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Abstract 

 

Few studies provide information about recreational fishing in Norway. As recreational 

fishing often occurs in areas close to high-density surroundings, possibly affected by 

environmental pollutants, it is important to ensure the food safety of recreationally captured 

species. Recreational fishing for Nephrops has increased in popularity in recent years. 

However, limited information is available on the fishery in Hordaland, Norway. Standing 

gears were mapped in several fjords in Hordaland, and 2-25 buoys where confirmed to be 

from recreational Nephrops fishing in each of the surveyed fjords, which confirmed that 

recreational fishing for Nephrops is popular and widespread. The recreational fishers reported 

an average catch of 2.5 Nephrops per pot and haul, and 15 fishers reported eating Nephrops 

twice a month or more. The respondents also reported frequent consumption of fish, where 25 

of 33 recreational fishers ate fish 2-3 times a week or more. Mercury (Hg) concentrations 

were also analyzed in tail muscle samples of Nephrops (N=235) using DMA-80. None of the 

measured Nephrops exceeded the maximum legal limit for commercially sold seafood (0.5 

mg/kg wet weight) at any location. Twenty-three of 235 Nephrops exceeded 0.2 mg/kg wet 

weight, which is above the limit set for pregnant and lactating women. The study revealed 

significantly higher Hg concentrations in female Nephrops than in male Nephrops at the same 

size, and a difference in Hg concentration between the locations. The lowest Hg 

concentrations for both sexes were measured in Radfjorden, and the highest in Fanafjorden 

(outer station). The results of the consumption data and the measured Hg concentrations 

indicate no need for dietary guidelines for the consumers of recreationally captured Nephrops.  

However, the risk assessment revealed that some consumers might exceed TWI for MeHg 

with their total intake of seafood. Moreover, the consumers of recreationally captured 

Nephrops should be aware of the difference in Hg concentration between the sexes. As a 

precautionary approach, pregnant and lactating women should not consume female Nephrops 

above 50 mm carapace length as they may exceed 0.2 mg/kg (ww). 
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Summary in Norwegian 

 

Få studier har fokusert på fritidsfiske i Norge. Ettersom fritidsfiske ofte foregår i 

områder påvirket av menneskelig aktivitet og dermed mulig forurensning, er det svært viktig å 

sørge for mattrygghet rundt populære fritidsfiskearter. Fritidsfiske på sjøkreps har økt i 

popularitet de siste årene, men lite informasjon er tilgjengelig om sjøkrepsfisket i Hordaland. 

Faststående redskap ble kartlagt i flere fjorder i Hordaland, og 2-25 blåser ble bekreftet å 

tilhøre fritidsfisket på sjøkreps i hver fjord, noe som bekreftet at fritidsfiske på sjøkreps er 

både populært og utbredt. Fritidsfiskerne på sjøkreps rapporterte gjennomsnittlig fangst på 2.5 

sjøkreps per teine, og 15 fiskere rapporterte at de spiste sjøkreps to ganger i måneden eller 

oftere. Sjøkrepsfiskerne rapporterte også at de spiste fisk til middag ofte, der 25 av 33 

rapporterte at de spiste fisk til middag 2-3 ganger i uken eller mer. Konsentrasjon av 

Kvikksølv (Hg) i prøver av halemuskel ble analysert ved hjelp av DMA-80 (N=235). Ingen av 

sjøkrepsene oversteg EUs grenseverdi for kvikksølv satt for kommersielt salg av sjømat (0.5 

mg/kg våtvekt) uansett lokasjon. Tjuetre av 235 sjøkreps oversteg derimot grenseverdien satt 

for gravide og ammende (0.2 mg/kg våtvekt). Analysene avslørte signifikant høyere 

kvikksølvkonsentrasjon i hunnkreps enn hannkreps på samme størrelse, i tillegg til forskjeller 

mellom lokasjonene. De laveste kvikksølvkonsentrasjonene ble målt i kreps fra Radfjorden og 

de høyeste fra Fanafjorden (ytre stasjon). De målte kvikksølvkonsentrasjonene og de 

rapporterte spisevanene tilsier at ingen umiddelbar oppdatering av kostholdsrådene er 

nødvendig for å beskytte fritidsfiskerne på sjøkreps, men risikovurderingen avslørte at noen 

av fritidsfiskerne i studien kan overskride tolerabelt ukentlig inntak for metylkvikksølv 

(MeHg) på grunn av høyt totalinntak av sjømat. Alle som spiser sjøkreps bør være klar over 

forskjellen i kvikksølvkonsentrasjon mellom kjønnene, og for å være på den sikre siden bør 

ikke gravide og ammende spise hunnkreps over 50 mm ryggskjoldlengde, ettersom de kan 

overskride grensen satt for spesielle grupper.    
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1. Introduction  

1.1 Marine recreational fishing in Norway 

Marine recreational fishing is a popular activity worldwide, however, few studies 

provide harvest estimates from the marine recreational fishing sector. Several studies have 

reached the conclusion that marine recreational fishing can significantly impact fish stocks 

(Cooke & Cowx, 2004; Hyder et al., 2018; Ihde et al., 2011; Schroeder & Love, 2002). Hyder 

et al. (2018) estimated that 8.7 million Europeans participate in marine recreational fishing. 

Schroeder & Love. (2002) compared landings between commercial and recreational fishing 

on 17 nearshore species outside California and revealed that recreational fishing was the main 

source of fishing mortality in 16 of 17 species. The popularity and potential impacts of 

recreational fishing highlight the importance of more studies to get more accurate estimates. 

Marine recreational fishing is also a popular activity in Norway, with one-third of the 

population fishing in the sea at least once a year (Vaage, 2015). Despite the popularity, there 

is no statistically accurate national estimate of total harvest by the whole marine recreational 

fishing sector. Only a few local studies on selected species have estimated recreational fishing 

effort relative to the commercial fishing effort (e.g., recreational lobster (Homarus gammarus) 

and Atlantic cod (Gadus morhua) fishing in the Skagerrak (Kleiven et al., 2016; Kleiven et 

al., 2012).  

Recreational fishing is defined as "the capture or attempted capture of living aquatic 

resources mainly for leisure and/or personal consumption. This covers active fishing methods 

including line, spear, and hand–gathering and passive fishing methods including nets, traps, 

pots, and set–lines" (ICES, 2013). Although fishing motivations differ between recreational 

fishers, it can be expected that many recreational fishers consume their catches (Cooke & 

Cowx, 2004; Cooke et al., 2017). Fishing for personal consumption has been a tradition in 

Norway for centuries. In contrast to commercially sold fish or shellfish, self-caught seafood is 

often captured in local areas close to high-density surroundings (Aas, 2010), which can lead 

to increased intake of pollutants and toxic substances if the area is polluted (Cooke et al., 

2017; VKM, 2006).  

Even though there are many nutritional benefits with consumption of fish, 

contamination in fish is also a well-known issue both in Norway and worldwide. Seafood can 

be contaminated with different chemical compounds that can lead to health risks related to the 

consumption of recreationally caught fish (Cooke et al., 2017). The compounds can enter 
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aquatic food webs naturally or through anthropogenic activities. Despite health advisories 

existing in many areas to protect consumers, they might be ignored as they may limit angling 

opportunities, or the risk associated with fish consumption is underrated (Cooke et al., 2017; 

Dawson et al., 2008; Pflugh et al., 1999). Given that recreational fishing is highly popular 

along the coastline of Norway, and fishing for personal consumption is common, more 

attention should be directed towards gaining knowledge about intake of contaminants through 

self-caught fish in Norway. 

 

1.2 Environmental contaminants in Norway 

Environmental pollutants are chemicals that can adversely affect living organisms. In 

terms of food safety, pollutants that bioaccumulate are of particular concern, as this can lead 

to high concentrations in food items. Pollutants can also be acutely toxic in high doses, 

however, regarding environmental toxicology, long-term exposure at relatively low individual 

doses (through food, air, water) is of more concern as they may accumulate in the body of 

humans (Baird & Cann, 2012). Bioaccumulation happens when the rate of absorption of a 

chemical substance is higher than the rate of catabolism or excretion (Baird & Cann, 2012). 

Intake of polluted food items can lead to toxic effects in humans. The characteristics of 

pollutants which tend to bioaccumulate are that they are persistent, mobile, often soluble in 

fats and biologically active (Baird & Cann, 2012). However, some contaminants, like 

methylmercury, are not lipophilic and will therefore distribute evenly throughout the body of 

the higher organisms like fish (Mieiro et al., 2009). 

Norwegian authorities have a goal of reducing the release of contaminants and 

emissions into the environment towards the lowest possible level by 2020 (Klima- og 

miljødepartementet, 2015). However, preexisting pollution in sediments is a well-known 

problem in fjords in Norway, because of local pollution from industry and ports that 

traditionally have been located deep into the fjord (Miljødirektoratet, 2017a). Water exchange 

differs between Norwegian fjords. In some fjords, water exchange is limited close to the 

sediment, because of a threshold limiting the horizontal water connection with the open-ocean 

(Kaartvedt & Svendsen, 1995). The type of pollution mostly depends on the previous or 

present industry in the respective area. Some of the most common pollutants are persistent 

organic pollutants (POPs) such as PCBs and dioxins, and heavy metals like lead (Pb), 

mercury (Hg) and cadmium (Cd) (Miljødirektoratet, 2016).  
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1.3 Mercury (Hg) as a problematic environmental pollutant 

Hg in nature comes from both anthropogenic and natural sources, which are roughly 

equal in magnitude globally (Fitzgerald & Clarkson, 1991). Hg is one of the pollutants 

mentioned on the Norwegian authority’s priority list, and the total yearly pollution to air, 

water, and soil has successfully been reduced with an order of magnitude over the past 30 

years, from 6 tons in 1985 to 0.63 tons in 2015 (Miljødirektoratet, 2017b). However, Hg can 

also be transported over long distances, as it can circulate in the atmosphere for up to a year 

(Berg et al., 2003). In 2012, it was estimated that 0.2 tons of Hg were deposited in Norway 

through atmospheric transportation from abroad (Klima- og miljødepartementet, 2015). In 

2013, close to 140 countries signed the Minamata Convention on Hg; a global plan to reduce 

use and emissions of Hg to mitigate its effect on the environment (Kessler, 2013). In addition 

to the reduction of emissions, approximately 2615 kilos of Hg have been covered under clean 

sediments and shielded through remediation measures in Norwegian fjords between 2002-

2017 (The Norwegian Environment Agency, 2017). 

All types of Hg in the environment can be transformed into organic Hg by methylation 

performed by microorganisms, and Hg is then retained in these organisms and passed on to 

their predators (Morel et al., 1998). Organic Hg is mainly present as MeHg, which is easily 

taken up by microorganisms and zooplankton. This is how Hg first enters the food chain and 

bioaccumulates in organisms (Clarkson, 2002). Fish can also absorb MeHg directly from the 

seawater, but the accumulation of MeHg in higher trophic levels is mainly from food intake 

(Morel et al., 1998). Many trace metals bioaccumulate efficiently at microbial levels, but do 

not increase in concentration higher up in the food chain (biomagnification) like for example 

MeHg. Moreover, the biomagnification of MeHg explains why the highest concentrations of 

MeHg are usually found in longer living predatory fish or marine mammals (Clarkson, 2002). 

As humans are at the top of the food chain, people with frequent consumption of seafood may 

be at risk for elevated exposure to MeHg. High concentrations of MeHg in fish can also be 

produced by local pollution (Clarkson & Magos, 2006), so a possible increased risk can 

therefore not be dismissed for consumers of locally caught seafood in specific areas. 

After ingestion, approximately 95% of MeHg in food is absorbed in the 

gastrointestinal tract in humans (Clarkson, 2002). Between 1-10% is distributed to the blood 

where roughly 90% bind to red blood cells. The majority of MeHg (>90%) is evenly 

distributed throughout the body since MeHg is water soluble mainly in complexes attached to 

the sulfur atom of thiol ligands, and because MeHg-Cysteine complexes can transport MeHg 
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into the cells (Clarkson, 2002). MeHg in the body is slowly demethylated to mercuric Hg 

(Hg2+). However, the mechanism of the demethylation process in humans is unknown 

(National Research Council, 2000). The daily excretion is about 1% of the body 

concentration, mainly through the bile and feces as MeHg and mercuric Hg. Breast milk is 

also considered a route of excretion, as lactation increases the clearance from blood 

(Grandjean et al., 1994). The half-life of MeHg is approximately 50 days in the blood, and 70-

80 days in the body (National Research Council, 2000). However, the rate can vary 

substantially between individuals, which means that some individuals might have a higher 

risk from the same exposure (Tollefson & Cordle, 1986). MeHg rapidly crosses blood-brain 

and placental barriers. The brain, including the central nervous system, is the critical target 

organ, but MeHg can also cause damage in kidneys, liver and reproductive organs. Evidence 

from studies on rats suggests that the rapid transport into the brain is a consequence of the 

formation of the mentioned MeHg-cysteine complexes (Kerper et al., 1992), where it then 

accumulates and is slowly converted to inorganic Hg. It is still debated whether central 

nervous system damage is due to the toxicity of MeHg or its biotransformation to inorganic 

Hg (National Research Council, 2000). A Finnish study linked dietary Hg intake in fish with 

an increased risk of cardiovascular disease (Salonen et al., 1995), and animal studies have 

also revealed negative effects of MeHg on the immune system (Ilbäck et al., 1996). Although 

the impact of MeHg on the human immune system has not been studied. Humans exposed to 

MeHg poisoning show symptoms such as numbness, lack of coordination and loss of vision, 

speech, and hearing. However, there might be an extended latency period (weeks-months) 

from ingestion before any symptoms appear (Clarkson, 2002). The toxicology of Hg remains 

complex due to the biotransformation of MeHg and elemental Hg (Hg(0)) to inorganic Hg in 

the brain (National Research Council, 2000).  

 

1.4 Potential exposure of recreational fishers to mercury 

In Norway, all marine recreational fishers (Norwegian citizens and legal residents) can 

use several fishing gears, such as hand-held tackle, pots, gillnets, and long-lines 

(FISKERIDIREKTORATET, 2017a). According to regulations, one fisher or boat can use a 

maximum of 20 pots to catch Nephrops. When fishing, it is impossible for the fisher to know 

the contamination levels of the seafood they catch, as these levels are not readily visible. High 

concentrations of Hg in fish captured in areas with industrial pollution have been reported in 
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several studies, for example on demersal fish species in Sørfjorden (Ruus et al., 2010) or 

outside Bergen (Måge & Frantzen, 2008). For humans, the primary source of Hg is 

consumption of fish, marine mammals and crustaceans (Clarkson & Magos, 2006; National 

Research Council, 2000). Furthermore, Hg contamination is the primary factor in 

recommendations against eating fish (Bank et al., 2007; Ruus et al., 2005).  

Hg in seafood is predominantly present in the organic form methylmercury (MeHg), 

which is the most toxic form for humans (Baird & Cann, 2012; Hammerschmidt & Fitzgerald, 

2006). More than 90% of total Hg in fish muscle was estimated to be MeHg (Bloom, 1992; 

Davidson et al., 1998; Grieb et al., 1990; Lockhart et al., 1972). In contrast to many organic 

environmental pollutants, which are predominantly found in the fatty tissues of fish, MeHg 

binds to proteins in muscle tissue and is evenly distributed throughout the fish filet (EU, 2006; 

Harris et al., 2003).  

Several studies have examined fish contamination and assessed the implications for 

human health ((Boischio & Henshel, 1995; Lincoln et al., 2011; Mieiro et al., 2009; Olmedo 

et al., 2013). Boischio et al. (1995) indicated that young children in a riverside population in 

the Amazon basin might be ingesting Hg from fish in doses that have been correlated with 

neurological damage. Both Mieiro et al. (2009) and Olmedo et al. (2013) concluded that a 

potential risk associated with Hg intake from ingestion of fish could not be dismissed, as it 

depends on individual consumption rates and type of fish species consumed.  

In the last few years, several research projects have focused on environmental 

pollutants in seafood in Norway as well (Måge & Frantzen, 2008; Måge & Frantzen, 2009, 

2016). Most of the commercially important wild-caught seafood is well monitored for the 

most common contaminants in Norway, and a database of contaminants in seafood is 

available online [sjomatdata.no]. The maximum legal limits of contamination in commercially 

sold fish and seafood used in Norway have been set by the European Commission. The 

maximum legal limit for Hg is set at 0.5 mg/kg wet weight1 (EU, 2006). The maximum legal 

limits are implemented to protect consumers from heavy exposure when consuming 

commercially caught fish. It is illegal to sell fish that exceeds these limits (EU, 2006). 

In the context of recreational fishing, the concept of Tolerable Weekly Intake (TWI) is 

more relevant (VKM, 2006). TWI is defined as "an estimate of the average quantity of a 

                                                           
1 Except for several longer living species with a limit of 1.0 mg/kg wet weight. Muscle meat of the following fish has an upper limit of 1.0 

mg/kg wet weight: anglerfish (Lophius species), eel (Anguilla species), grenadier (Coryphaenoides rupestris), halibut (Hippoglossus 

hippoglossus), marlin (Makaira species), pike (Esox lucius), shark (all species), sturgeon (Acipenser species), swordfish (Xiphias gladius), 

tuna (Thunnus species, Euthynnus species, Katsuwonus pelamis) and several others (EU, 2006). 
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chemical contaminant that can be ingested weekly over a lifetime without posing a significant 

risk to health” (EFSA, 2012). This means that it is possible to evaluate individual risk if 

consumption data and measurements of the respective pollutant are present. TWI values are 

set by the European Food Safety Authority (EFSA) to protect the most vulnerable groups of 

the population, such as women of reproductive age, and children. The TWI for inorganic Hg 

is 4 µg/kg body weight per week, while the TWI for MeHg is set to 1.3 µg/kg body weight 

per week (EFSA, 2012). As MeHg represents over 90% of the Hg in seafood (EU, 2006; 

Grieb et al., 1990), the TWI for MeHg is particularly important. A review by EFSA (2012) 

concluded that the average consumer in Europe (within country and across all age groups) is 

unlikely to exceed the TWI for MeHg, even though amount and type of fish consumed varied 

by country. However, consumers with frequent fish consumption (P95) were close to or 

exceeded the TWI for MeHg across all age groups (EFSA Panel on Contaminants in the Food 

Chain (CONTAM), 2012). The same conclusion was also reached in a risk assessment from 

Spain (Olmedo et al., 2013), which indicated that fish and shellfish was safe for the average 

consumer, however, a potential risk could not be dismissed for regular consumers of some 

fish species. 

Hg concentrations in humans are mostly determined using hair or blood, or both in 

combination (Agusa et al., 2005; Airey, 1983; Renzoni et al., 1998). However, scalp hair is 

considered the best indicator of human exposure to MeHg (Malm et al., 1995). Moreover, the 

Hg concentration in hair is 300 times higher than blood which makes analysis easier to 

conduct (Phelps et al., 1980). Several studies have determined Hg concentrations especially in 

fishers (Al-Majed & Preston, 2000; Cheng et al., 2009; Gaggi et al., 1996; Kosatsky et al., 

1999; Lebel et al., 1998; Lincoln et al., 2011). Gaggi et al. (1996) investigated total Hg in 

scalp hair from fishers and their families in Portugal. The study concluded that the fishermen 

and their families on average had higher total Hg concentrations compared to other 

populations also consuming high amounts of seafood (Gaggi et al., 1996). Kosatsky et al. 

(1999) investigated intake of several contaminants through fish consumption among sports 

fishers in Canada. The study revealed that frequent consumption of fish was correlated with 

significantly higher tissue contamination levels (Kosatsky et al., 1999). Lebel et al. (1998) 

also concluded that fishers had significantly higher hair Hg concentrations than non-

fishermen in a study from the Amazonian basin.  

Lincoln et al., (2011) surveyed and collected hair samples from recreational anglers in 

Louisiana, USA, and questioned species-specific consumption rates three months prior. The 

study revealed elevated hair Hg concentrations for the recreational fishers, and that 
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approximately 74% of the estimated Hg intake came from recreationally caught fish. 

Consequently, there is a general need for more regional studies, to evaluate if newer and more 

regionally specific health advisories should be established. Recreational fishers in Norway 

may also represent a highly exposed subgroup, with consumption of locally caught seafood. 

Fishing at polluted localities, possibly in combination with more frequent fish intake, might 

lead to an increased risk for recreational fishers. 

 

1.5 Contaminants and recreational fishing around Bergen  

Bergen, located on the west coast, is the second 

largest city in Norway (Thune & Thorsnæs, 

2014). The marine recreational fishing effort is 

presumably high, as Bergen is a coastal city, 

and its surroundings offer numerous shore-

based, near-shore and offshore fishing spots, 

including many fjords suitable for standing 

gears. However, the extent of marine 

recreational fishing (catch and effort) in and 

around Bergen is largely unknown. The 

Norwegian food safety authority established 

dietary advice for the coastal areas around 

Bergen (Frantzen & Måge, 2011; Måge & 

Frantzen, 2008). This advice was based on 

measurements of different contaminants in 

important seafood species by NIFES in 2007-

2008. Hg concentrations above 0.2 mg/kg were 

measured in cod, and Hg concentrations 

exceeded the maximum legal limits (0.5 mg/kg) in both, tusk (Brosme brosme) and ling 

(Molva molva) (Måge & Frantzen, 2008). According to the advice, people should not 

consume bottom feeding fish due to heavy metals, or brown meat of brown crab (Cancer 

pagurus) due to POPs, captured in certain areas around Bergen (Mattilsynet, 2017). The 

geographical areas were determined by the Norwegian Food Safety Authority and extend 

from the Askøy bridge in the south, and the line between Bakarvågneses (Askøy) and 

Figure 1.1 Areas with dietary advice for all 

consumers are represented by the dashed lines on 

the map in Byfjorden and outside Håkonsvern. In 

Byfjorden should consumers avoid eating bottom-

feeding fish such as tusk and ling, or brown meat of 
crab. Outside Håkonsvern should no seafood be 

consumed. The red area represents where pregnant 

and lactating women in addition to other advice, 

should avoid consumption of cod. Retrieved from: 

http://www.miljostatus.no/bergen 
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Helleneset in the north, and additionally includes the area around Håkonsvern (areas colored 

red/black in Figure 1.1) Pregnant and lactating women are also discouraged from eating cod 

from an extended area (red colored area in Figure 1.1) due to results from a follow-up study in 

2011 (Frantzen & Måge, 2011). In 2008-2009, another study was conducted addressing 

specifically the food safety of recreationally fished species around Bergen (Måge & Frantzen, 

2009). The study analyzed PCB levels in fish liver, and Hg content in fish filet from several 

species assumed to be landed when fishing recreationally from the shore in Bergen. It was 

concluded that it was not necessary to extend the local advice for cod filet to other fish 

species. However, the advice against consuming fish liver was extended to all gadoid fish 

species. In 2009, NIFES re-examined the factual basis for the dietary advice from 2008 by 

measuring pollutants in fish liver and eel, to evaluate if the advised geographical area in the 

port of Bergen should be extended (Frantzen & Måge, 2011). While the advised area for 

pregnant and lactating women was slightly enlarged, the boundaries for the dietary advice 

regarding fish liver was kept, as it was not possible to conclude on other specific geographical 

boundaries. More data is necessary to conclude on the geographic area included in the dietary 

advice, especially since there are multiple known sources of contamination around Bergen 

and no continuous decrease in contaminants with distance from the city center (Frantzen & 

Måge, 2011; Måge & Frantzen, 2008). In 2011, a national advisory against the consumption 

of fish liver emerged (any species self-caught in the archipelago in Norway) due to high 

levels of dioxins and PCB, except cod (Gadus morhua) caught in the open ocean, outside the 

archipelago (Mattilsynet, 2011). All dietary advice regarding the port of Bergen is available to 

the public online [http://www.miljostatus.no/Bergen]. 

