
Parameter Estimation of

Multivariate Factor Stochastic

Volatility Models

Jens Christian Wahl

Department of Mathematics

University of Bergen

A thesis submitted in partial fulfillment of the requirements for the

degree

Master of Science

Financial Theory and Insurance Mathematics

June 2018

Acknowledgements

I would first like to thank my advisor, Professor Hans J. Skaug for introducing me to

the topic and for all the help writing this thesis. He has helped me a great deal to

understanding this topic and has patiently answered my many questions.

I would also like to thank Berent Lunde for all the discussions regarding the technical

details of this thesis, especially with C++. Thanks to Sean Murray and Tommy Odland

for reading drafts of the thesis and giving me valuable feedback. Finally, I would

like to thank family and friends for their moral support and words of encouragement

throughout the study period.

Abstract

Volatility is a crucial aspect of risk management and important to accurately quantify.

A broad range of models and methods tackle this problem, but there is no consensus

to exactly which method or model that solves this problem best. We use maximum

likelihood and Hamiltonian Monte Carlo to estimate parameters in multivariate factor

stochastic volatility models and compare the two alternative methods with the new

interweaving strategy proposed in Kastner et al. (2017). Through simulation studies,

we show that convergence of the likelihood is unstable and very data dependent. We

investigate possible restrictions on our parameters by calculating the characteristic

function of our model. We find that restricting the loading matrix (in two dimensions)

makes convergence more stable. Furthermore, we introduce the “Nested Laplace

Approximation” (where we integrate over the latent variables in a sequential way) and

compare it to the classical Laplace approximation on two state space models. We also

compare the methods on exchange data from 2005-2015. All methods give similar

results, but Hamiltonian Monte Carlo is sensitive to the choice of priors.

Table of contents

1 Introduction 1

2 Factor Analysis and Stochastic Volatility 5

2.1 Factor Analysis . 5

2.2 Volatility Models . 7

2.2.1 ARCH/GARCH Models . 8

2.2.2 The Basic Stochastic Volatility Model 10

3 Likelihood and Marginal Likelihood 15

3.1 Properties of MLE . 16

3.1.1 Consistency . 16

3.1.2 Asymptotic normality . 18

3.2 Likelihood estimation of models with latent variables 20

4 A short introduction to MCMC 23

4.1 Why MCMC? . 23

4.2 The Metropolis-Hastings algorithm . 25

4.3 The Gibbs sampler . 26

5 Hamiltonian Monte Carlo 29

5.1 Hamilton’s equations . 29

5.2 Properties of Hamiltonian dynamics . 31

5.2.1 Reversibility . 31

viii Table of contents

5.2.2 Conservation of the Hamiltonian 32

5.2.3 Volume preservation . 32

5.3 The leapfrog method . 33

5.4 The No-U-Turn sampler . 34

5.5 Connecting Hamiltonian dynamics to MCMC 35

5.6 A one-dimensional example . 36

6 Automatic Differentiation, TMB and Stan 39

6.1 Automatic Differentiation . 39

6.1.1 Dual numbers, Reverse/Forward AD mode 41

6.2 TMB . 44

6.3 Stan - A probabilistic programming language 48

7 The Multivariate Factor Stochastic Volatility Model and DIMCMC 55

7.1 The Multivariate Stochastic Volatility Model 55

7.2 Identification issues . 57

7.3 Bayesian Inference by Deep Interweaving MCMC 58

7.3.1 Prior distributions . 58

7.3.2 Sampling the univariate SV model 58

7.3.3 Sampling the MFSV model . 60

7.3.4 Performing Deep Interweaving 62

8 Simulation Study 65

8.1 Analysis of two dimensions with one factor 65

8.1.1 An example using MLE . 66

8.1.2 Simulation study . 67

8.2 Restrictions found through the CGF 73

8.3 Simulation with restrictions . 75

9 The Nested Laplace Approximation 79

9.1 Motivation . 79

Table of contents ix

9.2 Nested Laplace approximation . 79

9.3 When û doesn’t maximize g. 81

9.4 Implementation . 82

10 Empirical Analysis 91

10.1 Likelihood converge . 92

10.2 Likelihood does not converge . 97

10.3 Summary . 102

11 Other Methods Investigated 105

11.1 Penalized Maximum Likelihood . 105

11.2 Hybrid of MLE and Moment estimators 105

11.3 Combining the Laplace Approximation with HMC 106

12 Conclusion and future work 109

References 113

Appendix A Transformation of priors 117

A.1 Transformation of ϕ . 117

A.2 Transformation of σ . 118

Appendix B Code Snippets 119

B.1 TMB code for the Multivariate Factor Stochastic Volatility Model . . . 119

B.2 TMB code for Nested Laplace of linear state space model 123

B.3 TMB code for Laplace approximation in non-optimum 126

B.4 Stan code for MVFS model . 126

Chapter 1

Introduction

Volatility, a measure of uncertainty in financial returns, is an important factor when

quantifying risk. Empirical studies show that volatility varies with time, is autocorre-

lated and therefore has a tendency to appear in clusters. It is therefore important to

develop statistical models that captures this behaviour.

There are two popular classes of models typically used to tackle the problem of

modelling volatility. The first is ARCH/GARCH models, introduced by Engle (1982)

and Bollerslev (1986), where the volatility is captured by letting the conditional variance

be a function of the squares of previous observations and past variance. The second

is Stochastic Volatility models (SV) (Taylor (1982)), where one models the volatility

as an unobserved process. We will focus on the latter, and in particular on so called

Multivariate Factor Stochastic Volatility Models (MFSV), which combine classical

factor analysis with several independent univariate SV models, allowing the latent

factors to have time-varying variance.

Parameter estimation of stochastic volatility models is hard due to the fact the

likelihood function is expressed as a high dimensional integral over the latent variables

that cannot be evaluated analytically. If y denotes our observations, u our latent

variables and θ the parameters of interest, the likelihood of θ is given by

L(θ) =
∫

fy(y|u)fu(u) du. (1.1)

2 Introduction

A variety of methods have been proposed for stochastic volatility models, such

as simulated likelihood (Liesenfeld (2006)), quasi-maximum likelihood (Harvey et al.

(1994)) and Bayesian Markov Chain Monte Carlo (MCMC) methods (Pitt and Shephard

(1999), Kastner et al. (2017)).

In a recent paper, Kastner et al. (2017) proposes a Gibbs sampler that utilizes

an ancillarity-sufficiency interweaving strategy (ASIS) introduced by Yu and Meng

(2011) for sampling MFSV models, where different data augmentation schemes are

combined to obtain efficient sampling. In this thesis we take a maximum likelihood

(ML) approach, where the Laplace approximation is used to evaluate the integral in

Equation (1.1). This has earlier been done for the univariate and multivariate basic

SV model (Skaug and Yu (2014)), but not for MFSV models. A ML approach can be

motivated by both statistical efficiency and by the fact that ML often requires less

computational power than MCMC.

Hamiltonian Monte Carlo (HMC) (Neal (2010), Neal (1996)), where Hamiltonian

dynamics is used to propose new states, is also considered as an alternative MCMC

algorithm. This has not been investigated earlier to our knowledge. HMC is efficient

since it is possible to avoid random walk proposals and thus reduce the correlation

between states in the Markov Chain.

Identification issues is a known problem for factor models (Harvey (1991), Frühwirth-

Schnatter and Lopes (2010)). It’s therefore expected that this can cause problems for

likelihood estimation. To better understand the structure of the model, we investigate

the characteristic function and the cumulative generating function to find possible

restrictions on our parameters. We also introduce the “Nested Laplace approximation”,

where we integrate over the latent variables in a sequential way, as an alternative to

the standard Laplace approximation.

This thesis is structured as follows: Chapter 2 introduces the classical factor model

and introduces both the ARCH/GARCH model and the basic SV model. The general

theory of ML, MCMC and HMC is discussed in chapter 3, 4 and 5. Chapter 6 give an

introduction to Automatic Differentiation (AD), a technique for evaluating derivatives

3

of functions, the R package Template Model Builder (TMB), used for ML and the

probabilistic programming language Stan, used for HMC. Chapter 7 introduce the

MFSV model and discusses some of its properties. An overview of the sampling

algorithm proposed in Kastner et al. (2017) (deep interweaving MCMC (DIMCMC))

is also given. A simulation study comparing ML and DIMCMC is presented in chapter

8 and the characteristic function and cumulative generating function of our model

is investigated for possible restrictions on our parameters. Chapter 9 introduces the

“Nested Laplace approximation”, an alternative to the classical Laplace approximation.

In chapter 10 we apply the different estimation methods to exchange rates. Chapter

11 briefly discusses other methods investigated in this thesis, and finally, chapter 12

concludes.

Chapter 2

Factor Analysis and Stochastic

Volatility

2.1 Factor Analysis

We will follow Jolliffe (1986), Lawley and Maxwell (1971) and Tsay (2010) in this

section.

Factor analysis is a statistical technique used to capture the correlation structure of

multivariate data. It was initially developed by psychologists and focused on capturing

the underlying general mental ability that entered in to a variety of mental tests.

Charles Spearman (Spearman (1904)) was trying to discover the hidden structure of

human intelligence. He observed that schoolchildren’s grades in different subjects were

all correlated. He also observed a particular pattern of correlations which he though

could explain why grades in different subjects where correlated. It was because they

where all correlated with something else, a general or common factor, which he called

“general intelligence”, denoted G. Spearman introduced what is known as a 1-factor

model. We will in this section introduce the classical q-factor model that will be the

building block of the dynamical factor model discussed in chapter 8.

A common problem in multivariate analysis is the so called “curse of dimensionality”.

As the dimensionality of the data increases, the number of parameters often increases

6 Factor Analysis and Stochastic Volatility

polynomially or exponentially. Take the covariance matrix as an example. Increasing

the dimensionality of the data from p to p + 1, increases the number of parameters in

the covariance matrix by p + 1. Factor analysis tries to solve this problem by imposing

a lower dimensional latent structure on the covariance matrix.

Given a multivariate random variable y = (y1, . . . , yp), the idea of factor analysis

is that these variables can be expressed as linear functions of q < p latent random

variables (also called common factors) and an error term ϵ = (ϵ1, . . . , ϵp). If f1, . . . , fq

denotes factors, then the factor model is defined as

y1 = β11f1 + β12f2 + · · ·+ β1qfq + ϵ1

y2 = β21f1 + β22f2 + · · ·+ β21fq + ϵ2

...

yp = βp1f1 + βp2f2 + · · ·+ βpqfq + ϵp.

(2.1)

For j = 1, . . . , p and k = 1, . . . , q, βjk are constants known as factor loadings and ϵj

are error terms, called specific factors or idiosyncratic noise, because ϵj is specific to

the variable yj. We can rewrite Equation (2.1) more compactly in matrix notation as

y = βf + ϵ. (2.2)

A number of assumptions need to be made:

1. E(ϵ) = 0,

2. E(f) = 0,

3. E(y) = 0,

4. E(ϵϵ′) = Ψ (Diagonal matrix),

5. E(fϵ′) = 0 (Zero matrix),

6. E(ff ′) = I (Identity matrix),

2.2 Volatility Models 7

Assumptions (1) and (4) states that the idiosyncratic error has expectation zero and

are uncorrelated. Assumptions (2) and (3) is just for convenience, since we can always

center our variables. If y has mean µ, we can simple replace y with y−µ. Assumptions

(5) and (6) states that the factors and idiosyncratic errors are uncorrelated and that

the factors have unit variance. Since Ψ is diagonal, all the systematic patterns in y

should be captured in βf , and ϵ. It should also be noted that assumption (6) can

be relaxed, so that the common factors may be correlated rather than uncorrelated.

We will not go into the theory of correlated factors, since we assume that they are

uncorrelated in all cases.

In practice β and Ψ are unknown and need to be estimated. This can be done by

maximum likelihood estimation and is implemented as a part of Base R.

Given the assumptions, we can find the covariance matrix of y:

Cov(y) = Σ = Cov(βf + ϵ) = βIβ′ + Ψ = ββ′ + Ψ (2.3)

It we inspect Equation (2.3), we observe that there are an infinite number of

solutions. Let Q be any q × q orthogonal matrix, such that QQ′ = I, where Q′ is the

transpose of Q. If we replace β by β̃ = βQ, then

β̃β̃′ = (βQ)(βQ)′ = β(QQ′)β′ = ββ′.

In the context of factor analysis this transformation corresponds to a rotation of the

factors, and the “best” one is chosen according to some criteria.

2.2 Volatility Models

Time varying volatility is one of the characteristics of financial returns. It is also known

that the volatility is autocorrelated, leading to so called volatility clusters (Pitt and

Shephard (1999)). This means if we observe small changes in the price today, it is

8 Factor Analysis and Stochastic Volatility

often followed by a small change tomorrow, while big changes more often is followed

by a big change.

The issue of modelling returns accounting for time-varying volatility has been widely

analyzed in the financial econometrics literature. The problem is usually analyzed with

two classes of models, namely the ARCH/GARCH models and the Stochastic Volatility

(SV) models. We will first discuss ARCH/GARCH models. The main references for

this section is Tsay (2010) and Shephard (2005).

2.2.1 ARCH/GARCH Models

Autoregressive Conditional Heteroskedasticity models (ARCH) is a class of stochastic

processes which are widely used to estimate heteroskedasticity and volatility clustering

in the financial industry. The ARCH(p) model was introduced by Engle (1982) and is

given by

zt =
√

htϵt, (2.4)

ht = α0 +
p∑

i=1
αiz

2
t−i (2.5)

where ϵt is a sequence of independent and identically distributed (i.i.d.) random

variables with zero mean and unit variance, α0 > 0 and αi ≥ 0 for i > 0.

The conditions put on the coefficients are to secure stationarity of zt. The error term

ϵt is usually assumed to follow a normal distribution, a t-distribution or a Generalized

Error Distribution (GED). We can observe that the conditional variance of zt given

the information at time t− 1, denoted by Ft−1, is given by

Var(zt|Ft−1) = E(htϵ
2
t) = ht = α0 +

p∑
i=1

αiz
2
t−i.

From the expression above, we can observe that if the returns in the past are big,

the conditional variance ht for today’s observation will be big. The same holds true

2.2 Volatility Models 9

for small returns. Thus, the conditional variance captures clusters of high and low

volatility.

Tsay (2010) also point out some of the weaknesses of the ARCH model:

• Positive and negative returns have the same effect on the volatility because it

depends on the square of the returns. In practice, the price of financial assets

responds differently to positive and negative returns.

• ARCH model does not provide us with any new insight for the sources of the

volatility, but only a deterministic method to describe the conditional variance.

• It tends to overpredict the volatility because it responds slowly to large isolated

returns.

A few years later Bollerslev (1986) introduced an extension of the ARCH(p) model,

known as the GARCH(p, q). The GARCH(p, q) model is defined as

zt =
√

htϵt, (2.6)

ht = α0 +
p∑

i=1
αiz

2
t−i +

q∑
j=1

βjht−j, (2.7)

where ϵt is a sequence of i.i.d. random variables with zero mean and unit variance,

α0 > 0, αi ≥ 0, βj ≥ 0, and ∑max (p,q)
i=1 (αi + βi) < 1. Again, the restrictions on the

parameters is to ensure stationarity. The ϵt usually follows a normal distribution,

t-distribution or a GED. The conditional variance of zt is given by

Var(zt|Ft−1) = E(htϵ
2
t |Ft−1) = ht = α0 +

p∑
i=1

αiz
2
t−i +

q∑
j=1

βjht−j. (2.8)

We can observe that in comparison to the ARCH model, the conditional variance of

zt depends not only on the square of earlier returns, but also on the variance of earlier

returns. If βj = 0, the model is reduced to a ARCH(p). Just as the ARCH model, the

GARCH process suffers from responding the same way to both positive and negative

earlier returns, and empirical studies indicate that the tail behavior of GARCH models

10 Factor Analysis and Stochastic Volatility

remains too short even when ϵt follows a standardized t-distribution (Tsay (2010)). In

the next subsection, we will see that in comparison to the ARCH/GARCH models, SV

models treat the volatility as a latent stochastic process.

2.2.2 The Basic Stochastic Volatility Model

In contrast to ARCH/GARCH models, stochastic volatility (SV) models model the

volatility as a latent process. The basic SV model is defined by

yt = σyeht/2ϵt, t = 1, . . . , T,

ht+1 = ϕht + σηt, t = 1, . . . , T − 1,
(2.9)

where yt is the observed log returns, ht is the logarithm of the variance on day t

and ϵt, ηt
iid∼ N (0, 1). To ensure stationarity for ht, we assume |ϕ| < 1. It can be

shown that the unconditional distribution of ht is N (0, σ2/(1− ϕ2)), and we assume

h1 ∼ N (0, σ2/(1−ϕ2)). A interpretation of the latent process {ht} is that is represents

the random and uneven flow of new information into the marked (Pitt and Shephard

(1999)). For different time points, the variance will be dependent of this unobserved

“flow” of information, i.e. conditioning on ht, Var(yt|ht) = σ2
xeht .

A characteristic of volatility clustering is that the squared returns are autocorrelated.

We therefore derive some of the properties of y2
t . We first need the following proposition:

Proposition 2.1. Let Z = (Z1, . . . , Zk) be a multivariate normal variable with expec-

tation µ and covariance matrix Σ = {σij}. Let U = exp (Z) = (exp (Z1), . . . exp (Zk)).

Then E(Ui) = exp (µi + 1
2σii) and Cov(Ui, Uj) = E(Ui)E(Uj)(exp (σij) − 1) for i, j =

1, . . . , k.

2.2 Volatility Models 11

Proof. Let a ∈ Rk. Then

E
(

k∏
j=1

U
aj

j

)
= E

(
k∏

j=1
exp (ajZj)

)

= E
(

exp
(

k∑
j=1

ajZj

))
= E

(
exp (a′Z)

)
.

(2.10)

Using the fact that the moment generating function for a multivariate normal variable

X is given by

MX(t) = E
(

exp (t′X)
)

= exp
(

t′µ + 1
2t′Σt

)
,

we get

E
(

exp (a′Z)
)

= exp
(

a′µ + 1
2a′Σa

)
. (2.11)

For i = 1, . . . , k, we choose a such that the ith element is equal to one and zero

otherwise and obtain E(Ui) = exp (µi + 1
2σii). Now, choose a ∈ Rk such that for

i, j = 1, . . . , k the ith and jth element is equal to one and zero otherwise. It then

follows from Equation (2.11) that

E(UiUj) = exp (µ1 + µ2 + 1
2σii + σij + 1

2σjj) = E(Ui)E(Uj) exp (σij),

and thus Cov(Ui, Uj) = E(Ui)E(Uj)(exp (σij)− 1)

Using proposition 2.1 and assuming finite fourth moment, we can find the the first

to even moments of yt (Hautsch and Ou (2008)):

E(y2
t) = σ2

yE(eht) = σ2
y exp

(
σ2

2(1− ϕ2)

)
, (2.12a)

E(y4
t) = σ4

yE(ϵ4e2ht) = 3σ4
yE(e2ht) = 3σ4

y exp
(

2σ2

(1− ϕ2)

)
. (2.12b)

Combining these we get

Var(y2
t) = 3σ4

y exp
(

σ2

1− ϕ2

)(
exp

(
σ2

1− ϕ2

)
− 1

)
. (2.13)

12 Factor Analysis and Stochastic Volatility

Thus, yt is a non-Gaussian weakly stationary 1 time series. Using Equation (2.12) the

kurtosis of yt is

K(yt) := E(y4
t)

E(y2
t)2 =

3σ4
y exp

(
2σ2

(1−ϕ2)

)

σ4
y exp

(
σ2

2(1−ϕ2)

) = 3 exp
(

σ2

1− ϕ2

)
. (2.14)

This implies that K(yt) > 3 as long as σ2 > 0 and is increasing as |ϕ| and σ2 increases

(assuming |ϕ| < 1), making the distribution more “heavy-tailed” compared to the

normal distribution.

To find the autocorrelation function (ACF2) of y2
t we can apply proposition 2.1:

Cov(y2
t+τ , y2

t) = E(y2
t+τ y2

t)− E(y2
t+τ)E(y2

t)

= σ4
y

(
E(exp (ht+τ) exp (ht))− E(exp (ht+τ))E(exp (ht)

)
(Independence of ϵt)

= σ4
yCov(exp (ht+τ), exp (ht))

= σ4
yE
(

exp (ht+τ)
)
E
(

exp (ht)
)(

exp
(
Cov(ht+τ , ht

)
− 1

)
By prop. (2.1)

= σ4
y exp

(
σ2

1− ϕ2

)(
exp

(
ϕτ σ2

1− ϕ2

)
− 1

)
(2.15)

Dividing Equation (2.15) by Equation (2.13) we obtain the ACF:

ρ(τ) =
exp

(
ϕτ σ2

1−ϕ2

)
− 1

3 exp
(

σ2

1−ϕ2

)
− 1

, τ = 0, 1, (2.16)

Thus, for ϕ ∈ (0, 1) the basic SV model predicts a positive autocorrelation function

that is exponentially decaying in τ for squared returns.
1A stochastic process {Xt} is said to be weakly stationary if E(Xt) is independent of t and

Cov(Xt+h, Xt) is independent of t for each h.
2The ACF of a stationary time series {Xt} is defined as ρ(h) = Cov(Xt+h,Xt)

Var(Xt)

2.2 Volatility Models 13

As we will see in chapter 7, the Multivariate Factor Stochastic Volatility Model

is a result of combining the factor model in section 2.1 with several independent SV

models from this section.

