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Abstract

Food safety and authenticity are important issue. Ingredients presenting high value are the most
vulnerable for adulteration as the common practice is to replace original substance partially
with cheap and easily available substance for economic gains. Authentication is also of concern

to manufacturers who do not wish to be subjected to unfair competition.

Fishmeal has been the major source of protein in feeds for farmed fish. Due to increase in the
growth of aquaculture production and limited availability of FM, alternative protein sources
such as plant proteins (PP) are used. Wheat gluten is a PP source that has given promising
results. Wheat gluten is made by washing wheat flour dough with water until all the starch
granules and soluble fiber have been removed. It is a high protein raw material with good
digestibility and interesting amino acid profile in addition to be used for its binding property.
Due to these qualities use of wheat gluten as plant protein source has considerably increased in

aquaculture feeds.

The aim of this study is to use NIRS and chemometric tools for the early discrimination of
adulterated wheat gluten samples from pure wheat gluten samples. A SIMCA model was
developed to discriminate between adulterated and unadulterated samples. SIMCA model
showed 100 % classification at adulteration level of 3000 ppm .Thus, NIRS together with
SIMCA model represent an attractive option for quality screening without sample

pretreatments.
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1 Introduction

1.1 Background

Food adulteration is the process of replacing original substance partially with cheap substance
and thereby lowering or degrading the quality and effecting nutrients like protein, fat,
carbohydrates, vitamins and others, that are important for normal growth. Protein is a high value
ingredient since it plays a vital role in a number of important functions such as, catalyzing
metabolic reactions, DNA replication and intracellular transport from one location to other.
Protein is thus most vulnerable for adulteration. Proteins are large complex biomolecules
consisting of one or more long chains of amino acids. Amino acids are organic compounds
containing amino, carboxyl group and side chain (R-group) specific to each amino acid Figure

1.1
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Figure 1.1: Amino Acid Structure

A non-protein nitrogen (NPN) compound is a term used for substances that have element
nitrogen in them, but are not protein. For example melamine, cyanuric acid and urea amongst
others. Due to low cost of NPN compounds, compared to plant and animal protein, they may
be added to raw materials to artificially increase crude protein value. Such substances are called
Economically Motivated Adulterants (EMA) and are intentionally added for financial gains.
EMA present a challenge to the food industry and regulatory authorities because they are
deliberate acts that are intended to evade detection. Journal of Food protection have reviewed

some of EMA incidents [1]. In March 2007 contaminated pet food lead to the deaths of a
1



number of cats in North America. This had prompted pet food recall in North America. In China
in November 2008 there was a major food safety incident involving milk and infant formula
adulteration causing the death of six infants from kidney damage and kidney stones. Due to
these and other similar incidents, EM A has become a crucial safety issue for the food industry.
EMA incidents reveal gaps in quality assurance testing methodologies that are exploited for

financial gains.

As discussed in the study conducted by Phromkunthong [2] , inclusion of EMA in fish feed
have shown harmful effects on fish and consumption of such fish may be hazardous to human
health. An eight-week feeding trial demonstrated, that the fish fed on feed containing EMA
grew less, utilized less feed and performed poorly. Fish fed on the adulterated feed also
exhibited symptoms and defects like anorexia, sluggish swimming behavior, fin erosion,
darkening of skin and high mortality. Food safety crises have aroused the need for a sensitive,
reliable and rapid procedure for detection of possible adulterants. The standard protein
determination assay, for example Kjeldahl method, measures total nitrogen in the samples and
cannot differentiate between protein nitrogen and non-protein nitrogen. Hence, some producers
for economic gains add NPN compounds and try to make their product seem to contain more
protein than it actually does. European food and safety authority [3] in 2010 has set a maximum
permitted concentration for NPN in food and feed at a level of 2.5 mg/kg, these are limits for
low level of contamination. However, to make profit by EMA, much higher level of NPN needs
to be added. Example ; for 2% addition of NPN to a raw material , the nitrogen content of the
resulting mixture is increased by approximately 1.3% and the apparent protein content would

be increased by over 8% assuming a nitrogen to protein ratio of 6.25 [4].

The traditional and novel detection methods like Gas Chromatography Mass-Spectrometry
(GC-MS), High Performance Liquid Chromatography (HPLC), Capillary electrophoresis (CE),
Nuclear magnetic resonance spectroscopy (NMR), Enzyme Linked Immunosorbent Assays
(ELISA), Nanoparticle based sensors amongst others are very sensitive, but destructive, time
consuming and require highly trained analysts. In addition they are costly as high-tech
instruments are required [5] . New approaches based on biomimetic sensors, vibrational
spectroscopy, Hyperspectral and Multispectral imaging (HIS-MSI) are being explored as rapid

and non-destructive techniques for determination of authenticity and quality [6, 7].



Near Infrared Spectroscopy (NIRS) is a vibrational spectroscopy technique applied in areas
such as nutrition and authenticity in aqua and agro culture. NIRS is becoming an important tool
due to non-destructive capabilities, speed, reproducibility and ease of implementing this
technology into an industrial set-up. NIRS in combination with chemometrics can be used to
discriminate between fishmeal, soya meal and meat meal samples [8]. NIRS can be used to
discriminate different species of fishmeal batches [9]. NIR spectroscopy to detect adulteration

in soybean meal using multivariate calibration models has been demonstrated by Haughey [10].

1.2 Objective

The main objective of this study is to devise a method using near-infrared spectroscopy (NIRS)
and chemometrics to detect the presence of NPN compound in wheat gluten that is used as a
source of plant protein in fish feed. Multivariate statistical tools provide pattern recognition
techniques that allow adequate differentiation to be made between authentic and unauthentic
wheat gluten samples. Additional objective is to investigate the extent of adulteration which

can be identified using PLSR model.






2 Theory

2.1 Spectroscopy

2.1.1 Near Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a vibrational spectroscopy method that measures
absorption in the near-infrared region of the electromagnetic spectrum, defined as wavelengths
from approximately 700 to 2500 nm. The basic principal of NIRS is based on vibrational
energy, which results in periodic displacement of atoms from their equilibrium state. When a
sample is irradiated, molecules in the sample absorb light and they vibrate accordingly to their
selective vibrating frequencies giving rise to a spectrum. The NIR region is characterized by
overtone and combination bands of fundamental vibrations of —CH, -NH, -OH and —-SH
functional groups. The information in the NIR spectra is repeated through successive overtones
and combinations. The intensity of bands involved become weaker towards shorter
wavelengths. The weaker intensities in the NIR region mean that solid samples need no dilution
and non-linearity effects due to strong absorption are less likely [11]. Interaction of near
infrared radiation with solid particles give rise to refraction, transmittance, absorption, and

scattering effects as shown in figure 2.1 [11].

- ¢ R ¢ e ) (f)
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b} = Diffuse Reflectence
e} = Absorption

|d} =Transmittance

(e) = Refraction

{f) = Scattering

Figure 2.1. Interaction of near infrared radiation with solid particles in a sample

According to Beer-Lambert law, the amount of light absorbed (A) by the sample is directly
proportional to the concentration (c) of the analyte, molar absorptivity (a) and path length (b).
5



The path length of radiation is maintained constant in absorption spectroscopy, but is affected
by scattering of light for transmittance and reflectance spectroscopy. Scattering occurs when
radiation transmitted through the surface is diffused by refraction, reflection and diffractions.
The concentration and absorbed energy relation for NIRS region further involves overlapping
of spectral bands from different constituents present in the sample, hence NIRS is an empirical
technique and needs to be calibrated using standard chemical methods. NIRS is a simple, rapid,
nondestructive technique that provides several parameters from one analysis, and hence cost
effective compared to wet chemistry methods. It is a nondestructive technique and requires no
sample preparation with hazardous chemicals, solvents or reagents. The instrument is safe and

easy to use [11].

