not necessarily to a solution of the primary
equations (3.33). By differentiating through (3.34) with respect toup, taking
advantage of (3.41), we find that(

∂rs

∂up

)
us

+

(
∂rs

∂us

)
up

dus

dup

= 0. (3.42)

Equation (3.42) can be solved with respect todus/dup, which are the total deriva-
tives of the secondary variables with respect to the primary variables.

With the use of (3.41), we may also write the residuals of the primary equa-
tions as

rp = rp (up, us (up)) , (3.43)

so that the Newton-Raphson iteration for determining the primary variablesup

becomes [(
∂rp

∂up

)
us

+

(
∂rp

∂us

)
up

dus

dup

](k)

∆u(k+1)
p = −r(k)

p . (3.44)
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Here, the term in brackets is the total derivative ofrp with respect toup.
Furthermore, at the end of each iteration step with (3.44), the residuals of the

secondary equations can be written

rs = rs

(
u(k+1)

p , u(k)
s

)
, (3.45)

where the primary variablesu(k+1)
p are known. A Newton-Raphson scheme for

determiningu(k+1)
s is then(

∂rs

∂us

)(l)

up

∆u(l+1)
s = −r(l)

s . (3.46)

The secondary iteration (3.46) is carried out until convergence, with the primary
variables kept fixed. A proper initial guess is

u(l=0)
s = u(k)

s +

(
dus

dup

)(k)

∆u(k+1)
p . (3.47)

Consequently, at the end of the secondary iteration (3.46), we have determined

u(k+1) =

[
u

(k+1)
p

u
(k+1)
s

]
, (3.48)

which is a solution of the secondary equations (3.34), but not necessarily a so-
lution of the primary equations (3.33). The total derivativesdus/dup can then
be determined from (3.42), and we may proceed with the primary iteration (3.44)
until a satisfactory solution of the primary equations is obtained. Provided that all
derivatives are calculated correctly (analytically), convergence of both the primary
and the secondary iteration will be quadratic near the true solution.

We refer to the scheme outlined above as thesplitted scheme. An advantage
of the splitted scheme is that the challenges of the secondary equations, e.g., the
phase equilibrium challenges, are left out of the primary iteration. Consequently,
fewer iteration steps may be required for the primary iteration, which, due to the
interblock couplings of the flow equations, is expected to be the most costly of the
two iterations.

In addition, the splitted scheme is convenient when dealing with reformula-
tions of the mass balance equations and different time schemes. As will be shown
in section 3.4, a volume balance reformulation is based on the calculation of par-
tial molar volumes. Such a calculation is outlined in section 4.10, and requires
that the phase equilibrium is determined at every stage, i.e., that the secondary
equations are solved at every primary iteration step. Furthermore, a rigorous eval-
uation of terms with primary variables at different time levels requires the use of
a relation of the form (3.41), as shown in section 3.5.
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3.3.3 A comment on exact fulfilment

Due to the nonlinear nature of the equations, an iterative scheme usually deter-
mines the reservoir state only within some tolerance. However, for some relations,
exact fulfilment can be obtained. Typically, exact volume balance,

Np∑
j=1

Sj = 1, (3.49)

is obtained by determiningNp − 1 saturationsSp and calculating the remaining
saturation directly from (3.49). On the other hand, exact mass balance can be
obtained by determining the interblock flow termsf and the source termsq from
the primary variables, and using the direct update

n = nn−1 − (f − q) ∆t (3.50)

when determining the secondary variables. However, exact mass balance and
exact volume balance cannot be obtained simultaneously. Exact mass balance
versus exact volume balance is discussed in Paper C.

3.4 Reformulation of Mass Balance Equations

For improved performance of the iterative schemes presented above, there should
be a natural relation between the primary variables and the primary equations.
Such natural relations are also the basis for a sequential solution approach, where
the system of primary equations is divided into parts that are solved separately.

An illustrative example of a natural relation is the relation between the com-
ponent amounts and the mass balance equations. In the following, we consider
a reformulation of the mass balance equations into alternative primary equations
that are naturally related to pressure, saturationsSp and the variablesxp, which
are the primary variables introduced in section 2.4. For other discussions related
to equation reformulations, we refer to [34, 35, 36].

3.4.1 Volume balance equations

Pressure and saturations are naturally related to the total volumeVT and the phase
volumes, respectively. If we assume thatSp contains the oil and water saturations,
the volumes that naturally relate to(p, Sp) are

V =


VT

V o

V w

 . (3.51)
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Since pressure and the component mole numbersn areNc + 1 independent
variables that give a complete description of all extensive and intensive properties
of the system, see section 2.2, we may writeV = V (p, n). Furthermore, we note
that volumes are homogeneous functions of first degree in the mole numbers, i.e.,

V (p, νn) = νV (p, n) , (3.52)

for some scalarν. Consequently, by differentiating through (3.52) with respect to
ν, we find that

V =

(
∂V

∂n

)
p

n = WV n, (3.53)

where theNp ×Nc matrixWV contains the partial molar volumes. A calculation
of partial molar volumes is outlined in section 4.10. We note that this calculation
requires that the phase equilibrium equations are fulfilled, e.g., that the splitted
Newton-Raphson scheme presented in section 3.3.2 is used.

The relation (3.53) motivates a reformulation of the mass balance equations
(3.4), denotedrc = 0, into volume balance equations by

rVBE = WV rc = 0. (3.54)

The differential form of the volume balance equations (3.54) was derived by
Watts, [9], extending the work of́Acs, Doleschall and Farkas, [8]. Watts’ starting
point was the differential form of the mass balance equations,

∂

∂t

(
φ

z

vT

)
+∇ · f̂ − q̂ = 0, (3.55)

wherez = (1/nT) n is the overall composition,vT = VT/nT is the total specific
volume andnT is the total amount of components. The form (3.55) is derived
from the integral form (2.1) by writing the surface integral as a volume integral
and requiring the overall volume integrand to be zero, based on an assumption of
continuity. We note that∇ · is taken for each component of̂f .

Watts showed that a weighting of (3.55) by the total partial molar volumes
(∂VT/∂n)p yields a pressure equation of the form

∂φ

∂t
− φ

vT

(
∂vT

∂p

)
z

∂p

∂t
+

(
∂VT

∂n

)
p

(
∇ · f̂ − q̂

)
= 0, (3.56)

while a weighting by(∂V j/∂n)p, yields a saturation equation of the form

∂

∂t

(
φSj

)
− φ

vT

(
∂vj

∂p

)
z

∂p

∂t
+

(
∂V j

∂n

)
p

(
∇ · f̂ − q̂

)
= 0, (3.57)
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wherevj = V j/nT is the specific volume of phasej.
The equations (3.56) and (3.57) are easily interpreted as volume balance equa-

tions, as they are written in terms of changes to the pore volume, volume changes
due to the fluid compressibility and volume changes due to fluxes and source
terms. For a discussion of the use of the volume balance equations in an iterative
scheme, we refer to Paper C.

3.4.2 Additional conservation equations

The volume balance reformulation (3.54) is naturally related to the volumesV ,
and thereby to pressure and saturations. A similar reformulation, e.g.,

rACE = Wx rc = 0, (3.58)

whereWx is a(Nc −Np)×Nc matrix, could be used to deriveNc−Np additional
conservation equations that are naturally related to theNc−Np variablesxp. The
natural relation is clearly obtained if

xp = Wx n, (3.59)

but the form of the matrixWx is not evident.
However, we note that the equations (3.54) and (3.58) lead to the total refor-

mulation [
rVBE

rACE

]
=

[
WV

Wx

]
rc = W rc = 0 (3.60)

of the system of mass balance equations. Here,W is a Nc × Nc matrix. For
(3.60) to preserve the properties of the original conservation system,W must be
non-singular.

Possible definitions of the variablesxp and the matrixWx are presented in
Papers A and B, while the form of the additional conservation equations (3.58)
is an issue in Papers B and C. We note that, in Paper A, the alternative notations
WVBE andWACE are used for the matricesWV andWx, respectively, and the
definition ofxp is not of the form (3.59).