Chapter 3

Likelihood and Marginal Likelihood

Parameter estimation of stochastic volatility models can be a challenging task and

has been subject of much research. A variety of methods have been proposed, such

as simulated likelihood (Liesenfeld (2006)), quasi-maximum likelihood (Harvey et al.

(1994)) and Bayesian MCMC methods (Pitt and Shephard (1999),Kastner et al. (2017)).

In this thesis we focus on the maximum likelihood framework, and this chapter will

serve as an introduction to the topic. We will mostly follow Casella and Berger (2001),

Rice (1988) and Pawitan (2001), which give good introductions. For a more rigorous

and theoretical treatment, the reader is referred to Schervish (1996).

Let fX(x|θ) denote the joint pdf or pmf of the sample X = (X1, . . . , Xn). Then,

given that X = x, the function L(θ) = fX(x|θ) is called the likelihood function.

We can interpret the likelihood function as how well different values of the parameter

explain the observed data. This gives rise to the concept of the maximum likelihood

estimate (MLE), which is the value of θ that maximizes the likelihood function. We

define the MLE as

θ̂ = arg max
θ

L(θ). (3.1)

If we assume that the likelihood function is differentiable w.r.t θ, possible candidates

for the MLE are all points θi, i = 1, . . . , k such that

∇L(θi) = 0. (3.2)

16 Likelihood and Marginal Likelihood

In practice, we are often working with the logarithm of the likelihood, l = logL,

due to the fact that it is often easier to maximize the logarithm of the likelihood than

the likelihood itself. Since the logarithm is a strictly increasing function, the maximum

of l will also be the maximum of L.

3.1 Properties of MLE

We will now give a sketch of the proofs of two nice properties of MLE, namely consistency

and asymptotic normality. For simplicity, we assume that our observations are i.i.d.

(Pawitan (2001)).

3.1.1 Consistency

One of the most appealing properties of the maximum likelihood estimator is consistency,

meaning that as the sample size increases the sequence of estimators {θ̂n}∞
n=1 converges

to the true parameter value θ0.

To prove consistency, we need the following theorem from Pawitan (2001).

Theorem 3.1 (Information inequality). If f and g are two densities, then

Eg

(
log g(X)

f(X)

)
≥ 0

with strict inequality unless f = g. Eg means that the expectation is taken assuming X

has density g.

Theorem 3.2. Under appropriate smoothness conditions on f , the MLE from an i.i.d.

sample is consistent, i.e. θ̂
P−→ θ0.

Proof. For an i.i.d. sample the likelihood function is given by L(θ) = ∏n
i=1 f(Xi|θ)

and maximizing the likelihood is equivalent to maximizing l(θ) = logL(θ). This is the

same as maximizing

3.1 Properties of MLE 17

1
n

l(θ) = 1
n

n∑
i=1

log f(Xi|θ).

By the law of large numbers, we have

1
n

l(θ) P−→ E(log f(x|θ)) =
∫

log[f(x|θ)]f(x|θ0) dx,

where θ0 denotes the true value of θ. Assuming that we can interchange integration

and differentiation:

∂

∂θ

∫
log[f(x|θ)]f(x|θ0) dx =

∫ ∂

∂θ

(
log[f(x|θ)]f(x|θ0)

)
dx =

∫ ∂
∂θ

f(x|θ)
f(x|θ) f(x|θ0) dx.

If now θ = θ0, f cancels and

∫ ∂

∂θ
f(x|θ0)dx = ∂

∂θ

∫
f(x|θ0)dx = 0,

so θ0 is at least a stationary point. We need to show that this is a maximum, i.e. that

for any fixed ϵ > 0,

L(θ0) > L(θ0 − ϵ)

L(θ0) > L(θ0 + ϵ),

with probability tending to one as n → ∞. By the law of large number and the

Information inequality

1
n

log L(θ0)
L(θ0 − ϵ) = 1

n
log

∏
i f(xi|θ0)∏

i f(xi|θ0 − ϵ) = 1
n

∑
i

log f(xi|θ0)
f(xi|θ0 − ϵ)

P−→ E
(

log f(X|θ0)
f(X|θ0 − ϵ)

)
> 0

Multiplying both sides by n and taking the exponential proves the first inequality. The

second is proved the same way.

18 Likelihood and Marginal Likelihood

3.1.2 Asymptotic normality

When doing likelihood estimation in practice, closed form expressions for the standard

error is often not available and we need to approximate it. This can be done by the

method of bootstrapping (but is often time consuming) or by using the inverse of the

Fisher Information matrix, defined below. We will now sketch the proof of why we are

justified using this approximation.

We need the following lemma (Rice (1988)):

Lemma 3.3. Define the Fisher Information, I(θ), by

I(θ) = E
[

∂

∂θ
log f(X|θ)

]2

.

Under appropriate smoothness conditions on f, I(θ) may also be expressed as

I(θ) = −E
[

∂2

∂θ2 log f(X|θ)
]
.

Theorem 3.4. Let X1, . . . , Xn, . . . be a sequence of i.i.d. observations from f(x|θ),

let θ̂n be the MLE of the univariate θ based on X1, . . . , Xn, and let θ0 be the true value

of θ. Under appropriate smoothness conditions on f , the probability distribution of
√

n(θ̂n − θ0) tends to N (0, I−1(θ0)).

Proof. By a first order Taylor expansion where the remainder term is set to zero,

0 = l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0)

⇒ (θ̂n − θ0) = − l′(θ0)
l′′(θ0)

⇔ n1/2(θ̂n − θ0) = −n−1/2l′(θ0)
n−1l′′(θ0)

3.1 Properties of MLE 19

We first study the expectation and variance of the numerator:

E(l′(θ0)) = E
[∑

i

∂

∂θ0
log f(Xi|θ0)

]

=
∑

i

E
[

∂

∂θ0
log f(Xi|θ0)

]

=
∑

i

∫ ∂

∂θ0
log[f(xi|θ0)]f(xi|θ0) dx

=
∑

i

∫ ∂

∂θ0
f(xi|θ0)dx =

∑
i

∂

∂θ0

∫
f(xi|θ0)dx = 0,

since the density integrates to one. By lemma 3.3 and independence, the variance is

given by

Var(n−1/2l′(θ0)) = Var
[
n−1/2∑

i

∂

∂θ0
log f(Xi|θ0)

]

= n−1∑
i

E
[

∂

∂θ0
log f(Xi|θ0)

]2

= I(θ0).

For the denominator we have by the law of large numbers and lemma 3.3

− 1
n

l′′(θ0) = − 1
n

∑
i

∂2

∂θ2
0

log f(xi|θ0) P−→ −E
[

∂2

∂θ2
0

log f(Xi|θ0)
]

= I(θ0).

Thus,

−n−1/2l′(θ0)
n−1l′′(θ0)

≈ n−1/2l′(θ0)
I(θ0)

,

with expectation zero and variance given by

Var(n−1/2(θ̂n − θ0)) = I(θ0)
I2(θ0)

= 1
I(θ0)

.

Since l′(θ0) = ∑
i

∂
∂θ0

log f(Xi|θ0) is a sum of i.i.d. random variables, by the central

limit theorem

n−1/2(θ̂n − θ0) d−→ N (0, I−1(θ0)).

20 Likelihood and Marginal Likelihood

We can observe that small Fisher information results in large asymptotic variance,

and large Fisher information results in a smaller asymptotic variance of the MLE. The

geometric interpretation is that if the curvature is big, I(θ) will be large, and the

variance small. Thus, the MLE is much more likely to be true than other possible

values nearby. Small Fisher information means that the curvature is small and could

mean that there are other values that are almost equally likely.

Theorem 3.4 generalizes to θ being multidimensional. The Fisher Information I(θ)

is then a matrix and under certain regularity conditions the entries are given by

[I(θ)]i,j = E
[

∂

∂θi

log f(X|θ) ∂

∂θj

log f(X|θ)
]

= −E
[

∂2

∂θi∂θj

log f(X|θ)
]
.

The covariance matrix is then given by the inverse Fisher Information. In practice, the

observed Fisher Information, the negative Hessian of the log-likelihood, is used.

3.2 Likelihood estimation of models with latent vari-

ables

All models considered in this thesis contain latent variables. As a consequence, the

likelihood will be an integral over the latent variables. This integral is often high dimen-

sional and can’t be evaluated analytically. One solution is to apply quadrature rules for

numerical integration, but this does not scale well to high dimensions (Fournier et al.

(2011)). An efficient alternative to numerical integration is the Laplace approximation,

which we derive below. Since many optimization algorithms minimizes the function we

will working with the negative log-likelihood.

Let y be a vector of observations, θ our parameters of interest and u be a random

vector of latent variables. The conditional density of our observations given u is

denoted by fy(y|u), and fu(u) denotes the marginal density of u. Let g(u, θ) denote

the negative joint log-likelihood. The likelihood of θ is given by

3.2 Likelihood estimation of models with latent variables 21

L(θ) =
∫

f(y, u) du =
∫

fy(y|u)fu(u) du =
∫

exp{−g(u, θ)} du. (3.3)

We assume that g has a global minimum at û for a given θ, i.e. û = arg minu g(u, θ),

and that g is twice differentiable. The solution û is known as the Empirical Bayes

(EB) estimate. A second order Taylor expansion around û yields

g(u, θ) ≈ g(û, θ) +∇g(û, θ)(u− û) + 1
2(u− û)TH(u− û) (3.4)

Since û is a minimum, ∇g(û, θ) = 0. Therefore

L(θ) ≈ exp{−g(û, θ)}
∫

exp
{
− 1

2(u− û)TH(u− û)
}

du (3.5)

We can observe that the integrand is the kernel of a multivariate normal density with

covariance matrix H−1. The approximation is therefore given by

L(θ) ≈ exp{−g(û, θ)}(2π)dim(u)/2det(H)−1/2, (3.6)

where we have used the fact that det(H−1) = det(H)−1. The corresponding negative

log-likelihood is

− l(θ) = −dim(u)
2 log(2π) + 1

2 log det(H) + g(û, θ) (3.7)

The Laplace approximation is exact when the joint density is Gaussian (Fournier

et al. (2011)). It also works well when fu(u|θ) is Gaussian and fu(u|θ) is more

informative than fy(y|u) with respect to the observed Information matrix. As an

example, the Laplace approximation of a t-distribution with five degrees of freedom

can be seen in figure 3.1.

22 Likelihood and Marginal Likelihood

0.0

0.1

0.2

0.3

−5.0 −2.5 0.0 2.5 5.0

x

De
nsi

ty

df = 5

Laplace

Fig. 3.1 The Laplace approximation of a t-distribution with five degrees of freedom.

Chapter 4

A short introduction to MCMC

4.1 Why MCMC?

When modelling in the Bayesian framework, the parameters θ are not considered as

being fixed to a certain value, but are treated as stochastic variables, with corresponding

densities. To be able to do inference about θ we need to define a model that provides

a joint distribution of the parameters θ and the data y, denoted by f(θ, y). The joint

distribution can be written as the product fy(y|θ)π(θ), where fy(y|θ) is the likelihood

function defined in chapter 3, and π(θ) is the prior distribution of our parameters, i.e.

our belief about θ before seeing any data. We are interested in doing inference based

on our data, and this gives rise to the posterior distribution i.e. the distribution of θ

given the data. The posterior distribution represents how we adjust our prior beliefs in

response to observed data. By Bayes theorem we have

fθ(θ|y) = fy(y|θ)π(θ)
fy(y) = fy(y|θ)π(θ)∫

fy(y|θ)π(θ)dθ
, (4.1)

where the denominator is a normalization constant. This constant is often unknown

and hard to obtain in practice, but as we will see, not needed when doing MCMC.

24 A short introduction to MCMC

Discarding the normalization constant yields the unnormalized posterior density:

fθ(θ|y) ∝ fy(y|θ)π(θ). (4.2)

In Bayesian statistics, latent variables are treated as parameters. If u ∼ fu(u|θ)

denotes our latent variables, and our observations are denoted as y ∼ fy(y|u, θ), the

joint posterior of (θ, u) is given by

fθ,u(θ, u|y) = fy(y|θ, u)fu(u|θ)π(θ)∫ ∫
fy(y|θ, u)fu(u|θ)π(θ)dθdu

∝ fy(y|θ, u)fu(u|θ)π(θ), (4.3)

where, again, the denominator is a normalization constant. For the remaining part of

the thesis, latent variables u will be not be stated explicitly, but will be included in

the parameter vector θ.

In many complex models the posterior is not available in a closed form and we

can’t sample directly from fθ(θ|y). One way to approximate fθ(θ|y), is to use Markov

chain Monte Carlo algorithms (MCMC).

The idea behind MCMC is to construct a Markov chain on the state space X whose

stationary distribution is the target density of interest. A Markov chain is a sequence of

random variables {θi}∞
i=1, for which the conditional distribution of θi given (θ1, . . . , θi−1),

for any i, only depends on the most recent value θi−1, i.e. P(θt|θt−1, . . . , θ1) = P(θt|θt−1).

For the remainder of this thesis, the stationary distribution is assumed to be the

posterior, fθ(θ|y). Given that the Markov chain has reached the stationary distribution,

the sample (θ1, . . . , θn) generated by the Markov chain can be used to estimate

expectations (Betancourt (2017)):

θ̂n = 1
n

n∑
i=1

θi. (4.4)

Since, by the law of large numbers,

lim
n→∞

θ̂n = E(θ).

4.2 The Metropolis-Hastings algorithm 25

There also exist a Central Limit Theorem for MCMC, which under certain regularity

conditions states:

θ̂MCMC
n

d−→ N (E(θ), MCMC-SE),

where MCMC-SE denotes the standard error and is given by

MCMC-SE =
√

Var(θ)
ESS .

ESS is the effective sample size:

ESS = n

1 + 2∑∞
i=1 ρi

where ρi is the ith lag autocorrelation function in the Markov chain. We can observe

that the standard error grows as the autocorrelation grows. Thus, if our Markov chain

is strongly correlated, the standard error of our estimates will be larger than in the

case when the sample is independent. We therefore need a bigger sample than in the

i.i.d. case.

In the next sections we introduce two basic MCMC algorithms used in this thesis,

namely the Metropolis-Hastings algorithm and the Gibbs sampler. Our main sources

will be Gelman et al. (2015) and Murphy (2012).

4.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (MH) is a family of Markov chain simulation

methods. The purpose of MH is to draw samples from a target probability distribution

f by generating a Markov Chain whose stationary distribution is f . We will assume

that f is the posterior distribution fθ(θ|y). At each time point t, given the state

the state of the chain θt−1, we propose a new state θ⋆ from a proposal distribution

Jt(θ⋆|θt−1). Typical examples of proposal distribution are the normal and uniform

distribution. We must now decide if we want to move from θt−1 to θ⋆. This is done by

26 A short introduction to MCMC

calculating the acceptance probability

α = min
(

1,
fθ(θ⋆|y)/Jt(θ⋆|θt−1)

fθ(θt−1|y)/Jt(θt−1|θ⋆)

)
, (4.5)

and set

θt =

θ⋆ with probability α

θt−1 otherwise.

Note that if Jt is symmetric, meaning Jt(θ⋆|θt−1) = Jt(θt−1|θ⋆), the acceptance

probability reduces to the ratio of the target density in the proposed state and the

current state. This implies moving to θ⋆ if θ⋆ is more probable than θt−1, which makes

sense, we want to sample from areas of high probability mass. We can still move to θ⋆,

even if θ⋆ is less probable that θt−1, which makes exploration of the entire space of

fθ(θ|y) possible.

We can also observe that we don’t need the normalized posterior density for the

MH algorithm. Let f̃θ(θ|y) be the normalized posterior, i.e. f̃θ(θ|y) = fθ(θ|y)/Z,

where Z is the normalization constant. Then

f̃θ(θ⋆|y)
f̃θ(θt−1|y)

= fθ(θ⋆|y)/Z

fθ(θt−1|y)/Z
= fθ(θ⋆|y)

fθ(θt−1|y)

We are therefore justified using the unnormalized posterior. The MH algorithm is

summarized in Algorithm 1.

We will revisit MH in chapter 5 where Hamiltonian dynamics is used to propose

new states in a Markov chain.

4.3 The Gibbs sampler

As we saw in the previous section, the MH algorithm updates all parameters simulta-

neously. An alternative to this is to sample subvectors of θ conditioning on all other

parameters. This is the strategy used in the Gibbs sampler.

4.3 The Gibbs sampler 27

Algorithm 1: Metropolis-Hastings algorithm
Input : fθ(θ|y), Jt, T
Initialize : θ0

1 for t = 1, 2, . . . , T do
2 Sample θ⋆ ∼ Jt(θ⋆|θt−1).
3 Compute acceptance probability

α = min
(

1, fθ(θ⋆|y)/Jt(θ⋆|θt−1)
fθ(θt−1|y)/Jt(θt−1|θ⋆)

)
4 Sample u ∼ U(0, 1)
5 Set new sample to

θt =
θ⋆ if u < α

θt−1 if u ≥ α.

6 end
7 return (θ1, . . . , θT)

Suppose θ can be divided into d subvectors, θ = (θ1, . . . , θd), and let fθj (θj|θ−j, y)

denote the conditional posterior distribution of θj given all the other components of θ

and the data y. At each iteration t in the Markov chain, for j = 1, . . . , d, we sample

θj
t from the conditional distribution fθj (θj

t |θ−j
t−1, y), where

θ−j
t−1 = (θ1

t , . . . , θj−1
t , θj+1

t−1 , . . . , θd
t−1)

represents the current values of all other subvectors. Note that up to component j, we

condition on the value from the current iteration, since these parameters have already

been sampled, while for components starting from j + 1 we condition on the values

from the last iteration. The Gibbs sampler is summarized in following algorithm:

Algorithm 2: Gibbs sampler
Input : fθ1(θ1|θ−1, y), . . . , fθd(θd|θ−d, y), T
Initialize : θ1

0, . . . , θd
0

1 for t = 1, 2, . . . , T do
2 for j = 1, 2, . . . , d do
3 Sample θj

t ∼ fθj (θj
t |θ−j

t−1, y)
4 end
5 end
6 return (θ1

1, . . . , θ1
T), . . . , (θd

1 , . . . , θd
T)

28 A short introduction to MCMC

The Gibbs sampler is extensively used in the sampling methodology proposed by

Kastner et al. (2017) discussed in chapter 7.

In the next chapter we will discuss how Hamiltonian dynamics can be used together

with the MH algorithm to generate samples from the posterior distribution.

Chapter 5

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) was proposed in the field of statistical physics

by Duane et al. (1987), and was originally developed to tackle the calculations in

Lattice Quantum Chromodynamics. It combined the Metropolis-Hastings algorithm

with techniques from molecular dynamics. HMC can be used to produce efficient

proposal distributions for a Metropolis-Hastings sampler that allows large moves in

the parameter space while keeping a high acceptance rate. It was introduced to the

statistical literature by Radford Neal (Neal (1996)), where he applied HMC in his work

to Bayesian neural networks. In this chapter we introduce some of the theory of HMC

and how it can be applied in parameter estimation. Our main sources for this section

are Neal (2010) and Betancourt (2017).

5.1 Hamilton’s equations

We will first introduce the equations that govern how the Hamiltonian system evolves

over time and some of its properties. We will then discuss how this can be used to

sample from the posterior distribution of our model.

Hamiltonian dynamics is dependent on two elements, a position vector θ ∈ Rd, and

a momentum vector p ∈ Rd, making the full system D = 2d dimensional. The system

is described by a function of θ and p, known as the Hamiltonian, H(θ, p). How θ and

30 Hamiltonian Monte Carlo

p changes over time is governed by Hamilton’s equations:

dθi

dt
= ∂H

∂pi

, i = 1, . . . , d, (5.1)

dpi

dt
= −∂H

∂θi

, i = 1, . . . , d, (5.2)

The system can also be written more compactly in vector notation as

d

dt

θ

p

 = J∇H(θ, p)′ (5.3)

where

∇H =
(

∂H
∂θ1

, . . . ,
∂H
∂θd

,
∂H
∂p1

, . . . ,
∂H
∂pd

)
,

and

J =

 0d×d Id×d

−Id×d 0d×d

is a 2d× 2d matrix.