2.1.2 NIR Instrumentation

The basic NIR instrument configuration is either transmittance or reflectance figure 2.2.
Irrespective of the configuration, both types consist of the following five components; source
of energy, wavelength discrimination, sample holder or cup, detector, and signal processor. The
common source of energy is tungsten filament lamp since it emits light from 320 to 2500 nm.
Filters or monochromators are used for wavelength discrimination. Filters (usually between six
and nineteen) are mounted on a rotating flat disc allowing radiation from the lamp to pass
sequentially through each filter whereas monochromators scan the whole wavelength range by
using a prism or grating as dispersing medium. Detection of NIR radiation occurs photo
electrically. The incident photons change the electron state of the photosensitive material of
detector, thereby producing an electrical impulse as detector output. To minimize scattering
effect detectors are placed near the sample at 45 degree. The signals from the detector are

amplified and readout as spectrum [11].
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Figure 2.2: NIR instrument configuration for transmittance and reflectance

2.2 Multivariate Data Analysis

NIR spectra are complex and possess broad overlapping and combination of NIR absorption
bands that require special mathematical techniques for data analysis. Modern near-infrared
technology relies heavily on computers for its ability to acquire data from instruments and
facilitate data analysis. Multivariate data analysis techniques can been applied effectively for
explorative analysis, discrimination and classification or regression and prediction. The choice

of technique depends on the goals of the analysis [12].

2.2.1 Spectral Preprocessing Techniques

Experimental and instrumental effects that are not related to sample compositional differences
make sample comparison difficult. When samples are analyzed by either reflectance or
transmittance NIRS, uncontrolled variations in light scattering is a dominating artifact. The
spectra obtained contains noise and background information in addition to sample information.
The undesired scattering variation is due to physical variation in the sample, such as particle
size, sample surface, sample packing etc. The goal of data pre-treatment is to minimize
variability unrelated to the property of interest. When analyzing spectral data, it is common to
try out different pre-treatment and their combinations. Pre-treatment methods should be used

with care as they can reduce signal of interest [13].



Derivatives are commonly used to remove unimportant signal from samples [14]. Derivatives
are a form of high pass filter and are often used when high frequency features contain signal of
interest. This method should only be used when the variables are strongly related to each other
and the adjacent variables contain similar or correlated signal. The simplest form is first
derivative, in which each variable is subtracted from its neighboring variable, to remove the
signal that is similar and leaves the part of signal that is different. The first derivative thus
removes any offset from the sample and deemphasizes low frequency signals. A second
derivative is calculated by repeating the process and there by further accentuates higher
frequency features. Since differentiation emphasizes higher frequencies, it also tends to

accentuate noise and hence some form of smoothing is required along with differentiation.

Smoothing improves the signal to noise ratio by attenuating high frequency signals.
Undersmoothing will not remove any noise, whereas oversmoothing will reduce the signal
intensity and resolution. The optimum smoothing function depends on peak widths and noise
characteristics [15]. Most common methods for smoothing are moving average or Savitzky-
Golay smoothing [16]. In moving average (MA), a fixed number of data points are selected,
their ordinates are added and then divided by the number of data points selected to obtain the
average value. The number of data points selected is called window. The spectral data is
smoothed by moving the window along the spectrum and by successively replacing each data
point with a new point through entire dataset. Running median smoothing (RMS) operates in
similar way but calculates median rather than mean over a window. Better noise reduction may
be obtained by selecting more number of points, but this can lead into distorted signals as show

in the figure 2.3 [15].
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Figure 2.3: Change in signal with increase in window size
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Savitzky - Golay is the most commonly used polynomial smoothing method to improve signal
to noise ratio. Least square method is used to fit set of data points through a polynomial function
to a data in a moving window. One needs to decide the number of points used to calculate the

polynomial (window size) and the degree of polynomial fitting [15].

Multiplicative Scatter Correction (MSC) [13, 17] in its basic form was first introduced by
Martens et al. (1983). It is a preprocessing technique used to remove non-linearity in the data
caused by scattering from particle size of the sample. MSC deal with light scattering to
compensate for multiplicative (amplification) and additive (offset) effect in the raw spectral
signal [13]. It assumes that the light scattering for each sample is estimated relative to that of
reference spectrum. Each spectrum is then corrected so that all samples appear to have the same
scatter level as the reference spectrum. The reference spectra can either be a pre-defined
reference or the average spectra over a set of samples (e.g. the calibration set). The average
over a set of samples is normally used as it is difficult to obtain one appropriate reference

spectrum [13]. MSC model for each individual spectrum comprises of two steps [13]

1. Estimation of the corrected coefficient

Xorg = bo + bret,1 Xref + € 2.1)

2. Corrected spectra
Xcorr = (Xorg —bo )/ bret,1 2.2)

Where Xorg is one original sample spectra measured by NIR instrument, Xref is the reference
spectrum, e corresponds effects that cannot be modelled in Xorg , Xcorr is the corrected spectra

and bo and bref,1 are scalar parameters estimated by least square and differ for each sample.

Extended multiplicative signal correction (EMSC) is a modification of the MSC method to
include wavelength corrections [13, 18]. With EMSC it is possible to estimate and separate
multiplicative physical effects ( path length, sample thickness ,light scattering, etc. ) from
additive physical effects (baseline variation ,temperature shifts , etc. ) and additive chemical

effects (absorbance of analytes and interferants) [19]



Standard Normal Variate (SNV) [13, 20] is a preprocessing technique used for scattering
correction. The signal correction concept behind SNV is same as for MSC except that common
reference signal is not required. SNV transformation centers each spectrum and then scales it

by its own standard deviation
Xeorr = (Xorg— aO)/ ai (2.3)

Where Xcorr is the corrected spectra, Xorg is the original sample spectra, ao is the average value

of the sample spectrum to be corrected and aj is the standard deviation of the sample spectrum.

2.2.2 Principal Component Analysis (PCA)

PCA is one of the most important multivariate explorative data analysis tool. PCA is a bilinear
modeling techniques that provides a visual approach to identify patterns in data, outlier
detection, variable selection, classification and dimension reduction. The possibility of using
PCA for classification forms the basis for the classification method called SIMCA (Soft
Independent Modelling of Class)[21]. PCA is also called as projection method as it uses
information from original variables and projects them onto a smaller number of latent variables
called Principal Components (PC). Each PC explains certain amount of information present in
the original data. First PC stretch out in the direction of most variance, the next PC is orthogonal
to this axis and has the direction where there is second most spread of variance. Thus, the first
PC explains greatest amount of information in the data set and each subsequent PC explains
less or remaining information than the previous one. The matrix X of the NIR spectral data has
sample as rows and wavelength as columns and can be decomposed by PCA into a product of
scores (T) and loading (PT) matrix as illustrated in equation 2.4. For the loading matrix (PT)
superscript T implies transposition of column into row vector. E is residual matrix .Thus , E is
the part of X that is not explained by the product TPT [12]. E is a good measure of “lack-of-fit”

that describes how close the model is to the original data.

X=TPT + E = Structure + Noise 2.4)
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The score and loading plots are normally constructed using PClverses PC2, as they explain the
largest variance in the data set. The score plot of PC1 verses PC2 is shown in figure 2.4 [12].
The score plots reveals patterns or groupings of objects. On a score plot, objects that are closely
clustered behave similar whereas objects that are diametrically opposite are negatively
correlated [15]. The loading plots describe variable correlations. On a loading plot, variables
that are close have high correlation whereas variables on opposite side of origin have negative

correlation.

t;; Object1

* . PCl

xl

Figure 2.4: The plot to the left is of first and second principal components. The plot to right is

a score plot illustrating the coordinates of the object i on PC1 and PC2.