The sediments around Bergen are known to be contaminated from ships and industry 

(Kringstad, 2015). For example, the sediments in Puddefjorden inside the city, contain 

approximately 940 kg Hg, 64 000 kg lead and 30 kg PCB (Kvisvik, 2015). Sediment 

concealment started in 2017 to reduce the bioavailability. Another example of Hg pollution in 

Hordaland is outside the island of Fedje, which is the location of a submarine wreck from the 

second world war containing up to 65 tons of metallic Hg. The area has been closely 

monitored by analyzing Hg concentrations in fish and seafood every year since 2004 (Sylvia 

Frantzen, 2018; Uriansrud et al., 2005). According to the Coastal administration, the Hg 

concentrations in fish and brown crab around the wreck are low, possibly due to little organic 

material in the sediment, and consequently, low rates of methylation (Kystverket, 2015). In 

2015, The Norwegian Food Safety Authority’s previous warning against eating seafood from 

this area was lifted (Miljødirektoratet, 2017b). Based on the known contamination around 
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Bergen and considering that some species have been proven to contain environmental toxins 

above maximum legal limits (Måge & Frantzen, 2009, 2016), more studies are needed to 

ensure the food safety of several recreationally fished species.  

 

1.6 Nephrops around Bergen, delicious or dangerous? 

Nephrops is a popular seafood in Norway, with a commercial catch of 195 tons and a 

total value of 23 million NOK along the coast of Norway in 2015 (Bakketeig et al., 2017). In 

general, few studies provide information about contaminants in Nephrops in Hordaland and 

fjords in Norway. Lately, recreational fishing for Nephrops seems to have increased in 

popularity in Norway (Bakketeig et al., 2017). Nephrops are sedentary species and may 

therefore be targeted efficiently by fishers (Johnson et al., 2013). The popularity has been 

suggested to result from the lack of restrictions in this type of fishery, compared to the strict 

regulations in the European lobster fishery, and as a consequence of the declining catch rates 

in the recreational European lobster fishery (Bakketeig et al., 2015). The restrictions include a 

maximum number of pots (20 pots per boat or fisher) and a minimum landing size of 13 

centimeters total length (Fiskeridirektoratet, 2017b). 

In 2013-2014, data was collected on recreational Nephrops fishing in Skagerrak 

through interviews and catch diaries (Kleiven et al., 2015). Sixty percent of fishers (n=131) 

believed that there had been an increase in recreational Nephrops fishing within the last five 

years. Forty percent of the respondents also believed that their catch rates had been reduced in 

the previous five years.  

Nephrops are benthic predators and scavengers that live in burrows in the sediment 

found between 20-800 meters depth (Bakketeig et al., 2017). They are highly light sensitive, 

and are thus night-active in shallow waters, and active by day in deep waters (Arechiga & 

Atkinson, 1975). Sediments can absorb metals and organic pollutants efficiently, and the 

concentration in sediments can therefore be several orders of magnitude higher than the 

surrounding seawater (Hart, 1982). As Nephrops are sediment-burrowing animals, they might 

be susceptible to exposure to pollutants from the sediment when burrowing, in addition to 

exposure from food and sediment intake (Eriksson et al., 2013). This may cause concern for 

food safety, as pollutants bioaccumulate in the body of Nephrops (Katoh et al., 2013). 

Several factors may affect Hg concentrations in Nephrops. There is usually a 

correlation between size and Hg concentrations in marine species (Burger et al., 2007; Storelli 
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et al., 2007). Size is usually used as a surrogate for age in crustaceans, where larger 

individuals have been exposed longer and therefore have bioaccumulated higher Hg 

concentrations over time (Elahi et al., 2012). However, size and location do not always 

explain Hg concentrations. Elahi et al. (2012) reported that variation in Hg could be explained 

by several individual variations, in both size, age, and sex, including feeding habits. Barrento 

et al. (2009) studied the accumulation of metals in brown crab and reported higher Hg 

concentrations in females than males. A study on size-related Hg increase in several edible 

marine species in the Tyrrhenian sea reported a sharper increase of Hg for female Nephrops 

beyond three centimeters compared to males (Barghigiani et al., 2000). Other studies have 

found similar sex-related differences which have been explained by differences in growth rate 

between the sexes (Baldi, 1984; Canli & Furness, 1993; Minganti et al., 1990). The females’ 

growth rate decreases after sexual maturity, and differences in Hg concentration between the 

sexes of similar size can therefore be explained by a difference in age. The difference in 

growth rate also affects the sex proportion in the different length classes, where females are 

most abundant at smaller sizes, compared to a higher proportion of males in the larger length 

classes (Bell et al., 2006; de Figueiredo & Thomas, 1967). 

A recent study on Hg in crustacean species from the Italian fishery revealed Hg 

concentrations exceeding the maximum legal limit (0.5 mg/kg ww) in 10% of Nephrops in the 

Tyrrhenian sea, and all individuals captured in the Adriatic Sea (Di Lena et al., 2018). Di 

Lena et al. (2018) reported that the habitat of the species might influence the high Hg 

concentrations, as the upper layer of deep water sediments also is the site of Hg methylation. 

Twenty-three percent of Nephrops measured in the Northwestern Mediterranean slope also 

exceeded the maximum legal limit (Cresson et al., 2014). As contaminants bioaccumulate in 

crustaceans as well as other marine organisms, it is essential to ensure that Nephrops captured 

recreationally for consumption in Norway do not contain contaminants above the limits 

considered safe regarding human health. The previously mentioned contamination in 

sediments outside Bergen and studies on Hg contamination in the species (Cresson et al., 

2014; Di Lena et al., 2018) justifies further research. 

Food safety risk assessments are conducted to assess whether the exposure to 

environmental pollutants in food presents any health risk for the consumers. Consumption 

data is combined with measured concentrations of pollutant in the food items. According to 

the National Service Center for Environmental Publications (NSCEP) in the US, the objective 

of a risk assessment is “to estimate the probability of adverse health effects from exposure to 

a toxic agent” (Pastorok, 1987). The hazard around Hg in general has been widely known for 



14 
 

decades, especially since the large-scale poisoning accidents in Minamata in the 1950s and 

Iraq in the early 1970s (Kojadinovic et al., 2006). MeHg is, as mentioned, even more toxic 

and represents most of all Hg in seafood (Llull et al., 2017). A study in Norway assessed total 

dietary Hg intake in selected Norwegian municipalities (Mangerud, 2005). Additionally, 

several studies have assessed the risk of MeHg exposure associated with seafood intake 

(Carrington & Bolger, 2002; Grandjean et al., 2003; Llull et al., 2017; Spada et al., 2012; 

Steuerwald et al., 2000; Ström et al., 2011). Grandjean et al. (2003) and Steuerwald et al. 

(2000) both assessed the exposure to MeHg and associated risks for children related to 

maternal seafood intake. Spada et al. (2012), measured MeHg in marine organisms in Italy, 

and evaluated the risk associated with consumption. A risk assessment on the population of 

the Balearic Islands revealed that both adults and children exceeded TWI for MeHg (Llull et 

al., 2017). Ström et al. (2011) conducted a risk assessment for MeHg on women in 

childbearing age in Sweden. In contrast, Carrington & Bolger (2002) conducted an exposure 

assessment for MeHg from seafood for the entire U.S population, including two 

subpopulations, one with children 2-5 years old and one of women in reproductive age. 

NIFES has conducted analyses on a few recreationally fished species in Hordaland, among 

these, 20 Nephrops captured in Hardangerfjorden (Måge et al., 2012). The study revealed Hg 

concentrations exceeding the maximum legal limit for commercially sold seafood (0.5 mg/kg 

ww) in several individuals. However, a risk evaluation combining analyses on contaminants 

with catch from recreational fishing and consumption by recreational fishers has not been 

done in Norway. 

 

1.7 Objectives of this thesis 

This master thesis combines catch data of Nephrops in Hordaland with eating habits 

from recreational fishers and Hg concentrations of recreationally caught Nephrops to evaluate 

the risk for recreational fishers in Hordaland, Norway. The study had four primary objectives;  

1)    Verify the popularity of recreational Nephrops fishing and map the activity and catches 

in some selected areas in Hordaland. 

2)    Analyze Hg concentrations in recreationally captured Nephrops. 

3)    Identify factors influencing Hg concentrations in Nephrops caught in Hordaland.  

4)    Assess if the recreational Nephrops fishers are at risk of exceeding TWI for MeHg (risk 

evaluation). 
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A survey was conducted to map standing gears (objective 1), and Nephrops were 

collected from several recreational fishers in Hordaland to analyze Hg concentrations in tail 

muscle samples (objective 2). Capture location and biological data on size and sex of the 

sampled Nephrops were examined as potential factors influencing Hg concentrations 

(objective 3). Interviews on seafood eating habits were conducted and combined with the 

results on Hg concentrations in Nephrops to assess the risk of exceeding the TWI for MeHg 

(objective 4). 
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2. Materials and Methods   

2.1 Mapping and identification of standing gear 

2.1.1 General information about the study 

The study area consisted of fjords in both urban areas, industrial areas and less 

inhabited areas in the county of Hordaland, Norway. A sampling system made by Jon Helge 

Vølstad divided the fjord areas in Hordaland into smaller sampling units (polygons), each of 

them covering an area of approximately 4 km2. A survey was conducted to map standing 

gears in three rounds, the first two rounds as part of a recreational fishing project at the 

Institute of Marine Research (IMR) (Hauge, 2017). The polygons in round one and two were 

randomly selected for mapping recreational fishing activity in Hordaland. Only polygons with 

buoys observed in deep waters (>50 m) were included in this thesis. In round three, conducted 

explicitly for this thesis, the polygons were selected based on expert knowledge on popular 

fishing spots for Nephrops (Ferter & Bjelland, 2017), and observations of buoys in deep water 

areas (see section 2.1.3 for details).  

 

2.1.2 Survey 

A survey was conducted to identify areas with buoys in deep waters, i.e., possible 

Nephrops fishing spots. The polygons were created by first selecting random points on the 

map, and then generating randomly shaped polygons of approximately 4 km2 around them. 

The sizes of the polygons range between approximately 3-4 km2, due to the randomly selected 

boundaries between them. Therefore, some smaller polygons might appear between larger 

polygons.  



17 
 

Figure 2.1: Map of sampled polygons where 

buoys were observed in deep waters outside 

Bergen, Hordaland, Norway. Polygon 

numbering is not visible for all polygons. 

From north to south; Radfjorden (1178 and 

1242), outside Knarvik (1796), 

Hauglandsosen (1019 (two polygons) and 

1421), Byfjorden (1361), Raunefjorden 

(1358 (two polygons)), Fanafjorden (1250 

and 1267 (three polygons)), Bjørnafjorden 

(1142 (two polygons) and 1278), and 

Austevoll 1518 (three polygons). The green 

colored polygons show surveyed areas that 

were not included in the selected sample 

because of a limited number of recreational 

Nephrops fishers registered. 

 

 

In total, eight fjords were surveyed between May and July 2017 (May 8th-9th, June 1st, 

and July 24th-25th). The surveyed polygons (Figure 2.1) were examined individually using the 

boat “KV TOR” of the Norwegian coast guard (Forsvaret, 2014) as a base. Fast boats of the 

type “Sjøbjørn” (Maritime Partner, 2015) or “HPB” were used for fast and thorough 

examination, including close-up registration of all observed buoys using the mapping program 

ArcGIS Collector on an iPad. All buoys within each polygon were registered with GPS 

coordinates and notes with information from the buoys. An effort was put into avoiding 

registering buoys that were not attached to fishing gear, especially in shallow waters. This 

was done by checking for eventual chains and potential attachments for a boat in connection 

to the buoys, or by pulling the rope to feel if it was movable, as fishing gear would be. 

In Norway, all recreational fishing gears must be marked with the owner’s name and 

address (FISKERIDIREKTORATET, 2017a), while commercial fishing gear has to be 

marked with a commercial fishing registry number (H-XXX-xx2). Observed buoys were 

categorized into four categories. All buoys with a visible "H" for the county Hordaland or a 

                                                           
2 H-XXX-xx: H describing the county Hordaland, XXX for the number, xx describing municipality.  
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complete fishing registry number were classified as commercial fishing gear. If the buoy did 

not have a visible H, but contained any other information (i.e., partial name, telephone 

number and/or address), it was categorized as recreational fishing gear. One buoy included a 

number possibly from the recreational small boat registry (Småbåtregisteret) and was also 

categorized as recreational fishing gear. If the buoy did not contain any information or the 

information was completely unreadable, it was classified as unidentifiable. Some buoys were 

not possible to register as the boat could not get close enough due to shallow waters, and these 

buoys were put in a fourth category (not possible to register).  

In May and June, randomly selected areas were screened for buoys to retrieve 

information about all standing gears from the recreational fishing sector, including 

recreational Nephrops fishing. Areas where buoys were observed in deep waters were added 

to the sample for this thesis. In July (24th-25th), areas recommended by experts (Ferter & 

Bjelland, 2017) were targeted to increase the number of possible participants in the study, 

without spending too much time and money. The Norwegian coast guard also provided some 

expert knowledge, in addition to the previous boat surveys from the recreational fishing 

project at IMR. The temporal differences are due to the recreational fishing projects goal of 

sampling in multiple seasons, including when the coast guard had time available. 

In May, the inner part of Hauglandsosen (1019 Figure 2.13), outer parts of Fana (1250 

Figure 2.1), Byfjorden (1361 Figure 2.1), Bjørnafjorden (11424 and 1278 Figure 2.1) and one 

polygon south of Knarvik (1796 Figure 2.1) were surveyed. In June, Raunefjorden (13585 

Figure 2.1) was examined. On the sampling days in July, Radfjorden (1178 and 1242 Figure 

2.1), Hauglandsosen (1421 and 1019 Figure 2.1), Fanafjorden (1250, 1014 and 1267 Figure 

2.1) and Austevoll (1058,1831 and 1518 Figure 2.1) were surveyed.  

 

2.1.3 Telephone survey to retrieve information about the owners of the buoys 

Between 6 and 23 days after retrieving information from the recreational fishing buoys 

observed in the field, the owners of each gear were attempted contacted via telephone. 

Personal information from the buoys, such as name and address, was used on the websites 

“www.1881.no” or “www.gulesider.no” to obtain the owner's phone numbers, if the phone 

number was not already obtained from the buoy. The primary goal of the phone call was to 

                                                           
3 1019 is two polygons. A closer map is available in Appendix I, Figure 1.B. 
4 1142 is two polygons. A closer map is available in Appendix I, Figure 1.D. 
5 1358 is two polygons. A closer map is available in Appendix I, Figure 1.C. 
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get information about the gear (i.e., type of equipment, number of pots or fishing nets in 

meters, soak time, number of buoys), and catch data (Appendix II). After attempting to 

contact the owners of each recreational fishing gear, the buoys were divided into four new 

categories; recreational Nephrops fishing gear, other types of recreational fishing gear, no 

response recreational fishing gear, and buoys where it was not possible to retrieve the owner's 

contact information on the websites using information from the gear. The recreational 

Nephrops fishers in each fjord were counted. The goal was to get at least three fishers from 

each fjord to cooperate in this study.  

In total, 38 recreational fishers reported fishing for Nephrops in the areas surveyed. In 

Bjørnafjorden and the polygon south of Knarvik, only one recreational Nephrops fisher was 

registered during the survey. Therefore, these areas were not included in the final sample, as 

the goal of three cooperative recreational Nephrops fishers was not reached. Additionally, the 

locations were not particularly relevant regarding environmental toxins. Byfjorden contained 

only one recreational fisher on Nephrops. However, due to the known contamination and the 

mentioned dietary advice in the area, it was deemed necessary to retrieve muscle samples 

from Nephrops for Hg analysis and information about eating habits from this fisher. 
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Figure 2.2: Map of sampled polygons 

included in the final sample outside Bergen, 

Hordaland, Norway. From north to south; 

Radfjorden (1178 and 1242), Hauglandsosen 

(1421 and 1019), Byfjorden (1361), 

Raunefjorden (1358), Fanafjorden (1250, 

1014 and 1267), Austevoll (1058, 1831 and 

1518). 

 

The final sample (Figure 2.2), included 16 

polygons from six different fjords. A closer 

look at the polygons is available in Appendix 

I.  

 

 

 

 

 

 

 

 

 

2.1.4 Assessment of contamination in the study area 

Radfjorden (polygons 1178 and 1242 Figure 2.2) is sparsely inhabited, and the only 

identified source of possible Hg contamination was salmon farming (3 aquacultures 

distributed throughout the fjord). A risk report for Norwegian fish farming estimated pollution 

from fish farms to 7.2 grams Hg per fish farm per year (Svåsand et al., 2017). Therefore, low 

contamination was assumed for Radfjorden. Austevoll (polygons 1058, 1831 and 1518 Figure 
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2.2) is an island municipality located southwest of Bergen with one salmon farm within the 

sampled polygons. Due to low population density, proximity to the open ocean, and one 

salmon farm within the sampled polygons, Austevoll was assumed to be non-contaminated. 

Hauglandsosen (1421 and 1019 Figure 2.2) includes sea access to the industrial areas 

Hanøytangen and Horsøy. Hanøytangen includes the firm Nordscrap West AS, with a 

boundary limit of 0,001 mg/l Hg into water per 6 hours (Relling, 2009). The area has also 

been used for industrial activities before Nordscrap, and Kollevågen, a former waste disposal 

area is in close distance. Kollevågen was used for waste disposal from 1930-1975, but due to 

a threshold at the inlet, these water masses are not in complete circulation with the water in 

Hauglandsosen (Vassenden & Johannessen, 2009). As industrial areas are close by, including 

the former waste disposal area, several environmental studies have been conducted. The 

sediments around Horsøy on average had heavy metal concentrations equivalent to 

environmental class II (moderate contamination) (Johnsen et al., 2007). In Johansen et al. 

(2004), the sediments around Nordscrap West AS were classified into environmental class II. 

On the other hand, Hauglandsosen has good water exchange west towards Hjeltefjorden and 

is therefore assessed with some degree of contamination. 

Fanafjorden (1250 and 1267 Figure 2.2) is one of the study areas known to be 

contaminated, due to a former waste landfill with runoff through Pålamyrsbekken into the 

fjord (Nilsen, 2017). Pålamyrsbekken is a freshwater stream with a 0,1 µg/L Hg 

concentration, which is assessed as severe contamination in fresh water (Hansen & 

Danielsberg, 2009). However, from the data available, it is not possible to determine the 

degree of polluted waters transported into Fanafjorden, and to date no environmental effects 

have been documented in the fjord (Fedje et al., 2009). Fanafjorden was therefore assessed as 

possibly contaminated. 

Byfjorden (1361 Figure 2.2), in the immediate vicinity to Bergen, is the most urban 

and densely populated area in the sampled areas. Seafood from the fjord area is well known to 

be contaminated with dioxins, PCB and Hg which led to the above mentioned dietary advice 

in the area (Mattilsynet, 2009). Raunefjorden (1801 and 1358 Figure 2.2) is not directly 

associated with pollution, but the area is in close contact with Håkonsvern and Fanafjorden. 

Hg concentrations in environmental class III or higher have been reported in 65% of sediment 

samples outside Håkonsvern (Konieczny, 1994). In addition, it has some run-off from Bergen 

Airport Flesland, but this is not especially related to Hg (Johnsen & Sundfjord, 1999). 

Raunefjorden was therefore assessed as possibly contaminated. 
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2.2 Follow-up interviews of recreational Nephrops fishers  

A secondary telephone survey was conducted on the recreational Nephrops fishers. In 

this follow-up survey, they were asked to participate in the project by answering a 

questionnaire about their fishing on Nephrops and related eating habits. Some fishers 

(maximum three in each fjord) were also asked to provide at least 15 Nephrops for Hg 

analysis. The first fishers asked to provide samples were selected randomly based on achieved 

time of contact. However, when a fisher agreed to participate in the study, it was attempted to 

contact other fishers that were observed fishing in other parts of the fjord. This was done to 

avoid retrieving Nephrops samples from the same locations to get a better areal distribution, 

and to assess for a potential gradient from known contaminated areas. 

The final sample of recreational Nephrops fishers included 36 people, and 35 of these 

were contacted, and 33 interviews were conducted successfully. The interviews were 

conducted on the phone between 10.08.17-11.10.17. One fisher did not want to participate in 

the project, and another fisher was impossible to get in touch with after six phone calls. 

The questionnaire (Appendix III) used in the follow-up study contained 20 questions 

relating to gender, age, nationality, education, number of fishing trips per year and fishing 

motivation. Multiple answers per fisher were possible on the question regarding fishing 

motivation. Additionally, the questionnaire included questions about the fishing gear (the type 

of pot, number of pots and buoys, soak time), information about the latest catch, eating habits 

on Nephrops and habits regarding fish consumption for lunch and dinner in the last three 

months. The question on fish eating habits for lunch was included as frequent consumption 

has been reported both in Sweden (Björnberg et al., 2005; Björnberg et al., 2003) and Norway 

(Mangerud, 2005). 