For HMC, we use Hamiltonian functions that can be written on the form

H(θ, p) = U(θ) +K(p), (5.4)

where U(θ) is called the potential energy and K(p) is the Kinetic energy. As we will

see later U(θ) will be defined as the negative log posterior of θ. We define K(p) as

K(p) = 1
2p′M−1p. (5.5)

The matrix M , called the “mass-matrix”, is symmetric, positive-definite and is typically

diagonal, often a scalar multiple of the identity matrix. We can identify K as the

negative kernel of a multivariate, zero-mean Gaussian distribution with covariance

matrix M .

Assuming the form given by Equation 5.4, the derivative of H w.r.t p simplifies to

5.2 Properties of Hamiltonian dynamics 31

M−1p, and as a consequence, the Hamiltonian equations can be written as

dθi

dt
= [M−1p]i (5.6)

dpi

dt
= −∂U

∂θi

(5.7)

5.2 Properties of Hamiltonian dynamics

Hamiltonian dynamics have many desirable properties. In this section we cover three

of them, namely reversibility, conservation of energy and volume-preservation, and

explain why this this is important when constructing Metropolis-Hasting updates.

5.2.1 Reversibility

To talk about reversibility we first need to define what the flow of the Hamiltonian

means (Bou-Rabee and María Sanz-Serna (2017)).

Definition 5.1. For fixed t, the t-flow φt : RD → RD, is the map that associates with

each α ∈ RD the value at time t of the solution of Equation (5.1 and 5.2) that at the

initial time 0 takes the initial value α.

The Hamiltonian is reversible, meaning that the flow φt+s(θ, p), from state (θ(t), p(t)),

to state (θ(t + s), p(t + s)) is one-to-one (injective). This implies that there exist

an inverse φ−1
(t+s), so that φ−1

(t+s)(φt+s(θ, p)) results in the identity mapping, taking

(θ(t), p(t)) to (θ(t), p(t)). When the Hamiltonian is additive, as in Equation (5.4), and

K is even, meaning K(p) = K(−p), the inverse can be obtained by negating p, apply

φt+s(θ,−p), and then negating p again.

Reversibility of the Hamiltonian is important since it is used to show that the

target density is left invariant after MCMC updates. This can be proved by showing

the reversibility of the Markov chain transitions, which requires reversibility of the

dynamics used to propose new states.

32 Hamiltonian Monte Carlo

5.2.2 Conservation of the Hamiltonian

That the Hamiltonian is conserved means that the dynamical system is constant along

each trajectory of the system. One way to prove this is to show that the derivative is

equal to zero. This is straight forward for the Hamiltonian:

dH
dt

=
d∑

i=1

[
∂H
∂pi

dpi

dt
+ ∂H

∂θi

dθi

dt

]
(by the chain rule)

=
d∑

i=1

[
− ∂H

∂pi

∂H
∂θi

+ ∂H
∂θi

∂H
∂pi

]
(by Equation (5.1 and 5.2))

= 0

The theoretical consequence of this, when used to produce new proposals in the

Metropolis algorithm, is that the acceptance probability will be one, sinceH is conserved,

and we are moving along a path of constant probability mass. Unfortunately, we are

only able to make H approximately conserved in most applications, and we are unable

to always accept the new proposed state.

5.2.3 Volume preservation

The third property of Hamiltonian dynamics is that it preserves volume in the (θ, p)

space. What this means is that if we apply the mapping φt(θ, p) to the points in some

region R in phase space, with volume V , the image, i.e. φt(θ, p) ∀ (θ, p) ∈ R, will also

have volume V .

It can be shown that a vector field with zero divergence preserve volume (Neal

(2010)). Taking the divergence of Equation (5.3):

∇ · (J∇H) =
d∑

i=1

[
∂

∂θi

dθi

dt
+ ∂

∂pi

dpi

dt

]

=
d∑

i=1

[
∂

∂θi

∂H
∂pi

− ∂

∂pi

∂H
∂θi

]
=

d∑
i=1

[
∂2H

∂θi∂pi

− ∂2H
∂pi∂θi

]
= 0

(5.8)

5.3 The leapfrog method 33

As Neal notes, the implication of this for MCMC is that we don’t need to account

for any change in volume in the acceptance probability for Metropolis updates. If this

was not the case we would need to calculate the determinant of the Jacobian matrix,

something which might be infeasible.

An analytical solution of Hamiltonian dynamics is in general not available, but

even when we approximate the dynamics, reversibility and preservation of volume can

be maintained.

5.3 The leapfrog method

Due to the fact that in most applications, no analytical solution of Hamilton’s equations

are available, we need to approximate the solution by discretizing time, using some

small step size ϵ, and iteratively approximate the system at time ϵ, 2ϵ, . . . , Lϵ, where L

is the number of steps taken. There exists a broad range of methods for approximating

systems of differential equations, but we will focus on the so leapfrog method. Assuming

the Hamiltonian has the form given by Equation (5.4), it works as follows:

pi(t + ϵ/2) = pi(t) + ϵ

2
dpi

dt
= pi(t)−

ϵ

2
∂U
∂θi

(θi(t)) (5.9)

θi(t + ϵ) = θi(t) + ϵ
dθi

dt
= θi(t) + ϵ

∂K
∂pi

(pi(t + ϵ/2)) (5.10)

pi(t + ϵ) = pi(t + ϵ/2) + ϵ

2
dpi

dt
= pi(t + ϵ/2)− ϵ

2
∂U
∂θi

(θi(t + ϵ)) (5.11)

We start with half a step for the momentum variables, then do a full step in the

position variables using the new momentum variables. Since we now know the position

of the momentum at qi(t + ϵ), we can use this when taking another half step for the

momentum variable.

The leapfrog method is a member of a family of numerical methods known as

symplectic integrators (Betancourt (2017)). These have the property that they generate

numerical trajectories that preserve the volume in the phase space, just like the

Hamiltonian trajectories they are approximating. Therefore, the numerical trajectories

34 Hamiltonian Monte Carlo

cannot drift away from the level sets, it instead oscillate near it (even for long integration

time).

For the leapfrog method, there are two hyperparameters that need to be selected:

the leapfrog step size ϵ, and the number of leapfrog steps L, which together determine

the length of the trajectories. Hoffman and Gelman (2011) introduced the No-U-Turn

sampler to get around the problem of tuning the hyperparameters manually.

5.4 The No-U-Turn sampler

HMC’s performance is highly sensitive to the choice of the step size ϵ and the number

of steps L. When L is too small HMC exhibits random walk behavior and will lead

to slow mixing. On the other hand, if L is too big, we are using more computational

power than we need and may cause double-back behavior, where the integrator returns

to its starting values (Paquet and Fraccaro (2016)). If the step size ϵ is too small,

it will be difficult to explore the whole space, unless a large L is used. A too big

ϵ can lead to high rejection rates and an unstable algorithm (Hoffman and Gelman

(2011)). The No-U-Turn (NUTS) sampler was introduced to tackle the problem of

tuning the step size ϵ and number of steps L. We will not go into the details of the

algorithm here, but give a brief description (found in Monnahan et al. (2016)): “A

single NUTS trajectory is built by iteratively accumulating steps. In the first iteration,

a single leapfrog step is taken from the current state so the trajectory has a total of

two steps.Then, two more steps are added(total of four), then four more(total of eight),

and so forth, with each iteration doubling the length of the trajectory. This doubling

procedure repeats until the trajectory turns back on itself and a ‘U-turn’ occurs, or

the trajectory diverges (i.e. H goes to infinity). The number of doublings is known as

the tree depth.The key aspect of this tree building algorithm is that it automatically

creates trajectories that are neither too short nor too long. In practice, this means

trajectory lengths vary among transitions: it may take eight steps or 128, depending

on the position and momentum vectors.”

5.5 Connecting Hamiltonian dynamics to MCMC 35

5.5 Connecting Hamiltonian dynamics to MCMC

To sample θ from the posterior, we define the joint density of (θ, p) as follows:

f(θ, p) = fθ(θ)fp(p) ∝ e−H(θ,p) = e−(U(θ)+K(p)), (5.12)

where K(p) is defined as in Equation (5.5). We choose our potential energy to be the

negative logarithm of the posterior distribution of our parameters of interest:

U(θ) = − log
[
L(θ)π(θ)

]
, (5.13)

where L is the likelihood function given the data and π is the prior density.

The HMC algorithm proceeds in two steps. Assume that the current state is (θ, p).

The first step only includes the momentum p. We sample a new p from the zero-mean

multivariate normal distribution with covariance matrix M , which can be interpreted

as a Gibbs sampling update (Hoffman and Gelman (2011)). Next, using Equation (5.1

and 5.2), we take L steps of length ϵ using the leapfrog method, resulting in a new

state (θ⋆, p⋆).

In the second step a Metropolis update is performed, where we either accept or

reject the new state (θ⋆, p⋆). We accept our new state (θ⋆, p⋆) of the Markov chain

with probability

α = min
(

1,
exp

{
−H(θ⋆, p⋆)

}
exp

{
−H(θ, p)

})
= min

(
1, exp

{
H(θ, p)−H(θ⋆, p⋆)

})
. (5.14)

If we fail to accept the new proposed state, the next state will be the same as the

current. Independent of acceptance or rejection, p⋆ is discarded after α is calculated.

The standard HMC algorithm is summarized in algorithm 3 (inspired by Hoffman and

Gelman (2011)).

36 Hamiltonian Monte Carlo

Algorithm 3: Hamiltonian Monte Carlo
Input : θ0, ϵ, L,H, N

1 for n = 1 to N do
2 Sample p0 ∼ N (0, M).
3 Set θn ← θn−1, θ⋆ ← θn−1, p⋆ ← p0.
4 for i = 1 to L do
5 Set θ⋆, p⋆ ← Leapfrog(θ⋆, p⋆, ϵ).
6 end

7 With probability α = min
(

1, exp
{
H(θ, p)−H(θ⋆, p⋆)

})
, set θn ← θ⋆.

8 end
9 return (θ1, . . . , θN)

5.6 A one-dimensional example

Consider the case when θ, p ∈ R, where the potential and kinetic energy is defined as

U(θ) = θ2

2 , K(p) = p2

2 , (5.15)

meaning that both the posterior and the kinetic energy are standard normal variables.

The Hamiltonian is defined by

H(θ, p) = U(θ) +K(p) = θ2

2 + p2

2 , (5.16)

and the dynamics resulting from this is

dθ

dt
= p,

dp

dt
= −θ. (5.17)

This two-dimensional system of differential equations has an analytical solution. For

some constants r and a, the solution is

θ(t) = r cos(a + t), p(t) = −r sin(a + t). (5.18)

5.6 A one-dimensional example 37

Given initial conditions θ(0) = θ0 and p(0) = p0, we can solve Equation (5.18) for r

and a, and see that

a = tan−1
(
− p0

q0

)
, r =

√
θ2

0 + p2
0,

resulting in

θ(t) =
√

θ2
0 + p2

0 cos
(

tan−1
(
− p0

θ0

)
+ t

)
, (5.19)

p(t) = −
√

θ2
0 + p2

0 sin
(

tan−1
(
− p0

θ0

)
+ t

)
. (5.20)

In this simple example, the flow φt(θ0, p0) in the phase space is simply a clockwise

rotation by t radians (see plot (5.1)). This system is clearly reversible, since φ−t is just

a counter-clockwise rotation by t radians, undoing the rotation φt. Substituting this

into Equation (5.16), and after some calculations, we get

H(q, p) = θ2
0 + p2

0, (5.21)

which is constant and represents the squared distance from the origin of the initial

conditions. This can be seen in figure 5.1, where the initial state was θ0 = 0, p0 = 1,

implying H(θ, p) = 1.

38 Hamiltonian Monte Carlo

Kinetic Potential Total (H)

0.00

0.25

0.50

0.75

1.00

0 2 4 6

t

E
ne

rg
y

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Position(t)

M
om

en
tu

m
(t

)

Phase space

Fig. 5.1 Left: Plot of the potential energy U , kinetic energy K and the Hamiltonian H in
the 1D example, when the Hamiltonian is given by H(q, p) = q2/2 + p2/2. Right: The phase
space of the Hamiltonian. The initial state was q = 0, p = 1.

Chapter 6

Automatic Differentiation, TMB

and Stan

In this chapter we will give a short introduction to automatic differentiation (AD),

also known as algorithmic differentiation. We will then discuss the R package TMB

and the probabilistic programming language Stan, where AD is used to calculate

derivatives of the likelihood function.

6.1 Automatic Differentiation

In many problems in mathematics and statistics we are not only interested in the

function value, but also the gradient ∇f and the hessian H, for example when doing

optimization. In fact, when doing maximum likelihood estimation, we are not really

interested in the value of the function, as long as we know it is the global maximum.

The derivative of a function can be obtained in several ways, and two classical

approaches are numerical and symbolic differentiation. An alternative to these methods

is Automatic Differentiation. AD exploits the fact that every function given by a

computer algorithm executes a sequence of elementary arithmetic operations (addition,

subtraction, multiplication, division, etc.) and elementary functions (exp, sin, cos, log,

etc.). Each of these elementary functions can easily be differentiated. The derivative of

40 Automatic Differentiation, TMB and Stan

Variable Value Derivative

v1 x ∂v1
∂x

= 1
v2 v2

1
∂v2
∂v1

= 2v1
v3 v2/ν ∂v3

∂v2
= 1

ν

v4 1 + v3
∂v4
∂v3

= 1
v5 log v4

∂v5
∂v4

= 1
v4

v6 −ν+1
2 v5

∂v6
∂v5

= −ν+1
2

v7 v6 + log
(

Γ
(

ν+1
2

)
√

νπΓ(ν
2)

)
∂v7
∂v6

= 1

Table 6.1 Example of how each term in Equation (6.1) can be broken down into elementary
operations, and gradient calculations for the log density of a t-distribution.

a function can therefore be calculated by evaluating the derivative of these elementary

functions and combining them by the chain rule. We will illustrate this with an

example:

Example 6.1. We want to approximate the integral of a t-distribution with the Laplace

approximation. Define g(x) = log fX(x). For this, we need to find arg maxx g(x), as

this is where we evaluate the function and the second derivative in the approximation.

We know that the solution is x = 0, but for illustrative purposes we show how AD can

be used to evaluate the derivative. The logarithm of the t-distribution is given by

g(x) = log fX(x) = log
(Γ

(
ν+1

2

)
√

νπΓ(ν
2)

)
− ν + 1

2 log
(

1 + x2

ν

)
. (6.1)

The function can be decomposed into elementary operations as shown in table 6.1.

The partial derivatives in the table can then be combined using the chain rule:

g′(x) = ∂v1

∂x

∂v2

∂v1

∂v3

∂v2

∂v4

∂v3

∂v5

∂v4

∂v6

∂v5

∂v7

∂v6

∂g

∂v7

= 1× 2v1 ×
1
ν
× 1× 1

v4
×−ν + 1

2 × 1× 1× 1

= −ν + 1
ν

(
x

1 + x2/ν

)
.

6.1 Automatic Differentiation 41

This process can represented as a computational graph, as shown in figure 6.1.

x

v1

pow
v2

÷
v3

+
v4

log
v6

∗
v7

+
v8

2

ν

1

−ν+1
2

log
(

Γ
(

ν+1
2

)
√

νπΓ(ν
2)

)

Fig. 6.1 Computational graph for the logarithm of the t-distribution (Equation (6.1)).
Each node corresponds to an AD variable, with the variable name outside the node. The
independent variable is highlighted in yellow, while the dependent variable is highlighted in
red. The function producing each node is displayed inside each node. Constants are shown
in gray with gray arrows to indicate that derivatives don’t need to propagated to constant
operands.

6.1.1 Dual numbers, Reverse/Forward AD mode

The implementation of AD requires dual numbers, which are ordered pairs of real

numbers on the form u⃗ = (u, u′). The purpose of dual numbers is that we now have

pairs of numbers where the first position can hold the value of f(x0) and the second

can hold the value of the derivative f ′(x0). We will assume that f : R → R. To be

able to do computations with dual numbers, we introduce the following arithmetic

rules (Warwick (2010)):

42 Automatic Differentiation, TMB and Stan

• u⃗ + v⃗ = (u + v, u′ + v′)

• u⃗− v⃗ = (u− v, u′ − v′)

• u⃗× v⃗ = (uv, u′v + uv′)

• u⃗
v⃗

= (u
v
, u′v−uv′

v2), for v ̸= 0

Note that the arithmetic rules introduced here are just applications of the derivative

rules from calculus.

Finally, we must decide how to treat constants and the independent variable x.

Again, using basic rules of differentiation, we define

• x⃗ = (x, 1)

• c⃗ = (c, 0)

The next step is to extend the concept from real numbers to real functions. This can

be done using the chain rule in the following way. Let f⃗(u⃗) = f⃗(u, u′) = (f(u), u′f ′(u)).

We can now add all common functions we know, for example, sin(u⃗) = sin(u, u′) =

(sin(u), u′ cos(u)) and log(u⃗) = log(u, u′) = (log(u), u′/u).

The method described above and in example 6.1 is known as forward-mode automatic

differentiation, where we start with the independent variables and calculate values in

the direction of the arrows.

In general, forward mode calculates directional derivatives

∇f · a =
n∑

i=1
ai

∂f

∂xi

(x),

for some a ∈ Rn.

In the computational graph, each node k holds the value vk and a tangent tk. The

tangent represents the directional derivative of vk with respect to the input variables.

Tangents for the independent variables are initialized with values a. All tangents can

recursively be calculated with the rule

6.1 Automatic Differentiation 43

ti =
∑

j∈children[i]

∂vi

∂vj

tj,

where the tangents values for the independent variables are initialized with values a

(Carpenter et al. (2015)), because that represents the directional derivative of each

input variable.

The disadvantage of forward mode is that when calculating the derivative with

respect to several independent variables, the cost scales linearly as O(n), where n is

the number of independent variables.

There exists another AD method, known as reverse-mode automatic differentiation.

In reverse mode we start with the dependent variables and propagate through the

computational graph in reversed order. Each node k in the graph (see figure 6.1)

contains the value vk, and an adjoint ak, representing the derivative of an output

variable with respect to vk. The output node’s adjoint is initialized to 1, since the

derivative of the output variable with respect to itself is 1. In our example the we

would set a8 = 1. From the initial values, all adjoint values can be calculated by the

formula

aj =
∑

i∈parent[j]

∂vi

∂vj

ai

The advantage of reverse mode is that the derivative of a singe output can be calculated

with respect to multiple independent variables by doing one pass over the computational

graph. This makes reverse mode highly attractive when calculating the Jacobian for

functions of many input variables and few output variables, for example the likelihood

function (or the posterior in a Bayesian setting). For a detailed example of reverse

mode AD, see Carpenter et al. (2015).

In the next sections, we will give an overview of the tools used to implement our

models, namely Template Model Builder (TMB) for maximum likelihood and Stan

for Hamiltonian Monte Carlo.

44 Automatic Differentiation, TMB and Stan

6.2 TMB

We use the R-package TMB to implement our models for maximum likelihood estima-

tion, since TMB lets us estimate parameters in models with a high number of latent

variables. Recall that the joint likelihood function, f(u, θ), is a function of our latent

variables u ∈ Rn and parameters θ ∈ Rm. The user defines the joint likelihood for the

data and the latent variables as a C++ template. All other operations are done in R.

The Laplace approximation is done by the use of CHOLMOD, available through the

Matrix library in R. To evaluate derivatives TMB uses the automatic differentiation

library CppAD (Bell (2005)). TMB calculates up to third order derivatives by the

use of AD.

When the program is executed, three computational graphs 1 (see figure 6.1) are

created (Kristensen et al. (2016)):

• T1: Graph of f(u, θ) (see figure (6.1)).

• T2: Graph of ∇uf generated from T1 by reverse mode AD.

• T3: Graph of H generated from T2 by reverse mode AD.

The computational graphs are only computed once and are then held in memory,

ready to be evaluated. Tape T1-T3 are then used to calculate the gradient of the

Laplace approximation, see Kristensen et al. (2016) for more details.

Finding the optimal value of θ can be viewed as a nested optimization problem. To

find û(θ) and H(θ) we fix θ and optimize using a quasi-Newton algorithm or a limited

memory Newton method. The Laplace approximation is then optimized w.r.t. θ using

the quasi-Newton algorithm. The process of nested optimization is continued until the

convergence criteria described in Fournier et al. (2011) is meet.

We will next give an example to illustrate the process of making a User Template

in C++ and optimizing it in R.

1In Kristensen et al. (2016) this is also referred to as “tapes”.

