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Abstract 

The genus Rubus belongs to the Rose family, and is currently placed in the supertribe Rosodae, of 

the subfamily Rosoideae. Further systematic placement of Rubus has not yet been clarified, 

although several hypotheses have been suggested. Several studies show that different datasets 

based on chloroplast and ribosomal nuclear genes were incongruent with respect to the placement 

of Rubus. To investigate the relationships between Rubus and other genera within Rosoideae, 

phylogenies of the chloroplast gene matK, the nuclear ribosomal ITS gene and four single copy 

genes (GAPCP1, GBSSI-1, GBSSI-2 and SbeI) were inferred on specimens from the following 

tribes: Colurieae, Potentilleae, Roseae, Rubeae, Sanguisorbeae and Ulmarieae. Our ITS data results 

are congruent with previous chloroplast data, in which Colurieae is the sister to the rest of Rosodae 

including Rubus. However, according to low copy nuclear genes analyzed here, Rubeae and 

Colurieae form a clade separate from rest of Rosodae. This leads us to believe that the incongruence 

may be caused by incomplete lineage sorting. 

Keywords: incomplete lineage sorting, low copy nuclear marker, phylogenetic discordance, 

Rosodae 
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Preface 

This master project is a collaboration with the Rosaceae evolution Research Group at the University 

Museum of Bergen. The research group currently consists of four senior researchers (Torsten 

Eriksson, Heidi Lie Andersen, Jenny Smedmark and Per Harald Salvesen), two graduate students 

(Hoda Parsian and Nannie Persson), and two master students (Ardian Høgøy Abaz and Ingrid 

Toresen). The research group works on the phylogeny of Rosaceae, Rosoideae and subgroups. 

This thesis has been written with the intention to be published in Journal of Systematics and 

Evolution. Therefore, this thesis has been written in an article format as readily as possible with 

only minor edits before being submitted. 

Also, some practical issues that gave no results for certain genes will be addressed in this section. 

During this project, several PCR protocols were tested and run in order to yield as many results as 

possible. The chloroplast gene matK was the first gene used as a part of a lab trial, which yielded 

PCR products for all of the plant extractions. The protocol did not work for any of the other genes, 

despite changing many of the parameters, one at a time. Two different recipes were therefore used. 

Many primers failed to yield any products in trial PCR, such as the low copy genes DHAR, GDSL1, 

Leafy2int2, PEPC, TPP2 and WD. As these genes failed during amplification, they were excluded 

from further consideration due to time constraints. For the same reason, GAPCP1, GBSSI-1 and 

GBSSI-2 only yielded products for some of the samples. As none of the low copy genes gave highly 

supported topologies, concatenation was essentially used. 

Several analyses based on multispecies coalescent model, BEAST v.1.8.0 (Drummond et al., 2012; 

Heled & Drummond, 2010) were also run, but ultimately failed to yield any strongly supported 

topologies, and the results were not included. 
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1. Introduction 

Rubus L. is a diverse genus of ca. 250-700 species, consisting of perennial shrubs and herbs, 

including raspberries and brambles. The genus belongs to Rosaceae which consists of about 90 

genera and 3000 species distributed worldwide with a higher concentration in the northern 

temperate regions (Simpson, 2010). The family is classified into three subfamilies (Potter et al., 

2007); Rosoideae, which includes Rubus, Dryadoideae and Spireaoideae. The Rosoideae subfamily 

currently consists of the genus Filipendula (the monogeneric Ulmarieae tribe) and the supertribe 

Rosodae. Rosodae is further divided into Rubus, the tribe Colurieae, the genus Rosa, and the two 

tribes Potentilleae and Sanguisorbeae according to Potter et al. (2007). Rosa belongs to the 

monogeneric Roseae tribe (Hutchinson, 1964; Kalkman, 2004; Xiang et al., 2017; Zhang et al., 

2017). The three tribes Roseae, Potentilleae and Sanguisorbeae are together referred to as the 

Roperculina clade (Eriksson et al., 2003). 

Early molecular studies of Rubus classified the genus in its own monogeneric tribe called Rubeae 

(Hutchinson, 1964; Kalkman, 2004) which is commonly referred to in later studies as well (Zhang 

et al., 2017, Xiang et al., 2017). However, previously published analyses distinctly disagree on the 

relative positions of Rubeae and Colurieae (Potter et al., 2007, Xiang et al., 2017, Zhang et al., 

2017). 

Morphologically, Rubus and the other members of Rosoideae separates from the Spiraeoidae 

subfamily by having indehiscent fruits, and significantly different number of stamens, in addition 

to a lower base chromosome number, and a lack of flavonols and sorbitol (Robertson, 1974). The 

morphological traits which separates Rubus from the other members of Rosoideae are two ovules 

instead of one, and the fruit type which is an aggregation of drupelets called drupecetum (Spies & 

Du Plessis, 1985; Kalkman, 2004; Spjut, 1994). An early molecular study of Rosaceae resolved 

Rosoideae as a monophyletic group with members that have base chromosome numbers of x = 7 

and 8 (Morgan et al., 1994). Chromosomal counts show that the base chromosome number for 

Rubus is 7. While many species within Rubus are diploid (2n = 14), polyploids are reported, up to 

tetradecaploid e.g. Rubus lorentzianus (2n = 14x = 98) (Thompson 1997). 