3.4.3 A comment on sequential solution approaches

Sequential solution approaches are attempts of simplifying the iterative solution of
the primary equations by solving the equations stepwise. Examples of sequential
approaches are given in [9, 37].

Here, we note that the volume balance pressure equation, e.g., (3.56), may
possibly be separated from the rest of the equations, and solved with respect to
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pressure only. Furthermore, the volume balance saturation equations, e.g., (3.57),
may possibly be separated from the remaining part of the system, and solved
with respect to saturations only. Alternatively, we could solve the volume balance
equations with respect to both pressure and saturations simultaneously. Finally,
we could solve the additional conservation equations, e.g., (3.58). Such an ap-
proach is used in Paper A.

Generally, sequential solution approaches may involve a considerable amount
of iteration steps due to the couplings between the equations, especially for the in-
terblock flow terms. However, if parts of the interblock flow terms are not updated
during the iteration (evaluated at the previous time level), the efficiency may be
improved. This is discussed below.

3.5 Different Time Schemes

So far, we have not specified the time level at which the flow termsf of (3.4) are
evaluated. In the following, we consider three different choices for the evaluation
of f , the fully implicit approach (FIM), the pressure implicit approach (IMPES)
and the pressure and saturations implicit approach (IMPSAT). Throughout the
section, we assume that the splitted scheme presented in section 3.3.2 is used for
solving the primary and secondary equations. For a supplement on linearization
techniques for different time schemes, we refer to [38, 39].

3.5.1 Fully implicit (FIM)

A fully implicit formulation of (3.4) can be written

rFIM
c = nn − nn−1 + [fn − qn] ∆t = 0. (3.61)

When setting up the primary Newton-Raphson scheme (3.44), the differentiation
is with respect to variables at time leveltn, and derivatives of terms evaluated at
the previous time leveltn−1 vanish. Consequently, if the form (3.61) is used for
the primary equations, the iterative scheme (3.44) becomes{

dn

dup

+

[
df

dup

− dq

dup

]
∆t

}(k)

∆u(k+1)
p = −

(
rFIM

c

)(k)
, (3.62)

where the derivatives with respect toup are total derivatives, i.e.,

d

dup

( · ) =
∂

∂up

( · )us
+

∂

∂us

( · )up

dus

dup

. (3.63)
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Due to the interblock flow terms, (3.62) contains couplings between equations
of different gridblocks. The corresponding Jacobian is a matrix of dimensions

NbNc ×NbNc. (3.64)

Here,Nb is the total number of gridblocks. Actually, the Jacobian is aNb × Nb

block matrix with blocks of sizeNc × Nc andNΓ non-zero diagonals, whereNΓ

is the number of gridblocks involved in the discretization off for a gridblock.
Using a multipoint flux approximation (MPFA),NΓ can be 9 in 2D and 27 in 3D.

The size of the Jacobian and the large number of derivatives to be calculated
could make the fully implicit approach prohibitively costly on a per-timestep ba-
sis. However, fully implicit approaches are unconditionally stable, i.e., there are
no other restrictions on the timestep sizes than those necessary to ensure conver-
gence of the Newton-Raphson scheme.

3.5.2 Pressure implicit (IMPES)

An IMPES formulation of (3.4) can be written

rIMPES
c = nn − nn−1 +

[
f
(
pn, Sn−1

p , xn−1
p

)
− qn

]
∆t = 0. (3.65)

In (3.65), the interblock flow terms are evaluated with pressure at the current time
level, but with saturations and the variablesxp at the previous time level. This is
referred to as implicit treatment of pressure and explicit treatment of saturations
and the variablesxp.

The evaluation is done rigorously with the splitted iterative scheme, as the
interblock flow terms can be expressed explicitly in terms of

u =

[
up

us (up)

]
. (3.66)

Here, the secondary variablesus correspond to a solution of the secondary equa-
tions with the primary variablesup specified. When evaluating the interblock flow
terms, we use

u =


pn

Sn−1
p

xn−1
p

us

(
pn, Sn−1

p , xn−1
p

)

 , (3.67)
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while all other terms in (3.65) are evaluated with

u =


pn

Sn
p

xn
p

us

(
pn, Sn

p , xn
p

)

 . (3.68)

If the original mass balance equations are used as primary equations, the sys-
tem is still coupled, and all equations must be solved simultaneously. However,
by a proper reformulation, i.e., by a volume balance pressure equation in which
the accumulation term depends on pressure only, pressure may be determined by
a separate iterative scheme. The pressure scheme has a Jacobian of dimensions

Nb ×Nb, (3.69)

which is significantly smaller than (3.64). Then, since the interblock flow terms
are determined by pressure only, the other variables(Sp, xp) can be determined
gridblock by gridblock, with local Jacobians of dimensions(Nc − 1)× (Nc − 1).

We note that, for gridblocks containing fully implicit and variable source terms
q, the pressure equation may possibly not be decoupled from the rest of the equa-
tions, and a simultaneous solution of all the primary equations could be required.
However, the number of such gridblocks is small, and the corresponding increased
size of the Jacobian is negligible compared toNb.

Unfortunately, the IMPES approach is associated with stability limitations that
restrict timestep size. These limitations are mainly due to the explicit treatment of
saturations, which contribute strongly to the nonlinearities of the interblock flow
terms through relative permeabilities and capillary pressures. Consequently, the
timestep restrictions may be severe.

For discussions of proper stability criteria, we refer to [40, 41, 42, 43, 44].

3.5.3 Pressure and saturations implicit (IMPSAT)

An IMPSAT formulation of (3.4) can be written

rIMPSAT
c = nn − nn−1 +

[
f
(
pn, Sn

p , xn−1
p

)
− qn

]
∆t = 0. (3.70)

In (3.70), the interblock flow terms are evaluated with pressure and saturations at
the current time level, but with the variablesxp at the previous time level. In other
words, pressure and saturations are treated implicitly, while the variablesxp are
treated explicitly.
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The evaluation of interblock flow terms is here done rigorously with

u =


pn

Sn
p

xn−1
p

us

(
pn, Sn

p , xn−1
p

)

 , (3.71)

while all other terms in (3.70) are evaluated with (3.68).
By a proper reformulation, i.e., by volume balance pressure and saturation

equations in which the accumulation terms depend on pressure and saturations
only, we may determine pressure and saturations by a separate iterative scheme.
The pressure and saturation scheme has a Jacobian of dimensions

NbNp ×NbNp, (3.72)

which may still be significantly smaller than (3.64). Furthermore, theNc − Np

variablesxp can be determined gridblock by gridblock, with systems of size
(Nc −Np) × (Nc −Np). We note, however, that the comment on fully implicit
and variable source termsq made for IMPES still applies.

With the IMPSAT formulation, the nonlinearities in the interblock flow terms
due to relative permeabilities and capillary pressures are taken into account. Con-
sequently, IMPSAT is more stable than IMPES. However, there are still stability
limitations due to the explicit treatment of the variablesxp.

The stability properties of the IMPSAT approach are investigated in Paper B
and in Paper D. Other references on IMPSAT stability are [15, 16].

3.6 Additional Simulation Issues

Finally, to complete the numerical model, we discuss some simulation issues,
including timestep selection, convergence criteria and phase disappearance and
reappearance.

3.6.1 Timestep selection

Generally, we may let timesteps be governed by the formula

∆tn+1 = ∆tn min
u

[
(1 + λ)∆un

∆u∗ + λ∆un

]
, (3.73)

where∆tn+1 is the next timestep,∆tn is the previous timestep,∆un is the change
in the variableu over the previous timestep,∆u∗ is the target variable change
during the next timestep andλ is a tuning factor. The formula is due to [25].
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The timestep control parameters, e.g.,λ, ∆u∗ and the initial timestep∆t0,
must be specified as input to the simulator. Typically, target changes are speci-
fied for pressure, saturations and/or phase mole fractions. Furthermore, we could
specify a maximum timestep.