6.2 TMB 45

Example 6.2. Stochastic volatility in TMB

Consider the basic SV model introduced in section 2.2.2, where the log-returns of

an asset is modeled as

yt = σyeht/2ϵt, t = 1, . . . , T,

ht+1 = ϕht + σηt, t = 1, . . . , T − 1,
(6.2)

where ϵt, ηt
iid∼ N (0, 1) and h1 ∼ N (0, σ2/(1 − ϕ2)). Our parameters of interest are

θ = (σy, ϕ, σ). The joint density for our observations y and latent variables h is

f(y, h) = fy(y|h)fh(h) (6.3)

=
T∏

i=1
fyi

(yi|hi)× fh1(h1)
T∏

i=2
fhi

(hi|hi−1), (6.4)

The negative joint log-likelihood is given by

− l(θ, h) = −
T∑

i=1
log fyi

(yi|hi)−
T∑

i=2
log fhi

(hi|hi−1)− log fh1(h1) (6.5)

This is the function we want to implement in C++. We will now describe how this

can be done. The first lines in a TMB is almost always given by
// Basic SV - model

include <TMB.hpp >

template <class Type >

Type objective_function <Type >:: operator ()(){

The TMB library is loaded and the objective function is created. The objective

function is a templated class where <Type> is the data type of both the input values

and the return value of the objective function. 2

Next we import our data and define our parameters:
DATA_VECTOR (y); // Observations

DATA_INTEGER (n); // number of obs

// Parameters

2For more details see https://kaskr.github.io/adcomp/Introduction.html

46 Automatic Differentiation, TMB and Stan

PARAMETER (log_sigma_y);

PARAMETER (log_sigma);

PARAMETER (phi);

PARAMETER_VECTOR (h); // Latent variables

The line DATA_VECTOR(y) declares the vector y to be same as dat$y in R (see below).

The lines PARAMETER(log_sigma_y), PARAMETER(log_sigma), PARAMETER(phi),

PARAMETER_VECTOR(h), declares the parameters, but note that h is the latent variables

and will be integrated out. Due to the invariance property of MLEs, we can estimate

the logarithm of the standard deviation and then take the exponential transformation,

ensuring that the estimate is greater than zero. This is easily done in TMB:
// Transform and report parameters

Type sigma_y = exp(log_sigma_y);

Type sigma = exp(log_sigma);

ADREPORT (sigma_y);

ADREPORT (sigma);

Type nll = 0 // Negative log likelihood

The ADREPORT-command will report the estimate and the standard error of the

transformed parameters back to R. The last line initializes the negative log likelihood

function.

Next, we loop over all our latent variables and observations to get the contributions

to the likelihood (see Equation (6.5)), and return the value of the nll:
// unobserved process

nll -= dnorm (h(0) , Type (0) , sigma /sqrt (1- phi*phi),true);

for(int i=1;i<n;i++){

nll -= dnorm (h(i),phi*h(i -1) , sigma ,true);

}

// Observations

for(int i=0;i<n;i++){

nll -= dnorm (y(i),Type (0) , exp(h(i)/2)* sigma_y ,true);

}

return nll;

}

6.2 TMB 47

In R, we first import our data. The data consists of 945 observations of daily

returns of pound/dollar exchange rate from 01/10/1981 to 28/06/1985 (as found in

(Skaug and Yu (2014))).
y <- c(scan(file="sv_ basic .dat"))

Next, we compile our C++ file and load our model object into R:
compile (" basic _sv_t.cpp")

dyn.load(dynlib (" basic _sv_t"))

Defining our data and parameters (with starting values):
n <- length (y)

dat <- list(n=n,y=y)

par <- list(log_ sigma _y = log (0.2) ,

log_ sigma = log (0.4) ,

phi = 0.9 , h =rep (0,n))

We now make a object obj, containing the data, parameters and the methods that

access the objective function and its derivatives (Kristensen et al. (2016)):
obj <- MakeADFun (data = dat ,

parameters = par ,

random = "h",

DLL = " basic _sv_t")

Note the random-argument. This specifies the parameter(s) we are integrating out.

The following lines minimize the objective function (negative log likelihood), calculates

the standard error and prints the parameter estimates with corresponding standard

error:
opt <- nlminb (obj$par ,

obj$fn ,

obj$gr ,

control = list(trace = TRUE))

rep <- sdreport (obj)

srep <- summary (srep)

srep[rownames (srep) != "h" ,]

Estimate Std. Error

log_ sigma _y -0.4591556 0.10875121

log_ sigma -1.7735580 0.21368841

48 Automatic Differentiation, TMB and Stan

phi 0.9743236 0.01224302

sigma _y 0.6318169 0.06871085

sigma 0.1697280 0.03626891

The standard errors is calculated using the diagonal of the inverse Hessian w.r.t.

the parameters. For transformed parameters, standard errors is obtained by the

delta-method (Kristensen et al. (2016)).

6.3 Stan - A probabilistic programming language

In this thesis, Bayesian inference is done by the use of Hamiltonian Monte Carlo. Our

models are implemented in the probabilistic programming language Stan 3 (Carpenter

et al. (2017)). Stan is a programming language for specifying a broad range of

statistical models. The user defines the posterior distribution of the model, and Stan

uses Hamiltonian Monte Carlo together with the NUTS algorithm to draw samples

from the posterior. The reader is referred to chapter 5 for more details regarding HMC

and NUTS.

In contrast to many MCMC methods, HMC needs to calculate the gradient of the

posterior density to enable the Hamiltonian system to evolve. As with TMB, Stan

evaluates the gradient by automatic differentiation (Carpenter et al. (2015)). To do

this efficiently, Stan makes use of the Stan Math Library, a C++ reverse-mode

automatic differentiation library. We illustrate the programming language through an

example.

Example 6.3. Stochastic volatility in Stan

We consider the same model as in the TMB example. The first step in a Stan

program is to define our data and parameters. As with TMB, these correspond to

variables with the same name in R:
data {

int < lower =0> n; // number of observations

3Named after the mathematician Stanislaw Ulam, known for his contribution to the development
of Monte Carlo methods.

6.3 Stan - A probabilistic programming language 49

vector [n] y; // log - returns

}

parameters {

real < lower =0> sigma_y_std ;

real < lower = -1, upper =1> phi;

real < lower =0> sigma_std ;

vector [n] h_std ;

}

We explicitly define the valid parameter space for our parameters, for example, |ϕ| < 1.

Stan automatically transforms all constrained parameters to the real line, so that they

can be sampled unrestricted, but this is hidden from the user.

The next coding block, transformed parameters, allows us to define new param-

eters as functions of original parameters:
transformed parameters {

vector [n] h;

real < lower =0> sigma_y ;

real < lower =0> sigma ;

sigma_y = sqrt(sigma_y_std);

sigma = sqrt(sigma_std);

h = h_std * sigma ;

h[1] = h[1] / sqrt (1- phi*phi);

for (t in 2:n){

h[t] = h[t] + phi*h[t -1];

}

}

The transformed parameters are not sampled. Stan samples the parameters declared

in parameters block, then applies the formulas in the transformed parameters block

post sampling.

For the stochastic volatility model, mixing is improved if sampling is done in terms

of a standardized volatility, then rescaled. We therefore declare the standardized h_std

in the parameters block, and the original value of h is then defined in the transformed

parameters block.

In the model block we define the posterior distribution:
model {

50 Automatic Differentiation, TMB and Stan

// priors

sigma_std ~ gamma (0.5 ,0.5);

sigma_y_std ~ gamma (0.5 ,0.5);

phi ~ beta (20 ,1.5);

// likelihood

h_std ~ normal (0 ,1);

y ~ normal (0, exp(h/2)* sigma_y);

}

As can be seen from the code, the following priors are used: σ2
y and σ is given a gamma

prior G(0.5, 0.5), and (ϕ + 1)/2 is given a beta prior B(20, 1.5), which are the same as

in Kastner et al. (2017).

A nice feature in Stan is the possibility to simulate from the posterior predictive

distribution (ppd), the distribution of the outcome variable implied by the model after

using the observed data to update the distribution of our parameters. This is done in

the generated quantities block:
generated quantities {

vector [n] y_new ;

for(i in 1:n){

y_new [i] = normal_rng (0, exp (0.5* h[i])* sigma_y);

}

}

For each draw s = 1, . . . , S from the posterior distribution, we draw n outcomes ỹs

from the ppd by simulating from the data model conditioning on the parameters from

sample s. The result will be a S ×N matrix of draws from the ppd (Team (2017)).

See figure 6.5.

We can now fit our model in R, through the package rstan by calling on our Stan

model (called SV.stan in this example):
fit <- stan(file = ’SV.stan ’,

data = dat ,

chains = 1,

seed = 123122 ,

control = list(adapt _ delta = 0.9))

6.3 Stan - A probabilistic programming language 51

adapt_delta is the target average proposal acceptance probability during Stan’s

adaptation period (warm up/burn-in), and increasing it will force Stan to take smaller

steps (the default is 0.8), making divergence of the Hamiltonian less likely. From

experience, this has been necessary when working with stochastic volatility.

By extracting a summary of the Stan object, we can print the parameter estimates:
names <- c(" sigma_y "," phi "," sigma ")

estimates <- summary (fit) $summary

estimates [which (rownames (estimates) %in% names) ,1:3]

mean se_mean sd

phi 0.9720216 0.0005257844 0.01302553

sigma_y 0.6562835 0.0046112077 0.09994974

sigma 0.1846702 0.0018556930 0.03803346

The package bayesplot can be used to visually investigate our Markov Chain

through traceplots (figure 6.2), plots of the marginal posterior densities (figure 6.3),

autocorrelation of the sample (figure 6.4) and if our model fits the data through plotting

the posterior predictive density (figure 6.5).

sigma

phi

sigma_y

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0.50

0.75

1.00

1.25

0.92

0.94

0.96

0.98

1.00

0.10

0.15

0.20

0.25

0.30

Fig. 6.2 Traceplots of 1000 draws from p(σy, ϕ, σ|y).

52 Automatic Differentiation, TMB and Stan

sigma

phi

sigma_y

0.10 0.15 0.20 0.25 0.30

0.94 0.96 0.98

0.4 0.6 0.8 1.0 1.2

Fig. 6.3 Kernel plots of the marginal posterior densities.

sigma_y phi sigma

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

Lag

Auto
corr

elat
ion

Fig. 6.4 Autocorrelation plot of the draws.

6.3 Stan - A probabilistic programming language 53

−5.0 −2.5 0.0 2.5 5.0

y

y rep

Fig. 6.5 Posterior predictive density. The dark blue line is the distribution of the data y.
Each of the 200 lighter lines is the kernel density estimate of one of the replications of ỹs

from the posterior predictive distribution.

Chapter 7

The Multivariate Factor Stochastic

Volatility Model and DIMCMC

7.1 The Multivariate Stochastic Volatility Model

We will consider the multivariate factor stochastic volatility (MFSV) model introduced

by Pitt and Shephard (1999). We are going to follow the parameterization used in

Kastner et al. (2017). For each point in time t = 1, . . . , T , let yt = (y1t, . . . ypt)′ be a

vector of p observed returns, and let ft = (f1t, . . . , fqt)′ be a vector of q unobserved

latent factors. The observations are assumed to be driven by the latent factors and

the idiosyncratic innovations. In our model, both the idiosyncratic innovations and

the latent factors are allowed to have time-varying variances, depending on p + q

latent volatilities xt = (x1t, . . . , xpt)′ and ht = (h1t, . . . , hqt)′. Putting this together,

our model has the form:

yt = βft + Ut(xt)1/2ϵt, ft = Vt(ht)1/2ζt, (7.1)

where β is an unknown p × q factor loading matrix, Ut(xt) is a diagonal p × p

matrix containing the idiosyncratic variances, and Vt(ht) is a diagonal q × q matrix

56 The Multivariate Factor Stochastic Volatility Model and DIMCMC

containing the factor variances. We also assume that ζt ∼ Nq(0, I), and ϵt ∼ Np(0, I)

are independent.

Both the idiosyncratic and the factor variance are themselves modeled as latent

variables whose logarithms follow independent autoregressive processes of order one.

ht is assumed to to have expectation zero due to identification issues discussed below,

while xt is assumed to have expectation µx. Equation (7.1) can thus be restated as

y1t

y2t

...

ypt

=

β1,1 β1,2 · · · β1,q

β2,1 β2,2 · · · β2,q

...

βp,1 βp,2 · · · βp,q

exp (1
2h1,t)ζ1t 0 · · · 0

0 exp (1
2h2,t)ζ2t · · · 0

...

0 0 · · · exp (1
2hq,t)ζqt

+

exp (1
2x1,t)ϵ1t 0 · · · 0

0 exp (1
2x2,t)ϵ2t · · · 0

...

0 0 · · · exp (1
2xp,t)ϵpt

.

We observe that E(yt) = 0 and that the conditional covariance matrix is given by

Cov(yt|ht, xt) = βVt(ht)β′ + Ut(xt). (7.2)

The unconditional covariance matrix of yt can be found by applying the law of total

covariance:

Cov(yt) = E(Cov(yt|ht, xt)) + Cov(E(yt|ht, xt)︸ ︷︷ ︸
= 0

)

= E(βVt(ht)β′ + Ut(xt))

= βE(Vt(ht))β′ + E(Ut(xt))

= βVt

(
1
2

σ2
h

(1− ϕ2
h)

)
β′ + Ut

(
µx + 1

2
σ2

x

(1− ϕ2
x)

)
,

(7.3)

7.2 Identification issues 57

where

Vt

(
1
2

σ2
h

(1− ϕ2
h)

)
= diag

[
exp

(
1
2

σ2
h1

(1− ϕ2
h1)

)
, . . . , exp

(
1
2

σ2
hq

(1− ϕ2
hq

)

)]

and

Ut

(
µx + 1

2
σ2

x

(1− ϕ2
x)

)
= diag

[
exp

(
µx1 + 1

2
σ2

x1

(1− ϕ2
x1)

)
, . . . , exp

(
µxp + 1

2
σ2

xp

(1− ϕ2
xp

)

)]
,

due to the stationarity of ht and xt.

7.2 Identification issues

To prevent factor rotation we set the upper triangular part of β equal to zero, i.e.

βij = 0 for j > i. If we don’t identify the scaling of the jth column of β or the variance

of fjt, the model is not identified. There are different approaches to this problem in

the literature. In Pitt and Shephard (1999) they set the diagonal of β equal to 1, i.e.

βii = 1, and the mean of hj equal to zero, i.e. µhj
= 0 for j = 1, . . . q, but they let

the covariance of ζt be a diagonal matrix with entries ζii = σi. Zhou et al. (2014) set

the diagonal of the loading matrix equal to 1, but let the mean of hj be unrestricted.

By setting the diagonal equal to 1, the first q series are implied to be leading factors.

Thus more care must be put into the variable ordering. To put less weight on this

decision, we let the diagonal of β be unrestricted, but we fix the mean of the latent

factor process to zero, i.e µhj
= 0 (Kastner et al. (2017)):

hit = ϕhi
hi,t−1 + σhi

ηt, i = 1, . . . , q, (7.4)

xjt = µxj
+ ϕxj

(xj,t−1 − µxj
) + σxj

ϵt, j = 1, . . . , p. (7.5)

58 The Multivariate Factor Stochastic Volatility Model and DIMCMC

7.3 Bayesian Inference by Deep Interweaving MCMC

We will here give an overview of the algorithm proposed in Kastner et al. (2017)

for sampling from the posterior of the MFSV model. First, we define priors for the

parameters. In section 7.3.2 we discuss the sampling method proposed in Kastner and

Frühwirth-Schnatter (2014) for the univariate SV model, as this will be an important

building block for sampling the MFSV model. Section 7.3.3 presents the algorithm for

sampling from the joint posterior in the MFSV model.

7.3.1 Prior distributions

For i = 1, . . . , p + q we assume independence of all parameters in the latent processes,

i.e. f(µi, ϕi, σi) = f(µi)f(ϕi)f(σi). The mean of the latent idiosyncratic processes, µi,

is assumed to have a normal prior N (bµ, Bµ). To guarantee that −1 < ϕi < 1, we let

(ϕi + 1)/2 ∼ B(a0, b0), implying

f(ϕi) = 1
2B(a0, b0)

(
ϕi + 1

2

)a0−1(1− ϕi

2

)b0−1

,

where B(a0, b0) is the beta function. The volatility of volatility, σ2
i , is given a gamma

prior, σ2
i ∼ G

(
1
2 , 1

2Bσ

)
, implying σi > 0. Lastly, for each element of the factor loading

matrix, we choose a zero-mean Gaussian distribution, i.e. βij ∼ N (0, Bβ).

7.3.2 Sampling the univariate SV model

We will briefly discuss the method proposed in Kastner and Frühwirth-Schnatter (2014)

for sampling the univariate SV-model, due to the fact that this is extensively used in

the sampling of the MFSV-model.

Consider the univariate SV-model:

yt = eht/2ϵt, ϵt ∼ N (0, 1), (7.6)

ht = µ + ϕ(ht−1 − µ) + σηt, ηt ∼ N (0, 1). (7.7)

7.3 Bayesian Inference by Deep Interweaving MCMC 59

This is known as the centered parameterization (C). The SV-model can also be param-

eterized in what is known as the non-centered parameterization (NC) by moving the

parameter µ from the state equation into the observation equation:

yt =
√

ωeσh̃t/2ϵt, (7.8)

where ω = eµ and h̃t = ht−µ
σ

.

Equation (7.6) can be rewritten as

ỹt = log y2
t = log(ehtϵ2

t) = ht + log ϵ2
t , (7.9)

This is a linear, but non-Gaussian state space model. Omori et al. (2004) show that

the distribution of log ϵ2
t can be approximated by a mixture of 10 normal distributions,

i.e. f(log ϵ2
t) ≈ ∑10

rt=1 prtN (log ϵ2
t |mrt , s2

rt
), where prt , mrt and s2

rt
are the weight, mean

and variance of the rtth mixture variable, respectively. See Omori et al. (2004) for the

values of prt , mrt and s2
rt

. We can therefore approximate Equation (7.9) as a linear

and conditional Gaussian state space model:

ỹt|rt = mrt + ht + srtϵt, ϵt ∼ N (0, 1) (7.10)

This makes it possible to do efficient MCMC sampling (Kastner and Frühwirth-Schnatter

(2014)). The interweaving strategy proposed in Kastner and Frühwirth-Schnatter (2014)

makes use of both the centered and the non-centered parameterization of the SV-model

when sampling, and is based on the theory developed in Yu and Meng (2011), discussed

below. Instead of sampling (µ, ϕ, σ) once per iteration on the Markov chain, we sample

them twice, once in C and then again in NC. The sampling algorithm is presented in

Algorithm 4.

For details regarding the conditional posterior density of h, the parameters (µ, ϕ, σ)

and the indicators rt, the reader is referred to Kastner and Frühwirth-Schnatter (2014).

60 The Multivariate Factor Stochastic Volatility Model and DIMCMC

Algorithm 4: Sampling the univariate SV model
Initialize : Choose appropriate starting values for µ, ϕ, and σ as well as h and

repeat the following steps
1 Sample h = (h1, . . . , hT) (C).
2 Sample (µ, ϕ, σ) (C).
3 Move from C to NC by the transformation h̃t = ht−µ

σ
for all t.

4 Resample (µ, ϕ, σ) (NC).
5 Move back to C by the transformation ht = µ + σh̃t for all t.
6 Draw the indicators rt for all t

7.3.3 Sampling the MFSV model

We start by introducing some notation. To denote specific rows and columns we use

the “dot” notation, i.e. β•,i refers to the ith column, while βj,• refers to the jth row of

β. Let h = (h1 . . . hT) denote the q × T matrix of the latent volatilities of the factors,

x = (x1 . . . xT) the p× T matrix of the latent volatilites of the idiosyncratic variance,

and f = (f1 . . . fT) the q × T matrix of the latent factors.

The sampling procedure is summarized in Algorithm 5, and we will here comment

on each step.

Algorithm 5: Sampling the MFSV model
Initialize : Choose appropriate starting values for µi, i = 1, . . . , p, ϕj and

σj, j = 1, . . . , p + q, as well as β, h, x and f and repeat the following
steps:

1 Perform p independent univariate SV updates for xi,• and the parameters
associated with xi,• {µi, ϕi, σi} conditioning on f and β.
Perform q independent univariate SV updates for hi,• and the parameters
associated with hi,• {ϕi, σi} conditioning on f and β.

2 For i = 1, . . . , q, sample each row βi,• conditioning on f , yi,•, hi,•, xi,•.
if deep interweaving then

Redraw the diagonal elements of β through interweaving into the state
equation for the latent volatilities.

3 For t = 1, . . . , T, sample ft conditioning on β, yi,•, hi,•, xi,•.

7.3 Bayesian Inference by Deep Interweaving MCMC 61

1. Sampling h and x. Conditioning on knowing the latent factors f and the

loading matrix β we rewrite the observational Equation (7.1):

log(yt − βft)2 = log Ut(xt) + log ϵ2
t (7.11)

log f 2
t = log Vt(ht) + log ζt (7.12)

This implies that for each time series and factor we have

log(yit − βi,•ft)2 = xit + log ϵ2
it i = 1, . . . , p, (7.13)

log f 2
jt = hjt + log ζ2

jt j = 1, . . . , q. (7.14)

Hence, we have p + q independent univariate SV-models. The latent volatilities and the

parameters (µ, ϕ, σ) can therefore be sampled by the method sketched in section 7.3.2.

2. Sampling the loadings. Conditioning on f and the latent volatilites h and

x,

yit = βi,•ft + exit/2ϵit ⇒ yit ∼ N (βi,•ft, exit/2).