NIR spectra consists of data collected at hundreds to thousands of different variables
(wavelengths). Moreover, for NIR these variables (wavelengths) are highly correlated, meaning
that the measured absorbance at two or more wavelengths are not independent of each other.
This is referred to collinearity or multicollinearity and can pose problems with linear regression
models [12]. To handle multicollinearity and to get a better overview of the data , it is necessary
to reduce the amount of data [20]. Principal component analysis (PCA) among others is the

most commonly used method for dimension reduction of the NIR spectra matrix [20]

2.2.3 SIMCA Classification

Soft independent modeling of class analogy (SIMCA) [22], is a supervised pattern recognition

class modeling technique. In class modeling the focus is on modeling the similarity between

11



the samples belonging to a particular class. SIMCA classification algorithm is based on
Principal Component Analysis (PCA). PCA is performed on each class to create a separate
bilinear model for each group in the training set. The number of PCs needed to describe each
group is usually different; too many PCs will add noise whereas few components can distort
the information contained in the data. Hence, it is important to optimize the number of PCs
retained for each class PC model. Cross-validation is used to find the number of PCs necessary
to describe the data[22]. The variance that explains data is called model variance of the class
model whereas the residual variance describes noise in the data and is part of the PCs not
included in the model. Since SIMCA is based on PC models, it is sensitive to the quality of the
data used to create PC models. Parameters such as modeling power and discriminatory power
are used to assess the quality of the data. Modeling power is a measure of how well a variable
helps the PCs to model variation and has value between 0 and 1. Modelling power [15] close
to 1 means that the variable is mostly accounted for by the model. A value close to zero indicates
that the variable has a variation pattern distinct from the PCs, and such a variable should be

deleted.

Modelling power of each variable for each separate class is given by equation 2.5
M; = 1- Siresid/ Sjraw ~ (2.5)

Where Sjraw is the standard deviation of the variable in the raw data and Sjresia the standard
deviation of the variable in the residuals. Discriminatory power [15]describes how well a
variable helps PC; to discriminate between two groups; it is a positive number equal to or
greater than one. A value close to one indicate that the variable has no ability to distinguish
where as a value greater than three indicates good separation test is used to compare the residual

variance of unknown sample with mean residual variance of the class model.

The equations below mathematically describe detailed procedure of SIMCA [23]

1/2

PO .G

J=1i=1 (”K — Pk — ])(m 7PK)
(2.6)
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Where soK is the mean residual standard deviation of the training set for class K, ng is the
number of objects, Pk is the number of significant PC; in class K, m is the number of variables

and eij is the residual.

5 9 1/2
- |5

= (m = px)
(2.7)
The residual standard deviation of the unknown spectrum, su¥ is given by equation 2.7 and is

calculated using €y;j value.

Comparison of the relative standard deviation (RSD) for the unknown (Suk ) with the mean RSD
for the model so® gives a direct measure of its similarity to the subset model. F test statistics is
used for the comparison of su® and s

If the F-value is larger than the critical F-value at a given level of significance, it can be

concluded that the distance from class K is significantly larger, i.e. the sample does not belong

to the class K.

(2.8)

2.2.4 Univariate and multivariate calibration models

Calibration modeling involves using empirical data and prior knowledge for predicting
concentration of the unknown samples. Univariate calibration model or simple linear regression
model consists of dependent variable (y), independent variable (x), coefficient term (bo and b1)
and unexplained variance in the dependent variable which is given by error (e), as shown in the
equation 2.9. The coefficient terms bg and b; are found using least square principle, as given

in the equation 2.5 [12].

13



y=bo+ bix+e (2.9)

3 E(-‘-'—-\_')[J'— ) _ SS(xp)
> (x ¥ SS(x)

J'l T

i |

L .j'., ~ R
JLII:':M:J'_{hl ._'\"'
n (2.10)

NIRS is non-selective, meaning there is no single wavelength that provides sufficient
information and the absorbance at all wavelengths are effected by physical and chemical
property of the sample. The selectivity problem in NIRS can be solved by using several
wavelengths i.e. having number of independent variables. However, a simple linear regression
model cannot be applied when there is more than one independent variable. Multivariate
calibration or multiple linear regression model (MLR) is used to solve this situation. A

multivariate calibration model is illustrated in equation 2.11.
y= bot+biXi+baxo+.....bixk+ € (2.11)
The above equation can be written in the matrix form as equation 2.12
y=Xb+e (2.12)

The vector of regression coefficients b (bo, bi,b...bx ) is found by least squares fitting so as to

minimize the sum of squares residuals as given in equation 2.13
b= (XTX)'XTy (2.13)

In case of strong collinearities in X variables, (X"X) is no longer a non-singular or full rank

matrix and inverse is not possible [24]. This a drawback of MLR.

Partial least square regression (PLSR) is a multivariate calibration technique used to predict
dependent variables from independent variables. PLSR is a dimension reduction technique
that uses original variables to calculate number of latent variables called factors. PLSR can
thus be used to handle collinearity issues with X variables. It uses covariance between
independent variables in data matrix X and dependent variables in response matrix Y. Thus
both data matrix X and response matrix Y are decomposed into product of scores (T and U)

and loadings (PT and Q7), E and F are residual matrix’s equation 2.14 and 2.15.
14



X=TP"+ E = Structure + Noise (2.14)
Y=UQT + F = Structure + Noise (2.15)

Scores (T) explain part of X which is related to Y and Score (U) explain part of Y which is
related to X [12].

2.2.5 Variable selection

Variable selection is used for improving the model performance, give better predictions or
reduce the model complexity by removing unnecessary, uninformative and interfering variables
that add noise and makes prediction worse. Variable selection is a process of reducing number
of independent variables in X matrix; by discriminating informative variables from the ones
that are not related to dependent variable Y [25]. If too many variables are used the equation
becomes over-fitted. This means the model will be data dependent and will give poor prediction
results. On the contrary, using too few variables could result in under-fitting. This means the
model is not large enough to capture the important variability in the data. Various variable
selection approaches have been developed to reduce the complexity of the model [26]. A
thorough understanding of data is necessary to make qualified decisions and get appropriate
insight on what variable seems important, unimportant or is of intermediate importance.
Chemical information from NIR spectra should be used when selecting variables to keep.
Variable selection is an iterative process and should not be used as an automated black box

selection approach.

2.2.6 Cross-Validation (CV)

Cross validation [27, 28] is a method used for evaluating predictive performance of a model. It
is based on splitting the calibration data set into training set and test set, the process of splitting
is repeated several times using different partition of the calibration data. The resulting

prediction errors are averaged across the multiple rounds of CV.

In k-fold CV the data set is divided into k equal size subsets. Each time, one of the k subset is
used as test set and k-1 subsets are used as training set to build model. The subset which was

removed is then fitted to the model and the deviation between the actual response variable (y)

15



and the predicted response variable (y”) is used to obtain prediction error. The CV process is
repeated k times, with each of the k subsamples used exactly once as the test data. The
prediction error for all objects are then combined to obtain an overall prediction error given by
root mean square error of cross validation (RMSECV) equation 2.16 [20] . This error is
calculated for each number of LVs used to build the model. The number of LVs that archives

lowest error is the optimal one.

T P}
RMSECY — | Zim (U = %)
" (2.16)

Where n is number of objects (samples), y; actual response and y7 is predicted response

‘ Training set
Training folds Test fold
L -
f |
1“ iteration — £

2 iteration . — EE .
3" iteration . ::) EJ -

e WL LT LT =

Figure 2.4: Representation of a 10 fold CV example. The calibration set is partitioned into 10

B

different groups. The error of each group (El, E2 ....E10) is combined to obtain overall

prediction error (E).
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3 Experiment

3.1 Sample preparation

Thirty different commercial wheat gluten samples were collected from fish feed producing
companies. Sample preparation for the experiment was done in three stages. Each of these

stages are described in section 3.3 below.

3.2 Retsch Sample Divider PT 100 for sample splitting

— Vibratory Feeder

— Dividing Head Hopper

Dividing Head

Adapter Tube with quick
release sample outlet

——Sample Collection Jar

Figure 3.1: Retsch Sample Divider PT 100

Retsch Sample Divider PT 100 is used for splitting. It ensures representativeness of samples.
In aretsch sample divider the material to be split flows through a vibratory feeder and is directed
via a dividing head hopper into the opening of the dividing head. This dividing head is speed
controlled and rotates at a constant speed of 110 revolutions per minute (rpm). The dividing

head divides the sample evenly among the sample bottles that are attached to the adapter tube.