In more recent years, the systematics of Rubus have been complicated on the molecular level. Based 

on the chloroplast gene rbcL, Morgan et al. (1994) resolved Filipendula as the sister to all the other 
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Rosoideae. Then, the clade now known as Colurieae is the sister to the rest, including Rubus, but 

this was weakly supported (2 substitutions, decay value = 1). 

Eriksson et al. (2003) discussed Rubus’ placement in Rosoideae as problematic, because different 

datasets based on chloroplast and nuclear ribosomal genes were incongruent. Potter et al. (2007) 

included six nuclear (18S, GBSSI-1, GBSSI-2, ITS, pgip, and ppo) and four chloroplast (matK, 

ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and 

likelihood-based Bayesian approaches (Fig. 1A). They resolved Filipendula as the sister to the rest 

of Rosoideae like Morgan et al. (1994). Yet, Rubus was suggested to be the sister group to the rest, 

and then Colurieae with low bootstrap support (0.42), meaning its phylogenetic relationship is still 

ambiguous. The relative positions of Colurieae and Rubus were not resolved by either of these two 

studies. 

Later studies on Rosoideae have highlighted how incongruent the nuclear and chloroplast gene 

datasets can be. A whole plastome dataset by Zhang et al. (2017) hypothesize that the Colurieae 

tribe is the sister clade to the remaining Rosodae members (Fig. 1B). They also classify Rosoideae 

into six tribes: Ulmarieae, Colurieae, Rubeae, Agrimonieae (which will be called Sanguisorbeae in 

this study, following Potter et al., 2007), Roseae and Potentilleae. Another recent study based on a 

filtered set of several hundred nuclear genes by Xiang et al. (2017) resolves the first branches 

closest to the root to be Ulmarieae, and then Rubeae (Fig. 1C), and then Colurieae, like Potter et 

al. (2007). Both of these latter conflicting results are well supported. 

 

Fig. 1. Previous phylogenetic reconstructions of Rosoideae based on different datasets. The red line 

shows the branching of Rubeae including Rubus. (A) Potter et al., 2007 based on six nuclear (18S, 

gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions. (B) 

Zhang et al. (2017) based on whole plastome (WP) data set. (C) Xiang et al. (2017) based on coalescence 

analyses of up to several hundred nuclear genes. 
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While nuclear DNA is transmitted through meiosis and undergoes recombination, the chloroplasts 

are inherited uniparentally, resulting in nuclear reflecting the evolutionary history with higher 

accuracy than the cpDNA. It is, however, interesting to compare results of both nuclear and 

chloroplast data in order to elucidate the species’ evolutionary history with more certainty. 

Analyses of ribosomal nuclear genes may not reconstruct allopolyploid lineages properly if the 

DNA sequences become homogenized to either parental genotype through concerted evolution 

(Sang, 2002; Smedmark et al., 2003). Low copy nuclear genes, unlike ribosomal genes, are not as 

prone to concerted evolution, and can be used to reconstruct the phylogenetic relationships of 

parental lineages of hybrid species (Smedmark et al., 2003). 

Single copy genes previously used on taxa within Rosaceae have a higher chance of success when 

amplifying Rosoideae than other families. Low copy genes have previously been utilized as 

valuable markers at the intergeneric level. The granule bound starch synthase (GBSSI) gene have 

been utilized by Evans et al. (2000), in resolving the position of the subfamily Maloideae within 

Rosaceae. The GBSSI gene was shown to have two loci within a diploid genome of the Rosaceae 

species, GBBSI-1 and GBSSI-2 (Evans et al., 2000). The same marker was used by Smedmark et 

al. (2003) within Colurieae. Rousseau-Gueutin et al. (2009) inferred a part of the GBSSI-2 locus 

on the Fragariinae subtribe within the Potentilleae tribe. The Glyceraldehyde-3-phosphate 

dehydrogenase (GAPCP1) has also been inferred in Prunus within Rosaceae and has been 

constructed as a valuable molecular marker for single nucleotide polymorphisms (Le Dantec et al., 

2010). The Starch branching enzyme I (SbeI) gene is another single copy marker, which have been 

used to investigate the phylogenies in Prunus (Shi et al., 2013).  

The objective of this study is to clarify the uncertain basal relationships between Rubus and other 

well defined genera within the Rosoideae subfamily, based on analyses of plastid, ribosomal and 

low copy nuclear genes. 
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2. Materials and Methods 

2.1 Taxon sampling 

Species representing the tribes within Rosoideae were selected based on two criteria; species 

considered to be diploid representatives were chosen as the polyploid taxa have arisen from these 

and will therefore be optimal for depicting the origin of the clades. In addition, species considered 

to be basal within the tribes were chosen to avoid Long Branch Attraction (LBA) (Bergsten, 2005). 