Multiplying both sides by e−xit/2 and defining ỹit = yite
−xit/2 to be our scaled observa-

tions implies

ỹit = βi,•fte
−xit/2 + ϵit ⇒ ỹit ∼ N (βi,•fte

−xit/2, 1).

Letting q̃ = min(i, q), i.e. the number of unrestricted elements in row i of β, we have

ỹi ∼ NT (Xiβ
′
i,•, I), (7.15)

where ỹi = (ỹi1, . . . , ỹiT)′ is the ith observation vector and Xi is defined as

Xi =

f11e

−xi1/2 · · · fq̃1e
−xi1/2

... ...

f1T e−xiT /2 · · · fq̃T e−xiT /2

 .

62 The Multivariate Factor Stochastic Volatility Model and DIMCMC

This implies that sampling the ith row of β can be viewed as a Bayesian regression

problem with design matrix Xi, parameter vector βi,• and unit variance. For each

i = 1, . . . , p, given that all elements of β have a N (0, Bβ) prior, sampling from

βi,•|f , yi,•, hi,•, xi,• is achieved by performing a Gibbs-update from

β′
i,•|f , yi,•, hi,•, xi,• ∼ Nq̃(biT , BiT), (7.16)

where BiT = (X ′
iXi +B−1

β I)−1 and biT = BiT X ′
iỹi. It is worth mentioning that in the

frequentist setting, biT is the ridge estimator with regularization parameter λ = 1/Bβ.

3. Sampling the factors. On the other hand, conditioning on knowing the latent

volatilities and the loadings β, is also a Bayesian regression problem. We have

ỹt ∼ Np(Xtft, I),

where ỹt = (ỹ1t, . . . , ỹqt)′ again is our scaled observations and

Xt =

β11e

−xit/2 · · · β1qe
−xit/2

... ...

βp1e
−xit/2 · · · βqpe−xit/2

 ,

is our design matrix. For each t = 1, . . . , T , sampling from the posterior of ft is

obtained by a Gibbs-update from

ft|β, yt, ht, xt ∼ Nq(bpt, Bpt), (7.17)

where Bpt = (X ′
tXt + Vt(ht)−1)−1, since ft|ht ∼ Nq(0, Vt(ht)), and bpt = BptX

′
tỹt.

7.3.4 Performing Deep Interweaving

Deep interweaving is based on reparametrizing the baseline model (Equation 7.1) and

then re-sampling a subset of the parameters of interest. It is an application of the

7.3 Bayesian Inference by Deep Interweaving MCMC 63

method proposed in Yu and Meng (2011). Instead of using a single data augmentation

scheme, the authors combine two different schemes by “going back and fourth” between

them when doing MCMC sampling. This has been shown, both theoretically and

empirically, to lead to faster convergence and better mixing of the Markov chain.

In the context of stochastic volatility, this is obtained by moving between the non-

centered and centered parameterization of the latent processes. This leads to moving

some of the model parameters back and forth between the observational equation and

state equation, as seen in section 7.3.2 for the univariate SV model. We will show how

this can be used to redraw the diagonal of β in Step 2 of Algorithm 5.

The parameterization behind deep interweaving is based on the following factor

model:

yt = β⋆f ⋆
t + Ut(xt)ϵt, f ⋆

t = Vt(h⋆
t)ζt, (7.18)

where β⋆ is a lower triangular matrix with diagonal elements equal to one, but h⋆
it now

follows a centered parameterization, i.e.

h⋆
it = µhi

+ ϕhi
(h⋆

i,t−1 − µhj
) + σhj

ηit, (7.19)

where µhj
= log β2

jj. This is motivated by the fact that

fjt|βjj, hjt ∼ N (0, β2
jje

hjt) = N
(
0, elog β2

jj+hjt

)
= N (0, eh⋆

jt).

By this reparameterization, the diagonal of β is moved from the observational equation

into the state equation.This parameterization is obtained by applying the linear

transformation

f ⋆
t = Dft, t = 1, . . . , T, β⋆ = βD−1, (7.20)

to the factors and the loading matrix, where D = diag(β11, . . . , βqq), and the following

transformation in the volatility of the factor:

h⋆
jt = hjt + log β2

jj, t = 1, . . . , T, j = 1, . . . , q. (7.21)

64 The Multivariate Factor Stochastic Volatility Model and DIMCMC

Next, denote the original posterior draw before performing deep interweaving by

βold
•,j , f old

j,• and hold
j,•. We then resample (βnew

11 , . . . , βnew
qq) in the centered parameterization

Equation (7.21), conditioning on h⋆ and the new factor loading matrix β⋆. This is

done indirectly by sampling µhj
= log β2

jj. Kastner et al. (2017) show that µhj
has a

non-standard kernel and sample µhj
by applying a Metropolis-Hastings update. We

then use the new sample of (βnew
11 , . . . , βnew

qq) to transform back to new draws in the

baseline parameterization, which are updated by the following formula:

β•,j =
βnew

jj

βold
jj

βold
•,j , fj,• =

βnew
jj

βold
jj

f old
j,• , hj,• = hold

j,• + 2 log
∣∣∣∣∣∣β

new
jj

βold
jj

∣∣∣∣∣∣ . (7.22)

This is then repeated for j = 1, . . . , q.

Note that we have not covered the details on how to derive the conditional posterior

of the transformed factors µj = log β2
jj. See Kastner et al. (2017) for more details.

Chapter 8

Simulation Study

In this chapter we investigate the parameter behaviour of the two dimensional factor

model for two methods:

• Maximum Likelihood, where the latent variables are integrated out by the

Laplace approximation described in chapter 3. The model is implemented using

the R package TMB described in section 6.2.

• Deep Interweaving MCMC, introduced in chapter 7. The sampling was done

by the use of the R package factorstochvol.

As we will see, convergence of the likelihood is not a given. We therefore study

the characteristic function and the cumulative generating function of our model to

investigate possible restrictions that can make convergence easier. Hamiltonian Monte

Carlo is very time consuming and is therefore not included in the simulation study.

8.1 Analysis of two dimensions with one factor

We analyze the simplest MFSV model, with two time series and one factor. Even in

the simplest case, parameter estimation is non-trivial. We have the following structure:

66 Simulation Study

y1t = β1e
1
2 htζt + e

1
2 x1tϵ1t

y2t = β2e
1
2 htζt + e

1
2 x2tϵ2t,

(8.1)

where, again, ht, x1t and x2t are independent AR(1) processes, with mean zero, µ1

and µ2 respectively, and ζt, ϵ1t, and ϵ2t are all independent standard normal random

variables. As we saw in section 7.1, yt has expectation zero and the conditional

covariance matrix is given by

Cov(yt|ht, xt) =

β1

β2

 eht

(
β1 β2

)
+

ex1t 0

0 ex2t

=

β2
1eht + ex1t β1β2e

ht

β1β2e
ht β2

2eht + ex2t

(8.2)

8.1.1 An example using MLE

Consider the model described above. We simulate states and measurements with T =

3000 observations, β = (0.7, 1, 3), ϕh = 0.95, log σh = −1.4, µx = (−1.3,−0.8), ϕx =

(0.95, 0.94) and log σx = (−1,−0.8). To be able to do unrestricted optimization we do

some simple transformations. To ensure a positive standard deviation, we estimate

the logarithm, i.e. τ = log σ, such that σ = exp(τ). By the invariance property of the

MLE, σ̂ = exp(τ̂). To ensure ϕ ∈ (−1, 1), we estimate

ϕ̃ = log
(

ϕ + 1
1− ϕ

)
,

so that

ϕ = exp (ϕ̃)− 1
1 + exp(ϕ̃)

∈ (−1, 1).

The observations from the simulation can be seen in figure 8.1. Figure 8.2 shows the

true and the estimated latent log-variance ± two times the standard error. Table 8.1

shows model 8.1 fitted to the simulated values. We observe that the estimated values

8.1 Analysis of two dimensions with one factor 67

are well within two times the standard errors. This indicate that our method manages

to capture the latent dynamics in this example.

−5.0

−2.5

0.0

2.5

5.0

0 1000 2000 3000
time

y1

−5

0

5

10

0 1000 2000 3000
time

y2

Fig. 8.1 Observations from simulated states.

8.1.2 Simulation study

To investigate the statistical efficiency of our method, we generate 1000 datasets,

each with T = 5000 observations from model 8.1. We then estimate our model to

each simulated dataset. We set β = (0.7, 1, 3), ϕh = 0.95, log σh = −1.4 , µx =

(−1.3,−0.8), ϕx = (0.95, 0.94) and log σx = (−1.1,−1). This is also done for the

DIMCMC method proposed in Kastner et al. (2017). Since this is in the Bayesian

setting, prior distributions need to be specified for all parameters. We apply the same

priors as in Kastner et al. (2017), and set βi ∼ N (0, 1), µi ∼ N (0, 10), for i = 1, 2,

68 Simulation Study

−2

−1

0

1

2

0 1000 2000 3000
time

h Estimate

True

−6

−4

−2

0

2

0 1000 2000 3000
time

x1 Estimate

True

−5.0

−2.5

0.0

2.5

0 1000 2000 3000
time

x2 Estimate

True

True and estimated value of the latent processes (+/− 2sd)

Fig. 8.2 True and estimated value of the latent processes ht, x1t and x2t (±2×standard error).

and (ϕj + 1)/2 ∼ B(20, 1.5) and σ2
j ∼ G(1

2 , 1
2), for j = 1, 2, 3. We then draw 110 000

samples, where the first 10 000 are discarded as burn-in. Starting values for the

parameters were β = (1, 1), ϕh = 0.9, log σh = −1, µx = (−1,−1), ϕx = (0.9, 0.9)

and log σx = (−1,−1). All latent variables were initialized in zero.

In 611 of the 1000 simulations we obtained convergence with ML, and in 389 cases

we did not. When the ML converged there was little difference between the methods,

and both methods had low bias, as seen in table 8.2.

8.1 Analysis of two dimensions with one factor 69

Estimate SE True Value
β1 0.764 0.033 0.7
β2 1.416 0.062 1.3
ϕh 0.947 0.014 0.95

log σh -1.499 0.144 -1.4
ϕx1 0.963 0.008 0.95
ϕx2 0.934 0.013 0.94

log σx1 -1.027 0.082 -1
log σx2 -0.865 0.094 -0.8

µ1 -1.649 0.212 -1.3
µ2 -0.662 0.164 -0.8

Table 8.1 Estimated values, standard errors and true values for the example in section 8.1.1.

As seen in table 8.3, non-convergence does affect some of the parameters, especially

µ1 and µ2. The bias is substantially bigger compared to when the likelihood converged

(see table 8.2). On average, µ1 and µ2 misses with 0.21 and −0.17, respectively. This

indicates that even tho the algorithm does not converge, the estimates are close to their

real value. Standard error is not reported, due to the fact that Hessian was not positive

definite. DIMCMC was not affected by the fact that the likelihood did not converge,

as can be seen on the right hand side of table 8.3. Figure 8.4 shows histograms of the

parameter estimates for MLE, while figure 8.5 shows it for the DIMCMC.

Table 8.4 report the mean, max and minimum efficient sample size over the simulated

datasets, together with the mean, max, and minimum efficient sample size per unit

time. The R package coda was used to estimate the efficient sample size.

70 Simulation Study

MLE DIMCMC
Estimate SE Bias Estimate SE Bias True value

β1 0.693 0.027 -0.007 0.690 0.028 -0.010 0.7
β2 1.291 0.051 -0.009 1.281 0.052 -0.019 1.3
ϕh 0.95 0.009 0 0.949 0.009 -0.001 0.95

log σh -1.431 0.091 -0.039 -1.392 0.094 0.008 -1.4
ϕx1 0.953 0.007 0.003 0.948 0.009 -0.002 0.95
ϕx2 0.952 0.008 0.013 0.940 0.013 0.0002 0.94

log σx1 -1.068 0.070 0.032 -1.083 0.088 0.017 -1.1
log σx2 -0.987 0.079 0.015 -1.005 0.122 -0.005 -1

µx1 -1.286 0.126 0.014 -1.313 0.121 -0.013 -1.3
µx2 -0.776 0.164 0.024 -0.810 0.162 -0.010 -0.8

Table 8.2 Mean estimated, mean standard errors and bias for the simulation study across
the n = 611 simulated datasets for which an MLE was obtained.

MLE DIMCMC
Estimate SE Bias Estimate SE Bias True value

β1 0.717 - 0.017 0.708 0.028 -0.010 0.7
β2 1.267 - -0.033 1.316 0.052 -0.019 1.3
ϕh 0.946 - -0.004 0.947 0.009 -0.001 0.95

log σh -1.410 - -0.005 -1.392 0.095 0.008 -1.4
ϕx1 0.957 - 0.007 0.947 0.009 -0.002 0.95
ϕx2 0.959 - 0.019 0.936 0.014 0.0002 0.94

log σx1 -1.031 - 0.069 -1.050 0.088 0.017 -1.1
log σx2 -0.973 - 0.027 -0.954 0.122 -0.005 -1

µx1 -1.094 - 0.21 -1.339 0.123 -0.013 -1.3
µx2 -0.97 - -0.17 -0.832 0.166 -0.010 -0.8

Table 8.3 Mean estimates, mean standard errors and bias for the simulation study across
the n = 389 simulated datasets for which an MLE was not obtained.

8.1 Analysis of two dimensions with one factor 71

Mean ESS Max ESS Min ESS Mean ESS/T Max ESS/T Min ESS/T

β1 11314.704 30282.385 3850.535 13.754 37.443 4.452
β2 5849.313 16068.385 1606.036 7.110 19.779 1.857
ϕh 1818.890 2533.804 1115.217 2.211 3.117 1.323

log σh 1310.464 1713.710 840.212 1.593 2.111 1.000
ϕx1 1650.482 2524.264 1077.297 2.006 3.118 1.277
ϕx2 657.824 1027.491 273.080 0.800 1.263 0.324

log σx1 946.625 1351.090 675.438 1.151 1.669 0.778
log σx2 448.518 726.852 225.436 0.545 0.895 0.267

µx1 1080.586 2027.386 559.354 1.314 2.496 0.631
µx2 310.884 667.728 118.607 0.378 0.822 0.140

Table 8.4 Sampling efficiency for DIMCMC based on parameter estimation of 1000 datasets.
The mean runtime was 822 seconds (including 10 000 warm-up).

0 25 50 75 100

0.0

0.5

1.0

AC
F

Autocorrelation Functions of β1

1.1

1.2

1.3

1.4

1.5

0 5000 10000 15000 20000

β 1

Traceplots of β1

Fig. 8.3 Trace plot of first 20 000 draws from p(β1|y) after burn-in (Top) and empirical
autocorrelation function of all 100 000 draws.

72 Simulation Study

0

50

100

150

0.6 0.7 0.8 0.9

β1

0

50

100

150

1.1 1.2 1.3 1.4

β2

0

25

50

75

100

0.92 0.93 0.94 0.95 0.96 0.97

φh

0

50

100

150

−1.6 −1.5 −1.4 −1.3

log σh

0

30

60

90

120

0.94 0.96 0.98

φx1

0

30

60

90

0.93 0.94 0.95 0.96 0.97

φx2

0

25

50

75

100

−1.15 −1.10 −1.05 −1.00

log σx1

0

30

60

90

−1.1 −1.0 −0.9 −0.8

log σx1

0

50

100

150

−1.6 −1.4 −1.2 −1.0

µx1

0

100

200

−1.2 −1.0 −0.8 −0.6 −0.4

µx2

Convergence

Not Convergence

Fig. 8.4 Histogram of maximum likelihood estimates. Green color corresponds to when
convergence was obtained, and red to when it was not obtained.

8.2 Restrictions found through the CGF 73

0

50

100

0.64 0.68 0.72 0.76

β1

0

50

100

150

1.2 1.3 1.4

β2

0

25

50

75

100

0.93 0.94 0.95 0.96 0.97

φh

0

30

60

90

−1.6 −1.5 −1.4 −1.3 −1.2

log σh

0

20

40

60

0.93 0.94 0.95 0.96

φx1

0

25

50

75

100

0.875 0.900 0.925 0.950

φx2

0

20

40

60

−1.2 −1.1 −1.0 −0.9

log σx1

0

20

40

60

−1.2 −1.1 −1.0 −0.9 −0.8 −0.7

log σx1

0

30

60

90

−1.6 −1.4 −1.2

µx1

0

30

60

90

−1.2 −1.0 −0.8 −0.6

µx2

Convergence

Not Convergence

Fig. 8.5 Histogram of the posterior mean divided into two groups, when ML converged
(green) and when it did not (red).

To get a better understanding of our model, we investigate the characteristic

function and the cumulative generating function (CGF).

8.2 Restrictions found through the CGF

In this section we will study the characteristic function and the cumulative generating

function of our model. The characteristic function φX : Rn → C of a random vector

74 Simulation Study

X is defined as φX(t) = E
(

exp(it′X)
)
, where i =

√
−1 is the imaginary unit. The

cumulative generating function HX is defined as the logarithm of the characteristic

function, i.e. HX(t) = log φX(t).

For easier calculations, we can reparametrize our model in the following way:

y1t = β1vh + v1

y2t = β2vh + v2

(8.3)

where

vh = exp
(

1
2ht

)
ζt, v1 = exp

(
1
2x1t

)
ϵ1t, v2 = exp

(
1
2x2t

)
ϵ2t.

Based on this reparameterization, we can calculate the characteristic function:

φY1,Y2(s1, s2) = E
(

exp
(

is1y1 + is2y2

))

= E
(

exp
(

is1(β1vh + v1) + is2(β2vh + v2)
))

= E
(

exp
(

ivh(s1β1 + s2β2) + is1v1 + is2v2

))

= φVh
(s1β1 + s2β2)φV1(s1)φV2(s2),

(8.4)

due to the independence of vh, v1 and v2.

The cumulative generating function is just the logarithm of the characteristic

function. Therefore,

HY1,Y2(s1, s2) = log φY1,Y2(s1, s2) = HVh
(s1β1 + s2β2) + HV1(s1β3) + HV2(s2β4). (8.5)

The cumulants κrs of a bivariate CGF is defined as

κmr = ∂m+r

∂sm
1 ∂sr

2
HY1,Y2(s1, s2)

∣∣∣∣
(s1,s2)=(0,0)

. (8.6)

8.3 Simulation with restrictions 75

Therefore,

κmr = ∂m+r

∂sm
1 ∂sr

2
HY1,Y2(s1, s2)

= ∂m+r

∂sm
1 ∂sr

2
HVh

(s1β1 + s2β2) + ∂m+r

∂sm
1 ∂sr

2
HV1(s1β3) + ∂m+r

∂sm
1 ∂sr

2
HV2(s2β4),

evaluated at (s1, s2) = (0, 0). We can observe that

∂m+r

∂sm
1 ∂sr

2
HV1(s1β3) = 0, r ≥ 1

∂m+r

∂sm
1 ∂sr

2
HV2(s2β4) = 0, m ≥ 1,

since they are functions of only s1 and s2, respectively.

Furthermore, by the chain rule

κmr = ∂m+r

∂sm
1 ∂sr

2
HVh

(s1β1 + s2β2) = βm
1 βr

2Hm+r
Vh

(0) for m, r ≥ 1. (8.7)

Therefore, κmr is a function of β1, β2 and Hm+r
Vh

(0), which again is a function of ϕh and

σh, so all higher moments decide the product β1β2, ϕh and σh. From the fact that all

higher moments include the product of β1β2, we investigate what the properties of the

model is if β1 = β2.

8.3 Simulation with restrictions

Based on the expression derived above, we investigate convergence properties of our

model when β1 = β2. As in section 8.1.2, we simulate n = 1000 datasets, each with

T = 5000 observations. The parameters are set to the same, except β, which is set to

0.7.

In table 8.5 the results are reported. Convergence was obtained in 996 out of

1000 datasets. In contrast to the simulation in section 8.1.2, from our experience,

non-convergence in the restricted model was a result of poor starting values, and was

76 Simulation Study

Estimate SE Bias True Value
β 0.709 0.027 0.009 0.7

ϕh 0.950 0.008 0 0.95
log σh -1.420 0.10 -0.02 -1.4

ϕx1 0.957 0.008 0.007 0.95
ϕx2 0.945 0.008 0.005 0.94

log σx1 -1.236 0.090 -0.14 -1.1
log σx2 -1.090 0.072 -0.09 -1

µx1 -1.290 0.113 0.01 -1.3
µx2 -0.781 0.097 0.019 -0.8

Table 8.5 Estimated values, standard errors, bias and true values for the n = 996 datasets
where convergence was obtained.

fixed when new starting values were used, while in the unrestricted model this was not

the reason for non-convergence. All parameters have low bias, with exception of log σx1

and log σx2 , which are underestimated. A histogram of the parameter estimates is seen

in figure 8.6.

The increase in convergence, from 611 to 996 out of 1000 datasets indicate that for

maximum likelihood, there is an identification problem when β1 and β2 are unrestricted

during estimation. A big drawback of this restriction is that the model can only

estimate positive correlations.

