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Abstract

Mixed-dimensional partial differential equations (PDEs) are coupled equations defined on
connectedmanifolds of different dimensionalities. Twomain examples ofmixed-dimensional
PDEs are considered in this dissertation, namely flow in fractured porous media and mecha-
nics of composite materials. We focus on the discretization of these examples using hierar-
chical finite elements defined on coupled manifolds of codimension one, successively. By
uncovering their underlying structure, we use the corresponding tools to define, analyze and
discretize mixed-dimensional partial differential equations.

Our first example concerning mixed-dimensional PDEs arises in the context of fracture
flow. Here, the planar fractures, intersection lines, as well as intersection points are repre-
sented as lower-dimensional manifolds. In turn, the entire embedded fracture network forms
a mixed-dimensional geometry. We continue by defining the conservation and constitutive
laws on the mixed-dimensional geometry, leading to a hierarchically coupled system of par-
tial differential equations. Next, we extend these concepts from flow to derive the governing
equations concerning mechanics of materials with thin inclusions in an analogous manner.
Together, the embedded features and their surroundings form the mixed-dimensional geo-
metry and the behavior of the system can be captured by prescribing significantly different
material parameters. The analysis of these systems introduces several new concepts inclu-
ding mixed-dimensional function spaces and semi-discrete differential operators.

With the aim of discretization, we use finite element exterior calculus to construct mixed
finite element schemes on the mixed-dimensional geometry. We focus on two families of
mixed-dimensional finite elements, hierarchically ordered by dimensionality. We refer to
these families as the first and second kind and show that both are of interest in the context
of fracture flow, with different behavior in terms of convergence and computational cost.
On the other hand, the mixed formulation of the mechanics equations requires the family of
elements of the second kind.

For fracture flow, stability and optimal convergence of the discretization method are
shown with the use of weighted, mixed-dimensional Sobolev spaces. A novel way of in-
corporating the fracture aperture leads to a scheme capable of handling arbitrarily small and
spatially varying apertures. In case of fractures pinching out, the degeneration of the equati-
ons eliminates the possibility for flow resulting in a natural termination of fractures.

In a benchmark study concerning flow through fractured porous media, the proposed
scheme is compared to various other numerical methods. Four two-dimensional test cases of
varying complexity are considered, specifically designed to highlight the typical difficulties
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with modeling flow through fracture networks. With eight participating numerical schemes,
a clear view is given of the performance and limitations of the state-of-the-art numerical
schemes.

Finally, we consider the evolution of the water table and identify the water table itself as a
lower-dimensional manifold. Its location is governed by a partial differential equation which
is coupled to the underlying saturated region. To solve this problem, a numerical scheme is
proposed which maps the problem to a stationary reference domain. We analyze the proper-
ties of this scheme and successfully apply it to a real world problem concerning ground flow
patterns surrounding meandering streams.



Outline

This dissertation consists of two parts. The scientific background is introduced in Part I
followed by the scientific results in Part II.

Part I consists of five chapters. Chapter 1 serves as an introduction to the subject of mixed-
dimensional partial differential equations. A selection of applications is presented which
serve as motivation for this study. These examples form a recurring theme throughout the
subsequent chapters, starting with Chapter 2. There, the governing physical laws are presen-
ted and we provide the relevant background knowledge concerning conventional, or fixed-
dimensional, partial differential equations. The mixed-dimensional framework is presented
in Chapter 3. We first establish the geometrical conventions and continue with the implica-
tions this has on structures from functional analysis and the model problems. Afterwards,
Chapter 4 is concerned with the use of conforming finite elements as a discretization techni-
que. Here, the mixed-dimensional, conforming finite elements are presented in the form of
two families. Finally, Chapter 5 summarizes the scientific contributions of the articles in-
cluded in Part II and presents an outlook on future research. A table containing the notation
used in this thesis is included at the end of Part I.

Part II contains the scientific results, which are grouped as main and related works. The main
results consist of the following six scientific articles:

Paper A W.M.Boon, J.M. Nordbotten, I. Yotov,Robust Discretization of Flow in Frac-
tured Porous Media, SIAM Journal of Numerical Analysis, in review.
arXiv:1601.06977 [math.NA].

Paper B W.M. Boon, J.M. Nordbotten, Stable Mixed Finite Elements for Linear Elas-
ticity with Thin Inclusions, in preparation.

Paper C J.M. Nordbotten, W.M. Boon, Modeling, Structure and Discretization of
Mixed-dimensional Partial Differential Equations, Domain Decomposition
Methods in Science and Engineering XXIV, Lecture Notes in Computational
Science and Engineering, in review.
arXiv:1705.06876 [math.NA].

Paper D B. Flemisch, I. Berre, W.M. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I.
Stefansson, A. Tatomir (2018), Benchmarks for Single-phase Flow in Frac-
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tured Porous Media, Advances in Water Resources 111, 239–258.
doi: 10.1016/j.advwatres.2017.10.036.

Paper E J.M. Nordbotten, W.M. Boon, A. Fumagalli, E. Keilegavlen, Unified Appro-
ach to Discretization of Flow in Fractured Porous Media, Computational Ge-
osciences, in review.
arXiv:1802.05961 [math.NA]

Paper F W.M. Boon, N. Balbarini, P.J. Binning, J.M. Nordbotten (2017), Efficient Wa-
ter Table Evolution Discretization using Domain Transformation, Computa-
tional Geosciences 21(1), 3–11.
doi: 10.1007/s10596-016-9597-9

Additionally, the following two supplementary articles on related work are included:

Paper G N. Balbarini, W.M. Boon, P.L. Bjerg, J.M. Nordbotten, P.J. Binning (2017),
A 3-D Model of the Influence of Meanders on Groundwater Discharge to a
Gaining Stream in an Unconfined Sandy Aquifer, Journal of Hydrology 552,
168–181.
doi: 10.1016/j.jhydrol.2017.06.042.

Paper H W.M. Boon, J.M. Nordbotten, An Adaptive Penalty Method for Constrained
Minimization Problems, Optimization Letters, in review.
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Chapter 1

Introduction

The language of mathematics has become ever more useful to describe the world around
us. Ranging from the fundamental physical laws which were understood centuries ago to
the modern observations made today, natural processes can often be related to equations
constructed with the vocabulary of mathematics.

As with any language, its dictionary evolves over time through a constant editing of the
existing entries whenever new insights emerge and additions to incorporate recent disco-
veries. This thesis, as the title suggests, is concerned with a specific part of that dictionary,
namely the coupling of partial differential equations defined onmanifolds of different dimen-
sionalities. We refer to such equations, or systems of equations, as mixed-dimensional and
aim to uncover the general, analytical framework to analyze such problems, with a specific
focus on elliptic PDEs defined on manifolds of co-dimension one.

At first, it may seem that such a generalized framework is only appealing to the mathe-
matician’s eye, yet it turns out that these insights can serve a greater purpose. In the context
of numerical methods, the analytical tools provided by the mixed-dimensional setting have
a practical potential when constructing discretization schemes with favorable properties. In
particular, important aspects of the physical problem can be identified and can consequently
be preserved in a discretization setting. In this work, for instance, we focus on conservation
of mass and momentum and construct numerical schemes which preserve these quantities
locally. It is thus important to remember that although it may be interesting to present this
framework for its own sake in a more abstract setting, our goal is to uncover the aspects
which are useful with respect to the development, implementation, and analysis of numeri-
cal methods.

The main contributions of this thesis work are as follows:

1. Rigorous analysis of mixed-dimensional partial differential equations. By starting
with the geometry containing manifolds of heterogeneous dimensionalities, a rigorous
setting is made to definemixed-dimensional partial differential equations. In this work,
we define analytical constructs including function spaces and differential operators as
the natural analogues to their fixed-dimensional counterparts. In turn, these constructs
are used in Papers A, B, and C to define and analyze specificmixed-dimensional PDEs.
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2. Constructing a robust discretization scheme by considering fracture flow as a
mixed-dimensional PDE. A numerical method is proposed based on the ideology of
the mixed-dimensional framework to model flow in fractured porous media. With the
use of mixed finite elements and a specific scaling of the flux variable, the scheme
is locally mass conservative and can naturally handle arbitrarily small apertures, as
well as fracture ends. Stability and optimal convergence of the scheme are shown in
Paper A, using the newly developed tools from the mixed-dimensional framework. As
a participant in the benchmark study presented in Paper D, the proposed scheme is
shown to perform well in comparison with participating methods, especially in terms
of flexibility and applicability.

3. Establishing a systematic approach to constructing conforming discretization
methods for mixed-dimensional problems. By identifying the differential forms of
interest in the problem, a corresponding choice of mixed finite elements is provided
with the use of finite element exterior calculus. As shown in Paper C, two families of
finite elements arise leading to discretization schemes with different properties. Those
of the first kind are used in Paper A whereas the family of the second kind is conside-
red for linear elasticity in Paper B.
Moreover, the class of conforming discretization methods is not limited to mixed fi-
nite elements. As shown in Paper E, discretization methods such as finite volume and
virtual element methods can be extended in a systematic way to mixed-dimensional
problems.

4. Using domain transformation to create an efficient numerical scheme for mo-
deling water table evolution. The water table evolution problem consists of a par-
tial differential equation defined on a non-stationary domain. In this formulation, the
height of the domain depends on the solution, leading to a complicated situation from
amodeling perspective. By employing a coordinate transform to a stationary reference
domain, we show that a computationally inexpensive scheme can be constructed which
deals with these complexities. The stability of the scheme is shown in Paper F and the
method is successfully applied to a real world application in Paper G.

1.1 Motivation
Applications of mixed-dimensional partial differential equations range from subsurface
flows to elasticity of composite materials as well as certain biomedical problems. In this
work, we mainly focus on mixed-dimensional equations arising in the following way. First,
we consider a physical process and assume that thin inclusions present in the domain can
be modeled as lower-dimensional manifolds. On these manifolds, we then impose different
physical parameters or model alternative physical processes compared to the surroundings.
The system of governing equations which couples the surroundings with the embedded fe-
atures can then be classified as a mixed-dimensional PDE. Admittedly, this definition is not
particularly precise and we therefore provide several occurrences to give a better illustration.
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In principle, lower-dimensional manifolds can be distinguished in two categories. First,
physically lower-dimensional features such as the interface between a liquid and a gas may
be considered as a manifold in the domain. On this manifold, we may consider the surface
tension as a physical process which is closely related to the physical processes in the neighbo-
ring liquid and gas regions. These interdependencies between equations defined on domains
with different dimensionalities characterize the resulting system as mixed-dimensional.

On the other hand, lower-dimensional manifolds can be a result of modeling assumpti-
ons, which is the category on which this work focuses. In those cases, it is assumed that a
feature has a negligibly small width or aperture in comparison to the domain of computation.
By collapsing these thin features to lower-dimensional manifolds, reduced equations can be
derived which are easier to solve both analytically and computationally. Moreover, from a
discretization perspective, the construction of a shape-regular grids is a major challenge if
the elements need to comply with the small widths or apertures. In fact, if we force the grid to
respect the small width of these features, a significant refinement needs to be applied in the
surroundings, leading to large numbers of elements. The reduction to a lower-dimensional
feature greatly relieves these difficulties and allows for the use of grids with relatively fewer
elements.

We consider two physical processes throughout this thesis. These are flow through frac-
tures in a porous medium and elasticity of composite materials. At the intersection of these
phenomena lies the theory of poroelasticity, which we refer to occasionally. In order to com-
municate the physical relevance before introducing the mathematical setting, we summarize
the important aspects in terms of applications in the following two subsections.

1.1.1 Flows in Fractured Porous Media
Whether considering groundwater in the subsurface or blood flowing through biological
tissue, flows through porous media can be found in a wide variety of scientific fields. In this
work, we focus on single-phase flows of incompressible fluids such as water, brine, or oil
through subsurface rock. With this starting point, many alleys of investigation are possible,
including multiphase flows or the coupling of flow with chemical processes and thermal
effects. Here, however, our interest lies in mixed-dimensional partial differential equations
and therefore consider the incorporation of fractures within the rock.

Fractures are ever-present in the subsurface, ranging from small fractures on the centime-
ter scale to faults slicing through several rock layers. Since liquids flow more easily through
fractures than the surrounding, porous rock, they play an important role in stimulating fluid
flows [2]. In turn, engineering applications concerning geothermal energy as well as oil re-
covery aim to use these flow paths to their advantage. Therefore, a proper understanding of
flows through fractures is essential in order to optimize in terms of technology and exploit
the fracture network to its fullest extent.

Due to their high density and varying orientations, fractures frequently intersect to form
complex networks [24]. It is therefore problematic from amodeling perspective to keep track
of all fractures in a network. However, the effect a fracture has on a system strongly depends
on its size. In our models, therefore assume that homogenization has been applied to fractures
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below a certain length scale and only larger fractures are incorporated explicitly.
In the context ofmixed-dimensional PDEs, we consider the fractures as lower-dimensional

manifolds. Thus, in a three-dimensional rock, the fractures are represented as two-dimensional
planes. For simplicity, the curvature is neglected and we incorporate fractures as either el-
lipsoids or polygonal surfaces. Aside from the advantages this assumption adds with respect
to mesh generation in the discretization step, it is also useful in the modeling stage. Most
notably, the separation of the manifold from its surrounding allows us to easily introduce
different material properties on each manifold such as the permeability or, more drastically,
impose more sophisticated governing flow equations. We may, for example, consider Stokes
flow in the fractures and Darcy flow in the matrix.

The representation of fractures as lower-dimensional features was introduced by [3, 4]
and is frequently used in fracture flow modeling. The resulting models are referred to as
Discrete Fracture Models, or DFM, and a variety of methods have been developed over the
years. Notable contributions include the mortar approach [28, 40], the use of X-FEM and
unfitted grids [23, 29, 38], and several finite volume schemes, see e.g. [46, 50]. Further
references to key contributions in this field can be found in Papers A and D.

The key concept in this work which separates it from other DFM methods is the intro-
duction of a mixed-dimensional PDE and the use of semi-discrete operators to construct the
model. This allows us to analyze the problem on a continuous level before introduction of
the mesh, and results in a natural incorporation of intersection lines and points, as well as
fracture ends. Moreover, through the mixed-dimensional geometry, the inside of the fracture
is considered a separate entity from the interfaces with the surrounding matrix. This allows
for a distinct treatment of coupling conditions, more advanced reduced equations, and even
varying discretization approaches between dimensions, as shown in Paper E.

1.1.2 Mechanics of Materials with Thin Inclusions
Our second application is concerned with elasticity. One of the most accessible examples in
this context is to consider plate-reinforced concrete. The composition of these two materials
combines the light weight of concrete with the strength of steel, thus using the advanta-
ges of each component. This constitutes a typical example of thin inclusions, namely the
plates, with significantly different material properties compared to its surroundings. In this
case, we can consider a mechanical process defined on the plates which is fully coupled to
the mechanical process active in the surrounding concrete. By making modeling assump-
tions to represent the plates as lower-dimensional manifolds, we can describe this process
mathematically using coupled differential equations. Due to the interaction between the me-
chanical process in the three-dimensional surroundings with a similar process defined on a
lower-dimensional manifold, we arrive at a mixed-dimensional partial differential equation.

Alternatively, we could remain in the context of subsurface rock and consider fractures
cemented due to a chemical reaction. In this setting, the fractures are filled with a material
which is assumed to act as an elastic medium. The material properties remain to be defined
and we can consider either weak or strong inclusions relative to the surroundings, depending
on the context. For weak inclusions, however, possible contact between the sides of the frac-
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tures significantly increases the complexity of the model. Such contact problems typically
lead to variational inequalities, and Paper H is related to this field.

The setting considered herein differs slightly from the conventional theory of thin shells,
see e.g. [21]. Here, we always assume that the lower-dimensional manifold is fully coupled
to a surrounding medium. We are thus interested in the elastic behavior of the material as a
whole with respect to the material properties of the thin inclusions, similar to [18].

By imposing appropriate conditions on the boundary of the domain or inside the fractu-
res, circumstances can bemimickedwhich stimulate fracture propagation. This is an essential
process for geothermal energy applications, for example, since a generated fracture network
enables fluid flow between an injection and an extraction well. The models related to rock
failure form a scientific field of their own (see e.g. [26, 35] and references therein) which is
beyond the scope of this work. Nevertheless, we note that the main ingredient for fracture
propagation is the stress field and we are therefore interested in models which explicitly in-
corporate the stress as a variable. Here, and particularly in Paper B, we focus on mixed finite
elements to accomplish this rather than conventional finite elements since the latter require
post-processing procedures to reconstruct the stress.

1.1.3 Challenges Related to Safe CO2 Storage
CO2 capture and storage is a modern technique proposed to tackle the atmospheric carbon
problem [43]. The idea is to capture CO2 instead of releasing it in the atmosphere and use
subsurface formations as storage sites for large quantities. The formation needs to be suffi-
ciently permeable to accommodate the injected CO2 and overlain by a low permeable layer
to keep it in place. This sealing formation is referred to as the caprock and its properties are
of vital importance in the study of storage capacity and leakage risks.

This application unifies the different mixed-dimensional problems considered in this
work. In particular, two aspects related to this technology can be described by mixed-
dimensional PDEs, namely the integrity of the caprock and the separated flow through the
aquifer of CO2 and brine.

First, let us consider the mechanical response of the caprock to the injection of CO2
which greatly influences its integrity. Here, we can consider two different scales. At the large
scale, we can consider the aquifer in which the injection takes place as a lower-dimensional
manifold. This is due to the fact that an aquifer typically has a horizontal extent which is
much greater than its vertical height [12, 43]. A mixed-dimensional approach is then still
capable of capturing the different material properties of the aquifer and caprock and in turn,
can describe the response of the caprock to increased pressures in the aquifer during and
after injection.

At a smaller scale, fractures present in the caprock could be hazardous. The highly con-
ductive fractures may stimulate leakage of the injected CO2 to unwanted locations or worse,
back to the surface. The modeling of flow through such fractured media could provide valu-
able insight into the leakage pathways out of the storage site.

Secondly, the flow of the more buoyant CO2 through the aquifer is typically modeled
using sharp interface equations [22, 30]. Such models are structurally similar to the water
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table evolution equations considered in Papers F and G. The sharp interface is represen-
ted as a lower-dimensional manifold and its location is determined by the surrounding flow
processes, leading to a coupled, dynamical system.

Thirdly, the mathematical models applied to these problems need to respect physical
constraints in order to produce sensible solutions. In the context of CO2 storage, it would
for example, not be sensible to have negative saturations in multiphase flows. On the other
hand, in sharp interface models, the location of the interface is bounded by the impermeable
caprock. These constraints can be incorporated in the mathematical model with the use of
variational inequalities, which we consider in Paper H.

In short, the mathematical theory proposed in this dissertation are directly related to a
range of physical processes. As is explained in this work, the proper understanding of mixed-
dimensional problems greatly benefits the development of solution strategies for its related
problems. These results can therefore be considered an example of how the development
of mathematics in an abstract form is not only important for its own sake, but also for its
implications in various real-world applications.



Chapter 2

Fixed-Dimensional Partial Differential
Equations

To become acquainted with the mathematical formulations of the examples mentioned in
Chapter 1, this chapter starts with a single domain of interest and describes the relevant
physical processes with the use of mathematical concepts. These descriptions lead to fixed-
dimensional, or conventional, partial differential equations. The theory on PDEs is rich (see
e.g. [25, 33]) and we restrict this exposition to the topics of interest for the subsequent chap-
ters. In short, this chapter shows how certain physical processes can be translated to mat-
hematical systems of equations and how to arrive at the weak or variational formulation of
these problems.

This section presents the derivation using the following steps: First, the physical conser-
vation laws of interest are introduced in Section 2.1. Then, in Section 2.2, we consider the
associated constitutive law and boundary conditions which close the system. The necessary
tools from functional analysis are introduced in Section 2.3 with which the variational formu-
lations are derived in Section 2.4. The generalization to variational inequalities is considered
in Section 2.5.

2.1 Linear Conservation Laws

At the cornerstone of all models considered here is the physical concept of conservation.
Conservation laws arise in several different fields of physics and include, but are not limited
to, conservation of energy, conservation of electric charge, and conservation of linear and
angular momentum. The mathematical description of these laws follows a certain structure,
whichwe explain in this section using the conservation ofmass as an example. The analogous
conservation laws relevant to linear elasticity and poroelasticity are considered afterwards.
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2.1.1 Mass
In order to describe mass conservation as a mathematical equation, we consider a porous
medium saturated by an incompressible fluid and follow the derivation presented in [43].
Let us consider a given volume Ω in n dimensions with boundary ∂Ω. Typically, choosing
n = 2 or n = 3 suffices for practical applications. On this volume, we introduce the function
m to represent the mass per unit volume at a certain point, as is conventional in continuum
models. Secondly, the flux q is defined as a vector function on Ω representing the discharge
of a fluid per unit area. The third ingredient is a source or sink of mass denoted by fq , which
can be related to a production or injection well, for example.

The total change in mass over time Ûm in the volume Ω is then given by the mass entering
through the boundary ∂Ω and mass entering or leaving due to the source (or sink) fq . This
relationship can be expressed mathematically by the following integral equation∫

Ω

Ûmdx = −
∫
∂Ω

q · nds +
∫
Ω

fqdx.

Here, n is the outward normal vector to ∂Ω with unit length. Using the divergence theorem,
the first term on the right-hand side is rewritten as a volume integral leading to the following
equation ∫

Ω

Ûm + ∇ · q − fqdx = 0,

with ∇· denoting the divergence. The examples which follow in this work mainly concern
incompressible fluids, or finding a steady state solution. In either case, the first term is zero
since there will be no changes in mass in the given, stationary volume Ω. We may therefore
simplify this equation to ∫

Ω

∇ · q − fqdx = 0. (2.1.1)

The final step is to note that the integral (2.1.1) is zero for any arbitrary volume Ω. In turn,
the integrand is identically zero and we arrive at the differential equation

∇ · q = fq . (2.1.2)

In the remainder, we will refer to equation (2.1.2) as the description of the law of mass
conservation. Note that it is a simple relationship involving only the divergence as a differen-
tial operator. Naturally this equation does not suffice to model subsurface flows and we will
consider an additional, constitutive law relating the flux q to the pressure p in Section 2.2.1.

2.1.2 Momentum
The second examplewe consider is related to elasticity. The conservation laws of interest then
concern linear and angular momentum [34]. For its derivation, we first translate from the flow
terminology above to the counterparts in the context of mechanics. First, the analogue of the
flux is the Cauchy stress tensor, which we denote by σ. It represents a force per unit area.



2.2 Constitutive Laws 11

Secondly, a body force, denoted by fσ can be interpreted as a vector-valued source term.
We are once again interested in equilibrium states, thus all terms concerning derivatives in
time are eliminated. Following an analogous derivation as in Section 2.1.1, we obtain the
following conservation law, commonly referred to as the conservation of linear momentum:

∇ · σ = fσ . (2.1.3)

For the purpose of this section, conservation of linear momentum can thus be seen as the
tensorial equivalent of (2.1.2).

On the other hand, equilibrium implies that angular momentum is conserved as well. This
is related to the symmetry of the stress tensor σ, which can be mathematically described by

asymσ :=
1
2

(
σ − σT

)
= 0. (2.1.4)

Here, the superscript T denotes the transpose. Together, these two equations describe the
linear conservation laws for mechanics considered in this work.

2.1.3 Poroelastic Stress
Thirdly, the coupled process of porous media flow and mechanics is known as poromecha-
nics. In terms of the relevant conservation laws, which is central to this subsection, the key
is to find the conserved, physical quantities. For that purpose, we first focus on the conser-
vation of linear momentum from (2.1.3). The pressure p of the fluid influences this stress
balance by acting as an isotropic stress. In turn, the conserved quantity is the poroelastic (or
total) stress σp , given by

σp = σ − αpI, (2.1.5)

where α is the Biot-Willis constant and I is the identity tensor. In turn, the conservation of
linear momentum (2.1.3) in a poroelastic medium is given by

∇ · σp = fσ . (2.1.6)

Note that the modification to the stress tensor in (2.1.5) only affects the diagonal terms.
Therefore, the equilibrium equation describing conservation of angular momentum remains
unchanged

asymσp = asymσ = 0.

As for the law of conservation of mass, this expression changes due to the deformation of
the material. This modification will be considered with the constitutive laws in Section 2.2.3.

2.2 Constitutive Laws
The second ingredient in modeling the physical processes of interest in this work is to supple-
ment the conservation equation from the previous section with a constitutive law and appro-
priate boundary conditions. The constitutive law is usually derived through a simplification
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of the true physical law by using convenient assumptions. Following the same structure as
Section 2.1, we first look at porous media flow, followed by linear elasticity and poromecha-
nics.

2.2.1 Darcy’s law
The pressure p is a scalar quantity which, in continuum models, represents the force per
area exerted by the fluid. Fluids flow from high to low pressure regions, which can easily
be described by the linear relationship known as Darcy’s law [43]. This law can be derived
rigorously through homogenization of the Navier-Stokes equations with the assumption of
creeping flow [52]. Here, however, it suffices to introduce this law by defining a symmetric,
positive-definite permeability tensor K as the coefficient in the following linear equation:

q = −K(∇p − ρg). (2.2.1)

The density of the fluid is represented by ρ and g is the force of gravity. In the following, we
will neglect gravity effects.

Finally, appropriate boundary conditions are required in order to make the problem well-
posed. For this, we assume that the boundary is decomposed disjointly as ∂Ω = ∂pΩ∪ ∂qΩ.
We prescribe the normal flux on ∂qΩ and the pressure on ∂pΩ. In order to obtain a unique
solution, ∂pΩ is assumed to have positive measure, i.e. the pressure is prescribed on a section
of the boundary, not merely at distinct points. The boundary data is denoted as gq for the
normal flux and gp for the pressure.

The system of equations describing porous media flow is then given by Darcy’s law, the
law of mass conservation, and the imposed boundary conditions:

q = −K∇p (2.2.2a)
∇ · q = fq in Ω, (2.2.2b)

p = gp on ∂pΩ, (2.2.2c)
q · n = gq on ∂qΩ. (2.2.2d)

2.2.2 Hooke’s law
Similar to the pressure introduced for the flow equations, we consider the vector-valued dis-
placement u in the context of mechanics. Again, we remain within the linear regime and
introduce the relationship between stress and displacement using the theory of infinitesi-
mal strain. Thus, our first assumption is that the deformation and its gradient are small with
respect to the size of the domain. The linearized strain ε(u) can then be introduced as

ε(u) = sym(∇u) =
1
2

(
∇u + (∇u)T

)
. (2.2.3)

In turn, the constitutive law relates the stress σ with the strain ε(u). The stress-strain
relationship considered in this work is given by Hooke’s law. In isotropic materials, we can
use the Lamé parameters µ and λ to describe this law as

σ = 2µε(u) + λ Tr(ε(u))I, (2.2.4)
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where we use Tr to denote the trace of a tensor and I once again denotes the identity ten-
sor. Since we aim to retain the strong sense of conservation with respect to momentum as
introduced in Section 2.1.2, our preference is to keep the stress as one of our variables. The-
refore, it is more preferable to write the strain as a function of the stress rather than vice
versa. Therefore, we invert the linear relationship (2.2.4) to obtain

ε(u) = Aσ :=
1

2µ

(
σ −

λ

2µ + nλ
Tr(σ)I

)
. (2.2.5)

Note that n, the dimensionality of the domain, plays a role in this equation. In fact, in case of
n = 2, then the third dimension is simply not a part of our model. As such, the model does
not formally correspond to either plane-stress or plane-strain assumptions, but rather to both
since all variables are defined in the plane.

Finally, appropriate boundary conditions are required to close the system. The boundary
of the domain is assumed to be decomposable in the disjoint union ∂Ω = ∂uΩ ∪ ∂σΩ. The
displacement is prescribed as gu on ∂uΩ, which is assumed to have positive measure. On the
other hand, ∂σΩ denotes the section of the boundary on which the normal stress is given,
which may be empty. The given value for the normal stress is denoted by gσ .

The full system of equations governing linear elasticity is then given by the constitutive
law, the two conservation equations form Section 2.1.2 and the given boundary conditions:

Aσ = ε(u) (2.2.6a)
∇ · σ = fσ (2.2.6b)

asymσ = 0 in Ω, (2.2.6c)
u = gu on ∂uΩ, (2.2.6d)

σ · n = gσ on ∂σΩ. (2.2.6e)

The attentive reader will notice that (2.2.6c) is superfluous since it follows directly from
(2.2.6a). Nevertheless, it is presented here to ease the translation towards the variational
formulation with relaxed symmetry in Section 2.4.2.

Remark 2.2.1 The conventional approach to linear elasticity is to eliminate the stress σ by
substituting (2.2.4) into (2.2.6b) and consider only the primal variable, the displacement.
This leads to a much simpler system but the explicit imposition of momentum conservation
is lost.

2.2.3 Biot Theory
In a poroelastic medium, the flow through the pores and the mechanical properties of the
matrix form a coupled process. Thus, in the study of poromechanics, we combine the go-
verning equations for flow with those for mechanics to arrive at Biot consolidation theory
[11].

Here, we restrict the mathematical description to the linearized, quasi-static system. That
is, we assume that the inertial effects are negligible and may therefore consider the equili-
brium equations from Section 2.1.2.
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The constitutive laws in this case consist of the coupling between the flow andmechanics.
First, as we have seen in section 2.1.3, the pressure acts as an isotropic stress. The pressure
is included in the definition of the conserved quantity, known as the poroelastic stress, as
shown in (2.1.5). On the other hand, the influence of mechanics on the flow is incorporated
bymodifying the conservation equation (2.1.2). Changes in volume are directly related to the
divergence of the displacement over time. The mass conservation equation is then modified
with a second instance of Biot-Willis constant α:

S0 Ûp + α∇ · Ûu + ∇ · q = fq . (2.2.7)

Here, S0 denotes the specific storativity, which is included for generality, in case compres-
sible fluids are considered. Combining this equation with the flow and mechanics systems
from this section, the quasi-static, linear Biot system is formed:

A(σp + αpI) = ε(u) (2.2.8a)
S0 Ûp + α∇ · Ûu + ∇ · q = fq, (2.2.8b)

q = −K∇p (2.2.8c)
∇ · σp = fσ (2.2.8d)

asymσp = 0 in Ω. (2.2.8e)

Just as this system of equations is a combination of the flow and elasticity equations, the
relevant boundary conditions are given by combinations as well. Using the same notation for
the parts of the boundary with specific boundary conditions, we impose

u = gu on ∂uΩ, σp · n = gσ on ∂σΩ, (2.2.9a)
p = gp on ∂pΩ, q · n = gq on ∂qΩ. (2.2.9b)

In this case, the boundary of the domain is decomposed in two, possibly different ways, given
by ∂Ω = ∂pΩ ∪ ∂qΩ = ∂uΩ ∪ ∂σΩ. Again, we assume that the boundaries ∂pΩ and ∂uΩ
have positive measure for solvability purposes. Note that the boundary condition imposed
on ∂σΩ concerns the poroelastic stress, which is natural since this is the conserved quantity.

Again, the system can be simplified by substituting equations into each other. We refer
to this formulation as the five-field formulation and the system of equations formed after
elimination of the stress is known as the three-field formulation. This has been investigated
numerically in [31, 45], among others. Further elimination of the flux then leads to the two-
field formulation, see e.g. [37]. In this work, we prefer the five-field formulation due to the
explicit imposition of mass and momentum conservation.

2.3 Reminders on Functional Analysis
A detailed introduction to the elegant field of functional analysis is not within the scope of
this dissertation. Rather, we will pick up the theory at the point where the definitions and
theorems start to be of relevance to the problems at hand.We thereby emphasize the key tools
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used in the subsequent chapters and articles rather than the formal, underlying details. For a
more thorough explanation of the concepts introduced here, we refer the reader to [1, 13, 20].

We start by defining the function space L2(Ω; F), of square-integrable functions defined
on Ω which map to F . In the fixed-dimensional case in n dimensions, F is typically either
the space of real numbers R, vectors V = Rn, or n × n matrices Vn. For two elements
f , g ∈ L2(Ω; F), the inner product and induced norm are then given by

( f , g)Ω =
∫
Ω

f · gdx, ‖ f ‖2
L2(Ω)

= ( f , f )Ω . (2.3.1)

Here, the dot-product is the inner product associated with F . The space L2(Ω; F) can thus be
defined as

L2(Ω; F) =
{

f : Ω→ F : ‖ f ‖L2(Ω) < ∞
}
. (2.3.2)

In terms of analysis, the restriction to square-integrable functions and the associated
inner product is advantageous. However, we typically require a few more properties in order
to consider a partial differential equations. As we have seen, most conservation principles
are stated using the divergence operator. In order for such a statement to be well-defined, the
function in question needs to have sufficient regularity to apply the divergence. Therefore,
we will next consider certain subspaces of L2 based on regularity properties.

The following three function spaces will play a dominant role in this work:

H1(Ω;R) =
{

f ∈ L2(Ω;R) : ∇ f ∈ L2(Ω;V)
}
, (2.3.3a)

H(curl,Ω;V) =
{
f ∈ L2(Ω;V) : ∇ × f ∈ L2(Ω;V)

}
, (2.3.3b)

H(div,Ω;V) =
{
f ∈ L2(Ω;V) : ∇ · f ∈ L2(Ω;R)

}
. (2.3.3c)

These are Hilbert spaces in their own right and therefore endowed with inner products. These
inner products induce the following norms, on which we omit the field F for notational con-
venience:

‖ f ‖2
H1(Ω)

= ‖ f ‖2
L2(Ω)

+ ‖∇ f ‖2
L2(Ω)

, (2.3.4a)

‖ f ‖2H(curl,Ω) = ‖ f ‖
2
L2(Ω)

+ ‖∇ × f ‖2
L2(Ω)

, (2.3.4b)

‖ f ‖2H(div,Ω) = ‖ f ‖
2
L2(Ω)

+ ‖∇ · f ‖2
L2(Ω)

. (2.3.4c)

In order to incorporate boundary conditions, we use a subscript zero to indicate the sub-
spaces containing functions with zero trace on ∂Ω. In other words, let us define

H1
0 (Ω;R) =

{
f ∈ H1(Ω;R) : f |∂Ω = 0

}
, (2.3.5a)

H0(curl,Ω;V) = { f ∈ H(curl,Ω;V) : n × f |∂Ω = 0} , (2.3.5b)
H0(div,Ω;V) = { f ∈ H(div,Ω;V) : n · f |∂Ω = 0} . (2.3.5c)

To finalize this section, we recall the algebraic identities which are commonly used in
our analysis. First, let us consider f ∈ H(div,Ω;V) and g ∈ H1(Ω;R). Integration by parts
and the divergence theorem then give us the following equation

(∇ · f , g)Ω + ( f ,∇g)Ω =

∫
Ω

∇ · ( f g)dx = ( f · n, g)∂Ω , (2.3.6)
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where n is the outward normal vector to the boundary ∂Ω with unit length.

Remark 2.3.1 A word of caution is in order with respect to the right-hand side of (2.3.6).
Technically speaking, this term represents a duality pairing and not an L2 inner product.
This is due to the fact that the normal trace of f ∈ H(div,Ω;V) is generally not in L2(∂Ω),
but in the dual of H

1
2 (∂Ω) [13]. In the subsequent chapters, this is rarely encountered since

we often impose higher regularity assumptions on the functions f and g.

Finally, we introduce another important building block in functional analysis, namely the
dual space. For a given function space F, we define its dual space F∗ as the space of linear,
continuous functionals acting on F. The dual space, denoted with a superscript asterisk, is a
normed space with its norm given by

‖g‖F∗ = sup
f ∈F\{0}

〈g, f 〉F∗×F
‖ f ‖F

, (2.3.7)

with angled brackets denoting the duality pairing.

2.3.1 The de Rham Complex
The function spaces introduced thus far are intimately related by the de Rham complex.
Again, the theory surrounding this complex is much richer than what can be considered
here and we refer the interested reader to the works of Bott and Tu [14] and Spivak [48] for
more comprehensive introductions. Herein, we restrict the exposition to the concepts which
resurface in the subsequent chapters.

On a smooth domainΩ in three dimensions, let us arrange the introduced function spaces
from (2.3.3) in the following sequence.

R ↪→ H1(Ω;R) H(curl,Ω;V) H(div,Ω;V) L2(Ω;R) → 0.←

→
∇ ←

→
∇× ←

→
∇·

(2.3.8)
Two important properties are represented in this diagram. First, each differential operator

maps into the next function space with the far left and right arrows corresponding to an
inclusion and zero operator, respectively. Secondly, we note that two consecutive steps in
this diagram corresponds to mapping to zero. In particular, using elementary results from
calculus, we see that the gradient of a constant function is zero andmoreover, that the gradient
of a scalar function has zero curl. Finally, taking the divergence of the curl of a vector function
leads to zero as well.

On the other hand, for the imposition of boundary conditions, we concern ourselves with
the subspaces consisting of functions with zero trace from (2.3.5). Again, a sequence arises:

0 ↪→ H1
0 (Ω;R) H0(curl,Ω;V) H0(div,Ω;V) L2(Ω;R) → R.

←

→
∇ ←

→
∇× ←

→
∇·

(2.3.9)
Here, the rightmost arrow corresponds to integration over the domain.

For applications to the mechanics equations, we are interested in the vector-valued de
Rham complex which can be formed by applying the differential operators in a row-wise
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manner. We repeat it here for convenience:

Rn ↪→ H1(Ω;Rn) H(curl,Ω;Vn) H(div,Ω;Vn) L2(Ω;Rn) → 0

0 ↪→ H1
0 (Ω;Rn) H0(curl,Ω;Vn) H0(div,Ω;Vn) L2(Ω;Rn) → Rn.

←

→
∇ ←

→
∇× ←

→
∇·

←

→
∇ ←

→
∇× ←

→
∇·

(2.3.10)

Remark 2.3.2 By intention, the complex (2.3.10) remains silent on the presence of symme-
try for matrices in Vn. The asymmetry mapping can be included, which leads to the more
sophisticated elasticity complex as introduced by Arnold et al. [8].

In the language of exterior calculus, the complex (2.3.8) is considered a representation
of a more general structure. Let Λk(Ω) denote the space of smooth differential k-forms on
an n-dimensional domain Ω. Let d denote the exterior derivative which maps differential k-
forms to differential (k + 1)-forms. Thus, a sequence of spaces is formed with an increasing
index k and an operator d which maps each space to the next.

0 Λ0(Ω) Λ1(Ω) Λ2(Ω) Λn(Ω) 0.←

→

←

→
d ←

→
d ←

→
d ←

→ (2.3.11)

Since two consecutive applications of the exterior derivative d maps to zero, i.e.

dd = 0, (2.3.12)

the sequence (2.3.11) is called a co-chain complex and is referred to as the de Rham complex.
A form a ∈ Λk(Ω) is called closed if da = 0 and exact if a form b ∈ Λk−1 exists such that
db = a. Thus, all exact forms are closed. On the other hand, if Ω is contractible, then all
closed forms are exact as well [48].

Next, we fit the Sobolev spaces from Section 2.3 into this setting, which explains the
similarities in the norms given by (2.3.4). Let us consider the norm

‖v‖2
HΛk (Ω)

= ‖v‖2
L2(Ω)

+ ‖dv‖2
L2(Ω)

, (2.3.13)

and the corresponding Hilbert space

HΛk(Ω) =
{
v ∈ Λk(Ω) : ‖v‖HΛk (Ω) < ∞

}
. (2.3.14)

By identifying the exterior derivative as a gradient, curl, divergence or zero operator depen-
ding on the value of k, we can identify the central four spaces in sequence (2.3.8) with the
sequence given by HΛk(Ω) with k ranging from 0 to n = 3.

2.3.2 Saddle Point Theory
As we have seen in the examples from Section 2.1, we treat the conservation law explicitly
while putting less emphasis on the constitutive law. To that effect, the primary variable, i.e.
the pressure or displacement, will act as a Lagrange multiplier which enforces this conser-
vation law locally. As is often the case after the introduction of Lagrange multipliers, the
problems we arrive at can be identified as saddle point problems.
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In order to make this identification, we use the structure of saddle point problems to
rewrite the problem to a standardized form [13]. To consider a general problem of this form,
we need two spaces Q and P as well as linear, continuous operators A : Q → Q∗ and
B : Q→ P∗. The transpose of B is denoted by BT : P→ Q∗. The standard form of a saddle
point problem is then given by:
Given g ∈ Q∗ and f ∈ P∗, find q ∈ Q and p ∈ P such that[

A BT

B 0

] [
q

p

]
=

[
g

f

]
. (2.3.15)

The first step in analyzing saddle point problems is therefore to identify the associated
function spaces and the operators A and B. As we then consider the continuous setting, we
introduce the bilinear forms a and b associated with A and B. Using angled brackets to denote
duality pairings, these are defined by

a(q, q̃) = 〈Aq, q̃〉Q∗×Q, (2.3.16a)
b(q, p̃) = 〈Bq, p̃〉P∗×P = 〈q, BT p̃〉Q×Q∗ . (2.3.16b)

With the use of these bilinear forms, we can rewrite (2.3.15) to the following, equivalent
formulation:
Given g ∈ Q∗ and f ∈ P∗, find q ∈ Q and p ∈ P such that

a(q, q̃) + b(q̃, p) = 〈g, q̃〉Q∗×Q ∀q̃ ∈ Q, (2.3.17a)
b(q, p̃) = 〈 f , p̃〉P∗×P ∀p̃ ∈ P. (2.3.17b)

The formulation of the model problems from Section 2.2 correspond to (2.3.15) and it
is referred to as the strong formulation. The derivation of equivalent problems in the form
(2.3.17) is presented in Section 2.4. These problems will be referred to as the variational, or
weak formulation.

In order for the problem to be well-posed, we require that a unique solution exists and that
this solution depends continuously on the given boundary data. To prove this in the context
of saddle-point problems, we consider two conditions, one concerning the bilinear form a
and one concerning b:

1. ElKer: A constant Ca > 0 exists such that for all q ∈ Ker B, it holds that

a(q, q) ≥ Ca‖q‖
2
Q . (2.3.18)

2. Inf-Sup: A constant Cb > 0 exists such that for any p ∈ P, a function q ∈ Q\ {0}
exists such that

b(q, p) ≥ Cb ‖q‖Q ‖p‖P . (2.3.19)

Here, Ker B denotes the kernel of B, defined by all functions q ∈ Q with Bq = 0.
These two conditions are sufficient to prove existence and uniqueness of a solution which
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depends continuously on the data. To be more precise, if the ElKer and Inf-Sup conditions
are satisfied, then a constant C exists such that

‖q‖Q + ‖p‖P ≤ C(‖q‖Q∗ + ‖ f ‖P∗ ) (2.3.20)

By showing that (2.3.20) is satisfied, the problem is proven to be well-posed. For more de-
tails, we refer to the exposition given by Boffi et al. [13].