Also, the polyploid taxa require more cloning in order to find all the separate copies of a gene. 

Samples were collected from the wild or from wild-collected samples in the Arboretum and 

Botanical Gardens of Bergen, others were obtained from other botanical gardens (Appendix I). 

Voucher specimens was deposited in herbarium BG. For DNA extraction, leaves were dried in 

silica gel. 

 

2.2 DNA Extraction 

Small fragments of leaves (ca. 20 mg per species) were placed in separate Eppendorf tubes and 

homogenized. The DNA extraction followed the manual protocols of Qiagen DNeasy® Mini kit 

(Qiagen, Germantown, Maryland, USA), with a couple of deviations from the protocol. Firstly, the 

samples were incubated overnight at 59°C, and then incubated for 10 minutes at 65°C. Secondly, 

the samples were centrifuged for 2 minutes instead of 5, or until the filter was dry. An additional 

minute of spinning was added in the end just to ensure that no ethanol would be carried over during 

elution. 

 

2.3 Molecular markers 

Six DNA regions were included (Table 1): the chloroplast matK gene, the nuclear internal 

transcribed spacer of the ribosomal DNA (ITS1, 5.8S, and ITS2; ITS), the nuclear low copy 

Glyceraldehyde-3-phosphate dehydrogenase (GAPCP1), the nuclear low copy granule bound 

starch synthase I genes (GBSSI-1 and GBSSI-2) and the nuclear low copy starch branching enzyme 

I gene (SbeI). 
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Table 1. Primers used for sequencing. 

DNA region Primer name Sequence (5’-3’) Reference 

ITS 
ITS1 TCC GTA GGT GAA CCT GCG G 

White et al., 1990 
ITS4 TCC TCC GCT TAT TGA TAT GC 

GAPCP1 
CGPPB5575 FWD CAT GTG CTC TAT GAG GTC CA Le Dantec et al., 

2010 CGPPB5575 REV ATC AGG TAT GCT GCT GAT GG 

GBSSI-1 
3F TAC AAA CGA GGG GTT GAT CG 

Evans et al., 2000 
7R CCT TGG TAA GCA ATG TTG TG 

GBSSI-2 
F2 TGG TCT TGG TGA TGT TCT TGG Rousseau-Gueutin 

et al., 2009 R2 GTG TAG TTG GTT GTC CTT GTA ATC C 

SbeI 
SbeI F GCT CCA CGA ATA TAT GAG GCA CAT G 

Shi et al., 2013 
SbeI R TTC CAT GAA ATT TCC TTC ATT GAC CA 

matK 
matK472F CCR TYC ATG GAA ATC TTG GTT C 

Yu et al., 2011 
matK1248R GCT RTA TAA TGA GAA AGA TTT CTG C 

 

2.4 Amplification and sequencing 

Amplification was carried out by polymerase chain reaction (PCR), performed on a C1000 touch 

thermal cycler (Bio-Rad Laboratories Inc.). 

The matK reaction mixtures contained 1 µl total DNA, Takara 1X buffer without MgCl2, 1.5 mM 

MgCl2, 1 µl 1.10 mg/mL dimethyl sulfoxide (DMSO) and 0.25 µl 10 mg/mL bovine serum albumin 

(BSA) enhancers, 0.8 mM dNTPs, 1 mM of each primer in the primer pair (Table 1), 2U AmpliTaq 

GOLD® and ddH2O to a final volume of 25 µl. 

For the nuclear genes, the reactions consisted of 2 µl total DNA, Takara 1X buffer without MgCl2, 

3 mM MgCl2, 0.8 mM dNTPs, 0.8 mM of each primer in the primer pair (Table 1), and 1.5U 

TaKaRa Ex Taq® Hot Start Version, and ddH2O to a total of 25 µl. For samples that needed 

cloning, this very same PCR protocol was used. 

The thermal PCR cycling parameters can be found in Table 2. To ensure that no contaminations 

would be the cause of errors, a positive and a negative control were included for each run. For 
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GBSSI-1, GBSSI-2 and SbeI, the PCR programs with one annealing temperature failed to yield 

products in some of the extractions, and therefore touchdown PCRs were performed instead. 

Table 2. PCR protocols. Note that the upper and lower annealing temperatures of the PCR programs are 

both shown for GBSSI-1, GBSSI-2 and SbeI.  

Primer pair 

Initialization 

temperature 

[°C], time [s] 

Denaturation 

temperature 

[°C], time [s] 

Annealing 

temperature 

[°C], time [s] 

Extension 

temperature 

[°C], time [s] 

Number of 

cycles 

matK 95, 600 95, 30 52, 40 72, 60 39 

ITS 94, 180 95, 30 52, 30 72, 80 35 

GAPCP1 94, 180 95, 30 52, 30 72, 80 35 

GBSSI-1 94, 180 94, 45 60/48, 30 72, 60 13, 36F 

GBSSI-2 94, 180 94, 45 60/48, 30 72, 60 13, 36F 

SbeI 94, 180 94, 45 62/49, 30 72, 60 15, 36F 

    F = Number of cycles for the final extensions. 