With proper timestep control, convergence of the Newton-Raphson scheme is
assured. In addition, for IMPES or IMPSAT, a timestep restriction due to stability
limitations must be added.

3.6.2 Convergence criteria

Convergence criteria must be set for both primary and secondary equations. For
the mass balance equations, we could use the criterion

r(k)
c =

∥∥r(k)
c

∥∥
∞ < εc, r(k)

c = max

∣∣∣∣∣
(

∆n + (f − q) ∆t

n

)(k)
∣∣∣∣∣ , (3.74)

and for the phase equilibrium equations, we could use

r
(k)
f =

∥∥∥r(k)
f

∥∥∥
∞

< εf , r
(k)
f = max

∣∣∣∣∣
(

f o − f g

f g

)(k)
∣∣∣∣∣ , (3.75)

wheref j contains the fugacities of phasej. We note that the maximum is taken
over all gridblocks, and that fractions of vectors are taken component-wise.

In addition, we could require that the changes to the variables during an iter-
ation step must be below some tolerance for convergence. A quite general set of
convergence criteria is provided in Paper C.

3.6.3 Phase disappearance and reappearance

During a simulated timestep, a phase may disappear or reappear in a gridblock.
Consequently, since the number of phasesNp changes, so does the number of
saturationsSp and the number of variablesxp.

Phase disappearance is indicated by a negative saturation value when deter-
mining the primary variables(p, Sp, xp). The saturation of the disappeared phase
should then be set to zero, the remaining saturations should be adjusted to sum to
unity, and the variablesxp should be updated according to their definition.

Phase reappearance implies reappearance of gas or oil in a gridblock where
only undersaturated oil or supercritical/undersaturated gas has been present. To
check for phase reappearance, a conventional phase equilibrium calculation of the
current pressure and overall composition can be performed in those gridblocks,
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see section 3.2.2. The phase equilibrium calculation determines if the phase frac-
tion λg has returned to the interval(0, 1). If this is the case, the reappeared phase
saturation is calculated, and the state, including the variablesxp, can be updated.

We note that a useful supplement to the conventional phase equilibrium is
a phase stability test. If the stability test suggests that a phase remains absent,
no phase equilibrium calculations need to be performed. For details on phase
stability tests, we refer to [22] and Paper E. However, to calculate the properties
of a reappeared phase, a full phase equilibrium calculation must be applied.





Chapter 4

XPSIM Documentation

In this chapter, we give an overview of the calculations involved in the compo-
sitional reservoir simulator XPSIM, which has been the by-product of the work
presented in this thesis.

4.1 Introduction

The main objective of the simulator is to solve theNc mass balance equations

∆n + (f − q) ∆t = 0, (4.1)

and the(Nhp − 1) Nhc phase equilibrium equations

f o − f g = 0, (4.2)

in an efficient manner, using ideas presented in this thesis. Here,Nhp is the num-
ber of phases other than water,Nhc is the number of components other than water,
andf j contains the fugacities of the components present in phasej. Additional
equations are

φVbS
j − nj

ξj
= 0, (4.3)

for each phasej, representingNp volume relations, and

xp −Wx n = 0, (4.4)

representing the definition of theNc −Np variablesxp.
The definition of the(Nc −Np) × Nc matrix Wx is given in Paper B, and

makesWx complementary to theNp ×Nc matrix

WV =

(
∂V

∂n

)
p

, (4.5)
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whereV represents theNp phase volumes. The matricesWV andWx are used
to reformulate theNc mass balance equations intoNp volume balance equations
andNc −Np additional conservation equations, see section 3.4 and Paper C.

The chosenNc primary variables,

up =


p

Sp

xp

 , (4.6)

form the basis for a unified black-oil and compositional formulation, and are used
in both a fully implicit scheme and an IMPSAT scheme. The chosen secondary
variables are

us = nj . (4.7)

We note that the number of secondary variables isNs = (Nhp − 1) Nhc + Nc,
which equals the number of relations (4.2), (4.3) and (4.4). In the determination
of the secondary variables, XPSIM offers a choice between exact volume balance
and exact mass balance, see Paper C.

Various modules are involved in the setup of the equations, including input and
preprocessing, initialization, thermodynamics, calculation of variable properties
and calculation of interblock flow terms and source terms. Furthermore, for an
iterative solution of the equations, a broad range of derivatives must be calculated.
The different modules included in XPSIM are discussed below.

4.2 Input and Preprocessing Module

We start by reading input parameters from file. These include

• grid specification, i.e., input of gridblock cornerpoint coordinates,

• absolute permeability tensor for each gridblock,

• reference porosity for each gridblock, plus a reference pressure,

• component properties (see section 2.3.2), temperature, rock compressibil-
ity, tabulated relative permeability and capillary pressure functions, initial
conditions (pressure, overall mole fractions, water saturation, fluid contact
locations),

• injection rates and production bottom hole pressures (fixed),

• time scheme (fully implicit or IMPSAT), exact conservation (mass or vol-
ume), convergence limits and timestep control parameters.
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The preprocessing part includes calculations that can be done before the start
of the simulation run. Using the grid input, we determine interfaces between grid-
blocks and gridblock volumes. Furthermore, with the use of absolute permeabili-
ties and grid geometry, transmissibilities are calculated by the MPFA O-method,
[30]. Here, no-flow boundary conditions are applied. Finally, the initialization
module outlined below is invoked.

4.3 Initialization Module

For cases of horizontal flow, the initialization is done by a conventional phase
equilibrium calculation with the input pressure and overall mole fractions, see
section 3.2.2. Here, access to a module for calculation of compressibility factors
and fugacity coefficients is required. This module is outlined in section 4.4.

On the other hand, if the effect of gravity is included, a gravity/chemical equi-
librium calculation is performed. If a gas-oil contact is specified in the reservoir,
XPSIM assumes that the input pressure is an estimate of the pressure at the gas-
oil contact, and that the input overall mole fractions are the overall mole fractions
at the gas-oil contact. Capillary pressures are neglected. Consequently, the pres-
sure at the gas-oil contact should equal a saturation pressure, i.e., a point on the
boundary of the two phase region. Saturation point calculations are discussed in
Paper E. However, if no gas-oil contact exists in the reservoir, the input pressure is
not adjusted, and the input overall mole fractions are assumed to represent single
phase oil or gas at some reference depth.

Subsequently, pressure and the overall mole fractions are used to calculate
reference fugacities, and the gravity/chemical equilibrium calculation outlined in
section 3.2.3 is carried out. Above the gas-oil contact, XPSIM determines the
pressure and the mole fractions of the gas phase. Below the gas-oil contact and
above the water-oil contact, the pressure and the mole fractions of the oil phase are
determined. For further details, we refer to Paper E. Below the water-oil contact,
the pressure is determined directly by the hydrostatic equilibrium condition (3.19).

The gravity/chemical equilibrium initialization must have access to modules
which calculate fugacities and derivatives of these with respect to pressure and
phase mole numbers, see sections 4.4 and 4.7, respectively.