While splitting the wheat gluten samples it was observed that since wheat gluten is a very dry
amorphous powder, a small amount of powder needs to be added to the vibratory feeder at a

time. This was necessary to avoid blockages in the vibratory feeder.

17



3.3 Sample preparation and splitting

Sample preparation for the experiment was done in three stages, which are as described below.

Stage one: Obtaining representative sub samples

Stage one involved splitting each received wheat gluten sample into representative sub samples.

This is done as follows.

1.

Each of the 30 received wheat gluten samples (2.5 kg) was divided into 8
representative sub-samples (each being 280-290 grams approximately) by using a

Retsch Sample divided PT100 as described under section 3.2.

Five sub-samples obtained were used to prepare test samples containing NPN
compound at 5 different levels (500, 3000, 5500, 8000 and 10500 ppm), as described

in stage 2 below.

One sub-sample was analyzed for microscopic analysis to ensure that the initial

sample is pure and does not contain any impurities.
One sub-sample was used for pure wheat gluten scan on NIRS.

The remainder sample was stored as a backup sample.

The Flow chart figure 3.2 below show stage one splitting of the each of the 30 wheat gluten

samples received.
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Each Wheat Gluten (of the
Total of 30 Samples)

Splitting (Retsch sample divider PT 100)

Sub
Sub sample Sub Sub sub Sub sub sample 7 Sub
1 (Used in sample 2 sample 3 sample 4 sample 5 sample 6 (pure sample 8
Stage 2 (Used in (Used in (Used in (Used in (Microsco sample ( Backu
g Stage 2) stage 2) Stage 2) Stage 2) py) P P
NIR scan)

Figure 3.2: Flow chart to show stage one splitting of the each of the 30 wheat gluten samples
received
Stage two: Mixing sub sample with NPN compound

Stage two was considered a very crucial step as it involved homogenous mixing of known

amount of sub sample with the known amount of NPN compound to obtain test samples at

desired concentration levels. Stage two consisted of the following steps:

1. Of the five sub samples obtained at stage one (from each wheat gluten sample),
approximately 270- 285 grams of each sub sample was weighed using a

weighing balance. Weight of the sub sample was noted down.

2. Required quantity of NPN compound to spike sub sample was weighed. Weight

of NPN compound was noted down.

3. The weighed sub samples was mixed with weighed amount of NPN compound
using mortar pestle to produce the desired concentration level as described

below.

3.1 The sub sample with a weight of approximate 275-285 g was mixed with a NPN

compound of 138-143 mg in order to attain a concentration level of 500 ppm

3.2 The sub sample with a weight of approximate 275-285 g was mixed with a NPN

compound of 825-855 mg in order to attain a concentration level of 3000 ppm
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3.3 The sub sample with a weight of approximate 275-285 g was mixed with a NPN

compound of 1510-1575 mg in order to attain a concentration level of 5500 ppm

3.4 The sub sample with a weight of approximate 275-285 g was mixed with a NPN

compound of 2200-2280 mg in order to attain a concentration level of 8000 ppm

3.5 The sub sample with a weight of approximate 275- 285 g was mixed with a NPN

compound of 2890-3070 mg in order to attain a concentration level of 10500

ppm

4. Caution was followed to avoid samples spillage. The test samples obtained were

collected in a self-sealing bag.

As a result, each wheat gluten sample was mixed with NPN compound to produce 5 different
concentration levels. Thus, leading to 30 samples each, at concentration levels of 500 ppm,
3000 ppm, 5500 ppm, 8000 ppm and 10500 ppm. This generated a total of 150 samples at five

different concentrations.

Sub sample 1 Sub Sample 2 Sub sample 3 Sub sample 4 Sub sample 5

| [ |' | |

Mix with NPN Mix with NPN Mix with NPN Mix with NPN Mix with NPN

L Test sample L Test sample L Test sample L Test sample L Test sample

500 ppm 3000 ppm 5500 ppm 8000 ppm 10500 ppm

Figure 3.3: Flow chart to show 5 different levels of test sample, that were obtained from 5 sub

samples of each wheat gluten sample.
Stage three: Splitting Test samples

In stage 3 each test sample obtained under stage 2 was split into three parts using Retsch sample
divided PT100 as described under section 3.2. One of the split parts was used for NIR scanning,

the second part was for reference analysis and the third part was stored as a backup sample.

The flow chart for the overall sample preparation and splitting is shown in figure 3.4
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Wheat Gluten

Retsch sample
divider PT 100

Sub Sample 1 Sub Sample 2 Sub sample 3 Sub sample 4 Sub sample 5 Sub sample 6 Sub sample 7 Sub sample 8

NPN Compound L Test sam L Test sampl L Test sampl L Microscopic L L

L ple 3000 Test | €st sample estsample oscop

ismixedto | | ppm * 55000 ppi * 8000 ppm* 10500 ppm* analysis Blank NIR scan Backup
obtain desired
concentration

Test sample 500
ppm
Retschsample | |
divider PT 100
1 |
NIR Scan Referer?ce Back up
analysis

Figure 3.4: Flow chart representing overall sample preparation and splitting process of each wheat gluten sample

*Sub sample 2, 3, 4 and 5 have been treated in same way as sub sample 1 to obtain corresponding test samples
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3.3.1 Sample marking

Table 3.1 gives information on the sample markings used to identify samples at different

concentration, together with color code used to identify concentration levels during data

analysis
Training Sample
Sample ID | Pure Wheat gluten Concentration of NPN added to wheat gluten in ppm Reference analysis
Blank 500 3000 5500 8000 10500 LC-MS | Kjeldhal
1 Co-1 C1-1 C2-1 C3-1 C4-1 C5-1
2 Co-2 C1-2 C2-2 C3-2 Cc4-2 C5-2
3 C0-3 C1-3 C2-3 C3-3 C4-3 C5-3 X X
< Cco-4 C1-4 C2-4 C3-4 c4-4 Cs-4
5 C0-5 C1-5 C2-5 C3-5 C4-5 C5-5
6 C0-6 C1-6 C2-6 C3-6 C4-6 C5-6 X X
7 Co-7 C1-7 C2-7 Cc3-7 Cc4-7 Cs-7
8 Co-8 C1-8 C2-8 C3-8 C4-8 C5-8
9 Co-9 C1-9 C2-9 C3-9 C4-9 c5-9
10 C0-10 C1-10 C2-10 C3-10 C4-10 C5-10 X X
11 C0-11 C1-11 C2-11 C3-11 C4-11 C5-11
12 C0-12 C1-12 C2-12 C3-12 C4-12 C5-12
13 C0-13 C1-13 C2-13 C3-13 C4-13 C5-13 X X
14 Co-14 C1-14 C2-14 C3-14 C4-14 C5-14
15 C0-15 C1-15 C2-15 C3-15 C4-15 C5-15
16 C0-16 C1-16 C2-16 C3-16 C4-16 C5-16 X X
17 C0-17 C1-17 C2-17 C3-17 C4-17 C5-17
18 C0-18 C1-18 C2-18 C3-18 C4-18 C5-18
19 Co-19 C1-19 C2-19 C3-19 C4-19 C5-19 X X
20 C0-20 C1-20 C2-20 C3-20 C4-20 C5-20
21 C0-21 C1-21 C2-21 C3-21 C4-21 C5-21
22 C0-22 C1-22 C2-22 C3-22 C4-22 C5-22 X X
23 C0-23 C1-23 C2-23 C3-23 C4-23 C5-23
24 C0-24 C1-24 C2-24 C3-24 C4-24 C5-24
25 C0-25 C1-25 C2-25 C3-25 C4-25 C5-25 X X
26 C0-26 C1-26 C2-26 C3-26 C4-26 C5-26
27 C0-27 C1-27 C2-27 C3-27 C4-27 C5-27
28 C0-28 C1-28 C2-28 C3-28 C4-28 C5-28 X X
29 C0-29 C1-29 C2-29 C3-29 C4-29 C5-29 X X
30 C0-30 C1-30 C2-30 C3-30 C4-30 C5-30
Color Code Dark Green Orange |Turquoise| Blue Grey |Bright Green| Violet NA NA

Table 3.1. An overview of the sample composition and color coding used.