The quality and amount of DNA of the PCR products were assessed using gel electrophoresis. One 

microliter 5X Ficoll loading dye was mixed with 4 µl PCR product. The PCR product was run on 

a 30 µl 1% agarose gel mixed with 1 µl GelRed (Biotium Inc.) staining agent. To measure the 

quantity of the DNA, FastRuler Middle Range DNA Ladder (ThermoFisher Scientific) markers 

were used. The gel was then visualized in a UV cabinet (Syngene). Snapshots and manual-band 

quantifications were performed using GeneSnap plugin in Syngene. 

PCR products were purified using EXOSAP-IT protocol (GE Healthcare). Eight microliters PCR 

product was mixed with 0.1 µl Exonuclease I (EXO), 1 µl Shrimp Alkaline Phosphatase (SAP) and 

0.9 ddH2O, incubated at 37°C for 30 minutes, followed by enzyme inactivation at 85°C for 15 

minutes. 

To prepare for sequence reactions, the BigDye Terminator v.3.1 cycle sequencing Kit (Applied 

Biosystems) protocol was followed. The amount of DNA and water was determined by the DNA 

concentration calculated from the manual band quantifications. The samples were run in the 

thermal cycler starting with 96°C for 5 minutes followed by 50°C annealing temperature for 5 

seconds. After the reactions, 10 µl ddH2O was added for each sample, adding up to a total volume 

of 20 µl in the sample, so that the final PCR products could be sent in to the Sequencing Facility 

at the University of Bergen. 
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Some of the expected diploids or samples of unknown ploidy level showed double bands in either 

PCR products or DNA sequences. In order to successfully sequence these samples, molecular 

cloning using the StrataClone PCR Cloning Kit was performed. If the sample had weak bands from 

the gel electrophoresis, 2 µl cloning reaction were used instead of 1. The number of clones that 

were randomly picked depends on the ploidy level of the sample, as higher ploidy level requires 

more colonies in order to secure all of the different copies of the gene. An additional PCR program 

was run using the M13F and M13R-Puc(-40) primers (Macrogen) for the cloning vector. The 

program included 94°C initial denaturation for 10 minutes, then a cycle of denaturation at 94°C for 

45 seconds, an annealing temperature of 55°C for 45 seconds, and finally an extension at 72°C for 

3 minutes. This cycle was repeated 34 times. 

 

2.5 Alignment and phylogenetic analyses 

Geneious v.8.1.9 (Kearse et al., 2012) was used to edit and assemble the DNA sequences. A 

BLAST Search in GenBank was performed to see whether any samples were contaminated. To 

extend the dataset, relevant sequences were downloaded from GenBank. Accession numbers for 

the downloaded sequences and those newly generated sequences in this study are found in 

Appendix II. DNA sequences were aligned with MAFFT v7.017 (Katoh et al., 2002), using an 

automatic algorithm with a scoring matrix of 200PAM / k=2, and the gap open penalty set to 1.53 

with an offset value of 0.123. For the individual gene trees, the polyploid clone sequences were 

initially aligned to check whether recombinants could be detected and excluded from further 

analyses. Heuristic search of the datasets were performed using PAUP* 4.0a161 (Swofford; 2002). 

The ITS alignment was separated into three partitions: ITS1, 5.8S and ITS2 using annotations from 

reference sequence in GenBank. The GAPCP1, GBSSI-1 and GBSSI-2 alignments were separated 

into exons and introns. The matK and SbeI alignments only consist of one exon. 

MrAIC (Nylander, 2004), which uses PHYML as backend Maximum Likelihood program 

(Guindon & Gascuel, 2003), was used to infer the most suitable nucleotide substitution models for 

each individual gene using the AICc criterion (Sugiura, 1978; Hurvich & Tsai, 1989). MrBayes 

v3.3.5 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) was used to create 

phylogenetic trees based on Bayesian inference, under a mixed model for the individual gene trees 

and the models suggested by MrAIC for the concatenated trees. For the combined dataset, the 
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number of generations was set to 200 million with a sample frequency of every 1000th tree. Trees 

based on (1) each individual gene, (2) nuclear genes and (3) low copy nuclear genes (all nuclear 

excluding ITS) were created. The trees were rooted on the branch to Filipendula. When making 

concatenated trees, the clone sequences with the shortest branch lengths were chosen in order to 

avoid LBA. 