Questions about the fishing gear also included a question about the fishing location to 

assess whether the fishers mainly fish near where their buoys were observed. The reason for 

this is that some Norwegian fjords or harbors are more polluted than others and may, 

therefore, contain higher amounts of Hg. Questions regarding last catch also included 

questions on release and release motivations. The release motivations included alternatives 

such as “Minimum length size”, “Too small”, “Too many”, “Too big” or “Females with roe”. 

A differentiation was made between “Too small” and “Minimum landing size” to assess 

whether the release motivation was voluntary or a result of the management regulations in the 

fishery. Multiple answers were possible regarding release motivations. On the question 

regarding eating habits, the participants were asked to describe how often they had eaten fish 
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or other seafood the preceding three months. The format of response included the options 

"Never", "Less than one time per month", "1-3 times per month", "1 time per week", "2-3 

times per week" or "4 times a week or more". The questionnaire also included a question on 

the participant's perception on the degree of pollution in Nephrops in their fishing area, from a 

low degree of contamination (1) to high degree of contamination (9). The middle point (5) 

was described as some degree of pollution, but safe to eat 1-2 times per month for those not 

pregnant or lactating. It was also possible to answer, “I don’t know” (0).  

The participants were not asked to report the size of the portion of fish they usually ate 

for dinner or lunch, as this is known to be associated with a high degree of day-to-day 

variations (Haraldsdottir et al., 1994). Additionally, a comparison of standard portions to 

individually reported portions show marginal differences (Johansson & Solvoll, 1999). 

Considering these findings, it was decided not to include questions about portion sizes in the 

food questionnaire but to use standard portions when converting the eaten fish frequencies 

into grams consumed per week. Standard portions were based on the average portion size for 

lean fish in Matvaretabellen (Dalane et al., 2015). 

The participants were asked to report the average number of Nephrops eaten per meal, 

which parts they consume and how often they eat Nephrops. The question regarding the 

frequency of eating Nephrops included the options: “once a week”, “Several times a week”, 

“Several times a week (during the summer)”, “twice a month”, “once a month” or “less than 

12 times a year”. When the respondent answered with ranges, like for example 4-6 Nephrops 

per meal, the mean value (5 Nephrops) was used for the analysis. 

 

2.3 Mercury analysis  

2.3.1 Direct mercury analyzer (DMA-80)  

The direct mercury analyzer (DMA-80) is a stationary instrument for analyzing Hg 

concentration without the need for any sample preparation before analysis. Once the sample is 

weighed directly into a sampling boat and put in the autosampler (Figure 2.3), each boat is 

retrieved and moved individually into a furnace where the sample is dried (if necessary) and 

then burned. Different heating times for dry samples and wet samples can be chosen. In the 

furnace, the Hg is vaporized, and oxygen gas transports the vapor into a catalyst tube where 

the various states of Hg are reduced to elemental Hg. The elemental Hg is then trapped onto a 

gold amalgamator, which is heated and releases the Hg into two cuvettes with atomic 
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absorption spectrophotometers (Milestone, 2013). Light with a wavelength of 254 nm is sent 

through both cuvettes, and the amount of light absorbed is proportional to the amount of Hg 

in the cuvette. The cuvettes have different shapes to cover high and low concentrations. One 

long and thin cuvette for higher sensitivity in low concentrations, and a thicker one for higher 

concentrations (NIFES, 2015). Certified reference material (CRM) is analyzed with the 

samples to assess the quality and the accuracy of the method. In DMA-80, all values within 

2SD for CRM are considered acceptable. The detection limit (LOD) for the DMA-80 is 0.02 

ng, and the limit of quantification (LOQ) is 0.08 ng. For samples measured in the linear area 

(1.5-1000 ng), the measurement uncertainty is 20%, and therefore the accuracy between 80-

120% (NIFES, 2015). For calibration of the instrument, different reference materials were 

used covering the whole measurement range (TORT-3, Bovine Liver 1577, Skimmed Milk 

Powder, Fish muscle 422, Dolt-4 and Tuna 464)6.  

 

 

 

Figure 2.3 Components of the direct mercury analyzer (DMA-80) (NIFC, 2016). 

 

2.3.2 Sample preparation  

Nephrops samples were obtained from 11 different recreational fishers, and therefore, 

the Nephrops were obtained from several locations within some fjords. Nephrops from three 

different fishing locations in Austevoll and Hauglandsosen were obtained, and from two 

                                                           
6Tort-3 (Lobster hepatopancreas) National Research Council, Ottawa, Canada. 
Bovine Liver SRM1577 Sigma-Aldrich, St. Louis, USA. 
Skimmed Milk Powder (ERM-BD 150) National Institute of Standards and Technology, Gaithersburg, USA. 
Fish muscle (ERM-BB 422) National Institute of Standards and Technology, Gaithersburg, USA. 
Dolt-4 National Research Council, Ottawa, Canada. 
Tuna fish ERMCE464 Sigma-Aldrich, St. Louis, USA. 
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locations in Fanafjorden (see results, Appendix VII). There was only one fishing location in 

the other fjords (Byfjorden Raunefjorden, Radfjorden). As there were no known differences 

regarding contamination sources, the three locations in Austevoll were pooled for the 

statistical analysis. In Fanafjorden, the two fishing locations were treated separately as inner 

and outer location based on distance to the known contamination source at Pålamyrsbekken. 

The three sampling stations in Hauglandsosen were treated as two locations, Hauglandsosen 

Ågotnes (n=30) and Hauglandsosen Hetlevik (n=15), to assess potential differences based on 

the distance to the former waste disposal area and the current industrial area. 

In total, 235 Nephrops were caught with baited pots in six different fjords from eleven 

different fishers (fishing locations) and frozen directly after catch. For each Nephrops, 

carapace length was measured from the eye socket to the back of the carapace in millimeters, 

using a digital caliper. For weighing, claws and legs were removed to get comparable 

numbers, as many of the Nephrops had already lost limbs during storage and transport. The 

tail was removed in frozen condition and thawed separately before dissection, as it is known, 

that freezing and thawing can alter the tissue distribution of trace metals (Wiech et al., 2017). 

The tail muscle was sampled by cutting the tail open with a scissor. The tail muscle was 

weighed, after excluding eventual inside roe, gonads and the intestines. For some Nephrops, 

also claw muscle samples were taken. All muscle samples were homogenized (Polytron 2100, 

Kinematica AG, Switzerland). The equipment used was cleaned at least twice between each 

sample using clean water and paper. 

Sex determination was conducted by inspecting the basal segments of the pereiopods. 

While females have oviducts on the basis of the third pereiopods, the male opening of the 

vasa deferentia is paired on the basis of the fifth pereiopods (Powell & Eriksson, 2013). A 

descriptive image is available in Appendix IV.  

 

2.3.3 Mercury analysis using DMA-80 

For the Hg determination using DMA-80 (Milestone, Sorisole, Italy), approximately 

0.1 g (0.095 - 0.125 g) of thawed and homogenized wet sample of Nephrops tail muscle or 

claw muscle was weighed into nickel boats. The certified reference material Tort-3 (Lobster 

Hepatopancreas), 292 ± 22 ng/g dry weight (Mean ± SD) (National Research Council, 

Ottawa, Canada) was used to assess the accuracy of the analysis on the given calibration. To 

control for eventual contamination of the instrument (carry-over effect), each sample series 

started with two blank samples, followed by two samples of CRM (Tort-3). If a set included 
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more than 20 samples for analysis, two samples of CRM were also inserted in the middle, in 

addition to two more samples at the end of the series. Between each sample series, the nickel 

boats were cleaned by heating them at 650°C using a muffle oven for 30 minutes. Sixteen 

pairs of tail and claw muscle samples were freeze-dried to calculate dry matter. Dry matter 

content was calculated as “dry matter weight” divided by “total weight before freeze-drying” 

to ensure that Hg concentrations in claw and tail muscle were comparable.  

 

2.4 Statistical methods and calculations 

2.4.1 Catch calculations 

Mean value was used when typing data from the interviews for the analyses if a 

respondent answered in a range. Two recreational fishers could not remember last catch, and 

CPUE was therefore estimated using data from 31 of 33 fishers. CPUE was calculated using 

all catch, including released or discarded Nephrops. Soaking time was assumed not to affect 

catch rates, and CPUE was calculated per haul. Furthermore, ten fishers stated their harvest in 

kilograms and released Nephrops in number of individuals, while the twenty-one others stated 

entire catch in number of Nephrops. Conversion from kg to number of Nephrops caught was 

conducted before CPUE was calculated. When catch data was provided in kilograms, mean 

carapace length for all locations was used on a length-weight key (Appendix V) to predict 

mean weight. The key was developed utilizing 2016 catch data from the Norwegian 

Reference Fleet at the Institute of Marine Research (more information available at 

www.imr.no/temasider/referanseflaten/en). Mean weight was estimated to 112 grams. 

 
 
 

2.4.2 Factors influencing mercury concentrations  

Statistical analyses were conducted using R (version 3.4.3, R Development Core 

Team, 2017). The hypothesis was that location, size and sex possibly could influence Hg 

concentration in Nephrops. As the response variable (Hg concentration in µg/kg) is 

continuous, a linear model assuming constant variance was used (normal distribution). 

Carapace length was used as a measure of size instead of weight, to get results comparable 

with other studies. Firstly, a linear mixed effects (LME) model with one continuous predictor 

and one categorical predictor was used to look at the effect of size and sex on Hg 
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concentrations (Appendix VI, 6.1). In this case, location was considered a random effect 

factor to account for dependency due to samples clustered within locations. 

Secondly, location was included in the model to evaluate its influence on Hg 

concentrations. Eight different fishing locations were included in the model, one location in 

Raunefjorden, Radfjorden, Austevoll and Byfjorden, and two locations in Hauglandsosen 

(Ågotnes and Hetlevik), and in Fanafjorden (Inner and Outer station). A linear model with 

two categorical predictors (location and sex) and one continuous predictor (size) was tested.  

The first linear model included all possible interactions (Appendix VI, 6.2). The non-

significant interactions were after that removed using the ANOVA output. The linear model 

with the significant predictors was thereafter tested (Appendix VI, 6.3). The diagnostics plot 

(Appendix V, 6.4) showed that the line in the Scale-Location plot is not entirely horizontal, 

and the points are not entirely randomly spread around the line. This indicates that the 

assumption of equal variance might be broken. Although, no observations were outside 

Cook’s distance in the Residual vs leverage in the diagnostics plot, and no observations are 

therefore severely influential on the model. A log transformation would have improved the 

Scale-Locations plot by making the line more horizontal (Appendix VI, 6.5). However, the 

same conclusions were reached when testing the log-transformed model (Appendix VI, 6.6), 

and therefore, the original data was used to avoid interpreting the results on a log scale.  

A Tukey test was used to compare Hg concentrations in the two sexes from the 

different locations (Appendix VI, 6.7). The underlying assumption was that the catch was a 

representative sample of the population at each location, and therefore the model compared 

Hg concentrations based on the sizes that were available at the time of sample at each location 

for females and males separately. 

 

2.4.3 Analysis of correlation between age, education and perception of pollution  

To analyze for correlations between age or education, and the participants' perception 

on the contamination status of the Nephrops in their area, the values from the questionnaire 

had to be rescaled into binomial values to include an upper and lower boundary. Education 

was also put into new categories; Low education (Primary and High school), Vocational 

college (Intermediate) and High education (University) due to low n. A GLM tested the 

hypothesis with three categories, and with two categories. Vocational college was regarded as 

low education when using two categories in the test. Both models were specified with 

“family=quasibinomial” and an F test to test the two hypotheses (Appendix VI, 6.8).  
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2.4.4 Risk assessment   

To calculate Hg intake from dinner, a portion size of 200 grams was used, according 

to Dalane et al. (2015). For fish consumed for lunch, 20 grams of fish spread per slice of 

bread was used as the standard. For this study, two slices of bread for lunch were assumed to 

be average, and therefore 40 grams of fish spread was used for calculating Hg intake from fish 

for lunch. Both high and low values of Hg concentration in fish were used for calculating Hg 

intake from fish for dinner. Minimum and maximum concentrations were calculated as the 

average value of concentrations reported in saithe, cod, haddock and pollack (Sjømatdata, 

2017). Concentrations from these species were selected as they were reported to be the most 

frequently consumed fish species in a group of high consumers of seafood (Mangerud, 2005). 

The present study did not provide species-specific consumption rates other than Nephrops, 

and it was assumed that the Hg concentrations in the species mentioned above were 

representative for the species consumed by the respondents. Maximum values of the same 

species were used as Hg concentrations can be higher in fish caught inside the archipelago 

(Måge & Frantzen, 2009), where recreational fishers often fish. The estimated mean value 

was 86 µg/kg and estimated max value was 257.5 µg/kg7 for fish for dinner.  

Calculating Hg in fish for lunch was done by using concentrations from 

[sjomatdata.no] from a selection of species associated with fish for lunch, assuming a similar 

consumption of the species by calculating an average concentration. For lunch, only the mean 

value was used because it was assumed that fish consumed for lunch is mostly store-bought 

and not self-caught. The lunch value was estimated to 44.3 µg/kg8, 

Total Hg intake was calculated using personal consumption rates reported by 33 

recreational Nephrops fishers. When the respondents answered using their own range, like for 

example 1-2 times per week rather than the mentioned alternatives, they were put in the 

category representing the lowest reported eating frequency. Conversion of eating frequency to 

numerical value was done as reported by Markhus et al. (2013). When a respondent answered 

consuming fish for dinner or lunch “2-3 times per week”, 2.5 times per week was used for the 

                                                           
7 Calculated using measured Hg concentrations in: Saithe (Pollachius virens) filet 2016 (mean 0.059 mg/kg, max 
0.22 mg/kg), Atlantic Cod (Gadus morhua) filet 2016 (mean 0.069 mg/kg, max 0.28 mg/kg), Haddock 
(Melanogrammus aeglefinus) filet 2016 (mean 0.076 mg/kg, max 0.18 mg/kg), and Pollack (Pollachius 
pollachius) filet 2014 (mean 0.14 mg/kg, max 0.35 mg/kg). (Sjømatdata, 2017) 
 
8 Calculated using measured Hg concentrations in: Shrimps wild 2016 (0.07 mg/kg), Sardines 2010 (0.02 mg/kg), 
smoked trout filet 2007 (0.053 mg/kg), mackerel wild 2016 (0.03 mg/kg), farmed salmon 2016 (0.017 mg/kg) 
(Sjømatdata, 2017) and canned Tuna (0.076 mg/kg) (Nilsen & Måge, 2016).  
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calculations. When a respondent answered between “1-3 times per month”, 0.5 times per 

week was used for the calculations. When a respondent answered, "Less than one time per 

month", 0.15 times per week was used for the calculations. Consumption frequency for 

Nephrops was scaled up to a full year even if a fisher had been fishing for less than a year. 

Two fishers reported Nephrops eaten per meal in grams, which was converted to number of 

Nephrops using the predicted mean weight of 112 grams, estimated utilizing data from the 

Norwegian reference fleet (Appendix VI). The frequency measurements used for the 

calculations of intake from Nephrops are (weekly); Less than once a month (0.15), once a 

month (0.25), twice a month or twice weekly in the summer (0.5), once a week all year (1), 

and twice a week all year (2). Whether or not they consumed only tail meat from Nephrops or 

tail meat including claw meat was accounted for. Mean weight for a Nephrops tail muscle was 

calculated to 24.1 gram (n=235), and muscle meat in the claws was calculated to be 

approximately 36% of tail meat (n=43). Total Hg intake from seafood was calculated using 

average and high consumption rates from the respondents. Average intake rates were 

calculated using the mean intake from all consumers, while high consumption is defined as 

the mean intake of the five consumers with the highest consumption frequency.  

The results of the risk assessment were compared to the Tolerable Weekly Intake 

(TWI) of 1.3 µg/kg body weight set for MeHg (EFSA, 2012), as 90-100% of Hg in fish 

muscle have been shown to be MeHg (Bloom, 1992; Grieb et al., 1990; Lockhart et al., 1972). 

In Nephrops, 87% of total Hg has been shown to be MeHg in an industrially polluted area and 

100% of Hg shown to be MeHg in a control area (Buzina et al., 1989). Hg concentrations in 

Nephrops and seafood are therefore assumed to be MeHg in this thesis. Assuming a total body 

weight of 80 kg, the tolerable weekly intake represents 104 µg MeHg 
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3. Results 

3.1. Results of the survey mapping standing gears  

3.1.1 Registered buoys in different fjords divided into categories 

Fishing buoys were found between 5-300 meters spread all over the fjords, in all 

investigated areas (Appendix VII). In round one (May), five buoys were registered in 

Knarvik, seven in Byfjorden, 21 in Bjørnafjorden, 24 in the outer parts of Fanafjorden, and 29 

in Hauglandsosen (Figure 3.1A). The percentage of recreational fishing buoys was lowest in 

Bjørnafjorden (19%) and highest in Fanafjorden (42%). The phone survey revealed that the 

areas in Knarvik and Bjørnafjorden did not include more than three recreational Nephrops 

fishers, and thus, were not included in the final sample (Figure 3.1B).  

Only two buoys were registered from recreational fishing in Byfjorden (Appendix VII, 

Figure 7.1) In the inner parts of Hauglandsosen (Appendix VII, Figure 7.2), recreational 

Nephrops fishing represented 83% of the recreational fishery. In comparison, recreational 

Nephrops fishing represented 40% of all recreational fishing in Fanafjorden (Appendix VII, 

Figure 7.3). In total sixteen buoys were confirmed to be from recreational Nephrops fishing in 

survey round one, and nine different Nephrops fishers were registered within the final sample 

area. 

Figure 3.1A Number of registered buoys in round one (May) divided into categories registered during the survey 

in May; recreational fishing (blue), commercial fishing (orange), unidentifiable (grey) and not possible to 

register (yellow). 
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Figure 3.1B Number of recreational fishing buoys in round one (May) divided into categories after attempted 

contact; recreational Nephrops fishing (orange), and other recreational fishing (grey). 

 

In round two (June), 30 buoys were registered in the surveyed area in Raunefjorden, 

and 18 (60%) of these were recreational fishing gear (Figure 3.2). Buoys were registered 

between approximately 5-200 meters distributed throughout the fjord (Appendix VII, Figure 

7.4). Half of the recreational fishing buoys (50%) were from recreational Nephrops fishing. 

These nine buoys were owned by four different recreational fishers.  

 

Figure 3.2 Number of 

registered buoys in 

Raunefjorden in round 

two (June) divided into 

categories registered 

during the survey in 

June; recreational 

fishing (blue), 

commercial fishing 

(orange) and 

unidentifiable (grey). 

 

 

In round three (July), 44 buoys were registered in Radfjorden (Appendix VII, Figure 

7.5), 79 in Hauglandsosen (Appendix VII, Figure 7.6), 136 in the area in Austevoll (Appendix 
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VII, Figure 7.7), and 142 in the area in Fanafjorden (Appendix VII, Figure 7.8). The 

percentage of recreational fishing buoys was lowest in Austevoll (18%) and highest in 

Hauglandsosen and Radfjorden (48%) (Figure 3.3A).  

Figure 3.3A 

Number of 

registered buoys in 

round three (July) 

divided into 

categories 

registered during 

the survey in July; 

recreational 

fishing (blue), 

commercial 

fishing (orange), 

unidentifiable 

(grey) and not 

possible to register 

(yellow). 

Of the twenty-one, recreational fishing buoys registered in Radfjorden, five buoys 

(24%) were from recreational Nephrops fishing owned by three different fishers (Figure 

3.3B). It was not possible to retrieve contact information using information from eight buoys 

on the websites; however, these were owned by only two fishers. In Hauglandsosen, nine 

(24%) of the 38 recreational fishing buoys registered were from recreational Nephrops fishing 

and from five different fishers. It was not possible to retrieve contact information for two 

fishers (two buoys). Fanafjorden contained 52 recreational fishing buoys, and 25 of these 

(48%) were from Nephrops fishing. Ten different recreational Nephrops fishers were 

registered in Fanafjorden. It was not possible to retrieve contact information for two fishers 

(two buoys). Austevoll contained 24 recreational fishing buoys, and 16 of these (67%) were 

from Nephrops fishing. Eight different recreational Nephrops fishers were registered in 

Austevoll. It was not possible to retrieve contact information for two fishers (three buoys). In 

round three, other types of recreational fishing were highest in Hauglandsosen, representing 

23 of 38 recreational fishing buoys (61%) from twelve different fishers. The no-response 

category was highest in Fanafjorden (12%), which also was the location with the most fishers 

(28 fishers in total).  
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Figure 3.3B Number of recreational fishing buoys in round three (July) divided into categories after attempted 

contact; not possible to retrieve contact info (blue), no response (orange), recreational Nephrops fishing (grey), 

and other recreational fishing (yellow). 

 

3.1.2 Density of buoys in the selected sample  

The highest fishing effort from standing gears was observed in Austevoll, with an 

estimated 15 buoys per km2 (Table 3.1). The lowest fishing effort from standing gears was 

observed in Byfjorden with one buoy per km2. Recreational fishing varied between 29% 

(Byfjorden) and 65% (Raunefjorden). Recreational Nephrops fishing seems to represent a 

substantial part of the recreational fishery in the selected areas, for example, 24% in 

Hauglandsosen and Radfjorden, 67% in Austevoll and 100% in Byfjorden. Maps with results 

from the survey rounds are available in Appendix VII. 

In total, 100 recreational fishers were registered within the total surveyed area, and 95 

were registered in the selected sample area. However, five fishers were registered twice, 

which made the total number of individual fishers 95 in the total survey area and 90 in the 

selected sample. Thirty-six (40%) of the 90 registered recreational fishers in the selected 

sample were recreational Nephrops fishers.  
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Table 3.1. Estimated density of buoys in the selected sample areas in the three different survey rounds including 

the number of registered recreational fishing buoys and confirmed recreational Nephrops fishing buoys.  