3.4 Reference method

34.1 Analysis of NPN Compound

Test samples obtained in stage 2 of sample preparation were prepared by mixing sub samples

with NPN compound using mortar and pestle to ensure homogenous mixing of NPN
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compound. Ten test samples at each concentration level (total of 50-test sample) were sent to
external lab for reference analysis of NPN compound using Liquid chromatography Mass

spectroscopy (LC-MS) method. The results are given in table 3.2

The LC-MS method is validated by the external lab for lower concentrations of 0.1- 1.0 ppm
and 1.0-100 ppm. The estimated measurement of uncertainty as provided by the external lab is

12.5%. This is based on extrapolation of validation data.

The samples marked as (x) in table 3.1, were analyzed to find concentration of NPN compound
spiked . In the table 3.2 theoretical value is the value obtained by calculating known amount of
NPN added to known amount of sub sample. Whereas concentration of NPN compound
obtained by LC-MS method is marked as reference value. There is a good agreement between
the theoretical value and the reference value. Thus, the method used for mixing NPN compound

with the sub sample to prepare test sample was good enough to obtain homogenous samples.

Sample ID 500 ppm 3000 ppm 5500 ppm 8000 ppm 10500 ppm
Theoretical | Referece |Theoretical| Referece | Theoretical | Referece |Theoretical | Referece |Theoretical| Referece
Value in Value in Value in Value in Value in Value in Valuein Value in Value in Value in
ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
3 497 503 2954 2660 5374 5030 2005 7687 10405 10312
3 434 485 2919 3073 5608 4797 8109 8176 10668 10038
10 430 474 2954 2590 5659 5075 8126 8158 10593 10892
13 513 513 3104 2816 55594 5405 8205 8541 10539 10959
16 512 530 3034 2787 5566 5697 8203 8460 10584 11209
19 505 500 2950 2690 5592 5070 8055 8135 10488 11115
22 497 546 3019 2614 5454 4935 7891 7946 10576 10466
25 497 513 2982 2820 5508 5252 7813 8017 10505 10802
28 509 445 3010 2279 5539 4722 7937 8140 10331 10173
29 500 455 3011 2666 5512 5605 7928 8232 10751 10604

Table 3.2: Gives comparison of theoretical value with actual value of NPN compound in the

test samples.

3.4.2 Total nitrogen determination by Kjeldahl method

Ten pure wheat gluten and ten test samples at each concentration level (total 50 test samples)
were analyzed by analytical lab using Kjeldahl method for protein determination. Kjeldahl
analysis was done to check for the contribution of nitrogen by NPN compound. The results are

given in table 3.3.

Kjeldahl [29] is a method for quantitative determination of total nitrogen content in substance.
The Kjeldahl nitrogen determination method is made for the calculation of protein content in

feeds, raw materials, forages and other samples. Kjeldahl method is recognized internationally
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for the estimation of protein content. It however does not give measure of true protein content

as it measures non-protein nitrogen in addition to protein nitrogen in samples.
The procedure is carried out in three steps as follows.

1. Digestion: The sample is boiled in concentrated sulfuric acid and the nitrogen contained

in the sample is converted to ammonium sulfate.

2. Distillation: Excess of sodium hydroxide solution is added to release ammonium ion in
the form of ammonia, which is collected in the volumetric flask containing either boric

acid, sulfuric acid or hydrochloric acid solution.
3. Titration: The amount of ammonia is then back titrated with sodium hydroxide solution.

The samples marked as (x) in table 3.1 were analyzed by Kjeldahl to determine nitrogen
contribution of NPN compound at different spiked levels. In the table 3.3 Kjeldahl Value BLK
is the kjeldahl nitrogen content of the pure wheat gluten sample. Kjeldahl value 500 ppm is
nitrogen content of the test sample prepared to contain 500 ppm of NPN compound. Difference
BLK-500 is the difference between two values obtained. Average value at the bottom of the

table is the average difference between two readings.

The results from the Kjeldahl analysis show that as the level of spiking is increased the
contribution of nitrogen by NPN compound is also increased. The average contribution of
nitrogen at 500 ppm is 0.23% whereas the average contribution at 10500 ppm is 3.65%.Thus it
can be concluded that, to generate profit from EMA, higher levels of NPN compound needs to

be added.

Kjeldahl Value|Kjeldahl Value | Difference |Kjeldahl Value| Difference |Kjeldahl Value| Difference| Kjeldahl Value | Difference| Kjeldahl Value| Difference
Sample ID BLK 500 ppm | BLK-500 | 3000ppm | BLK-3000 | 5500ppm | BLK-5500| B8000ppm |BLK-8000| 10500 ppm |BLK-10500
% % % % % % k) % % k) %

3 75.50 76.88 1.38 77.08 1.58 7873 3.23 79.15 3.85 79.57 4.07
=] 78.54 78.51 -0.03 78.61 0.07 80.73 219 81.08 2.54 82.34 3.80
10 78.50 78.82 0.32 79.62 1.12 80.76 2.26 8142 292 82.17 3.67
13 74.19 7441 0.22 75.55 1.36 76.26 207 77.25 3.06 77.85 3.66
16 76.60 77.08 0.48 78.37 1.77 78.60 2.00 79.25 2.65 7991 3.31
19 78.85 79.00 0.15 80.48 1.63 81.13 2.28 81.85 3.00 8221 3.36
22 76.85 76.74 -0.11 77.99 114 7858 173 79.34 2.49 80.82 3.97
25 78.18 77.53 -0.65 78.63 0.45 78.65 0.47 80.37 2.19 8142 3.24
28 77.24 77.19 -0.05 78.16 0.92 79.59 235 79.58 2.34 80.94 3.70
29 75.78 76.40 0.62 76.35 0.57 77.86 208 78.80 3.02 75.49 371
Average value 0.23 1.06 207 2.79 3.65

Table 3.3: Test to check contribution of nitrogen by NPN compound at different spiked levels
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4 Data analysis, results and discussion

4.1 Spectral acquisition

30 pure wheat gluten samples and 150 spiked samples (test samples) that were obtained after
step 3 of sample preparation and splitting were analyzed using FOSS NIR instrument. Detail
diagnostic test that gives information on the overall performance of the instrument was done
before scanning test samples. It was ensured that the instrument was clean and all the samples
were at room temperature. Each prepared NPN spiked sample (test sample) was scanned in
duplicate between 400 nm- 2498 nm wavelength range with interval of 2 nm . Pure wheat
gluten samples were scanned first followed by spiked test samples in the order of increasing
concentration. This was done to prevent contamination of pure or lower concentration test

samples with higher concentration test samples.