Additionally, gaps were manually coded using the method “simple indel coding” from Simmons 

and Ochoterena (2000) and were included as separate characters using the Mk model (Lewis, 

2001). When evaluating the results of the Bayesian analyses, four criteria had to be met in order to 

accept an analysis: the standard deviation of split frequencies should be below 0.01, the chain swap 

should be between 20 and 80% (McGuire et al., 2007), no trend should be seen in the overlay plot 

and the Potential Scale Reduction Factor (PSRF; Gelman & Rubin, 1992) values should reach 1.0 

for all parameters. Tracer v.1.7 (Rambaut et al., 2018) was used to visualize and analyze the 

Markov Chain Monte Carlo trace files. The final trees were visualized in Mesquite v.3.4.0 

(Maddison & Maddison, 2018). 

 

3. Results 

3.1 Sequence assembly and alignment 

A total of 87 sequences representing 23 specimens were successfully included in the concatenated 

dataset of all genes. The datasets for the nuclear, low copy genes, and the total combined dataset 

consisted of 3526, 2829 and 4259 characters, respectively. The majority of the indels in all of the 

datasets but SbeI were autapomorphic. Among the low copy nuclear genes, the SbeI was the most 

complete dataset which included all the sampled taxa and had no gaps and ambiguities in the 

alignment. The number of characters for the datasets of the individual gene trees can be found in 

Table 3. 

The alignment for matK revealed two overlapping indels; one indel by Fallugia paradoxa, Geum 

aleppicum, Geum rivale and Geum urbanum in positions 274-297 and one indel by Fragaria vesca, 

Potentilla micrantha and Potentilla reptans in positions 287-295. Sixteen of the parsimony-

informative characters for ITS were indels, ranging from 1 to 13 bases. The majority of the indels 

for ITS were caused by Agrimonia eupatoria. The Roseae species in the GAPCP1 dataset shared 
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an indel of 18 bases and an indel of 82 bases with an exception of Rosa majalis. The GBSSI-1 

dataset had several indels among Sanguisorbeae and Potentilleae species. 

Table 3. Characteristics of the individual molecular datasets included in this study. 

Gene Number of taxa 

Number of 

characters in 

total 

Number of 

constant 

characters 

Number of 

parsimony-

informative 

characters 

matK 21 734 531 136 

ITS 19 697 425 172 

GAPCP1 16 609 301 150 

GBSSI-1 10 857 463 167 

GBSSI-2 8 657 366 98 

SbeI 17 706 545 77 

 

3.2 Bayesian analyses 

The Generalized time-reversible model with gamma distribution for among-site variation was 

selected for matK, ITS1, ITS2 and the GBSSI-1 introns (GTR + G; Tavaré 1986, Yang 1996). For 

SbeI, the same model was used but with the incorporation of the proportion of invariable sites 

(GTR+I+G; Shoemaker & Fitch, 1989). As for the Hasegawa-Kishino-Yano nucleotide 

substitution model (HKY; Hasegawa et al., 1985), HKY+I was chosen for the GBSSI-1 exons, 

HKY+G was chosen for the GBSSI-2 exons and introns and HKY+I+G was chosen for the 

GAPCP1 introns. The Kimura 2-parameter model (K2P; Kimura, 1980), K2P+I was chosen for 

5.8S, and K2P+G was chosen for the GAPCP1 exons. 

The individual and combined analyses resolve different groups as closest relatives to Roperculina. 

The topologies of the low copy gene trees generally have low support, but four 50% majority-rule 

consensus trees with significant branch support were generated for the following datasets: ITS, a 

concatenated four low-copy genes GAPCP1, GBSSI-1, GBSSI-2 and SbeI dataset, a five nuclear 

genes concatenated dataset and the all data concatenated dataset. 

The generated trees from the Bayesian analyses with six separate clades that represent recognized 

tribes are shown in Figs. 2-6. In the matK tree, the basal node in Rosodae have three unresolved 
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groups of Colurieae, Rubeae and Roperculina (Roseae/Potentilleae/Sanguisorbeae) (Fig 2.). 

Potentilleae is the sister to Roseae and Sanguisorbeae with low support (0.84).  

The tree resulting from ITS (Fig. 3) shows a strongly supported sister relationship between 

Colurieae and the rest of Rosodae. Rubeae is the following group, sister to Roperculina. Within 

Roperculina, Potentilleae and Sanguisorbeae are suggested to belong to a common clade whit 

Roseae as the sister with low support (0.8).  

 

Fig. 2. Bayesian 50% majority-rule consensus tree based on analysis with a mixed model for the 

chloroplast matK region. Numbers at nodes indicate posterior probabilities of clades. 

Fig. 3. Bayesian 50% majority-rule consensus tree based on analysis with a mixed model for the 

nuclear ribosomal ITS region. Numbers at nodes indicate posterior probabilities of clades. 
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The tree generated from the four low copy nuclear regions (Fig. 4) strongly supports one clade 

including the Colurieae and Rubeae as the sister group to the remainder of the Rosodae. The tree 

analysis of five concatenated regions including ITS shows the same core topology as the ITS with 

high support (Fig. 5) but for the clade of Roseae and Sanguisorbeae which has weaker support 

(0.67). When all six genes are combined (Fig. 6), this same pattern is shown. 