Location 

(Survey round) 

Size of 

the 

total 

selected 

survey 

area 

(km
2
) 

Total 

buoys  

Estimated 

density 

(total 

number of 

buoys per 

km
2
) 

% 

recreational 

fishing of 

total 

registered 

buoys (n) 

% of 

recreational 

fishers 

targeting 

Nephrops (n)  

Estimated 

density 

(total 

number of 

Nephrops 

buoys per 

km
2
) 

Fanafjorden (1) 3.44 24 7 42% (10) 40% (4) 1 

Hauglandsosen 

(1) 

8.77 29 3 41% (12) 83 % (10) 1 

Byfjorden (1) 6.33 7 1 29% (2) 100% (2) < 1 

Raunefjorden 

(2) 

9.50 30 3 60% (18) 50% (9) 1 

Radfjorden (3) 8.40 44 5 48% (21) 24% (5) < 1 

Hauglandsosen 

(3) 

13.52 79 6 48% (38) 24% (9) < 1 

Fanafjorden (3) 11.30 142 13 37% (52) 48% (25) 2 

Austevoll (3)  9.16 136 15 18% (24) 67% (16) 2 

 

3.1.3 General information about the recreational Nephrops fishers 

 Except for one female, the interviewed fishers were all males. The mean age was 49 

years, and the number of Nephrops fishing trips ranged from 2 to 100 per year (mean 39 

fishing trips per year). Ten fishers had been fishing for Nephrops for only a year or less, while 

five fishers had fished Nephrops recreationally for over ten years (mean 3.83 years). Eighty-

five percent of the fishers (28 of 33) reported fishing exclusively in the observed area, and 

four reported staying between 10 to 20 km away from where their equipment was observed. 

One fisher reported fishing more than 30 kilometers away from the point of observation, 

especially in the summer, when bringing his pots on vacation with his boat.   

 

3.1.3.1 The recreational fishers’ perception of contamination in Nephrops  

Eight fishers perceived the Nephrops in their area as somewhat contaminated, but safe 

to eat 1-2 times a month for all consumers except pregnant and lactating women (Figure 3.4). 
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Moreover, none of the recreational fishers perceived the contamination above five on the 

scale from one (low) to nine (high), and nine recreational fishers believed that the Nephrops 

in their area was not contaminated at all. Education level in the group of recreational fishers 

ranged from vocational college as the most common (55%), to high school education (21%), 

primary school (9%), University 1-3 years (9%) and university more than four years (6%). No 

correlation was found between their age and beliefs regarding pollution (p>0.22), or between 

their education and beliefs regarding pollution, concerning two (High/Low) educational 

categories (p>0.45) or three (High/Intermediate/Low) educational categories (p>0.33). 

  

Figure 3.4 The recreational Nephrops fishers’ perception of contamination in Nephrops in their area. Scale from 

1-5 visible. 

 

3.1.3.2 Fishing motivations 

 The most common reported motivation for fishing Nephrops was either fishing for 

consumption or as a leisure activity (Figure 3.5). Fishing for tradition was mentioned by three 

fishers, and two fishers reported other reason for fishing, where one of them specifically 

reported sale as the motivation for fishing Nephrops.  
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Figure 3.5 Fishing motivations, multiple answers for some fishers.  

 

3.1.3.2 CPUE in the different fjords  

All fishers reported using pots especially developed for catching Nephrops, and the 

pots should therefore be about the same size. However, three fishers reported using them in 

combination with two-chamber fish pots. The fishers used between 3 to 24 pots (average 14 

pots), with 2 to 30 days soak time (average 7 days). The was an indication that Raunefjorden 

had higher estimated CPUE than the other locations, but only two registrations (Figure 3.6). 

Byfjorden had the second highest estimated CPUE, but only one registration. Three locations 

had more than seven catch registrations. Fanafjorden had the highest median CPUE of these 

three, followed by Hauglandsosen and Austevoll.  

 

Figure 3.6. Mean catch of Nephrops 

norvegicus per pot and haul (CPUE) 

for the different locations. The black 

horizontal line shows median value, 

while vertical lines show maximum 

and minimum value. The box is the 

interquartile range. The number of 

observations (n) is displayed at the 

top. Soaking time is assumed not to 

have any effect on catch rates.  
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3.1.3.3 Release motivations  

Twenty-three fishers reported releasing Nephrops during last catch, and the answers 

ranged from 1 to 25 Nephrops released (mean 6 Nephrops released). Release motivations 

varied from the most mentioned reason “Too small” (45%), to “Females with roe” (33%) and 

“Minimum length size” (21%) (Figure 3.7).  

 

 

Figure 3.7 Release motivations, multiple answers for some fishers.  

 

3.2 Nephrops norvegicus; size, sex and mercury concentrations 

3.2.1 Size and sex determination for the different locations  

The largest Nephrops were found in Byfjorden (Table 3.2), but these were all males. 

For the other locations, both sexes were present in the catch. The smallest mean size 

Nephrops were captured in Radfjorden. The widest size range was measured in Austevoll, 

which was also the locations with the highest number of individuals. 
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Table 3.2 Carapace length (mm) of Nephrops for eight different locations. Range, mean and standard deviation 

are shown, for females and males. 

 

3.2.2 Mercury concentration in Nephrops  

The content of total Hg in the certified reference material Tort-3 was measured to 254 

± 16 µg/kg dry weight (Mean ± SD, n=54), and falls within the range of 2 SD of the certified 

value for Tort-3 of 292 ± 22 µg/kg dry weight. The Hg concentrations in the Nephrops tail 

muscle samples were considered validated as the results of the CRM was acceptable (within 

range of 2 SD) when assessing the accuracy of the method. 

The mean Hg concentration in tail muscle across all locations was measured to 81 ± 

32 µg/kg wet weight in males (n=161), and 140 ± 69 µg/kg wet weight in females (n=74) 

(Table 3.3). Results from freeze-dried samples of tail muscle revealed an average dry matter 

content of 21% (n=16). 

The Hg concentration in claw muscle was measured in 43 animals, with a mean value 

of 21 ± 9 µg/kg wet weight corresponding to an average 24% (SD=9%) of the Hg 

Nephrops norvegicus Carapace length (mm) Sex (N) 

Location (N total) Range 

(min-max) 

All 

Mean ± SD 

♀  

Mean ± SD 

♂  

Mean ± SD 

♀ ♂ 

All locations (235) 37 – 78 54 ± 9 48 ± 5 57 ± 8 74 161 

 

Austevoll (47) 41 – 78 55 ± 10 48 ± 4 60 ± 10 17 30 

Byfjorden (30) 51 – 69 60 ± 5  60 ± 5 0 30 

Fanafjorden Outer 

station (15) 

46 – 71 59 ± 7 54 ± 3 62 ± 7 5 10 

Fanafjorden Inner 

station (34) 

37 – 69 

 

53 ± 8 48 ± 5 56 ± 9 12 22 

Hauglandsosen Ågotnes 

(30) 

40 – 72 

 

53 ± 8 49 ± 8 51 ± 6 11 19 

Hauglandsosen Hetlevik 

(15) 

45 – 67 

 

50 ± 6 48 ± 6 56 ± 7 4 11 

Radfjorden (34) 38 – 67 47 ± 6 45 ± 5 49 ± 8 20 14 

Raunefjorden (30) 45 – 75 57 ± 6 51 ± 4 58 ± 6 5 25 
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concentration in the corresponding tail muscle. The dry matter content in samples of claw 

muscle was on average 18% (n=16). 

 

Table 3.3 Hg concentration (μg/kg ww) in homogenized tail muscle of Nephrops for eight different locations. 

Range, mean and standard deviation are shown, for females and males. 

 

The linear mixed effects model revealed a significant difference in mean Hg 

concentration between the different sexes (Appendix V, 6.1, p < 0.001, Figure 3.8). A clear 

relationship between carapace length (mm) and Hg (µg/kg wet weight) was observed across 

all locations, for both females and males (Appendix V, 6.1, interaction between CL and sex, p 

< 0.001, Figure 3.8). This means that the sexes have significantly different slopes.  

 

Nephrops norvegicus Hg concentration (μg/kg ww) Sex (N) 

Location (N) Range All 

(min-max) 

All 

Mean ± SD 

♀  

Mean ± SD 

♂  

Mean ± SD 

♀ ♂ 

All locations (235) 26 – 290 100 ± 50 140 ± 69 81 ± 32 74 161 

 

Austevoll (47) 35 – 240 120 ± 50 160 ± 47 92 ± 36 17 30 

Byfjorden (30) 59 – 130 80 ± 20  80 ± 20 0 30 

Fanafjorden (Outer 

station) (15) 

73 – 250 160 ± 72 230 ± 14 120 ± 60 5 10 

Fanafjorden (Inner 

station) (34) 

33– 200 90 ± 40 130 ± 48 67 ± 19 12 22 

Hauglandsosen Ågotnes 

(30) 

53 – 290 130 ± 73 200 ± 71 81 ± 23 4 11 

Hauglandsosen Hetlevik 

(15) 

60 – 220 100 ± 53 180 ± 44 85 ± 27 11 19 

Radfjorden (34) 26 – 130 60 ± 20 67 ± 27 43 ± 8 20 14 

Raunefjorden (30) 57 – 240 100 ± 50 200 ± 26 84 ± 24 5 25 
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Figure 3.8 Mercury concentration (µg/kg) in the tail muscle versus carapace length (mm) Nephrops norvegicus 

in females and males for all locations. The points in the figure are the raw data, while the lines are the predicted 

line from the linear mixed effects model.  

 

The linear model which included location revealed a significant difference in mean Hg 

concentration between the different fishing locations depending on sex (Appendix V, 6.3, 

interaction between Location and Sex, p < 0.001, Figure 3.9). The interaction between sex 

and carapace length was also significant (Appendix V, 6.1, interaction between Sex and Cl, p 

< 0.001, Figure 3.9). p < 0.001), meaning that the Hg concentrations were increasing with size 

with significantly different slopes for the sexes, but the difference was not significant between 

the locations (no three-way interaction). The best model included both size, sex, and location, 

meaning that all three variables affected Hg concentrations in the individual Nephrops. 

The scale in Figure 3.9 is the same along both axes, and the plot can therefore be used to 

predict Hg concentration if size and sex are available for individual Nephrops at the given 

locations. 
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Figure 3.9 Mercury (µg/kg ww) versus carapace length (mm) of Nephrops norvegicus in females and males for 

the different locations. The points in the figure are the raw data, while the lines are the predicted lines from the 

linear model. The scale is the same for all figures, on both axes. The figure can therefore be used to predict Hg 

concentration if size and sex are available for individuals at a given location.   

 

Assessing which locations differed was done by comparing mean Hg concentrations at 

the eight locations for males and females. For the females, individuals in Radfjorden had 

significantly lower Hg concentration than in Austevoll, Hauglandsosen Hetlevik, 

Hauglandsosen Ågotnes, Raunefjorden and Fanafjorden (outer station) (p<0.001, Tukey’s 

multiple comparison test), including Fanafjorden (inner station) (p<0.003). Females from 

Fanafjorden (outer station) were higher in Hg concentration than Fanafjorden (inner station) 

(p<0.003) and Austevoll (p<0.03). Females from Hauglandsosen Ågotnes were significantly 

higher in Hg compared to Fanafjorden (inner station) (p<0.02). 

For the males, individuals in Radfjorden were significantly lower in Hg concentration 

than those from Raunefjorden, Hauglandsosen Ågotnes, Fanafjorden (outer station), 

Byfjorden and Austevoll (p<0.001, Tukey’s multiple comparison test). Males from 
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Fanafjorden (outer station) were higher in Hg concentration than Fanafjorden (inner station) 

(p<0.001), Byfjorden (p<0.002), Hauglandsosen Hetlevik (p<0.004), Raunefjorden (p<0.006) 

and Hauglandsosen Ågotnes (p<0.02). Males from Austevoll also had significantly higher Hg 

concentrations than males in Fanafjorden (inner station) (p<0.03).  

 

3.3 Consumption pattern and risk assessment 

3.3.1 Consumption pattern  

Consumption frequency of Nephrops for the interviewed fishers is shown in Figure 

3.10. The average number of Nephrops eaten per meal was approximately seven, with 

answers ranging from one to 15 Nephrops per meal. High consumers ate on approximately 12 

Nephrops per meal. When consuming Nephrops, 18 recreational fishers reported eating both 

the tail and the claws, eight people reported eating only tail meat, and seven fishers reported 

eating tail, claw meat and the brown meat of the head.  

 

Figure 3.10 Consumption frequency of Nephrops (N=33 total).  

 

 Eating fish for dinner was common among the recreational Nephrops fishers. 73% 

ate fish for dinner 2-3 times per week or more (Figure 3.11A). Fish for lunch was not equally 

popular. Twenty people ate fish for lunch less than once a week (60%) (Figure 3.11B).  
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Figure 3.11A Consumption frequency of fish for dinner the preceding three months.  

 

 

Figure 3.11B Consumption frequency of fish for lunch the preceding three months.  

3.3.2 Risk assessment 

Mean intake from all consumers was approximately 433 grams fish for dinner weekly 

and 42 grams fish for lunch weekly. The five highest consumers ate on average 620 grams 

fish for dinner weekly and 112 grams fish for lunch weekly. Mean concentration used for 

calculating intake from Nephrops was 100.9 µg/kg (n=235), and high concentration used was 

250.6 µg/kg (n=10, mean of 10 highest concentrations). Hg concentration in claw meat was 

calculated to 24% of the concentration in tail meat. 
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When considering total intake, including the contribution of MeHg from other seafood 

than Nephrops, there was no risk of exceeding the TWI for MeHg using average 

concentrations for Nephrops and other seafood, even considering high consumption rates with 

an intake of 78.6 µg Hg/week. Considering an average consumption of seafood with average 

concentration, it would be possible to consume up to 27 Nephrops tails weekly without 

exceeding TWI. If the Nephrops were high in Hg, it would be possible to consume up to ten 

Nephrops tails weekly without exceeding the TWI for MeHg. 

None of the recreational Nephrops fishers were at risk of exceeding the TWI for 

MeHg when only considering Hg from Nephrops consumption. Considering Hg intake from 

Nephrops only, 42 tails with average concentration or 17 with high Hg concentrations could 

be consumed weekly, without exceeding the TWI. 

Total seafood intake with high Hg concentrations in Nephrops and other seafood 

would exceed the TWI both with average consumption (intake of 135.6 µg Hg/week) and 

high consumption (intake of 216.9 µg/week). A combination of high consumption of other 

seafood with average concentrations (intake/exposure of 57.0 µg Hg/week), and high 

consumption of Nephrops with high Hg concentrations (intake/exposure of 53.5 µg Hg/week), 

would also exceed the TWI with approximately 6.5 µg (not shown in Table 3.4), with a 

weekly intake of 110.5 µg. According to the estimates, the average respondents in this study 

would only be in danger of exceeding TWI when consuming other seafood with high 

concentrations. Consumers with the highest intake of Nephrops may also exceed the TWI 

when consuming other seafood with average concentrations, if the Nephrops consumed have 

high Hg concentrations. 
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Table 3.4 Calculated total weekly mercury intake (µg) from consuming Nephrops, other seafood for lunch and 

dinner, including total intake from all seafood. Exposure considering both average and high concentration for 

Nephrops and other seafood, including average and high consumption rates is shown. Bold values indicate an 

exceeding of the TWI for a person of 80 kg (104 µg weekly)9. 

 Hg intake from Nephrops  

norvegicus  

Hg intake from other seafood 

for dinner and lunch 

Total Hg intake 

(Nephrops + other seafood) 

µg weekly Average 

concentration10 

High 

concentration11 

Average 

concentration12 

 

High 

concentration13 

 

Average 

concentration 

High 

concentration 

Average 

consumption 

8.9 

 

22.1 

 

39.2 

 

113.5 48.1 135.6 

High 

consumption14 

21.6 

 

53.5 

 

57.0 163.4 78.6 216.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
9 Calculated using TWI for MeHg (1.3 µg/kg body weight weekly). 
10 Calculated using the mean of all Hg concentrations measured in Nephrops (100.9 µg/kg). 
11 Calculated using the mean of ten highest Hg concentrations measured in Nephrops (250.6 µg/kg). 
12 Calculated using mean dinner (86 µg/kg). 
13 Calculated using max concentrations for dinner (257.5 µg/kg). 
14 Defined as the mean of the five consumers with the highest consumption. 
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4. Discussion 

This study found that recreational fishing for Nephrops is very popular in Hordaland, 

that the catches can be relatively high, and that recreational fishers consume their catch. None 

of the sampled Nephrops exceeded the maximum legal limit for Hg in commercially sold 

seafood (0.5 mg/kg wet weight) at any location. Even though Hg concentrations in Nephrops 

in Hordaland are generally low, some groups can be exposed to MeHg exceeding the tolerable 

weekly intake (TWI) with their total seafood intake. There were significantly higher Hg 

concentrations in female Nephrops compared to male Nephrops at the same size, including a 

difference in Hg concentrations between the locations. Some Nephrops exceeded 0.2 mg 

Hg/kg wet weight and should thus not be consumed by pregnant and lactating women (VKM, 

2006). Higher Hg concentrations in females explained by sex and size is supported by other 

studies on Nephrops (Barghigiani et al., 2000; Canli & Furness, 1993; Minganti et al., 1990). 

No immediate update in dietary guidelines is required to protect consumers. However, the 

consumers of recreationally captured Nephrops should be aware of the difference in Hg 

concentration between the sexes, and pregnant and lactating women should not consume large 

female Nephrops.  

 

4.1 Recreational fishing for Nephrops is popular 

Recreational fishing represented 18%-60% of all registered buoys in the surveyed 

fjords, and the recreational Nephrops fishery represented 24%-100% of recreational fishing in 

the surveyed fjords, which indicate that the fishery is popular and frequent. Although, the 

areas were selected based on water depth (>50 m) including information about buoys 

observed in deep waters (Ferter & Bjelland, 2017). Thus, the areas are not representative for 

all areas. The highest density of recreational Nephrops buoys (2 buoys per km2) was reported 

in Fanafjorden and Austevoll, both in round three of the surveys (July).  

  

4.1.1 Catch data and CPUE estimations 

In this study, the catch rates were relatively high, a broad size range was present in the 

catch (37-78 mm carapace length) and 70% of the recreational fishers reported releasing parts 

of their catch. The CPUE estimations indicated that Raunefjorden had a higher CPUE than the 

other locations, with a median catch of almost nine Nephrops per pot and haul. However, the 

small sample (n=2) is highly skewed due to an outlier where one fisher reported very high 
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catch (15 kg). Byfjorden had the second highest CPUE, of nearly 3 Nephrops per pot and 

haul, but only one observation. The fishing location in Byfjorden is in an area with low effort, 

most likely because it is within the area with specific dietary advice against consumption, 

near the port of Bergen (Figure 1.1), and it is likely not a popular fishing spot for Nephrops. 

The lowest median CPUE was estimated in Austevoll (n=7), which can possibly be explained, 

as this is also one of two locations with the highest density of recreational Nephrops buoys (2 

per km2). However, it is not possible to conclude whether there is an actual difference in 

CPUE between the different fjords due to low sample size and potential bias issues, like recall 

bias and prestige bias. The CPUE estimations are therefore purely indications. To test for 

potential differences in CPUE between fjords in Hordaland, more data is needed. 

In this study, the mean CPUE across all locations was 2.5, and the median 2.1 

Nephrops per pot. Results from 17 fishers reporting catch between 2012-2014 in Skagerrak 

estimated CPUE to 1.7 Nephrops per pot within the same time-period (August-September) 

(Kleiven et al., 2015). In other words, the CPUE estimated based on 31 fishers in the present 

study in Hordaland is likely higher.  

Another difference compared to the study in Skagerrak is the sex ratio. On average, 

58% of the catch over the entire sampling period in Skagerrak were males (Kleiven et al., 

2015), compared to 69% males in the present study. The difference in sex ratios can possibly 

be explained by seasonal variations. The sampling frame in this thesis was August-September, 

compared to an average sex ratio reported for the entire study period in Skagerrak. Average 

years spent fishing Nephrops was similar in Hordaland (3.83 years) and Skagerrak (4 years), 

which is low compared to average fishing years for European lobster (26 years) reported in 

the Skagerrak study (n=131). This suggests that the popularity of recreational Nephrops 

fishing may have increased in the recent years, as many of the recreational Nephrops fishers 

reported that they only recently started to fish Nephrops recreationally.  

 Considering the popularity for marine recreational fishing for Nephrops, further 

monitoring may be warranted. Catch diaries (log books) could provide information on 

catches, size distributions, sex ratios and percentage of egg-bearing females, to create a time 

series to follow CPUE between years. 

 

4.1.2 Release motivations: voluntary or regulatory 

Observations from this study suggest that recreational fishing for Nephrops using pots 

(creel fishing) is a highly species-specific fishery, as only one fisher reported catch of a 
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different species (Galathea strigosa). The results revealed that three-quarters of the fishers 

released a part of their last catch. An investigation of the release motivations revealed that 

seven of the fishers reported minimum legal length size as one of their reasons for releasing 

Nephrops. The most frequently reported release motivation was either “Too small” or 

“Females with roe”, which both are assessed as voluntary release motivations. Voluntary 

release motivations seem to be the most common, compared to regulatory release motivations 

such as minimum length size. Several fishers expressed concerns for the population and 

reported releasing females with roe as they rarely encountered them in their catch. However, 

it is known that the catch is dominated by males, as males dominate the largest size classes 

(Bell et al., 2006; de Figueiredo & Thomas, 1967), and egg-bearing females rarely leave their 

caves (Bakketeig et al., 2015; Bakketeig et al., 2017).  

A possible factor when releasing catch is possible unaccounted mortality. In general, 

however, the unaccounted mortality for Nephrops fishing is considered low for creel fisheries, 

especially as there is no harm inflicted on the animal itself, at least by the fishing gear. 

Additionally, the stress on creel-caught animals is reported to be limited (Ridgway et al., 

2006). However, some studies suggest that Nephrops might experience light-induced eye 

damage after as short as five minutes of exposure to light (Shelton et al., 1985) and recapture 

studies showed no recovery from retinal damage with time (Chapman et al., 2000; Gaten et 

al., 2013; Shelton et al., 1985). On the other hand, there was no evidence of lower growth 

rates, reproductive rates or survival rates in blind individuals, and they appeared to function 

equally well as fully-sighted individuals (Gaten et al., 2013).  