4.2 Software

Spectroscopic analysis was performed using FOSS NIR XDS Rapid Content™ Analyzer. NIR
spectral data was collected using Foss ISIScan software version 4.10. The multivariate data
analysis and modelling has been done using the program Sirius version 11.0 (Pattern

Recognition System AS, Bergen, Norway software)

4.3 Multivariate Modelling

NIR spectra of pure wheat gluten figure 4.1 and of NPN compound figure 4.2 provide spectral
signature rich in peaks. For the NIR spectra of NPN compound, three distinct peaks are seen
around 1466, 1490 and 1520 nm. Cluster of peaks are also seen between 1974-2498 nm for
both wheat gluten and NPN compound. The detection of contaminated samples was based on

NIR spectra in the range from 1100-2498 nm region, as this region shows most of the peaks.
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Figure 4.1: NIR Spectrum of pure wheat gluten recorded between 400- 2498 nm, showing

major peaks
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Figure 4.2: NIR spectra of NPN compound recorded between 400- 2498 nm, showing major
peaks

NIR spectra often contain undesired scattering variation due to particle size, packing and
sample surface amongst others. The scattering effect in NIRS consists of an additive effect and
a multiplicative effect. The additive effect is reflected as baseline offset. The multiplicative

effect is reflected as a slope that scales the entire spectrum. To minimize these complex baseline
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variations and scattering effects, data pre-treatment is needed. NIR spectra of the training set
figure 4.3 was pre-processed using extended multiplicative scatter correction (EMSC)
followed by second order differentiation width (nine), order (three) to eliminate these effects

[19] . NIR spectra after scatter correction is shown in figure 4.4.
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Figure 4.3: NIR Spectra of 30 pure wheat gluten samples and 150 test samples (30 at each
concentration level (without any pre-processing)
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Figure 4.4: NIR Spectra of 30 pure wheat gluten samples and 150 test samples (30 at each
concentration level) after applying extended multiplicative scatter correction together with

second order derivative pre-processing method.
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4.3.1 SIMCA Model

The main objective of this study is to develop SIMCA model that can differentiate between
authentic and unauthentic wheat gluten samples. The SIMCA method builds individual PCA
models, one for each class, and uses these to classify and discriminate new samples. Cross
validation was used to determine the number of significant components needed to describe the
systematic variation in spectral data [30, 31] . NIR spectra was pretreated to compensate for
scattering using EMSC followed by second order derivative width (nine) order (three). Spectral
range where informative spectral difference between adulterated and non-adulterated wheat
gluten samples was available, were selected to obtain an optimal calibration model. In this case
spectral range used for best discrimination was 1100-2498 nm wavelength (refer figure 4.1 and

4.2). Performance of the developed SIMCA model was evaluated using the following criteria
1. PCA score plots.

2. The interclass distance between pure wheat gluten samples and the wheat gluten

samples spiked with NPN compound
3. The acceptance or rejection rates of the samples used for the validation of the model.

Classification performance of SIMCA model was evaluated based on seventeen totally new
pure wheat gluten samples and twenty totally new wheat gluten samples spiked with NPN
compound at a concentration level of 15000 ppm, 20000 ppm, 30000 ppm and 35000 ppm (five

samples at each concentration level) was used.

4.3.2 PLSR model for quantitative modeling

The additional objective of this study is to investigate the extent of adulteration which can be
identified using PLSR model. Schematic diagram to represent PLSR model is given in figure
4.5. PLSR model was created with NIR spectra of the test samples (training set) in matrix X.
The concentration of the NPN compound mixed to obtain these test samples was used as the
reference value in the Y vector. The training set consisted of 30 pure wheat gluten samples and
150 spiked samples (preparation of the test samples is explained in detail in chapter 3.3). In
the current study PLSR model was validated by cross validation [32]. PLSR model was not
validated using external validation set. This is because only 30 pure wheat gluten samples were
available. These were not considered sufficient to make an independent and representative

external validation set.
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Due to the presence of numerous and correlated X variables there is a risk of “overfitting”, ie,
a well fitted model with little or no predictive power. Hence, it is important to test predictive
significance of each PLS component and stop when components start to be non-significant.

The best PLS component selection was based on the following criteria [32].
1. Cross validation ratio (CsySD)

2. Explained variance in the dependent and independent variables

3. Lowest value of root means square error of cross validation

Cross validation ratio (CgySD) is a ratio of total prediction error of a model after including a

new component, and the total residual standard deviation before this inclusion. If the ratio is
less than one , new component is included in the model and the procedure continues with the

calculation of next component [32, 33].

Training Sample

NIR Scan Reference Value
|
Spectral pre-processing
| \ 4
Regression Analysis (PLS)
|
Validation
1

Calibration equation

Predict unknown sample

Figure 4.5: Schematic diagram to represent quantitative model
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5 Results and discussion

5.1 SIMCA model

PCA was done on the whole training set (30 pure wheat gluten sample and 150 spiked wheat
gluten samples, 30 at each concentration level) to look for groupings in the data. The data was
mean centered and four PC’s were extracted. The explained variance for four PC’s is given in

the table 5.1

Principal . .
Explain variance
Component
1 58.71% (58.71%)
2 27.93% (81.65% )
3 9.68% (91.33%)
4 3.03% (94.36%)

Table 5.1: Explained variance from the 4 PC’s given by exploratory analysis of the whole

training set

In the score plot different colors represent, different levels of spiking (refer table 3.1 for detail
marking). It can be seen in the PC2 verses PC1 score plot figure 5.1 that the samples are not
grouped based on the level of spiked NPN compound but are grouped based on the similarity
between the wheat gluten samples. The figure 5.2 is score plot of PC 3 verses PC 1, it can be
seen that samples are grouped on the bases of spiked level of NPN compound, but different
groups overlap each other. The figure 5.3 is score plot of PC 3 verses PC 2. A better group
separation is seen in this plot. Adding fourth PC does not seem to improve separation any
further as seen in figure 5.4. Bar graph plot of scores verses objects for PC 3 is shown in figure
5.5. The bar graph shows scores of every object on the third PC. It can be seen that PC 3 to a
larger extent explains the difference between different levels of spiking. Thus it can be
concluded that three PC’s are sufficient for separating samples based on spiked levels of NPN

compound.
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DataSet: raw data _MNew, Subset: PCA_ whole training set, Scores 1 vs 2
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Figure 5.1: Score plot of PC2 verses PC1 (Different color represents different level of

concentration)
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Figure 5.2: Score plot of PC3 verses PC1 (Different color represents different level of

concentration)
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DataSet: raw data _New, Subset: PCA_ whole training set, Scores 2 vs 3
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Figure 5.3: Score plot of PC3 verses PC2 (Different color represents different level of

concentration)
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Scores vs Objects, Comp. 3 (9.7%)
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Figure 5.5: Bar graph of scores verses Objects

To create SIMCA model, separate PCA was performed for two different classes. One to include
thirty pure wheat gluten samples and other to include thirty samples spiked with NPN
compound at 10500-ppm concentration level. In the current study NPN compound was
evaluated as EMA, meaning a higher concentration needs to be added to make adulteration
economical viable. Adding 10500 ppm of NPN compound to the wheat gluten sample results
in 3.7 % increase in protein levels (refer table 3.3). Hence the focus of this study is to create

SIMCA model that can discriminate samples at 10500 ppm or higher.

Detailed information on the explained variance and cross validation ratio for PCA performed
on thirty pure wheat gluten samples is given in table 5.2. As seen, PC 4 explains only 1.78%
of the variance, which is very low, and has a high cross validation ratio of 0.93. Hence, a three

PC model is considered.

Principal
Explained variance C.,SD
Component
1 58.98% (58.98%) 0.72
2 30.76% (89.75% ) 0.62
3 3.57% (93.32%) 0.89
4 1.78% (95.10%) 0.93

Table 5.2: Explained variance for pure wheat gluten class model
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PCA model for the class with 30 wheat gluten samples spiked with NPN compound at 10500-
ppm concentration was created. The results of explained variance and cross validation ratio is
given in table 5.3. PC 4 explains only 1.49% of the variance in the data and has a high cross

validation ratio of 0.92. Hence, a three-component model is considered for this subset.