 

Fig. 4. Bayesian 50% majority-rule consensus tree based on analysis of the nuclear low copy GAPCP1, 

GBSSI-1, GBSSI-2 and SbeI regions. Numbers at nodes indicate posterior probabilities of clades. 

Fig. 5. Bayesian 50% majority-rule consensus tree based on analysis of the nuclear ITS, GAPCP1, 

GBSSI-1, GBSSI-2 and SbeI regions combined. Numbers at nodes indicate posterior probabilities of 

clades. 
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To summarize the results, there are two possible placements of Rubeae. It is either grouped together 

with Colurieae in a separate clade (low copy nuclear genes only), or sister to Roperculina alone to 

the exclusion of Colurieae (ITS and low copy genes plus ITS). None of these analyses suggest that 

Colurieae and Roperculina form a clade without Rubeae. All of the trees are in agreement with the 

placement of Ulmarieae, Rosodae and Roperculina. 

 

4. Discussion 

4.1 Possible placements of Rubus 

Several phylogenetic studies have shown that Ulmarieae is included in Rosoideae but excluded 

from Rosodae in agreement with the results of this study (Eriksson et al., 1998; Eriksson et al., 

2003; Morgan et al., 1994; Potter et al., 2007; Xiang et al., 2017; Zhang et al., 2017). The present 

study also further support Roperculina as a clade but the positions of Rubeae and Colurieae are 

ambiguous. There are three possible hypotheses regarding the relationships of the three clades 

Colurieae, Roperculina and Rubeae. 

 

 

Fig. 6. Bayesian 50% majority-rule consensus tree based on analysis of the six matK, ITS, GAPCP1, 

GBSSI-1, GBSSI-2 and SbeI regions combined. Numbers at nodes indicate posterior probabilities of 

clades. 
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Hypothesis (H1): Colurieae is sister to the rest of the Rosodae including Rubus 

The first hypothesis places Colurieae as the sister to the rest of Rosodae. This hypothesis was 

strongly supported by our ITS data, but with low support by our SbeI and GBSSI-1(0.53 and 0.55, 

respectively). The ITS sequences were easy to align compared to the other DNA regions in this 

study. The first ITS study of Rosoideae pointed out how their analysis containing distantly related 

genera could cause several indels (Eriksson et al., 1998). The MAFFT alignment for ITS in this 

study also resulted in several indels but the majority of them had a length of one base pair. Internal 

transcribed spacers are not feasible for distantly related genera because of difficulties with 

alignments due to their rapid divergence rates (Álvarez & Wendel, 2003; Sang, 2002), but it seems 

from this result that ITS has a divergence rate relevant to resolving the Rosoideae. 

Only two studies of Rosoideae have used ITS exclusively and included Rubus in their datasets 

(Eriksson et al, 1998; Smedmark & Eriksson, 2002). The ITS study by Eriksson et al. (1998) does 

not support this hypothesis (see H3), but the ITS tree is congruent with Smedmark & Eriksson 

(2002), who focused mainly on Colurieae, and placed Rubus in the same clade as Roseae and 

Sanguisorbeae with high support. No taxa representing the Potentilleae tribe were included in that 

study. 

This hypothesis is consistent among plastid studies (Morgan et al., 1994; Eriksson et al., 2003; 

Zhang et al., 2017). The main problem with chloroplast data is that these genes are inherited 

uniparentally, having limitations when identifying reticulate evolution. 

 

Hypothesis (H2): Rubeae is sister to the rest of the Rosodae including Colurieae 

The second hypothesis implies that Rubeae is the sister to the rest of the Rosodae, including 

Colurieae. None of the analyses in this study supports this hypothesis but a recent study by Xiang 

et al. (2017) resulted in this topology using transcriptomic and genomic dataset from hundreds of 

nuclear genes. 

Xiang et al. (2017) selectively chose their genes based on a filtering algorithm. Every tree created 

from a gene should conform to their constraint tree of chosen taxa in order to be included in their 

concatenated tree (Fig. 7.). If any of these relationships were violated, the gene would not be 

included in their study. Though, they did not include a representative basal lineage within 
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Rosoideae, like Filipendula, in their algorithm. It is unknown if the results would differ if they 

included taxa from a basal clade (like Ulmarieae) instead of Rubus coreanus. If so, the overall 

topology for the concatenated tree might be changed, perhaps changing the positions of Rubeae 

and Colurieae as a consequence. 

 

Xiang et al. (2017) combined several hundred genes. Concatenation can result in higher topological 

support but under the assumption that all the datasets of the genes have the same evolutionary 

pattern. When recombination occurs, separate loci mostly evolves independently (Cronn et al., 

1999). The topology can become easily adjusted and artificial if you combine genes which tell 

different evolutionary histories (Bravo et al., 2018; Kubatko & Degnan, 2007; Gadagkar et al., 

2005). In the combined datasets in the present study, ITS had the strongest influence over the 

topology of the nuclear genes. It gave the same basic topology as the ITS-only tree, supporting 

hypothesis (H1) when included and supporting hypothesis (H3) when excluded, which shows that 

combining datasets can be misleading for the species trees. However, since the support for the 

topologies of the individual low copy gene trees are low, one cannot directly tell if the topology of 

the concatenated trees in the present study are incorrect. If SbeI of all species were successfully 

sequenced as for the other low copy genes, the risk of phylogenetic errors would be reduced 

(Morales-Brionnes et al., 2018). 