Several studies have evaluated the survival rate of discarded Nephrops from both creel 

and trawl fishery (Harris & Ulmestrand, 2004; Wileman et al., 1999; Ziegler & Valentinsson, 

2008). There is a consensus that Nephrops caught by creel fishing have a higher survival rate 

than those caught by trawl fishing (Bernasconi & Uglow, 2008; Méhault et al., 2016; 

Valentinsson & Nilsson, 2015; Ziegler & Valentinsson, 2008). Wileman et al. (1999) reported 

a 99% survival rate of Nephrops discarded from creel fishery. Similarly, Valentinsson & 

Nilsson (2015) reported a 97% survival rate of Nephrops discarded from creel fishery. 

However, survival studies usually take place in simulated environments (tanks) and do not 

account for natural predation, for example when sinking down to the seabed after release.  
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4.1.3 Recreational fisher’s perception of pollution in Nephrops in Hordaland 

All the respondents in this study believed the Nephrops had low contamination, and 

27% perceived the Nephrops as not contaminated at all. As the recreational fishers generally 

believed the Nephrops had low contamination and was safe for consumption, the perception 

of pollutants most likely did not influence the frequency of consuming Nephrops. This is a 

similar attitude as was found to be displayed by anglers in Lake Ontario, of whom 50% were 

slightly or not at all concerned that fish consumption could lead to potential health risks 

(Knuth et al., 2003), while 47% of urban anglers from a New York study reported that they 

thought fish from local waters were safe to eat (Pflugh et al., 1999). Fifteen percent of 

recreational fishers answered “I don’t know” regarding whether or not the Nephrops from 

their local area is polluted, which is the same as respondents reporting “I don’t know” 

regarding the safety of consuming fish in New York (Pflugh et al., 1999).  

No correlations were observed between age or education and perception on pollutants 

in the present study. Contradictory, a study on general food awareness and consumer concerns 

in Norway revealed differences in how various sub-groups relate to food and health, and that 

these differences depend on their heritage, education, age, sex or social status (Wandel, 1994). 

However, Wandel (1994) concluded that men were less concerned than women, and this 

study only included one female recreational fisher. 

 

4.2 Mercury concentrations in Nephrops tail muscle  

The results revealed significantly higher Hg concentrations in female Nephrops 

compared to male Nephrops at the same size, and there was a clear connection between size 

and Hg concentration, both for females and males (Figure 3.8). A significant interaction term 

between sex and size means that size and sex cannot be treated separately. The results also 

revealed statistically significant differences in Hg concentrations between locations (Figure 

3.9). However, as the Hg concentration at all locations were low, there is no reason to 

establish fishing recommendations regarding area. 

None of the analyzed Nephrops exceeded the maximum legal limit for Hg (0.5 mg/kg 

ww). The results of the consumption data and the measured Hg concentrations indicate no 

need for dietary guidelines for the consumers of recreationally captured Nephrops.  

The mean Hg concentrations for males (0.08±0.03 mg/kg ww) and females (0.14± 

0.07 mg/kg ww) were lower than observed in Hardangerfjorden, both in Kvam (0.5 ± 0.13, 
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n=10) and in Rosendal (0.2± 0.03, n=10). However, Hardangerfjorden is known as an area 

with an exceptionally high Hg contamination (Måge et al., 2012). The measured Hg 

concentrations were also low compared to Nephrops from the Adriatic Sea, where 46% of 

individuals exceeded the maximum legal limit (Perugini et al., 2009), and in the Northwestern 

Mediterranean Sea where 23% exceeded the maximum legal limit (Cresson et al., 2014). 

The approximately four times higher Hg concentrations in the tail muscle compared to 

the claw muscle of Nephrops is a rather surprising finding. One possible reason could have 

been a lower dry matter content in the claws, but since the measured dry matter content in the 

tail muscle (21%) was comparable to the dry matter content in claw muscle (18%), this cannot 

be the explanation. Måge et al. (2012) reported Hg concentrations in claw muscle to 45% of 

Hg concentration in tail muscle in European Lobster in Hardangerfjorden (n=5). However, the 

study did not propose an explanation for the findings (Måge et al., 2012). No other studies 

have been found to address this phenomenon, and further research is warranted.  

The increase in Hg with size was significantly steeper for females compared to males 

(Appendix V, 6.1, interaction between carapace length and sex, p < 0.001, Figure 3.8). The 

same patterns have been observed in Nephrops in the Ligurian sea (Minganti et al., 1990), 

outside Scotland (Canli & Furness, 1993) and in the Tyrrhenian sea (Baldi, 1984; Barghigiani 

et al., 2000). The steeper increase of Hg with size in females can be explained by the biology 

of the species. After maturity, the female’s growth rate decreases, and moulting reduce, from 

three or four times a year to approximately one per year (Bell et al., 2006). This means that 

females are generally older than males at the same size.  

Differences in Hg concentrations by sex have also been observed in other crustaceans 

(Barrento et al., 2009; Bu-Olayan et al., 1998; Elahi et al., 2012). Elahi et al. reported 

significantly higher Hg concentrations in females in a species of shrimp (Penaeus 

semisulcatus) in the Persian Gulf. Bu-Olayan et al. (1998) reported significantly higher 

muscle Hg concentration in female individuals compared to males of a species of lobster 

(Thenus orientalis) in Kuwait. Barrento et al. (2009) studied the accumulation of several 

elements in different tissues of brown crab captured outside Scotland and in the English 

Channel. The study concluded that Hg concentrations seemed to be mostly influenced by sex 

and type of tissue, and that total Hg concentrations were generally higher in all tissues of 

female crabs compared to males. 

The linear model which included location revealed a location-dependent difference in 

mean Hg concentrations between sexes. For example, the distance (difference in intercept) 

between the regression lines for males and females in Radfjorden is smaller than in 
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Raunefjorden (Figure 3.9). However, the different slopes for males and females are the same 

for all locations (Figure 3.9), i.e., there was no statistically significant three-way interaction 

between location, sex, and size. The regression lines in Figure 3.9 fits the data nicely at all 

locations, except the outer station at Fanafjorden. The variation in Hg concentration in males 

in Fanafjorden (outer station) is considerably larger than other locations, which leads to a 

higher degree of uncertainty if the regression line is used for predictions in Fanafjorden (outer 

station). However, the residuals are small for all the other locations, and the regression can 

therefore be used to predict Hg concentrations in captured individuals at the different 

locations, if sex and size of the Nephrops are known.  

The Nephrops in Radfjorden had the lowest mean Hg concentrations. This finding fits 

well with our assessment of Radfjorden as a low contamination area. Hauglandsosen was 

assessed as somewhat polluted based on distance to industrial areas and former waste disposal 

areas. No difference was found between Hauglandsosen Ågotnes and Hauglandsosen 

Hetlevik, even though Hauglandsosen Hetlevik is closer to Hanøytangen, Horsøy, and 

Kollevågen. Fanafjorden was assessed as possibly contaminated by a freshwater stream with 

high Hg concentrations with run-off into the inner part of the fjord. However, Hg 

concentrations were significantly higher in Nephrops from Fanafjorden (outer station) 

compared to Fanafjorden (inner station). This suggests that Hg concentrations are not 

necessarily explained by distance to the contamination sources, but the methylation rate of Hg 

might play a role. Hg methylation is influenced by the speciation and biochemical availability 

of Hg, but also several, possibly interrelated, environmental variables (Ullrich et al., 2001). 

The methylation process and production rate of MeHg are not clearly understood, however, it 

is suggested to be determined by several complex interactions between nutrient availability, 

temperature, pH, biological activity and redox potential (Ullrich et al., 2001). 

 

4.3 Risk assessment of methylmercury intake from Nephrops including other seafood  

The present study confirmed that recreational fishing for Nephrops is popular and that 

the catch rates are high (mean 2.5 Nephrops per pot). The gathered consumption data 

confirmed that consuming Nephrops is common, with an average of 7 Nephrops consumed 

per meal, and on average two Nephrops meals per month. However, the mean Hg 

concentration in the measured tail muscle and claw muscle were generally low, and the risk of 

exceeding TWI for MeHg by consuming Nephrops is low. Some large female Nephrops 
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exceeded 0.2 mg/kg (ww), including two males, and should not be consumed by pregnant and 

lactating women (VKM, 2006). The study confirmed that many of the recreational fishers are 

frequent consumers of other types of seafood, and fish for dinner 2-3 times per week was the 

most common frequency of consumption. Fish for lunch was not equally popular, and the 

most common eating frequency of fish for lunch was less than once a week. Even though the 

questionnaire on fish consumption for dinner and lunch did not provide information about 

species-specific consumption patterns, it indicated that some recreational fishers could exceed 

the TWI for MeHg considering their total consumption of seafood. 

 

4.3.1 Consumption pattern and risk assessment  

The obtained Hg concentrations in Nephrops and the reported consumption habits 

showed that none of the recreational Nephrops fishers exceed the TWI for MeHg by 

consuming Nephrops. However, considering intake from other seafood sources might put 

some consumers at risk of exceeding TWI for MeHg. Moreover, the risk is associated with 

frequency and species consumed. The recreational Nephrops fishers ate on average 62 grams 

of fish for dinner daily, compared to 54 grams daily in the high consumer group in the 

Norwegian Fish and game study part C (Mangerud, 2005). Consumption of fish for lunch was 

on average 6 grams daily, which is lower than reported in Mangerud (2005) (mean 33 grams 

daily). However, Mangerud (2005) included a total of eight questions regarding fish for lunch 

compared to only one question in this study, and studies show that people tend to 

overestimate when too many choices are available in food frequency questionnaires (Cade et 

al., 2002). Mangerud (2005) also discussed the possibility of this value being overestimated. 

As no other data is available for recreational Nephrops fishers, it is not possible to assess if 6 

grams daily is over- or underestimated. However, it is evident that fish for lunch contributes 

very little to MeHg intake in almost all recreational Nephrops fishers in the sample. Eating 

fish for dinner was more common than eating fish for lunch among the recreational Nephrops 

fishers, and recreational Nephrops fishers seem to have a higher, but similar intake of fish for 

dinner compared to a high consumer group of seafood (Mangerud, 2005). 

Jenssen et al. (2012) estimated dietary Hg exposure among fish-consumers in Norway 

using food frequency questionnaires and total Hg concentrations in marine and freshwater fish 

compiled from other studies. Samples expected to be impacted by local pollution or from 

areas with known point sources were excluded. The study also measured Hg in blood and 

urine in the fish-consumers (Jenssen et al., 2012). The mean dietary intake was estimated to 



53 
 

be 74 grams daily, which is slightly higher than in the present study. Using the estimated 

dietary Hg intake, Jenssen et al. (2012) modeled blood Hg concentrations based on dietary 

seafood intake and compared them to the measured values. The highest blood Hg 

concentrations were found in consumers with a high portion of recreationally obtained 

seafood. For these consumers, the modeling of blood Hg concentrations underestimated 

exposure, perhaps because these consumers ate fish captured closer to the shore with possibly 

higher Hg concentrations (Jenssen et al., 2012). Locally captured seafood often has higher Hg 

concentrations near harbors, and values may differ substantially from the same species 

captured in open water (Måge & Frantzen, 2009). The amount of self-caught seafood was 

deemed an important determinant in Hg exposure (Jenssen et al., 2012). This demonstrates the 

importance of using Hg concentrations in species from the local area when estimating Hg 

intake for recreational fishers. The unique thing about the present study is that it analyzed 

actual catch from recreational Nephrops fishers, which provides confidence in the estimates 

and the conclusion that the consumption of recreationally captured Nephrops is safe in the 

reported eating frequency. More uncertainty is related to the estimates of total MeHg intake 

from fish for dinner and lunch as the Hg concentrations used in the calculations are not from 

locally captured fish. However, the mean and high concentrations used provide information 

that can be used by recreational fishers to assess their own risk of exceeding TWI. For 

example, the high concentration used for fish for dinner is close to mean Hg concentrations 

reported in cod (0.3 mg/kg ww) (Måge & Frantzen, 2008) and ling (0.22 mg/kg ww) outside 

Bergen (Måge & Frantzen, 2009). More information regarding species consumed and 

proportion of self-caught fish is needed to assess the risk of exceeding TWI for MeHg from 

total seafood intake more accurately for recreational fishers in general. For example, if the 

recreational Nephrops fishers also consume bottom-feeding fish such as tusk and ling 

associated with high Hg concentrations (Beylich & Ruus, 2011; Måge & Frantzen, 2009) or 

capture fish within the area for the dietary advice in the port of Bergen, the risk of exceeding 

TWI will increase significantly. 

Based on the present findings, the recreational Nephrops fishers seem to be part of a 

group of high consumers of fish and other seafood. More data is needed on the recreational 

fishery and associated consumption patterns on other species, especially consumption patterns 

for bottom-feeding fish such as tusk and ling. Ideally, hair or blood Hg samples should be 

sampled to assess the risk more accurately for other recreational fishers. A study similar to 

Lincoln et al. (2011) would provide more information about the risk of exceeding TWI by 

consumption of self-caught seafood in Hordaland, by evaluating hair Hg concentrations. 
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4.3.2 Consumption pattern and risk assessment regarding the families of the recreational 

fishers 

Although none of the Hg concentrations measured in Nephrops exceeded the 

maximum legal limit of 0.5 mg/kg (ww), 23 of 235 Nephrops exceeded the limit set for 

pregnant and lactating women (0.2 mg/kg ww). Pregnant consumers may also exceed TWI 

when consuming Nephrops in combination with other seafood with Hg concentrations 

considered safe. 

Consumption of 200 grams of Nephrops meat with high Hg concentrations (250 

µg/kg, or 0.25 mg/kg) would contribute with 64% to the TWI for a person of 60 kg. 

Exceeding the TWI on a regular basis is therefore likely if the consumer also eats other types 

of seafood. As the fetus and infants are particularly sensitive to potential damages to the 

central nervous system, it is especially important to stay below TWI for pregnant and 

lactating women. Studies on low doses of prenatal MeHg exposure suggested that it might 

lead to long-term negative health impacts (Debes et al., 2006; Debes et al., 2016; Grandjean et 

al., 1997; Lam et al., 2013; Oken et al., 2005). Debes et al. (2006, 2016) and Grandjean et al. 

(1997) studied MeHg exposure in the same birth cohort in the Faroe Islands at age 7, 14 and 

22. The most severe deficits were observed in motor speed, attention and language at 7 and 14 

years of age (Debes et al., 2006), but cognitive deficits associated with prenatal MeHg from 

maternal seafood remained detectable 22 years after birth (Debes et al., 2016). Oken et al. 

(2005) also concluded that higher Hg concentrations during pregnancy were associated with 

lower cognition in infants. However, the study also reported improved cognition in infants 

associated with increased fish consumption (Oken et al., 2005). 

Consumers should bear in mind that tolerable weekly intakes have safety margins and 

several studies have not found evidence of any adverse cognitive effects from MeHg even in 

populations with frequent fish consumption. For example, several studies from the Seychelles 

showed no evidence of adverse effects in children whose mothers consumed on average 12 

fish meals per week with mean Hg concentrations of 0.3 mg/kg (Matthews, 1983; Myers et 

al., 2003; Shamlaye et al., 2004; Van Wijngaarden et al., 2013). Van Wijngaarden et al. 

(2013) rather suggested improved performance for some cognitive endpoints possibly 

associated with essential nutrients in fish. Nutrients in fish have been suggested to mask 

effects of Hg, as omega-3 fatty acids, vitamin D, and iodine might have beneficial effects 

(Mergler et al., 2007). Selenium might additionally help neutralize Hg toxicity (Oken et al., 

2016). A possible interaction between selenium and Hg has been suggested to partly account 



55 
 

for the conflicting results from the Faroe Islands and Seychelles regarding cognitive deficits 

associated with prenatal Hg intake (Raymond & Ralston, 2004).  

Several studies assessing Hg concentration in seafood also investigated Hg intake for 

fishers and their families (Al-Majed & Preston, 2000; Cheng et al., 2009; Gaggi et al., 1996). 

Al-Majed & Preston (2000) concluded that fishers in Kuwait had significantly higher hair Hg 

concentrations than a control group. Cheng (2009) did not compare against a control group 

but revealed higher hair Hg concentrations in fishers in China compared to the Kuwaiti 

fishers. As TWI is based on body weight, children may have increased risk of exceeding TWI 

by having a lower body weight. If a child of 40 kg consumes 200 grams of Nephrops tail meat 

with high Hg concentrations weekly, it will likely exceed the TWI. 

Another important aspect when considering the risk associated with Hg in seafood is 

cooking methods. Perugini et al. (2016) showed increased Hg concentrations in cooked 

samples of Nephrops compared to raw samples. Increased Hg concentrations after cooking 

have also been shown in other fish and shellfish (Costa et al., 2016). According to Perugini et 

al. (2016) it is possible to underestimate Hg concentrations in shellfish due to a thiol-group 

and protein affinity, as Hg is known for its strong affinity to proteins (Harris et al., 2003). 

Ouédraogo & Amyot. (2011) indicated that cooking did not significantly increase Hg 

concentrations in fish tissue. However, the study concluded that cooking methods reduced Hg 

bioaccessibility with 40-60% compared to raw fish (Ouédraogo & Amyot, 2011). It has been 

suggested that boiling or frying processes could change Hg bioaccessibility by altering 

mineral content and protein structure (Burger et al., 2003; Maulvault et al., 2011). How 

recreational fishers prepare Nephrops might, therefore, affect the Hg concentrations in the 

Nephrops. In this thesis, the muscle samples were analyzed raw. In future studies, attention 

should be raised to gain knowledge about how cooking processes affect Hg concentration, as 

this could have significant implications for the risk from Hg (Perugini et al., 2016).  

The highest Hg concentrations were measured in female Nephrops, and although sex 

is rarely included in dietary advice (Gewurtz et al., 2011), consumers should take notice of 

sex when consuming Nephrops. The present study also revealed that recreational fishers are 

frequent consumers of other types of seafood, which can lead to exceeding TWI for MeHg 

with their total consumption of seafood. Even if the risk of exceeding the TWI for MeHg by 

Nephrops consumption is low, other pollutants must also be considered when assessing the 

risk for consumers. Several studies have conducted analyses for other pollutants in Nephrops 

(Bodin et al., 2007; Förlin et al., 1996; Måge et al., 2012; Perugini et al., 2004). Måge et al. 

(2012) reported values below EUs maximum legal limit for cadmium and lead in Nephrops 



56 
 

from Kvam and Rosendal. Bodin et al. (2007) investigated PCB, PCDD/F and PBDE values 

in several crustacean species and concluded that none exceeded the maximum limits. The 

same conclusion was reached by Perugini et al. (2004), where no crustacean samples 

exceeded the maximum legal limit for PCBs. Forlin et al. (1996) reported higher 

concentrations of the neurotoxin manganese in gill and hemolymph of Nephrops from 

Kattegat and Skagerrak compared to the Faroe Islands. All in all, the studies suggest that 

other contaminants seem to be of minor importance for Nephrops. 

 

4.4 Survey choices and data bias issues 

4.4.1 Survey mapping standing gears 

In the survey mapping standing gears, some anchor buoys or warning buoys in shallow 

waters may have been sampled and assumed to be unidentifiable fishing gear. However, effort 

was put into avoiding this, and these errors should be limited. Additionally, some recreational 

fishers use multiple types of gear at the same time and may not remember exactly the kind of 

gear they had in use on a specific location and date in retrospect. This may have led to some 

fishing gear being put in the wrong category in the field (maps, Appendix VII). However, the 

goal of the follow-up phone survey was mainly to get in touch with recreational Nephrops 

fishers, and therefore, it did not necessarily matter which type of fishing gear that was 

observed in the survey mapping standing gears. Errors regarding wrong identification of 

fishing gear by the fisher in the follow-up phone survey are assumed to be limited in this 

survey, as the phone call was conducted at the latest 23 days after observation in the field. 

However, for one of the recreational Nephrops fishers, it was later noticed that the buoys 

observed in the field were of a gillnet, rather than Nephrops pots.  

 

4.4.1.1 Recreational Nephrops fishers: sample representativeness  

The short sampling timeframe might have affected the representativeness of the 

participants in the study, especially since those who fish more frequently have a greater 

possibility of being in the sample, a term called avidity bias (Pollock et al., 1994). Thus, 

respondents with a high degree of experience might be overrepresented in the sample of 

recreational fishers. Ideally, sampling should have been conducted several times over an 

entire year to ensure representativeness of the sample. However, as no information about 

recreational Nephrops fishers is available, it is impossible to assess the representativeness of 
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the sample. Although, a larger sample size would have increased confidence in the sample of 

recreational Nephrops fishers and perhaps made generalization of the findings possible.  

The sample of recreational Nephrops fishers is also affected by possible bias from the 

people not possible to get in touch with during the first phone-survey. Although, the lowest 

percentage of achieved contact was 83% (round 3), which still can be considered high. Out of 

95 recreational fishers in the final sample, it was not possible to retrieve contact information 

for eight fishers using information from the buoys on the websites. Additionally, 12 fishers 

did not answer the phone during the entire project. In other words, the sample does not seem 

profoundly affected by this type of bias. However, it is not possible to rule out a potential 

difference between the fishers that answered the phone, and the ones that did not. The sample 

of recreational Nephrops fishers is also affected by nonresponse bias (Pollock et al., 1994). 

However, considering that only one fisher did not want to participate in the project 

nonresponse bias is considered minimal in this study.  

 

4.4.1.2 Catch and CPUE related limitations 

According to Pollock et al. (1994), catch data collected using off-site methods is 

unlikely to provide accurate and representative data. In general, it is recommended to inspect 

catch, rather than rely on angler-reported information, as it is associated with a significant 

degree of uncertainty (Mallison & Cichra, 2004). However, inspection of the catch is 

impractical when dealing with recreational fishing from passive fishing gears, as it is unlikely 

to encounter hauling in field surveys by chance. Besides, Norway does not have a countable 

number of access-points where it is possible to inspect the catch after a completed trip. This 

makes off-site methods such as interviews or catch diaries the best alternative to gain 

information about the fishery. Catch diaries and interviews have been implemented with 

success in several studies (Kleiven, 2010; Kleiven et al., 2012; Strehlow et al., 2012). 