4.4 Thermodynamics Module

The thermodynamics module calculates compressibility factors, fugacity coeffi-
cients and fugacities. XPSIM uses the Peng-Robinson equation of state, [28], for
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these calculations. Consequently, the coefficients of(
Zj
)3

+ c2

(
Zj
)2

+ c1Z
j + c0 = 0 (4.8)

are given by
c2 = −(1−Bj), (4.9)

c1 = Aj − 3
(
Bj
)2 − 2Bj, (4.10)

c0 = −AjBj +
(
Bj
)2

+
(
Bj
)3

, (4.11)

Aj =

[
Nhc∑
i=1

Nhc∑
m=1

cj
ic

j
k

√
aiak (1− di,k)

]
p

R2T 2
, Bj =

[
Nhc∑
i=1

cj
i bi

]
p

RT
, (4.12)

ai = ΩA

[
1 + κi

(
1−

√
T/Tc,i

)]2 R2T 2
c,i

pci

, bi = ΩB
RTc,i

pc,i

, (4.13)

ΩA = 0.457235529, ΩB = 0.077796074, (4.14)

κi =

{
0.37464 + 1.54226 ωi − 0.26992 ω2

i , ωi ≤ 0.49,

0.379642 + 1.48503 ωi − 0.164423 ω2
i + 0.016666 ω3

i , ωi > 0.49.
(4.15)

The cubic equation of state can be solved analytically with respect to the com-
pressibility factorsZj, defined by (2.33). The three roots are

Zj
1 =

1

6

(
β1/3 − 12c1 − 4c2

2

β1/3
− 2c2

)
, (4.16)

Zj
2 = − 1

12

[
β1/3 − 12c1 − 4c2

2

β1/3
+ 4c2 − i

√
3

(
β1/3 +

12c1 − 4c2
2

β1/3

)]
, (4.17)

Zj
3 = − 1

12

[
β1/3 − 12c1 − 4c2

2

β1/3
+ 4c2 + i

√
3

(
β1/3 +

12c1 − 4c2
2

β1/3

)]
, (4.18)

where
i =

√
−1, (4.19)
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β = 36c1c2 − 108c0 − 8c3
2 + 12

√
α, (4.20)

α = 12c3
1 − 3c2

1c
2
2 − 54c1c2c0 + 81c2

0 + 12c0c
3
2. (4.21)

The solution of the cubic equation of state should represent a minimum of the
Gibbs energy, [22]. Consequently, the largest real root is chosen for the gas phase,
while the smallest real root is chosen for the oil phase.

Furthermore, the calculation of fugacities and fugacity coefficients is done by

f j
i = pcj

iφ
j
i , φj

i =
exp(Bj

i (Z
j − 1))

Zj −Bj

(
Zj − (

√
2− 1)Bj

Zj + (
√

2 + 1)Bj

)Aj(A
j
i
−B

j
i
)

2
√

2Bj

,

(4.22)
respectively, where

Aj
i =

∑Nhc

k=1 2cj
k

√
aiak (1− di,k)∑Nhc

k=1

∑Nhc

l=1 cj
kc

j
l

√
akal (1− dk,l)

, Bj
i =

bi∑Nhc

m=1 cj
kbk

. (4.23)

4.5 Variables Module

As mentioned in section 2.3.2, all variable properties can be expressed explicitly
in terms of

(
p, nj

)
. However, during a simulation run, we also work in terms of

the primary variables(p, Sp, xp). The iterative scheme ensures that the two sets(
p, nj

)
and (p, Sp, xp) are in accordance. Consequently, the variables module

takes the entire set
(
p, Sp, xp, n

j
)

as input for the calculation of quantities in the
primary and secondary equations.

Most of the calculations have been outlined in Chapter 2, including the calcu-
lation of porosity

φ = φ̃ (1 + cR (p− p̃)) , (4.24)

and densities

ξw = ξ̃w (1 + cw (p− p̃)) , ξj =
p

RTZj
, (4.25)

ρw = Mwξw, ρj = ξj

Nhc∑
i=1

cj
iMi. (4.26)

Here, the thermodynamics module must be invoked to determineZj.
Furthermore, volumes can be calculated by either of the two expressions

V j = φVbS
j, V j =

nj

ξj
. (4.27)
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The expression to the left is used with the exact volume balance scheme, while the
expression to the right is used with the exact mass balance scheme, see Paper C.

Relative permeabilities and capillary pressures are given functions of satura-
tions, water viscosity is assumed to be constant, while the oil and gas viscosities
are calculated by the LBC method, [29], as outlined below.

In the LBC method, the low-pressure, pure-component gas viscositiesµ∗i are
given by

µ∗i ζi =

{
34 · 10−5T 0.94

ri , Tri < 1.5,

17.78 · 10−5(4.58Tri − 1.67)
5
8 , Tri > 1.5,

ζi =
T

1/6
c,i

M
1/2
i p

2/3
c,i

,

(4.28)
whereTri = T/Tc,i denotes the reduced temperature. Subsequently, the viscosity
of phasej is calculated by

µj = (µj)∗ +
1

ζj

[
−10−4 +

(
χj
)4]

, (4.29)

where

(µj)∗ =

∑Nhc

i=1 cj
iµ

∗
i

√
Mi∑Nhc

i=1 cj
i

√
Mi

, ζj =

(∑Nhc

i=1 cj
iTc,i

)1/6

(∑Nhc

i=1 cj
iMi

)1/2 (∑Nhc

i=1 cj
ipc,i

)2/3
, (4.30)

χj = 0.1023 + 0.023364 ξj
r + 0.058533 (ξj

r)
2− 0.040758 (ξj

r)
3 + 0.0093324 (ξj

r)
4,

(4.31)
and

ξj
r = ξj

Nhc∑
i=1

cj
iVc,i. (4.32)

We note that, if temperatures are in Kelvin, molar masses are in g/mol, and pres-
sures are in atmospheres, the resulting viscosities are in cP (= 10−3 Pa s).

4.6 Interblock Flow and Source Module

The interblock flow and source module calculates interblock flow terms and
source terms according to the discretization given in sections 3.1.3 and 3.1.4.
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4.6.1 Interblock flow term calculations

Going through all interfacesγ of the grid, XPSIM calculates

T j
γ =

∑
η∈Iγ

tη,γ

(
pη + P j

c,η −
ρj

αSj
α + ρj

βSj
β

Sj
α + Sj

β

gDη

)
, Λj

i,γ =

(
cj
iξ

jkj
r

µj

)
γ

, (4.33)

f j
i,γ = Λj

i,γT
j
γ . (4.34)

Subsequently, the net flow rate out of each gridblock is calculated by assembling
the interface flow rates (4.34). We note that the sign ofT j

γ determines in which of
the two cellsα andβ incident on the interface the generalised mobility is evalu-
ated, i.e., the upstream cell.

If an IMPSAT scheme is used, the interblock flow terms are evaluated withpn,
Sn

p andnj = nj
(
pn, Sn

p , xn−1
p

)
, while if a FIM scheme is used, the interblock

flow terms are evaluated withpn, Sn
p andnj = nj

(
pn, Sn

p , xn
p

)
4.6.2 Source term calculations

For injection wells, XPSIM calculates

qi = ziξ
k
s Qk

s , (4.35)

wherezi andQk
s are input parameters (overall composition and rate of injected

fluid), while ξk
s is determined by a conventional phase equilibrium calculation of

the overall composition and the surface conditions, see section 3.2.2. Since the
injection rates are fixed, (4.35) is calculated only once, i.e., initially.

For production wells, XPSIM calculates

qi = −
Np∑
j=1

Λj
wi Tw (p− pw) , Λj

wi =
cj
iξ

jkj
r

µj
. (4.36)

Here,pw is provided from input, whileTw is given by (3.15).

4.7 Basic Derivatives Module

Since all variables and equations can be written explicitly in terms of
(
p, nj

)
, cal-

culation of derivatives with respect to these variables, referred to as basic deriva-
tives, is required.

We here focus on the basic derivatives of compressibilities and fugacities,
which are important in the initialization module and in the calculation of total
derivatives and volume derivatives, see sections 4.8 and 4.10, respectively.
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Notation Compressibilities and fugacities can actually be written explicitly in
terms of pressure and the phase mole numbersnj of the phase to which they
belong. We note thatnj is different fromnj, which denotes the mole numbers
of all phases. For brevity of notation, we consider differentiation with respect to
u ∈ (p, nj). For differentiation with respect to pressure, we use the interpretation

∂

∂u
( · ) =

∂

∂p
( · )nj , (4.37)

and note that

∂p

∂u
=

(
∂p

∂p

)
nj

= 1,
∂cj

i

∂u
=

(
∂cj

i

∂p

)
nj

= 0. (4.38)

For differentiation with respect tonj, we use the interpretation

∂

∂u
( · ) =

∂

∂nj
k

( · )p,nj
(k)

, (4.39)

and note that

∂p

∂u
=

(
∂p

∂nj
k

)
p,nj

(k)

= 0,
∂cj

i

∂u
=

(
∂cj

i

∂nj
k

)
p,nj

(k)

=
δi,kn

j − nj
i

(nj)2 =
δi,k − cj

i

nj
,

(4.40)
whereδi,k is Kronecker’s delta, i.e.,δi,k = 1 if i = k andδi,k = 0 if i 6= k.