 

 

Fig. 7. Constraint tree of chosen taxa as presented in Xiang et al. (2017). 
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Hypothesis (H3): Colurieae and Rubeae belong to a clade together, sister to Roperculina 

The third hypothesis suggests that Roperculina is sister to a clade consisting of Colurieae and 

Rubeae. This topology has only been published a few times before, and was first recovered by 

Eriksson et al. (1998), using parsimony analysis of ITS data. They only included one Rubus 

specimen in their dataset and the clade itself had very low support. Potter et al. (2002) similarly 

resolved these relationships in a parsimony analysis of the plastid matK and trnL-trnF markers, but 

also with low support. This was possibly due to focusing primarily on the Amygdaloideae 

subfamily, with only one representative of each tribe in Rosoideae except for Ulmarieae. The 

analysis of Eriksson et al. (2003) resulted in this topology using a parsimony analysis of ITS. Chin 

et al. (2014) also got this topology using the three plastid genes matK, trnL-L-F and rbcL but they 

did not include any Filipendula species in their sampling. The most recent study suggesting this 

topology was by Gaynor et al. (2018), but they do not display their branch support. Overall, there 

have been no well sampled previous studies which have shown this topology with strong support.  

The third hypothesis was strongly supported by the combined analysis of the low copy genes in the 

present study. It was also supported by GAPCP1 with low support (0.58). When looking at the 

morphological features, the common traits among Colurieae and Rubeae, such as pinnate leaves, 

numerous stamens and pentamerous flowers, are synapomorphic in Rosodae. Colurieae and 

Rubeae differ in inflorescence, fruit type, number of ovules, and the epicalyx is present in Colurieae 

while absent in Rubeae. The low copy genes behind this result are more trustworthy than the 

previously discussed hypotheses. Therefore, to group Colurieae and Rubeae is a new way of 

looking into the basal phylogeny of the Rosoideae and deserve some additional attention in the 

future. 

 

4.2 Possible explanations for the incongruent placement of Rubus 

Each hypothesis is supported by either previous studies or in the present study: H1 – Zhang et al. 

2017 (chloroplast genome), H2 – Xiang et al. (2017)(nuclear genes) and H3 – The low copy genes 

of this study. Both Xiang et al. (2017) and Zhang et al. (2017) boldly state that they have resolved 

the placement of Rubus but they are clearly incongruent. Both of their datasets include many taxa 

and genes but there is still a difference between the chloroplast phylogenies and nuclear 
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phylogenies. Does this mean there are two different evolutionary histories? Disagreements between 

nuclear genes and chloroplast genes are not uncommon in Rosoideae (Kerr, 2004). If the genes 

indeed tell different evolutionary histories, they will coalesce differently compared to the branching 

patterns of the species tree. 

A plausible reason behind the incongruence between the gene trees include hybridization between 

the lineages and incomplete lineage sorting (ILS) because they share similar patterns in regard to 

their genetic diversity (Zhou et al., 2017). ILS can pose a problem if polymorphism occurs before 

speciation. Polymorphism is reported to be common in ribosomal nuclear genes such as ITS 

(Hershkovitz et al., 1999). ILS is also more common the more taxa and genes that are included in 

the dataset (Bravo et al., 2018). 

Another possible explanation could be gene duplication and loss (GDL). If a gene undergoes a 

duplication, it will result in two copies. These two copies will evolve independently (Maddison, 

1997) in different loci. If one gene at one locus goes extinct for one species, while the same gene 

but in the different locus goes extinct for another species, the species trees will be a result of two 

paralogous genes and will not concur with the gene trees. 

Horizontal gene transfer (HGT), the genetic transfer between two species, is also possible among 

plants. This can either happen through a bacterial vector, or introgression, backcrossing between 

an interspecific hybrid and parent species (Maddison, 1997; Choudhuri, 2014). If an original copy 

of a gene is lost in similar situation as GDL for a species, and then the same species receives a copy 

from another species, the gene tree will discord with the species tree. 

Genes can undergo many processes which may have an influence on their evolutionary history. 

This should be taken into account when reconstructing phylogenies, although such processes can 

be difficult to detect. 

 

4.3 Future prospects 

Since the individual nuclear low copy trees had low support, aside from trying to sequence the 

same taxa for all of the genes, a suggestion for further study is to find the single copy nuclear genes 

which has the appropriate evolutionary rates for the tribe taxonomic level, as different genes evolve 

at different rates (Clegg et al., 1997). 
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It would also be noteworthy to examine how much the different hypotheses were supported by the 

data from Xiang et al. (2017) and Zhang et al. (2017). This can be done by investigating the 

Bayesian tree sample for the number of trees that support the alternative topology (Lundberg et al. 