Remark 2.3.3 The conditions, as specified above, are sufficient but not necessary conditions
to obtain well-posedness. In order to derive the necessary conditions, we can weaken the
ElKer condition (2.3.18) to the following condition:
A constant C ′a > 0 exists such that

inf
q∈K

sup
q̃∈K

a(q, q̃)
‖q‖Q ‖q‖Q

≥ C ′a inf
q∈K

sup
q̃∈K

a(q̃, q)
‖q‖Q ‖q‖Q

≥ C ′a

with K = Ker B. However, since the ElKer condition is generally satisfied for the bilinear
forms and norms considered herein, we can usually simply consider (2.3.18).

2.4 Variational Formulations
The next step towards a numerically solvable system of equations is to derive the variational
(or weak) form of the problems presented in Section 2.2. Due to the similar structure found
in all the problems we consider, the derivations are to a certain extent alike. Namely, we
first multiply the conservation equation with a suitable test function and integrate over the
domain. The second step is to test the constitutive law and apply integration by parts where
needed.

2.4.1 Porous Media Flow
The first system we consider are the flow equations described in Section 2.2.1. In order to
describe its variational formulation, we first define the relevant function spaces. By choosing
the spaces of functions with the minimal required regularity properties, we arrive at

Q = H(div,Ω;V), Q0 =
{
q ∈ Q : q · n |∂qΩ = 0

}
,

P = L2(Ω;R).

The space Q0 is defined in order to properly incorporate the flux boundary condition.
We test the constitutive law and conservation law with functions from Q0 and P respecti-

vely. After applying the integration by parts formula (2.3.6) on the constitutive law, we arrive
at the variational problem:
Find (q, p) ∈ Q × P such that(

K−1q, q̃
)
Ω
− (p,∇ · q̃)Ω =

(
gp, q̃ · n

)
∂pΩ

∀q̃ ∈ Q0, (2.4.1a)

(∇ · q, p̃)Ω =
(
fq, p̃

)
Ω

∀p̃ ∈ P. (2.4.1b)
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Note that in this formulation, the pressure boundary condition is naturally included in the
system of equations. On the other hand, the flux boundary condition needs to be incorporated
separately, which is known as an essential boundary condition:

q · n = gq on ∂qΩ.

We can easily fit (2.4.1) in the standardized form given by (2.3.17). For that, we identify
the bilinear forms a and b by

a(q, q̃) =
(
K−1q, q̃

)
Ω
, b(q, p̃) = − (p̃,∇ · q)Ω . (2.4.2)

This identification will be apparent in all following examples, and we therefore omit it in the
subsequent sections.

2.4.2 Linear Mechanics
As we have observed in Section 2.2.2, the equations describing linear elasticity are close to
being the vector-valued analogue of the porous media flow equations. In turn, the relevant
function space follow naturally from the observations in the previous subsection

Σ = H(div,Ω;Vn), Σ0 =
{
σ ∈ Σ : σ · n |∂σΩ = 0

}
,

U = L2(Ω;Rn).

Note that the symmetry of the stress tensor is not included in the definition of Σ. This is
because we are already aiming for a viable mixed finite element discretization. If we were
to enforce the symmetry inside the space, thus considering only symmetric stress tensors,
we run into difficulty constructing a finite element for the stress. These finite elements are
necessarily of higher order, see e.g. [10], and are difficult to construct in three dimensions
[7].

Instead, we enforce the symmetry on σ in an integrated sense with the use of a Lagrange
multiplier, hence the name weak (or relaxed) symmetry. This approach has been investigated
by [8], among others. Let us denote the Lagrange multiplier space as R which we define as

R = L2(Ω;K). (2.4.3)

Since this space is used to compare off-diagonal terms in an n × n tensor, K depends on the
dimensionality n. If n = 3, three rotations are possible and we have K = R3. On the other
hand, only one rotation is possible on a planar domain (n = 2) which leads to K = R. In
general, we have K = Rkn with kn = ( n2 ) = n(n − 1)/2.

The asymmetry operator introduced before maps matrices to matrices, and thus we need
a different operator to map from Σ into R. Let us therefore introduce skw : M → K for an
n × n matrix M with components mi j as

skw M =

{
[m23 − m32, m31 − m13, m12 − m21], n = 3,
m12 − m21, n = 2.

(2.4.4)
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The operator is then naturally lifted to skw : Σ→ R.
Having the function spaces and operators defined, we are ready to give the variational

formulation of the linear elasticity equations in a mixed form:
Find (σ, u, r) ∈ Σ × U × R such that

(Aσ, σ̃)Ω + (u,∇ · σ̃)Ω − (r, skw σ̃)Ω = (gu, σ̃ · n)∂uΩ ∀σ̃ ∈ Σ0, (2.4.5a)
(∇ · σ, ũ)Ω = ( fσ, ũ)Ω ∀ũ ∈ U, (2.4.5b)
(skwσ, r̃)Ω = 0 ∀r̃ ∈ R, (2.4.5c)

subject to the essential boundary condition

σp · n = gσ on ∂σΩ. (2.4.6)

2.4.3 Poroelasticity
In the examples considered thus far, the process of poromechanics is the only case which
leads to time-dependent equations. Although this time dependency can be reflected by intro-
ducing Bochner spaces [25], we limit the exposition to the equations at a given moment in
time t for sake of simplicity. In turn, we may inherit the five function spaces Σ×P×Q×U×R
from the previous sections for t ∈ [0,T].

The symmetry in the system of equations for poroelasticity is not apparent at first sight,
but can easily be shown after a few manipulations. After testing the conservation equation
(2.2.8b) with a test function p̃, we obtain

(S0 Ûp, p̃)Ω + (∇ · u, p̃)Ω + (∇ · q, p̃)Ω =
(
fq, p̃

)
Ω

∀p̃ ∈ P. (2.4.7)

The problematic term in this equation is (∇ · u, p̃)Ω. As we have seen in the previous secti-
ons, both the pressure and displacement spaces are assumed to be in L2(Ω) for the separate
problems. In this exposition we do not wish to assume anymore regularity on these functions
a priori. Thus, we cannot take the divergence of u since it is only square-integrable and we
may be tempted to apply integration by parts. However, this leads to a term which includes
the gradient of the merely square integrable pressure which is just as nonsensical.

To get us out of this sticky situation, we use the manipulation from Lee [36] to rewrite
this term. Using the strong formulation, we derive:

(∇ · u, p̃)Ω = (Tr ε(u), p̃)Ω =
(
Tr A(σp + αpI), p̃

)
Ω
=

(
A(σp + αpI), p̃I

)
Ω
. (2.4.8)

Including the Biot-Willis constant α and the time derivative on the appropriate terms, we
obtain the five-field formulation of the Biot equations at time t ∈ [0,T]:
Find (σp, p, q, u, r) ∈ Σ × P × Q × U × R such that(

A(σp + αpI), σ̃p

)
Ω
+

(
u,∇ · σ̃p

)
Ω
−

(
r, skw σ̃p

)
Ω
=

(
gu, σ̃p · n

)
∂uΩ

∀σ̃p ∈ Σ0,

(S0 Ûp, p̃)Ω +
(
A( Ûσp + α ÛpI), αp̃I

)
Ω
+ (∇ · q, p̃)Ω =

(
fq, p̃

)
Ω

∀p̃ ∈ P,(
K−1q, q̃

)
Ω
− (p,∇ · q̃)Ω =

(
gp, q̃ · n

)
∂pΩ

∀q̃ ∈ Q0,(
∇ · σp, ũ

)
Ω
= ( fσ, ũ)Ω ∀ũ ∈ U,(

skwσp, r̃
)
Ω
= 0 ∀r̃ ∈ R.
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In this formulation, the essential boundary conditions are given by

σp · n = gσ on ∂σΩ, q · n = gq on ∂qΩ.

Remark 2.4.1 The above system relies heavily on the trick given by equation (2.4.8) and the
use of the poroelastic stress. If, instead, one chooses to use the elastic stress σ as the main
variable, a different strategy is needed to treat the term (α∇p, ũ)Ω which arises in the fourth
equation.

We may approximate the gradient of pressure or the divergence of the displacement using
a discrete differential, denoted by Dh . The second and fourth equations of the system are then
rewritten as

(S0 Ûp, p̃)Ω + (αDh · Ûu, p̃)Ω + (∇ · q, p̃)Ω =
(
fq, p̃

)
Ω

∀p̃ ∈ P,

(∇ · σ, ũ)Ω − (αDhp, ũ)Ω = ( fσ, ũ)Ω ∀ũ ∈ U .
Using techniques from Discontinuous Galerkin methods for example, an appropriate

operator Dh can be constructed resulting in a symmetric system. Such a scheme may perform
well in one sense or another, but the use of discrete differential operators alters the system
of equations. Therefore, this strategy does not fit well within the spirit of conformity we aim
for and we will not continue further down this path.

2.5 Remarks on Variational Inequalities
In each variational formulation from the previous section, we search for a function in a
function space. Although this strategy works for the problems considered above, it is un-
feasible if more constraints are added to the problem. In particular, if the solution needs to
satisfy additional, physical constraints given by inequalities, then the solution space needs
to be restricted to a specific set of functions. By imposing these constraints, the problem
becomes a variational inequality.

A common instance of this arises in the context of obstacle problems and contact me-
chanics. A classic example is to consider the deformation of an elastic sphere resting on a
rigid surface [32]. Depending on the magnitude of gravity, a certain area of the sphere will
be in contact with the surface. Since this area will depend on the solution, it is non-trivial
to prescribe conventional boundary conditions to the sphere using a decomposition of the
boundary. With the use of inequalities, however, boundary conditions can be formulated for
the displacement and the normal stress such that the sphere does not penetrate the surface
and the surface only generates a normal force.

Similarly, in the modeling of fracture mechanics, the behavior of the system before frac-
tures are closed is very different before and after the two sides of the fracture touch. This
contact condition can be described as an inequality constraint on the displacement and stress
fields to disallow penetration and to mimic the correct behavior once the fracture is open.

As is apparent in the above examples, we thus search the solution in an admissible set
which is a subset of the more general function space. To give a general example of variational
inequalities, we follow [32]. Let V be a function space and Va a nonempty closed convex
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subset of V . Given a mapping A : Va → V∗ and a functional f ∈ V∗, we find u ∈ Va such
that

〈Au − f , v − u〉V ∗×V ≥ 0, ∀v ∈ Va . (2.5.1)

Note that variational equalities including those from the previous section can be seen as
the special case whereVa = V . In that sense, variational inequalities are thus a generalization.

Variational inequalities form an important class of related non-linear problems both in
the context of contact dynamics, as well as in multiphase flows to ensure that saturations
remain within physical bounds, for example. Related work on solution methods for variati-
onal inequalities in a fixed-dimensional setting is presented in Paper H. Their extension to
mixed-dimensional problems has interesting potential, yet this is reserved for future research
and the remaining chapters will focus on variational equalities.



24 Fixed-Dimensional Partial Differential Equations



Chapter 3

Mixed-Dimensional Partial Differential
Equations

With the goal of a mixed-dimensional PDE in mind, we continue by incorporating of thin
inclusions in the domain. Due to their large aspect ratios, we make the modeling choice to
represent these features as lower-dimensional objects. It important to note that we make the
modeling assumption at this point instead of during the discretization later in Chapter 4.
This allows us to analyze the problem in a continuous setting, which is the subject of this
chapter. By establishing the analytical tools beforehand, we gain a solid background to derive
a conforming discretization scheme afterwards.

In this chapter, we first introduce the geometrical setting and the way in which we con-
sider the lower-dimensional, embedded manifolds. On the created geometry, we then define
the key concepts from functional analysis which can be used to define mixed-dimensional
partial differential equation. After a short detour towards the underlying structure with re-
spect to exterior calculus, several concrete examples are provided using the model problems
from previous chapters.

3.1 Geometrical Setting
The manner in which the geometry of the problem is incorporated is of crucial importance.
Different interpretations inevitably lead to widely varying methods and a faulty assumption
at this stage may result in issues or limitations for the resulting scheme.

Let us start by introducing the open domain as D ⊂ Rn with n typically equal to two or
three. As assumed, thin inclusions are present inside D which form (n− 1)-dimensional ma-
nifolds. The key idea is then to consider these features as lower-dimensional manifolds on
which a separate differential equation can be defined. Moreover, when multiple manifolds
cross each other, the intersection is considered an (n−2)-dimensional manifold. This process
can be repeated until a zero-dimensional manifold is reached which we refer to as an inter-
section point. In this way, a hierarchy of manifolds with different dimensionalities is created
which forms the cornerstone of the mixed-dimensional framework. In this work, we assume
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all manifolds to be smooth.
For notational convenience, we use a superscript to keep track of the dimensionality of

a manifold and a subscript to denote its index. Thus, Ωd
i represents an open d-dimensional

manifold with index i contained in D. Omission of these sub- and superscripts then implies
the union or summation over all indices:

Ω
d =

⋃
i

Ω
d
i , Ω =

n⊕
d=0

Ω
d . (3.1.1)

We use the direct sum notation to emphasize the summation of manifolds with different
dimensionalities.

A key attribute of the decomposition of the domain D according to dimension is that we
assume each d-dimensional manifold is removed from Ωd+1. For example, Ωn is the open
domain describing the region surrounding the inclusions and contains none of the points in
Ωd for d < n. Moreover, it means that two lines intersecting in a point Ω0

1 are decomposed
into four lines with ends meeting at Ω0

1. An illustration of the dimensional decomposition in
three dimensions is given in Figure 3.1.

Figure 3.1: The decomposition of a three-dimensional domain D with three intersecting pla-
nes. Here, the ambient domain Ω3 is given by eight cubes, the two-dimensional domain Ω2

consists of twelve planes, the one-dimensional Ω1 is composed of six lines, and Ω0 compri-
ses the single point at the center.

The interface between domains of codimension one is referred to using a separate no-
tation. Let Γdij denote the d-dimensional interface between Ωd

i and Ωd+1
j . Here, we keep in

mind that if Ωd
i is embedded in Ωd+1

j , then Γdij is defined on both sides of Ω
d
i . This interface

can thus be alternatively described by

Γ
d
ij = ∂iΩ

d+1
j (3.1.2)

where ∂i denotes the boundary of a domain corresponding to a lower-dimensional manifold
with index i.
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Once more, we omit indices to imply union or direct summation in the following way:

Γ
d
i =

⋃
j

Γ
d
ij, Γ

d =
⋃
i

Γ
d
i , Γ =

n−1⊕
d=0

Γ
d . (3.1.3)

Each Γdij is equipped with a unit normal vector n pointing from Ωd+1 towards Ωd . The
only part of the domain which remains unaccounted for is the boundary of Ωd which is not
adjacent to a lower-dimensional manifold and does not touch the boundary. These immersed
sections of ∂Ωd are denoted by ∂0Ω

d .
The open domain D can then be decomposed in the following way

D = Ω ∪ ∂0Ω (3.1.4)

Each manifold may touch the boundary of the full domain. Let us take, as an example,
the boundary ∂pΩ on which the pressure is defined for the flow equations. The (d − 1)-
dimensional boundary ∂pΩd is then denoted by ∂pΩd ∩ ∂pΩ. In turn, the boundary ∂pΩ is
decomposed as

∂pΩ =

n⊕
d=0

∂pΩ
d . (3.1.5)

With these definitions in place, a decomposition of the boundary of each d-dimensional
submanifold arises. With the notation from the previous section to refer to boundaries with
specified boundary condition for flow and mechanics, this decomposition is given by

∂Ωd = ∂pΩ
d ∪ ∂qΩ

d ∪ ∂0Ω
d ∪ Γd−1 = ∂uΩ

d ∪ ∂σΩ
d ∪ ∂0Ω

d ∪ Γd−1. (3.1.6)

3.2 Mixed-Dimensional Functional Analysis
In order to define differential equations on the mixed-dimensional geometry, we first require
the correct notions of inner products, norms, and function spaces. Analogous to Section 2.3,
we start with square-integrable functions, followed by the spaces of functions with more
regularity similar to (2.3.3). We then introduce integration by parts and end with the mixed-
dimensional de Rham complex.

The notion of square-integrable functions is arguably themost readily extendable concept
to the mixed-dimensional framework. Let us start with the inner product and the respectively
induced L2 norm:

( f , g)Ω =
n∑

d=0
( f , g)Ωd , ‖ f ‖2

L2(Ω)
=

n∑
d=0
‖ f ‖2

L2(Ωd )
= ( f , f )Ω . (3.2.1)

Hidden within these definitions is the matter of measures. For d ≥ 1, we assume that inte-
gration over a d-dimensional manifold is performed using the standard Lebesgue measure
in d dimensions. Integration in zero dimensions is then defined as point evaluation.
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At this stage, we may define L2(Ω, F) as the space of functions which are square-
integrable on the mixed-dimensional geometry given by Ω:

L2(Ω; F) =
n∏

d=0
L2(Ωd; Fd). (3.2.2)

In this work, we choose field F to be either scalars in all dimensions, denoted by R, n-
vectors denoted by Rn, d-vectors denoted by V or d × d-matrices which we denote by Vd .
For the asymmetry multiplier in elasticity problems, we use K to denote Rd(d−1)/2 in Ωd .

In the previous section, we have taken care to introduce the interface between manifolds
of codimension one as Γ. In the mixed-dimensional setting, we will be interested in functions
defined on Ω with well-defined traces on Γ. Since Ωd will coincide geometrically with Γd ,
we employ the hat and check notation as short-hand to distinguish the two function values.
For a sufficiently regular function g defined on Ω, let the notation ĝ · n denote its normal
trace on Γ and let a check denote its restriction to the lower-dimensional domain:

ĝ · n = gd+1 · n, on Γd with 0 ≤ d ≤ n − 1,
ǧ = gd, on Ωd with 1 ≤ d ≤ n.

This allows us to define the jump operator n·o : L2(Γ) → L2(Ω) as

nĝ · no|Ωd
i
=

∑
j

(
ĝ · n |Γdi j

)
, 0 ≤ d ≤ n − 1. (3.2.3)

The jump operator will play an important role in the definition of differential operators
in the mixed-dimensional framework. The model problems introduced in Chapter 2 only
concern the divergence and its dual and we will therefore limit the exposition here to these
differential operators.

Using ∇‖ as the del operator in the tangential directions and the jump operator from
(3.2.3), we define the mixed-dimensional divergence as

D · f = ∇‖ · f̌ − n f̂ · no. (3.2.4)

This divergence operator arises naturally in the derivation for the reduced equations after an
integration across all directions normal to the manifold.

With this definition in place, we can consider functions, defined on themixed-dimensional
geometry which have sufficient regularity to apply this divergence operator to. We thereby
define the function space

H(D·,Ω;V) =
n∏

d=1

{
f d ∈ H(div,Ωd;V) : f̂ · n |Γd−1 ∈ L2(Γd−1;R)

}
(3.2.5)

Since This space will be used for the dual variables, i.e. the tangential flux and stress. By the
properties of this space, we have for f ∈ H(D·,Ω;V):

D · f ∈ L2(Ω;R) (3.2.6)
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Since two functions f , g ∈ H(D·,Ω;V) have well-defined components on both Ω and Γ,
we introduce a compound inner product as

〈 f , g〉Ω×Γ =
n∑

d=1

(
( f d, gd)Ωd + ( f d · n, gd · n)Γd−1

)
. (3.2.7)

This inner product is then used to derive the dual to the mixed-dimensional divergence.
For that purpose, we consider f ∈ H(D·,Ω;V) and g ∈

∏n
d=0 H1(Ωd) and denote the mixed-

dimensional codivergence of g by −Dg. Here, we inherit the sign convention from the fixed-
dimensional case where the dual to the divergence is the negative gradient. Through a notion
of integration by parts, we derive

〈 f , Dg〉Ω×Γ =
(
f̂ · n, ĝ

)
∂Ω\Γ
− (D · f , ǧ)Ω

=
(
f̂ · n, ĝ

)
∂Ω\Γ
−

(
∇‖ · f̌ , ǧ

)
Ω
+

(
n f̂ · no, ǧ

)
Ω

=
(
f̂ · n, ĝ

)
∂Ω\Γ
−

(
∇‖ · f̌ , ǧ

)
Ω
+

(
f̂ · n, ǧ

)
Γ
+

(
f̂ · n, ĝ

)
Γ
−

(
f̂ · n, ĝ

)
Γ

=
(
f̌ ,∇‖ ǧ

)
Ω
+

(
f̂ · n, ǧ − ĝ

)
Γ
.

Thus, the negated mixed-dimensional co-divergence of g is given by

Dg = [∇‖ ǧ, ǧ − ĝ], (3.2.8)

with square brackets indicating that the first component is defined as a function onΩ and the
second on Γ. Note that g has sufficiently regularity for the trace ĝ on Γ to be well-defined.

Remark 3.2.1 We consistently refer to the operator in equation (3.2.8) as the co-divergence
instead of the gradient. This is because, formally, the mixed-dimensional gradient would act
on differential 0-forms which are only defined in the top dimension (See Section 3.2.1). In
turn, the co-divergence plays a more important role in the models considered herein.

3.2.1 Exterior Calculus
With the mixed-dimensional divergence and co-divergence defined in the previous section,
the question arises whether these definitions can be generalized to differential operators de-
fined on the mixed-dimensional geometry. Indeed, this is possible in the context of exterior
calculus as explored on simplicial complexes by Licht [39]. We provide a short introduction
to these ideas in this section.

The key observation is to note the structure of the mixed-dimensional divergence as in-
troduced in (3.2.4). It is given by the composition of a continuous operator which preserves
dimensionality with a discrete operator which maps to manifolds of lower dimension. Tur-
ning towards the language of exterior calculus, recall d as the exterior derivative presented
in Section 2.3.1. A similar generalization can be constructed for the jump operator which we
denote by d. For its exact definition, we refer to Paper C. The two operators are then defined
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with the following domains and codomains:

Λ
k(Ωd)

d
−→ Λ

k+1(Ωd) Λ
k(Ωd)

d
−→ Λ

k(Ωd−1) (3.2.9)

Note that the operator d consists of an appropriate sum of traces, thus mapping between
dimensions. It therefore provides the building block to considering mixed-dimensional dif-
ferential forms. For that purpose, we introduce the mixed-dimensional differential k-forms
as

L
k(Ω) =

n∏
d=0

Λ
d−(n−k)(Ωd), (3.2.10)

with Λk(Ωd) = 0 if k < [0, d].
The composition of the continuous differential d and the discrete operator d leads to the

definition of the mixed-dimensional exterior derivative d:

d = d + d, L
k(Ω)

d
−→ L

k+1(Ω). (3.2.11)

One of the most important observations is that the newly defined exterior derivative cre-
ates a cochain complex in its own right, given by

0 L0(Ω) L1(Ω) L2(Ω) Ln(Ω) 0.←↩ →

←

→
d ←

→
d ←

→
d ←

→ (3.2.12)

The fact that two consecutive applications of d maps to zero follows from the properties
of the differential operators d and d and the anticommutative relationship between them:

d
2 = (d + d)2 = dd + dd + dd + dd = dd − dd = 0. (3.2.13)

Returning to the notation of fixed-dimensional exterior calculus, this chain can be repre-
sented as a triangle by decomposing d:

L0(Ω) Λ0(Ωn)

L1(Ω) Λ1(Ωn) Λ0(Ωn−1)

L2(Ω) Λ2(Ωn) Λ1(Ωn−1) Λ0(Ωn−2)

Ln(Ω) Λn(Ωn) Λn−1(Ωn−1) Λn−2(Ωn−2) Λ0(Ω0) .

←→ d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d ←→ d

←

→
d

(3.2.14)

In this representation, each row corresponds to Lk(Ω) for a value of k and each column
corresponds to a de Rham sequence onΩd for a given dimensionality d. The extension from
simplicial complexes to the geometrical setting from Section 3.1 and the analysis of the
corresponding Hilbert complexes are currently in development.
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3.3 Generalized Governing Equations
The geometry and analytical tools introduced in the previous sections give us sufficient back-
ground to define mixed-dimensional partial differential equations. This section uses these
concepts to generalize the problems defined in Section 2.4. Before we consider the explicit
problems, though, we first make a short note on the choice of dual variable in Section 3.3.1.

3.3.1 Scaling the Dual Variable
The derivation of the reduced equations typically involves either integrating or averaging
the governing equations across the lower-dimensional manifold. In both cases, a symmetric
system is obtained, which leads to a freedom in the choice of variables. In particular, we can
choose the dual variable to be either the averaged or the integrated quantity. For the flow
equations, this corresponds to the flux tangential to a manifold. Similarly for the elasticity
problem, the tangential stresses may be considered either in an averaged or integrated form.
Although both choices of the dual variable are valid, each has a drawback when considering
manifolds with arbitrarily small apertures or widths.

To illustrate this, let us consider an example of porous media flow in a single two-
dimensional manifold Ω2 with aperture γ embedded in a three-dimensional, impermeable
domain. We furthermore assume that the pressure is prescribed by gp along the entire boun-
dary, i.e. ∂Ω2 = ∂pΩ

2. The function spaces of relevance to this model problem are given
by

Q2 = H(div,Ω2;V), P2 = L2(Ω2;R).

Choosing qavg as the average, tangential flux, we obtain the following system:(
K−1qavg, q̃

)
Ω2
−

(
p,∇‖ · q̃

)
Ω2 =

(
gp, q̃ · n

)
∂pΩ2 ∀q̃ ∈ Q2

0,(
∇‖ · γqavg, p̃

)
Ω2 =

(
γ fq, p̃

)
Ω2 ∀p̃ ∈ P2.

In order to symmetrize this system, the test functions can be chosen as γ q̃. However, if
we consider γ ↓ 0, then the entire system deteriorates and there is nothing left to solve.
Alternatively, if γ is constant, we may rescale the second equation by dividing by γ. This
leads to a system which is independent of γ and the effects of zero aperture will not be
incorporated correctly.

Alternatively, a natural choice is to introduce qint as the flux integrated over the direction
normal to Ω2. The variational formulation then takes on the following form(

(γK)−1qint, q̃
)
Ω2
−

(
p,∇‖ · q̃

)
Ω2 =

(
gp, q̃ · n

)
∂pΩ2 ∀q̃ ∈ Q2

0,(
∇‖ · qint, p̃

)
Ω2 =

(
γ fq, p̃

)
Ω2 ∀p̃ ∈ P2.

Our interest lies once more in the case where γ ↓ 0, and thus we are forced to assume
that the permeability K scales as γ−1. In the limiting case, this implies that the tangential
permeability tends to infinity and flow in these directions will always be possible even if the
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aperture is zero. Since this is unphysical, we would need to separately consider the case of
γ = 0. A scaling with γ does not solve all issues, since the second equation would have to
be scaled as well. This leads to a scaled conservation law, which we prefer to avoid.

A third option, and the preferred method within this thesis, is to employ a scaled flux
inspired by Arbogast and Taicher [6]. In that work, the scaling is used to capture regions
of zero porosity whereas here we aim to handle zero aperture. Let us introduce the scaling
factor ε as the square root of the aperture. The scaled flux q is then defined such that

ε qavg = q = ε−1qint . (3.3.1)

With this choice of flux, the following symmetric system of equations is obtained(
K−1q, q̃

)
Ω2
−

(
p,∇‖ · ε q̃

)
Ω2 =

(
gp, ε q̃ · n

)
∂pΩ2 ∀q̃ ∈ Q2

0,(
∇‖ · εq, p̃

)
Ω2 =

(
ε2 fq, p̃

)
Ω2

∀p̃ ∈ P2.

Note that the dependency on the aperture is now completely inside the coupling terms. In
turn, the system will naturally handle the limiting case of γ ↓ 0. In fact, setting ε to zero, we
see that the only possible solution for the flux is q = 0 from the first equation. This corre-
sponds with the physical interpretation that no flow is possible in the tangential directions if
the aperture is zero.

The generalization of this scaling to multiple reductions is to define ε such that ε2 equals
the volume of the intersection point if n − d = 3, the cross-sectional area if n − d = 2 and
aperture if n − d = 1. In other words, ε satisfies the following scaling:

ε ∼ γ
n−d

2 . (3.3.2)

In the (poro)mechanics equations from Sections 2.4.2 and 2.2.3, the dual variable is the
(poro)elastic stress. Using the same arguments regarding robustness of the model to small
widths of manifolds, we therefore employ a scaled (poro)elastic stress instead of averaged or
integrated quantities.

3.3.2 Porous Media Flow
As we have seen in Section 2.1, a linear conservation law can be described using the di-
vergence operator. This remains valid in the mixed-dimensional setting and we can express
mass conservation, using the scaled flux q from the previous section, as

D · ε q = ε2 fq, (3.3.3)

with fq the source term averaged over the directions normal to the submanifold. Recall from
the previous section that ε q represents the flux integrated over the cross-section of the lower-
dimensional feature.

With mass conservation defined and Darcy flow inside the manifolds, we are missing
one vital ingredient, namely the coupling condition. In this case, we impose that the flow
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across Γ is governed by Darcy’s law as well, with a permeability constant Kn. In particular,
we impose

ε−1q · n = −Knγ
−1(p̌ − p̂), on Γ. (3.3.4)

In order to have all dependency on γ in the terms concerning q, we incorporate γ in
the permeability tensor. The resulting, scaled flux and the permeability are then given the
short-hand notation

q = [q̌, q̂ · n], K = [K,Knγ
−1], (3.3.5)

where we once more use square brackets to denote components in Ω and Γ, respectively.
The structure of Darcy’s law familiar from (2.2.1) then reemerges with the codivergence
from (3.2.8):

ε−1q = −KDp. (3.3.6)

Starting with the function spaces for the fixed-dimensional representation of porous me-
dia flow (2.4.1), we can define the relevant function spaces as

Q =
{
q ∈ H(D·,Ω;V) : q · n |∂0Ω = 0

}
, Q0 =

{
q ∈ Q : q · n |∂qΩ = 0

}
,

P = L2(Ω;R).

The variational formulation for mixed-dimensional Darcy flow, as derived in Paper A, is
then compactly described by:
Find (q, p) ∈ Q × P such that

〈K−1q, q̃〉Ω×Γ − (p,D · ε q̃)Ω =
(
gp, ε q̃ · n

)
∂pΩ

∀q̃ ∈ Q0, (3.3.7a)

(D · ε q, p̃)Ω =
(
fq, p̃

)
Ω

∀p̃ ∈ P, (3.3.7b)

subject to the essential boundary condition

q · n = gq on ∂qΩ.

Structurally, the system of equations (3.3.7) is identical to (2.4.1). This is one of the
advantages of the mixed-dimensional framework, since the same steps can be followed in
the well-posedness analysis of this system as in the fixed-dimensional case.

This analysis can be found in Paper A, using weighted spaces and norms to handle ar-
bitrarily small values for ε . Since this is significantly more involved, we assume ε bounded
away from zero in this introduction and refer to Paper A for further details.

3.3.3 Linear Elasticity
The similarities between the equations for linear elasticity and porous media flow are di-
rectly inherited to the mixed-dimensional setting. The relevant function spaces can therefore
once again be considered as the tensorial analogues of the flux and pressure spaces from the



34 Mixed-Dimensional Partial Differential Equations

previous section, including the use of a dual variable scaled with ε . With the addition of the
space R, we consider the function spaces

Σ =
{
σ ∈ H(D·,Ω;Vn) : σ · n |∂0Ω = 0

}
, Σ0 =

{
σ ∈ Σ : σ · n |∂σΩ = 0

}
,

U = L2(Ω;Rn),

R = L2(Ω;K).

Secondly, we use a scaled stress because of the arguments discussed in Section 3.3.1.
The influence between dimensions is assumed as a Robin condition on Γ in Paper B which
gives a generalization of the operator A from (2.2.5). Moreover, we let the skw operator test
symmetry of the tangential components of the stress tensor, which only exist for 2 ≤ d ≤ 3.
We then obtain the following system of equations for the mixed-dimensional generalization
of linear elasticity:
Find (σ, u, r) ∈ Σ × U × R such that

〈Aσ, σ̃〉Ω×Γ + (u,D · εσ̃)Ω − (r, skw εσ̃)Ω = (gu, σ̃ · n)∂uΩ ∀σ̃ ∈ Σ0, (3.3.8a)
(D · εσ, ũ)Ω = ( fσ, ũ)Ω ∀ũ ∈ U, (3.3.8b)
(skw εσ, r̃)Ω = 0 ∀r̃ ∈ R, (3.3.8c)

subject to the essential boundary condition

σ · n = gσ on ∂σΩ. (3.3.9)

Remark 3.3.1 Well-posedness of problem (3.3.8) is shown in Paper B. Interestingly, this
proof requires several additional tools when compared to the mixed-dimensional flow pro-
blem (3.3.7) due to the presence of the symmetry multiplier. The key is to use the mixed-
dimensional curl, which we obtain from [39] and Paper C.

3.3.4 Poroelasticity
In Section 2.4.3, we have presented the five-field formulation for the linear Biot system in
a conventional, n-dimensional domain. The analogue in the mixed-dimensional setting can
be derived using the same techniques as described for the flow and elasticity problems in
the previous sections. Here, the thin inclusions are thus assumed to be poroelastic entities as
well.

Combining the mixed-dimensional flow and elasticity equations, we immediately arrive
at the following formulation at each time t ∈ [0,T]:
Find (σp, p, q, u, r) ∈ Σ × P × Q × U × R such that

〈A(σp + αpI), σ̃p〉Ω×Γ +
(
u,D · εσ̃p

)
Ω
−

(
r, skw εσ̃p

)
Ω
=

(
gu, σ̃p · n

)
∂uΩ

, (3.3.10a)

(S0 Ûp, p̃)Ω + 〈A( Ûσp + α ÛpI), αp̃I〉Ω×Γ + (D · ε q, p̃)Ω =
(
fq, p̃

)
Ω
, (3.3.10b)

〈K−11γq, q̃〉Ω×Γ − (p,D · ε q̃)Ω =
(
gp, ε q̃ · n

)
∂pΩ

, (3.3.10c)(
D · εσp, ũ

)
Ω
= ( fσ, ũ)Ω , (3.3.10d)(

skw εσp, r̃
)
Ω
= 0, (3.3.10e)
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For all (σ̃p, p̃, q̃, ũ, r̃) ∈ Σ × P × Q × U × R. The essential boundary conditions in this case
are the prescribed flux and poroelastic stress on the corresponding parts of the boundary:

σp · n = gσ on ∂σΩ, q · n = gq on ∂qΩ.

3.3.5 Water Table Evolution
Sharp interface problems form a distinct, but closely related class of problems. Let us con-
sider the evolution of the water table through time. The water table is defined as the height
ζ below which the medium is fully saturated with water. In this setting, we consider it as a
sharp interface and thus a lower-dimensional manifold. The height ζ varies in time and space,
and is therefore included as a variable, defined on the top boundary ∂ζΩ of the domain of
computation Ω.

The evolution of the water table through time is governed by the following differential
equation

φ Ûζ = fI + q · n on ∂ζΩ. (3.3.11)

where φ denotes the porosity, fI is the (time-dependent) source term due to infiltration and
q · n is the normal flux from the saturated region. Note that this is a differential equation
defined on a lower-dimensional manifold, thus it can be considered a mixed-dimensional
partial differential equation. The process, however does not fit perfectly with the examples
above, since a mixed-dimensional differential operator is lacking.

For this problem, it is more convenient to use the hydraulic head as the primary variable
instead of the pressure. Therefore, let pH denote the hydraulic head. The hydraulic head at
the water table is equal to the elevation of the water table. Mathematically speaking, this
means that the following boundary condition is imposed

pH = ζ on ∂ζΩ.

The system of equations is then formed by Darcy’s law and mass conservation with a
storativity term:

q = −K∇pH (3.3.12a)
S0 ÛpH + ∇ · q = fq in Ω. (3.3.12b)

After a disjoint decomposition of the boundary as ∂Ω = ∂ζΩ ∪ ∂pΩ ∪ ∂qΩ, the boundary
conditions are given by

φ Ûζ = fI + q · n, (3.3.13a)
pH = ζ on ∂ζΩ, (3.3.13b)
pH = gp on ∂pΩ, (3.3.13c)

q · n = gq on ∂qΩ. (3.3.13d)

The difficulty in this problem lies in the fact that the domain of computation depends on
the solution. To remedy this situation, we employ a domain transformation Φ which maps
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the physical, time-dependent domain to a stationary reference domain Ω̃ as illustrated by
Figure 3.2. The advantage of this strategy is that it is relatively easy to implement, since we
do not need to consider a moving mesh.

 Ω
Ω(t)𝜁(𝑡) 1

Φ−1(𝑡)

Φ(𝑡)

( ) ( )

𝜕𝜁Ω(t)

𝜕𝜁 Ω

Figure 3.2: Transformation from the physical to a reference domain. The top boundary cor-
responds to the time-dependent water table.

The most straightforward choice of the transformation Φ is a linear scaling in the verti-
cal direction. This transformation inevitably depends on ζ and this dependency appears in
the permeability tensor in the reference domain. In turn, the problem is non-linear and we
propose a Picard iterative scheme to obtain a solution in Paper F.

For this problem, it is less important to impose local mass conservation. We will the-
refore consider the primal formulation of Darcy flow by substituting Darcy’s law into the
conservation equation. This primal formulation includes the gradient of the hydraulic head
and thus the relevant function space is as follows:

PH = H1(Ω̃;R).

In the reference domain, the weak formulation of the problem is then given by

Ss( ÛpH, p̃H )Ω̃ + (K(pH )∇pH,∇p̃H )Ω̃ + φ ( ÛpH, p̃H )∂ζ Ω̃ = ( fI, p̃H )∂ζ Ω̃ , ∀p̃H ∈ PH,

for each time t ∈ [0,T].
The application of this scheme to a physical problem is presented in Paper G, where we

investigate groundwater discharge to gaining streams and the influence of meanders in the
stream.



Chapter 4

ConformingDiscretization Techniques

The mixed-dimensional partial differential equations described in the previous section are
amenable to rigorous analysis. With the tools presented in Section 3.2, well-posedness of
these problems can typically be proven which gives us existence and uniqueness of the so-
lution. However, in an attempt to derive an analytical solution, the situation becomes signi-
ficantly more involved.

To overcome this issue, we approximate the solution to the continuous problems using
a discretization technique. In this process, the continuous problem is converted to a finite-
dimensional, discrete system which has a computable solution. We classify a discretization
technique as conforming if the discrete solution is searched within the function space to
which the continuous solution belongs. In this work, we focus on finite element methods
which arise after a tessellation of the domain into shape-regular simplices conforming to the
mixed-dimensional geometry. Other discretization techniques for mixed-dimensional pro-
blems, not presented in this introduction, appear in Papers D and E.

Section 4.1 introduces the standard mixed finite elements and their extensions to the
mixed-dimensional framework. Afterwards, we comment on the analysis of the discretization
scheme with an emphasis on stability in Section 4.2.

4.1 Mixed Finite Elements
In this work, the discretization method of preference is mixed finite elements. The main
reason for this choice is that, in this case, the concepts introduced in the previous sections
related to mixed-dimensional PDEs are readily translated to their discrete counterparts. The
most important of these are the discretized analogues of the function spaces from Sections
2.3 and 3.2.

4.1.1 Conforming Elements
In the fixed-dimensional setting, recall the spaces H1, H(div), H(curl), and L2 from
Section 2.3. The idea behind conforming finite elements is to create discrete function spaces
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which form subspaces of their continuous counterparts. This means that if we aim to create
an approximation of a function q ∈ Q, we look for a discrete function qh ∈ Qh ⊆ Q.

This may seem like a natural place to start, yet it can be rather technical to create finite
elements which preserve all the properties of their continuous analogues. In the context of
mixed finite elements, one typically aims to construct stable pairs of finite element spaces,
and these may not be trivial to find without the proper tools. Here, the results from finite
element exterior calculus come to our aid. Here, we limit the exposition to the most relevant
concepts and we refer the reader to [9] for more details.

On a simplicial mesh, conforming to the geometry, two families of finite elements arise.
Here, we inherit the nomenclature of Nédélec by referring to these families as either of the
first or the second kind. Moreover, we use the notation from [9] to and let P−r Λ

k be the
discretization of differential k-forms of polynomial order r of the first kind. On the other
hand, its discretization of the second kind will be denoted by PrΛ

k . The following co-chains
of spaces then arise, as described by Arnold et al. [9]:

P−r Λ
k(Ωd)

d
−→ P−r Λ

k+1(Ωd), PrΛ
k(Ωd)

d
−→ Pr−1Λ

k+1(Ωd). (4.1.1)

In the literature, the family of the first kind is occasionally referred to as the reduced finite
elements.

Remark 4.1.1 The two families as presented here are not strictly separate categories of finite
elements. The well-known Lagrange elements, for example, can be described by PrΛ

0(Ωd)

as well as P−r Λ
0(Ωd). Moreover, the mapping defined above is generally not surjective and

the following two relationships hold as well

P−r Λ
k(Ωd)

d
−→ Pr−1Λ

k+1(Ωd), PrΛ
k(Ωd)

d
−→ P−r Λ

k+1(Ωd). (4.1.2)

In this work, we focus on the mappings given in (4.1.1), as these remain within each family.

4.1.2 Dimensional Hierarchy
By choosing the conforming finite elements from the previous section, a second relationship
between these elements is uncovered, as wemap to lower-dimensional manifolds. Let us con-
sider the jump operator d and apply it to a discrete function. We then observe that the image
of this operator is a conforming finite element space on the lower-dimensional manifold. In
fact, the finite elements of the first and second kind possess the following relationship:

P−r Λ
k(Ωd)

d
−→ P−r Λ

k(Ωd−1), PrΛ
k(Ωd)

d
−→ PrΛ

k(Ωd−1). (4.1.3)

The two families of finite elements are generalized by introducing the discretization of the
mixed-dimensional k-form Lk . Using Pr and P−r to denote elements of the first and second
kind, respectively, we define

P−r L
k(Ω) =

n∏
d=0

P−r Λ
d−(n−k)(Ωd), PrL

k(Ω) =

n∏
d=0

Pr+n−dΛ
d−(n−k)(Ωd). (4.1.4)
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Together with equation (4.1.1), we uncover that the finite elements are related to one
another within each family by the differential operator d in the following way:

P−r L
k(Ω)

d
−→ P−r L

k+1(Ω), PrL
k(Ω)

d
−→ Pr−1L

k+1(Ω). (4.1.5)

To make this more concrete, let us describe these relationships by considering the diffe-
rent components of Lk(Ω). In particular, we note that the polynomial order is preserved for
the finite elements of the first (or reduced) kind. The conforming finite elements of lowest
order are thus related according to the following diagram

P−1 L
0(Ω) P1(Ω

3)

P−1 L
1(Ω) N1e0(Ω

3) P1(Ω
2)

P−1 L
2(Ω) N1 f

0 (Ω
3) RT0(Ω

2) P1(Ω
1)

P−1 L
3(Ω) P0(Ω

3) P0(Ω
2) P0(Ω

1) P0(Ω
0)

←→ d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d ←→ d

←

→
d

(4.1.6)

Here, Pr denotes Lagrange elements of order r if r > 0 and discontinuous Lagrange
elements of order r for r ≤ 0. The Nédélec elements of the first kind [41] are denoted by N1er
and N1 f

r with degrees of freedom defined on the edges or faces of an element, respectively.
Finally, RTr denotes the Raviart-Thomas space of polynomial order r [44]. The spaces given
on the bottom two rows are used in Paper A to discretize Darcy flow through fractured porous
media, given by the system of equations (3.3.7).