Here, subscripts on the partial differentiation indicate which variables are kept
fixed, and subscriptnj

(k) indicates that all mole numbers of phasej except fornj
k

are kept fixed.

4.7.1 Compressibility factor derivatives

By inserting the Peng-Robinson coefficients (4.9), (4.10) and (4.11) into the cubic
equation of state (4.8) and differentiating through with respect tou, we find that

∂Zj

∂u

(
3 (Zj)

2 − 2 (1−Bj) Zj + Aj − 3 (Bj)
2 − 2Bj

)
= ∂Aj

∂u
(Bj − Zj)

−∂Bj

∂u

(
(Zj)

2 − (6Bj + 2) Zj − Aj + 2Bj + 3 (Bj)
2
)

, (4.41)

which yields

∂Zj

∂u
=

∂Aj

∂u
(Bj − Zj)− ∂Bj

∂u

(
(Zj)

2 − (6Bj + 2) Zj − Aj + 2Bj + 3 (Bj)
2
)

3 (Zj)2 − 2 (1−Bj) Zj + Aj − 3 (Bj)2 − 2Bj
.

(4.42)
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Here,

∂Aj

∂u
=

Aj

p

∂p

∂u
+

[
Nhc∑
i=1

Nhc∑
m=1

(
cj
m

∂cj
i

∂u
+ cj

i

∂cj
m

∂u

)
√

aiam (1− di,m)

]
p

R2T 2
,

(4.43)

∂Bj

∂u
=

Bj

p

∂p

∂u
+

[
Nhc∑
i=1

∂cj
i

∂u
bi

]
p

RT
. (4.44)

4.7.2 Fugacity derivatives

By introducing

wj =
Zj −

(√
2− 1

)
Bj

Zj +
(√

2 + 1
)
Bj

, vj
i =

Aj
(
Aj

i −Bj
i

)
2
√

2Bj
, yj

i =
exp

(
Bj

i (Zj − 1)
)

Zj −Bj
,

(4.45)
in (4.22), we may express the fugacity of componenti in phasej by

f j
i = pcj

iy
j
i

[
wj
]vj

i . (4.46)

Differentiation with respect to a variableu then yields

∂f j
i

∂u
= cj

i

[
wj
]vj

i
∂p

∂u
+ p

[
wj
]vj

i
∂cj

i

∂u
+ pcj

i

∂yj
i

∂u

[
wj
]vj

i +

pcj
iy

j
i

[
wj
]vj

i

(
∂vj

i

∂u
ln wj +

vj
i

wj

∂wj

∂u

)
, (4.47)

where we have used so-called logarithmic differentiation ofgj
i = [wj]

vj
i , i.e.,

ln gj
i = vj

i ln wj,

1

gj
i

∂gj
i

∂u
=

∂vj
i

∂u
ln wj + vj

i

1

wj

∂wj

∂u
,

∂gj
i

∂u
= gj

i

(
∂vj

i

∂u
ln wj +

vj
i

wj

∂wj

∂u

)
. (4.48)

To calculate (4.47), we must determine

∂yj
i

∂u
= − yj

i

Zj −Bj

(
∂Zj

∂u
− ∂Bj

∂u

)
+ yj

i

(
∂Bj

i

∂u

(
Zj − 1

)
+ Bj

i

∂Zj

∂u

)
, (4.49)
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∂vj
i

∂u
=

Bj
[

∂Aj

∂u

(
Aj

i −Bj
i

)
+ Aj

(
∂Aj

i

∂u
− ∂Bj
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∂u
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∂cj
k
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bk(∑Nhc
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kbk

)2 . (4.53)

In addition, we make use of the relations (4.42), (4.43) and (4.44).

4.8 Total Derivatives Module

Total derivatives are derivatives with respect to the primary variablesup. If the
total derivatives of a propertyh cannot be determined directly, we use

dh

dup

=

(
∂h

∂p

)
nj

dp

dup

+

(
∂h

∂nj

)
p

dnj

dup

. (4.54)

The derivatives with respect to
(
p, nj

)
are basic derivatives, see section 4.7, while

∂p/∂v, wherev ∈ (p, Sp, xp), is unity forv = p and zero otherwise. The calcu-
lation ofdnj/dup is outlined below.

To calculate the derivatives of the oil and gas phase mole numbersno andng

with respect tov ∈ (p, Sp, xp), we use the system of equations
f o − f g

φVbS
o − no/ξo

φVbS
g − ng/ξg

xp −Wx n

 = 0, (4.55)
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whereξj = p/ (RTZj). Here,p, φ, Sj andxp are given explicitly in terms of
the primary variables, and differentiation of these with respect tov is straight-
forward. For the other terms, which may be given in terms of(p, no, ng), we use
the form (4.54) for differentiation with respect tov. Consequently, by differen-
tiating through (4.55) with respect tov ∈ (p, Sp, xp) and rearranging terms, we
obtain

∂fo

∂no − ∂fg

∂ng

−∂(no/ξo)
∂no 0T

0T −∂(ng/ξg)
∂ng

−∂(Wx n)
∂no −∂(Wx n)

∂ng
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]
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∂p
∂p
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− φVb

∂So

∂v
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g ∂φ

∂p
∂p
∂v
− φVb

∂Sg

∂v(
∂(Wx n)

∂p

)
no,ng

− ∂xp

∂v

 . (4.56)

We observe that basic derivatives of fugacities and compressibility factors are
needed in the calculation of both the system matrix and the right hand side. Fur-
thermore, we note that derivatives ofWx vanish if Wx is kept fixed during a
timestep, as suggested in Paper B.

The system matrix of (4.56) is independent ofv, so that only a single inversion
is necessary to calculate all the derivatives∂no/∂v and ∂ng/∂v. In addition,
the water mole numbersnw can be written as an explicit function of pressure
and water saturation only, so that the calculation of∂nw/∂v is straight-forward.
Consequently, the calculation ofdnj/dup is complete.

4.9 Flow and Source Derivatives Module

A separate module calculates total derivatives of interblock flow terms and source
terms with respect to(p, Sp, xp).

4.9.1 Flux derivatives

Using subscriptν to denote a cell in the flux molecule of some interfaceγ, we do
differentiation of (4.34) with respect tovν ∈ (p, Sp, xp)ν by

∂f j
i,γ

∂vν

=
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i,γ

∂vν

T j
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∂T j
γ

∂vν

, (4.57)

where
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0, ν 6= ν∗,
(4.58)
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. (4.59)

andν∗ denotes the upstream cell. We note that derivatives with respect toxp are
omitted (set to zero) if an IMPSAT scheme is used.