2009). 

Another suggestion is to create a red thread, intertwining morphological data with phylogenetic 

data. In other words, it would be noteworthy to see if making a matrix which includes all the 

morphological traits for the taxa and then comparing these morphological with already existing 

phylogenies will yield any matches. New methods could possibly facilitate the phylogeny. Sanger 

sequencing, which was conducted in this study, is a traditional method for DNA sequencing 

(Bleidorn et al., 2016). Third generation sequencing could facilitate the assembly of the polyploid 

genomes as well as heterozygosity, a problem when reconstructing the phylogeny even for diploid 

individuals (Jiao & Schneeberger, 2017). 

 

4.4. Concluding remarks 

This study has given an insight into a basal phylogenetic enigma within Rosoideae, which has 

barely been sparked upon. This study strongly support the Rubeae either forming a clade with 

Roperculina or Colurieae, but the latter two do not form its separate clade. ILS, GDL and HGT are 

suggested to be the possible causes behind the incongruence between chloroplast and nuclear 

phylogenies. 
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Appendix 

Appendix I. Voucher specimens included in this study. Unknown ploidy levels are 

marked with a question mark. Source: Index to plant chromosome numbers (IPCN). 

Tribe Taxon Voucher 
Ploidy 

level 

Colurieae Fallugia paradoxa (D. 

Don) Endl. 

IPEN:US:0:SBT

:V:897 
Diploid 

 Geum pentapetalum (L.) 

Makino 

K. Moori 2001-

0710 
Diploid 

 Geum rivale L. BG/S-165240 Hexaploid 

Potentilleae Potentilla micrantha 
Ramond ex DC. 

RBGE Diploid 

 Potentilla reptans L. PHS 16.54 Tetraploid 

Roseae Rosa arvensis Hudson Z-1992.1462 Diploid 

 Rosa hirtula (Regel) 

Nakai 
G-1993.0773 ? 

 Rosa majalis J. Herrmann PHS 16.54 Diploid 

 Rosa onoei Makino Z-1992.1516 Diploid 

 Rosa rugosa Thunb. T.E. 1059 Diploid 

 Rosa sericea Lindl. PHS2001.109 ? 

Rubeae Rubus chamaemorus L. BG/S-165238 Octoploid 

 Rubus odoratus L. PHS 16.59 Diploid 

 Rubus parviflorus Nutt. PHS 16.58 Diploid 

 Rubus pedatus Sm. Cult. Alaska Diploid 

Sanguisorbeae Agrimonia eupatoria L. PHS 16.51  Tetraploid 

 Sanguisorba officinalis L. BG/S-165237 Tetraploid 

Ulmarieae Filipendula ulmaria (L.) 

Maxim 
BG/S-165239 Diploid 

 Filipendula vulgaris 

Moench 
PHS 16.52 Diploid 
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Appendix II. Extractions included in this study. Sequences marked as “New” are generated from this 

study and will later be published in GenBank. 

Taxon ITS GAPCP1 GBSSI GBSSI-2 SbeI matK Reference 

Agrimonia eupatoria L. New New New  New New This paper 

Fallugia paradoxa (D. 
Don) Endl. 

New   New New New This paper 

Filipendula multijuga 
Maxim 

     AB073684 Mishima et 
al., 2002 

Filipendula ulmaria 

(L.) Maxim 
New New   New  This paper 

Filipendula vulgaris 
Moench 

New New New New New  This paper 

Filipendula vulgaris 
Moench 

     HE966930 Bruni et 
al., 2012 

Fragaria vesca L.   NC_020497    Shulaev et 
al., 2011 

Geum aleppicum Jacq.      HQ593312 Burgess et 

al., 2012 
Geum pentapetalum 
(L.) Makino 

New New  New New New This paper 

Geum rivale L. New New   New  This paper 

Geum rivale L.   AJ534192    Smedmark 
et al., 2003 

Geum urbanum L.      JN894110 de Vere et 
al., 2012 

Potentilla micrantha 
Ramond ex DC. 

  New    Toresen, 
2018 

Potentilla reptans L. New New  New New New Toresen, 

2018 
Rosa arvensis Hudson New New   New New This paper 

Rosa hirtula (Regel) 
Nakai 

New New   New New This paper 

Rosa majalis J. 
Herrmann 

New New New  New New This paper 

Rosa onoei Makino New   New New New This paper 

Rosa rugosa Thunb New New New New New New This paper 

Rosa sericea Lindl. New New   New New This paper 

Rubus chamaemorus L. New New   New New This paper 

Rubus odoratus L. New New New New New New This paper 

Rubus parviflorus Nutt. New  New  New New This paper 

Rubus pedatus Sm. New New New New New New This paper 

Sanguisorba officinalis 

L. 
New New   New New This paper 

 

 

 