Principal
Explained variance C.,SD
Component
1 58.85% (58.85%) 0.73
2 32.36% (91.21%) 0.58
3 3.5% (94.70%) 0.88
4 1.49% (96.19%) 0.92

Table 5.3 Explained variance for wheat gluten samples spiked with 10500-ppm of NPN

Modelling power for pure wheat gluten samples is given in figure 5.6 .Modelling power for
spiked samples at 10500 ppm is given in figure 5.7. Discriminatory power of the two subsets
is shown in figure 5.8. The two subsets have a discrimination power of 3.44. A distance greater

than 3 indicates that the subsets are well separated and hence different [34].
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Figure 5.6: Modelling power plot of the pure wheat gluten sample
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Figure 5.7: Modelling power plot of the spiked level 10500
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Figure 5.9 is a plot of RSD verses objects, of 30 pure wheat gluten and 150 spiked wheat
gluten samples. It can be seen that as the concentration of the NPN compound is increasing,
the spiked samples are moving away from the pure wheat gluten samples. There is overlap
between pure wheat gluten samples and spiked samples at 500 and 3000 ppm but the samples

at 5500 ppm (blue grey) and above have good separation from pure wheat gluten samples.
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Figure 5.9: RSD verses object plot of pure wheat gluten and spiked wheat gluten sample at 5
different levels

(CO= pure wg , C1=500 ppm, C2= 3000 ppm, C3= 5500 ppm, C4= 8000 ppm and C5=10500
ppm)

Evaluation of classification quality of SIMCA model using new sample set

Classification quality of SIMCA model is associated with the expected errors of
misclassification. Classification error are of two types: type I (false positive error) and type II
(false negative error). The type I error occurs when an acceptable sample is classified as
unacceptable during qualitative analysis. The type Il error occurs when an unacceptable sample

is classified as acceptable during qualitative analysis [35].

To evaluate classification quality NIR scan of seventeen totally new pure wheat gluten samples
and twenty totally new wheat gluten samples spiked with NPN compound at a concentration
level of 15000 ppm, 20000 ppm, 30000 ppm and 35000 ppm (five samples at each

concentration level) was used.

The RSD value as shown in the figure 5.10 is very low. RSD value is calculated from F-test
and has a very narrow confidence band due to strong correlation between the variables [30].
To resolve this problem the degree of freedom needs to be adjusted as each correlated variable

does not contribute to a new degree of freedom [36].
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An important factor for SIMCA classification is the number of PC’s included in the model. It
is a difficult task to determine the correct number of latent variables. For the current SIMCA
model with 2 PC, 9 out of 17 pure new wheat gluten samples had RSD lower than the samples
spiked at 10500 level. For SIMCA model with 3 PC, 10 out of 17 pure wheat gluten samples
had RSD lower than the samples spiked at 10500 ppm level. However the overall RSD for 17
pure new wheat gluten samples was relatively low with 3 PC model. Hence a 3 PC model was

used.

It is seen in the figure 5.10, that 10 out of 17 pure wheat gluten samples have RSD lower than
10500 ppm while 7 samples are misclassified as belonging to class with 10500 ppm or higher
concentration spike levels. Hence there is a significant amount of type I error. This could be
due to natural heterogeneity within the pure wheat gluten class, since the samples are coming
from different batches, suppliers and different harvesting seasons etc. Including more samples
will results in low type I error. The evaluation of type II error in such a classification system is
very important. Type II error needs to be avoided as this type of error would present significant
concern. This is done by subjecting the adulterated samples to the model, to check whether
some of adulterated samples would be wrongly identified as belonging to the model. Of the
twenty newly spiked samples none of the samples was wrongly identified as belonging to the
pure wheat gluten class. This is an important result in the application of SIMCA for

identification of adulterant in wheat gluten samples.

Subset: PCA_ pure samples, RSD (Crit. 0.000005),(Comp. 3)
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Figure 5.10: RSD verses objects (Where green= pure wheat gluten samples, orange = spiked
at 500 ppm, turquoise = 3000ppm, blue gray = 5500 ppm, bright green = 8000 ppm, violet =
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10500 ppm, light orange =15000, pink =20000 , blue =30000 , red =35000 , light green= 17
new pure wheat gluten samples )

Enhancing model performance to improve classification errors

Performance of the SIMCA model was improved by

1. Examination of the modelling and discriminating power plots, as it provides
information on variables that are most important for separating the different classes.

2. Selecting variables related to chemical spectral information as seen in the figure 4.1
and 4.2.

3. Selecting variables with high discriminatory power for different spiked levels (3000,
5500 and 10500 ppm.

After variable selection exploratory analysis was done on the whole training set (30 pure
wheat gluten samples 150 spiked samples) .The data was mean centered and three PC’s were

extracted . The explained variance for the three PC’s is given in the table 5.4

Principal . .
Explained variance
Component
1 70.48% (70.48%)
2 21.49% (91.96%)
3 5.99 % (97.96%)

Table 5.4: Explained variance for three PC’s, given by exploratory analysis after variable

selection

As seen in the PC 2 verses PC 1 score plot figure 5.11 that the samples are grouped based on
the level of spiked NPN compound. The figure 5.12 is score plot of PC 3 verses PC 1 here it
can be seen that different groups form a cluster. Looking at the results from explorative data
analysis, it can be concluded that two PC’s are sufficient for separating samples based on spiked

levels of NPN compound.

39



DataSet: raw data _New, Subset: PCA_ whole training set, Scores 1vs 2
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Figure 5:11: Score plot of PC 2 verses PC1 (Different color represents different level of

concentration)

DataSet: raw data _New, Subset: PCA_ whole training set, Scores 1 vs 3
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Figure 5:12: Score plot of PC 3 verses PC1 (Different color represents different level of

concentration
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Figure 5.13 shows the bar graph plot of score verses object. As can be seen in this figure, 3 PC

2 to a larger extend explains the difference between different levels of spiking. The variables

that are selected to enhance SIMCA model performance are indicated by shading the area

below the curve in figure 5.14
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Figure 5.13: Bar graph of scores verses objects
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After variable selection new PCA models were created for the pure wheat gluten samples and

spiked samples at 10500 ppm. Explained variance and cross validation ratio for the pure wheat

gluten class is shown in table 5.5. Explained variance after second PC is 97.33% with the cross

validation ratio of 0.68. The cross validation ratio for the third PC is 0.92 and it explains only

0.72% of the variance. Thus, two PC are sufficient to explain the total variance in the model.

Principal
Explained variance CsSD
Component
1 89.50% (89.50%) 0.48
2 7.83% (97.33%) 0.68
3 0.72% (98.05%) 0.92

Table 5.5: Explained variance for new pure wheat gluten model after variable selection

Explained variance and cross validation ratio for the wheat gluten samples spiked at 10500-

ppm is shown in table 5.6. Explained variance after third PC is 98.10% with the cross validation
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ratio of 0.85. The cross validation ratio for the fourth PC is 0.9 and it explains only 0.62% of

the variance. Thus, three PC’s are good enough to explain the total variance in the model.

Principal
Explained variance CsSD
Component
1 88.37% (88.37% ) 0.5
2 8.56% (96.93%) 0.63
3 1.16% (98.10 %) 0.85
4 0.62% (98.71%) 0.9

Table 5.6: Explained variance for 10500 ppm samples model after variable selection

The discriminatory power for the two subsets (pure wheat gluten and sample spiked at 10500
ppm) is shown in figure 5.14. As can be seen, after variable selection discriminatory power
was increased to 7.50 compare to 3.44 without variable selection. As seen in NIR scan from
NPN compound (figure 4.2) three distinct peaks were seen around 1466, 1490 and 1520 nm
that seem to be important to discriminate between adulterated wheat gluten with pure wheat

gluten. These wavelengths have higher discriminatory power.

Discrimination Power. Class Distance (Pure_ wheat gluten_selected var-PCA_10500_selecvet var) 7.499129
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Figure 5.14: Discrimination power plot after variable selection

Figure 5.15 shows a plot of RDS verses object for 30 pure wheat gluten and 150 spiked wheat

gluten samples. It can be seen that , with the redefined SIMCA model it is possible to
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differentiate sample at spike level of as low as 3000 ppm with 100 % classification rate. The

pure wheat gluten sample and samples at 500 ppm spike levels still show some overlap.