This diagram of elements of the first kind has been analyzed for simplicial complexes by
Licht [39].

On the other hand, the finite elements of the second kind form a similar diagram with a
few different properties. Most notably, the order of the polynomial space is reduced by each
application of the differential d, yet remains constant under application of d. Thus, a different
pattern emerges, as shown in the diagram

P3L
0(Ω) P3(Ω

3)

P2L
1(Ω) N2e2(Ω

3) P3(Ω
2)

P1L
2(Ω) N2 f

1 (Ω
3) BDM2(Ω

2) P3(Ω
1)

P0L
3(Ω) P0(Ω

3) P−1(Ω
2) P−2(Ω

1) P−3(Ω
0)

←→ d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d ←→ d

←

→
d

(4.1.7)
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Here N2r denotes Nédélec elements of the second kind [42] and BDMr represents the
Brezzi-Douglas-Marini element of order r [15]. The polynomial order on Pr (Ω

0) is redun-
dant since all finite element spaces reduce to point evaluation in zero dimensions.

It is important to note that in this family, degree of polynomial depends increases with
the amount of reductions from the ambient space, or n − d. If we were to consider a two-
dimensional problem, fewer reductions are possible and we may therefore consider a family
with a lower polynomial order.

P2L
0(Ω) P2(Ω

2)

P1L
1(Ω) BDM1(Ω

2) P2(Ω
1)

P0L
2(Ω) P0(Ω

2) P−1(Ω
1) P−2(Ω

0)

←→ d ←→ d

←

→
d

←→ d ←→ d

←

→
d ←→ d

←

→
d

(4.1.8)

In comparison, the finite elements of the second kind have more degrees of freedom than
those of the first kind. Unfortunately, the added computational cost of using such elements
does not necessarily increase the accuracy of the method. For example, for the Poisson equa-
tion in mixed form, the use of BDM1 elements produces the same solution as that given by
Raviart-Thomas elements of lowest order. Since the BDM space has twice as many degrees
of freedom, its usefulness is not immediately apparent in that case.

However, since the order of the spaces depends on the number of reductions, this family
of finite elements allows for more accurate representations inside the lower-dimensional ma-
nifolds. This is shown in Paper C, where a comparison in two dimensions between elements
of the first and second kind shows that higher rates of convergence are obtained in the frac-
tures, due to these higher-order elements. The computational cost of this improved accuracy
is marginal, because of the lower dimensionality of the manifold.

Moreover, the family of finite elements of the second kind play an important role when
considering the mixed formulation of elasticity with relaxed symmetry. In that case, the
H(div)-conforming finite elements of the first kind do not have enough degrees of freedom
to form stable triplets with the corresponding L2-conforming displacement and rotation spa-
ces. We therefore turn to this family when we construct the discrete spaces for the elasticity
problem in Paper B.

Finally, recall that the water table evolution problem from Section 3.3.5 is solved in a
primal formulation. The corresponding function space can be identified as a space of dif-
ferential 0-forms, which means that the conforming discretization in that case is given by
Lagrange elements. In order to provide a computationally efficient scheme, we have there-
fore chosen the lowest-order, i.e. linear, Lagrange elements in Papers F and G.

4.2 Stability Theory
The use of conforming finite elements has several advantages, especially in the context of
analysis of the resulting scheme. Since the discrete spaces are contained in the solution space,
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the mathematical structure is kept intact and the analytical tools from the continuous pro-
blem are available to determine the properties of the numerical scheme. To see this, let us
consider the discretized version of the fixed-dimensional Darcy system (2.4.1) after a choice
of conforming finite element spaces Qn

h
× Pn

h
as presented in the previous section:

Find (qh, ph) ∈ Qn
h
× Pn

h
such that(

K−1qh, q̃h

)
Ω
− (ph,∇ · q̃h)Ω =

(
gp, q̃h · n

)
∂pΩ

∀q̃h ∈ Qn
0,h, (4.2.1a)

(∇ · qh, p̃h)Ω =
(
fq, p̃h

)
Ω

∀p̃h ∈ Pn
h . (4.2.1b)

Recall that in Section 4.1.2, we have identified finite elements which conform to the
mixed-dimensional spaces defined for all problems considered herein. We therefore omit
mentioning the different discrete systems, since they can easily be constructed by considering
the restriction to these discrete, conforming function spaces.

A desirable, if not essential, property a method can have is convergence, or how well the
true solution is approximated with respect to the mesh size. Convergence can be shown by
proving two ingredients: consistency and stability. Consistency implies that the true solution
to the continuous problem satisfies the discretized system of equations. In the context of
conformingmethods, this is always the case. For example, the solution (q, p) ∈ Qn×Pn to the
Darcy flow problem (2.4.1) satisfies the discrete equations (4.2.1) since Qn

h
×Pn

h
⊆ Qn×Pn.

Stability, on the other hand, means that the solution depends continuously on the data
in the given norms, irrespective of the mesh size. Before considering all mesh sizes, let
us start with a given mesh. The discretized system is then a saddle point problem which
can be written in the standardized form (2.3.15). As such, we use the saddle-point theory
explained in Section 2.3.2 to show well-posedness of the corresponding system. Once we
prove that norm of the solution is bounded by the norm of the data with a bounding constant
independent of the mesh size, we have shown that the scheme is stable.

For that purpose, we turn to the two (sufficient) conditions introduced in Section 2.3.2.
These state that the bilinear form a is elliptic on the kernel of B and that the inf-sup condition
holds for b in the appropriate norms. As we encounter in Papers A and B, the ElKer condition
is readily satisfied after choosing the correct norms for the function spaces. We will therefore
lay the focus on the inf-sup condition in the following section.

4.2.1 The Inf-Sup Condition
Analogous to the condition introduced in Section 2.3.2, the inf-sup condition in the discrete
setting is given by:
There exists a constant Cb > 0, independent of the mesh size such that for any ph ∈ Ph , a
function qh ∈ Qh\ {0} exists such that

b(qh, ph) ≥ Cb ‖qh ‖Q ‖ph ‖P . (4.2.2)

This condition is equivalent to stating that a function qh ∈ Qh\ {0} exists such that

b(qh, ph) = ‖ph ‖2P with ‖qh ‖Q ≤ Cb ‖ph ‖P . (4.2.3)
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The proofs in Papers A and B therefore assume that the primal variable is given, and the
key is to construct a viable dual variable, from the correct space, such that these conditions
are satisfied. In the context of conforming finite elements, it is therefore very useful if the
dual variable is mapped into the space of the primal variable by the operator B. For example,
in case of the fixed-dimensional flow problem, we choose our finite element spaces Qn

h
×Pn

h

such that

∇ · Qn
h ⊆ Pn

h . (4.2.4)

In themixed-dimensional setting, the pair of finite element spaces is chosen in order to satisfy

D · Qh ⊆ Ph . (4.2.5)

Here, the results from exterior calculus and the dimensional hierarchy given in Section 4.1.2
provide a suggestion to choosing finite elements which have this property.

4.2.2 Reduction through Quadrature
Amajor drawback of using mixed finite elements is the computational cost. The introduction
of the dual variable, besides adding a large amount of degrees of freedom, typically changes
the structure of the problem to a saddle point problem, which may be challenging to solve.

In order to overcome this problem, a promising solution can be found by introducing
a quadrature rule on one of the inner products. As explored by [16, 51], a multi-point flux
mixed finite element method is obtained. Starting with the variational formulation concer-
ning fixed-dimensional Darcy flow (2.4.1), we use the subscript QR to denote that the qua-
drature rule has been applied. The augmented, discrete problem then becomes:
Given g ∈ Qn∗

h
and f ∈ Pn∗

h
, find q ∈ Qn

h
and p ∈ Pn

h
such that(

K−1q, q̃
)
QR
− (p,∇ · q̃)Ω =

(
gp, q̃ · n

)
∂pΩ

∀q̃ ∈ Qn
0,h, (4.2.6a)

(∇ · q, p̃)Ω =
(
fq, p̃

)
Ω

∀p̃ ∈ Pn
h . (4.2.6b)

If Q is discretized using BDM1 elements, then the quadrature rule can be chosen to be
the trapezoid rule. In turn, the operator AQR corresponding to a(·, ·) in this system become
easily invertible. The flux can then be eliminated and we directly compute the pressure

BA−1
QRBT p = BA−1

QRgp − fq in P∗h . (4.2.7)

Note that in this system, we are only concerned with the pressure space, which has fewer
degrees of freedom. Moreover, this system is positive-definite and can therefore be solved
more easily than the original, large saddle point problem. Even though the flux is eliminated,
it remains readily available through the reconstruction

q = A−1
QR(gp − BT p). (4.2.8)

Finally, we emphasize that even though a quadrature rule is used, the rate of convergence
remains intact. In conclusion, a computationally inexpensive scheme is constructed which
is provably convergent. Similar techniques are expected to be applicable to the proposed
mixed-dimensional discretizations.



Chapter 5

Summary and Outlook

In this chapter, we summarize the scientific results presented in the form of eight scientific
articles in Part II. The first six papers, presented in Section 5.1.1, comprise the main results.
This section starts with Paper A in which Darcy flow in fractured porous media is consi-
dered followed by its analogues for linear elasticity in Paper B. A more general framework
in terms of mixed-dimensional exterior calculus is discussed in Paper C. Paper D presents a
benchmark study for numerical schemes solving flow in fracturedmedia in which the method
from Paper A is a participant. In Paper E, we introduce the mixed-dimensional analogues of
different discretization schemes such as finite volume and virtual methods for fracture flow.
Finally, the water table evolution problem is considered in Papers F, in which a numerical
scheme based domain transformation is proposed and analyzed.

Section 5.1.2 contains two papers on related work. In Paper G, the domain transforma-
tion method from Paper F is applied to a real-world test case concerning gaining streams.
Finally, Paper H proposes an adaptive penalty method for solving inequality constrained mi-
nimization problems.

5.1 Summary of the Papers

5.1.1 Main Results
Paper A: Robust Discretization of Flow in Fractured Porous Media

This paper is the first concrete example of how the mixed-dimensional framework can be
used in practice. Many of the concepts introduced in this thesis have their origin with this
work, including the domain decomposition according to dimension and the use of confor-
ming mixed finite elements in different dimensions, among others.

The main contribution of this work is fourfold. First, the dimensional decomposition
provides a novel insight in the consideration of fracture intersections. The representation of
fractures as lower-dimensional manifolds has become a common concept in the fracture mo-
deling, see e.g. [23, 28]. However, a general consensus on the interpretation of fracture inter-
sections was lacking, and these were often included using ad hoc assumptions. In this paper,
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the dimensional decomposition naturally provides the tools to define differential equations
on the fracture intersection lines, therewith allowing flow to occur along these intersection
lines. In this paper, we consider Darcy flow in manifolds of all dimensionalities and exploit
the resulting similarities in the equations.

Secondly, the majority of existing fracture flow discretization schemes assume that the
fractures have a spatially constant aperture, see e.g. [27, 40]. This assumption allows for a
straightforward derivation of the reduced model, yet it has one important drawback. Fracture
tips under this assumption are incorporated as abrupt endings and a boundary condition is
imposed, which is typically a no-flow condition [5]. However, such an abrupt ending implies
that the fracture has a rectangular shape at the end, while it is usually more physical to
consider a fracture pinching out. In this paper, the reduced equations are derived by assuming
spatially varying apertures. In turn, fracture pinch-outs can be included in the model, at the
expense of a more involved analysis.With the use of a numerical example, the behavior of the
solution is shown to be noticeably different compared to abrupt fracture endings in certain
cases.

Thirdly, the incorporation of spatially varying apertures leads to a more involved analysis
of the problem. The aperture shows up as a scaling factor which, in turn, raises the need for
weighted Sobolev spaces. Well-posedness of the continuous problem is then shown with
respect to these function spaces, always considering the aperture as spatially varying and
arbitrarily small, including the limiting case of zero aperture. To discretize, familiar mixed
finite elements are chosen for the flux and pressure variables, which provides local mass
conservation.

Finally, the proposed scheme can be considered as a mortar method, with one signifi-
cant distinction. Conventional mortar methods employ the pressure as the mortar variable
whereas here, the flux is used. This results in a stronger notion of mass conservation, at the
expense of a more involved analysis of the scheme. Moreover, the close connection to mortar
methods allows for the use of non-matching grids along fractures and fracture intersections.
Although themesh is still required to conform to the fracture network geometrically, themes-
hing difficulties are relieved by allowing for independent grid generation on different sides
of fractures and intersections.

The method proposed in this paper resurfaces in several other works. First, it is a partici-
pant in the benchmark study included as Paper D. Secondly, the applicability of the scheme
to transport problems has been investigated by Stefansson [49]. Finally, Paper E generalizes
the choice of mixed finite elements in each dimension to other choices of stable discretization
methods.

Paper B: Stable Mixed Finite Elements for Linear Elasticity with Thin Inclusi-
ons

As shown in the previous sections, a natural analogue to themixed-dimensional flow problem
from Paper A is to consider the mechanics equations on the mixed-dimensional geometry.
Applications of this work include composite materials, fractured media, and certain root
systems. Again, the interest lies in developing a locally conservative scheme and mixed finite
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elements are employed. As explored by [8], the relaxation of symmetry on the stress tensor
allows the use of familiar, low-order finite elements and we employ this strategy in each
dimension.

This work includes the following two contributions. First, it is observed that the choice
of finite elements is not as trivial as for the mixed-dimensional flow problem. In the ambient
space, the stable triplet of elements presented by [8] is chosen, given by BDM1 for the stress
and piecewise constants for the displacement and rotation variables. This space contains
piecewise functions of polynomial order one or less and the initial guess for the analogues in
fewer dimensions would be to choose linear Lagrange elements for the stress and piecewise
constants for the displacement and rotation. However, to have a truly conformingmixed finite
element scheme where the divergence operator maps from the stress into the displacement
space, one needs to employ a higher-order triplet inside the lower-dimensional domains. This
naturally improves the approximation properties in the lower dimensions while the added
computational cost is marginal.

Secondly, the well-posedness analysis in this paper contains an application of the mixed-
dimensional de Rham complex, with the mixed-dimensional curl in particular. This is due
to the fact that the structure of the equations is the same compared to the fixed-dimensional
case. The aim is then to use similar techniques in the analysis and an important part of the
analysis of elasticity problems with relaxed symmetry is to use the curl, which maps to the
kernel of the divergence. In our setting, the image of the conventional curl is not contained in
the kernel of the mixed-dimensional divergence and therefore does not suffice. The mixed-
dimensional curl, presented in Paper C, does have this property and is exploited to show the
well-posedness of the problem.

Paper C: Modeling, Structure and Discretization of Mixed-dimensional Partial
Differential Equations

Paper C introduces a generalizing framework in the context of exterior calculus for mixed-
dimensional partial differential equations. With the use of finite element exterior calculus,
we immediately obtain choices of conforming finite elements in all dimensions. These finite
elements are used in Papers A and B for flow and elasticity, respectively.

After introducing the geometrical setting, the paper starts with the derivation of the
mixed-dimensional divergence. Its generalization in terms of the semi-discrete exterior deri-
vative is then presented followed by the structure for mixed-dimensional partial differential
equations. Several results are summarized, without rigorous proofs, to provide insight into
the tools available for the consequent analysis.

A useful observation in this proceedings paper is the translation of the results from ex-
terior calculus to finite-dimensional spaces. After the appropriate identification of the dif-
ferential forms, a conforming finite element scheme is readily available. With the use of an
elliptic example concerning fracture flow, the discretization of the primal formulation leads
to choosing Lagrange elements in each dimension. Alternatively, the mixed formulation gi-
ves rise to the reduced mixed finite elements as used in Paper A and the less trivial family
of elements of the second kind used in Paper B.
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The paper concludes by testing these three conforming discretization schemes in a nu-
merical experiment. A model problem is presented corresponding to flow through two in-
tersecting fractures in a two-dimensional domain. The observed rates of convergence are as
expected with a notably improved order of convergence in the fractures for the mixed finite
elements of the second kind due to the higher order elements used there.

Paper D: Benchmarks for Single-phase Flow in Fractured Porous Media

As the title suggests, Paper D is a comparison study of a selection of discretization schemes
for single-phase flow in fractured porous media. The motivation for such a study is twofold.
First, the development of these numerical methods was mostly performed independently
and an objective comparison of these schemes was lacking thus far. The aim was therefore
to collect these methods and test how well each performs in terms of applicability, accuracy,
computational cost and convergence with respect to each other.

Secondly, the model problems considered in this are constructed to serve as benchmarks
for the development of future schemes. These case studies were therefore chosen to reflect all
the challenges which arise in the modeling of flow through fracture networks. The problems
considered are two-dimensional, ranging from regular fracture networks with few, perpen-
dicular fractures to a realistic, complex case with over a hundred fractures intersecting at
random angles. A second test of flexibility was conducted by varying the permeabilities of
the fractures. This way, the performance of the methods was explored with respect to both
conductive fractures and blocking features.

The methodology of comparison is as follows. Accuracy and convergence of the solution
was tested by comparing both the matrix and fracture pressures to a fine-scale solution obtai-
ned using a mimetic finite difference method. In terms of computational cost, each method
provided the generated matrix from which the condition number was estimated, the number
of degrees of freedom was observed and the degree of sparsity was calculated.

The most notable distinction between the methods is the way that fractures are incorpo-
rated with respect to the mesh. Three methods required grids which completely conform to
the fracture network while three other methods were able to mesh independently and have
the fractures cross through the elements. As noted in the summary of Paper A, our proposed
method requires the grid to conform to the geometry of the fracture network, yet the grid is
permitted to be non-matching along the fractures.

Finally, we make a short remark on the performance of the discretization method pro-
posed in Paper A. Our method was one of only two methods which showed convergence in
all test cases. The remaining six schemes exhibited stagnation in the convergence rates whe-
never a blocking and a conducting fracture intersect. Moreover, although all methods could
theoretically solve all model problems, our method was one of three which was able to run
all test cases without encountering implementation restrictions or limitations with respect to
permeabilities.

On the other hand, the method requires more degrees of freedom than the schemes based
on primal formulations. Furthermore, the condition numbers were among the highest in test
cases with conductive fractures and relatively low if the model problem contained blocking
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features. This dependency of the condition number lends itself as a subject for future inves-
tigation.

Paper E: UnifiedApproach to Discretization of Flow in Fractured PorousMedia

The observation that fracture flow can be described as a mixed-dimensional elliptic problem
raises the question on how existing discretization techniques designed for fixed-dimensional
elliptic problems can be applied. In this paper, we explore this question by showing how diffe-
rent numerical methods can be coupled between domains of heterogeneous dimensions with
the use of a flux mortar variable. The established approach is termed theMixed-Dimensional
Flux Coupling (MDFC) scheme and this work both analyzes the approach in a general setting
and presents numerical results for five choices of numerical schemes.

The MDFC approach is formulated without relying on a specific choice of numerical
schemes in each dimension. The only requirement is that the chosen numerical method acts
as a stable Neumann to Dirichlet map. In turn, the internal workings of these methods are
not called upon and the approach is therefore well-suited for use in existing code. The most
intrusive modifications necessary to implement the scheme concern the incorporation of flux
boundary conditions and appropriate source terms.

An abstract analysis of the approach is presented under mild conditions regarding the
underlying methods. We show that the linear system can be reduced to a Schur complement
system in terms of the introduced fluxmortar variable. In turn, well-posedness of the discrete
system of equations is shown independent of the mesh size given that the permeabilities do
not degenerate. A disadvantage of this general approach is that the results are likely to be
suboptimal. More nuanced results such as convergence rates or a priori error estimates re-
quire details specific to the chosen method. Nonetheless, the analysis shows that the resulting
MDFC scheme is stable depending only on the stability of the underlying discretization sche-
mes.

Numerical examples in two and three dimensions highlight the large degree of flexibi-
lity of the proposed coupling scheme. The five numerical schemes tested consist of linear
Lagrange elements, reduced mixed finite elements of lowest order, dual virtual elements,
and two finite volume schemes employing two-point and multi-point flux approximation, re-
spectively. The results confirm that the MDFC scheme is stable for all choices methods and
the majority of methods exhibit linear convergence. The MDFC is thus shown to be a viable
coupling strategy for a wide range of numerical methods.

Finally, a discussion on grid ratios and permeabilities which arose in the analysis is tested.
By varying the normal permeabilities and the coarseness of the mortar grid, we show how
the smallest eigenvalues of the Schur complement system behaves for all five methods. Once
more, the results are in line with the theory and stability is shown in all cases with a weak
dependency on the ratio between the mortar and outer grid.
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Paper F: Efficient Water Table Evolution Discretization using Domain Trans-
formation

In this paper, the evolution of the water table through time is considered. In the subsurface,
the water table is represented as the lower-dimensional interface separating a fully saturated
region below from the unsaturated soil above. The location of this interface fluctuates due to
changes in flows from natural causes such as rainfall or from anthropological structures such
as wells and dams. The focus is therefore on the flows within the saturated region, which
gives rise to the main difficulty in this problem. In particular, since the height of the water
table is governed by saturated flows, the domain of computation depends on the solution.

The most important observation in this work is the introduction and exploitation of a
domain transformation. In particular, the physical domain is scaled in the vertical direction
to create a reference domain with a fixed height. The coordinate transformation is then used
to rewrite the problem to a non-linear partial differential equation defined on the stationary
domain. Here, the equation governing the water table evolution is defined at the top boun-
dary. By using the hydraulic head as the only unknown variable in a primal formulation,
this equation is incorporated as a natural boundary condition. To solve this non-linear pro-
blem, a fixed point iterative scheme is proposed which we show to be convergent under mild
assumptions.

Compared to alternatives such as moving mesh methods or saturated-unsaturated flow
models, the proposed method is significantly less computationally demanding, as experien-
ced in Paper G. In contrast to moving mesh methods, no re-meshing is required and the
scheme performs well in the presence of steep gradients. On the other hand, saturated-
unsaturated models which use the Richards equation are computationally demanding and
convergence of iterative schemes is generally not guaranteed [47].

Two model problems are considered in two and three dimensions, respectively, corre-
sponding to the region near an extraction well. The numerical experiments show the qua-
dratic convergence inherent to the linear Lagrange elements used. Finally, a short numerical
experiment with respect to heterogeneities in permeability is performed in two dimensions.
Due to the coordinate transformation, the heterogeneities are not stationary in the reference
domain and a degradation in the convergence rates can be observed. In special cases, howe-
ver, a modified domain transformation can be applied which saves the convergence rates.

5.1.2 Related Work

Paper G: A 3-D Model of the Influence of Meanders on Groundwater Discharge
to a Gaining Stream in an Unconfined Sandy Aquifer

In this interdisciplinary work, the spatial variability of groundwater flows in the vicinity of
gaining, meandering streams is considered. The aim is to map water fluxes in an aquifer with
the use of numerical simulations in order to investigate the effect of stream meanders on the
regional flow paths. This way, insight is provided into these three-dimensional flows at the
reach scale for applications such as transport of contaminants in the groundwater.

To separate the influence of meanders in the stream from other factors, a synthetic test
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case is presented consisting of a stream in a three-dimensional aquifer which varies from
straight to highly sinuous. The model problem is an extension of the two-dimensional steady
state model presented in [19]. A short investigation into alternative effects is performed by
varying the stream width, meander amplitude, magnitude of the hydraulic gradient, the hy-
draulic conductivity, and the aquifer thickness. The computed groundwater flow patterns are
then investigated with a specific focus on the groundwater discharge to the stream. In addi-
tion to these model problems, the same methodology is used to simulate a real stream using
data from a field site in Grindsted, Denmark.

The numerical results show a significant influence of the meander geometry on the spa-
tial distribution of groundwater flows to streams. Several observations are made which are
impossible to achieve with a two-dimensional model. The groundwater discharge is shown to
be highest at the meander extremes, with fluxes from the upper section of the aquifer entering
the stream at the outward pointing bank. On the other hand, groundwater from deeper secti-
ons of the aquifer is often observed to flow beneath the stream to enter at the inward bank.
These patterns were observed for both the synthetic cases and the Grindsted field study.

The computations were performed using the discretization scheme proposed in Paper F.
The efficiency of this method is most apparent when compared to the saturated-unsaturated
flow model, reducing the computational time by a factor of approximately 32 for the time-
dependent real case. Moreover, the domain transformation scheme showed no instabilities
or oscillations in contrast to the moving-mesh method.

Paper H: An Adaptive Penalty Method for Constrained Minimization Problems

Before contact problems can be considered in a mixed-dimensional setting, a generaliza-
tion is necessary extending the theory from this dissertation towards variational inequalities.
With this goal in mind, Paper H considers inequality constrained minimization problems and
proposes an iterative solution method. The

The construction of the proposed method is based on two well-known methods, namely
the penalty and the active set method. The penalty method includes a term into the formula-
tion which penalizes the solution if it lies outside the admissible set. Although this allows for
the use of the Newton method, thus leading to a locally convergent method, the converged
solution is not guaranteed to satisfy the imposed constraints exactly. The active set method,
on the other hand, does lead to a feasible solution. Its disadvantage, however, is that a warm
start is often required to achieve fast convergence.

The adaptive penalty method proposed in this work is designed to combine the advanta-
ges of these two methods. Starting as a penalty method, the penalty parameter is iteratively
set as a spatially varying function depending on the residual. As the solution converges, the
penalty parameter tends to zero and the scheme behaves as the active set method. In turn,
the converged solution satisfies the constraints imposed in the original problem. Similar to
the penalty method, the Newton method can be applied at each iteration step.

The spatially dependent penalty parameter is obtained by solving a synthetic diffusion
equation. This equation has no physical relevance and we may therefore approximate its
solution using a coarse solve thus reducing computational cost. We remark that different
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interpretations of the adaptive penalty method are possible, including an identification with
a quasi-Newton method or with a regularized active set method.

To test the method, a one-dimensional obstacle problem is considered. Comparing to the
active set method, the scheme converges in fewer iterations in the range of tested parameters.
Moreover, the variant of the method using a coarse solve performs equally well.

5.2 Outlook
The mixed-dimensional framework opens numerous paths for future investigation. We sum-
marize a selection of these in this section, in order of relevance to the scientific papers in-
cluded in Part II.

First, the combination of mixed-dimensional flow from Paper A with elasticity from Pa-
per B deserves further investigation. In Section 2.4.3, we have shown how this leads to the
five-field formulation of the linearized Biot equations. The same lines of reasoning found
throughout this thesis can be used to find a suitable choice of finite elements and to establish
the corresponding analysis. By choosing mixed finite elements, stability can be obtained
from the separate equations corresponding to flow and elasticity. However, the cost of choo-
sing a discretization conforming to the five-field formulation, is in the amount of degrees
of freedom which inevitably leads to large linear systems. Elimination of several variables
through static condensation may be key, yet a further understanding of such manipulations
in the mixed-dimensional setting is necessary.

Secondly, more advanced physics can be included for the models described in both Pa-
pers A and B. Here, we have only considered Darcy’s law and linear elasticity, yet the theory
is not limited to this choice. Stokes’ flow inside the fractures or finite strain assumptions on
the inclusions would be welcome additions, at the cost of requiring a more technical analysis.

Third, the problems considered in this work correspond to differential d-forms, namely
pressures and displacements, and (d − 1)-forms given by fluxes and stresses. An interesting
continuation of these ideas is to consider differential (d−2)-forms in the mixed-dimensional
setting. The resulting equations would be of interest in the context of Maxwell’s equations
for electromagnetism on a mixed-dimensional geometry. Possibly, this line of reasoning is
then closely related to the work by Buffa and Christiansen [17] in which non-conductive
screens are considered.

Fourth, a second comparison project in the spirit of Paper D can be designed to provide
new insights. The discretization techniques can then be tested when more advanced physical
processes such as transport, deformation and chemical reactions are added to the single-
phase fracture flow problem. Then, a more important role will be played by the flux field,
which has not been considered in the current work. Moreover, it would be interesting to con-
sider three-dimensional problems and investigate the performance of the schemes capable
of solving those cases.

Fifth, the flux coupling scheme presented in Paper E is open to more exotic combinati-
ons of discretization schemes. In this work, we have chosen the same discretization scheme
in each dimension, yet the framework allows for the coupling of independently chosen met-
hods per dimension and even per individual fracture. In turn, the computational cost can be
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weighed against the desired accuracy for the surrounding matrix, the fractures and the inter-
section lines independently. On the other hand, the similarities between flow and mechanics
highlighted throughout this thesis may be applicable in this setting as well, possibly leading
to a mixed-dimensional stress coupling scheme. The advantages of primal and mixed finite
elements can then be combined for the setting of elastic materials with thin inclusions. Ho-
wever, it is likely that further development of the theory in Paper B is necessary beforehand.

As for the domain transformation method constructed in Paper F, several variations and
extensions are possible. For instance, the use of mixed finite elements would give the method
local mass conservation, which is essential for applications involving transport. The analysis
will change drastically since the water table itself changes from a natural to an essential
boundary condition. On the other hand, in the context of CO2-storage, the use of domain
transformations may prove fruitful as well. In order to model the evolution of the CO2 plume
after injection in a confined aquifer, for example, it would be interesting to use a coordinate
mapping depending on the interface between CO2 and brine. The major obstacle that needs
to be addressed, however, is the degeneracy of the coordinate transformation at the tip of the
plume.

Seventh, the exploration of contact problems in the mixed-dimensional framework requi-
res a proper understanding of variational inequalities. Applying the adaptive penalty method
from Paper H to these problems may be very fruitful. Especially for problems with a large
amount of degrees of freedom, we may then investigate whether the adaptive penalty met-
hod converges faster than the active set method and whether a more satisfying solution than
conventional penalty methods is produced.

Finally, a further analysis of the de Rham complex and its properties when considered
on the mixed-dimensional geometry may yield interesting results. The focus in this work has
been on the implications for discretization schemes, but this mixed-dimensional structure
may hold secrets for other applications, yet undiscovered.
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Notation

In Part I of this thesis, we use a consistent notation as much as possible. This appendix
provides a short summary of the most common conventions with respect to accents as well
as two tables describing the meaning of different letters and symbols.

Super- and subscripts are commonly employed in the mixed-dimensional setting. We use
a superscript d to denote dimensionality and a subscript i to indicate the index of a manifold.
A subscript zero on a function space denotes that the functions have zero normal trace. The
subscript h refers to the discretized version of the object, usually a function or function space.

In terms of accents, we use the hat and check notation to distinguish variables within a
manifold and the traces of variables from one dimension higher. A tilde on a function implies
that it is a test function whereas a dot is used to represent the derivative in time. In case of the
water table evolution problem, the tilde notation on a domain refers to the reference domain
after coordinate transformation.

Bold script implies that the variable is vector-valued. Two tables of commonly used let-
ters and symbols follow below.

Table of Notation: Symbols and Greek Letters

Symbol Description
α Biot-Willis constant
γ Aperture
Γ Interface
∂ Boundary
ε Scaling parameter depending on γ
ε Strain
ζ Height of the water table
λ Lamé parameter
Λk Space of differential k-forms
µ Lamé parameter
σ Elastic Stress
σp Poroelastic Stress
Ω Subdomain or manifold
∇ Del operator



60 Bibliography

Table of Notation: Latin Letters

Symbol Description
a Bilinear form
A Inverse stress-strain relationship
b Bilinear form
C A positive constant
d Dimensionality of manifold
d Exterior derivative
d Mixed-dimensional exterior derivative
d Jump operator
D Mixed-dimensional analogue of ∇
f Source function, bold for vector-valued functions
g Boundary data
h Typical mesh size

As subscript: discrete analogue
H Sobolev space equipped with an L2-norm

i, j, k Counting indices
K Tangential permeability

Kn Normal permeability
K Vector space of dimension d(d − 1)/2
K Mixed-dimensional permeability

L2 Function space of square-integrable functions
Lk Space of mixed-dimensional differential k-forms
m Mass
n Dimensionality of surrounding medium
n Normal vector
p Pressure

pH Hydraulic head
Pr Polynomial approximation of degree r
q Flux
r Rotation
R Space of real numbers
S0 Storativity

t Time
T End time
u Displacement
V Space of d-vectors
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ROBUST DISCRETIZATION OF FLOW IN
FRACTURED POROUS MEDIA

WIETSE M. BOON† , JAN M. NORDBOTTEN†‡ , AND IVAN YOTOV §

Abstract. Flow in fractured porous media represents a challenge for discretization methods
due to the disparate scales and complex geometry. Herein we propose a new discretization, based on
the mixed finite element method and mortar methods. Our formulation is novel in that it employs
the normal fluxes as the mortar variable within the mixed finite element framework, resulting in a
formulation that couples the flow in the fractures with the surrounding domain with a strong notion
of mass conservation. The proposed discretization handles complex, non-matching grids, and allows
for fracture intersections and termination in a natural way, as well as spatially varying apertures.
The discretization is applicable to both two and three spatial dimensions. A priori analysis shows
the method to be optimally convergent with respect to the chosen mixed finite element spaces, which
is sustained by numerical examples.

Key words. mixed finite element, mortar finite element, fracture flow

1. Introduction. Fractures are ubiquitous in natural rocks, and in many cases
have a leading order impact on the structure of fluid flow [1, 12]. Due to great
differences in permeability, the fractures may either conduct the flow or act as blocking
features. Due to their significant impact, detailed and robust modeling of coupled flow
between fractures and a permeable rock is essential in applications spanning from
enhanced geothermal systems, to CO2 storage and petroleum extraction.

Because of the complex structure of natural fracture networks [12], it remains a
challenge to provide robust and flexible discretization methods. Here, we identify a
few distinct features which are attractive from the perspective of applications. The
method formulated in this work is specifically designed to meet these goals.

First, we emphasize the importance of mass conservative discretizations. This is
of particular significance when the flow field is coupled to transport (of e.g. heat or
composition), as transport schemes are typically very sensitive to non-conservative
flow fields [22]. The second property of interest is grid flexibility. This is important
both in order to accommodate the structure of the fracture network, but also in
order to honor other properties of the problem, such as material heterogeneities or
anthropogenic features such as wells [24]. Third, it is necessary that discretization
methods are robust in the physically relevant limits. In the case of fractures, it is
imperative to allow for arbitrarily large aspect ratios, that is to say, thin fractures
with arbitrarily small apertures, including the aperture going to zero as fractures
terminate. Finally, our interest is in provably stable and convergent methods.

Since their aspect ratios frequently range as high as 100-1000, it is appealing to
consider fractures as lower-dimensional features, as was first explored in [2, 3]. In
this setting, we consider a three-dimensional domain of permeable rock, within which
(multiple) fractures will be represented by (multiple) two-dimensional manifolds. In
the case where two or more fractures intersect, we will naturally also be interested
in the intersection lines and points. Our approach handles such manifolds, lines, and
points in a unified manner.
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(wietse.boon@uib.no, jan.nordbotten@uib.no) This work was supported in part by Norwegian Rese-
arch Council grants 233736 and 228832.
‡Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544,

USA.
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Several methods have been proposed to discretize fractured porous media, some of
which are reviewed below. However, to our knowledge, no method has been presented
which fulfills the four design goals outlined above.

A natural discretization approach to obtain conservative discretizations is to con-
sider finite volume methods adapted to fracture networks (see e.g. [21, 31]). Here, the
fractures are added as hybrid cells between the matrix cells. The small cells which
are formed at the intersections are then excluded with the use of transformations in
order to save condition numbers and computational cost. However, the formulation
requires the grids to match along the fractures. The incorporation of non-matching
grids along faults was analyzed by Tunc et al. [33]. While the presented finite volume
formulations are formally consistent methods, convergence analyses of these methods
are lacking.

Alternatively, the extended finite element (XFEM) approach [11, 15, 32] is a
method in which the surroundings are meshed independently from the fractures. The
fracture meshes are then added afterwards, crossing through the domain and cutting
the elements. Although this may be attractive from a meshing perspective, the cut
elements may become arbitrarily small such that special constructions are needed
to ensure stability. Such constructions are typically introduced whenever multiple
fractures, intersections, and fracture endings are considered in the model. Our aim is
to develop a method with a unified approach to such features and a different approach
is therefore chosen. Admittedly, the construction of meshes will be more involved for
complicated cases but we aim to relieve this by allowing for non-matching grids.

The Mixed Finite Element (MFE) method [9, 10] is employed in this work, since
it provides two important advantages. The method defines the flux as a separate
variable and mass conservation can therefore be imposed locally. Furthermore, the
tools necessary to perform rigorous analysis can be adapted from those available in
the literature.

Mortar methods, as introduced in [8], form an appealing framework for fracture
modeling, since both non-matching grids and intersections are naturally handled. The
combination with MFE has since been explored extensively (see e.g. [5, 28]). The idea
of conductive fractures was first exploited in [16, 25], where Darcy flow is allowed inside
the mortar space based on the pressure variable. However, in previously developed
mortar MFE methods, the choice of using the pressure variable in the mortar space
does not allow for strong flux continuity.

Herein we propose a new method, based on the structure of mortar MFE methods.
Our formulation is novel in that it employs the fluxes as the mortar variable within
the mixed finite element framework. Thus, the proposed method couples the flow in
fractures with the surrounding domain using a stronger notion of mass conservation.
For domain decomposition with matching grids, flux Lagrange multiplier for MFE
methods was proposed in [20]. To the best of our knowledge, this technique has not
been explored in the context of mortar MFE methods on non-matching grids. The
method is designed with the four goals outlined above in mind.

We formulate the method hierarchically, which allows for a unified treatment of
the permeable domain, the fractures, intersection lines, and intersection points in
arbitrary dimensions. We show through rigorous analysis that the method is robust
with respect to the aspect ratio, however we exclude the case of degenerate normal
permeability from our analysis. The numerical results verify all the analytical results,
and furthermore indicate stability also in the case of degenerate normal permeability.

The paper is organized as follows. Section 2 introduces the model in a continuous
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setting and explains the concept of composite function spaces formed by function
spaces with different dimensions. Section 3 is devoted to the discretized problem
and the analytical proofs of properties such as stability and convergence. Finally,
results of numerical experiments confirming the theory in two and three dimensions
are presented in Section 4. We point out that a full numerical comparison to the
alternative discretization methods discussed above has been conducted separately as
part of a benchmark study [14].

2. Model Formulation. In this section, we first describe the notion of working
with subdomains with different dimensions and introduce the notation used in this
paper. Next, the governing equations for the continuous problem are derived and
presented. The section is concluded with the derivation of the weak formulation of
the problem.

2.1. Geometric Representation. Consider an n-dimensional domain Ω, which
is decomposed into subdomains with different dimensionalities. Setting the ambient
dimension of the problem n equal to 2 or 3 will suffice for most practical purposes,
but the theory allows for n to be arbitrary. The subdomains of dimension n− 1 then
represent fractures, while the lower-dimensional domains represent intersection lines
and points.

We start by establishing notation. LetNd denote the total number of d-dimensional
subdomains and let each open, d-dimensional subdomain be denoted by Ωd

i with
0 ≤ d ≤ n and counting index i ∈ {1, 2, . . . Nd}. For notational simplicity, the union
of all d-dimensional subdomains is denoted by Ωd:

Ωd =

Nd⋃

i=1

Ωd
i .

A key concept in the decomposition is that all intersections of d-dimensional sub-
domains are considered as (d − 1)-dimensional domains. In turn, the domain Ωd−1

is excluded from Ωd. For example, the point at the intersection between two lines
becomes a new, lower-dimensional subdomain Ω0 which is removed from Ω1. An il-
lustration of the decomposition in two dimensions is given in Figure 1 (Left). The
procedural decomposition by dimension applies equally well to problems in three di-
mensions.

Physically, the flow between domains of different dimension (e.g. between fracture
and matrix) is of particular interest. We are thus careful with the interfaces between
subdomains of successive dimension. For each subdomain Ωd

i with d ≤ n−1, we define
J d
i as a set of local counting indices which enumerates its adjacent d-interfaces. In

turn, each interface is denoted by Γd
ij with j ∈ J d

i . Analogous to the notation as
employed above, we define the following geometric entities as

Γd
i =

⋃

j∈J d
i

Γd
ij , Γd =

Nd⋃

i=1

Γd
i , Γ =

n−1⋃

d=0

Γd.

The interface Γd
i coincides spatially with Ωd

i , but its importance lies in being a
subset of the boundary of the adjacent (d+ 1)-dimensional domains. An illustration
of Γ1 in a two-dimensional setting is given in Figure 1 (Right).
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Ω1
1

Ω1
2

Ω2
2

Γ11
1

Ω1

Ω2

Ω0

Γ12
1

Figure 1. (Left) The domain is decomposed into subdomains where the dimensionality of
each subdomain is given by the superscript. This decomposition allows us to model fractures and
intersections as lower-dimensional features in the domain. In this particular illustration, we have
four fracture segments, thus N1 = 4. (Right) The interface Γ1 in case of a single fracture. We
define Γ as the union of interfaces between domains of codimension one.

At this point, we have the necessary entities to introduce the dimensional decom-
position of the domain Ω and its boundary:

Ω ∪ ∂Ω =

(
n⋃

d=0

Ωd

)
∪
(

n⋃

d=1

∂Ωd\Γd−1

)
.(2.1)

Let ν denote the outward unit normal to Ωd, defined on ∂Ωd. By definition, ν on
Γd is thus directed from Ωd+1 to Ωd, i.e. towards the lower-dimensional subdomain.

The boundary of the model domain will enter naturally with the governing equa-
tions below. We emphasize that domains of any dimension may contact the domain
boundary. Also, the case of subdomains with codimension two will not be considered
in this work (e.g. line wells in 3D or two planar fractures meeting at a point). Nevert-
heless, it is possible to fit those cases into this framework by introducing specifically
constructed subdomains of intermediate dimension.

As a minor comment we note that the geometric representation, as well as much
of the analysis below, can be generalized to calculus on manifolds. However, while
the framework of manifolds does increase the mathematical elegance, and in some
places simplifies and makes the exposition more precise, we believe that the current
presentation is accessible to a wider readership. As an immediate consequence of this
choice, we will from here on assume that all domains Ωd

i are flat.

2.2. Governing equations. The model considered in this work is governed by
two physical relationships, namely mass conservation and Darcy’s law. In particular,
it is assumed that Darcy’s law holds not just in the porous material, but also in all
lower-dimensional subdomains. This corresponds to the physical situation of either
thin open fractures (Poiseulle flow), or fractures filled with some material. The mathe-
matical representations of these relationships have been well established and employed
by several models [4, 5, 11, 16]. Here, we will introduce these relationships within
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the dimensional decomposition framework. Starting with the governing equations in
the surrounding regions, we then continue with their analogues in lower-dimensional
subdomains and finish with the coupling equations.

First, let us consider the surroundings Ωn. We aim to find the flux un and
pressure pn satisfying

un = −K∇pn in Ωn,(2.2a)

∇ · un = f in Ωn,(2.2b)

pn = g on ∂Ωn
D,(2.2c)

un · ν = 0 on ∂Ωn
N .(2.2d)

Here, we assume that the boundary of Ω can be parititioned as ∂Ω = ∂ΩD∪∂ΩN , with
∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD with positive measure. We assume that each subdomain
Ωn

i of Ωn has a non-empty Dirichlet boundary, i.e. |∂Ωn
i ∩ ∂ΩD| > 0. The following

notation is then employed within the dimensional decomposition framework:

∂Ωd
D = ∂Ωd ∩ ∂ΩD, ∂Ωd

N = ∂Ωd ∩ ∂ΩN , 1 ≤ d ≤ n.