The effects of recall bias and prestige bias should also be considered for the CPUE 

calculations in this survey. Recall bias occurs when respondents fail to recall their catch 

accurately (Tarrant & Manfredo, 1993). Prestige bias, on the other hand, occurs when 

respondents exaggerate number and size of fish caught (Pollock et al., 1994). In this survey, 

the respondents were explicitly asked for the last catch, rather than catch from a specific time-

period in attempts of limiting recall bias. Furthermore, the catch data was reported by fishers’ 

maximum six weeks after catch, most frequently within the last two weeks of catch. 

Consequently, problems with remembering catch should be limited. In addition, the likelihood 
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of remembering the number of landed individuals has been suggested to increase for species 

with a minimum length size, as that requires measuring of the catch (Mallison & Cichra, 

2004). Prestige bias might have influenced the catch data to some degree. One fisher reported 

a catch significantly higher than all other catches (15 kg), which led to a CPUE estimation of 

15.9 Nephrops per pot and haul, which is significantly higher than all other CPUE 

estimations. 

In this study, all catch data was collected through phone interviews, except the one in 

Byfjorden. The landed catch in Byfjorden was inspected, and the fisher reported the release 

directly after the catch, as the reported catch was the same as the ones utilized for the Hg 

analyses. The catch in Byfjorden is validated, however, the small sample size for several 

locations makes the CPUE calculations vulnerable to possible outliers. Additionally, some 

inaccuracy is related to the conversion of the catch from kg to number of Nephrops caught, 

but this inaccuracy is assumed to be limited as there is no reason to believe that data from the 

Norwegian reference fleet (length-weight key, Appendix VI) is not comparable to our data. 

 

4.4.2 Questionnaire 

The primary challenge regarding food frequency questionnaires is an overestimation 

of consumption rates. If the questionnaire contains too many questions, the respondents might 

overestimate or get tired, which is called "respondent fatigue" (Hess et al., 2012). 

Additionally, the questions might be difficult to understand, or the survey might not contain 

an answer that fits their situation. However, respondent fatigue should not be of vital 

importance in this project as the questionnaire only included 20 questions. It was attempted to 

keep the questionnaire as short and precise as possible. Furthermore, the respondent did not 

have to answer the questionnaire on their own but had the possibility of asking questions and 

providing options that fit better with their situation if the option was not already available.  

Overestimations in food frequency questionnaires can especially occur if the food item 

in question is considered healthy, and seafood is most likely considered healthy by the 

respondents (Birgisdottir et al., 2008). The term is called social desirability bias or social 

approval bias, where respondents answer to obtain approval or to avoid criticism 

(Kowalkowska et al., 2013). On the other hand, over-reporting is more frequent when asked 

about consumption frequency for several species and seafood products, as recall leads to over-

reporting on low intakes (Gersovitz et al., 1978; Madden et al., 1976). Estimating food 

frequency using summary questions like in the present study, have shown a strong correlation 
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with estimations using more detailed questionnaires. Markhus et al. (2013) reported a strong 

correlation between seafood consumption frequencies from summary questions and more 

detailed food frequency questionnaires when accounting for over-reporting in the detailed 

questionnaire by using the lowest or middle point value. The uncertainty associated with the 

reported seafood consumption frequencies should therefore be minor. However, a question 

regarding fish consumption other than for lunch or dinner would have increased the 

confidence in the estimates even further, as several fishers reported eating crab or other 

seafood for example in the evenings, as a snack before bed (kveldsmat). This information was 

not used for the risk assessment, as just a few fishers gave the information by their initiative 

and not all participants were explicitly asked. In hindsight, information about fish 

consumption other than for lunch and dinner, the three most frequently consumed species for 

dinner and the proportion of consumed fish that is self-caught should have been included in 

the questionnaire, as that would have been useful when selecting fish species for the risk 

assessment.  

 

4.4.3 DMA-80 

The measured content of total Hg in the certified reference material Tort-3 was rather 

low, but acceptable in this study because the mean value of the reference material was within 

two standard deviations. Certified reference materials are used to assess the accuracy of a 

method as the concentration of a pollutant in the reference material is known to be within a 

certified range (Harris, 2010).  

Another evaluation of the accuracy of the result is the methods measurement 

uncertainty (Menditto et al., 2007). The measurement uncertainty for the DMA-80 is 20% and 

provides information about how reliable the results are. In theory, the measured values can be 

20% higher or 20% lower. However, as the results show relatively low Hg concentrations this 

uncertainty is of limited importance for the risk assessment. Furthermore, the measurement 

uncertainty of 20% is dependent on the homogeneity of the sample (NIFES, 2015). 

Homogenization is another aspect that possibly can contribute with uncertainty when using 

DMA-80. Poor homogenization can result in greater variability in measurements from the 

same sample (Bloom, 1992). Therefore, the samples were homogenized thoroughly, and 

considerable effort was spent to ensure that the weighed-in samples were as homogenous as 

possible, to not further add uncertainty to the measurement.  
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4.4.4 Risk assessment  

As this study did not provide information about consumption rates of other seafood 

species, there is uncertainty with the estimates. Additionally, Hg concentrations from 

sjømatdata.no were used for the intake estimations of fish for dinner and lunch, instead of 

conducting analyses on other species captured by recreational fishers as well. Only the 

consumption rate of fish for dinner and lunch was obtained in this thesis, which leads to a 

large degree of uncertainty associated with the intake calculations as no information about 

consumption patterns for fish species or Hg concentrations in the consumed fish species are 

available. However, the goal was to evaluate if the recreational fishers were at risk for 

exceeding the TWI for MeHg by consumption of Nephrops, and additionally assess if they 

might be a highly exposed subgroup of the population with increased intake of seafood. Using 

the obtained data, it is not possible to provide accurate estimates of total Hg intake from all 

seafood. However, both mean and high values for fish for dinner were used, which provides 

information that can help recreational fishers assess their approximate Hg intake based on 

their intake of self-caught fish and possible intake of fish species known to be high in Hg 

around Bergen, such as tusk and ling (Måge & Frantzen, 2008).  

Standard portion sizes were used in the risk assessment estimations to simplify the 

interview and because studies show that respondents have difficulties estimating accurate 

portion sizes themselves (Cade et al., 2002). A low degree of uncertainty is assumed to result 

from the standard portion size.  

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

4.5 Conclusions and recommendations 

Recreational fishing represented 18%-60% of all registered buoys in the surveyed 

fjords, while recreational fishing for Nephrops represented 24%-100% of recreational fishing, 

which indicates that this fishing is popular and widespread in Hordaland. The catches of 

Nephrops are relatively high (mean CPUE 2.5 Nephrops per pot and haul), and recreational 

fishers consume on average seven Nephrops, every other week. Hg concentrations in 

Nephrops were generally low, but 23 of 235 Nephrops exceeded 0.2 mg/kg (ww), which is 

above the limit for pregnant and lactating women (VKM, 2006). Consumers should be aware 

that female Nephrops have higher Hg concentrations than male Nephrops of the same size. 

Sex of species is usually not a part of fish consumption advisories, however, knowledge about 

how sex affects Hg concentrations might help recreational fishers assess Hg exposure risk, as 

shown in the present study. A difference in Hg between the locations was also observed, but 

there is no need for location specific guidelines due to the generally low Hg concentrations. 

Even though consumption rates are high, the recreational fishers in this study are not at risk of 

exceeding TWI for MeHg from consuming Nephrops. However, the risk of exceeding TWI 

for MeHg cannot be dismissed for high consumers of seafood. Seventy percent of recreational 

Nephrops fishers ate fish for dinner 2-3 times per week, which indicates that they are part of a 

group of high consumers of seafood. Information about consumption rates for fish species 

would make it possible to assess the risk of exceeding TWI for MeHg from total seafood 

intake more accurately. Future studies should attempt to evaluate the risk of exceeding the 

TWI for MeHg for larger groups of recreational fishers, possibly by conducting hair Hg 

analyses, as this study supports findings that suggest that recreational fishers might be a 

exposed subgroup with high consumption of seafood. Information about species-specific 

consumption rates, amount of self-caught fish consumed, fishing areas, perception of 

contaminants and knowledge regarding dietary advice is recommended for assessing risk in 

future studies. 

  

 

 



62 
 

5. Reference list 

 

AAS, Ø. (2010). Barns fritid, friluftsliv og fiskevaner. En undersøkelse blant 5. - 9. klassinger 

i Harstad, Steinkjer og Engerdal. NINA Oppdragsmelding 181, p. 1-41 

 

AGUSA, T., KUNITO, T., IWATA, H., MONIRITH, I., TANA, T. S., SUBRAMANIAN, A., 

& TANABE, S. (2005). Mercury contamination in human hair and fish from 

Cambodia: levels, specific accumulation and risk assessment. Environmental 

Pollution, 134, p. 79-86.  

 

AIREY, D. (1983). Total mercury concentrations in human hair from 13 countries in relation 

to fish consumption and location. Science of The Total Environment, 31, p. 157-180.  

 

AL-MAJED, N., & PRESTON, M. (2000). Factors influencing the total mercury and methyl 

mercury in the hair of the fishermen of Kuwait. Environmental Pollution, 109, p. 239-

250.  

 

ARECHIGA, H., & ATKINSON, R. (1975). The eye and some effects of light on locomotor 

activity in Nephrops norvegicus. Marine Biology, 32, p. 63-76.  

 

BAIRD, C., & CANN, M. (2012). Environmental Chemistry (5 ed.), New York, Freeman.  

 

BAKKETEIG I.E., GJØSÆTER H., HAUGE M., SUNNSET B.H., & TOFT K.Ø. (2015). 

Havforskningsrapporten 2015. Fisken og havet, særnr. 1–2015, p. 220.  

 

BAKKETEIG I.E., HAUGE M., & KVAMME C,. (2017). Havforskningsrapporten 2017. 

Fisken og havet, særnr. 1–2015, p. 100. 

 

BALDI, F. (1984). THE BIOGEOCHEMICAL CYCLE OF MERCURY IN THE 

TYRRHENIAN SEA. FAO Fisheries report No. 325 Supplement, p. 29-43.  

 

BANK, M. S., CHESNEY, E., SHINE, J. P., MAAGE, A., & SENN, D. B. (2007). Mercury 

bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of 

Mexico. Ecological Applications, 17, p. 2100-2110.  



63 
 

 

BARGHIGIANI, C., RISTORI, T., BIAGI, F., & DE RANIERI, S. (2000). Size related 

mercury accumulations in edible marine species from an area of the Northern 

Tyrrhenian Sea. Water, air, and soil pollution, 124, p. 169-176.  

 

BARRENTO, S., MARQUES, A., TEIXEIRA, B., CARVALHO, M. L., VAZ-PIRES, P., & 

NUNES, M. L. (2009). Accumulation of elements (S, As, Br, Sr, Cd, Hg, Pb) in two 

populations of Cancer pagurus: ecological implications to human consumption. Food 

and Chemical Toxicology, 47, p. 150-156.  

 

BELL, M., REDANT, F., & TUCK, I. (2006). Nephrops species. Lobster Biology, 

Management, Aquaculture and Fisheries. Oxford Blackwell publishing, 13, p. 412-

461.  

 

BERG, T., FJELD, E., STEINNES, E., & SKJELKVÅLE, B. L. (2003). Relativ betydning av 

nasjonale metallutslipp i forhold til avsetning fra atmosfærisk langtransport og 

naturlige kilder. Kjeller: Norsk institutt for luftforskning, p. 80. 

 

BERNASCONI, C., & UGLOW, R. (2008). Effects of emersion and re-immersion on 

physiological and immunological variables in creel-caught and trawled Norway 

lobster Nephrops norvegicus. Diseases of Aquatic Organisms, 81, p. 241-247.  

 

BEYLICH, B., & RUUS, A. (2011). Overvåking av miljøgifter i dypvannsfisk. Oslo: Norsk 

Institutt for Vannforskning (NIVA), p. 67.  

 

BIRGISDOTTIR, B., KIELY, M., MARTINEZ, J., & THORSDOTTIR, I. (2008). Validity of 

a food frequency questionnaire to assess intake of seafood in adults in three European 

countries. Food control, 19, p. 648-653.  

 

BJÖRNBERG, K. A., VAHTER, M., GRAWÉ, K. P., & BERGLUND, M. (2005). Methyl 

mercury exposure in Swedish women with high fish consumption. Science of The 

Total Environment, 341, p. 45-52.  

 



64 
 

BJÖRNBERG, K. A., et al. (2003). Methyl mercury and inorganic mercury in Swedish 

pregnant women and in cord blood: influence of fish consumption. Environmental 

Health Perspectives, 111, p. 637-641.  

 

BLOOM, N. S. (1992). On the chemical form of mercury in edible fish and marine 

invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, p. 1010-

1017.  

 

BODIN, N., ABARNOU, A., FRAISSE, D., DEFOUR, S., LOIZEAU, V., LE GUELLEC, 

A.-M., & PHILIPPON, X. (2007). PCB, PCDD/F and PBDE levels and profiles in 

crustaceans from the coastal waters of Brittany and Normandy (France). Marine 

Pollution Bulletin, 54, p. 657-668.  

 

BOISCHIO, A. A., & HENSHEL, D. S. (1995). Risk assessment of mercury exposure 

through fish consumption by the riverside people in the Madeira Basin, Amazon, 

1991. Neurotoxicology, 17, p. 169-175.  

 

BU-OLAYAN, A., MOHAMMED, H., SUBRAHMANYAM, M., & THOMAS, B. (1998). 

Effect of size upon metal content of lobster (Thenus orientalis) from the Kuwait 

marine environment. Bulletin of Environmental Contamination and Toxicology, 61, p. 

175-181.  

 

BURGER, J., DIXON, C., BORING, S., & GOCHFELD, M. (2003). Effect of deep-frying 

fish on risk from mercury. Journal of Toxicology and Environmental Health Part A, 

66, p. 817-828.  

 

BURGER, J., GOCHFELD, M., JEITNER, C., BURKE, S., STAMM, T., SNIGAROFF, R., 

SNIGAROFF, D., PATRICK, R., & WESTON, J. (2007). Mercury levels and 

potential risk from subsistence foods from the Aleutians. Science of The Total 

Environment, 384, p. 93-105.  

 

BUZINA, R., SUBOTIČANEC, K., VUKUŠIĆ, J., SAPUNAR, J., ANTONIĆ, K., & 

ZORICA, M. (1989). Effect of industrial pollution on seafood content and dietary 

intake of total and methylmercury. Science of The Total Environment, 78, p. 45-57.  



65 
 

 

CADE, J., THOMPSON, R., BURLEY, V., & WARM, D. (2002). Development, validation 

and utilisation of food-frequency questionnaires–a review. Public health nutrition, 5, 

p. 567-587.  

 

CANLI, M., & FURNESS, R. (1993). Heavy metals in tissues of the Norway lobster 

Nephrops norvegicus: effects of sex, size and season. Chemistry and Ecology, 8, p. 19-

32.  

 

CARRINGTON, C. D., & BOLGER, M. P. (2002). An exposure assessment for 

methylmercury from seafood for consumers in the United States. Risk Analysis, 22, p. 

689-699.  

 

CHAPMAN, C., SHELTON, P., SHANKS, A., & GATEN, E. (2000). Survival and growth of 

the Norway lobster Nephrops norvegicus in relation to light-induced eye damage. 

Marine Biology, 136, p. 233-241.  

 

CHENG, J., GAO, L., ZHAO, W., LIU, X., SAKAMOTO, M., & WANG, W. (2009). 

Mercury levels in fisherman and their household members in Zhoushan, China: impact 

of public health. Science of The Total Environment, 407, p. 2625-2630.  

 

CLARKSON, T. W. (2002). The three modern faces of mercury. Environmental Health 

Perspectives, 110, p. 11-23. 

 

CLARKSON, T. W., & MAGOS, L. (2006). The toxicology of mercury and its chemical 

compounds. Critical reviews in toxicology, 36, p. 609-662.  

 

COOKE, S. J., & COWX, I. G. (2004). The role of recreational fishing in global fish crises. 

BioScience, 54, p. 857-859.  

 

COOKE, S. J., TWARDEK, W. M., LENNOX, R. J., ZOLDERDO, A. J., BOWER, S. D., 

GUTOWSKY, L. F., DANYLCHUK, A. J., ARLINGHAUS, R., & BEARD, D. 

(2017). The nexus of fun and nutrition: Recreational fishing is also about food. Fish 

and Fisheries, 19, p. 201-224.  



66 
 

 

COSTA, F. D. N., KORN, M. G. A., BRITO, G. B., FERLIN, S., & FOSTIER, A. H. (2016). 

Preliminary results of mercury levels in raw and cooked seafood and their public 

health impact. Food chemistry, 192, p. 837-841.  

 

CRESSON, P., FABRI, M.-C., BOUCHOUCHA, M., PAPA, C. B., CHAVANON, F., 

JADAUD, A., KNOERY, J., MIRALLES, F., & COSSA, D. (2014). Mercury in 

organisms from the Northwestern Mediterranean slope: importance of food sources. 

Science of The Total Environment, 497, p. 229-238.  

 

DALANE, J. Ø., BERGVATN, T. A. M., KIELLAND, E., & CARLSEN, M. H. (2015). Mål, 

vekt og porsjonsstørrelser for matvarer. Oslo: Mattilsynet, Universitetet i Oslo og 

Helsedirektoratet, p. 72. 

 

DAVIDSON, P. W., et al. (1998). Effects of prenatal and postnatal methylmercury exposure 

from fish consumption on neurodevelopment: outcomes at 66 months of age in the 

Seychelles Child Development Study. Jama, 280, p. 701-707.  

 

DAWSON, J., SHEESHKA, J., COLE, D. C., KRAFT, D., & WAUGH, A. (2008). Fishers 

weigh in: benefits and risks of eating Great Lakes fish from the consumer’s 

perspective. Agriculture and human values, 25, p. 349-364.  

 

DE FIGUEIREDO, M. J., & THOMAS, H. (1967). On the biology of the Norway lobster, 

Nephrops norvegicus (L.). ICES Journal of Marine Science, 31, p. 89-101.  

 

DEBES, F., BUDTZ-JØRGENSEN, E., WEIHE, P., WHITE, R. F., & GRANDJEAN, P. 

(2006). Impact of prenatal methylmercury exposure on neurobehavioral function at 

age 14 years. Neurotoxicology and teratology, 28, p. 536-547.  

 

DEBES, F., WEIHE, P., & GRANDJEAN, P. (2016). Cognitive deficits at age 22 years 

associated with prenatal exposure to methylmercury. Cortex, 74, p. 358-369.  

 



67 
 

DI LENA, G., CASINI, I., CAPRONI, R., & ORBAN, E. (2018). Total mercury levels in 

crustacean species from Italian fishery. Food Additives & Contaminants: Part B, p. 1-

8.  

 

EFSA (European Food Safety Authority). (2012). Mercury in food – EFSA updates advice on 

risks for public health [Online]. Available: 

https://www.efsa.europa.eu/en/press/news/121220 [Accessed 14.04.2017]. 

 

EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM). (2012). 

Scientific Opinion on the risk for public health related to the presence of mercury and 

methylmercury in food (2985). Parma, Italy, 12, p. 241 

 

ELAHI, M., ESMAILI-SARI, A., & BAHRAMIFAR, N. (2012). Total mercury levels in 

selected tissues of some marine crustaceans from Persian Gulf, Iran: variations related 

to length, weight and sex. Bulletin of Environmental Contamination and Toxicology, 

88, p. 60-64.  

 

ERIKSSON, S. P., HERNROTH, B., & BADEN, S. P. (2013). Stress biology and 

immunology in Nephrops norvegicus. Advances in marine biology, 64, p. 149-200 

 

European Commission (EU). (2006). COMMISSION REGULATION (EC) No 1881/2006 of 

19 December 2006 setting maximum levels for certain contaminants in foodstuffs 

Official Journal of the European Union, p. 36.  

 

FEDJE, E., LORENTZEN, S., & SOLDAL, O. (2009). Totalrådgivning av etterdrift av Rådal 

avfallsdeponi. Bergen: Bergen Kommune, p. 113 

 

Personal Communication: FERTER, K., & BJELLAND, O. (2017, June 2017). [Popular 

Nephrops norvegicus fishing spots in Hordaland, Norway]. 

 

FISKERIDIREKTORATET. (2017a). Redskap [Online]. Available: 

https://www.fiskeridir.no/Fritidsfiske/Redskap [Accessed 04.12.2017].  

 

https://www.efsa.europa.eu/en/press/news/121220
https://www.fiskeridir.no/Fritidsfiske/Redskap


68 
 

FISKERIDIREKTORATET. (2017b). Strenge reglar for hummarfiske [Online]. Available:  

https://www.fiskeridir.no/fiskeridir/Fritidsfiske/Nokre-utvalde-artar/Hummarfisket 

[Accessed 08.05.2017]. 

 

FITZGERALD, W. F., & CLARKSON, T. W. (1991). Mercury and monomethylmercury: 

present and future concerns. Environmental Health Perspectives, 96, p. 159-166.  

 

FORSVARET. (2014). Kystvakten – Nornenklassen [Online]. Available: 

https://forsvaret.no/fakta/utstyr/Sjoe/Nornen-

klassenhttps://forsvaret.no/fakta/utstyr/Sjoe/Nornen-klassen [Accessed 04.12.2017]. 

 

FRANTZEN, S., & MÅGE, A. (2011). Utvidet kostholdsrådsundersøkelse Bergen Byfjord 

2009. Bergen: NIFES, p. 44. 

 

FÖRLIN, L., BADEN, S. P., ERIKSSON, S., GRANMO, Å., LINDESJÖÖ, E., 

MAGNUSSON, K., EKELUND, R., ESSELIN, A., & STURVE, J. (1996). Effects of 

contaminants in roundnose grenadier (Coryphaenoides rupestris) and Norway lobster 

(Nephrops norvegicus) and contaminant levels in mussels (Mytilus edulis) in the 

Skagerrak and Kattegat compared to the Faroe Islands. Journal of Sea Research, 35, p. 

209-222.  

 

GAGGI, C., ZINO, F., DUCCINI, M., & RENZONI, A. (1996). Levels of Mercury in Scalp 

Hair of Fishermen and Their Families from Camara de Lobos–Madeira (Portugal): A 

Preliminary Study. Bulletin of Environmental Contamination and Toxicology, 56, p. 

860-865. 