Derivatives of phase mole fractions and densities are obtained with the form
(4.54), while derivatives of relative permeabilities and capillary pressures, which
are functions of saturations only, are straight-forward. However, the calculation
of viscosity derivatives is more involved. We use (4.29) to find
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where

∂(µj)∗

∂v
=

∑Nhc

i=1
∂cj

i

∂v
µ∗i
√

Mi∑Nhc

i=1 cj
i

√
Mi

−
(µj)∗

∑Nhc

i=1
∂cj

i

∂v

√
Mi∑Nhc

i=1 cj
i

√
Mi

=

∑Nhc

i=1 ((µi)
∗ − (µj)∗)

√
Mi

∂cj
i

∂v∑Nhc

i=1 cj
i

√
Mi

, (4.61)

∂ζj

∂v
=

(Nhc∑
i=1

cj
iMi

)1/2(Nhc∑
i=1

cj
ipc,i

)2/3
−1

·

[
1

6
(

Nhc∑
i=1

cj
iTc,i)

−5/6

Nhc∑
i=1

∂cj
i

∂v
Tc,i

−1

2
ζj(

Nhc∑
i=1

cj
iMi)

−1/2(

Nhc∑
i=1

∂cj
i

∂v
Mi)(

Nhc∑
i=1

cj
ipc,i)

2/3

−2

3
ζj(

Nhc∑
i=1

cj
ipc,i)

−1/3(

Nhc∑
i=1

∂cj
i

∂v
pc,i)(

Nhc∑
i=1

cj
iMi)

1/2

]
, (4.62)

∂χj

∂ξj
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= 0.023364+2 · 0.058533ξj
r−3 · 0.040758(ξj
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2+4 · 0.0093324(ξj
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3, (4.63)
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cj
iVc,i + ξj

Nhc∑
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∂cj
i

∂v
Vc,i. (4.64)

We observe that derivatives of phase mole fractions and densities, obtained with
the form (4.54), are involved in the calculation of viscosity derivatives.
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4.9.2 Source derivatives

Source terms are also differentiated with respect tov ∈ (p, Sp, xp). If the source
comes from an injector with constant injection rate,

∂qi

∂v
= 0, (4.65)

while if the source corresponds to a producer with fixed bottom hole pressure,
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= −
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Here, the derivatives outlined for the flux terms are used.

4.10 Volume Derivatives Module

The reformulation of mass balance equations into volume balance equations, see
section 3.4, requires the calculation of derivatives of volumes with respect to
(p, n). So does the definition

xp = Wx n (4.68)

and the reformulation of mass balance equations into additional conservation
equations, as the matrixWx is to be complementary to the matrix

WV =

(
∂V

∂n

)
p

(4.69)

of partial molar volumes, see Papers B and C.

4.10.1 Water volume derivatives

For the water phase, the calculations are quite simple, as

V w =
nw

ξw
, (4.70)

whereξw is a function of pressure only, according to (2.35). Consequently,(
∂V w

∂nw

)
p

=
1

ξw
,

(
∂V w

∂p

)
nw

= −nwξ̃wcw

(ξw)2 . (4.71)
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4.10.2 Oil and gas volume derivatives

The gas and oil volumes are differentiated with respect toy ∈ (p, n) by
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(4.73)

can be obtained from (2.33), we find that(
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where the derivatives ofZj are given by (4.42). Furthermore,∂p/∂y equals unity
wheny = p and zero wheny ∈ n.

To calculate derivatives ofnj with respect tov ∈ (p, n), we utilize the system
of equations [

f o − f g

no + ng − n

]
= 0. (4.76)

By using expressions similar to (4.72) to differentiate through (4.76) with respect
to v ∈ (p, n), we obtain[
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∂n
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 , (4.77)

whereI are unity matrices of suitable dimensions. We observe that the system
matrix is independent ofy, so that only a single inversion is necessary to calculate
all derivatives ofno andng with respect toy.

We note that (4.76) should be fulfilled whenever the volume derivatives are
calculated. Consequently, the phase equilibrium should be solved at every itera-
tion level. This is obtained with the splitted scheme introduced in section 3.3.2.
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4.11 Iterative Scheme Module

In the iterative scheme module, the primary and secondary equations are solved
with respect to the primary and secondary variables by the splitted scheme. The
calculations involved in one primary iteration step are:

1. Linearise the mass balance equations, i.e., set up the Jacobian and the right
hand side. Reformulate the equations into volume balance equations and
additional conservation equations, as shown in Paper C. Total derivatives
are required for the linearization, while volume derivatives are required for
the reformulation. Withrp denoting the residuals of the reformulated equa-
tions, the resulting system can be written(

drp

dup

)(k)

∆u(k+1)
p = −r(k)

p . (4.78)

2. Solve the linear system (4.78) with respect to changes in the primary vari-
ables. If an IMPSAT scheme is used, only pressure and saturations changes
must be determined simultaneously in all gridblocks, while the variables
xp are determined gridblock by gridblock. XPSIM uses a GMRES linear
solver, [45], to solve the part of (4.78) that contains interblock couplings.

3. Keep the primary variables fixed and solve the secondary equationsrs = 0
with respect to the secondary variables by(

∂rs

∂us

)(l)

up

∆u(l+1)
s = −r(l)

s , (4.79)

until convergence, e.g.,∥∥∥∥f o − f g

f g

∥∥∥∥(l)

∞
< εf ,

∣∣∣∣φVbS
j − nj

ξj

∣∣∣∣(l) < εv, ‖xp −Wx n‖(l)
∞ < εx.

(4.80)
Here, basic derivatives are required, and either exact mass balance or exact
volume balance can be obtained, see Paper C.

4. Update primary equation residuals and check for convergence, e.g.,∥∥∥∥∆n + (f − q) ∆t

n

∥∥∥∥(k)

∞
< εc. (4.81)

5. In addition, the simulator must keep track of phase disappearance and reap-
pearance during the iteration.
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4.12 Main Program

The main program governs all the modules described above. In a typical simula-
tion run, XPSIM goes through the following:

1. Read input data and do the preprocessing.

2. Initialize the system at equilibrium.

3. Decide on the size of the next timestep by

∆tn+1 = ∆tn min
u

[
(1 + λ)∆un

∆u∗ + λ∆un

]
, (4.82)

plus timestep restrictions. The initial timestep is required as input.

4. Go through the iterative scheme until convergence.

5. When converged, return to 3., or end the simulation run.

6. If requested, XPSIM gives output of results suitable for analysis and plot-
ting, i.e., gridblock values at certain time levels or with respect to time,
injection bottom hole pressures, production rates, etc.

Note XPSIM is still under development. Possible extensions include modules
for taking input of black-oil fluid properties into account, and implementation of
IMPES and AIM schemes. The ideas for further work discussed in Chapter 6 are
also a natural part of improving XPSIM.



Part II

Papers and Ideas for Further
Work





Chapter 5

Overview of Papers

This chapter gives an overview of the research papers included in the thesis.

Paper A

A Black-Oil and Compositional IMPSAT Simulator With Improved
Compositional Convergence.

Jarle Hauk̊as, Ivar Aavatsmark and Magne Espedal.
Included inProceedings of the 9th European Conference on the Mathematics of

Oil Recovery, Cannes, France, 30 August – 2 September 2004.

Paper A focuses on the development of a unified black-oil and compositional
simulator. The objective is to obtain an improved compositional formulation that
reduces to a black-oil formulation when used with black-oil fluid properties.

For a unified formulation, pressure and saturations are chosen as primary vari-
ables, and the volume balance equations, [9], are used as primary equations. The
improvements of the compositional formulation are related to new choices of ad-
ditional primary equations and variables in an IMPSAT formulation.

The main idea of the paper is that convergence can be improved by the use
of additional equations that are complementary to the volume balance equations.
Like the volume balance equations, the additional equations are proposed as
weighted sums of the component mass balance equations. The notion comple-
mentary is related to linear algebra, and involves the choice of equation weights
that are orthogonal to the weights of the volume balance method. In addition,
weighted sums of phase mole fractions are used as additional primary variables.
The choice of mole fraction weights is based on a stability argument.

The results of the paper show some indications of improved convergence.
However, the new approach lacks interpretation of the equation weights and mole
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fraction weights, and a natural relation between equations and variables. In ad-
dition, the interblock flow terms are evaluated with additional variables from the
previous iteration level rather than from the previous time level (sequential ap-
proach). Further speedup could be expected with a true IMPSAT approach.

The inclusion of an extra implicit variable in the case of an absent hydrocarbon
phase is mentioned as an interesting subject of further research. Some ideas in this
direction are outlined in section 6.1.

Paper B

A Volume Balance Consistent Compositional IMPSAT Formulation With
Relaxed Stability Constraints.

Jarle Hauk̊as, Ivar Aavatsmark, Magne Espedal and Edel Reiso.
Submitted toComputational Geosciences, July 2005.