Furthermore, K is a bounded, symmetric, positive definite, n×n tensor represen-
ting the material permeability. Equation (2.2a) is known as Darcy’s law and equation
(2.2b) is conservation of mass in the case of incompressible fluids.

We continue with the governing equations defined on the lower-dimensional sub-
domains. In order to derive these equations with the correct scaling, two physical
parameters are introduced, inherent to the geometry of the problem. First, on each
Γd
ij , 0 ≤ d ≤ n− 1, let γdij denote the length from Γd

ij to the center of Ωd
i . For brevity,

we will generally omit the indices on γ and all other parameters
Secondly, on each subdomain Ωd

i with 0 ≤ d ≤ n − 1, let ε represent the square
root of the cross-sectional length if d = n−1, area if d = n−2, or volume if d = n−3.

Ergo, ε scales as γ
n−d

2 by definition. We assume that both ε and γ are bounded and
known a priori and extended to the surroundings by setting ε = γ = 1 in Ωn.

In general, we allow ε and γ to vary spatially. As such, we are particularly inte-
rested in the case of closing fractures, i.e. where ε and γ decrease to zero. Regarding
the rate at which this is possible, we assume that the following holds almost everyw-
here in the sense of the Lebesgue measure:

|∇ε| . ε
1
2 ,(2.3)

with | · | denoting the Euclidean norm.
Here, and onwards, the notation a . b is used to imply that a constant C > 0

exists, independent of ε, γ, and later h such that a ≤ Cb. The relations & and h have
analogous meaning.

The hat-notation ε̂ is used to denote the trace of ε onto Γd
ij from one level higher,

i.e. ε defined on Ωd+1:

ε̂dij := εd+1
j |Γd

ij
, j ∈ J d

i , d ≤ n− 1.

We set ε̂ = 1 in Ωn. Due to the construction of the dimensional decomposition, we
assume that Ωd

i borders on a subdomain Ωd+1
j with positive aperture for at least one

index jmax ∈ J d
i . The parameter ε̂ corresponding to this index is referred to as follows

ε̂max(x) := ε̂di,jmax
(x) > 0, x ∈ Ωd

i , 0 ≤ d ≤ n− 1.(2.4)
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The relationship between ε and ε̂max is then assumed to satisfy

‖ε 1
2 ‖L∞(Ωd

i )
‖ε̂−1

max‖L∞(Ωd
i )

. 1, 1 ≤ d ≤ n.(2.5)

To justify this property, we derive for d ≥ 1 and n ≤ 3 that

ε̂−1
maxε

1
2 h γ̂−

n−(d+1)
2 γ

n−d
4 . γ−

n−d
4 + 1

2 . γ0 = 1.

Since this relationship will later be used for the fluxes in Ωd, (2.5) is not necessarily
imposed for d = 0.

With the defined ε, the scaled flux ud, 1 ≤ d ≤ n, is introduced such that

ud := εũd,(2.6)

with ũd as the average, tangential flux in Ωd. In other words, ud can be described as
an intermediate definition between the average flux ũd and the integrated flux (given
by εud). It is reminiscent of the scaled flux presented in [6].

In order to derive the conservation equation on a lower-dimensional surface, the
fluxes entering through the boundary Γd must be accounted for [27]. Let λd, 0 ≤
d ≤ n− 1, denote ud+1 · ν on Γd. Here ν is the normal vector associated with Γd as
defined in Subsection 2.1.

Mass may enter the fracture from one side and continue tangentially through the
fracture creating a (pointwise) difference in normal fluxes. To capture this jump, λd

will consist of multiple components λdij , each representing a scaled flux across Γd
ij .

Recall the set J d
i of local indices at Ωd

i as defined in Subsection 2.1. The jump
operator is then given by

J·K : L2(Γd) → L2(Ωd), JλK|Ωd
i
= −

∑

j∈J d
i

λdij , 0 ≤ d ≤ n− 1.(2.7)

The definitions introduced in this section allow us to deduce the mass conser-
vation equation for the lower-dimensional domains. Let us consider Ω1 with n = 2
and integrate the mass conservation equation (2.2b) over a quadrilateral region ω
illustrated in Figure 2.

Ω1
1

Γ11
1

Γ12
1

𝜔

𝜕𝜔

𝑙

𝝂12

𝝂11
𝝉

Figure 2. Local geometry for derivation of the conservation law. Ω1 represents the reduced,
lower-dimensional manifold whereas the boundary between the fracture and matrix is given by Γ.

We apply the divergence theorem on ω to derive
∫

ω

∇ · u =

∫

∂ωr

u · τ −
∫

∂ωl

u · τ −
∫

∂ω∩Γ

u · ν.(2.8)
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Next, we let the width of ω, given by l, decrease to zero. The definition of the
scaled fluxes from (2.6) and the factor ε̂ = 1 gives us

lim
l→0

l−1

∫

ω

∇ · u = ∇τ · εu1 +
q(
1 +

∣∣∇τ
γ

2

∣∣2) 1
2 ε̂u2 · ν

y

= ∇τ · εu1 +
q(
1 +

∣∣∇τ
γ

2

∣∣2) 1
2 ε̂λ1

y
,(2.9)

with ∇τ the nabla operator tangential to Ω1. Note that the term
(
1 +

∣∣∇τ
γ
2

∣∣2) 1
2 is

close to unity since the changes in aperture are small by (2.3). We will therefore omit
this factor for simplicity of exposition, while understanding that it can be subsumed
into the definition of ε̂ at no additional theoretical complexity, and thus state the
resulting conservation law as

∇ · εud + Jε̂λdK = ε2fd in Ωd, 1 ≤ d ≤ n− 1.(2.10)

Here, fd represents the averaged source terms within Ωd. From here on, we denote
∇ as the d-dimensional vector differential operator in Ωd. The case d = 0 deserves
additional attention since there is no tangential direction in which flow is possible. In
turn, the mass conservation equation is reduced to

Jε̂λ0K = ε2f0 in Ω0.(2.11)

Equation (2.10) is simplified by introducing the semi-discrete differential operator
D:

D · [ud, λd] := ∇ · ud + JλdK.(2.12)

Continuing with the constitutive relationships, we consider Darcy’s law in lower
dimensions as described by the following linear expression:

ε−1ud = −K∇pd in Ωd, 1 ≤ d ≤ n− 1.(2.13)

Note that we abuse notation once more by defining the permeability K as a d × d
tensor when used in Ωd.

The required boundary conditions for the lower-dimensional problems are chosen
in the following way. First, the fracture may cross the domain and end on the boun-
dary ∂Ω. In that case, the imposed boundary condition in Ωd is chosen to coincide
with the boundary condition defined for the corresponding portion of ∂Ω. In other
words, if the fracture ends on ∂ΩN , a no-flux condition is imposed. On the other
hand, if it ends on ∂ΩD, the pressure value is set to the average of g across the cross
section of Ωd, which we denote by gd.

pd = gd on ∂Ωd
D,

ud · ν = 0 on ∂Ωd
N , 1 ≤ d ≤ n− 1.

The remainder of ∂Ωd either borders on a lower-dimensional domain or represents an
immersed tip. In the former case, a flux boundary condition is imposed on Γd−1 using
the previously defined variable λd−1. In case of immersed tips, we assume that the
mass transfer through the tip is negligible due to the large ratio between the fracture
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aperture and length. Therefore, in accordance with [4], a no-flux boundary condition
is imposed. The boundary conditions are summarized as

ud · ν = λd−1 on Γd−1, 1 ≤ d ≤ n,

ud · ν = 0 on ∂Ωd\(Γd−1 ∪ ∂Ω), 1 ≤ d ≤ n− 1.

We will also allow for ε ↓ 0 at fracture tips, leading to a degenerate equation wherein
the boundary condition is mute.

Analogous to [4, 25], Darcy’s law is assumed to describe the flow normal to the
fracture. For this, we introduce the normal permeability Kd

ν in Ωd and impose the
following relationship between the scaled, normal flux λd and the pressure difference
on Γd

ij :

ε̂−1λdij = −Kν

pdi − pd+1|Γd
ij

γ
, 0 ≤ d ≤ n− 1,(2.14)

where we use the notation pdi = pd|Ωd
i
. Moreover, sufficient regularity of p is assumed

in order to take such traces.
The above represents the full description of the model equations considered he-

rein, and is the setting in which the numerical method is constructed and validated.
However, the analysis of both the continuous and discrete settings is restricted to the
case where we have two further constants c0 and c1 such that the normal permeability
is not degenerate in the following sense:

0 < c0 ≤ γK−1
ν ≤ c1 <∞,(2.15)

similar to [25]. We note in particular that the lower bound is needed for the comple-
teness of the solution space under the chosen norms, see Lemma 2.2.

The above equations comprise our model problem for flow in fractured porous
media.

2.3. Weak Formulation. Let us continue by deriving the weak formulation of
the problem. For this, we introduce the function spaces associated with the dimen-
sional decomposition introduced in Subsection 2.1. For each value of d denoting the
dimensionality, let the function space V d contain the (tangential) flux, let Λd con-
tain the flux across subdomain interfaces, and let Qd contain the pressure. For the
continuous weak formulation, we define these function spaces as

V d =
{
v ∈ (L2(Ωd))d : ∇ · εv ∈ L2(Ωd), (εv · ν)|∂Ωd\(Γd−1∪∂ΩD) = 0

}
, 1 ≤ d ≤ n,

Λd = L2(Γd), 0 ≤ d ≤ n− 1,

Qd = L2(Ωd), 0 ≤ d ≤ n.

The key tool used to create a succinct method, is to create dimensionally structu-
red function spaces by applying the direct sum over all different dimensionalities.
Particularly, we define the composite function spaces

V =
n⊕

d=1

V d, Λ =
n−1⊕

d=0

Λd, Q =
n⊕

d=0

Qd.(2.16)

The dimensionally structured space Λ will contain the normal flux across Γ and
act as a mortar space. To avoid doubly defining the normal fluxes across Γ with
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functions from V and Λ, a final function space is defined containing functions with
zero normal flux across Γ:

V d
0 =

{
v ∈ V d : εv · ν = 0 on Γd−1

}
, 1 ≤ d ≤ n,

V0 =
n⊕

d=1

V d
0 .(2.17)

To rigorously impose the essential boundary condition on Γ, a linear extension
operator R is introduced for functions belonging to Λ. The construction of this
operator is done using the dimensional decomposition. For 0 ≤ d ≤ n − 1, let the
operator Rd : Λd → V d+1 be defined such that

Rdλd · ν =

{
λd on Γd

0 on ∂Ωd+1\Γd,
(2.18)

in which ν represents the unit normal vector associated with Γd. The image of Rd has
slightly higher regularity than H(div; Ωd+1) with normal trace in L2(∂Ωd+1). Now,
let us define the operator R : Λ → V as

Rλ =
n−1⊕

d=0

Rdλd.

At this point, some freedom remains in the choice of R. Even though the resulting
method is not affected by the eventual choice, a specific extension operator is con-
structed later in (2.24) which has favorable properties for the sake of the analysis.

Due to this construction, the flux will always be composed of a pair (u0, λ) which
gives rise to the space X given by

X = V0 × Λ.(2.19)

With the appropriate function spaces and operators defined, we continue with
the derivation of the weak form of the problem. The derivation is standard for all
equations except for (2.14), which requires some additional attention. For a given Ωd

i ,
0 ≤ d ≤ n − 1, let us test (2.14) with a function µd ∈ Λd. After summation over
j ∈ J d

i , we obtain

∑

j∈J d
i

〈 γ
Kν

λdij , µ
d
ij〉Γd

ij
=
∑

j∈J d
i

〈pd+1, ε̂µd
ij〉Γd

ij
+ (pdi , Jε̂µdK)Ωd

i
,(2.20)

where 〈·, ·〉Γd
ij

and (·, ·)Ωd
i
denote the L2-inner products on Γd

ij and Ωd
i , respectively.

A useful aspect of this relationship is that the first term on the right-hand side is
exactly the boundary term which appears in the weak form of Darcy’s law (2.13)
after partial integration. The notation is simplified by introducing the inner products
and the associated norms in the dimensional decomposition framework:

(·, ·)Ω =

n∑

d=0

(·, ·)Ωd =

n∑

d=0

Nd∑

i=1

(·, ·)Ωd
i
, ‖ · ‖2L2(Ω) =

n∑

d=0

‖ · ‖2L2(Ωd),

〈·, ·〉Γ =
n−1∑

d=0

〈·, ·〉Γd =
n−1∑

d=0

Nd∑

i=1

∑

j∈J d
i

〈·, ·〉Γd
ij
, ‖ · ‖2L2(Γ) =

n−1∑

d=0

‖ · ‖2L2(Γd).
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We are now ready to state the variational form of the problem:

The weak solution (u0, λ, p) ∈ V0 × Λ× Q satisfies

(K−1(u0 +Rλ),v0)Ω − (p,∇ · εv0)Ω = −〈g, εv0 · ν〉∂ΩD
∀v0 ∈ V0,(2.21a)

(K−1(u0 +Rλ),Rµ)Ω − (p,∇ · εRµ)Ω
+〈 γ
Kν

λ, µ〉Γ − (p, Jε̂µK)Ω = 0 ∀µ ∈ Λ,(2.21b)

−(∇ · ε(u0 +Rλ), q)Ω − (Jε̂λK, q)Ω = −(ε2f, q)Ω ∀q ∈ Q.(2.21c)

We set all functions not defined for certain indexes (such as u0
0 and λn) to zero such

that the unified presentation is well-defined. Equation (2.21a) follows from (2.2a) and
(2.13), whereas equation (2.21b) follows additionally from (2.20). Finally, equation
(2.21c) follows from equations (2.2b), (2.10) and (2.11). In the above, we assume

that g ∈ H
1
2 (∂ΩD) and f ∈ L2(Ω) which guarantees that the right-hand side terms

in (2.21a) and (2.21b) are well-posed. In particular, since εvd
0 ∈ H(div; Ωd) and

εvd
0 · ν = 0 on ∂Ωd\∂Ωd

D, then εvd
0 · ν ∈ H− 1

2 (∂Ωd
D), see e.g. [18].

We note that for fractures which have ε = γ = 0 uniformly, this model reduces to
a domain decomposition method which uses λ as a flux mortar to impose continuity
of pressure in a weak sense.

The next step is to observe that the system (2.21) can be classified as a saddle
point problem. For this purpose, we rewrite the problem into a different format by
using the divergence operator D from (2.12) and the bilinear forms a and b given by

a(u0, λ; v0, µ) = (K−1(u0 +Rλ),v0 +Rµ)Ω + 〈 γ
Kν

λ, µ〉Γ,(2.22a)

b(v0, µ; p) = −(p,D · [ε(v0 +Rµ), ε̂µ])Ω.(2.22b)

These definitions allows us to rewrite system (2.21) to the following, equivalent
problem:
Find the functions (u0, λ, p) ∈ V0 × Λ× Q such that

a(u0, λ; v0, µ) + b(v0, µ; p)− b(u0, λ; q) = −〈g, εv0 · ν〉∂ΩD
+ (ε2f, q)Ω,(2.23)

for all (v0, µ, q) ∈ V0 × Λ× Q.

2.4. Well-posedness. Before proceeding to the discretization, it is important
to analyze the variational problem (2.23) in the continuous sense. To that end, we
present a proof of the well-posedness of this problem within the dimensional hierarchy
setting.

For the purpose of the analysis, let us introduce a specific extension operator
R : Λ → V . For 1 ≤ d ≤ n, let Rd−1λd−1 ∈ V d and an auxiliary variable pdλ ∈ Qd be
defined as the solution to the following problem:

(K−1Rd−1λd−1,vd
0)Ωd − (pdλ,∇ · εvd

0)Ωd = 0 ∀vd
0 ∈ V d

0 ,(2.24a)

(∇ · εRd−1λd−1, qd)Ωd + (εpdλ, q
d)Ωd = 0 ∀qd ∈ Qd,(2.24b)

Rd−1λd−1 · ν = λd−1 on Γd−1,(2.24c)

Rd−1λd−1 · ν = 0 on ∂Ωd\Γd−1.(2.24d)
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Note that the boundary conditions are chosen such that Rd−1λd−1 is a suitable ex-
tension compliant with equation (2.18).

Lemma 2.1. The solution (Rd−1λd−1, pdλ) ∈ V d ×Qd to problem (2.24) satisfies
the following bounds:

‖K− 1
2Rd−1λd−1‖L2(Ωd) + ‖ε 1

2 pdλ‖L2(Ωd) . ‖λd−1‖L2(Γd−1),(2.25a)

‖∇ · εRd−1λd−1‖L2(Ωd) . ‖ε
1
2
maxλ

d−1‖L2(Γd−1),(2.25b)

where εmax|Ωd
i
= ‖ε‖L∞(Ωd

i )
.

Proof. Let us introduce the function vd
λ as the H(div)-extension of λd−1 described

in [29] (Section 4.1.2). In particular, vd
λ ·ν = λd−1 and it satisfies the following bound:

‖vd
λ‖2L2(Ωd) + ‖∇ · vd

λ‖2L2(Ωd) . ‖λd−1‖2L2(Γd−1).(2.26)

Inequality (2.25a) is formed by setting the test functions in (2.24) as vd
0 =

Rd−1λd−1 − vd
λ and qd = pdλ. After summation of the equations, we obtain

‖K− 1
2Rd−1λd−1‖2L2(Ωd) + ‖ε 1

2 pdλ‖2L2(Ωd) = (K−1Rd−1λd−1,vd
λ)Ωd + (pdλ,∇ · εvd

λ)Ωd

= (K−1Rd−1λd−1,vd
λ)Ωd + (p∇ε,vd

λ)Ωd + (εpdλ,∇ · vd
λ)Ωd .

The Cauchy-Schwarz inequality is then used followed by the positive-definiteness of
K, the bound on ∇ε from (2.3), and (2.26) to give:

‖K− 1
2Rd−1λd−1‖2L2(Ωd) + ‖ε 1

2 pdλ‖2L2(Ωd)

.
(
‖K− 1

2Rd−1λd−1‖L2(Ωd) + ‖ε 1
2 pdλ‖L2(Ωd)

)
‖λd−1‖L2(Γd−1).(2.27)

Secondly, we obtain (2.25b) by setting qd = ∇ · εRd−1λd−1 in equation (2.24b):

‖∇ · εRd−1λd−1‖L2(Ωd) ≤ ‖εpdλ‖L2(Ωd) ≤ ‖ε
1
2
maxε

1
2 pdλ‖L2(Ωd) . ‖ε

1
2
maxλ

d−1‖L2(Γd−1).

The constructed extension operator R allows us to form the norms as used in the
subsequent analysis:

‖[v0, µ]‖2XR = ‖K− 1
2 (v0 +Rµ)‖2L2(Ω) + ‖γ 1

2K
− 1

2
ν µ‖2L2(Γ)

+ ‖ε̂−1
maxD · [ε(v0 +Rµ), ε̂µ]‖2L2(Ω),(2.28a)

‖q‖Q = ‖ε̂maxq‖L2(Ω).(2.28b)

Here, ε̂max is used as defined in (2.4). The energy norm is created as the combination
of these norms:

|||(u0, λ, p)|||2 = ‖[u0, λ]‖2XR + ‖p‖2Q.(2.29)

In order to show well-posedness of the problem in this energy norm, we present
three lemmas, which provide the necessary tools to invoke standard saddle-point the-
ory.

Lemma 2.2 (Completeness). With the extension operator R from (2.24), the
space X from (2.19) is a Hilbert space with inner product

([u0, λ], [v0, µ])XR = (K−1(u0 +Rλ),v0 +Rµ)L2(Ω) + (γK−1
ν λ, µ)L2(Γ)

+ (ε̂−1
maxD · [ε(u0 +Rλ), ε̂λ], ε̂−1

maxD · [ε(v0 +Rµ), ε̂µ])L2(Ω),(2.30)



12 W. M. Boon, J. M. Nordbotten and I. Yotov

which induces the norm from (2.28a).
Proof. X is a linear space and (·, ·)XR is an inner product. In order to show

completeness of X with respect to the induced norm (2.28a), we consider a Cauchy
sequence {[v0,k, µk]}∞k=0 ⊂ X . In other words, as l, k → ∞, we have

‖[v0,k − v0,l, µk − µl]‖2XR → 0.(2.31)

By completeness of the L2-spaces, there exists a v ∈ L2(Ω) such that v0,k+Rµk →
v and a µ ∈ L2(Γ) such that µk → µ, using (2.15) for the latter. Thus, we can define
v0 = v − Rµ ∈ L2(Ω). Using the same argumentation, ξ ∈ L2(Ω) exists such that
ε̂−1
maxD · [ε(v0,k +Rµk), ε̂µk] → ξ. It remains to show how ξ is connected to [v0, µ].

Let us consider a test function ψ with ψ0 ∈ L2(Ω0) and ψd ∈ C∞
0 (Ωd) for d ≥ 1

and derive

(ε̂−1
maxD · [ε(v0,k +Rµk), ε̂µk], ψ)Ω = (ε̂−1

max∇ · ε(v0,k +Rµk), ψ)Ω + (ε̂−1
maxJε̂µkK, ψ)Ω

= − (ε(v0,k +Rµk),∇ε̂−1
maxψ)Ω + (ε̂−1

maxJε̂µkK, ψ)Ω
= − (v0,k +Rµk,−εε̂−2

max(∇ε̂max)ψ + εε̂−1
max(∇ψ))Ω + (ε̂−1

maxJε̂µkK, ψ)Ω
k→∞−−−−→ − (v0 +Rµ,−εε̂−2

max(∇ε̂max)ψ + εε̂−1
max(∇ψ))Ω + (ε̂−1

maxJε̂µK, ψ)Ω
= (ε̂−1

maxD · [εv0, ε̂µ], ψ)Ω(2.32)

Hence, we have shown that ξ = ε̂−1
maxD · [εv0, ε̂µ]. Moreover, since µ ∈ L2(Γ), it follows

that JµK ∈ L2(Ω). With ξ ∈ L2(Ω), we obtain ∇· εv0 ∈ L2(Ω) and therewith v0 ∈ V0.
Thus, X is complete.

Remark 2.1. The above proof exploits the lower bound on γK−1
ν stated in (2.15).

In order to avoid this restriction, weighted Sobolev spaces need to be considered similar
to e.g. [19].

Lemma 2.3 (Continuity and Ellipticity). The bilinear forms a and b from (2.22)
are continuous with respect to the norms given in (2.28). Moreover, if the pair
(u0, λ) ∈ X satisfies

b(u0, λ; q) = 0 for all q ∈ Q,(2.33)

then a constant Ca > 0 exists such that

a(u0, λ; u0, λ) ≥ Ca|||(u0, λ, 0)|||2.(2.34)

Proof. Continuity of the bilinear forms follows directly from the Cauchy-Schwarz
inequality. Let us continue with assumption (2.33), which translates to

(q,D · [ε(u0 +Rλ), ε̂λ])Ω = 0, for all q ∈ Q.

Since D · X ⊆ Q, it follows that

‖D · [ε(u0 +Rλ), ε̂λ]‖2L2(Ω) = 0.

Using the definition of a from (2.22a) and ε̂max > 0 from (2.4), we obtain:

a(u0, λ; u0, λ) = (K−1(u0 +Rλ),u0 +Rλ)Ω + 〈 γ
Kν

λ, λ〉Γ

= ‖K− 1
2 (u0 +Rλ)‖2L2(Ω) + ‖γ 1

2K
− 1

2
ν λ‖2L2(Γ) + ‖ε̂−1

maxD · [ε(u0 +Rλ), ε̂λ]‖2L2(Ω)

= |||(u0, λ, 0)|||2.
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Thus, the result is shown with Ca = 1.
Lemma 2.4 (Inf-Sup). Let the bilinear form b be defined by equation (2.22b).

Then there exists a constant Cb > 0 such that for any given function p ∈ Q,

sup
(v0,µ)∈X

b(v0, µ; p)

|||(v0, µ, 0)|||
≥ Cb|||(0, 0, p)|||.(2.35)

Proof. Assume p ∈ Q given. We aim to construct a pair (v0, µ) ∈ X such that
the inequality holds. The construction is done by sequentially ascending through the
dimensional hierarchy. For convenience, we recall the definition of b:

−b(v0, µ; p) = (p,∇ · ε(v0 +Rµ))Ω + (p, Jε̂µK)Ω.

The function µ ∈ Λ is constructed in a hierarchical manner. Let us start by
choosing µ0 such that the following is satisfied:

Jε̂µ0K = ε̂2maxp
0, ‖µ0‖L2(Γ0) . ‖ε̂maxp

0‖L2(Ω0).(2.36)

We construct a suitable µ0 for a given index i by finding jmax where ε̂ijmax
= ε̂max

and setting µ0
ijmax

= ε̂maxp
0 while choosing µ0

ik = 0 for k 6= jmax.
The next step is to generalize this strategy to 1 ≤ d ≤ n− 1. In this, we need to

counteract the contribution of the extension operator. Let us construct µd such that
it satisfies:

Jε̂µdK = ε̂2maxp
d −∇ · εRd−1µd−1.(2.37)

Again, only µd
ijmax

is non-zero. We now have

‖µd‖L2(Γd) . ‖ε̂maxp
d‖L2(Ωd) + ‖ε̂−1

max∇ · εRd−1µd−1‖L2(Ωd)

. ‖ε̂maxp
d‖L2(Ωd) + ‖ε̂−1

maxε
1
2
maxµ

d−1‖L2(Ωd)

. ‖ε̂maxp
d‖L2(Ωd) + ‖µd−1‖L2(Γd−1),(2.38)

where we used Lemma 2.1 and property (2.5).
Next, we set the functions vd

0 with 1 ≤ d ≤ n−1 to zero and continue with d = n.
Let us construct vn

0 ∈ V n
0 and a supplementary variable pnv ∈ Qn using the following

auxiliary problem :

(K−1vn
0 ,w

n
0 )Ωn − (pnv ,∇ ·wn

0 )Ωn = 0 ∀wn
0 ∈ V n

0 ,

(∇ · vn
0 , q

n)Ωn = (pn −∇ · Rn−1µn−1, qn)Ωn ∀qn ∈ Qn.

This problem is well-posed since |∂Ωn
i ∩∂ΩD| > 0 for each i and thus each subdomain

borders on a homogeneous, Dirichlet boundary condition. Standard stability argu-
ments for this mixed formulation combined with the estimate from Lemma 2.1 and
the defined ε = 1 in Ωn then give us

‖K− 1
2 vn

0 ‖2L2(Ωn) + ‖∇ · εvn
0 ‖2L2(Ωn) . ‖pn‖L2(Ωn) + ‖∇ · Rn−1µn−1‖L2(Ωn)

. ‖pn‖L2(Ωn) + ‖µn−1‖L2(Γn−1).(2.39)

The choice (v0, µ) ∈ V0 × Λ is now finalized and two key observations can be
made. First, we recall the positive-definiteness of Kν and the boundedness of R given
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by Lemma 2.1. Combined with the bounds (2.36), (2.38), and (2.39), we derive using
(2.5):

‖[v0, µ]‖2XR . ‖K− 1
2 (v0 +Rµ)‖2L2(Ω) + ‖µ‖2L2(Γ) + ‖ε̂−1

maxD · [ε(v0 +Rµ), ε̂µ]‖2L2(Ω)

. ‖pn‖L2(Ωn) + ‖µ‖2L2(Γ) + ‖K− 1
2Rµ‖2L2(Ω)

+ ‖ε̂−1
max∇ · εRµ‖2L2(Ω) + ‖ε̂−1

maxJε̂µK‖2L2(Ω)

. ‖pn‖2L2(Ωn) + ‖µ‖2L2(Γ)

. ‖pn‖2L2(Ωn) +
∑n−1

d=0‖ε̂maxp
d‖2L2(Ωd) = |||(0, 0, p)|||2.(2.40)

Moreover, substitution of the constructed (v0, µ) in the form b gives us

(pd,∇ · ε(vd
0 +Rd−1µd−1))Ωd + (pd, Jε̂µdK)Ωd = ‖ε̂maxp

d‖2L2(Ωd), 0 ≤ d ≤ n.

Thus, after summation over all dimensions, we obtain

b(v0, µ; p) = |||(0, 0, p)|||2.(2.41)

The proof is concluded by combining (2.40) and (2.41).
We emphasize that the constants used in the previous lemmas are independent

of γ and ε. In fact, the dependency on the aperture is completely reflected in the
definition of the norms.

Theorem 2.5. Problem (2.23) is well-posed with respect to the energy norm
(2.29), i.e. there exists a unique solution such that

|||(u0, λ, p)||| . ‖ε 3
2 f‖L2(Ω) + ‖g‖

H
1
2 (∂ΩD)

.(2.42)

Proof. We firstshow the continuity of the right-hand side of (2.23). We consider
each term separately:

−〈g, εv0 · ν〉∂ΩD
= − 〈g, ε(v0 +Rµ) · ν〉∂ΩD

. ‖g‖
H

1
2 (∂ΩD)

‖ε(v0 +Rµ)‖H(div,Ω)

. ‖g‖
H

1
2 (∂ΩD)

(‖ε(v0 +Rµ)‖L2(Ω) + ‖D · [ε(v0 +Rµ), ε̂µ]‖L2(Ω)

+ ‖Jε̂µK‖L2(Ω))

. ‖g‖
H

1
2 (∂ΩD)

‖[v0, µ]‖XR .(2.43)

Here, we used assumption (2.15) and ε̂max > 0 in the final step. For the second term,
we use (2.5) to derive:

(ε2f, q)Ω ≤ ‖ε̂−1
maxε

2f‖L2(Ω)‖ε̂maxq‖L2(Ω) ≤ ‖ε 3
2 f‖L2(Ω)‖q‖Q.(2.44)

Using Lemmas 2.2 to 2.4, the well-posedness of problem (2.23) follows from saddle-
point problem theory, see e.g. [9].

3. Discretization. In this section, the discretization of problem (2.23) is con-
sidered. First, the requirements on the choice of discrete function spaces are stated.
We then continue by showing stability for the discrete problem and end the section
with a priori error estimates.
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3.1. Discrete Spaces. In order to properly define the discrete equivalent of
(2.23), we start by introducing the mesh. Let T d

Ω with 0 ≤ d ≤ n be a finite ele-
ment partition of Ωd made up of d-dimensional, shape-regular, simplicial elements.
Secondly, let T d

Γ with 0 ≤ d ≤ n− 1 be a partition of Γd consisting of d-dimensional
simplices. We will commonly refer to T d

Γ as the mortar mesh. Furthermore, let h
denote the mesh size.

The discrete analogues of the function spaces are constructed using the dimensio-
nal hierarchy. Let us introduce V d

h ⊂ V d and V d
0,h ⊂ V d

0 for 1 ≤ d ≤ n and Qd
h ⊂ Qd

with 0 ≤ d ≤ n. Finally, the mortar space is given by

Λd
ij,h ⊂ L2(Γd

ij), Λd
h =

Nd⊕

i=1

⊕

j∈J d
i

Λd
ij,h, 0 ≤ d ≤ n− 1.

The discrete, dimensionally composite function spaces are then defined in analogy to
(2.16) as

Vh =

n⊕

d=1

V d
h , V0,h =

n⊕

d=1

V d
0,h, Λh =

n−1⊕

d=0

Λd
h, Qh =

n⊕

d=0

Qd
h.

Finally, the combined space containing the fluxes is given by

Xh = V0,h × Λh.

Before we continue with the analysis in Subsection 3.2, let us present a total
of four conditions on the discrete function spaces. The first is necessary, while the
remaining conditions provide attractive features of the numerical method.

First, it is essential that the pair Vh × Qh is chosen such that

Qd
h = ∇ · V d

h , 1 ≤ d ≤ n.(3.1)

This can be satisfied by choosing any of the usual mixed finite element pairs [5, 9].
The second condition concerns the space Λh. For simplicity, we assume that the

function spaces defined on different sides bordering Ωd
i are the same. In other words,

we have

Λd
ij,h = Λd

ik,h, j, k ∈ J d
i .

Third, conventional mortar methods (e.g. [5]) require that the mortar mesh
T d
Γ is a sufficiently coarse partition of Γd when compared to T d+1

Ω . Let us define

Π̂d
h : Λd

h → V d+1
h · ν|Γd as the L2-projection from the mortar mesh onto the trace of

the bordering, higher-dimensional mesh. In the unified setting, the projection Π̂h is
then given by

⊕n−1
d=0 Π̂

d
h and the mortar condition can be described for µh ∈ Λh as

‖Π̂hµh‖L2(Γ) & ‖µh‖L2(Γ).(3.2)

This can easily be satisfied in case of matching grids by aligning the mortar grid with
the trace of the surrounding mesh. Otherwise, it suffices to choose T d

Γ as slightly
coarser.

As shown in [16], the introduction of a flow problem inside the fracture guarantees
a unique solution even if the mortar mesh is finer, thus removing the need for (3.2).



16 W. M. Boon, J. M. Nordbotten and I. Yotov

The same principle applies here. However, in this work we choose the mortar variable
as the normal flux, instead of the fracture pressure, in order to have a stronger notion
of mass conservation. Due to this choice, the control on the L2-norm of the mortar
variable is weighted with γ, as is apparent from (2.28a). Since γ is typically small, the
main control on µ comes from Rhµ, which only sees Π̂hµh as boundary data. Thus, in
order to eliminate the possible non-zero kernel of Π̂h, which may result in numerical
oscillations of the mortar flux, it is advantageous to satisfy (3.2) in practice.

Fourth, we let all lower-dimensional meshes match with the corresponding mortar
mesh, such that

JΛhK = Qh.(3.3)

In the discretized setting, we have need of a discrete extension operator Rh : Λh →
Vh. In accordance with (2.18), the function Rhµ is such that Rhµ ·ν|Γ = Π̂hµ and has
zero normal trace on the remaining boundaries. A particularly attractive choice is to
construct Rhµ with a predefined support near the boundary. The bounded support
then results in a beneficial sparsity pattern.

To finish the section, we explicitly state a family of discrete function spaces which
satisfy all conditions on simplicial elements for n = 3 and polynomial order k. Any
choice of stable mixed spaces is valid and our choice is given by

Vh =
⊕3

d=1RTk(T d
Ω ), Qh =

⊕3
d=0Pk(T d

Ω ), Λh =
⊕2

d=0Pk(T d
Γ ).(3.4)

Here, RTk represents the k-th order Raviart-Thomas(-Nedelec) space [26, 30] which
corresponds with continuous Lagrange elements of order k + 1 for d = 1. The space
Pk then represents k-th order discontinuous Lagrange elements. As is required, we
choose V0,h = V0∩Vh with zero normal trace on Γ. The function spaces corresponding
to k = 0 will be referred to as the lowest-order choice.

With the chosen discrete spaces, we are ready to define the discrete functionals.
In the remainder, we will omit the index h in most places for notational simplicity.

ah(u0, λ; v0, µ) = (K−1(u0 +Rhλ),v0 +Rhµ)Ω + 〈 γ
Kν

λ, µ〉Γ,(3.5a)

bh(v0, µ; p) = −(p,D · [ε(v0 +Rhµ), ε̂µ])Ω.(3.5b)

The finite element problem associated with (2.23) is now formulated as follows:
Find (u0, λ, p) ∈ V0,h × Λh × Qh such that

ah(u0, λ; v0, µ) + bh(v0, µ; p)− bh(u0, λ; q) = −〈g, εv0 · ν〉∂ΩD
+ (ε2f, q)Ω,(3.6)

for all (v0, µ, q) ∈ V0,h × Λh × Qh.

3.2. Stability and Convergence. With the choice of discrete function spaces
and the formulation of the finite element problem (3.6) in Subsection 3.1, we continue
to study the stability of the scheme. The analysis is similar to that presented in
Subsection 2.4 and we particularly emphasize the issues arising from the discretization
in this separate presentation.

First, the incorporation of varying apertures requires some additional attention.
For this purpose, we introduce the maximum value of ε on each element of the grid.
More specifically, let us define εe as a piecewise constant function such that

εe = sup
x∈eΩ

ε(x) on each eΩ ∈ TΩ.(3.7)
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By definition, this parameter equals one in Ωn.
Secondly, for the purpose of the analysis, a specific discrete extension operator

Rh : Λh → Vh is constructed similar to R from (2.24). In particular, let the pair
(Rd−1

h λd−1, pdλ) ∈ V d
h ×Qd

h with 1 ≤ d ≤ n be the solution to the following problem:

(K−1Rd−1
h λd−1,vd

0)Ωd − (pdλ,∇ · εvd
0)Ωd = 0 ∀vd

0 ∈ V d
0,h(3.8a)

(∇ · εRd−1
h λd−1, qd)Ωd + (εep

d
λ, q

d)Ωd = 0 ∀qd ∈ Qd
h.(3.8b)

The corresponding boundary conditions are chosen to comply with the desired con-
dition given in equation (2.18), namely:

Rd−1
h λd−1 · ν = Π̂d−1

h λd−1 on Γd−1,(3.9a)

Rd−1
h λd−1 · ν = 0 on ∂Ωd\Γd−1.(3.9b)

The estimates on Rd−1
h λd−1, analogous to Lemma 2.1 are given by the following

lemma.
Lemma 3.1. The solution (Rd−1

h λd−1, pdλ) ∈ V d
h × Qd

h to problem (3.8) with
boundary conditions given by (3.9) satisfies the following bounds:

‖K− 1
2Rd−1

h λd−1‖L2(Ωd) + ‖ε
1
2
e p

d
λ‖L2(Ωd) . ‖λd−1‖L2(Γd−1)(3.10a)

‖Πd
Qh

∇ · εRd−1
h λd−1‖L2(Ωd) . ‖ε

1
2
maxλ

d−1‖L2(Γd−1).(3.10b)

with εmax|Ωd
i
= ‖ε‖L∞(Ωd

i )
and Πd

Qh
the L2-projection onto Qd

h.

Proof. Let Πd
Vh

be the Fortin interpolator related to V d
h [9]. Moreover, let vd

λ,h =

Πd
Vh
vd
λ with vd

λ ∈ V d such that

vd
λ · ν = Π̂d−1

h λd−1 on Γd−1,

vd
λ · ν = 0 on ∂Ωd\Γd−1,

while also satisfying for some s > 0 (see [29])

‖vd
λ‖Hs(Ωd) + ‖∇ · vd

λ‖L2(Ωd) . ‖λd−1‖L2(Γd−1).

It follows that

vd
λ,h · ν = (Πd

Vh
vd
λ) · ν = Π̂d−1

h (vd
λ · ν) = Π̂d−1

h λd−1 on Γd−1.

Hence, we may set the test function vd
0 = Rd−1

h λd−1 − vd
λ,h ∈ V0,h. By continuity of

the interpolator Πd
Vh
, see [5],

‖vd
λ,h‖L2(Ωd) = ‖Πd

Vh
vd
λ‖L2(Ωd) . ‖vd

λ‖Hs(Ωd) + ‖∇ · vd
λ‖L2(Ωd) . ‖λd−1‖L2(Γd−1)

(3.11)

Furthermore, the interpolator has the property ∇·Πd
Vh
vd
λ = Πd

Qh
∇·vd

λ, with Πd
Qh

the

L2-projection onto Qd
h. From this, we obtain

‖∇ · vd
λ,h‖L2(Ωd) = ‖∇ ·Πd

Vh
vd
λ‖L2(Ωd) ≤ ‖∇ · vd

λ‖L2(Ωd) . ‖λd−1‖L2(Γd−1)(3.12)
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Now, let us set the test functions in (3.8) as vd
0 = Rd−1

h λd−1−vd
λ,h and qd = pdλ. This

gives us, as in equation (2.27):

‖K− 1
2Rd−1

h λd−1‖2L2(Ωd)+‖ε
1
2
e p

d
λ‖2L2(Ωd) = (K−1Rd−1

h λd−1,vd
λ,h)Ωd − (pdλ,∇ · εvd

λ,h)Ωd

. (‖K− 1
2Rd−1

h λd−1‖L2(Ωd) + ‖ε
1
2
e p

d
λ‖L2(Ωd)) ‖λd−1‖L2(Γd−1).

Here, we have used (3.11), (3.12), and the fact that ε(x) ≤ εe(x) for all x ∈ Ω.
The first bound (3.10a) is now shown. Secondly, (3.10b) follows by setting qd =
Πd

Qh
∇ · εRd−1

h λd−1 and using (3.10a):

‖Πd
Qh

∇ · εRd−1
h λd−1‖L2(Ωd) ≤ ‖εepdλ‖L2(Ωd) = ‖ε

1
2
e ε

1
2
e p

d
λ‖L2(Ωd) ≤ ‖ε

1
2
maxλ

d−1‖L2(Γd−1).

We emphasize once more that this extension operator is only constructed for
the sake of the analysis. Since we are continually interested in the combined flux
u0 + Rhλ instead of the individual parts, it is generally more practical to choose
Rh as any preferred extension operator which incorporates the essential boundary
conditions.

Let us continue by defining the norms in the discrete setting, which differ only
slightly from the norms defined in (2.28). For [v0, µ] ∈ Xh, let us introduce the
following norm:

‖[v0, µ]‖2XR,h
= ‖K− 1

2 (v0 +Rhµ)‖2L2(Ω) + ‖γ 1
2K

− 1
2

ν µ‖2L2(Γ)

+ ‖ΠQh
D · [ε(v0 +Rhµ), ε̂µ]‖2L2(Ω).(3.13)

Here, ΠQh
is the L2-projection onto Qh. The flexibility in the choice of Rh is apparent

in this norm by noting that it depends on the combined flux, instead of its separate
parts u0 and Rhλ. The norm on the pressure q ∈ Qh remains unchanged, and we
recall it for convenience:

‖q‖Qh
= ‖q‖Q = ‖ε̂maxq‖L2(Ω).(3.14)

The discrete energy norm is formed as the combination of (3.13) and (3.14):

|||(u0, λ, p)|||2h = ‖[u0, λ]‖2XR,h
+ ‖p‖2Qh

.(3.15)

Next, this energy norm is used to prove an inf-sup condition on bh, as shown in
the following Lemma.

Lemma 3.2 (Inf-Sup). Let the bilinear form bh be defined by equation (3.5b)
and let the function spaces V0,h, Λh, and Qh comply with the restrictions from Sub-
section 3.1. Then there exists a constant Cbh > 0, independent of γ, ε, and h such
that for any given function p ∈ Qh,

sup
(v0,µ)∈Xh

bh(v0, µ; p)

|||(v0, µ, 0)|||h
≥ Cbh |||(0, 0, p)|||h.(3.16)

Proof. A similar strategy to that used in Lemma 2.4 is employed. First, the
function µ0 ∈ Λ0

h is constructed. For each index i, recall that jmax denotes the index
for which ε̂i,jmax = ε̂max. We then set µ0

ik = 0 for k 6= jmax and choose

µ0
i,jmax

= −ε̂maxp
0.
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The following two properties then follow readily:

(Jε̂µ0K, p0)Ω0 = (−ε̂maxµ
0
i,jmax

, p0)Ω0 = (−µ0
i,jmax

, ε̂maxp
0)Ω0 = ‖ε̂maxp

0‖2,
‖µ0‖2L2(Γ0) = ‖ε̂maxp

0‖2L2(Ω0).