This simulation experiment assumes that in the real data generating process, β1 = β2.

When this is not the case, the likelihood does not converge. Thus, when applied on

real data, where the model is just an approximation, the probability of convergence

will be lower than in this experiment. This is seen in chapter 10. Another natural

question is then if the Laplace approximation is the reason for why the likelihood does

not converge. We discuss this in the next chapter.

8.3 Simulation with restrictions 77

phi_h phi_x1 phi_x2

log_sigma_x2 mu_x1 mu_x2

beta log_sigma_h log_sigma_x1

0.92 0.93 0.94 0.95 0.96 0.97 0.94 0.95 0.96 0.97 0.92 0.93 0.94 0.95 0.96 0.97

−1.3 −1.2 −1.1 −1.0 −0.9−1.6 −1.4 −1.2 −1.0 −1.0 −0.8 −0.6

0.65 0.70 0.75 −1.6 −1.5 −1.4 −1.3 −1.2−1.6 −1.4 −1.2 −1.0

0

50

100

150

0

50

100

150

0

50

100

150

Fig. 8.6 Histogram of maximum likelihood estimates when a MLE was obtained (n = 996).

Chapter 9

The Nested Laplace Approximation

9.1 Motivation

Recall from chapter 3, when we apply the Laplace approximation to the integral over

the latent variables u, we integrate over all variables in one go. In theory there is

nothing stopping us from applying the Laplace approximation in a sequential sense on

subsets of u. For both the univariate and multivariate basic SV models, the Laplace

approximation has been shown to be accurate, see Skaug and Yu (2014) for details.

Due to the convergence issues with the factor model, we introduce the nested Laplace

approximation, where we integrate over subsets of the latent variables in a sequential

way. We then apply the method on two models, a linear state space model and the

two dimensional factor model introduced in chapter 8.

9.2 Nested Laplace approximation

Let y be a vector of observations, and let u be a random vector of latent variables.

The conditional density of our observations given u is denoted by fy(y|u), and fu(u)

denotes the marginal density of u. To make notation easier we will suppress that u

and H is functions of θ, and write u = u(θ),H = H(θ). The Laplace approximation

80 The Nested Laplace Approximation

of u is then given by

L(θ) =
∫

exp {−g(u, θ)} du = (2π)dim(u)/2det(H)−1/2 exp {−g(û, θ)}, (9.1)

where Q is the sample space of u, g(u, θ) = − log fy(y|u)fu(u) and

û = arg min
u

g(u, θ),

H = ∂2

∂2u
g(u, θ)

∣∣∣∣∣
u=û

(9.2)

We will now show how this can be applied in a sequential way. Let (u1, u2) be

a partitioning of u and assume that u1 and u2 are independent so that fu(u) =

fu1(u1)fu2(u2). The likelihood of θ is

L(θ) =
∫ ∫

fy(y|u1, u2)fu1(u1)fu2(u2) du1du2

=
∫

exp {(log fu2(u2)}
(∫

exp {log fy(y|u1, u2) + log fu1(u1)} du1

)
du2

=
∫

exp {log fu2(u2)}
(∫

exp {−g(u1, u2, θ)} du1

)
du2,

(9.3)

where g(·) = − log fy(y|u1, u2)fu1(u1).

Applying Equation (9.1) to the inner integral we obtain

L(θ) =
∫

exp {log fu2(u2)}(2π)dim(u1)/2det(Hu1)−1/2 exp {−g(û1(u2), θ)} du2

=
∫

exp {−h(u2, û1(u2), θ)} du2

(9.4)

where

h(u2, û1(u2), θ) = −
(

log fu2(u2)+dim(u1)
2 log 2π+log det(Hu1)−1/2−g(u2, û1(u2), θ)

)
.

9.3 When û doesn’t maximize g. 81

and Hu1 is the matrix of second order derivatives with respect to u1. Applying Equation

(9.1) again, our likelihood is given by

L(θ) = (2π)dim(u2)/2det(Hu2)−1/2 exp {−h(û2, θ)}, (9.5)

and our corresponding negative log-likelihood (discarding the constant term)

− l(θ) = 1
2 log det(Hu2) + h(û2, θ). (9.6)

−l is minimized w.r.t θ in the same way as in chapter 3.

9.3 When û doesn’t maximize g.

When û does not maximize g in Equation (9.1), in which we write u0, we need to

include a correction term in the Laplace approximation. We will here prove it.

Proposition 9.1. When û does not maximize g, denoted by u0, the Laplace approxi-

mation is given by

∫
exp {−g(u)} du = exp

{
− g(u0) + 1

2∇g(u0)H−1∇′g(u0))
}

(2π)dim(u)/2det(H)−1/2

(9.7)

Proof. By a second order Taylor expansion at u0,

g(u) = g(u0) +∇g(u0)(u− u0) + 1
2(u− u0)′H(u− u0).

Completing the square we get

g(u) = g(u0) +∇g(u0)(u− u0) + 1
2(u− u0)′H(u− u0)

= 1
2(u− u0 − (−H−1

u0∇
′g(u0)))′H(u− u0 − (−H−1

u0∇
′g(u0)))

+ g(u0)− 1
2∇g(u0)H−1∇′g(u0).

82 The Nested Laplace Approximation

Thus

∫
exp {−g(u)} du = exp

{
− g(u0) + 1

2∇g(u0)H−1∇′g(u0)
}

×
∫

exp
{
− 1

2(u− (u0 −H−1
u0∇

′g(u0)))′H(u− (u0 −H−1
u0∇

′g(u0)))
}

du

= exp
{
− g(u0) + 1

2∇g(u0)H−1∇′g(u0)
}

(2π)dim(u)/2det(H)−1/2,

where we in the last step used the fact that the integrand is the kernel of a multivariate

normal density with expectation µ = u0 −H−1∇′g(u0) and covariance matrix Σ =

H−1.

9.4 Implementation

The Nested Laplace approximation is implemented as a TMB program in C++. The

minimum û1 is obtained by Newtons method. We tested with five and three Newton

steps, both giving the same result. Since it is implemented in TMB, we make use of

the AD library CppAD to evaluate both gradient and Hessian of the inner Laplace

Approximation (see chapter 6 for more details). This is then used as input to the outer

Laplace approximation which is automatically done by TMB (see appendix B for an

example of the implementation of the linear state space model discussed below). We

will now apply the methodology on two state space models.

Example 9.2. Consider the linear state space model

y1t = ht + x1t + ϵ1t

y2t = ht + x2t + ϵ2t

(9.8)

where ht and xit are independent, centered AR(1) processes and ϵit
iid∼ N (0, σ2

i) for

i = 1, 2. We assume that x11, x21 and h1 are stationary distributed. The parameters

9.4 Implementation 83

g(u1, u2, θ)

h(u2, û1, θ)

l(θ, û1, û2)

Return θ̂

û1 = arg maxu1
g(u1, u2, θ)Hu1(θ)

û2 = arg maxu2
h(u2(û1), û1, θ)Hu2(θ)

Convergence = True θ̂ = arg minθ−l(θ, û1, û2)

Convergence = False

return θ̂

Fig. 9.1 Optimization routine for Nested Laplace. The arguments next to the arrows are
the input to the next node. For example, the input to the function h in the second node is
the Hessian of g at û1 and the solution û1. The estimate θ̂ is returned when the convergence
criteria described in Fournier et al. (2011) is meet.

of interest is denoted by θ = (ϕh, ϕx1 , ϕx2 , σh, σx1 , σx2 , σ1, σ2). The joint log-likelihood

84 The Nested Laplace Approximation

function is given by:

l(y, h, x|θ) =
n∑

j=2

(2∑
i=1

[
log fyij

(yij|hj, xij) + log fxij
(xij|xij−1)

]
+ log fhj

(hj|hj−1)
)

+ log fy11(y11|h1, x11, x21) + log fy21(y21|h1, x11, x21)

+ log fx11(x11) + log fx21(x21) + log fh1f(h1)

∝
n∑

j=2

(2∑
i=1

[
1

2σ2
i

(yij − (hi + xij))2 − log σi −
1

2σ2
xi

(xij − ϕxi
xij−1)2 − log σxi

]

− log σh −
1

2σ2
h

(hj − ϕhhj−1)2
)
− 1

2σ2
1
(y11 − (h1 + x11))2 − 1

2σ2
2
(y21 − (h1 + x21))2

−
1− ϕ2

x1

2σ2
x1

x2
11 −

1− ϕ2
x2

2σ2
x2

x2
21 −

1− ϕ2
h

2σ2
h

h2
1.

For computational and visual reasons we only simulate 100 observations and investigate

the results and the Hessian matrix returned from TMB. The parameters are set to

θ = (0.9, 0.9, 0.9, 0.37, 0.37, 0.37, 0.37, 0.37). We evaluate four methods:

1. Standard Laplace approximation implemented in TMB.

2. Nested Laplace approximation where the inner Laplace is done around the

optimum û1 = arg maxu1 g (see Equation (9.4)).

3. Nested Laplace approximation where the inner Laplace is done around 0 (see

Equation (9.7)).

4. Laplace approximation around 0 for all latent variables (see equation 9.7).

In this example we chose to integrate w.r.t to x = (x11, . . . , x1n, x21, . . . x2n) first,

and then we apply the Laplace approximation provided by TMB to integrate out

h = (h1, . . . , hn). The Hessian reported to R is therefore only a function of h when we

integrate x inside the C++ template. Integrating w.r.t h first gave the same result

and is therefore omitted. All four methods gave exactly the same result, as expected

when the model is jointly Gaussian and the Laplace approximation is exact. Parameter

estimates are reported in table 9.1.

9.4 Implementation 85

Estimate SE
ϕh 0.938 0.038
σh 0.361 0.058

ϕx1 0.742 0.125
ϕx2 0.979 0.049
σx1 0.426 0.095
σx2 0.091 0.127
σ1 0.282 0.100
σ2 0.514 0.054

Table 9.1 Parameter estimates for the four methods described above, on n = 100 observations.

More interesting is the structure of the Hessian of the Laplace approximation in

the nested and the exact case, as seen in figure 9.2. In the case of the nested Laplace,

the solution of

û1 = arg max
u1

g(y, u1, u2)

in the inner Laplace approximation, will be a function of u2. This will be input to the

outer Laplace approximation (Equation (9.4)). The implication of this is that we are

no longer guaranteed the Markovian structure of the likelihood, which again implies

that we are not guaranteed a sparse structure of H. In figure 9.3, a close up of the first

twenty rows and columns are shown of the Hessian of the outer Laplace approximation

where the tridiagonal is set to zero. This is done to get a greater picture of what is

happening to the values as we move away from the diagonal. We can observe that the

inner Laplace approximation has had a smoothing effect of the Hessian of the outer

approximation. As we go away from the diagonal the value goes toward zero, but never

actually zero. The matrix is therefore completely dense and computations are therefore

slow.

86 The Nested Laplace Approximation

N
es

te
d

La
pl

ac
e 20

40

60

80

20 40 60 80

−10

−5

0

5

10

15

20

E
xp

an
si

on
 in

 z
er

o

20

40

60

80

20 40 60 80

−10

−5

0

5

10

15

20

T
M

B

50

100

150

200

250

50 100 150 200 250

−100

−50

0

50

100

150

200

250

Sparseness of Hessian

Fig. 9.2 Top left: Hessian matrix in Equation (9.6) when we optimize inner Laplace by
Newton. Top right: Hessian matrix in Equation (9.6) when the inner Laplace is done by
Taylor expansion in zero. Bottom: Standard TMB with full full Laplace.

9.4 Implementation 87

5

10

15

20

5 10 15 20

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Fig. 9.3 Close up of the first twenty rows and columns of the Hessian of the outer Laplace
approximation. The tridiagonal of the matrix is set to zero to get a better image of the values
away from the diagonal

Example 9.3. Recall the two dimensional factor model introduced in chapter 8(see

section 8.1 for details):

y1t = β1e
1
2 htζt + e

1
2 x1tϵ1t (9.9)

y2t = β2e
1
2 htζt + e

1
2 x2tϵ2t, (9.10)

88 The Nested Laplace Approximation

Let Σi denote the conditional covariance matrix of yi|ht, xt, where yt = (y1t, y2t)′ and

xt = (x1t, x2t)′. The joint log-likelihood is given by

l(y, h, x|θ) =
n∑

i=1
log fyi

(yi|hi, xi)

+
n∑

j=2

[
log fhj

(hj|hj−1) + log fx1j
(x1j|x1j−1) + log fx2j

(x2j|x2j−1)
]

+ log fh1(h1) + log fx11(x11) + log fx21(x21)

∝
n∑

i=1
−1

2 log det(Σi)−
1
2y′

iΣ−1
i yi

−
n∑

j=2

[
log σh + 1

2σ2
h

(hj − ϕhhj−1)2 + log σx1 + 1
2σ2

x1

(x1j − (µx1 + ϕx1(x1j−1 − µx1))2

+ log σx2 + 1
2σ2

x2

(x2j − (µx2 + ϕx2(x2j−1 − µx2))
]

− 1
2 log σ2

h

1− ϕ2
h

− 1
2σ2

h

h2
1 −

1
2 log

σ2
x1

1− ϕ2
x1

− 1
2σ2

x1

(x11 − µx1)2

− 1
2 log

σ2
x2

1− ϕ2
x2

− 1
2σ2

x2

(x21 − µx2)2.

Due to memory limitations, we were not able to simulate more that 50 observations. The

parameter values in the simulation was θ = (β1, β2, ϕh, σh, µx1 , ϕx1 , σx1 , µx2 , ϕx2 , σx2) =

(0.7, 1.3, 0.9, 0.25,−1.3, 0.95, 0.37,−0.8, 0.94, 0.45). The standard Laplace approxima-

tion did not converge and is therefore omitted. The Nested Laplace approximation

converged, but was very slow, taking 5465 seconds to converge. As with the linear

state space model, the Hessian of the Nested Laplace was completely dense, as seen

in figure 9.4. Parameter estimates and standard errors are reported in table 9.2. As

expected, the estimates are not very precise and the standard errors are big. But it

is worth noticing that the true values are inside two times the standard deviation. It

would be interesting to see how the method would perform on a bigger dataset.

9.4 Implementation 89
N

es
te

d
La

pl
ac

e

10

20

30

40

10 20 30 40

−5

0

5

10

15

Fig. 9.4 Hessian matrix in factor model when we optimize inner Laplace by Newtons method
with respect to x. Only 50 observations. Time to optimize: 5481.549 seconds. The method
did not converge in the regular Laplace and therefore no plot is available

90 The Nested Laplace Approximation

Estimate SE
β1 0.667 0.180
β2 0.956 0.215

µx1 −1.850 1.042
µx2 −0.116 0.566
σx1 0.190 0.603
σx2 0.289 0.322
σh 0.656 0.337
ϕh 0.535 0.321

ϕx1 0.850 0.356
ϕx2 0.874 0.221

Table 9.2 Parameter estimates for the factor model using the Nested Laplace approximation,
on n = 50 observations.

Chapter 10

Empirical Analysis

In this chapter, we analyze exchange rates with respect to EUR. Data was obtained

from the authors of Kastner et al. (2017) and ranges from April 1, 2005 to August 6,

2015. It contains 26 daily exchange rates on 2650 days. For simplicity we will focus

on the two dimensional factor model and compare three different estimation methods:

maximum likelihood (MLE) by the use of the Laplace approximation, Hamiltonian

Monte Carlo (HMC) and the Deep Interweaving MCMC (DIMCMC) strategy proposed

in Kastner et al. (2017). For maximum likelihood estimation we use the TMB package

Kristensen et al. (2016). RStan (Stan Development Team (2016)) is used for HMC

sampling and factorstochvol for DIMCMC sampling. We investigate two different

scenarios:

1. When the likelihood converge.

2. When the likelihood does not converge.

We also investigate the effect of changing the parameters in the B(a0, b0) prior of ϕ

due to the fact that the standard B(20, 1.5) is quite restrictive, and we want to inspect

the consequences of using a prior with bigger variance. As we will see, this does effect

the estimates of the latent processes.

92 Empirical Analysis

We run the DIMCMC sampler for 110 000 iterations, discarding the first 10 000 as

burn-in. For HMC we run the sampler for 3000 iterations and discard the first 1000 as

burn-in (called warm up in Stan).

There are 325 different pair combinations in the datasets. The likelihood converged

for 105 datasets. There was no observable pattern to when we did not obtain con-

vergence, as it happened with data with high correlation as well as with data with

low correlation. When applying the restriction β1 = β2, convergence was obtained for

204 datasets. The following examples are meant to show how the different estimation

methods performed when the likelihood converged and when it did not. The economic

interpretation is not important here.

10.1 Likelihood converge

We here present results from estimating the two dimensional factor stochastic volatility

model on exchange rates from Australian dollar (AUD) and Canadian dollar (CAD)

with respect to EUR. The data is displayed in Figure 10.1, and the empirical ACF for

both the log returns and squared log returns is displayed in figure 10.2 an 10.3. The

log returns are close to uncorrelated, while the square log returns are clearly correlated,

a typical sign of volatility clustering. The correlation between AUD and CAD is 0.54.

In all tables x1 will refer to AUD and x2 to CAD.

We can observe from Table 10.1 that all three methods give similar results, with

exception of µx1 , where both HMC and DIMCMC estimates it more negative that MLE.

This can also be observed in Figure 10.4, where the EB estimate of the idiosyncratic

log-variance of AUD is bigger than for HMC and DIMCMC. It is not quite clear why

HMC starts out way below the other methods in figure 10.4.

For ML, we tried different starting values to ensure that our estimates was a global

minimum of the negative log likelihood. When starting µx1 in −5 the likelihood

converged to another solution, where σx1 was estimated to 0.002, leading to x1t being

10.1 Likelihood converge 93

estimated to a straight line equal to the mean. The negative log likelihood was bigger

in this optimum and results is therefore omitted.

Investigating autocorrelations of the draws via the empirical autocorrelation function

shows that some of the parameters have a extremely slow decaying ACF. In Figure

10.6 we plot the ACF of the variable with slowest decaying autocorrelation (µx1 for

both DIMCMC and HMC). Changing the priors for ϕ did not change the results

substantially and is therefore omitted. Efficient sample size and efficient sample size

per unit time is reported in table 10.2. ESS varies a great deal across the different

parameters, where for DIMCMC the ratio of the biggest and the smallest ESS is 614

and 3 for HMC. Also notice that MLE is more than ten times faster than DIMCMC in

CPU time, which again is more than ten times faster than HMC.

−4

0

4

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

AUD

−4

−2

0

2

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

CAD

Fig. 10.1 Demeaned log returns for AUD and CAD with respect to EUR.

94 Empirical Analysis

MLE DIMCMC HMC
Estimate SE Estimate SE Estimate SE

β1 0.48 0.06 0.55 0.08 0.55 0.06
β2 0.36 0.04 0.34 0.05 0.34 0.04
ϕh 0.99 0.004 0.99 0.004 0.99 0.004
σh 0.10 0.02 0.09 0.02 0.09 0.016

ϕx1 0.98 0.008 0.95 0.03 0.96 0.028
ϕx2 0.99 0.005 0.99 0.005 0.95 0.013
µx1 -2.73 0.41 -5.14 1.09 -5.60 1.99
µx2 -1.68 0.16 -1.57 0.18 -1.52 0.09
σx1 0.23 0.04 0.75 0.21 0.76 0.27
σx2 0.08 0.02 0.08 0.02 0.19 0.03

CPU(s) 38 535 7334
Table 10.1 The two dimensional factor model fitted to demeaned daily returns for AUD
(Australia dollar) and CAD (Canada dollar) with respect to EUR. The data ranges from
1.April 2005 to 6.August 2015.

DIMCMC HMC
ESS ESS/T ESS ESS/T

β1 15 352 28.7 965 0.13
β2 28 586 53.43 954 0.13
ϕh 1 976 3.69 670 0.09
σh 920 1.72 568 0.08

ϕx1 123 0.23 268 0.04
ϕx2 1 310 2.45 828 0.11
µx1 25 0.05 321 0.04
µx2 18 199 34.02 931 0.13
σx1 81 0.15 469 0.06
σx2 941 1.76 733 0.10

Table 10.2 ESS and ESS per unit time for DIMCMC and HMC.

10.1 Likelihood converge 95

AUD CAD

0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

Lag

Aut
oco

rrel
atio

n

Fig. 10.2 Empirical autocorrelation function for log returns of AUD and CAD.

−20

−15

−10

−5

0

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance AUD

−3

−2

−1

0

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance CAD

Fig. 10.4 Estimated idiosyncratic log-variance for AUD and CAD.

96 Empirical Analysis

AUD CAD

0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

Lag

Au
toc

orr
ela

tion

Fig. 10.3 Empirical autocorrelation function for the squared log returns of AUD and CAD.

−2

−1

0

1

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Log−variance of factor

Fig. 10.5 Estimated factor log-variance for AUD and CAD. All methods give similar results.