Paper B gives an extension of the work presented in paper A. Here, interpre-
tation of the additional primary variables and equations is emphasized. Further-
more, a true IMPSAT approach is used, rather than a sequential approach, and a
new IMPSAT stability criterion is developed.

A new idea in Paper B is to use the same weights for both equations and
variables, and let the weighted variables be component mole numbers rather than
phase mole fractions. Then, since the weighted equations are component equa-
tions, a natural relation between the additional variables and equations is obtained.
The common weights are the equation weights introduced in Paper A.

Thermodynamic analysis shows that the new additional variables represent the
part of the system that may change even though pressure and the phase volumes
remain fixed. Consequently, the new variables are interpreted as isochoric vari-
ables, i.e., volume complementary variables. In addition, the analysis illuminates
the fact that the component mole numbers can be decomposed into a volume part
(volume projection) and an isochoric part (isochoric projection).

Since a true IMPSAT approach is used, where interblock flow terms are eval-
uated with isochoric variables from the previous time level, stability is limited.
Actually, the isochoric projection of the mole numbers identifies the unstable part.
The development of a new IMPSAT stability criterion, based on isochoric projec-
tions, is an important contribution to Paper B.

An unresolved issue in the paper is the non-unique definition of the weights
used to form isochoric variables and equations. The isochoric interpretation only
requires the vectors of weights to form an orthonormal basis for a space. However,
since a basis is not unique, the weights are not uniquely defined. Unless some
additional conditions on the weight vectors are provided, the weights cannot be
differentiated, and must be kept fixed during a timestep.
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In the paper, some effort is spent on showing that the actual choice of basis
does not affect the calculations if the weights are kept fixed during a timestep.
Some new ideas on the definition of weights are outlined in section 6.2.

Note In Paper B, the suggested discretization of the time derivative in the mass
balance equations is

∂n

∂t
≈ ∂n

∂up

∆up

∆t
=

∂n

∂p
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∆t
+

∂n

∂Sp
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∆t
+

∂n

∂xp

∆xp

∆t
, (5.1)

where∆up denotes the change in the primary variablesup over the timestep∆t.
The same form is mentioned in Paper A, and (5.1) is consistent with the use of(
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∂VT
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∆t
+
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∂V j
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)
p
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as discretizations of the volume balance differential equations (3.56) and (3.57).
However, the conventional mass conservative time discretization is

∂n

∂t
≈ ∆n

∆t
, (5.4)

and a solution obtained with (5.1) may be different from a solution obtained with
(5.4), especially for large timesteps.

The basic ideas and results presented in Papers A and B do not rely on the
use of (5.1). However, to obtain a solution that is fully consistent with (5.4), an
alternative form of the volume balance equations must be used, and the additional
primary equations must be adjusted accordingly. A proper reformulation of the
mass balance equations which includes (5.4) is given in Paper C.

Paper C

Exact Volume Balance Versus Exact Mass Balance in Compositional Reservoir
Simulation.

Jarle Hauk̊as, Ivar Aavatsmark, Magne Espedal and Edel Reiso.
Submitted toComputational Geosciences, December 2005.

Paper C deals with different reformulations of the mass balance equations,
including the weighted sums encountered in Paper A and Paper B. The reformu-
lations may be used to obtain either exact mass balance or exact volume balance.
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The background for Paper C is the observation that a combined vol-
ume/isochoric balance requirement is a consistent alternative to the conventional
mass balance requirement. Consequently, the isochoric variables and equations
illuminate the difference between exact mass balance and exact volume balance.

The equations of the volume balance method, [9], are a natural part of the
discussion. By an extended version of the original volume balance method, the
conventional mass balance,

∆n + (f − q) ∆t = 0, (5.5)

is imposed by a direct (exact) update of the mole numbers, while volume/isochoric
discrepancies govern the iterative scheme. Alternatively, a modified form of the
volume balance equations can be used, where volume balance is imposed directly
(exactly), while mass balance discrepancies govern the iterative scheme. Details
are provided in the paper.

Paper C also gives a comparison of the performance of an exact mass balance
scheme to the performance of an exact volume balance scheme. The numerical re-
sults are in favour of exact volume balance, but it is noted that the conclusion may
be implementation dependent. However, the important part of the paper is the vol-
ume/isochoric reformulation of the mass balance equations and the clarification of
the difference between exact volume balance and exact mass balance.

Paper D

A Comparison of Two Different IMPSAT Models in Compositional Simulation.
Jarle Hauk̊as, Ivar Aavatsmark, Magne Espedal and Edel Reiso.

Submitted toSPE Journal, December 2005.

Paper D is a comparison paper. Here, the IMPSAT formulation with isochoric
variables and equations presented in Papers B and C is compared to an IMPSAT
formulation with phase mole fractions and a selection of component conservation
equations as the additional variables and equations, [15, 16].

A key issue in the paper is that the isochoric IMPSAT approach allows for a
consistent update of interblock flow terms, and thereby quadratic convergence of
the Newton-Raphson iterative scheme. In addition, the stability criteria of the two
IMPSAT formulations are compared.

Numerical results indicate that the consistent update of interblock flow terms
may improve the convergence significantly, and that the stability criterion of Pa-
per B may allow for significantly larger timesteps. However, retrograde gas
condensate cases impose particular severe stability limitations on the isochoric
IMPSAT formulation. Here, the interpretation of the isochoric variables presented
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in Paper B is useful. For retrograde gas condensate cases, the isochoric part expe-
riences more rapid changes compared to the volumetric part than for other cases.
The corresponding stability limitations are therefore reasonable.

Improving the stability of IMPSAT by explicit treatment of other variables
than the isochoric variables is an interesting subject of further research. A brief
comment in this direction is given in section 6.3.

Paper E

Isothermal Gravity/Chemical Equilibrium Calculations.
Jarle Hauk̊as and Sverre Gullikstad Johnsen.

Exam report for the summer school
Thermodynamic Models: Fundamentals and Computational Aspects,

IVC-SEP, Technical University of Denmark, August 9 – 27, 2004. Evaluated and
accepted by Professors M. L. Michelsen and J, M. Mollerup at IVC-SEP.

Paper E is a report on gravity/chemical equilibrium calculations, and is as-
sociated with an assignment given at the IVC-SEP Summer School 2004, at the
Technical University of Denmark. The assignment was to implement a computer
program for determining the pressure and phase composition above and below a
given reference depth in a reservoir fluid column, and for determining whether a
gas-oil contact could exist within a specified depth range in the column.

In the paper, the conditions for steady state phase equilibrium in a gravity
field are derived. Furthermore, different aspects of gravity/chemical equilibrium
calculations are discussed, including phase stability analysis and saturation point
calculations. Phase stability tests are used to discover two-phase gas-oil interfaces,
which correspond to a saturated gas-oil contact. Saturation point calculations are
necessary to discover undersaturated gas-oil contacts, for which no two-phase
behaviour can be observed. In addition, a Newton-Raphson scheme and various
successive substitution schemes for solving the equations are presented.

The paper provides useful guidelines for initialization of a reservoir system
under the influence of gravity. In addition, the presented plots give insight into the
thermodynamic interpretation of gas-oil contacts.





Chapter 6

Ideas for Further Work

This chapter contains some ideas for further work, stemming from the research
papers included in the thesis.

6.1 Extra Implicit Undersaturated Variable

The development of a unified black-oil and compositional simulator is an impor-
tant issue in the research papers. For a compositional IMPSAT formulation that
reduces to a fully implicit black-oil formulation in the saturated black-oil case, the
key is to use pressure and saturations as implicit primary variables.

However, for undersaturated oil, the solution gas/oil ratioRs is included as an
implicit variable in the conventional black-oil formulation, and so is the the vapor-
ized oil/gas ratioRv in the supercritical/undersaturated gas case. Here, the con-
ventional IMPSAT formulation still only treats pressure and saturations implicitly.
An extended IMPSAT formulation that reduces to a fully implicit black-oil formu-
lation regardless of the black-oil fluid properties, must include an extra implicit
variable in the undersaturated oil and supercritical/undersaturated gas cases.