Using a similar strategy, we construct µd with 1 ≤ d ≤ n − 1 such that µd
ik = 0 for

k 6= jmax. The remaining function µd
i,jmax

is defined such that

(ε̂maxµ
d
i,jmax

, ϕk)Ωd
i
= (−ε̂2maxp

d +∇ · εRd−1
h µd−1, ϕk)Ωd

i
.(3.17)

for all basis functions ϕk ∈ Λd
ij,h. We show that µd

i,jmax
is well-defined by rewriting it

as the linear combination µd
i,jmax

=
∑

k αkϕk. The matrix for solving αk is then given
by Akl = (ε̂maxϕl, ϕk)Ωd

i
which is symmetric and positive definite given ε̂max > 0 by

(2.4).
Moreover, the chosen µd has the following properties where we use (3.3) and the

bounds (2.5) and (3.10b).

(Jε̂µdK, pd)Ωd = ‖ε̂maxp
d‖2L2(Ωd) − (∇ · εRd−1

h µd−1, pd)Ωd ,(3.18a)

‖µd‖L2(Γd) . ‖ε̂maxp
d‖L2(Ωd) + ‖µd−1‖L2(Γd−1).(3.18b)

The functions vd
0 with 1 ≤ d ≤ n now remain to be constructed in order to obtain

additional control on the pressure. As in Lemma 2.4, we set

vd
0 = 0 for 1 ≤ d ≤ n− 1.(3.19)

For the final case d = n, we recall that Qn
h × V n

0,h is a stable mixed finite element
pair as given by (3.1). Keeping this in mind, vn

0 is constructed such that it forms the
following solution together with pnv ∈ Qn

h

(K−1vn
0 ,w

n
0 )Ωn − (pnv ,∇ ·wn

0 )Ωn = 0 wn
0 ∈ V n

0,h

(∇ · vn
0 , q

n)Ωn = (pn −∇ · Rn−1
h µn−1, qn)Ωn , qn ∈ Qn

h

vn
0 · ν = 0, on ∂Ωn\∂ΩD.

We note that ε = ε̂max = 1 in Ωn and it follows by construction that

−bh(v0, µ; p) = (p,∇ · ε(v0 +Rhµ))Ω + (p, Jε̂µK)Ω
= ‖ε̂maxp‖2L2(Ω) = ‖p‖2Qh

.(3.20)

The corresponding bounds on vn
0 are derived using standard mixed finite element

arguments and (3.10b):

‖K− 1
2 vn

0 ‖L2(Ωn) + ‖Πn
Qh

∇ · εvn
0 ‖L2(Ωn) = ‖K− 1

2 vn
0 ‖L2(Ωn) + ‖∇ · vn

0 ‖L2(Ωn)

. ‖pn‖L2(Ωn) + ‖∇ · Rn−1
h µn−1‖L2(Γn−1)

. ‖pn‖L2(Ωn) + ‖µn−1‖L2(Γn−1)(3.21)

The construction of (v0, µ) is now complete and the bounds (3.18b) and (3.21) in
combination with (3.10) give us

|||(v0, µ, 0)|||2h . ‖K− 1
2 v0‖2L2(Ω) + ‖K− 1

2Rhµ‖2L2(Ω) + ‖γ 1
2K

− 1
2

ν µ‖2L2(Γ)

+ ‖ΠQh
(∇ · ε(v0 +Rhµ) + Jε̂µK)‖2L2(Ω)

. ‖ε̂maxp‖2L2(Ω) = ‖p‖2Qh
.(3.22)
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The proof is concluded by combining (3.20) and (3.22).
With the previous lemma, we are ready to present the stability result, given by

the following theorem.
Theorem 3.3 (Stability). Let the mesh and function spaces V0,h, Λh, and Qh

be chosen such that they comply with the restrictions from Subsection 3.1. Then the
discrete problem (3.6) has a unique solution satisfying the stability estimate

|||(u0, λ, p)|||h . ‖ε 3
2 f‖L2(Ω) + ‖g‖

H
1
2 (∂ΩD)

.(3.23)

Proof. Starting with Lemma 3.2, let (u0,p, λp) be the constructed pair based on
the pressure distribution p with the following two properties

−(p,D · [ε(u0,p +Rhλp), ε̂λp])Ω = ‖p‖2Qh
,(3.24a)

‖[u0,p, λp]‖XR,h
. ‖p‖Qh

.(3.24b)

We then introduce the following test functions with δ1 > 0 a constant to be determined
later:

v0 = u0 + δ1u0,p, µ = λ+ δ1λp, q = p+ΠQh
D · [ε(u0 +Rhλ), ε̂λ].

Substitution of these test functions in (3.6) gives us

‖K− 1
2 (u0 +Rhλ)‖2L2(Ω) + ‖γ 1

2K
− 1

2
ν λ‖2L2(Γ) + ‖ΠQh

D · [ε(u0 +Rhλ), ε̂λ]‖2L2(Ω)

+ δ1‖p‖2Qh

= − 〈g, ε(u0 + δ1u0,p) · ν〉∂ΩD
+ (ε2f, p+ΠQh

D · [ε(u0 +Rhλ), ε̂λ])Ω

− (K−1(u0 +Rhλ), δ1(u0,p +Rhλp))Ω − 〈 γ
Kν

λ, δ1λp〉Γ

≤ 1

2δ2
‖g‖2

H
1
2 (∂ΩD)

+
δ2
2
‖ε(u0 + δ1u0,p) · ν‖2

H− 1
2 (∂ΩD)

+
( 1

2(δ1ε̂max)2
+

1

2

)
‖ε2f‖2L2(Ω)

+
δ21
2
‖ε̂maxp‖2L2(Ω) +

1

2
‖ΠQh

D · [ε(u0 +Rhλ), ε̂λ]‖2L2(Ω)

+
1

2
‖K− 1

2 (u0 +Rhλ)‖2L2(Ω) +
δ21
2
‖K− 1

2 (u0,p +Rhλp)‖2L2(Ω))

+
1

2
‖γ 1

2K
− 1

2
ν λ‖2L2(Γ) +

δ21
2
‖γ 1

2K
− 1

2
ν λp‖2L2(Γ),

with δ2 > 0 a constant.
Let us consider the second term after the inequality. The fact that the extension

operator Rh has zero normal trace on ∂Ωd, the positive definiteness of K, and the
trace theorem give us

‖ε(u0 + δ1u0,p) · ν‖
H− 1

2 (∂ΩD)
≤ ‖ε(u0 +Rhλ) · ν‖

H− 1
2 (∂ΩD)

+ δ1‖ε(u0,p +Rhλp) · ν‖
H− 1

2 (∂ΩD)

. ‖K− 1
2 (u0 +Rhλ)‖L2(Ω) + ‖∇ · ε(u0 +Rhλ)‖L2(Ω)

+ δ1‖K− 1
2 (u0,p +Rhλp)‖L2(Ω) + δ1‖∇ · ε(u0,p +Rhλp)‖L2(Ω).(3.25)

Considering the second term, let εh be the piecewise constant approximation of ε. We
then use ∇ · Vh ⊆ Qh from (3.1) and the L∞ approximation property of εh from [13]
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to obtain

‖∇ · ε(u0 +Rhλ)‖L2(Ω) ≤ ‖(∇ε) · (u0 +Rhλ)‖L2(Ω) + ‖ε∇ · (u0 +Rhλ)‖L2(Ω)

. ‖ε 1
2 ‖L∞(Ω)‖u0 +Rhλ‖L2(Ω) + ‖(ε− εh)∇ · (u0 +Rhλ)‖L2(Ω)

+ ‖ΠQh
εh∇ · (u0 +Rhλ)‖L2(Ω)

. ‖u0 +Rhλ‖L2(Ω) + ‖(ε− εh)∇ · (u0 +Rhλ)‖L2(Ω)

+ ‖ΠQh
(εh − ε)∇ · (u0 +Rhλ)‖L2(Ω) + ‖ΠQh

ε∇ · (u0 +Rhλ)‖L2(Ω)

. ‖u0 +Rhλ‖L2(Ω) + h‖∇ε‖L∞(Ω)‖∇ · (u0 +Rhλ)‖L2(Ω)

+ ‖ΠQh
ε∇ · (u0 +Rhλ)‖L2(Ω)

. ‖u0 +Rhλ‖L2(Ω) + ‖ΠQh
ε∇ · (u0 +Rhλ)‖L2(Ω),(3.26)

using an inverse inequality. Finally, we use assumption (2.15) and the positive defini-
teness of K to derive

‖ΠQh
ε∇ · (u0 +Rhλ)‖L2(Ω) . ‖ΠQh

(∇ε) · (u0 +Rhλ)‖L2(Ω) + ‖ΠQh
∇ · ε(u0 +Rhλ)‖L2(Ω)

. ‖u0 +Rhλ‖L2(Ω) + ‖ΠQh
∇ · ε(u0 +Rhλ)‖L2(Ω)

. ‖u0 +Rhλ‖L2(Ω) + ‖ΠQh
D · [ε(v0 +Rhµ), ε̂µ]‖L2(Ω)

+ ‖ΠQh
Jε̂µK‖L2(Ω)

. ‖[u0, λ]‖XR,h
.(3.27)

The steps from (3.26) and (3.27) are then repeated for u0,p + Rhλp and we
conclude

‖ε(u0 + δ1u0,p) · ν‖2
H− 1

2 (∂ΩD)
. ‖[u0, λ]‖2XR,h

+ δ21‖[u0,p, λp]‖2XR,h
.(3.28)

By setting δ2 sufficiently small and using the properties of (u0,p, λp) from (3.24), we
obtain

‖[u0, λ]‖2XR,h
+ δ1‖p‖2Qh

. ‖ε 3
2 f‖2L2(Ω) + ‖g‖2

H
1
2 (∂ΩD)

+ δ21‖p‖2Qh
(3.29)

Choosing a sufficiently small value for δ1 then concludes the stability estimate. Since
we are considering a square linear system, this estimate implies existence and unique-
ness of the solution.

With the stability result from Theorem 3.3, we continue with the basic error
estimates. The true solution, i.e. the unique solution to (2.23), will be denoted by
(u0, λ, p) and the finite element solution will be called (u0,h, λh, ph). Since we are
interested in the combined fluxes, we re-introduce

u = u0 +Rλ, uh = u0,h +Rhλh.

These definitions show the flexibility in the choice of extension operator. In fact,
for a given u with normal trace λ on Γ, the above decomposition is possible for an
arbitrary choice of R satisfying (2.18). In turn, the goal of the analysis which follows
is not to prove that u0,h converges to u0 since this depends completely on the choice
of extension operator. Rather, we aim to show that the combined flux uh converges
to u. To emphasize this nuance, we introduce the norm:

‖[v, µ]‖2Xh
= ‖K− 1

2 v‖2L2(Ω) + ‖γ 1
2K

− 1
2

ν µ‖2L2(Γ) + ‖ΠQh
D · [εv, ε̂µ]‖2L2(Ω).(3.30)
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Let ΠΛh
: Λ → Λh and ΠQh

: Q → Qh be L2-projection operators to the
corresponding discrete spaces. Additionally, let Πd

Vh
: V d ∩ (L2+s)d → V d

h for 1 ≤ d ≤
n and s > 0 denote the standard Fortin interpolator associated with the chosen flux
space V d. The direct sum of Πd

Vh
over all dimensions 1 ≤ d ≤ n gives us ΠVh

.
Let k represent the order of the polynomials in the pressure space. The following

interpolation estimates hold for the operators ΠVh
, ΠΛh

, and ΠQh
and a chosen value

of k (see e.g. [5, 9]):

‖u−ΠVh
u‖0,Ω . ‖u‖r,Ω hr, 1 ≤ r ≤ k + 1,(3.31a)

‖∇ · (u−ΠVh
u)‖0,Ω . ‖∇ · u‖r,Ω hr, 1 ≤ r ≤ k + 1,(3.31b)

‖λ−ΠΛh
λ‖0,Γ . ‖λ‖r,Γ hr, 1 ≤ r ≤ k + 1,(3.31c)

‖p−ΠQh
p‖0,Ω . ‖p‖r,Ω hr, 1 ≤ r ≤ k + 1.(3.31d)

Here, ‖ · ‖r,Σ is short-hand for the Hr(Σ)-norm.
We are now ready to continue with the error estimates. For this, we employ the

same strategy as in [7]. First, the test functions are chosen from the discrete function
spaces and we subtract the systems (2.23) and (3.6) to obtain

(K−1(u− uh),vh)Ω + 〈 γ
Kν

(λ− λh), µh〉Γ − (p− ph, D · [εvh, ε̂µh])Ω

+ (qh, D · [ε(u− uh), ε̂(λ− λh)])Ω = 0.(3.32)

An immediate consequence of choosing qh = ΠQh
D · [ε(u−uh), ε̂(λ−λh)] is that

ΠQh
D · [ε(u− uh), ε̂(λ− λh)] = 0.(3.33)

Turning back to (3.32), we introduce the projections of the true solution onto the
corresponding spaces and manipulate the equation to

(K−1(ΠVh
u− uh),vh)Ω + 〈 γ

Kν
(ΠΛh

λ− λh), µh〉Γ − (ΠQh
p− ph, D · [εvh, ε̂µh])Ω

+ (qh,ΠQh
D · [ε(ΠVh

u− uh), ε̂(ΠΛh
λ− λh)])Ω

= (K−1(ΠVh
u− u),vh)Ω + 〈 γ

Kν
(ΠΛh

λ− λ), µh〉Γ − (ΠQh
p− p,D · [εvh, ε̂µh])Ω

+ (qh,ΠQh
D · [ε(ΠVh

u− u), ε̂(ΠΛh
λ− λ)])Ω.

We continue by making the following explicit choice of test functions. For that,
we first introduce the pair (up,h, λp,h) from the inf-sup condition in Lemma 3.2 based
on the pressure distribution ΠQh

p− ph. Let us recall the following two properties

−(ΠQh
p− ph, D · [εup,h, ε̂λp,h])Ω = ‖ΠQh

p− ph‖2Qh
,(3.34a)

‖[up,h, λp,h]‖Xh
. ‖ΠQh

p− ph‖Qh
.(3.34b)

Under the assumption that the solution has sufficient regularity, we are ready to
set the test functions as

vh = ΠVh
u− uh + δ1up,h,

µh = ΠΛh
λ− λh + δ1λp,h,

qh = ΠQh
p− ph,
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with δ1 > 0 to be determined later. Substitution in the above system and applying
Cauchy-Schwarz and Young inequalities multiple times (with parameters δ1, δ2, δ3 > 0)
and (3.34a) then gives us

(
1− δ2

2
− δ3

2

)(
‖K− 1

2 (ΠVh
u− uh)‖2L2(Ω) + ‖γ 1

2K
− 1

2
ν (ΠΛh

λ− λh)‖2L2(Γ)

)

+ δ1‖ΠQh
p− ph‖2Qh

≤
(

1

2δ3
+

1

2

)(
‖K− 1

2 (ΠVh
u− u)‖2L2(Ω) + ‖γ 1

2K
− 1

2
ν (ΠΛh

λ− λ)‖2L2(Γ)

)

+
1

2δ1
‖ε̂−1

maxΠQh
D · [ε(ΠVh

u− u), ε̂(ΠΛh
λ− λ)]‖2L2(Ω)

+
δ1
2
‖ε̂max(ΠQh

p− ph)‖2L2(Ω)

+

(
1

2δ2
+

1

2

)
δ21

(
‖K− 1

2up,h‖2L2(Ω) + ‖γ 1
2K

− 1
2

ν λp,h‖2L2(Γ)

)

+ (p−ΠQh
p,D · [ε(ΠVh

u− uh + δ1up,h), ε̂(ΠΛh
λ− λh + δ1λp,h)])Ω.(3.35)

We continue to form a bound on the last term in (3.35). For brevity, we briefly
revert to the notation of vh and µh. The definition of the operator D· and the product
rule give us

(p−ΠQh
p,D · [εvh, ε̂µh])Ω = (p−ΠQh

p,∇ · εvh + Jε̂µhK)Ω
= (p−ΠQh

p,∇ε · vh)Ω + (p−ΠQh
p, ε∇ · vh)Ω + (p−ΠQh

p, Jε̂µhK)Ω.(3.36)

Let us consider the three terms on the right-hand side one at a time. For the first
term, we use Cauchy-Schwarz, (2.3), and the positive-definiteness of K to derive

(p−ΠQh
p,∇ε · vh)Ω ≤ ‖p−ΠQh

p‖L2(Ω)‖∇ε‖L∞(Ω)‖vh‖L2(Ω)

. ‖p−ΠQh
p‖L2(Ω)‖vh‖L2(Ω)

. ‖p−ΠQh
p‖L2(Ω)‖K− 1

2 vh‖L2(Ω).(3.37)

Let us continue with the second term. Let εh be the piecewise constant approxi-
mation of ε. Since ∇ · vh ∈ Qh, we have εh∇ · vh ∈ Qh. We use this in combination
with the L∞ approximation property of εh from [13] and an inverse inequality to
derive

(p−ΠQh
p, ε∇ · vh)Ω = ((I −ΠQh

)p, (ε− εh)∇ · vh)Ω

. ‖p−ΠQh
p‖L2(Ω)h‖∇ε‖L∞(Ω)‖∇ · vh‖L2(Ω)

. ‖p−ΠQh
p‖L2(Ω)‖vh‖L2(Ω)

. ‖p−ΠQh
p‖L2(Ω)‖K− 1

2 vh‖L2(Ω).(3.38)

Next, we consider the final term in (3.36). With the exception of d = 1 and n = 3,
this term is zero since JΛhK = Qh by (3.3) and ε̂ is constant. Thus, let us consider a
Ωd with d = 1 and n = 3. In this case, we derive

(p−ΠQh
p, Jε̂µhK)Ωd . ‖p−ΠQh

p‖L2(Ωd)‖ε̂µh‖L2(Ωd)

. ‖p−ΠQh
p‖L2(Ωd)‖γ

1
2K

− 1
2

ν µh‖L2(Ωd).(3.39)
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The final equality follows by noting that ε̂1 h ε2 h γ
3−2
2 and that there is no extension

of the one-dimensional domain beyond the point where γ = 0.
For the final term in (3.35), we then obtain from (3.36)-(3.39):

(p−ΠQh
p, D · [εvh, ε̂µh])Ω

. ‖p−ΠQh
p‖L2(Ω)(‖K− 1

2 vh‖L2(Ω) + ‖γ 1
2K

− 1
2

ν µ1
h‖L2(Γ1))

≤ ‖p−ΠQh
p‖L2(Ω)(‖K− 1

2 (ΠVh
u− uh)‖L2(Ω) + ‖K− 1

2 δ1up,h‖L2(Ω)

+ ‖γ 1
2K

− 1
2

ν (Π1
Λh
λ1 − λ1h)‖L2(Γ1) + ‖γ 1

2K
− 1

2
ν δ1λ

1
p,h‖L2(Γ1))

≤
(

1

2δ4
+

1

2δ5
+ 1

)
‖p−ΠQh

p‖2L2(Ω)

+
δ4
2
‖K− 1

2ΠVh
u− uh‖2L2(Ω) +

1

2
δ21‖K− 1

2up,h‖2L2(Ω)

+
δ5
2
‖γ 1

2K
− 1

2
ν (Π1

Λh
λ1 − λ1h)‖2L2(Γ1) +

1

2
δ21‖γ

1
2K

− 1
2

ν λ1p,h‖2L2(Γ1)).

We collect the above and set the parameters δ2 to δ5 sufficiently small. In turn,
(3.34b) and a sufficiently small δ1 then give us the estimate

‖K− 1
2 (ΠVh

u− uh)‖2L2(Ω) + ‖γ 1
2K

− 1
2

ν (ΠΛh
λ− λh)‖2L2(Γ) + ‖ΠQh

p− ph‖2Qh

. ‖[u−ΠVh
u, λ−ΠΛh

λ]‖2Xh
+ ‖p−ΠQh

p‖2L2(Ω).

Thus, with (3.33), the triangle inequality, and the properties from (3.31), we have
shown convergence of order k + 1 as stated in the following theorem.

Theorem 3.4 (Convergence). Let (u0, λ, p) solve (2.23) and denote u = u0+Rλ.
Analogously, let (u0,h, λh, ph) solve (3.6) and denote uh = u0,h +Rhλh. Then, given
a quasi-uniform grid, the norms from (3.14) and (3.30), and the Fortin interpolators
from (3.31), the following error estimate holds

‖[u− uh, λ− λh]‖Xh
+ ‖p− ph‖Qh

. ‖[u−ΠVh
u, λ−ΠΛh

λ]‖Xh
+ ‖p−ΠQh

p‖L2(Ω)

. hk+1(‖u‖k+1,Ω + ‖∇ · u‖k+1,Ω + ‖λ‖k+1,Γ + ‖p‖k+1,Ω).(3.40)

4. Numerical Results. To confirm the theory derived in the previous sections,
we show two sets of numerical results using test cases designed to highlight some of the
typical challenges associated with fracture flow simulation. First, we introduce a setup
in two dimensions and describe the included features with their associated parameters,
followed by an evaluation of the results. This example includes a fracture tip gradually
decreasing to zero, thus indicating that (2.15) may not be a necessary condition. Next,
a three-dimensional problem is considered which provides an accessible illustration of
the dimensional decomposition full dimensional decomposition.

4.1. Two-Dimensional Problem. For the two-dimensional test case, the dom-
ain Ω is the unit square. A unit pressure drop is simulated by imposing a Dirichlet
boundary condition for the pressure at the top and bottom boundaries of Ω. On the
remaining sides, a no-flow boundary condition is imposed. For simplicity, the source
function f is set to zero.
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Multiple fractures with different properties are added to Ω to show the extent of
the capabilities of the method. Figure 3 (Left) gives an illustration of these fractures.
First, the domain contains a fracture intersection. Modeling intersections is non-trivial
for a variety of fracture flow schemes and typically calls for special considerations (see
e.g. [15, 17, 31, 32]). In contrast, for the method we present, the implementation of
an intersection follows naturally due to the dimensional decomposition. Although the
test case merely contains a single intersection, this can easily be extended.

In addition to the intersection, a second aspect is the termination of fractures.
The method is designed to handle these endings well, which is investigated by intro-
ducing immersed and half-immersed fractures as well as fractures crossing through
the boundary as shown in Figure 3 (Left). As suggested in Subsection 2.2, a fracture
ending can either be modeled by ending the feature and setting a zero-flux boundary
condition or letting the aperture decrease to zero. Both models are included here,
applied to the lower and upper horizontal fractures, respectively.

By setting the aperture to zero, a virtual extension is created which may be
desirable for computational reasons. Due to the close relation to mortar methods, a
virtual fracture can serve as an interface between two subdomains with non-matching
grids, thus creating a domain decomposition method. By setting the aperture to zero,
tangential flow is naturally eliminated and the method simplifies to a mortar scheme
with the normal flux as the mortar variable. For our test case, the region where this
occurs is illustrated by a dashed line in Figure 3.

Furthermore, we investigate the handling of non-matching grids by independently
meshing the two sides of all fractures, illustrated by Figure 3 (Right). The mortar
mesh is then chosen sufficiently coarse in order to meet requirement (3.2).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 3. (Left) The domain contains an intersection, multiple fracture endings, a fracture
passing through the domain and a virtual extension of a fracture represented by the dashed line.
(Right) The grid is non-matching along all fractures, including the sections with zero aperture.

Let us continue by defining the parameters for the test cases. First, we assume
isotropic permeability in Ω2 and set K2 as the 2 × 2 identity tensor. The different
included fractures are given different material properties, given in Table 1. The aper-
ture γ is chosen as a constant in all fractures except for the central horizontal feature
Ω1

7, which has zero aperture for x1 ≤ 0.5 and we let the aperture increase for x1 > 0.5
subject to the constraint on the gradient from (2.3). The precise formula is given in
Table 1. Fractures with high permeabilities are expected to stimulate flow whereas a
low permeability leads to blocking features.
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For this example, we assume that K0
ν , i.e. the permeability in the intersection

point, is given. It is possible to define this permeability differently on each interface
between fracture and intersection depending on the permeabilities of the attached
fractures. Alternatively, a single value can be prescribed, yet this will rely heavily
on the modeling assumptions. Here, we omit such procedures in order to present the
scheme in the most general setting.

Table 1
The coordinates and parameters associated with the lower-dimensional domains.

xstart xend K,Kν γ
Ω0

1 (0.5, 0.75) 100 0.01

Ω1
1 (0.5, 0.75) (0.7, 0.8) 100 0.01

Ω1
2 (0.5, 0.75) (0.3, 0.9) 100 0.01

Ω1
3 (0.5, 0.75) (0.3, 0.7) 100 0.01

Ω1
4 (0.5, 0.75) (0.7, 0.6) 100 0.01

Ω1
5 (0.75, 0) (0.5, 0.75) 100 0.01

Ω1
6 (0, 0.3) (0.5, 0.3) 0.01 0.01

Ω1
7 (0, 0.5) (1, 0.5) 0.01 0.01(2max(x1 − 0.5, 0))4

4.1.1. Qualitative Results. The results for the two-dimensional test case in-
troduced above are shown in Figure 4 with the use of lowest order Raviart-Thomas
elements for the flux and piecewise constants for the mortar and pressure variables
(see (3.4)). As expected, the results are free of oscillations and neither the fracture
endings, intersection, or non-matching grid cause problems for the scheme. Moreover,
the solution is qualitatively in accordance with the physically expected results.

Most notably, we observe the effects on the pressure distribution related to the
prescribed permeabilities and apertures. High permeabilities enforce a nearly continu-
ous pressure, which is clearly shown both between the fracture and matrix pressures,
but similarly between the fracture and intersection pressure, represented by a dot. On
the other hand, the two regions with low permeabilities result in a pressure discon-
tinuity across the fracture. Recall that the abrupt fracture ending calls for a no-flux
boundary condition, whereas a gradual decrease in aperture naturally stops the flow
beyond the closure point of the fracture. From the pressure and flux distributions
in Figure 4, it is clear that these two different models for fracture endings lead to
different behavior of the solution. In particular, the solution is visibly less regular
around the abrupt fracture ending compared to the region where a fracture pinches
out. Thus, the result emphasizes the impact of abrupt fracture endings relative to
gradual pinch-outs for low permeabilities.

As an additional comment, we have also investigated fracture pinch-outs which
violate (2.3). In this case, minor oscillations are seen near the fracture tip, verifying
that inequality (2.3) is a necessary condition not just for the analysis, but also for the
method.

4.1.2. Convergence. According to the theory, we expect to see linear conver-
gence in all variables for the lowest order choice of spaces described by (3.4) with
k = 0. To verify this, numerical experiments were performed on five consecutively
refined grids. All solutions were then compared to the solution on the finest grid.

Let us continue by describing the norms used in this comparison, starting with
the flux variables. These fluxes have irregular behavior around fracture tips resulting
in a loss of convergence rates in these regions. For that reason, we exclude balls with
some small radius ρ > 0 centered at the fracture tips, denoted by Bρ. For this test
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Figure 4. (Left) The pressure distribution for the two-dimensional test case. The effects of
abrupt fracture endings as opposed to gradual closure of fractures is apparent around the tips of the
blocking features. Continuity of the solution is visible where the aperture equals zero. (Right) The
flow uses conducting fractures as preferential flow paths whereas it is forced around the features with
low permeability.

case, it has been found sufficient to set ρ = 0.02. We emphasize that the flux variable
is given by uh = u0,h +Rhλh, i.e. the full flux is compared in accordance with the
theory from Subsection 3.2. Moreover, (3.33) shows there is no error in the divergence
of the flux when comparing the discrete to the continuous solution using the norms
from (3.30). Therefore, we consider convergence in the following, appropriately scaled
norms:

|v|V = ‖K−1/2v‖L2(Ω\Bρ), v ∈ V ,(4.1a)

|µ|Λ = ‖γ 1
2K

− 1
2

ν µ‖L2(Γ), µ ∈ Λ,(4.1b)

|q|Q = ‖ε̂maxq‖L2(Ω), q ∈ Q.(4.1c)

The errors and convergence results are shown in Table 2. On average, we ob-
serve linear convergence in all variables, confirming the theory. For d = 0, which
corresponds to a point evaluation of the solution, the accuracy becomes dependent
on the particular grid near the intersection, and while the general trend is first-order
convergence, the particular rates for this example appear erratic.

4.2. Three-Dimensional Problem. The model problem presented in this section
is specifically chosen to illustrate the dimensional decomposition in three dimensions.
The domain Ω is constructed by starting with the unit cube and introducing three
planar fractures defined by x1 = 0.5, x2 = 0.5, and x3 = 0.5, respectively.

The dimensional decomposition of Ω as described in Section 2.1 is then performed
as follows. The fractures split the domain into 8 smaller cubes whose union defines
Ω3. The domain Ω2 is defined as the union of the fractures excluding the intersection
lines (i.e. Ω2 consists of 12 planes). Next, the union of the 6 intersection lines, after
exclusion of the intersection point, forms Ω1. Finally, the single intersection point
with coordinates (0.5, 0.5, 0.5) defines Ω0. To conclude, Γ is defined as the union of
all interfaces between subdomains of codimension one.

To close the problem, the following boundary conditions are introduced. The
pressure is given at the top and bottom by the function g(x) = x3

(
x21 + x2

)
. A
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Table 2
Relative errors and convergence rates on a grid with typical mesh size hcoarse and consecutively

refined grids.

d=0 d=1 d=2
h/hcoarse Error Rate Error Rate Error Rate

uh

20 1.40e-01 1.10e-01
2−1 6.84e-02 1.04 7.07e-02 0.64
2−2 3.17e-02 1.11 3.19e-02 1.15
2−3 1.21e-02 1.39 1.39e-02 1.19

λh

20 5.46e-02 1.56e-01
2−1 1.47e-02 1.90 8.36e-02 0.90
2−2 3.74e-03 1.97 4.32e-02 0.95
2−3 1.94e-03 0.95 2.06e-02 1.07

ph

20 9.63e-05 1.04e-02 2.44e-02
2−1 4.43e-06 4.44 4.96e-03 1.07 1.21e-02 1.01
2−2 1.40e-05 -1.66 2.40e-03 1.05 5.87e-03 1.04
2−3 5.88e-06 1.26 1.04e-03 1.21 2.59e-03 1.18

no-flux condition is set on the remaining boundaries. All fracture planes and lines
touching the boundary ∂Ω naturally inherit these conditions.

The parameters for this test case are chosen such that the problem reflects con-
ducting fractures. Specifically, we set K3 = 1 as the matrix permeability, Kd =
Kd

ν = 100 for 0 ≤ d ≤ 2, and the aperture as γ = 0.01 for all lower-dimensional
domains. The simplicial meshes generated for this problem are matching along all in-
tersections and thus, a matching mortar mesh is employed. The discretized problem
is implemented with the use of FEniCS [23].

Due to the lack of immersed fracture tips in the proposed domain, no special
considerations are needed and each variable is expected to converge linearly for all
values of d. The numerical results displayed by Table 3 confirm these expectations.
Once again, the solution on a finer grid is used to serve as the true solution.

Table 3
Relative errors and convergence rates for the 3D problem. The results show that each variable

has (at least) first order convergence in each dimension.

d=0 d=1 d=2 d=3
h Error Rate Error Rate Error Rate Error Rate
2−1 1.46e-01 3.50e-01 2.76e-01

uh 2−2 4.62e-02 1.66 1.97e-01 0.83 1.56e-01 0.83
2−3 1.31e-02 1.81 9.76e-02 1.02 7.76e-02 1.00
2−1 2.24e-01 2.15e-01 1.94e-01

λh 2−2 1.71e-02 3.71 9.93e-02 1.12 1.07e-01 0.86
2−3 5.96e-03 1.52 4.30e-02 1.21 5.60e-02 0.93
2−1 4.51e-02 1.55e-01 1.50e-01 1.36e-01

ph 2−2 7.11e-03 2.67 7.40e-02 1.07 7.15e-02 1.07 6.69e-02 1.02
2−3 1.49e-03 2.25 3.29e-02 1.17 3.17e-02 1.17 3.06e-02 1.13

To visualize the solution obtained in this test case, Figure 5 shows the pressure
distribution and the two-dimensional fluxes, i.e. the fluxes tangential to the fractures.
Due to the parameters and boundary conditions, the solution exhibits a dominant
flow through the conductive fractures from top to bottom.

5. Conclusion. In this work, we proposed a mixed finite element method for
Darcy flow problems in fractured porous media. The use of flux mortars in a mixed
method results in a mass conservative scheme which is able to handle non-matching
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Figure 5. The pressure distribution in the regular three-dimensional case superimposed on the
two-dimensional flux field. The solution is qualitatively consistent with expectations for a problem
with conducting fractures.

grids. The key novel components of the method are the hierarchical approach obtained
after subdividing the domain in a dimensional manner, as well as the use of dimen-
sionally composite function spaces to analyze the problem with respect to stability
and a priori error estimates. Our analysis shows the method is robust and convergent
allowing for varying, and arbitrary small apertures. Numerical results confirm the
theory, and furthermore show that the constraint on the degeneracy of the normal
permeability used in the analysis may not be needed in practice.
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Abstract 
Mixed-dimensional partial differential equations arise in several physical applications, wherein parts of 
the domain have extreme aspect ratios. In this case, it is often appealing to model these features as 
lower-dimensional manifolds embedded into the full domain. Examples are fractured and composite 
materials, but also wells (in geological applications), plant roots, or arteries and veins.  

In this manuscript, we survey the structure of mixed-dimensional PDEs in the context where the sub-
manifolds are a single dimension lower than the full domain, including the important aspect of 
intersecting sub-manifolds, leading to a hierarchy of successively lower-dimensional sub-manifolds. We 
are particularly interested in partial differential equations arising from conservation laws. Our aim is to 
provide an introduction to such problems, including the mathematical modeling, differential geometry, 
and discretization.  

1. Introduction 
Partial differential equations (PDE) on manifolds are a standard approach to model on high-aspect 
geometries. This is familiar in the setting of idealized laboratory experiments, where 1D and 2D 
representations are used despite the fact that the physical world is 3D. Similarly, it is common to 
consider lower-dimensional models in applications ranging from geophysical applications. Some 
overview expositions for various engineering problems can be found in [1, 2, 3]. 

Throughout this paper we will consider the ambient domain to be 3D, and our concern is when models 
on 2D submanifolds are either coupled to the surrounding domain, and/or intersect on 1D and 0D 
submanifolds. Such models are common in porous media, where the submanifolds may represent either 
fractures (see e.g. [4]) or thin porous strata (see [1]), but also appear in materials [3]. In all these 
examples, elliptic differential equations representing physical conservation laws are applicable on all 
subdomains, and the domains of different dimensionality are coupled via discrete jump conditions. 
These systems form what we will consider as mixed-dimensional elliptic PDEs, and we will limit the 
exposition herein to this case.  

In order to establish an understanding for the physical setting, we will in section 2 present a short 
derivation of the governing equations for fractured porous media, emphasizing the conservation 



Proceedings of 24th International Conference on Domain Decomposition Methods, Svalbard,  
Lecture Notes in Computational Science and Engineering 

2 
 

structure and modeling assumptions. This derivation will lead to familiar models from literature (see e.g. 
[4, 5, 6, 7] and references therein).  

We develop a unified treatment of mixed-dimensional differential operators on submanifolds of various 
dimensionality, using the setting of exterior calculus, and thus recast the physical problem in the sense 
of differential forms. We interpret the various subdomains as an imposed structure on the original 
domain, and provide a decomposition of differential forms onto the mixed-dimensional structure. By 
introducing a suitable inner product, we show that this mixed-dimensional space is a Hilbert space. On 
this decomposition we define a semi-discrete exterior derivative, which leads to a de Rham complex 
with the same co-homology structure as the original domain. It is interesting to note that the differential 
operators we define were independently considered by Licht who introduced the concept of discrete 
distributional differential forms [8]. A co-differential operator can be defined via the inner product, and 
it is possible to calculate an explicit expression for the co-differential operator. This allows us to 
establish a Helmholtz decomposition on the mixed-dimensional geometry. We also define the mixed-
dimensional extensions of the familiar Sobolev spaces.  

Having surveyed the basic ingredients of a mixed-dimensional calculus, we are in a position to discuss 
elliptic minimization problems. Indeed, the mixed dimensional minimization problems are well-posed 
with unique solutions based on standard arguments, and we also state the corresponding Euler 
equations (variational equations). With further regularity assumptions, we also give the strong form of 
the minimization problems, corresponding to conservation laws and constitutive laws for mixed-
dimensional problems.  

This paper aims to provide a general overview and roadmap for the concepts associated with 
hierarchical mixed-dimensional partial differential equations, more complete and detailed analysis will 
necessarily due to space be considered in subsequent publications.  

2. Fractured porous media as a mixed-dimensional PDE 
This section gives the physical rationale for mixed-dimensional PDE. As the section is meant to be 
motivational, we will omit technical details whenever convenient. We will return to these details in the 
following sections.  

 

Figure 1: Example geometry of two intersecting fractures in 2D, and the logical representation of the 
intersection after mapping to a local coordinate system.  
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We consider the setting of a domain 𝐷 ∈ ℝ . In sections 3 and onwards we will consider arbitrary 𝑛, 
however in this section we will for simplicity of exposition consider only 𝑛 = 3. We consider a fractured 
media, where we are given explicit knowledge of the fractures, thus we consider the domains Ω  as 
given, where 𝑖 ∈ 𝐼 is an index and 𝑑 = 𝑑(𝑖) represents the dimensionality of the domain. We denote by 
𝑖 ∈ 𝐼  the subset of indexes in 𝐼 for which 𝑑(𝑖) = 𝑑. In particular, intact material lies in domains of 𝑑 =

3, while 𝑑 = 2 represents fracture segments, and 𝑑 = 1 represents intersections, see Figure 1. For each 
domain Ω  we assign an orientation based on 𝑛 − 𝑑 outer normal vectors 𝝂 . 

In order to specify the geometry completely, we consider the index sets 𝑆  and 𝑆  as the 𝑑 + 1 
dimensional and 𝑑 − 1 dimensional neighbors of a domain 𝑖. Thus for 𝑑 = 2, the set 𝑆  contains the 
domain(s) Ω  which are on the positive (and negative) side of Ω . On the other hand, the set 𝑆  contains 
the lines that form (parts of) the boundary of Ω . Additionally, the set of all lower-dimensional neighbors 
is defined as  𝔖 = 𝑆 , 𝑆 , …  We will define Ω = ∑ Ω∈  as all subdomains of dimension 𝑑, while 
similarlty Ω = ∑ Ω  is the full mixed-dimensional stratification. Note that since the superscript 
indicating dimension is redundant when the particular domain is given, we will (depending what offers 
more clarity) use Ω = Ω  interchangeably. 

For steady-state flows in porous media, the fluid satisfies a conservation law, which for intact rock and 
an 𝑛-dimensional fluid flux vector 𝒖 takes the form  

∇ ⋅ 𝒖 = 𝜙   on  𝐷   (2.1) 

We wish to express this conservation law with respect to our geometric structure. To this end, let us first 
define the mixed-dimensional flux 𝖚, which is simply a 𝑑-dimensional vector field on each Ω . We write 
𝖚 = 𝒖  when we want to talk about specific components of 𝖚. We similarly define other mixed-
dimensional variables, such as the source-term 𝔣.  

Now clearly, for 𝑑 = 𝑛, we recover equation (2.1). Now consider 𝑑 = 𝑛 − 1, and a fracture Ω  of 
variable Lipschitz-continuous aperture (illustrated for 𝑑(1) = 1 in figure 2).  

 

Figure 2: Example of local geometry for derivation of mixed-dimensional conservation law.  

Here the dashed lines indicate a fracture boundary, the solid black line is the lower-dimensional 
representation, and the solid gray line indicates the region of integration, 𝜔, of length ℓ and width 𝜖(𝑥). 
Evaluating the conservation law over 𝜔 leads to  

∇ ⋅ 𝒖  𝑑𝑎 = 𝒖 ⋅ 𝝂  𝑑𝑠 = 𝜙  
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where 𝝂 are the external normal vectors. Since our integration area is in the limiting case of ℓ → 0 a 
quadrilateral, we split the last integral into parts where 𝝂 is constant,  

𝒖 ⋅ 𝝂  𝑑𝑠 = 𝝂 ⋅ 𝒖  𝑑𝑠 + 𝝂 ⋅ 𝒖   𝑑𝑠 + 𝝉 ⋅ 𝒖  𝑑𝑠 − 𝝉 ⋅ 𝒖  𝑑𝑠 

where [𝑙 , 𝑙 ] ∈ 𝑆  is the domain on the “+” and “-” side of Ω , respectively, and denote the Left and 
Right side of the integration boundary by subindexes. The notation 𝝉 is the tangential vector to Ω . 
Clearly, letting the length ℓ be infinitesimal, the last two terms satisfy 

lim
ℓ→

∫ 𝝉 ⋅ 𝒖  𝑑𝑠 − ∫ 𝝉 ⋅ 𝒖  𝑑𝑠

ℓ
= ∇ ⋅ 𝝉 ⋅ 𝒖  𝑑𝑠 = ∇ ⋅ (𝜖𝒖 ) 

where ∇ ⋅ is the in-plane divergence and  

𝒖 ≡ ∫ 𝝉 ⋅ 𝒖  𝑑𝑠     (2.3) 

Considering similarly the limits of ℓ → 0 for the two first terms, we obtain for the positive side  

lim
ℓ→

𝝂 ⋅ ℓ 𝒖
( )

 𝑑𝑠 = 1 +
𝑑

𝑑𝑥
∇ (𝜕 𝜔)

/

𝝂 ⋅ 𝒖
( ) 

Combining the above, we thus have  

lim
ℓ→

ℓ ∫ ∇ ⋅ 𝒖  𝑑𝑎 = 𝜆 + 𝜆 + ∇ ⋅ (𝜖𝒖 ) = ⟦𝜆⟧ + ∇ ⋅ (𝜖𝒖 )  (2.4) 

where 𝜆 is defined as  

𝜆 = 1 + ∇ (𝜕 𝜔)
/

𝝂 ⋅ 𝒖
( )     (2.5) 

and (using the analogous definition for 𝜆 ) 

⟦𝜆⟧ = − ∑ 𝜆∈        (2.6) 

Note that we have made no approximations in obtaining equation (2.4) – the left-hand side is an exact 
expression of conservation. The model approximations appear later when deriving suitable constitutive 
laws. Nevertheless, since the fractures have a high aspect ratio by definition, the pre-factor in equation 
(2.5) is in practice often approximated by identity, for which (2.5) simplifies to  

𝜆 ≈ 𝝂± ⋅ 𝒖        (2.7) 

The derivation above (including the definition in equation (2.4)), generalizes in the same way to 
intersection lines and intersection points, thus we find that for all 𝑑 < 𝑛 it holds that  

⟦𝜖̂𝜆⟧ + ∇ ⋅ (𝜖 𝒖 ) = 𝜙      (2.8) 

Here the hat again denotes the next higher-dimensional domains, so that 𝜖̂ = 𝜖 . Since 𝑆 = Ø for 𝑖 ∈ 𝐼 ,  
equation (2.8) reduces to (2.1) for 𝑑 = 𝑛, and thus it represents the mixed-dimensional conservation 
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law for all Ω . In this more general setting, 𝜖 denotes the cross-sectional width (2D), area (1D) and 
volume (0D) for successively lower-dimensional intersections.  