10.2 Likelihood does not converge 97

0 250 500 750 1000

0.0

0.5

1.0

DI
MC

MC

Autocorrelation Functions of µx1

0 25 50 75 100

0.0

0.5

1.0

Lag

HM
C

−10.0

−7.5

−5.0

−2.5

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

DI
MC

MC

Traceplots of µx1

−15

−10

−5

0 500 1000 1500 2000

Iterations

HM
C

Fig. 10.6 Right hand side: Trace plots of all 100 000 draws using DIMCMC (top) and all
2000 draws using HMC (bottom) for µx1 . Left hand side: Empirical autocorrelation function
functions of all draws using DIMCMC (top) and HMC (bottom).

10.2 Likelihood does not converge

We here estimate our model to log returns of Croatian kuna (HRK) and Philippines

peso (PHP). The data is displayed in figure 10.7, and the empirical ACF of log returns

and squared log returns is displayed in figure 10.8 an 10.9. As with AUD and CAD we

see clear signs of volatility clustering. The correlation between HRK and PHP is 0.02,

meaning that the data are almost uncorrelated. In all tables x1 will refer to HRK and

x2 to PHP.

We fit the model to the data with two different priors on ϕi, i = 1, 2, 3: The standard

B(20, 1.5) distribution, used frequently in the literature and a B(10, 3) distribution

which is less restrictive. The result using a B(20, 1.5) prior is reported in table 10.3.

98 Empirical Analysis

The estimated log variance is shown in the left hand side of figure 10.10, 10.11 and

10.12. We can see that EB and DIMCMC gives similar results, both idiosyncratic

log-variances are estimated very similarly, while the log-variance of the factor has very

little structure and looks very noisy, which reflect the fact that ϕh is estimated to 0.1

and 0.27. HMC on the other hand, estimate the log-variance of the factor with a lot of

structure, reflecting that ϕh is estimated to 0.98. HMC estimates the log-variance for

PHP similar to EB and DIMCMC, while the log-variance of HRK has little structure,

since ϕx1 is estimated to 0.517. Efficient sample size is reported is table 10.5.

Table 10.4 reports the parameter estimates using a B(10, 3) prior on ϕ. As for

DIMCMC this prior did not affect the results in a big manner, with exception to ϕh,

which is estimated to 0.273. This may reflect the fact that the correlation is very

low between HRK and PHP and giving a prior with smaller expectation and bigger

variance, we are able to estimate the low correlation. For HMC we can observe two

significant differences: (1) ϕh is estimated to 0.556, while ϕx1 is estimated to 0.974

and, (2) σh is estimated to 1.193, while σx1 is estimated to 0.391. So, in comparison

to the B(20, 1.5) prior there has been a flip between the parameter estimates in the

latent AR(1) process of the factor and the latent AR(1) process of the idiosyncratic

variance HRK. This can also be observed in the right hand side of figure 10.11 and

10.12. Efficient sample size and efficient sample size per unit time is reported is table

10.6.

10.2 Likelihood does not converge 99

−1.5

−1.0

−0.5

0.0

0.5

1.0

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

HR
K

−4

−2

0

2

4

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

PH
P

Fig. 10.7 Demeaned log returns for HRK and PHP with respect to EUR.

HRK PHP

0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

Lag

Aut
oco

rrel
atio

n

Fig. 10.8 Empirical autocorrelation function for log returns of HRK and PHP.

100 Empirical Analysis

MLE DIMCMC HMC
Estimate SE Estimate SE Estimate SE

β1 -0.003 - -0.0007 0.0015 0.063 0.015
β2 0.135 - 0.255 0.094 0.005 0.008
ϕh 0.100 - 0.544 0.145 0.982 0.006
σh 1.751 - 0.973 0.303 0.305 0.045

ϕx1 0.929 - 0.913 0.991 0.517 0.088
ϕx2 0.971 - 0.991 0.0005 0.937 0.016
µx1 -4.78 - -4.75 0.116 -6.31 0.287
µx2 -1.287 - -1.83 0.518 -1.171 0.083
σx1 0.431 - 0.483 0.052 1.374 0.166
σx2 0.167 - 0.109 0.039 0.220 0.031

CPU(s) 125 557 5743
Table 10.3 The two dimensional factor model fitted to demeaned daily returns for HRK
(Croatia kuna) and PHP (Philippines peso) with respect to EUR. The data ranges from
1.April 2005 to 6.August 2015. For MCMC and HMC (ϕ + 1)/2 had a B(20, 1.5) distributed
prior. Note that standard errors are not reported for MLE, since it did not converge.

HRK PHP

0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

Lag

Aut
oco

rrel
atio

n

Fig. 10.9 Empirical autocorrelation function for the squared log returns of HRK and PHP.

10.2 Likelihood does not converge 101

MLE DIMCMC HMC
Estimate SE Estimate SE Estimate SE

β1 -0.003 - -0.0008 0.0016 0.052 0.006
β2 0.135 - 0.326 0.070 0.001 0.009
ϕh 0.100 - 0.273 0.152 0.556 0.004
σh 1.751 - 0.867 0.228 1.193 0.151

ϕx1 0.929 - 0.905 0.019 0.974 0.009
ϕx2 0.971 - 0.987 0.006 0.929 0.018
µx1 -4.78 - -4.87 0.1122 -5.99 0.430
µx2 -1.287 - -2.238 0.6065 -1.187 0.078
σx1 0.431 - 0.501 0548 0.391 0.058
σx2 0.167 - 0.171 0.062 0.235 0.035

CPU(s) 125 557 4845
Table 10.4 The two dimensional factor model fitted to demeaned daily returns for HRK
(Croatia kuna) and PHP (Philippines peso) with respect to EUR. The data ranges from
1.April 2005 to 6.August 2015. For MCMC and HMC (ϕ + 1)/2 had a B(10, 3) distributed
prior. Note that standard errors are not reported for MLE, since it did not converge.

DIMCMC HMC
ESS ESS/T ESS ESS/T

β1 7 054 12.67 990 0.17
β2 19 0.03 2 000 0.35
ϕh 153 0.27 390 0.07
σh 65 0.12 410 0.07

ϕx1 1 518 2.73 258 0.04
ϕx2 621 1.12 518 0.09
µx1 23 689 42.53 282 0.05
µx2 46 0.18 2000 0.35
σx1 1 161 2.08 386 0.07
σx2 58 0.11 460 0.08

Table 10.5 ESS and ESS per unit time for DIMCMC and HMC when (ϕ + 1)/2 had a
B(20, 1.5) distributed prior.

102 Empirical Analysis

DIMCMC HMC
ESS ESS/T ESS ESS/T

β1 12 610 22.64 59 0.01
β2 41 0.07 2000 0.41
ϕh 383 0.69 67 0.01
σh 123 0.22 68 0.01

ϕx1 1 390 2.50 59 0.01
ϕx2 459 0.82 499 0.10
µx1 272 0.49 317 0.07
µx2 91 0.16 1278 0.26
σx1 1 082 1.94 117 0.02
σx2 120 0.22 509 0.11

Table 10.6 ESS and ESS per unit time for DIMCMC and HMC when (ϕ + 1)/2 had a
B(10, 3) distributed prior.

−3

−2

−1

0

1

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance PHP

−4

−3

−2

−1

0

1

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance PHP

Fig. 10.10 Estimated idiosyncratic log-variance for PHP with a B(20, 1.5) (left) and B(10, 3)
(right) prior on ϕi, i = 1, 2, 3.

10.3 Summary

The results from this chapter is in agreement with the simulation study in chapter 8.

When the likelihood converged, all methods gave similar results, with exception of one

parameter, namely µx1 . When the likelihood did not converge, MLE and DIMCMC

still gave similar results, just as in the simulation study. In the example in section 10.1,

10.3 Summary 103

−8

−6

−4

−2

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance HRK

−20

−10

0

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Idiosyncratic log−variance HRK

Fig. 10.11 Estimated idiosyncratic log-variance for HRK with a B(20, 1.5) (left) and B(10, 3)
(right) prior on ϕi, i = 1, 2, 3.

−2

0

2

4

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Log−variance of factor

−2

0

2

4

2006−01−01 2008−01−01 2010−01−01 2012−01−01 2014−01−01 2016−01−01

Method

DIMCMC

HMC

EB

Log−variance of factor

Fig. 10.12 Estimated factor log-variance for HRK and PHP with a B(20, 1.5) (left) and
B(10, 3) (right) prior on ϕ, i = 1, 2, 3.

DIMCMC and HMC was not sensitive to the choice of prior for ϕ, but in section 10.2,

HMC clearly did not manage to identify the source of the variance. A take away may

be that even though a B(20, 1.5) prior is justified for the idiosyncratic variance, it may

be too restrictive for the factor process.

Chapter 11

Other Methods Investigated

11.1 Penalized Maximum Likelihood

Instead of minimizing the negative log-likelihood, we can add a penalizing term Ω(θ)

to the log-likelihood, such that we minimize

θ̂ = arg min
θ
−l(θ)− Ω(θ). (11.1)

In this thesis, Ω(θ) is set to the negative of the log prior described in chapter 7. For

many of our parameters, we do not estimate them directly, but rather transformations

of the parameter (for example log σ instead of σ). We therefore need to find the density

of the transformed priors. This is done in Appendix A.

This was investigated to see if this could make convergence more robust. This was

not the case. Penalizing the likelihood did not help convergence on datasets where the

original likelihood did not converge.

11.2 Hybrid of MLE and Moment estimators

As seen in chapter 8, convergence was substantially better when we restricted our

model to β1 = β2. To make the likelihood estimation easier we tried to estimate β1

106 Other Methods Investigated

and β2 inside the likelihood function by matching the empirical and the theoretical

variance of y1t and y2t, and then use these estimates as input in the likelihood.

Let σ̂2
1 and σ̂2

2 denote the empirical variance of y1t and y2t. Then

Var(y1t) = σ̂2
1 = β2

1 exp
(

1
2

σ2
h

1− ϕ2
h

)
+ exp

(
µx1 + 1

2
σ2

x1

1− ϕ2
x1

)
(11.2)

Var(y2t) = σ̂2
2 = β2

2 exp
(

1
2

σ2
h

1− ϕ2
h

)
+ exp

(
µx2 + 1

2
σ2

x2

1− ϕ2
x2

)
(11.3)

Solving for β1 and β2 we get

β̂1 =

√√√√σ̂2
1 − exp

(
µx1 + 1

2
σ2

x1
1−ϕ2

x1

)

exp
(

1
2

σ2
h

1−ϕ2
h

) (11.4)

β̂2 =

√√√√σ̂2
2 − exp

(
µx2 + 1

2
σ2

x2
1−ϕ2

x2

)

exp
(

1
2

σ2
h

1−ϕ2
h

) (11.5)

This hybrid of methods of moments with ML works well as long as the expression

under the square root is positive, but often as the optimization routine is searching for

a optimum, this becomes negative and the optimization stops when taking the square

root of a negative number.

11.3 Combining the Laplace Approximation with

HMC

When using HMC we sample the latent variables together with the parameters. Instead

of sampling all latent variables we investigated how integrating out a subset affected

the sampling. This was done with the tmbstan package in R. The user defines

11.3 Combining the Laplace Approximation with HMC 107

the posterior density in a C++ template and defines what variables that should

be integrated out by the Laplace approximation. We investigated integrating the

factor process h = (h1, . . . , hT). The traceplot of a simulation experiment with 500

observations from the two dimensional MFSV model is shown in figure 11.1. As we

can see, the mixing for some of the variables are extremely slow making them almost

useless. Another problem is the computational speed. The runtime for this example

was 23 hours. This is due to the fact that between each leapfrog step used to evolve

the Hamiltonian, we need to integrate out h. For the MFSV model, we usually need

128 or 256 leapfrog steps between each Metropolis update, and thus need to apply the

Laplace approximation 128 or 256 times for every update, making it computationally

costly.

108 Other Methods Investigated

phi_h_trans log_sigma_h

beta[1] beta[2]

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1

2

3

4

−2.0

−1.5

−1.0

0.5

1.0

1.5

2.0

2.5

5.0

7.5

10.0

chain
1

mu_x[2] log_sigma_x[1] log_sigma_x[2]

phi_x_trans[1] phi_x_trans[2] mu_x[1]

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

−3

−2

−1

−1.5

−1.0

−0.5

5

10

15

20

−1.5

−1.0

−0.5

2

4

6

8

−30

−20

−10

0

10

20

chain
1

Fig. 11.1 Traceplots of simulation experiment combining HMC and the Laplace approxima-
tion. Note that phi_x_trans and phi_h_trans are the transformation of ϕ mentioned in
chapter 8.

Chapter 12

Conclusion and future work

In this thesis we have investigated the problem of parameter estimation of dynamic co-

variance matrices through a factor stochastic volatility model using maximum likelihood

and Hamiltonian Monte Carlo. In chapter 2 we introduced the building blocks of the

MFSV model, namely the classical factor model and the univariate SV model. Chapter

3 to 5 consisted of theory needed for likelihood estimation and HMC. Chapter 5 gave an

introduction to Automatic Differentiation and the different tools used for implementing

the models, namely the R package TMB and the probabilistic programming language

Stan.

In chapter 8 we did a simulation study comparing ML and the deep interweaving

strategy (DIMCMC) proposed in Kastner et al. (2017) for the two dimensional factor

stochastic volatility model. The results show that convergence of the likelihood is

unstable and highly data dependent. Out of 1000 datasets, convergence was obtained

in 611 cases, but most parameter estimates were accurate, independent of convergence.

To investigate reasons to why the likelihood did not converge we calculated the

characteristic function and the cumulative generating function of our model and

found an expression for the higher order cumulants, that gave a suggestion of a

possible restriction, namely putting the parameters in the loading vector equal. In a

new simulation study with this restriction, the likelihood converged 996 out of 1000

datasets, but this was only the case when β1 = β2 in the data generating process.

110 Conclusion and future work

The “Nested Laplace Approximation” was introduced in chapter 9, where instead

of integrating over all latent variables, we do it over subsets in a sequential way. We

applied the method to a linear state space model and the two dimensional MFSV

model. For the linear state space model, all methods gave the same result. For the

MFSV model the nested Laplace approximation converged, while the standard Laplace

approximation did not. A big drawback was that the Hessian of the outer Laplace

approximation was completely dense, making computations very slow.

We applied the different methods to real-world data in chapter 10, where we

analyzed exchange rates with respect to EUR. Two scenarios were investigated, when

the likelihood converged and when it did not. When the likelihood converged, all

methods gave similar results. When it did not, ML and DIMCMC performed similarly,

while HMC was sensitive to the choice of prior for the persistent parameters in the

latent autoregressive processes.

For future studies, it would be very interesting to investigate simulating from the

posterior using Riemann manifold Hamiltonian Monte Carlo (RMHMC) (Girolami

et al. (2011)). Recall from chapter 5 that the covariance structure of the Gaussian

momentum was a constant matrix M . RMHMC generalizes HMC by using a position

dependent Fisher information matrix G(θ), that changes as we move through the

parameter space. The kinetic energy will then have the form

K(p) = 1
2p′G(θ)−1p,

with corresponding Hamiltonian

H(θ, p) = − log[L(θ)π(θ] + 1
2 log det(G(θ)) + 1

2p′G(θ)−1p

When the posterior is not Gaussian, level sets can have big local curvature, making

exploration of the posterior hard (Betancourt (2017)). By choosing the the covariance

matrix of the momentum to be the inverse Fisher information, we can adept to areas

with big curvature.

111

On some datasets we experienced that the HMC sampler would get stuck in certain

areas of the parameter space, for example when ϕ was very close to 1. One could

hypothesize that this is caused by big local curvature, and it would therefore be

interesting to see how RMHMC performed.

References

Bell, B. M. (2005). Cppad: A package for c++ algorithmic differentiation.

Betancourt, M. (2017). A Conceptual Introduction to Hamiltonian Monte Carlo. ArXiv
e-prints.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics, 31(3):307–327.

Bou-Rabee, N. and María Sanz-Serna, J. (2017). Geometric integrators and the
Hamiltonian Monte Carlo method. ArXiv e-prints.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic
programming language. Journal of Statistical Software, Articles, 76(1):1–32.

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., and Betancourt, M.
(2015). The stan math library: Reverse-mode automatic differentiation in C++.
CoRR, abs/1509.07164.

Casella, G. and Berger, R. (2001). Statistical Inference. Duxbury Resource Center.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte
carlo. Physics Letters B, 195(2):216 – 222.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrica, 50(4):987–1007.

Fournier, D., Skaug, H., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M., Nielsen,
A., and Sibert, J. (2011). Ad model builder: using automatic differentiation for
statistical inference of highly parameterized complex nonlinear models. Optimization
Methods and Software, 27(2):233–249.

Frühwirth-Schnatter, S. and Lopes, H. F. (2010). Parsimonious bayesian factor analysis
when the number of factors is unknown.

Gelman, A., Robert, C., Chopin, N., and Rousseau, J. (2015). Bayesian data analysis.

Girolami, M., Calderhead, B., and Chin, S. A. (2011). Riemann manifold langevin
and hamiltonian monte carlo methods. J. of the Royal Statistical Society, Series B
(Methodological.

114 References

Harvey, A. (1991). Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.

Harvey, A., Ruiz, E., and Shephard, N. (1994). Multivariate stochastic variance models.
Review of Economic Studies, 61(2):247–264.

Hautsch, N. and Ou, Y. (2008). Discrete-time stochastic volatility models and mcmc-
based statistical inference. SFB 649 Discussion Papers SFB649DP2008-063, Hum-
boldt University, Collaborative Research Center 649.

Hoffman, M. D. and Gelman, A. (2011). The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo. ArXiv e-prints.

Jolliffe, I. (1986). Principal component analysis. Springer series in statistics. Springer-
Verlang.

Kastner, G. and Frühwirth-Schnatter, S. (2014). Ancillarity-sufficiency interweaving
strategy (asis) for boosting mcmc estimation of stochastic volatility models. Com-
putational Statistics & Data Analysis, 76:408 – 423. CFEnetwork: The Annals of
Computational and Financial Econometrics.

Kastner, G., Frühwirth-Schnatter, S., and Lopes, H. F. (2017). Efficient bayesian infer-
ence for multivariate factor stochastic volatility models. Journal of Computational
and Graphical Statistics, 26(4):905–917.

Kristensen, K., Nielsen, A., Berg, C., Skaug, H., and Bell, B. (2016). Tmb: Automatic
differentiation and laplace approximation. Journal of Statistical Software, Articles,
70(5):1–21.

Lawley, D. and Maxwell, A. (1971). Factor Analysis as a Statistical Method. Butter-
worths mathematical texts. Butterworths.

Liesenfeld, R. (2006). Classical and bayesian analysis of univariate and multivariate
stochastic volatility models.

Monnahan, C. C., Thorson, J. T., and Branch, T. A. (2016). Faster estimation of
bayesian models in ecology using hamiltonian monte carlo. Methods in Ecology and
Evolution, pages n/a–n/a.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Neal, R. M. (2010). MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 54:113–162.

Omori, Y., Chib, S., Shephard, N., and Nakajima, J. (2004). Stochastic volatility with
leverage: fast likelihood inference. Economics Papers 2004-W19, Economics Group,
Nuffield College, University of Oxford.

Paquet, U. and Fraccaro, M. (2016). An Efficient Implementation of Riemannian
Manifold Hamiltonian Monte Carlo for Gaussian Process Models. ArXiv e-prints.

References 115

Pawitan, Y. (2001). In All Likelihood. First edition.

Pitt, M. K. and Shephard, N. (1999). Time-varying covariances: a factor stochastic
volatility approach. In Bayesian statistics, 6 (Alcoceber, 1998), pages 547–570.
Oxford Univ. Press, New York.

Rice, J. (1988). Mathematical statistics and data analysis. Wadsworth & Brooks/Cole
statistics/probability series. Brooks/Cole Pub. Co.

Schervish, M. (1996). Theory of Statistics. Springer Series in Statistics. Springer New
York.

Shephard, N., editor (2005). Stochastic Volatility: Selected Readings. Oxford University
Press.

Skaug, H. J. and Yu, J. (2014). "a flexible and automated likelihood based framework
for inference in stochastic volatility models". "Computational Statistics & Data
Analysis", "76":642 – 654. CFEnetwork: The Annals of Computational and Financial
Econometrics.

Spearman, C. (1904). The proof and measurement of association between two things.
American Journal of Psychology, 15:88–103.

Stan Development Team (2016). RStan: the R interface to Stan. R package version
2.14.1.

Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic
processes-a study of the daily sugar prices 1961-75. Time Series Analysis : Theory
and Practice, 1:203–226.

Team, S. D. (2017). Stan Modeling Language Users Guide and Reference Manual,
Version 2.17.0.

Tsay, R. (2010). Analysis of Financial Time Series. CourseSmart. Wiley.

Warwick, T. (2010). Automatic differentiation - lecture no 1.

Yu, Y. and Meng, X.-L. (2011). To center or not to center: That is not the question—an
ancillarity–sufficiency interweaving strategy (asis) for boosting mcmc efficiency.
Journal of Computational and Graphical Statistics, 20(3):531–570.