Subset: Pure_ wheat gluten_selected var, RSD (Crit. 0.000004),(Comp. 2)

3.5000

3.0000

25000

20000

RSD

1.5000 -

1.0000

0.5000

0.0000 -

C5-20 ==

- -
by by
& &
4] 4]

Cc4-2
C4-10
C4-18
Cd-26

C5-4
C5-12
C5-28

Objects

Figure 5.15: RSD verses object plot of pure wheat gluten and spiked wheat gluten sample at 5
different levels with redefied SIMCA model

(CO= pure wg , C1=500 ppm, C2= 3000 ppm, C3= 5500 ppm, C4= 8000 ppm and C5=10500
ppm)

Evaluation of new SIMCA model created after variable selection

Classification performance of the SIMCA model created after variable selection was evaluated
using NIR scan of seventeen new pure wheat gluten samples and twenty new spiked wheat
gluten samples at concentration level of 15000 ppm, 20000 ppm , 30000 ppm and 35000 ppm
(five sample at each concentration level). Figure 5.16 show plot of RSD verses object. It can
be seen in the figure that the twenty new spiked samples standout as not belonging to the pure
wheat gluten class samples. The RSD for seventeen pure new wheat gluten samples is close to
the RSD for samples spiked with NPN at 500 ppm concentration. Thus the misclassification
rate is zero for type I and type II error. These results show that SIMCA model could be
developed to discriminate the spectral signals of adulterated and non-adulterated wheat gluten

samples at a level as low as 3000 ppm with 100 % classification.
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Figure 5.16: Plot of RSD verses object.

(Where green= pure wheat gluten samples, orange = spiked at 500 ppm, turquoise = 3000ppm,
blue gray = 5500 ppm, bright green = 8000 ppm, violet = 10500 ppm, light orange =15000ppm,
pink =20000ppm, blue =30000ppm , red =35000ppm , light green= 17 new pure wheat gluten
samples )

5.2 PLS Model

The process of deriving best PLS equation was carried out in the following steps

Step 1: Cross validation results of initial PLSR analysis showed that five PLS components
gave the best prediction performance figure 5.17. Detailed information on the independent and
dependent variables together with cross validation ratio is given in table 5.7. The first two
components explain 97.05% of the variance in Y. When the third component is added explained

variance in Y is increased only by 0.41%. The third component explains very little of the
variance. The second component has a CsySD value of 0.37 and it increases to 0.88 for the

third component. Lower value for the cross validation ratio is preferred. Thus including more
than two PLS components could lead to overfitting. This indicates that a five component PLS

model is not optimum for predictions.
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Figure 5.17: Plot of RMSECYV value with number of components

Component Explained variance in | Explained variance CoSD
independent in dependent
1 23.59% (23.59%) 76.60% (76.60%) 0.5
2 39.77% (63.36%) 20.45% (97.05%) 0.37
3 24.28% (87.64%) 0.41% (97.45%) 0.88
4 6.48% (94.12%) 0.90% (98.35%) 0.83
5 1.16% (95.28%) 0.49% (98.83%) 0.85

— Dep.Var Ref. Value

Table 5.7: Explained variance for independent and dependent variable for 5 PLS components

Step 2: Regression coefficient analysis was performed to identify less important variables.

Subset: PLS model, Reg. Coeff. - RMSECWV = 724.8392, 2 Comp
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Figure 5.18: Regression coefficient plot
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As seen in the figure 5.18, the region between 1100-1400nm and 1600-1900 nm is of little
interest. In addition, similar region were also seen as less important in the NIR spectra of pure
wheat gluten and NPN compound (refer figure 4.1 and 4.2). By omitting these variables, new

PLSR model was created. The explained variance in the independent and dependent variable

along with CsySD value is given in the table 5.8

Component Explained variance in | Explained variance CoSD
independent in dependent
1 28.38% (28.38%) 74.81% (74.81%) 0.5
2 39.62% (68.00%) 22.82% (97.62%) 0.34
3 13.34% (81.35%) 0.50% (98.12%) 0.92
4 13.46% (94.81%) 0.40% 98.52%) 0.84

Table 5.8: Explained variance for independent and dependent variable for four component PLS

model after omitting variables of little interest.

As seen from table 5.8 the first two components explain 97.63% of the variance in Y. When

the third component is added explained variance in Y is increased only by 0.50%. The second
component has a CgySD value of 0.34 and it is increased to 0.89 for the third component. The

RMSECYV value for the two component PLS model has increased to 637 compared to 456 for
five component PLS model in step 1. This indicates that the model needs to be further refined,
to find the most relevant variables and to obtain a model with a better predictive ability and

lower RMSECYV value.

Step 3: Selectivity ratio [26, 37] was used as a method for variable selection. Selectivity ratio
is defined as the ratio between the explained variance of each variable to the residual variance.
Figure 5.19 shows a plot of variable selectivity ratio verses variables .The selectivity ration can
be displayed similarly to a spectrum. A small ration increases the risk of selecting false

variables, while a high ration increases risk of losing important variables.
For the selection of variables based on selectivity ratio, following was also used as a guide.

1. Information from preliminary regression co-efficient analysis figure 5.18.
2. Variables with high discrimination power as seen in SIMCA model.
3. Selecting variables related to chemical spectral information as seen in figure 4.1 and

4.2.
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Figure 5.19: Selectivity ratio graph

As seen in the graph figure 5.19 above selectivity ratio suggested by program is 1.07. Most of
the variables that have high discrimination power for the SIMCA model are included at this
level. The distinct peaks seen in the figure 4.1 and 4.2 are also included.

After variable selection by selectivity ratio, new PLSR model was created. Table 5.9 below
gives detail information on the explained variance and CgySD . The total explained variance in
dependent variable by first two component is 98.68 % and adding third component will increase
it only by 0.22% .The CsySD for the second component is 0.49 and is increased to 0.95 for the

third component. In addition, the total explained variance in independent variable with first
two component has increased to 95.49 % compared to 63.36 % and 68 % in step 1 and step 2
respectively (refer table (5.7) and (5.8)). The RMSECYV value for two component PLS model
is 459
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Thus, a two-component PLSR model based on selected variables as described in step 3 was

created.
Component Explained variance in | Explained variance CoSD
independent in dependent
1 82.29% (82.29%) 93.97% (93.97%) 0.24
2 12.85% (95.14 %) 4.72% (98.69%) 0.47
3 1.72% (96.86%) 0.20% (98.88%) 0.95
4 1.22% (98.09%) 0.12% (99.01%) 0.98
5 0.51% (98.60%) 0.05% (99.06%) 0.98

Table 5.9: Explained variance for independent and dependent variables for PLS model after

variable selection using selectivity ratio.

The measured value of NPN compound for samples in the training set were plotted against

predicted values of NPN compound (figure 5.20) using the two component PLS model created

in step 3 .The correlation here is 0.993. This indicates a good fit of the model to the training

set data. The objects are grouped in six clusters. This indicates that the dataset consists of six

groups of objects. It is seen that two clusters that lie to the left, dark green (pure wheat gluten

samples) and orange (500 ppm spiked test sample) are very close. Thus, the model might not

be able to accurately predict samples with lower concentration levels of NPN compounds (500

ppm and lower). Overlap between pure wheat gluten and spiked samples at 500 ppm was also

observed for SIMCA model.
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Figure 5.20: Predicted verses measured plot

0.600

Measured (Ref. Value)

48

0.500

Adj. Corr. =
0.957

0



6 Conclusion and Future work

In the rapidly changing and complex field of food authentication, it is becoming increasingly

important that rapid and non-destructive techniques are employed to ascertain authenticity.

The results of this study illustrate the ability of NIR spectroscopy together with SIMCA model
to discriminate pure wheat gluten samples from adulterated wheat gluten samples. The study
indicates 100 % classification rate at adulteration level of as low as 3000 ppm. The SIMCA
model indicated overlap at spiked level of 500 ppm. Overlap at 500 ppm was also confirmed
by PLSR model. The method is validated at laboratory levels. Further study on these models
will include the transfer of these lab-based method into an industrial setting where the incoming
batches of materials would be screened. However the model needs to be updated by adding
more new samples to account for raw material variation, seasonal quality fluctuation and

production variation amongst others.

In the current study only one type of NPN compound has been studied. To develop non target
NIR methods to be useful in routine authentication of wheat gluten samples, samples spiked

with different NPN compounds needs to be included in the model.

Routine testing of shipment of wheat gluten meal samples with NIRS could have economic

benefits for the feed sector.
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