For porous materials, the conservation law (2.1) is typically closed by introducing Darcy’s law as a 
modeling assumption, stated in terms of a potential 𝑝 on the domain 𝐷 as 

𝒖 = −𝐾∇𝑝      (2.9) 

The coefficient 𝐾 is in general a tensor. Unlike for the conservation law, it is not possible to derive an 
exact expression for the mixed-dimensional constitutive law, but by making some (reasonable) 
assumptions on the structure of the solution, it is usually accepted that Darcy’s law is inherited for each 
subdomain (see extended discussion in [1], but also [9]), i.e. 

𝒖 = −𝐾 ∇ 𝑝       (2.10) 

To close the model, it is also necessary to specify an additional constraint, where the two most common 
choices are that either the potential is continuous (see discussion in [10]) 

�̂� = �̂�      (2.11) 

or, more generally, that the pressure is discontinuous but related to the normal flux above 

𝜆 = −2𝐾 ,±
±

( )
     (2.12)  

The model equations (2.8-2.12) are typical of those used in practical applications [11]. However, to the 
authors’ knowledge, our work is the first time they are explicitly treated as a mixed-dimensional PDE 
(see also [12, 13]).  

3. Exterior calculus for mixed-dimensional geometries 
We retain the same geometry as in the previous section, but continue the exposition in the language of 
exterior calculus (for introductions, see [14, 15, 16]). Throughout the section, we will assume that all 
functions are sufficiently smooth for the derivatives and traces to be meaningful. We also point out that 
similar structures to those discussed in this section have been considered previously by Licht in a 
different context [8].   

First, we note that the components of the mixed-dimensional flux discussed in section 2 all correspond 
to 𝑑 − 1 forms,  𝒖 ∈ Λ Ω , while the components of pressure all correspond to 𝑑-forms, 𝑝 ∈

Λ Ω . This motivates us to define the following mixed-dimensional 𝑘-form  

𝔏 (Ω) = ∏ Λ ( ( )) Ω∈      (3.1) 

From here on, it is always assumed that 𝔏  is defined over Ω, and the argument is suppressed.  

Moreover, we note that equation (2.7) is (up to a sign) the trace with respect to the inclusion map of the 
submanifold, thus for a mixed-dimensional variable 𝔞 ∈ 𝔏  the jump operator is naturally written as  

(𝕕𝔞) = (−1)  ∑ 𝜀 Ω , 𝜕 Ω Tr  𝑎∈    (3.2) 



Proceedings of 24th International Conference on Domain Decomposition Methods, Svalbard,  
Lecture Notes in Computational Science and Engineering 

6 
 

Here we have exchanged the bracket notation of equation (2.5b), which is common in applications, with 
a simpler notation, 𝕕,  which more clearly emphasizes that this is a (discrete) differential operator, in the 
normal direction(s) with respect to the submanifold. We use the notation 𝜀 Ω , 𝜕 Ω  to indicate the 
relative orientation (positive or negative) of the arguments. 

We obtain a mixed-dimensional exterior derivative, which we denote 𝔡, by combining the jump operator 
with the exterior derivative on the manifold, such that for 𝔞 ∈ 𝔏  

(𝔡𝔞) = 𝑑𝑎 + (𝕕𝔞)       (3.3) 

This expression is meaningful, since both 𝑑𝑎 , (𝕕𝔞) ∈ Λ ( ) Ω , and thus clearly 𝔡𝔞 ∈ 𝔏 . A 
straight-forward calculation shows that 𝑑(𝕕𝔞) = −(𝕕𝑑𝔞) , thus for all 𝔞  

𝔡𝔡𝔞 = 0      (3.4) 

and it can furthermore be shown that if 𝔞 = 0, and if 𝐷 is contractible, then there exists 𝔟 ∈ 𝔏  such 
that 𝔞 = 𝔡𝔟. Thus the mixed-dimensional exterior derivative forms a de Rham complex,  

0 → ℝ
⊂
→ 𝔏

𝔡
→ 𝔏

𝔡
→ …

𝔡
→ 𝔏 → 0     (3.5) 

which is exact (for the proof of this, and later assertions, please confer [13]).  

Due to the jump terms in the differential operators, the natural inner product for the mixed-dimensional 
geometry must take into account the traces on boundaries, and thus takes the form for 𝔞, 𝔟 ∈ 𝔏  

(𝔞, 𝔟) = ∑ 𝑎 , 𝑏 + ∑ Tr ( )  𝑎 , Tr ( )  𝑏  ∈𝔖∈    (3.6) 

Note that Λ Ω = Ø whenever 𝑘 ∉ [0, 𝑑], thus many of the terms in (3.6) are void. It is easy to verify 
that equation (3.6) indeed defines an inner product, and thus forms the norm on 𝔏  

‖𝔞‖ = (𝔞, 𝔞) /       (3.7) 

The codifferential 𝔡∗: 𝔏 → 𝔏  is defined as the dual of the exterior derivative with respect to the 
inner product, such that for 𝔞 ∈ 𝔏  

(𝔡∗𝔞, 𝔟) = (𝔞, 𝔡𝔟) + (Tr 𝔟, Tr∗𝔞)  for all 𝔟 ∈ 𝔏     (3.8) 

It follows from the properties of inner product spaces that the codifferential also forms an exact de 
Rham sequence. Thus, when 𝐷 is contractible, we have the following Helmholtz decomposition: For all 
𝔞 ∈ 𝔏 , there exist 𝔞𝔡 ∈ 𝔏  and  𝔞𝔡∗ ∈ 𝔏  such that  

𝔞 = 𝔡𝔞𝔡 + 𝔡∗𝔞𝔡∗      (3.9) 

In view of the uncertainty in the modeling community of the correct constitutive laws for mixed-
dimensional problems (as per the discussion of equation (2.11) and (2.12)), it is of great practical utility 
to be able to explicitly calculate the co-differential, since this will have the structure of the constitutive 
law. Utilizing equations (3.6) and (3.8), we obtain  

(𝔡∗𝔟) = 𝑑∗𝑏    on Ω    (3.10) 
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and  

Tr  (𝔡∗𝔟) = 𝑑∗Tr  𝑏 + Tr∗  𝑏 − ∑ (−1) 𝜀 Ω , 𝜕 Ω  𝑏∈  on 𝜕Ω  

 (3.11) 

We close this section by noting that the differential operators provide the basis for extending Hilbert 
spaces to the mixed-dimensional setting. In particular, we are interested in the first order differential 
spaces, and therefore the norms of 𝐻𝔏  and 𝐻∗𝔏  by  

‖𝔞‖ = ‖𝔞‖ + ‖𝔡𝔞‖ and  ‖𝔞‖ ∗ = ‖𝔞‖ + ‖𝔡∗𝔞‖   (3.12) 

from which we obtain the spaces  

𝐻𝔏 ≔ {𝔞 ∈ 𝔏   ‖𝔞‖ < ∞} and 𝐻∗𝔏 ≔ {𝔞 ∈ 𝔏  ‖𝔞‖ ∗ < ∞}  (3.13) 

We use the convention that a circle above the function space denotes homogeneous boundary 

conditions, i.e. 𝐻
∘

𝔏 : {𝔞 ∈ 𝐻𝔏  Tr  𝔞 = 0} and 𝐻
∘

∗𝔏 : {𝔞 ∈ 𝐻∗𝔏  Tr∗  𝔞 = 0}. The spaces 𝐻𝔏  and 
𝐻∗𝔏  can be characterized in terms of product spaces of functions defined on domains Ω  and its 
boundary components 𝜕 Ω , see e.g. [13, 12].  

Then, the Poincaré inequality holds for contractible domains in the mixed-dimensional setting for either 

𝔞 ∈ 𝐻
∘

𝔏 ∩ 𝐻∗𝔏  or 𝔞 ∈ 𝐻𝔏 ∩ 𝐻
∘

∗𝔏 :  

‖𝔞‖ ≤ 𝐶 (‖𝔡𝔞‖ + ‖𝔡∗𝔞‖)     (3.14) 

4. Mixed-dimensional elliptic PDEs 
Based on the extension of the exterior derivative and its dual to the mixed-dimensional setting, we are 
now prepared to define the generalization of elliptic PDEs. We start by considering the minimization 
problem equivalent to the Hodge Laplacian for 𝔞 ∈ 𝔏  

𝔞 = arg inf
𝔞∈

∘
𝔏 ∩ ∗𝔏

𝐽𝔎(𝔞 )     (4.1) 

where we define the functional by  

𝐽𝔎(𝔞 ) = (𝔎𝔡∗𝔞 , 𝔡∗𝔞 ) + (𝔎∗𝔡𝔞 , 𝔡𝔞 ) − (𝔣, 𝔞 )    (4.2) 

The material coefficients  𝔎 are spatially variable mappings from Λ ( ( )) Ω  onto itself, defined 
independently for all terms in the inner product (3.6). In particular, with reference to section 2, 𝔎 
contains all instances of the proportionality constants 𝐾 appearing in (2.9), (2.10) and (2.12).  

For equation (4.1) to be well-posed and have a unique solution, we need (𝔎𝔡∗𝔞 , 𝔡∗𝔞 ) + (𝔎∗𝔡𝔞 , 𝔡𝔞 ) to 
be continuous and coercive, i.e. we need to impose constraints on 𝔎 and 𝔎∗. Indeed, by reverting to the 
definition of the inner product, we define the ellipticity constant 𝛼𝔎 as the minimum eigenvalue of 𝔎, 
and similarly for  𝛼𝔎∗. We require both these constants to be bounded above zero, such that  

(𝔎𝔡∗𝔞 , 𝔡∗𝔞 ) + (𝔎∗𝔡𝔞 , 𝔡𝔞 ) ≥ min(𝛼𝔎, 𝛼𝔎∗) (1 + 𝐶 ) ‖𝔞 ‖   
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The minimum of equation (4.1) must satisfy the Euler-Lagrange equations, thus 𝔞 ∈ 𝐻
∘

𝔏 ∩ 𝐻∗𝔏  
satisfies  

(𝔎𝔡∗𝔞, 𝔡∗𝔞 ) + (𝔎∗𝔡𝔞, 𝔡𝔞 ) = (𝔣, 𝔞 )   for all 𝔞′ ∈ 𝐻
∘

𝔏 ∩ 𝐻∗𝔏    (4.3) 

From the perspective of applications, and mirroring the distinctions between conservation laws and 
constitutive laws discussed in Section 2, we will be interested in the mixed formulation of equation (4.3) 
obtained by introducing the variable 𝔟 = 𝔎𝔡∗𝔞, where 𝔟 is the generalization of the various fluxes 𝒖. 
Then we may either consider a constrained minimization problem derived from equation (4.1), or for 
the sake of brevity, proceed directly to the Euler-Lagrange formulation: Find (𝔞, 𝔟) ∈ 𝐻𝔏 × 𝐻𝔏  
which satisfy 

(𝔎 𝔟, 𝔟 ) − (𝔞, 𝔡𝔟 ) = 0   for all 𝔟 ∈ 𝐻𝔏    (4.4)  

(𝔡𝔟, 𝔞 ) + (𝔎∗𝔡𝔞, 𝔡𝔞 ) = (𝔣, 𝔞 )   for all 𝔞′ ∈ 𝐻𝔏     (4.5) 

The saddle-point formulation is well-posed subject to Babuška-Aziz inf-sup condition. Due to the 
presence of a Helmholtz decomposition, this follows by standard arguments. From equations (4.4) and 
(4.5) we deduce the strong form of the Hodge Laplacian on mixed form, corresponding to the equations  

𝔟 = 𝔎𝔡∗𝔞 and 𝔡𝔟 + 𝔡∗(𝔎∗𝔡𝔞) = 𝔣   (4.6) 

Of the various formulations, equations (4.4) and (4.5) are particularly appealing from the perspective of 
practical computations, as they do not require the coderivative.   

An important remark is that the relative simplicity of the well-posedness analysis for the mixed-
dimensional equations relies on the definition of the function spaces and norms. In particular, due to the 
definition of 𝐻𝔏  via the mixed-dimensional differential 𝔡, the norm on the function space is inherently 
also mixed-dimensional, and cannot simply be decomposed into, say norms on the function spaces 
𝐻Λ ( ) Ω . For this reason, analysis in terms of “local norms” becomes significantly more involved 
[17, 18, 11].  

5. Finite-dimensional spaces 
In order to exploit the mixed-dimensional formulations from the preceding section, and in particular 
equations (4.4-4.5) we wish to consider finite-dimensional subspaces of 𝐻𝔏 . These spaces should be 
constructed to inherit the de Rham structure of equation (3.5), and with bounded projection operators. 
A natural approach is to consider the polynomial finite element spaces as a starting point [15].  

From the finite element exterior calculus (FEEC - [15]), we know that on the highest-dimensional 
domains Ω , we may choose any of the finite element de Rham sequences, and in particular, we may 
consider the standard spaces from applications for a simplicial tessellation 𝒯 = 𝒯(Ω ) 

𝒫 Λ (𝒯 )  and   𝒫 Λ (𝒯 )   (5.1) 

These correspond to the full and reduced polynomial spaces of order 𝑟, respectively, in the sense of 
[15]. In order to build a finite element de Rham sequence, we recall that (while still commuting with 
bounded projection operators) the full polynomial spaces reduce order 
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𝒫 Λ (𝒯 ) → 𝒫 Λ (𝒯 )     (5.2) 

while the reduced spaces preserve order 

𝒫 Λ (𝒯 ) → 𝒫 Λ (𝒯 )     (5.3) 

Thus, any of these combinations of spaces are acceptable for Ω , and consider therefore the choice as 
given, and denoted by Λ ,  and Λ , .   

For 𝑑 < 𝑛, we must consider not only the continuous differential operator 𝑑, but also the discrete jump 
operator 𝕕. It is therefore clear that for i.e. 𝑑 = 𝑛 − 1, we must consider the traces of the finite element 
spaces of higher dimensions. In particular, we require for all pairs of dimensions 0 ≤ 𝑒 < 𝑑 ≤ 𝑛, 

Tr  Λ 𝒯 ⊆ Λ
( )

(𝒯 )     (5.4) 

In contrast to the continuous differential order, the discrete differential operator preserves order for 
both the full and reduced spaces, since [15]: 

Tr  𝒫 Λ 𝒯 = 𝒫 Λ ( )(𝒯 )  and  Tr  𝒫 Λ 𝒯 = 𝒫 Λ ( )(𝒯 )  (5.5) 

We now define the polynomial subspaces 𝒫𝔯
𝔪𝔏 ∈ 𝐻𝔏  as  

𝒫𝔯
𝔪𝔏 = 𝒫 Λ ( ) 𝒯      (5.6) 

where the multi-indexes 𝔯 and 𝔪 have values 𝑟 ∈ ℙ and 𝑚 ∈ [ , −], respectively. When the multi-
indexes are chosen to satisfy both (5.2-5.3) as well as (5.4), we obtain the discrete de Rham complex  

0 → ℝ ↪ 𝒫𝔯
𝔪𝔏

𝔡
→ 𝒫𝔯

𝔪𝔏
𝔡

→ …
𝔡

→ 𝒫𝔯
𝔪𝔏 → 0    (5.7) 

Due to the existence of stable projections for all finite element spaces in 𝒫𝔯
𝔪𝔏 , the discrete de Rham 

sequence can be shown to be exact, thus equations (4.4) and (4.5) have stable approximations.  

The discrete spaces for 𝐻∗𝔏  must satisfy similar properties. Equations (5.2-5.3) hold in the dual sense, 
i.e. we write 𝒫∗Λ 𝒯 = 𝒫∗Λ 𝒯 =⋆ (𝒫 Λ 𝒯 , and 𝑑∗𝒫∗Λ 𝒯 ⊂ 𝒫 ∗Λ 𝒯 ⊂

𝒫∗ Λ 𝒯 . Furthermore, the coderivative 𝔡∗ imposes the inverted condition Λ ( )
(𝒯 ) ⊆

Tr∗  Λ 𝒯  on boundaries.  

6. Implications in terms of classical calculus 
We take a moment to untangle the notation from Sections 3-5 in order to extract insight into modeling 
and discretization for the original physical problem.  

Our initial task is to express simplest form of the mixed-dimensional Hodge Laplacian in terms of 
conventional notation. We limit the discussion to the case where 𝑘 = 𝑛, the function spaces 𝐻∗𝔏  and  
𝐻𝔏   correspond to 𝐻  scalars and 𝐻(𝑑𝑖𝑣) vectors on each dimension 𝑑 ≥ 1. For 𝑑 = 0, only the 
scalars are defined. Furthermore, the term 𝔡𝔞 ∈ 𝔏 = Ø, and thus we arrive from (4.6) to the simpler 
problem  
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𝔟 = 𝔎𝔡∗𝔞 and 𝔡𝔟 = 𝔣     (6.1) 

In this case, the exterior derivative is the negative divergence plus jumps for each domain, while the 
codifferential is the gradient parallel to each domain, and the difference from boundaries perpendicular. 
As such, we arrive exactly at the model equations of Section 2, with the second choice of modeling 
assumption (2.12).  

Turning our attention to the finite element spaces, the lowest order spaces for discretizing (4.4-4.5) are 
the reduced spaces obtained by choosing 𝑟 = 1 and 𝑚 = −, from which we obtain piecewise 
constants for 𝔞 on all domains, while we obtain for 𝔟 the Nedelec 1st kind (div) – Raviart-Thomas – 
continuous Lagrange elements for domains with dimensions 𝑑 = 3,2,1, respectively – all of the lowest 
order [12] (this method will be referred to as “Mixed Reduced” in the next section).  Interestingly, if we 
choose Nedelec 2nd kind (div) elements of lowest order for 𝑑 = 3, equations (5.2) and (5.5) implies that 
we should increase the order in the lower-dimensional domains, obtaining dG elements of order 𝑛 − 𝑑 
for pressure, with BDM (2nd order) – continuous Lagrange (3rd order) for fluxes in domains with 𝑑 = 2,1. 
This is a new method resulting from the analysis herein. We refer to this method as “Mixed Full”.   

The mixed finite element discretization has the advantage of a strong conservation principle, and may 
be hybridized to obtain a cheaper numerical scheme (see [12] for a direct approach in this context, but 
also [6, 5] for direct constructions in the finite volume setting). Alternatively, we consider discretizing 
the Euler-variation of the unconstrained minimization problem, equations (4.3). The natural finite 
element spaces are 𝒫𝔯

𝔪,∗𝔏 , with 𝑟 = 1 and 𝔪 does come into play, corresponding to 1st-order 
continuous Lagrange elements in all dimensions. From an engineering perspective, a similar formulation 
has been described in [19], we refer to this method as “Primal” in the next section.  

 

7. Computational example 
In order to illustrate the concepts discussed in the preceding sections, we will continue to consider 𝑘 =

𝑛, and thus fractured porous media as a computational example, using the three numerical methods 
obtained using the lowest-order elements of the families described in the previous section.  

The example consists of the unit square with two fractures crossing through the domain, intersecting at 
a right angle, as illustrated in figures 3.  We impose unit permeability in the surroundings, set the normal 
and tangential permeability of the fractures to 100 and assume the apertures of both fractures as 𝜖 =

10 . The boundary conditions are chosen as zero pressure at the bottom and no-flux conditions on the 
sides. Moreover, a boundary pressure of one is imposed on the fracture crossing the top boundary. All 
computations were performed with the use of FEniCS [20].  
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Figure 3: (Left) Domain of computation and associated boundary conditions. The pressure boundary 
condition is only imposed on the fracture pressure. (Right) Example of calculated solution (pressure).  

The results show that all three methods are stable and convergent (Table 1). The relative errors and 𝐿 -
convergence rates after four consecutive refinements (identified by the characteristic grid size ℎ) are 
given in the following table. Here, we compare the results to a fine-scale solution, obtained after a fifth 
refinement. In this example, all grids are matching.  

  Primal Mixed Reduced Mixed Full 
Domain Grid 

size 
Pressure Pressure Flux Pressure Flux 

 ℎ Error Rate Error Rate Error Rate Error Rate Error Rate 

Ω  
2  
2  
2  

2.66e-03 
8.45e-04 
2.15e-04 

1.53 
1.65 
1.97 

2.21e-03 
7.18e-04 
1.87e-04 

1.52 
1.62 
1.94 

N/A N/A 
2.89e-04 
8.99e-05 
2.26e-05 

1.61 
1.69 
1.99 

N/A N/A 

Ω  
2  
2  
2  

2.54e-03 
9.57e-04 
3.23e-04 

1.46 
1.41 
1.57 

1.89e-02 
9.22e-03 
4.12e-03 

1.01 
1.04 
1.16 

6.32e-03 
2.49e-03 
7.82e-04 

1.22 
1.34 
1.67 

3.01e-04 
8.99e-05 
2.37e-05 

1.71 
1.74 
1.92 

1.84e-03 
7.44e-04 
2.61e-04 

1.28 
1.30 
1.51 

Ω  
2  
2  
2  

4.25e-03 
1.36e-03 
3.60e-04 

1.53 
1.64 
1.92 

1.89e-02 
9.17e-03 
4.08e-03 

1.02 
1.05 
1.17 

8.21e-02 
4.75e-02 
2.47e-02 

0.74 
0.79 
0.94 

1.86e-02 
9.11e-03 
4.07e-03 

1.01 
1.03 
1.16 

3.16e-02 
1.87e-02 
1.04e-02 

0.75 
0.75 
0.86 

 Table 1: Convergence rates for the three FE and MFEM discussed for the fracture problem in Section 6. 
With reference to Figure 3, the domain Ω  is the intersection point, Ω  represents the four fracture 
segments, while Ω  is the remaining ambient geometry.  

Each method captures the intersection pressure well, with second order convergence over all. In the 
surroundings, the pressure convergence with second order for the primal formulation and first order for 
both mixed formulations, as expected. The Mixed Full method has higher-order elements in the fracture, 
and this is reflected in higher convergence rates for both pressure and flux.  

0.25 0.75 0.5 1 0 

𝑝 =  0 

𝑢 ⋅ 𝑛 = 0 𝑢 ⋅ 𝑛 = 0 

𝑝  =  1 
𝑢 ⋅ 𝑛 = 0 



Proceedings of 24th International Conference on Domain Decomposition Methods, Svalbard,  
Lecture Notes in Computational Science and Engineering 

12 
 

Acknowledgments  
The authors wish to thank Gunnar Fløystad, Eirik Keilegavlen, Jon Eivind Vatne and Ivan Yotov for valuable 
comments and discussions on this topic. The authors also with to thank the two anonymous reviewers who 
provided helpful comments on the initial version of this manuscript.  This research is funded in part by the 
Norwegian Research Council grants: 233736 and 250223. 

 

References 
 

[1]  J. M. Nordbotten and M. A. Celia, Geological Storage of CO2: Modeling Approaches for Large-Scale 
Simulation, Hoboken, N. J.: Wiley, 2012.  

[2]  J. Bear, Hydraulics of Groundwater, McGraw-Hill, 1979.  

[3]  P. G. Ciarlet, Mathematical Elasticity Volume II: Theory of Plates, Amsterdam: Elsevier, 1997.  

[4]  C. Alboin, J. Jaffré, J. E. Roberts and C. Serres, "Domain decomposition for flow in porous media 
with fractures," in 14th conference on Domain Decomposition Methods in Sciences and 
Engineering, Cocoyoc, Mexico, 1999.  

[5]  T. H. Sandve, I. Berre and J. M. Nordbotten, "An efficient multi-point flux approximation method 
for discrete fracture-matrix simulations," Journal of Computational Physics, vol. 231, pp. 3784-
3800, 2012.  

[6]  M. Karimi-Fard, L. J. Durlofsky and K. Aziz, "An effcient discrete-fracture model applicable for 
general-purpose reservoir simulations," SPE Journal, pp. 227-236, 2004.  

[7]  V. Martin, J. Jaffré and J. E. Roberts, "Modeling fractures and barriers as interfaces for flow in 
porous media," SIAM Journal of Scientiffic Computing, vol. 26, pp. 1557-1691, 2005.  

[8]  M. W. Licht, "Complexes of discrete distributional differential forms and their homology theory," 
Foundations of Computational Mathematics, 2016.  

[9]  Y. C. Yortsos, "A theoretical analysis of vertical flow equilibrium," Transport in Porous Media, vol. 
18, pp. 107-129, 1995.  

[10] N. Schwenk, B. Flemisch, R. Helmig and B. I. Wohlmuth, "Dimensionally reduced flow models in 
fractured porous media," Computational Geosciences, vol. 16, pp. 277-296, 2012.  

[11] L. Formaggia, A. Fumagalli, A. Scotti and P. Ruffo, "A Reduced Model for Darcy's Problem in 
Networks of Fractures," ESAIM: Mathematical Modelling and Numerical Analysis, vol. 48, pp. 1089-
1116, 2014.  

[12] W. M. Boon, J. M. Nordbotten and I. Yotov, "Robust discretization of flow in fractured porous 
media," in preparation.  



Proceedings of 24th International Conference on Domain Decomposition Methods, Svalbard,  
Lecture Notes in Computational Science and Engineering 

13 
 

[13] W. M. Boon, J. M. Nordbotten and J. E. Vatne, "Exterior calculus for mixed-dimensional partial 
differential equations," in preparation.  

[14] M. Spivak, Calculus on Manifolds, Reading, Massachusetts: Addison-Wesley Publishing Company, 
1965.  

[15] D. N. Arnold, R. S. Falk and R. Winther, "Finite element exterior calculus, homological techniques, 
and applications," Acta Numerica, vol. 15, pp. 1-155, 2006.  

[16] R. Hiptmair, "Finite elements in computational electromagnetism," Acta Numerica, vol. 11, pp. 
237-339, 2002.  

[17] C. D'Angelo and A. Scotti, "A Mixed Finite Element Method for Darcy Flow in Fractured Porous 
Media with Non-Matching Grids," ESAIM: Mathematical Modelling and Numerical Analysis, pp. 
465-489, 2012.  

[18] N. Frih, V. Martin, J. E. Roberts and A. Saada, "Modeling Fractures as Interfaces with Nonmatching 
Grids," Computational Geosciences, vol. 16, pp. 1043-10060, 2012.  

[19] R. Helmig, C. Braun and M. Emmert, "MUFTE: A Numerical Model for Simulation of Multiphase 
Flow Processes in Porous and Fractured Porous Media," Universität Stuttgart, 1994. 

[20] A. Logg, K.-A. Mardal, G. N. Wells and e. al, Automated Solution of Differential Equations by the 
Finite Element Method, Springer, 2012.  

[21] X. Tunc, F. I., T. Gallouët, M. C. Cacas and P. Havé, "A model for conductive faults with non-
matching grids," Computational Geosciences, vol. 16, pp. 277-296, 2012.  

[22] X. Claeys and R. Hiptmair, "Integral equations on multi-screens," Integral Equations and Operator 
Theory, 2013.  

 

 





Paper D

Benchmarks for Single-phase Flow in
Fractured Porous Media

B. Flemisch, I. Berre, W.M. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefans-
son, A. Tatomir

Advances in Water Resources 111, (2018), p. 239–258.

doi: 10.1016/j.advwatres.2017.10.036





Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

Benchmarks for single-phase flow in fractured porous media

Bernd Flemisch⁎,a, Inga Berreb, Wietse Boonb, Alessio Fumagallib, Nicolas Schwencka,
Anna Scottic, Ivar Stefanssonb, Alexandru Tatomird

a Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Pfaffenwaldring 61, Stuttgart 70569, Germany
bDepartment of Mathematics, University of Bergen, Allégaten 41, Bergen 5007, Norway
c Laboratory for Modeling and Scientific Computing MOX, Politecnico di Milano, p.za Leonardo da Vinci 32, Milano 20133, Italy
d Department of Applied Geology, Geosciences Center, University of Göttingen, Goldschmidtstrasse 3, Göttingen 37077, Germany

A R T I C L E I N F O

Keywords:
Fractured porous media
Discretization methods
Benchmark

A B S T R A C T

This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid
flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-
centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual ex-
tended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the
schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical
parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture perme-
abilities. For each problem, the results presented are the number of unknowns, the approximation errors in the
porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of
the discretized linear system. All data and meshes used in this study are publicly available for further com-
parisons.

1. Introduction

In porous-media flow applications, the domains of interest often
contain geometrically anisotropic inclusions and strongly discontinuous
material coefficients that can span several orders of magnitude. If the
size of these heterogeneities is small in normal direction compared to
the tangential directions, these features are called fractures. Fractures
can act both as conduits and barriers and affect flow patterns severely.
Target applications concerning fractured porous-media systems in earth
sciences include groundwater resource management, renewable energy
storage, recovery of petroleum resources, radioactive waste reposition,
coal bed methane migration in mines, and geothermal energy produc-
tion.

The analysis and prediction of flow in fractured porous media sys-
tems are important for all the aforementioned applications. Many dif-
ferent conceptual and numerical models of flow in fractured porous-
media systems can be found in the literature. Even though fractured
porous-media systems have been of interest to modelers for a long time,
they still present challenges for simulators. During the last 70 years,
different modeling approaches have been developed and gradually
improved. Comprehensive reviews can be found in Berkowitz (2002),
Dietrich et al. (2005), Hoteit and Firoozabadi (2008), Neumann (2005),
Sahimi (2011) and Singhal and Gupta (2010). Roughly, the fractured

porous media systems are classified in two broad categories: discrete
fracture-matrix (DFM) models and continuum fracture models. Within
this paper, we will only consider DFM models.

The DFM models consider flow occurring in both the fracture net-
work and the surrounding rock matrix. They account explicitly for the
effects of individual fractures on the fluid flow. An efficient way to re-
present fractures in DFMs is the hybrid-dimensional approach, see
e.g. Helmig (1997), Flauraud et al. (2003), Bogdanov et al. (2003),
Firoozabadi and Monteagudo (2004), Karimi-Fard et al. (2004),
Martin et al. (2005) and Reichenberger et al. (2006). Fractures in the
geometrical domain are then discretized with elements of co-dimension
one with respect to the dimension of the surrounding matrix, such as one-
dimensional elements in two-dimensional settings. Due to the similarities
in these models, the gradient scheme framework (Brenner et al., 2016;
2017) allows for a unified analysis of a number of DFM models. The
aforementioned classical DFM approaches all rely on matching fracture
and matrix grids in the sense that a fracture element coincides geome-
trically with co-dimension-one mesh entities, i.e. faces of matrix grid
elements. In addition to the classical models, several so-called non-con-
forming DFM models have been developed in recent years, such as EDFM
(Hajibeygi et al., 2011; Moinfar et al., 2014), XFEM-based approaches
(D’Angelo and Scotti, 2012; Huang et al., 2011; Schwenck et al., 2015),
or mortar-type methods (Frih et al., 2012).
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Benchmarking represents a methodology for verifying, testing and
comparing the modeling tools. Various codes have been developed by
academic institutions or companies based on different conceptual,
mathematical, and numerical models. Even though benchmarking stu-
dies are increasing in all fields of engineering and workshops have been
organized around specific problems (e.g. Class et al., 2009), there are
still only a limited number of studies. Some are related to a specific
application and are flexible as to how the problem is modeled in terms
of assumptions regarding the physics and the selection of the domain,
see Class et al. (2009), Nordbotten et al. (2012), Caers (2013) and
Kolditz et al. (2015). Others De Dreuzy et al. (2013) and Caers (2013),
like ours, focus on the comparison of numerical schemes.

One of the common requirements when selecting the test problems
for comparing numerical schemes is that they allow the examination of
the capabilities of each of the compared methods. Therefore, our
benchmark study proposes a set of problems starting from simple
geometries and then gradually increasing the geometrical complexity.
The test problems are specifically selected to make clear distinctions
between the different methods. They consist of existing and new com-
putational benchmarks for fluid flow in fractured porous media and
allow for comparison of several DFM-based numerical schemes in a
systematic way.

We would like to invite the scientific community to follow up on this
study and evaluate further methods by means of the proposed bench-
marks. In order to facilitate this, the paper is accompanied by grid and
result files in the form of a Git repository at https://git.iws.uni-
stuttgart.de/benchmarks/fracture-flow.

The remainder of this paper is organized as follows. In Section 2, we
formulate the model problem in terms of the partial differential equa-
tion to be solved. The participating DFM models are described in
Section 3. The central Section 4 proposes the benchmarks and compares
the results of the different methods. Finally, Section 5 concludes with a
summary and outlook.

2. The model problem

We consider an incompressible single-phase flow through a porous
medium, assumed to be described by Darcy’s law, resulting in the
governing system of equations

= − pu grad , (1a)

=div qu , (1b)

in an open bounded domain ⊂ ,ND  subject to boundary conditions

= ∂p p on ,D DD (1c)

= ∂qu n· on ,N ND (1d)

with ∂ = ∂ ∪ ∂D ND D D and ∂ ∩ ∂ = ∅D ND D . In Eq. (1) u denotes the
macroscopic fluid velocity whereas  and p stand for absolute perme-
ability and pressure.

Let us assume that D contains several fractures, that all together
constitute a single domain Γ of spatial dimension N such that ⊂Γ ,D

which is a possibly unconnected, open subset of D . The surrounding
porous rock, namely, the remaining part of ,D is called = ∖Ω ΓD .
Assuming that the fracture aperture ε at each point of Γ is small com-
pared to other characteristic dimensions of the fractures, the full-di-
mensional domain Γ can be reduced to the −N( 1)-dimensional fracture
network γ. This reduction involves modeling choices resulting in dif-
ferent hybrid-dimensional problem formulations that form the basis for
the methods presented in the following section.

3. Participating discretization methods

Within this section, the discretization methods participating in this
benchmark study are described. The purpose of this article is the

comparison of well-known, established and/or at least published
methods. Therefore, only the most significant aspects of each method
are summarized. We do not show a comparison against analytical so-
lutions here. The analysis of the methods and theoretical results such as
proofs of optimal convergence can be found in the corresponding re-
ferences. A summary of all participating methods is provided in Table 1.
In the sequel, we will denote with d.o.f. the degrees of freedom asso-
ciated to a specific method. We indicate also the type of conformity
required to the computational grid with respect to the fractures and the
assumption that the pressure is considered continuous across the frac-
tures. With the exception of P-XFEM, all considered methods are locally
conservative by construction.

The lower-dimensional representation of fractures allows for easier
mesh generation for both conforming and non-conforming methods in
comparison to the equi-dimensional approach, as it circumvents the
appearance of very small elements when discretizing the interior of the
fracture (i.e., within the fracture width). Conform meshing implies that
the fractures are discretized with a set of line elements (in a 2D domain)
that are also the edges of the triangular finite elements.

3.1. Vertex-centred, continuous-pressure, conforming lower-dimensional
DFM (Box)

The Box method is a vertex-centred finite-volume method proposed
in e.g. Helmig (1997) which combines the advantages of finite element
and finite volume grids, allowing unstructured grids and guaranteeing a
locally conservative scheme (Reichenberger et al., 2006). Fig. 1 illus-
trates a two-dimensional representation of the dual-grid with two finite
elements E1 and E5 sharing the same edge (ij1) that represents a lower-
dimensional fracture with the aperture ɛij1. The main characteristic in
terms of the fractured system is that the pressure is required to be
continuous, in particular in those vertices whose control volumes
overlap both fracture and matrix regions.

The Box method used for this paper is implemented in the open-
source numerical simulator DuMux. A detailed description of the con-
ceptual, mathematical and numerical model and code implementation
is published in Tatomir (2012). The simulation code used for the
benchmark studies is publicly available under https://git.iws.uni-
stuttgart.de/dumux-pub/Flemisch2016a.git.

3.2. Cell-centred, discontinuous-pressure, conforming DFM (TPFA)

The control volume finite difference method uses a two-point flux
approximation (TPFA) based on the cell-centre pressure values for the
evaluation of the face fluxes. The method is a widely applied and
standard method for simulation of flow in porous media. The domain is
partitioned with fractures coinciding with the interior faces between
matrix cells just as described at the beginning of Section 3. The flux
over the face between matrix cells i and j is approximated by

= −T p pu ( ),ij ij i j (2)

where pi and pj are the pressures in the neighbouring cells and Tij is the
face transmissibility, computed as the harmonic average of the two half

Table 1
Participating discretization methods.

Method d.o.f. frac-dim conforming p-cont

Box p (vert) dim-1 yes yes
TPFA p (elem) dim-1 yes no
MPFA p (elem) dim-1 yes no
EDFM p (elem) dim-1 no yes
Flux-Mortar p (elem), u (faces) dim-1 geometrically no
P-XFEM p (vert) dim-1 no no
D-XFEM p (elem), u (faces) dim-1 no no
MFD p (faces) dim geometrically no
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transmissibilities corresponding to the face and the two cells. The half
transmissibility of cell-face pair i is in turn given as

=
⊤

⊤α
A n
d d

d· ,i
i i i

i i
i



(3)

where Ai and ni are the area and unit normal vector of the face, i is the
permeability assigned to the cell and di is the distance vector from cell
centre to face centroid.

In addition to the unknowns given at the centroids of the matrix
cells, unknowns are associated to the centroids of the fracture cells. The
fracture cells are associated with apertures, which multiplied with the
length give the volume of these cells. The aperture is also used to
construct hybrid faces for the matrix-fracture interfaces. These faces,
parallel to the fracture but displaced half an aperture to either side,
enable us to compute the half transmissibilities between the fracture
cell and the matrix cells on the two sides. These faces are indicated by
the dashed blue lines in Fig. 2, where the computational domain is
superimposed on the geometrical grid. The result is a hybrid grid with
fractures which are lower dimensional in the grid, but equi-dimensional
in the computational domain at the cost of a small matrix volume error
corresponding to the overlap of the matrix cells with the fracture cells.

Following the method proposed by Karimi-Fard et al. (2004), the
intermediate fracture intersection cell drawn with dashed red lines in
Fig. 2 is removed, leading to direct coupling of the fracture cells
neighbour to the intersection. The purpose of this is both to obtain a
smaller condition number and to avoid severe time-step restrictions
associated with small cells in transport simulations. To each new face
between cell i and j, face transmissibilities are assigned, calculated
using the star delta transformation as described in Karimi-
Fard et al. (2004):

=
∑ =

T
α α

α
,ij

i j

k
n

k1 (4)

with n denoting the number of fracture cells meeting at the intersection.

As this elimination disregards all information on the permeability of the
intersection, it should be used with caution in cases of crossing fractures
of different permeability. We encounter this feature in Section 4.3, and
include results both with and without the elimination for one of the test
cases presented in that section.

3.3. Cell-centred, discontinuous-pressure, conforming DFM (MPFA)

Inspired by the TPFA method presented above, a method based on
the multi-point flux approximation has been developed (Sandve et al.,
2012), see also e.g. Ahmed et al. (2015). The MPFA variant of the
method reduces errors associated with the TPFA approach for grids that
are not close to K-orthogonal, and avoids errors related to the splitting
of the fluxes in the star-delta transformation. The method is constructed
letting each face flux depend on the pressures of several of the neigh-
bouring cells. Specifically, an interaction region defined by cell cen-
troids and continuity points at the faces around each node is con-
structed (see Fig. 3) and the pressure is assumed to be linear within
each cell of the region. Intermediate pressure unknowns are introduced
at the continuity points and express the flux over each half face in terms
of the weighted pressures of all cell centre and continuity point pres-
sures of the region. Continuity of the flux over each face allows for
elimination of the continuity point pressures and a relationship be-
tween flux and pressure of the form

=u pi i (5)

for each half face i is obtained. Here, p denotes the pressures at the cell
centres of the interaction region and i accounts for the effect of geo-
metry and permeability of those same cells. For a detailed description of
the method, see, e.g., Aavatsmark (2002).

The handling of the fractures is similar to the one described for the
TPFA. For the fracture intersections, the pressure is assumed to be

Fig. 1. Conceptual representation of the
Box method: (left-hand side) The dual fi-
nite element and finite volume mesh from
which the control volume Bi around node i
is created. Node i is surrounded by nodes
{j1, j2, j3, j4, j5}, where segment ij1 re-
presents both a fracture and a shared FE
edge; (right-hand side) Sub-control vo-
lume (SCV) bi

E1 in element E1 has bar-

ycentre G1 and the mid-points of the edges
ij1 and ij2 are Mij1, respectively Mij2. The
SCV face fij

E
1
1 is the segment G Mij1 1 which

contains the integration point xijE11 where

the normal vector nijE11 is applied.

Fig. 2. (a) Conceptual decomposition of the domain according to element dimension with
the matrix depicted in black, fractures in blue and their intersections in red. (b) The
computational domain of the TPFA method. Dashed lines are faces of the fracture cells.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. The three interaction regions (dotted lines) around one fracture intersection for
the MPFA consisting of four (I and II) and three (III) sub cells each. The continuity points
are marked by circles and the cell centres by black dots. Fracture-matrix faces are de-
picted by blue dashed lines and the intermediate intersection cell in red. Figure adapted
from Sandve et al. (2012). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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constant within the intersection and continuous over the hybrid faces.
After elimination of the intermediate pressures (p1, p2 and p3 in Fig. 3),
there are no unknowns directly associated to the intersection cells and
these are removed from the computational grid. The Eq. (5) type
equations are assembled for each cell and the resulting linear system
solved for the cell centre pressures.

We refer to Sandve et al. (2012) for a thorough comparison of the
TPFA and MPFA approaches. The implementations of both methods are
available in the open-source Matlab Reservoir Simulation Toolbox,
http://www.sintef.no/projectweb/mrst/ (Lie et al., 2012). An exten-
sion of control volume methods to non-matching grids across fractures
may be found in Tunc et al. (2012).

3.4. Continuous-pressure, non-conforming embedded DFM (EDFM)

Recently, non-conforming methods for the treatment of lower-di-
mensional fractures have been developed, for example in
Moinfar et al. (2011); 2014) and Hajibeygi et al. (2011), to avoid the
time-consuming construction of complex matrix grids which explicitly
represent the fractures. They are mostly used in the context of single
and multi-phase flow simulations for petroleum engineering applica-
tions and require the normal fracture permeability to be orders of
magnitude higher than the matrix permeability, as in the case of frac-
tured petroleum reservoirs. In this field of applications corner-point
grids are normally employed to describe the geological layers, e.g. dif-
ferent rock type, of the reservoir. An adaptation of such computational
grids to the fractures could be unaffordable for real cases. The numer-
ical method belongs to the family of two-point schemes, where a one-to-
one connection between the degrees of freedom is considered through
the transmissibility concept (Eymard et al., 2000). References on the
embedded discrete fracture method (EDFM) can be found, for example,
in Li and Lee (2008), Panfili et al. (2013), Moinfar et al. (2014),
Panfili and Cominelli (2014), de Araujo Cavalcante Filho et al. (2015)
and Fumagalli et al. (2016).