 

GATEN, E., MOSS, S., & JOHNSON, M. L. (2013). The reniform reflecting superposition 

compound eyes of Nephrops norvegicus: optics, susceptibility to light-induced 

damage, electrophysiology and a ray tracing model. Advances in marine biology, 64, 

p. 107-148. 

 

GERSOVITZ, M., MADDEN, J. P., & SMICIKLAS-WRIGHT, H. (1978). Validity of the 

24-hr. dietary recall and seven-day record for group comparisons. Journal of the 

American Dietetic Association, 73, p. 48-55.  

https://www.fiskeridir.no/fiskeridir/Fritidsfiske/Nokre-utvalde-artar/Hummarfisket
https://forsvaret.no/fakta/utstyr/Sjoe/Nornen-klassenhttps:/forsvaret.no/fakta/utstyr/Sjoe/Nornen-klassen
https://forsvaret.no/fakta/utstyr/Sjoe/Nornen-klassenhttps:/forsvaret.no/fakta/utstyr/Sjoe/Nornen-klassen


69 
 

 

GEWURTZ, S. B., BHAVSAR, S. P., & FLETCHER, R. (2011). Influence of fish size and 

sex on mercury/PCB concentration: importance for fish consumption advisories. 

Environment international, 37, p. 425-434.  

 

GRANDJEAN, P., JØRGENSEN, P. J., & WEIHE, P. (1994). Human milk as a source of 

methylmercury exposure in infants. Environmental Health Perspectives, 102, p. 74.  

 

GRANDJEAN, P., et al. (1997). Cognitive deficit in 7-year-old children with prenatal 

exposure to methylmercury. Neurotoxicology and teratology, 19, p. 417-428. 

 

GRANDJEAN, P., WHITE, R. F., WEIHE, P., & JØRGENSEN, P. J. (2003). Neurotoxic risk 

caused by stable and variable exposure to methylmercury from seafood. Ambulatory 

Pediatrics, 3, p. 18-23.  

 

GRIEB, T. M., BOWIE, G. L., DRISCOLL, C. T., GLOSS, S. P., SCHOFIELD, C. L., & 

PORCELLA, D. B. (1990). Factors affecting mercury accumulation in fish in the 

upper Michigan peninsula. Environmental toxicology and chemistry, 9, p. 919-930.  

 

HAMMERSCHMIDT, C. R., & FITZGERALD, W. F. (2006). Bioaccumulation and trophic 

transfer of methylmercury in Long Island Sound. Archives of Environmental 

Contamination and Toxicology, 51, p. 416-424.  

 

HANSEN, H. J., & DANIELSBERG, A. (2009). Helsebaserte tilstandsklasser for forurenset 

grunn (TA-2553). Oslo: Statens forurensningstilsyn, p. 29. 

 

HARALDSDOTTIR, J., TJØNNELAND, A., & OVERVAD, K. (1994). Validity of 

individual portion size estimates in a food frequency questionnaire. International 

journal of epidemiology, 23, p. 787-796.  

 

HARRIS, D. C. (2010). Quantitative chemical analysis, New York, Freeman.  

 

HARRIS, H. H., PICKERING, I. J., & GEORGE, G. N. (2003). The chemical form of 

mercury in fish. Science, 301, p. 1203-1203.  



70 
 

 

HARRIS, R., & ULMESTRAND, M. (2004). Discarding Norway lobster (Nephrops 

norvegicus L.) through low salinity layers–mortality and damage seen in simulation 

experiments. ICES Journal of Marine Science, 61, p. 127-139.  

 

HART, B. T. (1982). Uptake of trace metals by sediments and suspended particulates: a 

review. Part of the Development in Hydrobiology, 9, p. 299-313. 

 

HAUGE. (2017). Skal kartleggja fritidsfisket i Noreg [Online]. Available: 

https://www.imr.no/nyhetsarkiv/2016/desember/skal_kartleggja_fritidsfisket_i_noreg/

nb-no [Accessed 11.04.2018]. 

 

HESS, S., HENSHER, D. A., & DALY, A. (2012). Not bored yet–revisiting respondent 

fatigue in stated choice experiments. Transportation research part A: policy and 

practice, 46, p. 626-644.  

 

HYDER, K., et al. (2018). Recreational sea fishing in Europe in a global context—

Participation rates, fishing effort, expenditure, and implications for monitoring and 

assessment. Fish and Fisheries, 19, p. 225-243.  

 

IHDE, T. F., WILBERG, M. J., LOEWENSTEINER, D. A., SECOR, D. H., & MILLER, T. 

J. (2011). The increasing importance of marine recreational fishing in the US: 

challenges for management. Fisheries Research, 108, p. 268-276.  

 

ILBÄCK, N.-G., WESSLÉN, L., FOHLMAN, J., & FRIMAN, G. (1996). Effects of 

methylmercury on cytokines, inflammation and virus clearance in a common infection 

(coxsackie B3 myocarditis). Toxicology letters, 89, p. 19-28.  

 

JENSSEN, M. T., BRANTSÆTER, A. S., HAUGEN, M., MELTZER, H. M., LARSSEN, T., 

KVALEM, H. E., BIRGISDOTTIR, B. E., THOMASSEN, Y., ELLINGSEN, D., 

ALEXANDER, J. (2012). Dietary mercury exposure in a population with a wide range 

of fish consumption—Self-capture of fish and regional differences are important 

determinants of mercury in blood. Science of The Total Environment, 439, p. 220-229.  

 

https://www.imr.no/nyhetsarkiv/2016/desember/skal_kartleggja_fritidsfisket_i_noreg/nb-no
https://www.imr.no/nyhetsarkiv/2016/desember/skal_kartleggja_fritidsfisket_i_noreg/nb-no


71 
 

JOHANSEN, P., VASSENDEN, G., BOTNEN, H., & JOHANNESSEN, P. (2004). 

Marinbiologiske miljøundersøkelse ved Norscrap West AS på Hanøytangen, Askøy 

kommune i 2004. IFM-rapport(4). Bergen: UNIFOB, p. 47.  

 

JOHANSSON, L., & SOLVOLL, K. (1999). Norkost 1997. Landsomfattende 

kostholdsundersøkelse blant menn og kvinner i alderen 16-79 år. Oslo: Statens råd for 

ernæring og fysisk aktivitet, p. 80 

 

JOHNSEN, G. H., EILERTSEN, M., OVERVOLL, O., BREKKE, E., & STAVELAND, A. 

(2007). Reguleringsplan for utviding av Horsøy industriområde, Askøy kommune. 

Bergen: Rådgivende Biologer AS, p. 50. 

 

JOHNSEN, T., & SUNDFJORD, A. (1999). Oksygenmålinger i Raunefjorden i forbindelse 

med utslipp av avisingsvæske fra Flesland flyplass. Bergen: NIVA, p. 25. 

 

JOHNSON, M. P., LORDAN, C., & POWER, A. M. (2013). Habitat and ecology of 

Nephrops norvegicus. Advances in marine biology, 64, p. 27-63. 

 

KAARTVEDT, S., & SVENDSEN, H. (1995). Effect of freshwater discharge, intrusions of 

coastal water, and bathymetry on zooplankton distribution in a Norwegian fjord 

system. Journal of Plankton Research, 17, p. 493-511.  

 

KATOH, E., SBRAGAGLIA, V., AGUZZI, J., & BREITHAUPT, T. (2013). Sensory biology 

and behaviour of Nephrops norvegicus Advances in marine biology, 64, p. 65-106. 

 

KERPER, L. E., BALLATORI, N., & CLARKSON, T. W. (1992). Methylmercury transport 

across the blood-brain barrier by an amino acid carrier. American Journal of 

Physiology-Regulatory, Integrative and Comparative Physiology, 262, p. 761-765.  

 

KESSLER, R. (2013). The Minamata Convention on Mercury: a first step toward protecting 

future generations. Environmental Health Perspectives, 121, p. 304-309.  

 



72 
 

KLEIVEN, A. R. (2010). The management of lobster in coastal Skagerrak: recreational 

fisheries, unreported commercial catches and marine protected areas. Arendal: 

University of Tromsø, p. 41 

 

KLEIVEN, A. R., FERNANDEZ-CHACON, A., NORDAHL, J.-H., MOLAND, E., 

ESPELAND, S. H., KNUTSEN, H., & OLSEN, E. M. (2016). Harvest pressure on 

coastal Atlantic cod (Gadus morhua) from recreational fishing relative to commercial 

fishing assessed from tag-recovery data. PLoS One, 11, p. 14.  

 

KLEIVEN, A. R., OLSEN, E. M., & VØLSTAD, J. H. (2012). Total catch of a red-listed 

marine species is an order of magnitude higher than official data. PLoS One, 7, p. 7.  

 

KLEIVEN, A. R., SØVIK, G., & OTTESEN, M. V. (2015). Fritidsfisket etter sjøkreps i 

Norge. Flødevigen: Havforskningsinstituttet, p. 2.  

 

KLIMA- OG MILJØDEPARTEMENTET. (2015). Et miljø uten miljøgifter. Oslo: Klima- og 

miljødepartemente, p. 42 

 

KNUTH, B. A., A CONNELLY, N., SHEESHKA, J., & PATTERSON, J. (2003). Weighing 

health benefit and health risk information when consuming sport‐caught fish. Risk 

Analysis, 23, p. 1185-1197.  

 

KOJADINOVIC, J., POTIER, M., LE CORRE, M., COSSON, R. P., & BUSTAMANTE, P. 

(2006). Mercury content in commercial pelagic fish and its risk assessment in the 

Western Indian Ocean. Science of The Total Environment, 366, p. 688-700.  

 

KONIECZNY, R. (1994). Sedimentundersøkelser og tiltaksvurdering i forbindelse med 

kaiutbygging for mineryddingsfartøy (P-6084), Haakonsvern 1994. Oslo: NIVA, p. 56 

 

KOSATSKY, T., PRZYBYSZ, R., SHATENSTEIN, B., WEBER, J.-P., & ARMSTRONG, 

B. (1999). Fish consumption and contaminant exposure among Montreal-area 

sportfishers: pilot study. Environmental research, 80, p. 150-158.  

 



73 
 

KOWALKOWSKA, J., SLOWINSKA, M. A., SLOWINSKI, D., DLUGOSZ, A., 

NIEDZWIEDZKA, E., & WADOLOWSKA, L. (2013). Comparison of a full food-

frequency questionnaire with the three-day unweighted food records in young Polish 

adult women: implications for dietary assessment. Nutrients, 5, p. 2747-2776.  

 

KRINGSTAD, A. (2015). Renere Havn Bergen. Puddefjorden [Online]. Available: 

https://www.bergen.kommune.no/aktuelt/tema/renerehavn/10429 [Accessed 

29.01.2017]. 

 

KVISVIK, B. C. (2015). TILTAKSPLAN FOR FORURENSET SJØBUNN I 

PUDDEFJORDEN, BERGEN. Bergen: COWI, p. 56 

 

KYSTVERKET. (2015). Oppsummering av metyleringsforsøk på kvikksølvforurensede 

sedimenter ved U864. Bergen: DNV GL AS Oil & Gas, p. 58. 

 

LAM, H. S., KWOK, K. M., CHAN, P. H. Y., SO, H. K., LI, A. M., NG, P. C., & FOK, T. F. 

(2013). Long term neurocognitive impact of low dose prenatal methylmercury 

exposure in Hong Kong. Environment international, 54, p. 59-64.  

 

LEBEL, J., MERGLER, D., BRANCHES, F., LUCOTTE, M., AMORIM, M., LARRIBE, F., 

& DOLBEC, J. (1998). Neurotoxic effects of low-level methylmercury contamination 

in the Amazonian Basin. Environmental research, 79, p. 20-32.  

 

LINCOLN, R. A., SHINE, J. P., CHESNEY, E. J., VORHEES, D. J., GRANDJEAN, P., & 

SENN, D. B. (2011). Fish consumption and mercury exposure among Louisiana 

recreational anglers. Environmental Health Perspectives, 119, p. 245-251.  

 

LLULL, R. M., GARÍ, M., CANALS, M., REY-MAQUIEIRA, T., & GRIMALT, J. O. 

(2017). Mercury concentrations in lean fish from the Western Mediterranean Sea: 

Dietary exposure and risk assessment in the population of the Balearic Islands. 

Environmental research, 158, p. 16-23.  

 

 

 

https://www.bergen.kommune.no/aktuelt/tema/renerehavn/10429


74 
 

LOCKHART, W., UTHE, J., KENNEY, A., & MEHRLE, P. (1972). Methylmercury in 

northern pike (Esox lucius): distribution, elimination, and some biochemical 

characteristics of contaminated fish. Journal of the Fisheries Board of Canada, 29, p. 

1519-1523.  

 

MADDEN, J. P., GOODMAN, S. J., & GUTHRIE, H. A. (1976). Validity of the 24-hr. recall. 

Analysis of data obtained from elderly subjects. Journal of the American Dietetic 

Association, 68, p. 143-147.  

 

MALLISON, C. T., & CICHRA, C. E. (2004). Accuracy of Angler‐Reported Harvest in 

Roving Creel Surveys. North American Journal of Fisheries Management, 24, p. 880-

889.  

 

MALM, O., BRANCHES, F. J., AKAGI, H., CASTRO, M. B., PFEIFFER, W. C., 

HARADA, M., BASTOS, W. R., & KATO, H. (1995). Mercury and methylmercury 

in fish and human hair from the Tapajos river basin, Brazil. Science of The Total 

Environment, 175, p. 141-150.  

 

MANGERUD, G. (2005). Dietary Mercury Exposure in selected Norwegian Municipalities: 

The Norwegian Fish and Game Study, part C. Göteborg, Sverige: NHV (Nordic 

School of Public Health) and Nordic Council of Ministers, p. 56. 

 

MARITIME PARTNER. (2015). SJØBJØRN 25 MK III [Online]. Available: http://maritime-

partner.com/segments/boats/sj%C3%B8bj%C3%B8rn-25-mk-iii [Accessed 

08.04.2018]. 

 

MARKHUS, M. W., GRAFF, I. E., DAHL, L., SELDAL, C. F., SKOTHEIM, S., 

BRAARUD, H. C., STORMARK, K. M., & MALDE, M. K. (2013). Establishment of 

a seafood index to assess the seafood consumption in pregnant women. Food & 

nutrition research, 57.  

 

MATTHEWS, A. (1983). Mercury content of commercially important fish of the Seychelles, 

and hair mercury levels of a selected part of the population. Environmental research, 

30, p. 305-312.  

http://maritime-partner.com/segments/boats/sj%C3%B8bj%C3%B8rn-25-mk-iii
http://maritime-partner.com/segments/boats/sj%C3%B8bj%C3%B8rn-25-mk-iii


75 
 

 

MATTILSYNET. (2009). Undersøkelser av Byfjorden i Bergen [Online]. Available: 

http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/undersokelser_av_

byfjorden_i_bergen [Accessed 22.01.2018]. 

 

MATTILSYNET. (2011). Ikke spis fiskelever fra selvfangst [Online]. Available: 

http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/ikke_spis_fiskelev

er_fra_selvfangst [Accessed 27.04.2018]. 

 

MATTILSYNET. (2017). Bergen [Online]. Available:  http://www.miljostatus.no/Bergen 

[Accessed 14.04.2018]. 

 

MAULVAULT, A. L., MACHADO, R., AFONSO, C., LOURENÇO, H. M., NUNES, M. L., 

COELHO, I., LANGERHOLC, T., & MARQUES, A. (2011). Bioaccessibility of Hg, 

Cd and As in cooked black scabbard fish and edible crab. Food and Chemical 

Toxicology, 49, p. 2808-2815.  

 

MÉHAULT, S., MORANDEAU, F., & KOPP, D. (2016). Survival of discarded Nephrops 

norvegicus after trawling in the Bay of Biscay. Fisheries Research, 183, p. 396-400.  

 

MENDITTO, A., PATRIARCA, M., & MAGNUSSON, B. (2007). Understanding the 

meaning of accuracy, trueness and precision. Accreditation and quality assurance, 12, 

p. 45-47.  

 

MERGLER, D., ANDERSON, H. A., CHAN, L. H. M., MAHAFFEY, K. R., MURRAY, M., 

SAKAMOTO, M., & STERN, A. H. (2007). Methylmercury exposure and health 

effects in humans: a worldwide concern. AMBIO: A Journal of the Human 

Environment, 36, p. 3-11.  

 

 

MIEIRO, C. L., PACHECO, M., PEREIRA, M. E., & DUARTE, A. C. (2009). Mercury 

distribution in key tissues of fish (Liza aurata) inhabiting a contaminated estuary—

implications for human and ecosystem health risk assessment. Journal of 

Environmental Monitoring, 11, p. 1004-1012.  

http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/undersokelser_av_byfjorden_i_bergen
http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/undersokelser_av_byfjorden_i_bergen
http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/ikke_spis_fiskelever_fra_selvfangst
http://www.matportalen.no/matvaregrupper/tema/fisk_og_skalldyr/ikke_spis_fiskelever_fra_selvfangst
http://www.miljostatus.no/Bergen


76 
 

 

MILESTONE (2013). DMA-80: The most successful Hg analyzer in the market [Online]. 

Available: http://www.milestonesrl.com/en/mercury/dma-80/features.html#a1 

[Accessed 11.02.2018]. 

 

MILJØDIREKTORATET. (2016). Miljøgifter [Online]. Available: 

http://www.miljostatus.no/miljogifter [Accessed 13.04.2018]. 

 

MILJØDIREKTORATET. (2017a). Forurenset sjøbunn [Online]. Available: 

http://www.miljostatus.no/tema/kjemikalier/forurenset-sjobunn/ [Accessed 

13.04.2018]. 

 

MILJØDIREKTORATET. (2017b). Kvikksølv og kvikksølvforbindelser [Online]. Available:  

http://www.miljostatus.no/tema/kjemikalier/prioritetslisten/kvikksolv/ [Accessed 

10.03.2018]. 

 

MINGANTI, V., CAPELLI, R., DE PELLEGRINI, R., ORSI-RELINI, L., & RELINI, G. 

(1990). The presence of inorganic and organic mercury and selenium in Nephrops 

norvegicus from the Ligurian Sea. Science of The Total Environment, 95, p. 53-60.  

 

MOREL, F. M., KRAEPIEL, A. M., & AMYOT, M. (1998). The chemical cycle and 

bioaccumulation of mercury. Annual review of ecology and systematics, 29, p. 543-

566.  

 

MYERS, G. J., et al. (2003). Prenatal methylmercury exposure from ocean fish consumption 

in the Seychelles child development study. The lancet, 361, p. 1686-1692.  

 

MÅGE, A., BJELLAND, O., OLSVIK, P., NILSEN, B., & JULSHAMN, K. (2012). 

Contaminants in fish and seafood products 2011. Miljøgifter i fisk og fiskevarer 2011: 

Kvikksølv i djupvassfisk og skaldyr frå hardangerfjorden samt miljøgifter i marine 

oljer. Bergen: NIFES report, p. 31.  

 

MÅGE, A., & FRANTZEN, S. (2008). Kostholdsrådsundersøkelse, Bergen Byfjord 2007. 

Bergen, Bergen: NIFES, p. 37. 

http://www.milestonesrl.com/en/mercury/dma-80/features.html#a1
http://www.miljostatus.no/miljogifter
http://www.miljostatus.no/tema/kjemikalier/forurenset-sjobunn/
http://www.miljostatus.no/tema/kjemikalier/prioritetslisten/kvikksolv/


77 
 

MÅGE, A., & FRANTZEN, S. (2009). Kostholdsråds-undersøking, fritidsfiske Bergen, 2008-

2009. Kvikksølv i torskefisk og PCB i lever. Bergen, NIFES: p. 18 

 

MÅGE, A., & FRANTZEN, S. (2016). Fremmedstoffer i villfisk med vekt på kyst-nære 

farvann. Brosme, lange og bifangstarter. Gjelder tall for prøver samlet inn i 2013-

2015. Bergen: NIFES, p. 117. 

 

NATIONAL RESEARCH COUNCIL. (2000). Toxicological effects of methylmercury. 

Washington, DC, National Academies Press.  

 

NIFC (National Institute of Food Control). (2016). Mercury DMA-80'S MILESTONE 

DIRECT ANALYSIS SYSTEM  [Online]. Available: 

http://www.nifc.gov.vn/index.php/en/kiemnghiem/trangtb/lvhh/381-mercury-dma-80-

s-milestone-direct-analysis-system [Accessed 08.02.2018]. 

 

NIFES. (2015). Metode 397 - Direkte analyse av kvikksølv med atomapsorpsjon DMA-80. 

Nasjonalt institutt for ernærings- og sjømatforskning (NIFES). p. 5.  

 

NILSEN, B. M., & MÅGE, A. (2016). Kvikksølv i hermetisert tunfisk. Bergen: NIFES, p. 16. 

 

NILSEN. (2017). Fanaposten: Giftig avrenning fra gammelt Rådal-deponi [Online]. 

Available: https://www.fanaposten.no/nyheter/giftig-avrenning-fra-gammelt-radal-

deponi/repqbu!JQu1bCTAEGqF6vQMecnLA/ [Accessed 18.01.2018]. 

 

OKEN, E., RIFAS-SHIMAN, S. L., AMARASIRIWARDENA, C., JAYAWARDENE, I., 

BELLINGER, D. C., HIBBELN, J. R., WRIGHT, R. O., & GILLMAN, M. W. 

(2016). Maternal prenatal fish consumption and cognition in mid childhood: Mercury, 

fatty acids, and selenium. Neurotoxicology and teratology, 57, p. 71-78.  

 

OKEN, E., WRIGHT, R. O., KLEINMAN, K. P., BELLINGER, D., 

AMARASIRIWARDENA, C. J., HU, H., RICH-EDWARDS, J. W., & GILLMAN, 

M. W. (2005). Maternal fish consumption, hair mercury, and infant cognition in a US 

cohort. Environmental Health Perspectives, 113, p. 1376-1380.  

 

http://www.nifc.gov.vn/index.php/en/kiemnghiem/trangtb/lvhh/381-mercury-dma-80-s-milestone-direct-analysis-system
http://www.nifc.gov.vn/index.php/en/kiemnghiem/trangtb/lvhh/381-mercury-dma-80-s-milestone-direct-analysis-system
https://www.fanaposten.no/nyheter/giftig-avrenning-fra-gammelt-radal-deponi/repqbu!JQu1bCTAEGqF6vQMecnLA/
https://www.fanaposten.no/nyheter/giftig-avrenning-fra-gammelt-radal-deponi/repqbu!JQu1bCTAEGqF6vQMecnLA/


78 
 

OLMEDO, P., PLA, A., HERNÁNDEZ, A., BARBIER, F., AYOUNI, L., & GIL, F. (2013). 

Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and 

shellfish samples. Risk assessment for the consumers. Environment international, 59, 

p. 63-72.  

 

OUÉDRAOGO, O., & AMYOT, M. (2011). Effects of various cooking methods and food 

components on bioaccessibility of mercury from fish. Environmental research, 111, p. 

1064-1069.  

 

PASTOROK, P. (1987). Guidance manual for assessing human health risks from chemically 

contaminated fish and shellfish. PTI Environmental Service's submission to Battelle 

New England for EPA, Washington, DC, PTI Environmental Draft Report C737-01, 

Bellevue, WA, p. 78.  

 

PERUGINI, M., CAVALIERE, M., GIAMMARINO, A., MAZZONE, P., OLIVIERI, V., & 

AMORENA, M. (2004). Levels of polychlorinated biphenyls and organochlorine 

pesticides in some edible marine organisms from the Central Adriatic Sea. 

Chemosphere, 57, p. 391-400.  

 

PERUGINI, M., VISCIANO, P., MANERA, M., ZACCARONI, A., OLIVIERI, V., & 

AMORENA, M. (2009). Levels of total mercury in marine organisms from Adriatic 

Sea, Italy. Bulletin of Environmental Contamination and Toxicology, 83, p. 244-248.  

 

PERUGINI, M., ZEZZA, D., TULINI, S. M. R., ABETE, M. C., MONACO, G., CONTE, A., 

OLIVIERI, V., & AMORENA, M. (2016). Effect of cooking on total mercury content 

in Norway lobster and European hake and public health impact. Marine Pollution 

Bulletin, 109, p. 521-525.  

 

PFLUGH, K. K., LURIG, L., VON HAGEN, L. A., VON HAGEN, S., & BURGER, J. 

(1999). Urban anglers' perception of risk from contaminated fish. Science of The Total 

Environment, 228, p. 203-218.  

 

 

 



79 
 

PHELPS, R. W., CLARKSON, T. W., KERSHAW, T. G., & WHEATLEY, B. (1980). 

Interrelationships of blood and hair mercury concentrations in a North American 

population exposed to methylmercury. Archives of Environmental Health: An 

International Journal, 35, p. 161-168.  

 

POLLOCK, K. H., JONES, C. M., & BROWN, T. L. (1994). Angler survey methods and 

their application in fisheries management. Bethesda, Maryland, USA. American 

Fisheries Society Special Publication 25. 

 

POWELL, A., & ERIKSSON, S. P. (2013). Reproduction: life cycle, larvae and larviculture. 

Advances in marine biology, 64, p. 201-245. 

 

RAYMOND, L. J., & RALSTON, N. V. (2004). Mercury: selenium interactions and health 

implications. Seychelles Medical and Dental Journal, 7, p. 72-77.  

 

RELLING, B. (2009). Oversendelse av vedtak om utvidet tillatelse til Norscrap West AS på 

Hanøytangen, Askøy kommune. Bergen: Fylkesmannen i Hordaland, p. 11. 

 

RENZONI, A., ZINO, F., & FRANCHI, E. (1998). Mercury levels along the food chain and 

risk for exposed populations. Environmental research, 77, p. 68-72.  

 

RIDGWAY, I., TAYLOR, A., ATKINSON, R., CHANG, E., & NEIL, D. (2006). Impact of 

capture method and trawl duration on the health status of the Norway lobster, 

Nephrops norvegicus. Journal of Experimental Marine Biology and Ecology, 339, p. 

135-147.  

 

RUUS, A., SCHAANNING, M., ØXNEVAD, S., & HYLLAND, K. (2005). Experimental 

results on bioaccumulation of metals and organic contaminants from marine 

sediments. Aquatic toxicology, 72, p. 273-292.  

 

RUUS, A., SKEI, J., GREEN, N., & SCHØYEN, M. (2010). Overvåking av miljøforholdene i 

Sørfjorden 2009. Metaller i vannmassene, Miljøgifter i organismer. Oslo: Norsk 

institutt for vannforskning, p. 90. 

 



80 
 

SALONEN, J. T., et al. (1995). Intake of mercury from fish, lipid peroxidation, and the risk of 

myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish 

men. Circulation, 91, p. 645-655.  

 

SCHROEDER, D. M., & LOVE, M. S. (2002). Recreational fishing and marine fish 

populations in California. California Cooperative Oceanic Fisheries Investigations 

Report, 43, p. 182-190.  

 

SHAMLAYE, C., DAVIDSON, P. W., & MYERS, G. J. (2004). The Seychelles child 

development study: two decades of collaboration. Seychelles Medical and Dental 

Journal, 7, p. 92-98.  

 

SHELTON, P., GATEN, E., & CHAPMAN, C. (1985). Light and retinal damage in Nephrops 

norvegicus (L.)(Crustacea). The Royal Society, 226, p. 217-236. 

  

SJØMATDATA. (2017). Mercury (Hg) [Online]. Available: 

https://sjomatdata.nifes.no/#/substance/395/-2 [Accessed 09.12.2018]. 

 

SPADA, L., ANNICCHIARICO, C., CARDELLICCHIO, N., GIANDOMENICO, S., & DI 

LEO, A. (2012). Mercury and methylmercury concentrations in Mediterranean 

seafood and surface sediments, intake evaluation and risk for consumers. International 

journal of hygiene and environmental health, 215, p. 418-426.  

 

STEUERWALD, U., WEIHE, P., JØRGENSEN, P. J., BJERVE, K., BROCK, J., 

HEINZOW, B., BUDTZ-JØRGENSEN, E., & GRANDJEAN, P. (2000). Maternal 

seafood diet, methylmercury exposure, and neonatal neurologic function. The Journal 

of pediatrics, 136, p. 599-605.  

 

STORELLI, M. M., BARONE, G., PISCITELLI, G., & MARCOTRIGIANO, G. (2007). 

Mercury in fish: concentration vs. fish size and estimates of mercury intake. Food 

additives and contaminants, 24, p. 1353-1357.  

 

 

 

https://sjomatdata.nifes.no/#/substance/395/-2


81 
 

STREHLOW, H. V., SCHULTZ, N., ZIMMERMANN, C., & HAMMER, C. (2012). Cod 

catches taken by the German recreational fishery in the western Baltic Sea, 2005–

2010: implications for stock assessment and management. ICES Journal of Marine 

Science, 69, p. 1769-1780.  

 

STRÖM, S., HELMFRID, I., GLYNN, A., & BERGLUND, M. (2011). Nutritional and 

toxicological aspects of seafood consumption—an integrated exposure and risk 

assessment of methylmercury and polyunsaturated fatty acids. Environmental 

research, 111, p. 274-280.  

 

SVÅSAND, T., GREFSRUD, E., KARLSEN, Ø., KVAMME, B., GLOVER, K., HUSA, V., 

& KRISTIANSEN, T. (red.) (2017). Risikorapport norsk fiskeoppdrett 2017. Fisken 

og Havet, særnr. 2-2017. Bergen: Havforskningsinstituttet, p. 180. 

 

SYLVIA FRANTZEN, H. O., HILDE ELISE HELDAL OG AMUND MÅGE. (2018). 

Kvikksølvinnhold i fisk og annen sjømat ved vraket av U-864 vest av Fedje – 

Resultater fra fast overvåkning og ekstra prøvetaking i 2016. Bergen, NIFES, p. 35. 

 

TARRANT, M. A., & MANFREDO, M. J. (1993). Digit preference, recall bias, and 

nonresponse bias in self reports of angling participation. Leisure Sciences, 15, p. 231-

238.  

 

THE NORWEGIAN ENVIRONMENT AGENCY. (2017). Good progress with contaminated 

sediments clean-up, but much remains [Online]. Available: 

http://www.environment.no/goals/4.-pollution/target-4.2/quantity-of-selected-

substances-that-are-hazardous-to-health-or-the-environment-removed-by-dredging-or-

capped-so-that-they-no-longer-pose-a-risk-of-serious-pollution-problems/preventing-

pollution-from-contaminated-seabed-sediments/ [Accessed 13.03.2018]. 

 

THUNE, N.A., & THORSNÆS, G. (2014). Bergen, Hordaland  [Online]. Available: 

https://snl.no/Bergen [Accessed 22.01.2018]. 

 

http://www.environment.no/goals/4.-pollution/target-4.2/quantity-of-selected-substances-that-are-hazardous-to-health-or-the-environment-removed-by-dredging-or-capped-so-that-they-no-longer-pose-a-risk-of-serious-pollution-problems/preventing-pollution-from-contaminated-seabed-sediments/
http://www.environment.no/goals/4.-pollution/target-4.2/quantity-of-selected-substances-that-are-hazardous-to-health-or-the-environment-removed-by-dredging-or-capped-so-that-they-no-longer-pose-a-risk-of-serious-pollution-problems/preventing-pollution-from-contaminated-seabed-sediments/
http://www.environment.no/goals/4.-pollution/target-4.2/quantity-of-selected-substances-that-are-hazardous-to-health-or-the-environment-removed-by-dredging-or-capped-so-that-they-no-longer-pose-a-risk-of-serious-pollution-problems/preventing-pollution-from-contaminated-seabed-sediments/
http://www.environment.no/goals/4.-pollution/target-4.2/quantity-of-selected-substances-that-are-hazardous-to-health-or-the-environment-removed-by-dredging-or-capped-so-that-they-no-longer-pose-a-risk-of-serious-pollution-problems/preventing-pollution-from-contaminated-seabed-sediments/
https://snl.no/Bergen


82 
 

TOLLEFSON, L., & CORDLE, F. (1986). Methylmercury in fish: a review of residue levels, 

fish consumption and regulatory action in the United States. Environmental Health 

Perspectives, 68, p. 203-208.  

 

ULLRICH, S. M., TANTON, T. W., & ABDRASHITOVA, S. A. (2001). Mercury in the 

aquatic environment: a review of factors affecting methylation. Critical reviews in 

environmental science and technology, 31, p. 241-293.  

 

URIANSRUD, F., SKEI, J., & SCHØYEN, M. (2005). Miljøkonsekvensvurdering av 

kvikksølv ved sunket ubåt U-864, Fedje i Hordaland. Fase 1. Kvikksølvkartlegging. 

Bergen: NIVA, p. 30 

 

VAAGE, O. F. (2015). Fritidsaktiviteter 1997-2014: Barn og voksnes idrettsaktiviteter, 

friluftsliv og kulturaktiviteter. Resultater fra Levekårsundersøkelsene. Oslo: Statistisk 

sentralbyrå 2015/25, p. 109.  

 

VALENTINSSON, D., & NILSSON, H. C. (2015). Effects of gear and season on discard 

survivability in three Swedish fisheries for Norway lobster (Nephrops norvegicus). 

Uppsala: Swed. Univ. Agric. Sci., p. 11.  

 

VAN WIJNGAARDEN, E., et al. (2013). Prenatal methyl mercury exposure in relation to 

neurodevelopment and behavior at 19 years of age in the Seychelles Child 

Development Study. Neurotoxicology and teratology, 39, p. 19-25.  

 

VASSENDEN, G., & JOHANNESSEN, P. (2009). Marinbiologiske undersøkelser i 

Kollevågen i 2006-2016. Observasjoner i 2008. Bergen: UNIFOB, p. 74 

 

VKM. (2006). Risikovurdering av kvikksølv i torskefilet. Oslo: Vitenskapskomiteen for 

Mattrygghet, 2006:02, p. 6. 

 

WANDEL, M. (1994). Consumer concern and behaviour regarding food and health in 

Norway. International Journal of Consumer Studies, 18, p. 203-215.  

 



83 
 

WIECH, M., VIK, E., DUINKER, A., FRANTZEN, S., BAKKE, S., & MAAGE, A. (2017). 

Effects of cooking and freezing practices on the distribution of cadmium in different 

tissues of the brown crab (Cancer pagurus). Food control, 75, p. 14-20.  

 

WILEMAN, D., SANGSTER, G., BREEN, M., ULMESTRAND, M., SOLDAL, A., & 

HARRIS, R. (1999). Roundfish and Nephrops survival after escape from commercial 

fishing gear. EC Contract No: FAIR-CT95-0753. Final Report. Hirtshals, Denmark: 

DIFTA, FRS, IMR, p. 140.  

 

ZIEGLER, F., & VALENTINSSON, D. (2008). Environmental life cycle assessment of 

Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels 

and conventional trawls—LCA methodology with case study. The International 

Journal of Life Cycle Assessment, 13, p. 487-497.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

6. Appendices 

Appendix I: Maps of surveyed polygons  

 
Figure 1.A Map of polygons surveyed in Radfjorden (1178 and 1242), and one polygon close 

to Knarvik (1796, north of Bergen). Pink color for the polygons that were included in the final 

sample, and green color for the polygon not included in the final sample. 

 

 
Figure 1.B Map of polygons surveyed in Hauglandsosen (1421, 1019 and 1627), and one 

polygon in Byfjorden (1361). Pink color as they were included in the final sample. 
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Figure 1.C Map of polygons surveyed in Raunefjorden (1358 and 1122), and polygons in 

Fanafjorden (1250, 1014 and 1267). Pink color as they were included in the final sample. 

 

 

 
Figure 1.D Map of surveyed polygons in Bjørnafjorden, south of Bergen. Green color as they 

were not included in the final sample. 
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Figure 1.E Map of surveyed polygons in Austevoll, south of Bergen. Pink color as they were 

included in the final sample. 
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Appendix II: General questionnaire for the recreational fishing survey in Norwegian 

 

Spørreskjema fritidsfiske faste redskaper 

 

ID: 

Posisjon: 

Dato registrert: 

Navn: 

Adresse: 

Telefonnummer: 

Oppringt dato: 

 

Type redskap: 

Antall av redskap: 

Beskrivelse av redskap (for eksempel type garn): 

Når ble redskapet trukket sist: 

Hvor lenge hadde det da stått i sjø (soaking time): 

Totalt hvor mange blåser har du til redskapet: 

 

Fangst: 

Art:  

Antall beholdt: 

Antall sluppet ut:  
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Appendix III: Questionnaire for the recreational Nephrops fishers in Norwegian  

 
Er du:       a) Kvinne  b) Mann c) Ønsker ikke oppgi 

Hvilket land er du født i?                            

Hvilket land bor du fast i?          

Hvor gammel er du?            
Hvorfor fisker du sjøkreps?   

a) Matauk   b) Rekreasjon, hobby, sosialisering    

C)  Tradisjon   d) Annen årsak: spesifiser gjerne. 
Hvor mange år har du fisket sjøkreps?        

Hvor mange sjøkreps-fisketurer har du i løpet av de siste 12 månedene?    

Fisker du utelukkende i området hvor vi fant blåsen? 

a) Ja  b) Hvis nei; mer enn 10 km unna, mer enn 20 km unna, 30 km eller mer 

Hvilket redskap bruker du?          

Hvor mange teiner har du ute?         

Hvor lenge har redskapet stått ute?         

Hvor mange overflateblåser er festet til redskapet?       

Siste fangst? 

Art Landet Sluppet ut Hvorfor sluppet ut? 

   Minimum lengdemål 

   TS – too small 

   TM – too many 

   TB – too big 

   Females with roe 

 
Har du planer om å spise hele/deler av fangsten? a) JA  b) NEI  c) Vet ikke 
Hvis JA, hvor mange sjøkreps spiser du i gjennomsnitt?      

Hvor ofte spiser du selvfisket sjøkreps? 

a) En gang i uken (omlag 50 ganger i året) 

b) Flere ganger i uken (Hele året) 

c) Flere ganger i uken (I sommerhalvåret) 

d) To ganger i måneden (omlag 24 ganger i året) 

e) En gang i måneden (omlag 12 ganger i året) 

f) Færre enn 12 ganger i året 

 

 

Hvilke deler av sjøkrepsen har du planer om å spise? (Kryss av alle alternativene som gjelder) 

a) Klør  

b) Hale  

c) Brunmat 

 
HVA MENER DU OM FORURENSNINGSGRADEN OG SPISELIGHETEN AV 

SJØKREPSEN I OMRÅDET DU FISKER? Sett ett kryss i en skala fra 1 til 9, hvor 1 er Sjøkrepsen 
er ikke forurenset i det hele tatt og 9 Sjøkrepsen er ekstremt forurenset og uspiselig.  

1 Sjøkrepsen er ikke forurenset i det hele tatt   
2 
3  
4 
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5 Sjøkrepsen er noe forurenset, men trygg å spise 1-2 ganger i måneden for de som ikke er                         
gravide/ammende 
6 
7 
8 

9 Sjøkrepsen er ekstremt forurenset og uspiselig  

0. Vet ikke  

 

Hvor ofte har du spist fisk, fiskeprodukter eller annen sjømat som måltid de siste tre 

månedene? (Kun ett kryss mulig på middag og ett på lunsj).  

 Aldri Sjeldnere 
enn 1 

gang/måned 

1-3 ganger/ 
måned 

 

1 gang/uke 
 

2-3 ganger/ 
uke 

 

4 ganger 
eller 

mer/uke 

Middag       

 Aldri Sjeldnere 

enn 1 
gang/måned 

1-3 ganger/ 

måned 

1 gang/uke 2-3 ganger/ 

uke 
 

4 ganger 

eller 
mer/uke 

Lunsj    
 

   

 

Er det noe sjømat du ikke spiser som følge av miljøgifter?      
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Appendix IV: Determination of sex 

 
 

To the left a female Nephrops norvegicus with oviducts visible at the basis of the third 

pereiopod. To the right a male Nephrops norvegicus with the paired opening of the vasa 

deferentia at the basis of the fifth pereiopods. 
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Appendix V: Length-weight key  

 
Plot of carapace length and weight data for Nephrops data from the Norwegian reference 

fleet. The plot was utilized to estimate mean weight for use in converting catch from kg to 

number of Nephrops in this thesis. 
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Appendix VI: Statistical R codes 

6.1# Linear mixed effects model  

fit1.lme <- lme(kvikksolv~CL*Sex, random=~+1|Location3, data=kreps.df) 

anova(fit1.lme) 

 

                       Df F value P value 

CL         224 0.2093   0.6878   

Sex   224 431.2478   <.0001 

CL:Sex  224 86.8701   <.0001 

 

6.2# Linear model including all interactions 

fit1.lm <- lm(kvikksolv~Location3*CL*Sex, data=kreps.df) 

anova(fit1.lm) 

 

Output:  

 

 Df F value P value 

Location3 7 36.6853 < 2.2e-16 

CL         1 0.0774 0.78114     

Sex   1 517.2692 < 2.2e-16 

Location3:CL      7 1.9595 0.06214 

Location3:Sex      6 14.1057 1.995e-13 

CL:Sex            1 60.4845 3.553e-13 

Location3:CL:Sex   6 1.2582 0.27825     

 

6.3# Linear model with only significant interactions 

fit2.lm <- lm(kvikksolv~Location3*Sex+CL*Sex, data=kreps.df) 

anova(fit2.lm) 

 

Output:  

 Df F value P value 

Location3 7 34.393 < 2.2e-16 

Sex      1 392.632 < 2.2e-16 

CL 1 100.845 < 2.2e-16 

Location3:Sex   6 12.920 1.752e-12 

Sex:CL 1 58.730 5.880e-13 
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6.4# Diagnostics plot of the linear model  

 
6.5# Diagnostics plot of the linear model with log transformed data 
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6.6# Output for; lm(log(kvikksolv)~Location3*Sex+CL*Sex 

 Df F value P value 

Location3 7 38.0385 < 2.2e-16 

Sex      1 325.5610 < 2.2e-16 

CL 1 116.3186 < 2.2e-16 

Location3:Sex   6 3.9122 0.0009843 

Sex:CL 1 19.3765 1.68e-05 

 

 

6.7# Tukey test: which locations are different in mean Hg concentration 

Which locations differ females: 

sub.df <- subset(kreps.df, Sex=='F') 

fit2.lm <- lm(kvikksolv~Location3, data=sub.df) 

library(multcomp) 

mc <- glht(fit2.lm, linfct = mcp(Location3="Tukey"), data=sub.df) 

summary(mc) 

 

Which locations differ males: 

sub1.df <- subset(kreps.df, Sex=='M') 

fit2b.lm <- lm(kvikksolv~Location3, data=sub1.df) 

library(multcomp) 

mc <- glht(fit2b.lm, linfct = mcp(Location3="Tukey"), data=sub1.df) 

summary(mc) 

 

6.8# Testing for correlation between the participants perception on the contamination status 

of the Nephrops in their area, education and age (separately). 

fit.glm <- glm(Perception~Age, family=quasibinomial, data=utd.df) 

anova(fit.glm, test="F") 

 

fit.glm <- glm(Perception~Education2, family=quasibinomial, data=utd.df) 

anova(fit.glm, test="F") 

fit.glm <- glm(Perception~Education3, family=quasibinomial, data=utd.df) 

anova(fit.glm, test="F") 
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Appendix VII: Results of the survey mapping standing gears  

Round 1 

 
Figure 7.1 Byfjorden survey results round 1. The white X is the fishing locations in Byfjorden. 

 

 
Figure 7.2 Hauglandsosen survey results round 1.  
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Figure 7.3 Fanafjorden survey results round 1. The two white Xes are the fishing locations in Fanafjorden 

named; Inner and Outer station.  

 

Round 2 

 
Figure 7.4 Raunefjorden survey results round 2. The white X is the fishing location in Raunefjorden.  
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Round 3 

 
Figure 7.5 Radfjorden survey results round 3. The white X is the fishing location in Radfjorden.  

 

 
Figure 7.6 Hauglandsosen survey survey results round 3. The three white Xes are the fishing locations in 

Hauglandsosen. The locations were treated as two locations in the analysis due to distance to known 
contamination; Hauglandsosen Ågotnes (the two Xes to the left), and Hauglandsosen Hetlevik (one X to the 

right). 
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Figure 7.7 Austevoll survey results round 3. The three white Xes are the fishing locations in Austevoll. 

However, due to low assessed contamination, the locations were treated as one.  

 

 
Figure 7.8 Fanafjorden survey results round 3. 

 