Zhou, X., Nakajima, J., and West, M. (2014). Bayesian forecasting and portfolio
decisions using dynamic dependent sparse factor models. International Journal of
Forecasting, 30(4):963 – 980.

Appendix A

Transformation of priors

A.1 Transformation of ϕ

As seen in chapter 7, to ensure ϕ ∈ (−1, 1), we choose ϕ+1
2 ∼ B(a0, b0), implying

fϕ(ϕ) = 1
2B(a0, b0)

(
ϕ + 1

2

)a0−1(1− ϕ

2

)b0−1

To be able to do unrestricted likelihood estimation we estimate ϕ̃ ∈ R, and then

transform back to (−1, 1) by the function

ϕ = exp (ϕ̃)− 1
1 + exp(ϕ̃)

.

We need to find the distribution of

ϕ̃ = g(ϕ) = log
(

ϕ + 1
1− ϕ

)

The inverse of g is the original transformation

h(ϕ̃) = g−1(ϕ) = exp (ϕ̃)− 1
1 + exp(ϕ̃)

,

118 Transformation of priors

and the derivative of h is

h′(ϕ̃) = 2 exp(ϕ̃)
(1 + exp(ϕ̃))2

Thus, by the transformation formula the density of ϕ̃ is given by

fϕ̃(ϕ̃) = fϕ(h(ϕ̃))
∣∣∣h′(ϕ̃)

∣∣∣
= 1

2B(a0, b0)

(
h(ϕ̃) + 1

2

)a0−1(1− h(ϕ̃)
2

)b0−1 2 exp(ϕ̃)
(1 + exp(ϕ̃))2

= 1
B(a0, b0)

(
h(ϕ̃) + 1

2

)a0−1(1− h(ϕ̃)
2

)b0−1 exp(ϕ̃)
(1 + exp(ϕ̃))2

.

A.2 Transformation of σ

To ensure σ > 0, we estimate log σ instead of σ. The prior of σ2 is G
(

1
2 , 1

2Bσ

)
, with

density

fσ2(σ2) = 1
Γ
(

1
2

) 1√
2Bσ

(σ2)−1/2 exp (−σ2/(2Bσ)),

We need to find the distribution of σ̃ = g(σ2) = log
√

σ2.

The inverse of g is given by h(σ̃) = g−1(σ2) = exp(2σ̃) with derivative h′(σ̃) =

2 exp(2σ̃). The density of σ̃ is then given by

fσ̃(σ̃) = fσ2(h(σ̃))
∣∣∣h′(σ̃)

∣∣∣
= 1

Γ
(

1
2

) 1√
2Bσ

exp(σ̃)−1/2 exp
(

exp(2σ̃)
2Bσ

)
2 exp(σ̃)

= 1
Γ
(

1
2

)√ 2
Bσ

exp
(

σ̃ − exp(2σ̃)
2Bσ

)
.

Appendix B

Code Snippets

B.1 TMB code for the Multivariate Factor Stochas-

tic Volatility Model

// Joint probability distribution of p- dimensional MFSV model with q factors . Factors

and indiosyncratic variance are driven by latent AR (1) processes .

// Apply same priors as in Kastner (2016) for HMC and penalized likelihood

include <TMB.hpp >

// Helper function to transform phi

template < class Type >

vector <Type > f(vector <Type > x){

vector <Type > y = (exp(x)-Type (1))/(Type (1) + exp(x));

return y;

}

template <class Type >

Type objective_function <Type >:: operator () ()

{

DATA_ARRAY (y);

DATA_INTEGER (n); // number of obs

DATA_INTEGER (p); // dim of y

DATA_INTEGER (q); // dim of factor

DATA_INTEGER (prior);

PARAMETER_MATRIX (beta); // loading matrix

120 Code Snippets

PARAMETER_MATRIX (h); // latent processes for factors

PARAMETER_MATRIX (x); // Idiosyncratic processes

PARAMETER_VECTOR (phi_h_trans);

PARAMETER_VECTOR (log_sigma_h);

PARAMETER_VECTOR (phi_x_trans);

PARAMETER_VECTOR (mu_x);

PARAMETER_VECTOR (log_sigma_x);

vector <Type > phi_h = f(phi_h_trans);

vector <Type > phi_x = f(phi_x_trans);

ADREPORT (phi_h);

ADREPORT (phi_x);

vector <Type > sigma_h = exp(log_sigma_h);

ADREPORT (sigma_h);

vector <Type > sigma_x = exp(log_sigma_x);

ADREPORT (sigma_x);

using namespace density ;

using namespace Eigen ;

Type nll = 0;

// Contribution from latent variables

// Log - variance of factor

// Stationarity assumption

for(int i = 0; i < q; i++){

nll -= dnorm (h(i ,0) , Type (0.0) , sigma_h (i)/sqrt(Type (1.0) - phi_h (i)* phi_h (i)),

true);

}

for(int i = 1; i < n; i++){

for(int j = 0; j < q; j++){

nll -= dnorm (h(j,i),phi_h (j)*h(j,i -1) ,sigma_h (j),true);

}

}

// Log - variance idiosyncratic

// Stationarity assumption

for(int i = 0; i < p; i++){

nll -= dnorm (x(i ,0) , mu_x(i), sigma_x (i)/sqrt (1 - phi_x (i)* phi_x (i)),true);

}

B.1 TMB code for the Multivariate Factor Stochastic Volatility Model 121

for(int i = 1; i < n; i++){

for(int j = 0; j < p; j++){

nll -= dnorm (x(j,i), mu_x(j) + phi_x (j)*(x(j,i -1) - mu_x(j)), sigma_x (j), true)

;

}

}

// Random effects done

// Contribtution from observations

matrix <Type > factor (q,q); // Variance from factors

matrix <Type > idiosyncratic (p,p); // Idiosyncratic variance

factor . setZero ();

idiosyncratic . setZero ();

// Covariance matrix

matrix <Type > Sigma (p,p);

matrix <Type > bt = beta. transpose ();

for(int i = 0; i < n; i++){

// Fill diagonal factor varians

for(int j = 0; j < q; j++) factor (j,j) = exp(h(j,i));

// Fill diagonal idiosyncratic varians

for(int j = 0; j < p; j++) idiosyncratic (j,j) = exp(x(j,i));

matrix <Type > tmp = beta* factor ; // Need to multiply one by one not to get error

matrix <Type > tmp2 = tmp*bt;

Sigma = tmp2 + idiosyncratic ;

// N_0_Sigma is multivariate normal with covariance matrix Sigma

MVNORM_t <Type > N_0_Sigma (Sigma);

nll += N_0_Sigma (vector <Type >(y.col(i)));

}

REPORT (x);

REPORT (h);

// Penalized likelihood ?

if(prior == 1){

// Constants

Type B_beta = 1.0;

Type b_mu = 0.0;

Type B_mu = 100;

Type a_0 = 20;

122 Code Snippets

Type b_0 = 1.5;

Type B_sigma = 1;

// Log - priors for all variables of length p.

// TMB uses shape / scale in the gamma distribution ,

// therefore the scale = 1/ rate , where rate = 1/2 _B_sigma

for(int i = 0; i < p; i++){

// Contribution from mu

nll -= dnorm (mu_x(i),b_mu ,sqrt(B_mu),true);

// Contribution form phi_x

nll -= dbeta ((phi_x (i)+Type (1))/Type (2) ,a_0 ,b_0 ,true) + phi_x_trans (i) - log ((

Type (1) + exp(phi_x_trans (i)))*(Type (1) + exp(phi_x_trans (i))));

// Contribution from log_sigma_x

nll -= -lgamma (Type (0.5)) + log(sqrt(Type (2)/ B_sigma)) + log_sigma_x (i) - exp(

Type (2)* log_sigma_x (i)/(Type (2)* B_sigma));

}

// Priors for all variables of length q

for(int i = 0; i < q; i++){

// Contribution from phi_h

nll -= dbeta ((phi_h (i)+Type (1))/Type (2) ,a_0 ,b_0 ,true) + phi_h_trans (i) - log ((

Type (1) + exp(phi_h_trans (i)))*(Type (1) + exp(phi_h_trans (i))));

// Contribution from log_sigma_h

nll -= -lgamma (Type (0.5)) + log(sqrt(Type (2)/ B_sigma)) + log_sigma_h (i) - exp(

Type (2)* log_sigma_h (i)/(Type (2)* B_sigma));

}

// Priors from beta need to be split in two: First loop over the lower triangular

of the first rows and columns , then from q+1 to p where we take contribution

from entire matrix .

for(int i = 0; i < q; i++){

for(int j = 0; j <= i; j++){

nll -= dnorm (beta(i,j),Type (0) ,sqrt(B_beta),true);

}

}

for(int i = q; i < p; i++){

for(int j = 0; j < q; j++){

nll -= dnorm (beta(i,j),Type (0) ,sqrt(B_beta),true);

}

}

}

return nll;

}

B.2 TMB code for Nested Laplace of linear state space model 123

B.2 TMB code for Nested Laplace of linear state

space model

#include <TMB.hpp >

// Linear state space model on the form y_it = h_t + x_it + e_it , where h and x are

uncentered AR (1) processes .

// Inner Laplace Approximation

template < class Type , class Functor >

struct laplace_t {

Functor f; // Negative -log likelihood

vector <Type >& u; // Latent variables

int niter ; // Number of Newton iterations

laplace_t (Functor f_ , vector <Type > &u_ , int niter_) :

f(f_), u(u_), niter (niter_) {}

Type operator () (){

// Find optimum of Inner problem

for (int i=0; i< niter ; i++){

vector <Type > g = autodiff :: gradient (f, u);

matrix <Type > H = autodiff :: hessian (f, u);

u -= atomic :: matinv (H) * g;

}

// Laplace approximation

matrix <Type > H = autodiff :: hessian (f, u);

Type ans = .5 * atomic :: logdet (H) + f(u);

ans -= .5 * Type(u.size ()) * log (2.0 * M_PI);

return ans;

}

};

template < class Type , class Functor >

Type laplace (Functor f, vector <Type > &u, int niter){

laplace_t <Type , Functor > L(f, u, niter);

return L();

}

template < class Type >

struct jnll_t {

matrix <Type > y;

vector <Type > h, sigma_x ,sigma , phi_x ;

124 Code Snippets

Type phi_h , sigma_h ;

jnll_t (matrix <Type > y_ ,

vector <Type > h_ ,vector <Type > sigma_x_ , vector <Type > sigma_ , vector <Type >

phi_x_ ,

Type phi_h_ ,Type sigma_h_) :

y(y_), h(h_), sigma_x (sigma_x_), sigma (sigma_), phi_x (phi_x_), phi_h (phi_h_),

sigma_h (sigma_h_) {}

template < typename T>

T operator ()(vector <T> x_vec){

matrix <T> y_ = y. template cast <T >();

vector <T> h_ = h. template cast <T >();

vector <T> sigma_x_ = sigma_x . template cast <T >();

vector <T> sigma_ = sigma . template cast <T >();

vector <T> phi_x_ = phi_x . template cast <T >();

T phi_h_ = T(phi_h);

T sigma_h_ = T(sigma_h);

int h = x_vec .size ();

int n = h_.size ();

// Transform to matrix

matrix <T> x(2,n);

for(int i = 0; i < h; i++){

if(i < n){

x(0,i) = x_vec (i);

}

else{

x(1,i - n) = x_vec (i);

}

}

T nll = 0;

// Stationary assumption

nll -= dnorm (x(0 ,0) ,T(0) ,sigma_x_ (0)/sqrt(T(1) - phi_x_ (0)* phi_x_ (0)),true);

nll -= dnorm (x(1 ,0) ,T(0) ,sigma_x_ (1)/sqrt(T (1.0) - phi_x_ (1)* phi_x_ (1)),true);

nll -= dnorm (h_ (0) ,T(0) , sigma_h_ /sqrt(T (1.0) - phi_h_ * phi_h_),true);

// Contribution from h

for(int i = 1; i < n; i++){

nll -= dnorm (h_(i),h_(i -1)*phi_h_ ,sigma_h_ ,true);

}

// Contribution from x

for(int i = 1; i < n; i++){

B.2 TMB code for Nested Laplace of linear state space model 125

for(int j = 0; j < 2; j++){

nll -= dnorm (x(j,i),phi_x_ (j)*x(j,i -1) ,sigma_x_ (j),true);

}

}

// Observations

for(int i = 0; i < n; i++){

nll -= dnorm (y_(0,i),h_(i) + x(0,i),sigma_ (0) ,true);

nll -= dnorm (y_(1,i),h_(i) + x(1,i),sigma_ (1) ,true);

}

return nll;

}

};

template < class Type >

Type objective_function <Type >:: operator () (){

DATA_MATRIX (y);

DATA_INTEGER (n);

DATA_INTEGER (niter);

PARAMETER (phi_h);

PARAMETER (log_sigma_h);

PARAMETER_VECTOR (phi_x);

PARAMETER_VECTOR (log_sigma_x)

PARAMETER_VECTOR (log_sigma);

PARAMETER_VECTOR (h);

vector <Type > sigma = exp(log_sigma);

vector <Type > sigma_x = exp(log_sigma_x);

Type sigma_h = exp(log_sigma_h);

ADREPORT (sigma);

ADREPORT (sigma_x);

ADREPORT (sigma_h);

Type nll = 0;

vector <Type > x_vec (2*n);

/*

* We need to vectorize x such that we can get the gradient and Hessian

*/

x_vec . setZero ();

jnll_t <Type > neg_log (y,h,sigma_x ,sigma ,phi_x ,phi_h , sigma_h);

nll = laplace (neg_log ,x_vec , niter);

126 Code Snippets

ADREPORT (x_vec);

return nll;

}

The code for the factor model is similar and there omitted.

B.3 TMB code for Laplace approximation in non-

optimum

template < class Type , class Functor >

Type laplace (Functor f, vector <Type > x){

matrix <Type > H = autodiff :: hessian (f,x);

vector <Type > g = autodiff :: gradient (f,x);

matrix <Type > g_mat = g. matrix ();

matrix <Type > tmp = g_mat . transpose ()* atomic :: matinv (H);

matrix <Type > tmp2 = tmp*g;

Type res = Type (0.5) * atomic :: logdet (H) + f(x) - Type (0.5) *(tmp2)(0);

res -= .5 * Type(x.size ()) * log (2.0 * M_PI);

return res;

}

B.4 Stan code for MVFS model

//2 dim factor model

data {

int < lower =0> n; // Sample size

matrix [2,n] y; // data

vector < lower = 0 >[6] prior_param ; // Prior parameters

}

transformed data {

real B_beta = prior_param [1];

real b_mu = prior_param [2];

real B_mu = prior_param [3];

real a0 = prior_param [4];

real b0 = prior_param [5];

real B_sigma = prior_param [6];

B.4 Stan code for MVFS model 127

}

parameters {

vector [n] h_std ; // standardized AR (1) for factor

matrix [2,n] x_std ; // standardized AR (1) idiosyncratic process

vector [2] beta; // loading matrix (vector in this case)

real < lower =0, upper =1> phi_h_std ;

real < lower =0> sigma_h_std ;

vector < lower =0, upper =1 >[2] phi_x_std ;

vector [2] mu_x;

vector < lower = 0 >[2] sigma_x_std ;

}

transformed parameters {

matrix [2,n] x; // indiosyncratic processes

vector [n] h; // factor volatility

real < lower = -1, upper =1> phi_h ;

real < lower =0> sigma_h ;

vector < lower = -1, upper =1 >[2] phi_x ;

vector < lower =0 >[2] sigma_x ;

phi_h = 2* phi_h_std - 1;

sigma_h = sqrt(sigma_h_std);

phi_x = 2* phi_x_std - 1;

sigma_x = sqrt(sigma_x_std);

// Scale with standard deviation

h = h_std * sigma_h ;

h[1] = h[1]/ sqrt (1 - square (phi_h));

// Scale with standard deviation

// Stationary assumption on x

for(t in 1:2){

x[t ,] = x_std [t ,]* sigma_x [t];

x[t ,] = x[t ,] + mu_x[t];

x[t ,1] = x[t ,1]/ sqrt (1 - square (phi_x [t]));

}

for(t in 2:n){

h[t] = h[t] + phi_h *h[t -1];

for(i in 1:2){

x[i,t] = x[i,t] + phi_x [i]*(x[i,t -1] - mu_x[i]);

}

}

}

128 Code Snippets

model {

vector [2] null = rep_vector (0 ,2);

matrix [2 ,2] Sigma ; // Covariance matrix for observations as function of parameters

matrix [2 ,2] Sigma_chol ;

// Priors

beta ~ normal (null , B_beta);

mu_x ~ normal (b_mu ,B_mu);

sigma_h_std ~ gamma (0.5 ,1/(2* B_sigma));

sigma_x_std ~ gamma (0.5 ,1/(2* B_sigma));

phi_h_std ~ beta(a0 ,b0);

phi_x_std ~ beta(a0 ,b0);

h_std ~ normal (0 ,1);

x_std [1 ,] ~ normal (0 ,1);

x_std [2 ,] ~ normal (0 ,1);

// Constribution from observations

for(i in 1:n){

Sigma [1 ,1] = square (beta [1])*exp(h[i]) + exp(x[1,i]);

Sigma [1 ,2] = beta [1]* beta [2]* exp(h[i]);

Sigma [2 ,2] = square (beta [2])*exp(h[i]) + exp(x[2,i]);

Sigma [2 ,1] = Sigma [1 ,2];

Sigma_chol = cholesky_decompose (Sigma);

y[,i] ~ multi_normal_cholesky (null , Sigma_chol);

}

}

generated quantities {

matrix [2,n] y_new ;

matrix [2 ,2] Sigma ; // Covariance matrix for observations as function of parameters

vector [2] null;

null [1] = 0;

null [2] = 0;

for(i in 1:n){

Sigma [1 ,1] = square (beta [1])*exp(h[i]) + exp(x[1,i]);

Sigma [1 ,2] = beta [1]* beta [2]* exp(h[i]);

Sigma [2 ,2] = square (beta [2])*exp(h[i]) + exp(x[2,i]);

Sigma [2 ,1] = Sigma [1 ,2];

y_new [,i] = multi_normal_rng (null , Sigma);

}

}

	Table of contents
	1 Introduction
	2 Factor Analysis and Stochastic Volatility
	2.1 Factor Analysis
	2.2 Volatility Models
	2.2.1 ARCH/GARCH Models
	2.2.2 The Basic Stochastic Volatility Model

	3 Likelihood and Marginal Likelihood
	3.1 Properties of MLE
	3.1.1 Consistency
	3.1.2 Asymptotic normality

	3.2 Likelihood estimation of models with latent variables

	4 A short introduction to MCMC
	4.1 Why MCMC?
	4.2 The Metropolis-Hastings algorithm
	4.3 The Gibbs sampler

	5 Hamiltonian Monte Carlo
	5.1 Hamilton's equations
	5.2 Properties of Hamiltonian dynamics
	5.2.1 Reversibility
	5.2.2 Conservation of the Hamiltonian
	5.2.3 Volume preservation

	5.3 The leapfrog method
	5.4 The No-U-Turn sampler
	5.5 Connecting Hamiltonian dynamics to MCMC
	5.6 A one-dimensional example

	6 Automatic Differentiation, TMB and Stan
	6.1 Automatic Differentiation
	6.1.1 Dual numbers, Reverse/Forward AD mode

	6.2 TMB
	6.3 Stan - A probabilistic programming language

	7 The Multivariate Factor Stochastic Volatility Model and DIMCMC
	7.1 The Multivariate Stochastic Volatility Model
	7.2 Identification issues
	7.3 Bayesian Inference by Deep Interweaving MCMC
	7.3.1 Prior distributions
	7.3.2 Sampling the univariate SV model
	7.3.3 Sampling the MFSV model
	7.3.4 Performing Deep Interweaving

	8 Simulation Study
	8.1 Analysis of two dimensions with one factor
	8.1.1 An example using MLE
	8.1.2 Simulation study

	8.2 Restrictions found through the CGF
	8.3 Simulation with restrictions

	9 The Nested Laplace Approximation
	9.1 Motivation
	9.2 Nested Laplace approximation
	9.3 When doesn't maximize g.
	9.4 Implementation

	10 Empirical Analysis
	10.1 Likelihood converge
	10.2 Likelihood does not converge
	10.3 Summary

	11 Other Methods Investigated
	11.1 Penalized Maximum Likelihood
	11.2 Hybrid of MLE and Moment estimators
	11.3 Combining the Laplace Approximation with HMC

	12 Conclusion and future work
	References
	Appendix A Transformation of priors
	A.1 Transformation of
	A.2 Transformation of

	Appendix B Code Snippets
	B.1 TMB code for the Multivariate Factor Stochastic Volatility Model
	B.2 TMB code for Nested Laplace of linear state space model
	B.3 TMB code for Laplace approximation in non-optimum
	B.4 Stan code for MVFS model