In practice, the mesh of the fractures is generated on top of the rock
grid so that each rock cell cut by fractures contains exactly one fracture
cell per fracture. Intersections between fractures are computed without
affecting the creation of the grids of fractures and rock and used to
compute approximate transmissibilities between different fracture cells.
See Fig. 4 as an example. A degree of freedom that represents a pressure
or a saturation value is assigned to each matrix cell and to each fracture
cell. This means that transmissibilities between matrix and fracture
cells, as well as those between different fracture cells, need to be
computed. We compute the transmissibility between a fracture cell and
a matrix cell Tfm and the half-transmissibility Ti between two

intersecting fracture cells (related to the fracture i) through the fol-
lowing approximate expressions:

= =
⊤
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Here A is the measure of the fracture cell in the current rock cell, nf is
the normal of the fracture cell and df, m is an average distance between
the fracture cell and the matrix cell, see Li and Lee (2008). For the
fracture-fracture transmissibility, s indicates the measure of the inter-
secting segment, ki the scalar permeability of the fracture, εi the aper-
ture and di, s is the average distance between the fracture cell and the
intersecting segment. The standard harmonic average is considered to
compute the transmissibility between the two fracture cells. Standard
formulae for fracture-fracture as well as matrix-matrix transmissibilities
are computed by means of a two-point flux approximation. It is worth
to notice that the recent extension of EDFM called Projection-based
EDFM (pEDFM), proposed in Tene et al. (2017), is also able to handle
low permeable fractures. Finally, even if the proposed benchmark cases
are two-dimensional the method can be extended to three dimensions
without any additional constraints.

3.5. Cell-centred, discontinuous-pressure, geometrically-conforming mortar
DFM (Flux-Mortar)

The key concept behind the Flux-Mortar, as described more thor-
oughly in Boon et al. (2016), is the idea that fractures can be considered
as interfaces between different sub-domains. This has been explored
previously by Martin et al. (2005) and Frih et al. (2012), among others.
In this context, we consider the domain decomposition technique
known as the mortar method to model flow through the fractured
porous medium.

The mortar method is generally used to couple equations in dif-
ferent sub-domains by introducing a so-called mortar variable, defined
on the interface. In case of modeling fracture flow, a well-explored
choice of the mortar variable is the fracture pressure (Martin et al.,
2005). The method considered here, however, uses the flux between
matrix and fracture domains as the mortar variable, which leads to a
stronger imposition of mass conservation. One of the main advantages
of the close relationship to mortar methods is the capability to handle
non-matching grids. In particular, two sub-domains bordering a frac-
ture can be meshed independently on both sides, as illustrated in Fig. 5.
The difficulty in mesh generation is then relieved significantly since
only the geometry of the fractures needs to be respected.

By construction, the Flux-Mortar is applicable to problems in arbi-
trary dimensions. The governing equations in the matrix and the frac-
tures (as well as fracture intersections in 3D) are identical and thus all
fractures, intersections and tips are handled in a unified manner.
Consequently, although only two-dimensional problems are considered
in this study, the discretization scheme also applies to problems in three
dimensions.

Due to a slightly different derivation of the reduced model, the
scheme handles spatially varying apertures. Moreover, the apertures
may be arbitrarily close, or even equal to zero which naturally elim-
inates the possibility of flow in the tangential direction.

With the use of mixed finite elements, mass is conserved locally in
the matrix, fractures, and fracture intersections. The flux u in the matrix
and fractures are modeled using the lowest-order Raviart–Thomas ele-
ments and linear Lagrange elements, respectively. The pressure p is
then given by piecewise constants in the matrix, as well as the fractures
and intersection points. Additionally, the mortar variable is given by
piecewise constants on a separately generated, lower-dimensional,
mortar grid on the matrix-fracture interface. This grid matches with the
surrounding grids in case of matching grids and is coarser otherwise.

The resulting mixed finite element formulation is a saddle-point
problem, which may be challenging to solve numerically. To relieve

Fig. 4. Example of meshes, for both fractures and rock matrix, suited for EDFM. The rock
matrix is considered as a background mesh. Each fracture cell is represented by two blue
dots and the green dots are the non-matching intersection among fractures. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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this, the flux variables may be eliminated through hybridization, which
leads to a less computationally expensive scheme containing solely the
cell-centre pressures.

Two implementations of the method have been developed, both of
which are used in this benchmark study. The first version, implemented
in MATLAB, is suited for simpler geometries in 2D, containing relatively
few fractures, such as those considered in Benchmarks 1–3. The second
version has been implemented for 3D problems and higher-order spaces
on matching grids using the open-source finite element library FEniCS
(Logg et al., 2012). This code is more efficient for complex cases such as
Benchmark 4.

3.6. Discontinuous-pressure, non-conforming primal XFEM (P-XFEM)

The primal XFEM method participating in this benchmarking
study is described in detail in Schwenck (2015), see also
Flemisch et al. (2016) and Schwenck et al. (2015). The method is based
on the hybrid-dimensional problem formulation investigated in
Martin et al. (2005), where conditions for the coupling between frac-
ture and matrix are derived:

= k pu n{{ · }} /ɛ[[ ]]γ γm f,n m (6a)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

ξ k p pu n[[ · ]] /ɛ {{ }}γ γ0 m f,n m f
(6b)

Here, the subscripts “m” and “f” indicate matrix and fracture
quantities, while {{ · }}γ and [[ · ]]γ denote the average and the jump of
a matrix quantity over the fracture γ, respectively.

The coupling conditions (6) can be used to define a source term for
the fracture flow problem, while they yield an interface problem for the
matrix domain. For the discretization of this interface problem, the
methodology presented in Hansbo and Hansbo (2002) is used, which
amounts to applying the eXtended Finite Element Method (XFEM).
Together with an independent standard discretization of the lower-di-
mensional fracture problem, this yields a hybrid-dimensional, non-
conforming primal XFEM-based method. The XFEM space is built en-
riching the standard Lagrangian 1 (or 1 for quads) finite-element
spaces, whose degrees of freedom are located at the vertices of the full-
dimensional grid of the matrix Ω and the lower-dimensional grid of the
fracture γ. A representative example of matrix and fracture grids is il-
lustrated in Fig. 6. Unlike the EDFMmethod, see Fig. 4, the fracture grid

vertices can be placed arbitrarily without taking into account the matrix
grid. On the other hand, the method requires matching fracture branch
grids in the form of vertices placed at the fracture intersections. In
particular, special care has to be taken of intersecting and immersed
fractures (Schwenck et al., 2015).

The method is implemented on top of the DUNE framework
(Bastian et al., 2008) and the discretization module DUNe-PDELab
(Bastian et al., 2010). For the enrichment of the finite-element spaces in
the context of XFEM, the modules DUNe-Multidomain and DUNe-
Multidomaingrid are employed (Müthing, 2015). The simulation
code for the XFEM approach and for the benchmarks studied here is
publicly available under https://git.iws.uni-stuttgart.de/dumux-pub/
Flemisch2016a.git. Currently, the method is only implemented in 2D.
Conceptually, no difficulties arise for extending it to 3D. However, the
possibly multiple enrichment of the function spaces for matrix elements
intersected by fracture elements can become a very tedious task for
complex fracture networks.

3.7. Discontinuous-pressure, non-conforming dual XFEM (D-XFEM)

The dual XFEM method participating in his benchmark is based on
D’Angelo and Scotti (2012). The method, originally derived for a do-
main cut by one fracture, was further developed in
Formaggia et al. (2014) and Fumagalli and Scotti (2014) to account for
intersecting fractures with different permeabilities. The same equations
and coupling conditions as for the primal XFEM are used, but in a dual
formulation where Darcy law and mass conservation give rise to a
saddle-point problem for the fluid mean velocity and pressure, both in
the fracture and in the surrounding medium. Moreover, unlike the
previous method, this method employs triangular/tetrahedral grids.
The usual lowest order −0 0  pair for velocity and pressure is en-
riched following (Hansbo and Hansbo, 2002) in the elements of the
porous medium cut by a fracture, or in the elements of a fracture at the
intersection with other fractures. Indeed, triangular/tetrahedral grids
are arbitrarily cut by triangulated lines/surfaces in 2D and 3D respec-
tively. These surfaces can, in turn, intersect each other in a non-con-
forming way, as shown in Fig. 7.

In the current implementation of the method no special enrichment
is added in the bulk elements containing the fracture tips. Instead,
fractures are artificially extended up to the boundary of the domain,
and in the extension we prescribe the same permeability of the sur-
rounding porous medium to obtain a “virtual” fracture with no effects
on the flow.

The method has been implemented on the basis of the Getfem++
library, http://download.gna.org/getfem/html/homepage/ , which
provides support for the computation of the intersections and the
quadrature on sub-elements thanks to an interface with QHull, http://
www.qhull.org/.

Fig. 5. The Flux-Mortar method allows for non-matching grids along fracture interfaces.
Fracture and matrix flows are coupled using a mortar variable, defined on a coarser grid
(green dots). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Example of meshes, for both fractures and rock matrix, suited for P-XFEM. The
fracture grid vertices are indicated by the blue dots. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

B. Flemisch et al. Advances in Water Resources 111 (2018) 239–258

243



3.8. Reference solutions calculated with mimetic finite differences (MFD)

The reference solutions are computed on very fine grids that dis-
cretize both matrix and fractures by full-dimensional triangular or
quadrilateral elements. A mimetic finite difference method, see
Brezzi et al. (2005) and Flemisch and Helmig (2008), is used to dis-
cretize problem (1). The method is employed as it is implemented in
DuMux 2.7 (Flemisch et al., 2011). In particular, a mixed-hybrid ap-
proach is used to transform the discrete saddle point problem in terms
of cell pressures and face fluxes into a symmetric positive definite
formulation with face-pressure degrees of freedom.

4. Benchmark problems

This is the main section, which compares the methods described
above by means of four benchmark cases. The first benchmark
case, considered in Section 4.1, is based on Geiger et al. (2013) and
shows a regular fracture network. Second, in Section 4.2, we present
a well established benchmark for groundwater flow from
Swedish Nuclear Power Inspectorate (SKI) (1987) that contains two
crossing, highly permeable fractures and a non-straight top surface.
After that, a small but complex fracture network exhibiting immersed
fractures and intersections at different angles is investigated in
Section 4.3. Finally, a case synthesized from a real application is con-
sidered in Section 4.4.

For each benchmark case, a description of the computational do-
main is provided, including boundary conditions, the geometrical in-
formation about the corresponding fracture network and the associated
material parameters such as aperture and permeability. For some of the
cases, the reference solution on the complete domain is visualized. This
is followed by illustrations of the grids used by the participating
methods. Since the methods pose different grid requirements, the grid
could be chosen arbitrarily for each method, provided that the number
of grid cells or vertices is roughly the same. If a reference solution is
available (Benchmarks 1–3), the results of the different methods are
compared by evaluating the errors with respect to the reference in the
matrix domain as well as in the fracture network, indicated by errm and
errf, respectively. The errors are calculated according to the formulas

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠= ∩

err
p

f p p1
Ω (Δ )

,
f K K

K Km
2

ref
2 m ref

2

ref,m m
m ref,m

(7a)

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠= ∩

err
γ p

e p p1
(Δ )

,
e K K

K Kf
2

ref
2 f ref

2

ref,f f
f ref,f

(7b)

where |Ω| and |γ| indicate the size of the full-dimensional matrix and

the lower-dimensional fracture domain, respectively, and
= −p p pΔ max minref ref refD D . The sum is taken over all intersections of

(full-dimensional) elements Kref, m and Kref, f of the grid employed for
the reference solution with full-dimensional matrix elements Km in case
of errm and lower-dimensional fracture elements Kf in case of errf. The
quantities |f| and |e| indicate the area of a full-dimensional intersection
f and a lower-dimensional intersection e, respectively. We stress the fact
that for the calculation of the matrix error errm, only elements Kref, m in
the matrix part of the equi-dimensional grid are considered. In other
words, the full-dimensional fracture domain Γ is excluded from this
calculation. In addition to errors in matrix and fracture, the densities
and condition numbers of the resulting linear system matrices are
provided. Moreover, a comparison is performed by means of plots along
specific lines through the domain for some benchmark cases. Each case
is concluded by a short discussion of the results.

4.1. Benchmark 1: regular fracture network

This test case is based on an article presenting a new dual con-
tinuum model, Geiger et al. (2013), with slightly modified boundary
conditions and material properties. The computational domain in-
cluding the fracture network and boundary conditions is shown in
Fig. 8. The matrix permeability is set to = ,m  all fractures have a
uniform aperture = −ɛ 10 4. For the fracture permeability we consider
two cases: a highly conductive network with = =k k 10 ,f,n f,t

4 as
worked out in Section 4.1.1, and a case with blocking fractures by
setting = = −k k 10 ,f,n f,t

4 as described in Section 4.1.2. The reference
solutions are computed on a grid which resolves every fracture with 10

Fig. 7. A portion of the grid cut by two
fractures: in the two dimensional case they
can split the elements in two (grey), three
(yellow), or four (red) independent parts,
where the restrictions of the basis functions
are defined. The fracture grids are irrespec-
tive of the bulk grid and of each other,
i.e. the intersection point ip is not a point of
the grid. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 8. Benchmark 1: Domain and boundary conditions.
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elements in its normal direction and becomes coarser away from the
fractures. It has a total of 1,175,056 elements.

The first distinction between the different schemes are given in
Table 2, where the number of degrees of freedom, matrix elements
(♯-matr) and fracture elements (♯-frac) for all the participating methods
are listed. The corresponding grids are visualized in Fig. 9.

4.1.1. Conductive fracture network
First, we consider a highly conductive network by setting
= =k k 10f,n f,t

4. The pressure distribution of the corresponding re-
ference solution is shown in Fig. 10. The pressure distributions given by
the different methods are first compared along two lines, one horizontal
at =y 0.7 and one vertical at =x 0.5. As shown in Fig. 11, all results are
relatively close to the reference solution. Qualitatively, we observe that
P-XFEM produces a more diffuse pressure profile in the vertical frac-
ture.

Table 3 lists the errors with respect to the equi-dimensional re-
ference solution for the different methods; particularly, the error for the
matrix domain and the one along the two fractures. Moreover, it pro-
vides the density of the associated matrix and its condition number for
each method. The performance of the methods is comparable as shown
by both the matrix and the fracture errors. In fact, since the degree of
sparsity does not differ significantly either, the only notable differences
between the methods are the number of degrees of freedom and the
condition numbers, as shown in the last column of Table 3. In that
context, the Flux-Mortar and D-XFEM are clear outliers, containing a
large number of degrees of freedom due to the incorporated flux

variable and resulting in high condition numbers. Nevertheless, the P-
XFEM scheme exhibits the highest condition number, although it has
significantly fewer degrees of freedom than Flux-Mortar and D-XFEM.

In addition to evaluating each method on a single grid, we perform a
convergence study by choosing the grids above as initial ones and re-
fining them twice. The results are shown in Fig. 12, detailed numbers
are provided in Appendix A. For each method, the matrix error errm and
fracture error errf is plotted against the square root of the number of
matrix cells and against the number of fracture cells, respectively. As
suggested by the numbers for the initial grids from Table 3, all methods
exhibit a similar behaviour. For the matrix error in particular, the
methods are very close to each other and all of them show a linear error
decay. Concerning the fracture error, the XFEM methods perform a bit
worse than the other ones in terms of absolute numbers. An obvious
positive outlier is the fracture error for Box, which stagnates at a level
much lower than all other methods. An explanation for this behaviour is
still lacking. All other methods exhibit a linear error decay also for the
fracture error.

Table 2
Grids for Benchmark 1.

Method d.o.f. ♯-matr ♯-frac

Box 577 1078 triangles 74
TPFA 1481 1386 triangles 95
MPFA 1439 1348 triangles 91
EDFM 1501 1369 quads 132
Flux-Mortar 3366 1280 triangles 75
P-XFEM 1650 961 quads 164
D-XFEM 4474 1250 triangles 126
MFD 2,352,280 1,136,456 quads 38,600

Fig. 9. Benchmark 1: the grids used by the different methods.
In the D-XFEM grid the red lines indicate the virtual extension
of the fractures up to the boundary. The fracture network has
also been virtually extended for the application of P-XFEM.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Fig. 10. Benchmark 1 with conductive fractures: pressure reference solution.
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4.1.2. Blocking fracture network
We now assume a blocking fracture network by setting
= = −k k 10f,n f,t

4. The pressure distribution of the corresponding re-
ference solution is shown in Fig. 13. The results clearly show the
pressure discontinuities reminiscent of the low fracture permeability.

Fig. 14 compares the results of the different methods along a di-
agonal line crossing the whole domain from (0.0, 0.1) to (0.9, 1.0). The
errors, sparsity densities, and condition numbers for the different
methods are given in Table 4.

In the case of blocking fractures, the distinction between the
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Fig. 11. Benchmark 1 with conductive fractures: comparison of values along two lines. The reference solution is hidden by the Box solution.

Table 3
Errors and matrix characteristics for Benchmark 1 with conductive fractures.

Method errm errf nnz/size2 ‖ · ‖2-cond

Box 1.1e−2 1.9e−4 1.1e−2 2.2e3
TPFA 1.1e−2 4.4e−3 2.7e−3 4.8e4
MPFA 1.1e−2 4.5e−3 8.0e−3 5.8e4
EDFM 6.5e−3 4.0e−3 3.3e−3 5.6e4
Flux-Mortar 1.0e−2 6.9e−3 1.8e−3 2.4e6
P-XFEM 9.3e−3 7.3e−3 8.0e−3 9.3e9
D-XFEM 9.6e−3 8.9e−3 1.3e−3 1.2e6
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Fig. 12. Benchmark 1 with conductive fractures: evolution of the matrix and fracture errors over grid refinement.

Fig. 13. Benchmark 1 with blocking fractures: pressure reference solution.
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different methods is more apparent. As mentioned above, the Box and
EDFM schemes are unable to capture the resulting pressure dis-
continuities. As a result, these methods show large errors in both the
matrix and the fracture domains. The remaining methods, which are
capable of handling discontinuities, differ a bit more among each other
in terms of fracture and matrix errors. The condition numbers have
improved significantly for the Flux-Mortar and P-XFEM schemes.
Conversely, for TPFA, MPFA and D-XFEM, condition numbers for the
blocking fractures case are similar to those obtained for the permeable
fractures case.

We investigate the error decays also for the variant of blocking

fractures. The decays are illustrated in Fig. 15. The spread between the
different methods becomes very explicit here. As to be expected, the
errors for Box and EDFM do not improve with grid refinement. Con-
cerning the matrix error, TPFA, MPFA, Flux-Mortar and P-XFEM exhibit
a linear decay, while D-XFEM appears to converge with an inferior
order. This is due to the fact that in this method fractures are artificially
extended to the boundary with a permeability that is the same of the
surrounding matrix: the “T” type intersections become “X” intersections
with severe permeability jumps between the two branches of the same
fractures, causing numerical problems that affect convergence. Al-
though P-XFEM shows the best numbers for the matrix error, both
XFEM methods result in considerably higher fracture errors than TPFA,
MPFA and Flux-Mortar. For the convergent methods, the rate of con-
vergence for the fracture error between the second and third refinement
stage is measured between 0.45 and 0.64.

4.2. Benchmark 2: Hydrocoin

Within the international Hydrocoin project, (Swedish Nuclear
Power Inspectorate (SKI), 1987), a benchmark for heterogeneous
groundwater flow problems was presented. The domain setup is shown
in Fig. 16. We point out that we have slightly modified the original
domain such that equi-dimensional and hybrid-dimensional models can
be run on exactly the same domain. This allows for an easier compar-
ison of the solution values over the whole domain. The exact mod-
ifications are described in Appendix B.

For this case, we keep the original formulation in terms of the
piezometric head and the hydraulic conductivity instead of pressure
and permeability. In particular, the boundary conditions are Dirichlet
piezometric head on the top boundary and Neumann no flow on the
other three boundaries. The permeability is −10 6 m/s in the fracture
zones and −10 8 m/s in the rock matrix respectively.

Table 5 lists the number of degrees of freedom, matrix elements and
fracture elements for all the participating methods.

The corresponding grids are visualized in Fig. 17.
The original benchmark shows the piezometric head distribution

along five horizontal lines through the modeled domain. Here, we first
show in Fig. 18 the plot at a depth of 200m, as indicated by the dashed
line in Fig. 16. All participating methods show a good agreement with
the reference solution. Only the EDFM method is a bit off. We remark
that the plots for the methods employing cell-wise constant solution
values exhibit staircase-like patterns corresponding to these values.

Table 6 lists the errors for the different methods. The uniform be-
haviour exhibited in Fig. 18 is reflected by the error values. Especially
the errors in the matrix domain are within very narrow bounds, while
the fracture errors show a larger variation. Just like for Benchmark 1,
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Fig. 14. Benchmark 1 with blocking fractures: values along the line −(0.0, 0.1) (0.9, 1.0).
The reference solution is hidden by the P-XFEM solution.

Table 4
Errors and matrix characteristics for Benchmark 1 with blocking fractures.

Method errm errf nnz/size2 ‖ · ‖2-cond

Box 4.1e−1 3.2e−1 1.1e−2 1.3e3
TPFA 5.6e−3 4.4e−3 2.7e−3 2.6e4
MPFA 4.4e−3 3.6e−3 2.7e−3 6.3e4
EDFM 2.9e−1 3.2e−1 3.3e−3 9.2e3
Flux-Mortar 4.3e−3 4.6e−3 1.6e−3 9.0e2
P-XFEM 2.7e−3 2.0e−2 6.9e−3 1.3e7
D-XFEM 1.0e−2 1.8e−2 1.3e−3 2.2e6

Fig. 15. Benchmark 1 with blocking fractures: evolution of the matrix and fracture errors over grid refinement.
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remarkably high differences can be observed for the matrix condition
numbers. While the ones for Box, TPFA, MPFA and EDFM are on the
order of 104, the one for P-XFEM is five orders and the ones for Flux-
Mortar and D-XFEM are even seven orders of magnitude larger, due to
their saddle-point nature.

We remark that the fracture apertures are, with around 10m, rather
high in relation to the dimensions of the computational domain
(∼ 1000m) and the element sizes (∼ 50m) employed in the calcula-
tions above. Therefore, the assumption of a negligible aperture that
justifies the usage of hybrid-dimensional methods is questionable. This
is confirmed by the fact that no convergence can be observed for the
considered methods when refining the grids depicted in Fig. 17. The
total error is already dominated by the modeling error rather than the

discretization error. Since our focus is on comparing different DFM
methods that all rely on this assumption, we refrain from performing a
more detailed analysis in this direction.

We would like to point out that an aperture of 10m and more is
often encountered in real field problems. The original intention of the
Hydrocoin groups was to have a representation of a highly conductive
fault zone: “The problem is an idealisation of the hydrogeological
conditions encountered at a potential site for a deep repository in
bedrock” (Swedish Nuclear Power Inspectorate (SKI), 1987). Some ex-
amples on modeling the impact of hydraulic fracturing on groundwater
where the fault widths range between 10 and 30m are provided in

Fig. 16. Geometry of the modeled domain of the Hydrocoin test case 2,
Swedish Nuclear Power Inspectorate (SKI) (1987). Modified node locations are indicated
by numbers superscripted with ′. Boundary conditions are hydraulic head on top and
Neumann no-flow on the other three sides of the domain.

Table 5
Grids for Benchmark 2.

Method d.o.f. ♯-matr ♯-frac

Box 1496 2863 triangles 74
TPFA 1459 1416 triangles 43
MPFA 1532 1416 triangles 43
EDFM 1044 960 quads 84
Flux-Mortar 3647 1384 triangles 63
P-XFEM 1667 1320 quads 68
D-XFEM 3514 1132 triangles 160
MFD 889,233 424,921 mixed 19,287

Fig. 17. Benchmark 2: the grids used by the different
methods.

Fig. 18. Benchmark 2: head values along a horizontal line at a depth of 200m.

Table 6
Errors and matrix characteristics for Benchmark 2.

method errm errf nnz/size2 ‖ · ‖2-cond

Box 9.2e−3 3.3e−3 4.5e−3 5.4e3
TPFA 1.1e−2 1.1e−2 2.7e−3 3.5e4
MPFA 9.3e−3 6.8e−3 8.2e−3 6.6e4
EDFM 1.5e−2 8.3e−3 4.7e−3 3.9e4
Flux-Mortar 1.0e−2 7.2e−3 1.5e−3 9.0e12
P-XFEM 1.2e−2 3.2e−3 6.5e−3 2.7e9
D-XFEM 1.2e−2 6.9e−3 1.7e−3 6.2e12
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Gassiat et al. (2013), Pfunt et al. (2016) and
Taherdangkoo et al. (2017). It is common practice and, depending on
the geometrical complexity, often the only efficient possibility to treat
such fault zones with lower-dimensional models. A modeler para-
metrizing a real field problem will often face the question of how to
consider the fractures in the model. Despite the fact that the assumption
of a negligible aperture is not justified, the accuracy of a hybrid-di-
mensional approach might still be acceptable, as is also indicated by our
results.

4.3. Benchmark 3: complex fracture network

This test case considers a small but complex fracture network that
includes permeable and blocking fractures. The domain and boundary
conditions are shown in Fig. 19. The exact coordinates for the fracture
positions are provided in Appendix C. The fracture network contains
ten straight immersed fractures, grouped in disconnected networks. The
aperture is = −ɛ 10 4 for all fractures, and the permeability is

= =k k 10f,n f,t
4 for all fractures except for fractures 4 and 5, which are

blocking fractures with = = −k k 10f,n f,t
4. The matrix permeability is

again set to =m . Note that we are considering two sub-cases, a) and
b). with a pressure gradient which is predominantly vertical and hor-
izontal, respectively, to better highlight the impact of the blocking
fractures. The corresponding reference solutions are depicted in Fig. 20.

Table 7 lists the number of degrees of freedom, matrix elements and
fracture elements for all the participating methods. The corresponding
grids are visualized in Fig. 21.

The P-XFEM method could not participate in this benchmark ex-
ample. Its current implementation requires that each matrix element
face is cut by at most one fracture branch. While it would be possible to
construct a matrix grid that satisfies this requirement, this would con-
tradict the promised advantage of admitting independent fracture and

matrix grids.

4.3.1. Flow from top to bottom
We first consider the setup depicted in Fig. 19(a), resulting in the

reference solution visualized in Fig. 20(a). Table 8 lists the errors for
this first variant, namely, the flow from top to bottom.

The pressure profiles along the line −(0, 0.5) (1, 0.9), computed by
the different methods, are represented in Fig. 22: one can observe that
most methods are in good agreement with the reference solution, ex-
cept for EDFM and the Box method that cannot represent the behaviour
of the blocking fractures. Even though this is still a synthetic case, we
can see that the geometry of the network starts to be an issue: relatively
small intersection angles are present, for instance, between fractures 1
and 2. Another difficulty consists in the coexistence of permeable and
blocking fractures which intersect each other: on one hand, some of the
methods are not well suited to describe a blocking behaviour, on the
other hand, the coupling conditions at the intersection become less
trivial in these cases. All the participating methods that account ex-
plicitly for the effect of permeability at the fracture intersections have
adopted the harmonic average in the case of a permeable and a

Fig. 19. Benchmark 3: Domain and boundary conditions for
cases (a) and (b). The red fractures are conductive, the blue
ones are blocking. The dashed line is chosen to compare
pressure profiles across both blocking and permeable frac-
tures. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of
this article.)

Fig. 20. Benchmark 3: reference solution for cases a) and b).

Table 7
Grids for Benchmark 3.

Method d.o.f. ♯-matr ♯-frac

Box 1373 2664 triangles 152
TPFA 1420 1332 triangles 88
TPFA* 1425 1332 triangles 93
MPFA 1500 1332 triangles 88
EDFM 1572 1369 quads 203
Flux-Mortar 3349 1230 triangles 89
D-XFEM 7180 1922 triangles 199
MFD 3,471,040 2,260,352 triangles 52,608
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blocking fracture crossing each other. The errors reported in Table 8
show that the methods requiring the continuity of pressure (EDFM and
the Box) exhibit slightly higher errors in the matrix. However, the
difference is not particularly sharp, since in this sub-case the average

pressure gradient is almost parallel to the blocking fractures. The
elimination of the fracture intersection cells in the TPFA and MPFA
methods is ill-suited for cases where fractures of different permeability
cross. Therefore, we include a solution TPFA* in which we have not
performed the removal. The corresponding results show a far smaller
error compared to the TPFA with elimination, but also demonstrate that
the elimination significantly increases the condition number.

Like for Benchmark 1, we investigate the errors in the matrix and in
the fracture network, see Fig. 23 and detailed numbers in Appendix D.
We have not considered Box and EDFM, since the corresponding errors
stagnate due to the presence of blocking fractures, as already discussed
in Section 4.1.2. Surprisingly at first sight, now also TPFA and MPFA do
not converge. This is an implication of the facts mentioned above,
namely, that the intersection cells are removed for both methods to-
gether with the appearance of intersecting conductive and blocking
fractures. When these cells are included, convergence can be achieved.
Only TPFA* and Flux-Mortar exhibit a linear decay of the matrix error,
while D-XFEM shows considerably higher absolute numbers and an
inferior convergence rate. As already observed for the blocking variant
of Benchmark 2, linear convergence cannot be achieved for the fracture
error.

4.3.2. Flow from left to right
We now investigate the more challenging setup from Fig. 19(b) and

its corresponding reference solution depicted in Fig. 20(b). The errors
for this second variant are summarized in Table 9. The pressure profiles
along the line −(0, 0.5) (1, 0.9), computed by the different methods for
are represented in Fig. 24. As in the previous sub-case EDFM and the
Box method are not able to capture the pressure jumps across the
blocking fractures. Moreover, the D-XFEM method underestimates the
second pressure jump. This behaviour will also reflect in a poor con-
vergence rate (see Fig. 25). In this second case, since we impose pres-
sure on the sides of the square domain, the solution is more challenging.
As we can observe from Fig. 20, the gap between continuous and dis-
continuous methods increases.The errors remain of the same order of
magnitude, indicating that all the methods capture the overall trend of
the solution. Nevertheless, the difference between TPFA/MPFA and
TPFA* becomes larger, indicating that it is even more important to treat

Fig. 21. Benchmark 3: the grids used by the different
methods. In the DXFEM grid the red lines indicate the virtual
extension of the fractures up to the boundary. (For inter-
pretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 8
Errors and matrix characteristics for the first variant of Benchmark 3.

Method errm errf nnz/size2 ‖ · ‖2-cond

Box 4.9e−2 3.4e−2 4.9e−3 4.3e3
TPFA 2.7e−2 2.9e−2 2.8e−3 2.6e4
TPFA* 1.3e−2 1.1e−2 2.8e−3 7.9e4
MPFA 2.5e−2 2.8e−2 8.5e−3 2.5e4
EDFM 3.8e−2 4.5e−2 3.1e−3 1.2e6
Flux-Mortar 1.0e−2 8.2e−3 1.6e−3 1.3e4
D-XFEM 1.9e−2 2.9e−2 8.2e−4 8.1e3

Fig. 22. Benchmark 3, first variant: pressure values along the line −(0.0, 0.5) (1.0, 0.9).
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properly the intersections of conductive and blocking fractures.
The error plots associated with this second variant are shown in

Fig. 25. They are very similar to the first variant, the only remarkable
difference being the stagnation in the numbers for D-XFEM. This is once
again caused by the intersections between fractures with different
permeabilities, particularly in the “virtual” extensions of the fractures
to the boundary.

4.4. Benchmark 4: a realistic case

In this last test case we consider a real set of fractures from an in-
terpreted outcrop in the Sotra island, near Bergen in Norway. The set is
composed of 64 fractures grouped in 13 different connected networks,
ranging from isolated fractures up to tens of fractures each. In the in-
terpretation process two fractures were composed by more than one
segment. However, since the implementation of some methods relay on
the fact that one fracture is represented by a single geometrical object,
we substitute them by a single segment. It is worth to notice that we are
changing the connectivity of the system, nevertheless our goal is to
make a comparison of the previous schemes on a complex and realistic
set of fractures. The interpreted outcrop and the corresponding set of
fractures are represented in Fig. 26. The size of the domain is
700m×600m with uniform matrix permeability = −10 mm

14 2  . For
simplicity all the fractures have the same scalar permeability

= = −k k 10 m ,f,n f,t
8 2 and aperture −10 m2 . We consider no-flow

boundary condition on top and bottom, pressure 1013250 Pa on the
left, and pressure 0 Pa on the right of the boundary of the domain. Due
to the high geometrical complexity of the fracture network not all in-
volved numerical schemes/simulators could be used. Nevertheless, it is
worth to point out that for the others the main difficulty in handling
such geometry is an implementation issue rather than a limitation of
the scheme. It is also a very tedious task to create a full-dimensional
description of the fracture network and a corresponding equi-dimen-
sional grid of the whole computational domain. Therefore, we refrain
from calculating a reference solution with the MFD method and per-
form a direct comparison of the hybrid-dimensional methods. Since all
fractures are conductive and their aperture is negligibly small, we
consider all participating methods to be verified by means of the
benchmark cases above.

Table 10 lists the number of degrees of freedom, the density of the
associated matrix, and its condition number for the different methods.
Due to the geometrical difficulties of the network the request of having
a similar number of degrees of freedom among the methods is relaxed,
as Table 10 indicates. Considering Fig. 27, the solutions are reported for
the four methods. We notice that, except for the top right part of the
domain in the Box method, the solutions are similar and comparable,
which is an indication of their correctness. Compared to the previous
test cases the mesh generation is the main concern and some of the
methods require a fine tuning to avoid non-physical connections among

Fig. 23. Benchmark 3, flow from top to bottom: evolution of the matrix and fracture errors over grid refinement.

Table 9
Errors and matrix characteristics for the second variant of Benchmark 3.

method errm errf nnz/size2 ‖ · ‖2-cond

Box 7.5e−2 6.3e−2 4.9e−3 5.3e3
TPFA 5.1e−2 6.7e−2 2.8e−3 3.1e4
TPFA* 1.3e−2 1.1e−2 2.8e−3 2.0e5
MPFA 5.1e−2 6.7e−2 8.5e−3 3.1e4
EDFM 5.8e−2 8.9e−2 3.1e−3 1.2e6
Flux-Mortar 1.4e−2 1.3e−2 1.6e−3 1.4e4
D-XFEM 2.2e−2 3.6e−2 8.2e−4 8.1e3

Fig. 24. Benchmark 3, second variant: pressure values along the line −(0.0, 0.5) (1.0, 0.9).
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elements where the fracture are close. An example can be found in the
middle of the domain and reported in Fig. 28. Only EDFM is more ro-
bust with respect to this constraint. To present a more detailed com-
parison among the methods, Fig. 29 represents the pressure solution
along two different lines: for =y 500 m and for =x 625 m. We note
that the methods behave similarly, and the Box slightly overestimates
some peaks. The oscillation of the methods are related to mesh effects.

5. Summary and outlook

Four benchmark cases for single-phase flow in fractured porous
media have been proposed and employed to compare the performances
of several state-of-the-art hybrid-dimensional discrete-fracture-matrix
models. If we consider the cases where all the methods are employed
within the applicability range for which they were originally devel-
oped, the results are in quite good agreement. In particular, fracture
networks exhibiting a larger permeability than the surrounding matrix
can be accurately described by all methods. On the other hand, not all
methods are capable of modeling blocking fractures. In this case, some
methods fail to predict the correct flow patterns for the corresponding
scenarios. These observations are confirmed by investigating the be-
haviour of the errors with respect to the equi-dimensional reference
solution under mesh refinement. For purely conductive fracture net-
works, all methods exhibit a linear decay for both the error in the
matrix and the fractures, and the total numbers are very similar. The

fact that some methods cannot deal with blocking fractures is reflected
by a stagnation of the corresponding errors. In the presence of blocking
fractures, the order of convergence for the fracture error decreases for
all methods. Moreover, the fracture error for the XFEM methods has
been observed to be considerably larger than for the other convergent
methods. Even if a method can handle conductive and blocking frac-
tures, the intersection of a conductive with a blocking fracture branch
poses additional challenges. In this case, a method may not converge if
it doesn’t treat these intersections carefully enough. Of the eight par-
ticipating methods, only two, TPFA* and Flux-Mortar, proved to be
convergent through all considered cases.

Apart from the discretization error, another component of the total
error is the modeling error resulting from the assumption that the
fracture apertures are negligibly small. For the Hydrocoin benchmark,
this component obviously dominated the measured error. More detailed

Fig. 25. Benchmark 3, flow from left to right: evolution of the matrix and fracture errors over grid refinement.

Fig. 26. In the left the interpretation of the set of fractures
superimposed to the map. In the right the geometry used in
the simulations. The rectified fractures are depicted in blue.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Table 10
Discretization and matrix characteristics for Benchmark 4.

Method d.o.f. ♯-matr ♯-frac nnz/size2 ‖ · ‖2-cond

Box 5563 10,807 triangles 1386 1.2e−3 9.3e5
TPFA 8481 7614 triangles 867 4.9e−4 5.3e6
MPFA 8588 7614 triangles 867 1.6e−3 4.9e6
EDFM 3599 2491 quads 1108 1.4e−3 4.7e6
Flux-Mortar 25,258 8319 triangles 1317 2.0e−4 2.2e17
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investigations on the relation between these two components is an in-
teresting topic for future work.

Especially noteworthy are the large differences in the condition
numbers of the associated system matrices. The effect of these differ-
ences on the behaviour of linear solvers is difficult to quantify in a
comparable manner, since the different methods pose different re-
quirements for such solvers.

In principle, all participating methods should have been able to run
all proposed cases. However, due to implementation restrictions, some
methods could not perform the cases with more complex fracture net-
work geometries. Even if the methodology is general enough, technical
difficulties can become crucial obstacles to tackling realistic scenarios.

All the investigated benchmarks are restricted to simple physics and
two-dimensional computational domains. This should give other

researchers developing DFM models the chance to perform comparison
studies for their methods. We encourage the scientific community to
contribute their results for the benchmarks to a corresponding Git re-
pository at https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow.

Further benchmark cases may be developed in the near future. In
particular, we are very interested in enhancing the purely single-phase
single-component flow physics by adding transport, deformation and/
or reaction processes. We aim to carry out these efforts in a broader
context by means of international workshops. A first such workshop
“Modeling and benchmarking of fractured porous media: flow, trans-
port and deformation” was organized by the authors and held in June
2017 at the University of Bergen. First future steps already have been
discussed there.

Fig. 27. Representation of the matrix pressures field for the
realistic case. The solution values range between 0 and
1013250 Pa.
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Appendix A. Details for the convergence study in Benchmark 1

Detailed numbers for the convergence studies carried out in Section 4.1 are provided by means of tables for the errors in matrix and fracture,
calculated according to (7). In particular, the index k in errm, k and errf, k refers to the refinement level. The number of elements is indicated
correspondingly by nm, k and nf, k for matrix and fracture, respectively. The experimental orders of convergence eocm, k and eocf, k are calculated by
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Fig. 28. Benchmark 4: Representation of mesh in the middle
of the domain. The size of the picture is approximately
30m×15m centred in (360, 350). It is represented by the
small rectangle in the centre of Fig. 26 left.

Fig. 29. Benchmark 4: Pressure solutions of the 4 methods plotted over lines (a) =y 500 m, and (b) =x 625 m.
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A1. Conductive fracture network

Method nm,0 errm,0 nm,1 errm,1 eocm,1 nm,2 errm,2 eocm,2

Box 1078 1.1e−02 4312 5.3e−03 1.05 17,248 2.7e−03 0.97
TPFA 1386 1.1e−02 4269 8.1e−03 0.54 14,866 4.1e−03 1.09
TPFA* – – – – – – – –
MPFA 1348 1.1e−02 4673 5.5e−03 1.12 17,632 2.8e−03 1.02
EDFM 1369 6.5e−03 5625 2.7e−03 1.24 22,801 1.4e−03 0.94
Flux-Mortar 1280 1.0e−02 5120 5.2e−03 0.94 20,480 2.6e−03 1.00
P-XFEM 961 9.3e−03 3969 5.2e−03 0.82 16,129 1.9e−03 1.44
D-XFEM 1250 9.6e−03 4802 4.9e−03 1.00 19,602 2.5e−03 0.96

Method nf,0 errf,0 nf,1 errf,1 eocf,1 nf,2 errf,2 eocf,2

Box 74 1.9e−04 148 1.8e−04 0.08 296 1.7e−04 0.08
TPFA 95 4.4e−03 169 2.8e−03 0.78 317 1.6e−03 0.89
TPFA* – – – – – – – –
MPFA 91 4.5e−03 169 2.4e−03 1.02 332 1.2e−03 1.03
EDFM 132 4.0e−03 266 1.8e−03 1.14 532 8.3e−04 1.12
Flux-Mortar 75 6.9e−03 131 3.4e−03 1.27 277 1.6e−03 1.01
P-XFEM 164 7.3e−03 292 4.4e−03 0.88 548 7.6e−04 2.79
D-XFEM 126 8.9e−03 246 4.4e−03 1.05 486 2.2e−03 1.02

A2. Blocking fracture network

Method nm,0 errm,0 nm,1 errm,1 eocm,1 nm,2 errm,2 eocm,2

Box 1078 4.1e−01 4312 4.1e−01 0.00 17,248 4.1e−01 0.00
TPFA 1386 5.6e−03 4269 4.6e−03 0.35 14,866 2.5e−03 0.98
TPFA* – – – – – – – –
MPFA 1348 4.4e−03 4673 2.4e−03 0.98 17,632 1.2e−03 1.04
EDFM 1369 2.9e−01 5625 2.9e−01 0.00 22,801 2.9e−01 0.00
Flux-Mortar 1280 4.3e−03 5120 2.1e−03 1.03 20,480 1.1e−03 0.93
P-XFEM 961 2.7e−03 3969 1.4e−03 0.93 16,129 7.8e−04 0.83
D-XFEM 1250 1.0e−02 4802 1.1e−02 −0.14 19,602 7.7e−03 0.51

Method nf,0 errf,0 nf,1 errf,1 eocf,1 nf,2 errf,2 eocf,2

Box 74 3.2e−01 148 3.2e−01 0.00 296 3.2e−01 0.00
TPFA 95 4.4e−03 169 3.6e−03 0.35 317 2.4e−03 0.64
TPFA* – – – – – – – –
MPFA 91 3.6e−03 169 2.3e−03 0.72 332 1.7e−03 0.45
EDFM 132 3.2e−01 266 3.2e−01 0.00 532 3.2e−01 0.00
Flux-Mortar 75 4.6e−03 131 2.6e−03 1.02 277 1.7e−03 0.57
P-XFEM 164 2.4e−02 292 1.7e−02 0.60 548 1.2e−02 0.55
D-XFEM 126 1.8e−02 246 3.3e−02 −0.91 486 2.2e−02 0.60

Appendix B. Domain modifications for Benchmark 2

Table B.11 provides the exact coordinates of the points from Fig. 16.
In comparison to the original setup, the plateaus close to the upper left and right corners 1 and 9 have been omitted. Moreover, the upper ends of

the two fractures have been modified according to Fig. B.30 which amounts to the changes of nodes 2–4 and 6–8.
Finally, the position of nodes 16–19 has been recalculated with higher precision. The hybrid-dimensional models do not take into account nodes

2,4,6,8 and 16–19 and combine nodes 11,12 and 13,14, since the two-dimensional fracture regions have been reduced to two intersecting straight
lines.
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Appendix C. Fracture coordinates for Benchmark 3

The coordinates are listed in Table C.12.