A possible approach is to define the extra implicit variable in the form

R = ωTn, (6.1)

whereω is aNc vector of weights. Furthermore, we could set up the(Np + 1)×Nc

matrix

W +
V =

[ (
∂V
∂n

)
p

ωT

]
, (6.2)

and determine the variables other than pressure, saturations and the extra implicit
variableR by

x+
p = W +

x n, (6.3)
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where the(Nc −Np − 1)×Nc matrixW +
x is complementary toW +

V . With such
an approach, the variableR fits into the framework presented in Paper B, and the
ideas of Paper B may be used to propose a modified stability criterion for explicit
treatment of the variablesx+

p .
If used with black-oil fluid properties,R should reduce to the solution gas/oil

ratio for undersaturated oil and to the vaporized oil/gas ratio for supercriti-
cal/undersaturated gas. However, for an undersaturated compositional case,R
could be used to increase the stability of the extended IMPSAT formulation. For
instance, we could letR represent the least stable part of the isochoric variations
in the system. This part could possibly be identified by its large contribution to
the timestep restriction presented in Paper B.

6.2 Unique/Explicit Definition of Weights

In Paper B, the isochoric variables are defined by

xp = Wx n, (6.4)

where the(Nc −Np)×Nc matrixWx is complementary to theNp ×Nc matrix

WV =

(
∂V

∂n

)
p

, (6.5)

i.e., the rows ofWx form an orthonormal basis for the nullspace ofWV . We note
that

V = WV n, (6.6)

since volumes are homogeneous functions of first degree in the mole numbers.
The definition of the matrixWV is unique, as the partial molar volumes can

be calculated from

V j = V j
(
p, nj

)
=

nj

ξj
, (6.7)

taking the phase equilibrium conditions (2.30) into account, see section 4.10.
However, the definition ofWx is not unique. As noted in Paper B, the requirement
that the rows ofWx should form an orthonormal basis for the nullspace ofWV

corresponds to(1/2) (Nc −Np) (Nc + Np + 1) conditions on the(Nc −Np) Nc

elements ofWx. Consequently,(1/2) (Nc −Np) (Nc −Np − 1) conditions re-
main unspecified. We note that the number of unspecified conditions corresponds
to one relation for each pair of rows inWx.

Evidently, to obtain a unique definition ofWx, we could look for a specifica-
tion of the remaining conditions. However, even if a set of such relations is found,
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the resulting(Nc −Np) Nc conditions are nonlinear in the elements ofWx, and
an iterative solution is required to determineWx.

An alternative idea is to seek an explicit relation

xp = xp

(
p, nj

)
, (6.8)

definingxp as a homogeneous functions of first degree in the mole numbers, i.e.,

xp =

(
∂xp

∂n

)
p

n. (6.9)

With such an approach, the matrixWx would be uniquely defined by

Wx =

(
∂xp

∂n

)
p

. (6.10)

The explicit relation (6.8) could possibly be based on an equation of state
relation, and should take the phase equilibrium into account. In addition, it should
be consistent with the interpretation of the variablesxp as isochoric variables.
Here, thermodynamic analysis is necessary.

It is not clear if the requirement that the matricesWx and WV should be
complementary can be made inherent in an explicit relation of the form (6.8). In
any case, great care must be taken to ensure that theNc ×Nc matrix[

WV

Wx

]
=

 (
∂V
∂n

)
p(

∂xp

∂n

)
p

 (6.11)

is non-singular.

6.3 Stability Considerations

In Paper D, it is noted that the stability limitations due to explicit treatment of
isochoric variables are especially severe in retrograde gas condensate cases. This
suggests that the stability of IMPSAT in such cases can be improved by explicit
treatment of variablesxp that are not isochoric variables.

Generally, we could still use the definition

xp = Wx n. (6.12)

However, instead of defining the variablesxp as isochoric variables, we could
look for variablesxp that yield the optimal IMPSAT stability. The stability prop-
erties of different choices ofxp could be evaluated by the corresponding IMPSAT
stability criterion, e.g., a criterion similar to the one proposed in Paper B.
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Figure 3. Production block results versus time, Case 1. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 2 and a fully implicit Eclipse300 run.

7.6. Production block results, Case 1

Figure 3 shows production block results versus time for Case 1. We
observe that the results of IMPSAT with a CFL factor of α = 1 match
the results of Eclipse300. However, for an IMPSAT run with a CFL
factor of α = 2, some of the normalised mole numbers experience
increasing oscillations. An extra simulation with α = 1.9 showed no
sign of oscillations. We conclude that the stability limit for Case 1
corresponds to a CFL factor of (76) of around 2.0. Consequently, in
Case 1, the approximate CFL criterion is reasonably precise.
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Figure 4. Production block results versus time, Case 2. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 1.7 and a fully implicit Eclipse300 run.

7.7. Production block results, Case 2

Figure 4 shows production block results versus time for Case 2. The
results of Eclipse300 and IMPSAT with a CFL factor of α = 1 are very
similar, but for a run with a CFL factor of α = 1.7 the solution becomes
unstable. Repeated runs leads us to conclude that the stability limit
for Case 2 corresponds to a CFL factor of around 1.7. Consequently,
the approximative CFL criterion is reasonably precise also in Case 2.
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Figure 5. Production block results versus time, Case 3. Comparison of IMPSAT
runs with CFL factors of α = 1 and α = 1.5 and a fully implicit Eclipse300 run.

7.8. Production block results, Case 3

Figure 5 shows production block results versus time for Case 3. We here
observe a mismatch between the results of Eclipse300 and IMPSAT, but
only for the components that contribute less to the saturations, i.e., the
intermediate ones. A one-dimensional study shows that the correspond-
ing component fronts are significantly more smeared by the Eclipse300
fully implicit solution. Consequently, the mismatch is reasonable.

For a run with a CFL factor of α = 1.5 the solution becomes
unstable. We conclude that the stability limit corresponds to a CFL
factor of around 1.5, which makes (76) a quite precise estimate.
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Figure 6. Volume part (left) and isochoric part (right) of the lightest component with
respect to time in Cases 1, 2, 3, with CFL factor α = 2, 1.7 and 1.5, respectively.

7.9. Instabilities

Figure 6 shows the volume part and the isochoric part of the lightest
component versus time for Case 1, 2, 3, with α = 2, α = 1.7 and
α = 1.5, respectively. In all three cases, we observe that the increasing
oscillations are isolated to the isochoric part. In addition, we note that
similar behaviour is seen for the decomposition of the flow rate of
component i,

fi =
(
projπV

f
)

i
+
(
projπx

f
)
i
, (83)

with respect to time.
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8. Conclusions and Further Work

A new volume balance consistent compositional IMPSAT formulation
has been developed and tested. It is based on transforming the conven-
tional set of variables and equations into complementary sets: pressure,
volumes and the volume balance equations on the one hand, and iso-
choric (constant volume) variables and isochoric conservation equations
on the other hand. The approach yields a minimum overlap between
the implicit volume solution and the explicit constant volume solution.

In addition, the new concepts of isochoric variables and spaces have
been interpreted both mathematically and physically, leading to a bet-
ter understanding of the stability of the IMPSAT formulation. Conse-
quently, new approximate CFL stability criteria have been proposed
and tested. Numerical results indicate that the new approach leads
to a reasonable measure for the stability of IMPSAT. The predicted
maximum stable timestep can in some cases be up to twice the timestep
allowed by the conventional IMPSAT stability criterion of Cao and Aziz
(corresponding to a relative improvement of 100 %). However, further
testing is required to establish the range of validity of the new stability
criterion.

The main focus of this paper has been the theory behind the volume
balance consistent IMPSAT approach. Simulator performance has not
been emphasised, but we have noted that the use of complementary
variables and equations yields a better conditioned system. Compar-
isons to other IMPSAT formulations will be subject to future research.
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