Appendix D. Details for the convergence study in Benchmark 3

Detailed numbers for the convergence studies carried out in Section 4.3 are provided by means of tables for the errors in matrix and fracture,
analogously to Appendix A.

D1. Flow from top to bottom

Method nm,0 errm,0 nm,1 errm,1 eocm,1 nm,2 errm,2 eocm,2

Box 2664 4.9e−02 10,656 5.0e−02 −0.03 42,624 5.0e−02 0.00
TPFA 1332 2.7e−02 4650 2.4e−02 0.19 17,690 2.4e−02 0.00
TPFA* 1332 1.3e−02 4650 6.3e−03 1.16 17,690 3.2e−03 1.01
MPFA 1332 2.5e−02 4650 2.4e−02 0.07 17,690 2.3e−02 0.06
EDFM – – – – – – – –
Flux-Mortar 1230 1.0e−02 4920 5.2e−03 0.94 19,680 2.6e−03 1.00
P-XFEM – – – – – – – –
D-XFEM 1922 1.9e−02 7442 1.3e−02 0.56 29,282 1.1e−02 0.24

Method nf,0 errf,0 nf,1 errf,1 eocf,1 nf,2 errf,2 eocf,2

Box 152 3.4e−02 292 3.5e−02 −0.04 576 3.6e−02 −0.04
TPFA 88 2.9e−02 166 2.7e−02 0.11 332 2.7e−02 0.00

Table B.11
Coordinates of the numbered points in the modeled region of the problem depicted in Fig. 16.

pt x (m) z (m) pt x (m) z (m)

1 0 150 11 1505 −1000
2′ 394.285714286 100.714285714 12 1495 −1000
3′ 400 100 13 1007.5 −1000
4′ 404.444444444 100.555555556 14 992.5 −1000
5 800 150 15 0 −1000
6′ 1192.66666667 100.916666667 16 1071.34615385 −566.346153846
7′ 1200 100 17 1084.03846154 −579.038461538
8′ 1207.6744186 100.959302326 18 1082.5 −587.5
9 1600 150 19 1069.80769231 −574.807692308
10 1600 −1000

Fig. B.30. Modifications of the Hydrocoin model domain compared to the original formulation (Swedish Nuclear Power Inspectorate (SKI), 1987). The original upper boundary is drawn
with grey thin lines, while thick black lines are used for the modified boundary. Modified node locations are indicated by numbers superscripted with ′. The shaded regions show the
upper parts of the two slightly extended equi-dimensional fractures.

Table C.12
Benchmark 3: Fracture coordinates

Nf xA yA xB yB

1 0.0500 0.4160 0.2200 0.0624
2 0.0500 0.2750 0.2500 0.1350
3 0.1500 0.6300 0.4500 0.0900
4 0.1500 0.9167 0.4000 0.5000
5 0.6500 0.8333 0.849723 0.167625
6 0.7000 0.2350 0.849723 0.167625
7 0.6000 0.3800 0.8500 0.2675
8 0.3500 0.9714 0.8000 0.7143
9 0.7500 0.9574 0.9500 0.8155
10 0.1500 0.8363 0.4000 0.9727
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TPFA* 93 1.1e−02 171 6.7e−03 0.81 337 5.1e−03 0.40
MPFA 88 2.8e−02 166 2.7e−02 0.06 332 2.7e−02 0.00
EDFM – – – – – – – –
Flux-Mortar 89 8.2e−03 178 5.6e−03 0.55 356 4.5e−03 0.32
P-XFEM – – – – – – – –
D-XFEM 199 3.0e−02 388 2.0e−02 0.61 769 1.7e−02 0.24

D2. Flow from left to right

Method nm,0 errm,0 nm,1 errm,1 eocm,1 nm,2 errm,2 eocm,2

Box 2664 7.4e−02 10,656 7.6e−02 −0.04 42,624 7.7e−02 −0.02
TPFA 1332 5.1e−02 4650 5.3e−02 −0.06 17,690 5.4e−02 −0.03
TPFA* 1332 1.3e−02 4650 8.6e−03 0.66 17,690 3.6e−03 1.30
MPFA 1332 5.1e−02 4650 5.2e−02 −0.03 17,690 5.3e−02 −0.03
EDFM – – – – – – – –
Flux-Mortar 1230 1.4e−02 4920 8.0e−03 0.81 19,680 4.9e−03 0.71
P-XFEM – – – – – – – –
D-XFEM 1922 2.0e−02 7442 2.3e−02 −0.21 29,282 2.3e−02 0.00

Method nf,0 errf,0 nf,1 errf,1 eocf,1 nf,2 errf,2 eocf,2

Box 152 6.3e−02 292 6.7e−02 −0.09 576 6.9e−02 −0.04
TPFA 88 6.7e−02 166 6.8e−02 −0.02 332 6.9e−02 −0.02
TPFA* 93 1.2e−02 171 9.8e−03 0.33 337 7.2e−03 0.45
MPFA 88 6.7e−02 166 6.8e−02 −0.02 332 6.8e−02 0.00
EDFM – – – – – – – –
Flux-Mortar 89 1.3e−02 178 9.6e−03 0.44 356 7.9e−03 0.28
P-XFEM – – – – – – – –
D-XFEM 199 4.3e−02 388 3.8e−02 0.19 769 3.8e−02 0.00

References

Aavatsmark, I., 2002. An introduction to multipoint flux approximations for quadrilateral
grids. Computat. Geosci. 6 (3), 405–432.

Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A., Pal, M., 2015. Control-volume
distributed multi-point flux approximation coupled with a lower-dimensional frac-
ture model. J. Comput. Phys. 284, 462–489.

de Araujo Cavalcante Filho, J.S., Shakiba, M., Moinfar, A., Sepehrnoori, K., 2015.
Implementation of a preprocessor for embedded discrete fracture modeling in an
IMPEC compositional reservoir simulator. SPE Reservoir Simulation Symposium,
23–25 February, Houston, Texas, USA. Society of Petroleum Engineershttp://dx.doi.
org/10.2118/173289-MS.

Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M.,
Sander, O., 2008. A generic grid interface for parallel and adaptive scientific com-
puting. part II: implementation and tests in DUNE. Computing 82 (2–3), 121–138.

Bastian, P., Heimann, F., Marnach, S., 2010. Generic implementation of finite element
methods in the distributed and unified numerics environment (DUNE). Kybernetika
46 (2), 294–315.

Berkowitz, B., 2002. Characterizing flow and transport in fractured geological media: a
review. Adv. Water Resour. 25 (8–12), 861–884.

Bogdanov, I., Mourzenko, V., Thovert, J.-F., Adler, P., 2003. Two-phase flow through
fractured porous media. Phys. Rev. E 68 (2), 026703.

Boon, W. M., Nordbotten, J. M., Yotov, I., 2016. Robust discretization of flow in fractured
porous media. ArXiv:1601.06977 [math.NA].

Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R., 2016. Gradient discretiza-
tion of hybrid dimensional darcy flows in fractured porous media. Numerische
Mathematik 134 (3), 569–609.

Brenner, K., Hennicker, J., Masson, R., Samier, P., 2017. Gradient discretization of hy-
brid-dimensional darcy flow in fractured porous media with discontinuous pressures
at matrixfracture interfaces. IMA J. Numer. Anal. 37 (3), 1551–1585. http://dx.doi.
org/10.1093/imanum/drw044.

Brezzi, F., Lipnikov, K., Simoncini, V., 2005. A family of mimetic finite difference
methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. S. 15 (10),
1533–1551.

Caers, J., 2013. A special issue on benchmark problems, datasets and methodologies for
the computational geosciences. Comput. Geosci. 50, 1–3. http://dx.doi.org/10.1016/
j.cageo.2012.11.001.

Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P.,
Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S.,

Labregere, D., Naderi Beni, A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.,
2009. A benchmark study on problems related to CO2 storage in geologic formations:
summary and discussion of the results. Computat. Geosci. 13 (4), 409–434.

D’Angelo, C., Scotti, A., 2012. A mixed finite element method for darcy flow in fractured
porous media with non-matching grids. ESAIM: Math. Modell. Numer. Anal. 46 (2),
465–489.

De Dreuzy, J.-R., Pichot, G., Poirriez, B., Erhel, J., 2013. Synthetic benchmark for mod-
eling flow in 3d fractured media. Comput. Geosci. 50, 59–71.

Dietrich, P., Helmig, R., Sauter, M., Hötzl, H., Köngeter, J., Teutsch, G., 2005. Flow and
Transport in Fractured Porous Media. Springer.

Eymard, R., Gallouët, T., Herbin, R., 2000. Finite Volume Methods. In: Ciarlet, P.G., Lions,
J.L. (Eds.), Solution of Equation in nR (Part 3), Techniques of Scientific Computing
(Part 3). Handbook of Numerical Analysis 7. Elsevier, pp. 713–1018. http://dx.doi.
org/10.1016/S1570-8659(00)07005-8.

Firoozabadi, A., Monteagudo, J.E.P., 2004. Control-volume method for numerical simu-
lation of two-phase immiscible flow in two- and three-dimensional discrete-fractured
media. Water Resour. Res. 40, W07405. http://dx.doi.org/10.1029/2003WR002996.

Flauraud, E., Nataf, F., Faille, I., Masson, R., 2003. Domain decomposition for an
asymptotic geological fault modeling. Comptes Rendus Mécanique 331 (12),
849–855.

Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S.,
Nuske, P., Tatomir, A., Wolff, M., Helmig, R., 2011. DuMux: DUNE for multi-{phase,
component, scale, physics, ...} flow and transport in porous media. Adv. Water
Resour. 34 (9), 1102–1112. http://dx.doi.org/10.1016/j.advwatres.2011.03.007.

Flemisch, B., Fumagalli, A., Scotti, A., 2016. A review of the xfem-based approximation of
flow in fractured porous media. In: Ventura, G., Benvenuti, E. (Eds.), Advances in
Discretization Methods: Discontinuities, Virtual Elements, Fictitious Domain
Methods. Springer International Publishing, Cham, pp. 47–76. http://dx.doi.org/10.
1007/978-3-319-41246-7_3.

Flemisch, B., Helmig, R., 2008. Numerical investigation of a mimetic finite difference
method. In: Eymard, R., Hérard, J. (Eds.), Finite Volumes for Complex Applications V
– Problems and Perspectives. Wiley - VCH, pp. 815–824.

Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P., 2014. A reduced model for Darcy’s
problem in networks of fractures. ESAIM: Math. Modell. Numer. Analysis 48,
1089–1116. http://dx.doi.org/10.1051/m2an/2013132.

Frih, N., Martin, V., Roberts, J.E., Saâda, A., 2012. Modeling fractures as interfaces with
nonmatching grids. Computat. Geosci. 16 (4), 1043–1060.

Fumagalli, A., Pasquale, L., Zonca, S., Micheletti, S., 2016. An upscaling procedure for
fractured reservoirs with embedded grids. Water Resour. Res. 52 (8), 6506–6525.
http://dx.doi.org/10.1002/2015WR017729.

B. Flemisch et al. Advances in Water Resources 111 (2018) 239–258

257



Fumagalli, A., Scotti, A., 2014. An efficient XFEM approximation of Darcy flows in
fractured porous media. Oil Gas Sci. Technol. - Revue d’IFP Energies Nouvelles 69.4,
555–564.

Gassiat, C., Gleeson, T., Lefebvre, R., McKenzie, J., 2013. Hydraulic fracturing in faulted
sedimentary basins: numerical simulation of potential contamination of shallow
aquifers over long time scales. Water Resour. Res. 49 (12), 8310–8327. http://dx.doi.
org/10.1002/2013WR014287.

Geiger, S., Dentz, M., Neuweiler, I., 2013. A novel multi-rate dual-porosity model for
improved simulation of fractured and multiporosity reservoirs. SPE J. 18 (4),
670–684.

Hajibeygi, H., Karvounis, D., Jenny, P., 2011. A hierarchical fracture model for the
iterative multiscale finite volume method. J. Comput. Phys. 230 (24), 8729–8743.

Hansbo, A., Hansbo, P., 2002. An unfitted finite element method, based on Nitsche’s
method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191
(47–48), 5537–5552.

Helmig, R., 1997. Multiphase Flow and Transport Processes in the Subsurface: A
Contribution to the Modeling of Hydrosystems, 1 ed. Springer.

Hoteit, H., Firoozabadi, A., 2008. Numerical modeling of two-phase flow in hetero-
geneous permeable media with different capillarity pressures. Adv. Water Resour. 31
(1), 56–73.

Huang, H., Long, T.A., Wan, J., Brown, W.P., 2011. On the use of enriched finite element
method to model subsurface features in porous media flow problems. Computat.
Geosci. 15 (4), 721–736.

Karimi-Fard, M., Durlofsky, L.J., Aziz, K., 2004. An efficient discrete-fracture model ap-
plicable for general-purpose reservoir simulators. SPE J. 9 (2), 227–236.

Kolditz, O., Shao, H., Wang, W., Bauer, S., 2015. Thermo-Hydro-Mechanical-Chemical
Processes in Fractured Porous Media: Modelling and Benchmarking. Springer.

Li, L., Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured
reservoir through discrete fracture networks and homogenized media. SPE Reservoir
Eval. Eng 11, 750–758. http://dx.doi.org/10.2118/103901-PA.

Lie, K.-A., Krogstad, S., Ligaarden, I.S., J. R. Natvig, H.M.N., Skaflestad, B., 2012. Open
source matlab implementation of consistent discretisations on complex grids.
Computat. Geosci. 16 (2), 297–322.

Logg, A., Mardal, K.-A., Wells, G.N., et al., 2012. Automated Solution of Differential
Equations by the Finite Element Method. Springerhttp://dx.doi.org/10.1007/978-3-
642-23099-8.

Martin, V., Jaffré, J., Roberts, J.E., 2005. Modeling fractures and barriers as interfaces for
flow in porous media. SIAM J. Sci. Comput. 26 (5), 1667–1691.

Moinfar, A., Narr, W., Hui, M.-H., Mallison, B.T., Lee, S.H., 2011. Comparison of discrete-
fracture and dual-permeability models for multiphase flow in naturally fractured
reservoirs. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.

Moinfar, A., Varavei, A., Sepehrnoori, K., Johns, R.T., 2014. Development of an efficient
embedded discrete fracture model for 3d compositional reservoir simulation in
fractured reservoirs. SPE J. 19 (2), 289–303.

Müthing, S., 2015. A Flexible Framework for Multi Physics and Multi Domain PDE

Simulations. University of Stuttgart Ph.D. thesis.
Neumann, S.P., 2005. Trends, prospects and challenges in quantifying flow and transport

through fractured rocks. Hydrogeol. J. 13, 124–147.
Nordbotten, J., Flemisch, B., Gasda, S., Nilsen, H., Fan, Y., Pickup, G., Wiese, B., Celia, M.,

Dahle, H., Eigestad, G., Pruess, K., 2012. Uncertainties in practical simulation of CO2
storage. Int. J. Greenhouse Gas Control 9, 234–242. http://dx.doi.org/10.1016/j.
ijggc.2012.03.007.

Panfili, P., Cominelli, A., 2014. Simulation of miscible gas injection in a fractured car-
bonate reservoir using an embedded discrete fracture model. Abu Dhabi International
Petroleum Exhibition and Conference, 10–13 November, Abu Dhabi, UAE. Society of
Petroleum Engineershttp://dx.doi.org/10.2118/171830-MS.

Panfili, P., Cominelli, A., Scotti, A., 2013. Using Embedded Discrete Fracture Models
(EDFMs) to simulate realistic fluid flow problems. Second EAGE Workshop on
Naturally Fractured Reservoirs, Muscat, Oman.

Pfunt, H., Houben, G., Himmelsbach, T., 2016. Numerical modeling of fracking fluid
migration through fault zones and fractures in the north german basin. Hydrogeol. J.
24 (6), 1343–1358. http://dx.doi.org/10.1007/s10040-016-1418-7.

Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R., 2006. A mixed-dimensional finite
volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29
(7), 1020–1036. http://dx.doi.org/10.1016/j.advwatres.2005.09.001.

Sahimi, M., 2011. Flow and Transport in Porous Media and Fractured Rock: From
Classical Methods to Modern Approaches. John Wiley & Sons.

Sandve, T.H., Berre, I., Nordbotten, J.M., 2012. An efficient multi-point flux approx-
imation method for discrete fracture-matrix simulations. J. Comput. Phys. 231 (9),
3784–3800. http://dx.doi.org/10.1016/j.jcp.2012.01.023.

Schwenck, N., 2015. An XFEM-Based Model for Fluid Flow in Fractured Porous Media.
University of Stuttgart Ph.D. thesis.

Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B., 2015. Dimensionally reduced flow
models in fractured porous media: crossings and boundaries. Computat. Geosci. 19
(6), 1219–1230. http://dx.doi.org/10.1007/s10596-015-9536-1.

Singhal, B.B.S., Gupta, R.P., 2010. Applied Hydrogeology of Fractured Rocks. Springer
Science & Business Media.

Swedish Nuclear Power Inspectorate (SKI), 1987. The International Hydrocoin
Project–Background and Results. Paris, France: Organization for Economic Co-op-
eration and Development.

Taherdangkoo, R., Tatomir, A., Taylor, R., Sauter, M., 2017. Numerical investigations of
upward migration of fracking fluid along a fault zone during and after stimulation.
Energy Procedia 125, 126–135. http://dx.doi.org/10.1016/j.egypro.2017.08.093.

Tatomir, A.-B., 2012. From Discrete to Continuum Concepts of Flow in Fractured Porous
Media. Ph.D. thesis. University of Stuttgart.

Tene, M., Bosma, S.B., Kobaisi, M.S.A., Hajibeygi, H., 2017. Projection-based embedded
discrete fracture model (pEDFM). Adv. Water Resour. 105, 205–216. http://dx.doi.
org/10.1016/j.advwatres.2017.05.009.

Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P., 2012. A model for conductive faults
with non-matching grids. Computat. Geosci. 16 (2), 277–296.

B. Flemisch et al. Advances in Water Resources 111 (2018) 239–258

258



Paper E

Unified Approach to Discretization of
Flow in Fractured Porous Media

J.M. Nordbotten, W.M. Boon, A. Fumagalli, E. Keilegavlen

Computational Geosciences. In review.

arXiv:1802.05961 [math.NA]





1 
 

Unified approach to discretization of flow 
in fractured porous media 
 

J. M. Nordbotten1,2, W. M. Boon1, A. Fumagalli1, E. Keilegavlen1 

1 Department of Mathematics, University of Bergen, N-5020 Bergen, Norway 
2 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA 

 

 

In celebration the 60th birthday of Professor Rainer Helmig 

 

Abstract 
In this paper, we introduce a mortar-based approach to discretizing flow in fractured porous media, 

which we term the mixed-dimensional flux coupling scheme. Our formulation is agnostic to the 

discretizations used to discretize the fluid flow equations in the porous medium and in the fractures, 

and as such it represents a unified approach to integrated fractured geometries into any existing 

discretization framework. In particular, several existing discretization approaches for fractured porous 

media can be seen as special instances of the approach proposed herein.  

We provide an abstract stability theory for our approach, which provides explicit guidance into the grids 

used to discretize the fractures and the porous medium, as dependent on discretization methods 

chosen for the respective domains. The theoretical results are sustained by numerical examples, 

wherein we utilize our framework to simulate flow in 2D and 3D fractured media using control volume 

methods (both two-point and multi-point flux), Lagrangian finite element methods, mixed finite element 

methods, and virtual element methods. As expected, regardless of the ambient methods chosen, our 

approach leads to stable and convergent discretizations for the fractured problems considered.  

Key words: discretization methods, mixed-dimensional, flux mortars 

 

1. Introduction 
Flow in porous media with thin inclusions is an important process both within subsurface and industrial 

materials. Our main focus herein is on the subsurface, where the thin inclusions represent fractures, and 

the fracture space can be either open or filled. We will thus simply refer to fractured porous media in 

what follows. However, thin inclusions may also be engineered in artificial porous media for the purpose 

of fluid flow control.  

Fluid flow in fractured porous media is a dominating process in several subsurface applications, ranging 

from geothermal energy production, shale gas recovery and nuclear waste deposits. As such, accurate 

and reliable numerical representations have been an important topic of research, and Rainer Helmig has 

been a major contributor to the field for more than three decades. Existing discrete representations of 
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fractured porous media fall in two major categories, depending on whether the fractures conform to the 

underlying discrete grid representing the porous materials. So-called “unfitted” discretizations, wherein 

the fractures are allowed to be arbitrary with respect to the grid, have seen significant research and 

developments in recent years (see e.g. [1, 2]). Our focus herein is in contrast on discretizations the 

discrete grid resolves the fractures, which are conceptually simpler than unfitted discretizations.  

Early research into numerical simulation and conforming discretization of fractured porous media was 

spear-headed by among others Rainer Helmig and his collaborators [3]. This early work was centered 

around lowest-order finite element discretizations. Later, it was understood that local conservation 

properties were important for discretization methods for flow in porous media, and conforming 

discretizations of fractured porous media were developed based on control volume approaches [4, 5],  

mixed finite element methods [6, 7], mimetic finite differences [8] and virtual element methods [9]. See 

also [10] for a comparison study.  

A recent development in the mathematical representation of fractured porous media is the modeling 

and interpretation of fractures as lower-dimensional manifolds [11, 7]. This concept allows for the 

introduction of mixed-dimensional partial differential equations (md-PDEs), wherein partial differential 

equations are defined, in a coupled sense, both in the porous material, lower-dimensional fractures, and 

yet lower-dimensional intersections. In this abstraction, it can be shown that the mathematical models 

for fractured porous media, can be cast in a rich functional-analysis framework, ensuring well-

posedness, and thus existence and uniqueness, of solutions [12]. 

In this manuscript, we revisit conforming discretizations of fractured porous media within the context of 

md-PDEs. We show, by introducing explicit coupling variables in the spirit of mortar methods [13, 11, 7, 

14], an abstract framework for constructing a conforming fracture discretization from any discretization 

of non-fractured porous media. We term this approach the mixed-dimensional flux-coupling (MDFC) 

method. Viewed from the discretization within each dimension, the coupling between dimensions takes 

the form of standard boundary value problems, thus any implementation that can account for Dirichlet 

and Neumann boundary data can be applied to fractured media with minimal adaptations. Our 

approach thus unifies the various previous developments reviewed above.  

We concretize the abstract framework by applying it to well-known discretizations from literature, 

establishing (in some cases for the first time) that these discretizations are well-posed. To illustrate the 

versatility of the framework, we provide numerical examples showing how five different discretization 

methods for non-fractured porous can be applied as discretization methods for fractured porous media. 

Our examples, which include a 2D case where we use non-matching grids between the dimensions and a 

relatively complex 3D case, highlight the convergence properties and stability of MDFC even for 

degenerating parameters. 

The remaining manuscript honors the following structure: We first review the modeling of fractured 

porous media. Thereafter, in section 3, we introduce our novel approach to unifying discretization 

methods for fractured media. We show the stability of the approach theoretically, which emphasizes the 

conditions required between the (in principle non-matching) grids discretizing the matrix and fractures. 

Numerical examples and verification are presented before concluding the paper.  
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2. Modeling fractured porous media 
In this section we introduce our model for fractured media, first by a single fracture, and then extended 

to general fracture networks. 

2.1. Domain with a single fracture 
Flow in (fractured) porous media can lead to complex and non-linear governing equations. However, at 

the heart usually lies a second-order partial differential equation, which upon linearization (i.e. within a 

Newton iteration) thus takes the classical form for a pressure 𝑝3 and flux 𝑞3 

∇ ⋅ 𝑞3 + 𝜓3 = 0  on   Ω3  (2.1) 

−𝜅∇𝑝3 = 𝑞3   on   Ω3  (2.2)  

𝑞3 ⋅ 𝑛3 = 𝜆+
2    on   𝜕Ω+2Ω

3  (2.3)  

𝑞3 ⋅ 𝑛3 = 𝜆−
2    on   𝜕Ω−2Ω

3  (2.4)  

𝑞3 ⋅ 𝑛3 = 𝑔3   on   𝜕𝑁Ω
3  (2.5)  

tr 𝑝3 = 0   on   𝜕𝐷Ω
3  (2.6) 

Here we denote by Ω3 the (3-dimensional) porous medium, and by 𝜕𝑁 and 𝜕𝐷 its Neumann and Dirichlet 

boundaries, respectively. We denote by 𝜕Ω±2Ω
3 the boundary of Ω3 as seen from the positive (resp. 

negative) side of Ω2, and the outer normal vector is always denoted 𝑛. The Dirichlet boundary data is set 

to zero for notational convenience. We emphasize the structure of the governing equations as 

composed of a conservation law (2.1), and a constitutive (Darcy) law (2.2). In equations (2.1-2.6) we 

have marked variables by a superscript ‘3’ to emphasize that they belong in 3 dimensions, the necessity 

of the precision will be clear below. Note that the flux from the (2-dimensional) Neumann boundary is 

denoted by a superscript ‘2’. Throughout the manuscript, we will use 𝜓 to denote right-hand sides, 

which with the chosen sign convention represents fluid extraction.  

 

Figure 1: Illustration of a 3D-domain with a single 2D-fracture, see Section 4 for more examples.  
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Similarly, we may consider a single fracture as a (2-dimensional) manifold Ω2, whereon the governing 

equations can in the linearized case be expressed as [15] 

∇2 ⋅ 𝑞
2 − (𝜆+

2 + 𝜆−
2 ) + 𝜓2 = 0  on   Ω2  (2.7) 

−𝜅||
2∇2𝑝

2 = 𝑞2   on   Ω2  (2.8) 

𝑞2 ⋅ 𝑛2 = 𝑔𝑑   on   𝜕𝑁Ω
2  (2.9)  

tr 𝑝2 = 0   on   𝜕𝐷Ω
2  (2.10) 

In equations (2.7-2.8), we denote by a double-strike the tensor operating tangentially (parallel) to the 

manifold, and emphasized that the differential operators are 2-D by a subscript. We note that in 

equation (2.7), two extra terms arise. These represent the outflow from the fracture into the porous 

medium on the two sides of the fracture (denoted + and -). As above, fracture variables are indicated by 

a superscript ‘2’ for clarity.  

Considering still the case of a single fracture, equations (2.1-2.10) lead to a system of equations where 

𝜆2 is a variable internal to the system. We thus complete the model with a constitutive law for 𝜆2, which 

takes the Darcy-like form (see e.g. [7]) 

𝜆±
3 = −𝜅⊥(𝑝

2 − tr 𝑝±
3)      (2.11) 

We remark that the within-fracture permeability 𝜅|| and the transverse permeability 𝜅⊥ will in practice 

scale with the aperture and its inverse, respectively.  

Equations (2.1-2.11) form a closed and well-posed system of equations for a porous medium including a 

fracture (see e.g. [8]). More generally, we note that we write these equations in a unified way, in that 

for 𝑑 = {2,3} 

∇𝑑 ⋅ 𝑞
𝑑 − ∑ 𝜆𝑗

𝑑
𝑗∈± + 𝜓𝑑 = 0  on   Ω𝑑  (2.12) 

−𝜅||
𝑑∇𝑑𝑝

𝑑 = 𝑞𝑑    on   Ω𝑑  (2.13) 

𝑞𝑑 ⋅ 𝑛𝑑 = 𝜆𝑑−1    on   𝜕Ωd−1Ω
𝑑 (2.14)  

𝜆𝑗
𝑑 = −𝜅⊥

𝑑(𝑝𝑑 − tr 𝑝𝑗
𝑑+1)  on   𝜕Ωd−1Ω

𝑑 (2.15)  

𝑞𝑑 ⋅ 𝑛𝑑 = 𝑔𝑑   on   𝜕𝑁Ω
𝑑  (2.16)  

𝑝𝑑 = 0    on   𝜕𝐷Ω
𝑑  (2.17) 

Equations (2.12-2.17) make sense with the convention that since there is no 4-dimensional domain in 

the model, the terms 𝜆3 = 0.  

From physical considerations, it is customary to consider all boundaries of the fracture as Neumann 

boundaries with 𝑔𝑑 = 0, except where the boundary coincides with an outer boundary of the full 

domain.  However, these restrictions are not necessary from a mathematical or numerical perspective, 

and we will retain the slightly more general formulation in order to avoid extra notation for 

distinguishing between internal and external boundaries of fractures.  
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2.2. Extension to general fracture configurations 
Equations (2.12-2.17) are written in a way that naturally generalizes also to fracture intersections, both 

the 1-D line intersections as well as the 0-D point intersections of three fractures [16, 6].  We introduce 

some extra notation to this end. Let each domain (matrix, fracture, or intersection) be indexed by 

number and dimension, i.e. Ω𝑖
𝑑 is domain number 𝑖 ∈ 𝐼, having dimensionality 𝑑. We consider a total of 

𝑚 subdomains of various dimensionality. This subdivision is illustrated in Figure 2. 

 

Figure 2: Illustration of a domain in 2D containing four fractures and an intersection, and its logical 

representation with two 2D-domains, seven 1D-domains, and one 0D domain.  

Furthermore, let �̂�𝑖 be the set of neighbors of domain 𝑖 of dimension 𝑑 + 1, and conversely let  �̌�𝑖 be the 

set of neighbors of 𝑖 with dimension 𝑑 − 1. Then we can write for all 𝑑 = {0,1,2,3} and all 𝑖 ∈ 𝐼 the 

equations 

∇𝑑 ⋅ 𝑞𝑖
𝑑 − ∑ 𝜆𝑖,𝑗

𝑑
𝑗∈�̂�𝑖

+ 𝜓𝑖
𝑑 = 0  on   Ω𝑖

𝑑  (2.18) 

−𝜅𝑖,||
𝑑 ∇𝑑𝑝𝑖

𝑑 = 𝑞𝑖
𝑑   on   Ω𝑖

𝑑  (2.19) 

𝑞𝑗
𝑑 ⋅ 𝑛𝑗

𝑑 = 𝜆𝑖,𝑗
𝑑−1    on   𝜕𝑖Ω𝑗

𝑑  (2.20)  

𝜆𝑖,𝑗
𝑑 = −𝜅𝑖,⊥

𝑑 (𝑝𝑖
𝑑 − tr 𝑝𝑗

𝑑+1)  on   𝜕𝑖Ω𝑗
𝑑  (2.21)  

𝑞𝑖
𝑑 ⋅ 𝑛𝑖

𝑑 = 𝑔𝑖
𝑑   on   𝜕𝑁Ω𝑖

𝑑  (2.22)  

𝑝𝑖
𝑑 = 0    on   𝜕𝐷Ω𝑖

𝑑  (2.23) 

Note that for 𝑑 = 0, the domain has no physical extent and no boundary such that (2.19), (2.20) and 

(2.22) are void, and correspondingly 𝑞𝑖
0 is not a variable in the system.  Equations (2.18-2.23) - with 

some variations – are equivalent or generalize the standard equations used to model fractured porous 

media (see [7, 1, 6] and references therein). These equations have been identified as a second-order 

Ω5
1 

Ω6
1 

Ω1
1 

Ω7
1 

Ω1
0 

𝜕𝐷Ω 

𝜕𝐷Ω 

𝜕𝑁Ω 

Ω1
2 

Ω2
1 

Ω3
1 Ω4

1 

Ω2
2 

𝜕𝑁Ω 
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system of mixed-dimensional partial differential equations, for which existence and uniqueness theory 

has been developed under fairly mild assumptions on the geometry [12]. In this work we will only 

consider planar fractures, but with no restrictions on their intersections or interaction with the 

boundary.  

In order to simplify notation in the following, we consider the dimension associated with each 

subdomain, 𝑑 = 𝑑(𝑖), to be specified, and introduce the compound variables 𝔭 = [𝑝1
𝑑(1)

…𝑝𝑚
𝑑(𝑚)

],  𝔮 =

[𝑞1
𝑑(1)

…𝑞𝑚
𝑑(𝑚)

] and similarly for ℷ = [𝜆𝑖,𝑗]. We also introduce corresponding function spaces, thus we 

let ℋ1 = ∏ 𝐻1
∘
(Ω𝑖

𝑑(𝑖))𝑖  and ℒ2 = ∏ ∏ 𝐿2(Ω𝑖
𝑑(𝑖))𝑗∈�̂�𝑖𝑖 . The Dirichlet boundary conditions implied by the 

notation 𝐻1
∘

 only applies to the part of the boundary covered by equation (2.23).  

2.3 Variational formulation 
Before considering discretization of equations (2.18-2.23), we note that equation (2.21) is in a sense 

dual to the summation terms in equation (2.18), thus the system can be written as a symmetric saddle-

point problem: Find (𝔭, ℷ) ∈ ℋ1 × ℒ
2 such that for all 𝑖 ∈ 𝐼 [from equations (2.18-2.20)]: 

(𝜅𝑖,||
𝑑 ∇𝑑𝑝𝑖

𝑑 , ∇𝑑𝑤𝑖
𝑑)
Ω𝑖
𝑑 +∑ (𝜆𝑗,𝑖

𝑑−1, tr 𝑤𝑖
𝑑)
𝜕𝑗Ω𝑖

𝑑𝑗∈�̌�𝑖
− ∑ (𝜆𝑖,𝑗

𝑑 , 𝑤𝑖
𝑑)
Ω𝑖
𝑑𝑗∈�̂�𝑖

𝑑 = −(𝜓𝑖
𝑠, 𝑤) − (𝑔𝑖

𝑑 , tr 𝑤𝑖
𝑑)
𝜕𝑁Ω𝑖

𝑑   

for all 𝑤 ∈ 𝐻1(Ω𝑖
𝑑)  (2.24) 

and [from (2.21)]: 

∑ (𝑝𝑖
𝑑 , 𝜇𝑖,𝑗

𝑑 )
Ω𝑖𝑗∈�̂�𝑖

𝑑 − (𝜇𝑖,𝑗
𝑑 , tr 𝑝𝑗

𝑑+1)
𝜕𝑖Ω𝑗

𝑑+1 + ((𝜅𝑖,⊥
𝑑 )

−1
𝜆𝑖,𝑗
𝑑 , 𝜇𝑖,𝑗

𝑑 )
𝜕𝑖Ω𝑗

𝑑+1
= 0 for all  𝜇 ∈ 𝐿2(𝜕𝑖Ω𝑗

𝑑) 

         (2.25) 

By shifting indexes on the trace term in (2.24), we identify the symmetric and coupling terms as  

𝑎(𝔭, ℷ; 𝑤, 𝜇) = ∑ (𝜅𝑖,||
𝑑 ∇𝑑𝑝𝑖

𝑑 , ∇𝑑𝑤𝑖
𝑑)
Ωi
𝑑 + ((𝜅𝑖,⊥

𝑑 )
−1
𝜆𝑖,𝑗
𝑑 , 𝜇𝑖,𝑗

𝑑 )
𝜕𝑖Ω𝑗

𝑑+1𝑖∈𝐼   (2.26) 

𝑏(𝔭, 𝜇) = ∑ ((𝜇𝑖,𝑗
𝑑 , tr 𝑝𝑗

𝑑+1)
𝜕𝑖Ω𝑗

𝑑+1 − ∑ (𝑝𝑖
𝑑 , 𝜇𝑖,𝑗

𝑑 )𝑗∈�̂�𝑖
𝑑

Ω𝑖
𝑑
)𝑖∈𝐼    (2.27) 

For non-degenerate coefficients, equations (2.24-2.25) are well-posed by standard saddle-point theory 

[17], and in the remaining manuscript we will only consider this case. Nevertheless, we remark that, 

following similar arguments as exposed in [6], it can be shown that significant degeneracy of coefficients 

can be permitted, at the cost of introducing weighted spaces. In particular, it is of interest to also allow 

for blocking fractures, wherein the tangential permeability is negligible. Equations (2.24-2.25) are well-

posed in this sense, since if for a given domain Ω𝑖
𝑑, the permeability can degenerate in the sense of 

𝜅𝑖,||
𝑑 → 0, as long as 𝜅𝑖,⊥

−𝑑 remains bounded from below for all 𝑗 ∈ �̂�𝑖
𝑑. However, now the pressure 𝑝𝑖

𝑑 is 

only in 𝐿2 due to the inf-sup condition for 𝑏(𝔭, 𝜇) [6]. This implies that this weakly continuous 

formulation for fractured porous media is robust both for arbitrarily thin fractures, and can also be 

applied to blocking fractures. We summarize the above discussion as follows:  

Let an 𝐿2-like norm on ℋ1 × ℒ
2 be defined as  
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‖(𝑝, 𝜆)‖2 = ∑ ‖𝑝𝑖
𝑑‖
𝐿2(Ω𝑖

𝑑)

2
+ ∑ ‖𝜆𝑖,𝑗

𝑑 ‖
𝐿2(Ω𝑖

𝑑)

2
𝑗∈�̂�𝑖𝑖∈𝐼    (2.28) 

Furthermore, let the set of indexes be refined such that 𝑖 ∈ 𝐼𝑎 if 𝜅𝑖,||
𝑑 > 0 and 𝑖 ∈ 𝐼𝑏 if 𝜅𝑖,||

𝑑 = 0. Then we 

introduce space 𝒫 as  

𝒫 = ∏ 𝐻1
∘
(Ω𝑖

𝑑(𝑖)
)𝑖∈𝐼𝑎 ×∏ 𝐿2 (Ω𝑖

𝑑(𝑖)
)𝑖∈𝐼𝑏    (2.29) 

Then the equations for flowing and blocking fractures can be written as find (𝔭, ℷ) ∈ 𝒫 × ℒ2 such that  

𝑎(𝔭, ℷ; 𝑤, 𝜇) + 𝑏(𝑤, ℷ) − 𝑏(𝔭, 𝜇) = −∑ (𝜓𝑖
𝑠, 𝑤𝑖

𝑠)𝑖∈𝐼 − ∑ (𝑔𝑖
𝑑 , tr 𝑤𝑖

𝑑)
𝜕𝑁Ω𝑖

𝑑𝑖∈𝐼𝑎  for all (𝑤, 𝜇) ∈ 𝒫 × ℒ2

 (2.30) 

The solution of (2.30) is characterized by the following Lemma.  

 

Lemma 2.1  
Equation (2.30) has a unique solution (𝔭, ℷ) ∈ 𝒫 × ℒ2, satisfying  

‖(𝔭, ℷ)‖ ≤ 𝐶‖(𝜓, 𝑔)‖     (2.31) 

Provided that there exists constants 𝜅0,⊥ and 𝜅∞,⊥ for all 𝑖, holds that 0 < 𝜅0,⊥ ≤ 𝜅𝑖,⊥
𝑑 ≤ 𝜅∞,⊥ < ∞, and 

that  

a) There is a lower bound 𝜅0,|| such that for all 𝑖 ∈ 𝐼𝑎, it holds that  𝜅𝑖,||
𝑑 ≥ 𝜅0,|| > 0, while, 

b) For all 𝑖 ∈ 𝐼𝑏 there it holds that 𝑗 ∈ 𝐼𝑎 for all 𝑗 ∈ �̂�𝑖. 

Proof. 

For the two cases in the proof for 𝐼𝑎 and 𝐼𝑏, respectively, we indicate variables in these domains by 

similar subscripts. Then formally, equations (2.26) take the form  

(

 

𝜅0,||Δ𝑎 Σ Σ 0

−ΣT 𝜅⊥
−1 0 0

−ΣT 0 𝜅⊥
−1 −ΣT

0 0 Σ 0 )

 (

𝔭𝑎
ℷ𝑎,𝑎
ℷ𝑎,𝑏
𝔭𝑏

) = −(

𝜓𝑎 + 𝑔
0
0
𝜓𝑏

) 

Here, Δ𝑎 represents the 𝐻1 bilinear forms on Ω𝑖
𝑑, 𝜅⊥ represents the 𝐿2 bilinear forms om 𝜕𝑗Ω𝑖

𝑑, while Σ 

are the duality pairings in (2.27). The upper-left 3x3 system is coercive due to the conditions of the 

proof. Furthermore, we obtain the well-posedness of the full system, since it is easy to show that the Σ 

terms are inf-sup stable between 𝐿2 spaces, indeed  

inf
𝑝𝑖
𝑑∈𝐿2(Ω𝑖

𝑑)

𝑖∈𝐼𝑏

sup
𝜇𝑖,𝑗
𝑑 ∈𝐿2(Ω𝑖

𝑑)

∑ (𝑝𝑖
𝑑 , 𝜇𝑖,𝑗

𝑑 )𝑗∈�̂�𝑖
𝑑

Ω𝑖
𝑑

‖𝑝𝑖
𝑑‖
𝐿2(Ω𝑖

𝑑)
‖𝜇𝑖,𝑗
𝑑 ‖

𝐿2(Ω𝑖
𝑑)

≥ 1 

Since one may simply choose 𝜇𝑖,𝑗
𝑑 = 𝑝𝑖

𝑑. The coercivity of the upper left 3x3 system together with inf-sup 

for the Σ terms is sufficient for stability of the full system by abstract saddle-point theory [17]. □ 
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Remark 2.2 

Lemma 2.1 is not optimal in the sense that it is fairly easy to extract 𝐻1 regularities on all domains 𝑖 ∈

𝐼𝑎, and the restrictions on 𝜅⊥ can be somewhat relaxed. However, as we in this contribution are 

primarily interested in the numerical implementation, we have chosen to keep Lemma 2.1 as simple as 

possible. Readers interested in the functional analysis for equations of this type are referred to the 

papers referenced in the introduction.  

 

It is important to note that the main objective of exposing the equations for flow in fractured porous 

media on the form (2.26-2.27), is that it highlights the specific domain-decomposition like structure of 

the problem. Indeed, we note that on each sub-domain (be it porous media, fracture, or fracture 

intersections), we have a fairly standard elliptic partial-differential equation. These are coupled via 

interface variables, 𝜆𝑖,𝑗
𝑑 . This structure is key to design general and flexible discretization approaches, as 

introduced in the next section. 

 

3. Discretizations for fractured porous media 
Our exposition of the mathematical model for fractured porous media emphasizes two main aspects of 

the model, namely the second-order elliptic PDE within each domain, and the flux-coupling terms. 

Numerous discretization methods have been constructed for second-order elliptic differential equations 

– many of these are bespoke to the particular challenges associated with flow in highly heterogeneous 

porous media (for an introduction, see the books [18, 19, 20]). Herein, we will prove that any stable 

discretization for flow in (mono-dimensional) porous media can be applied to fractured porous media 

through the framework introduced in the preceding section.  

We subdivide this section in three parts, in order to provide the MDFC discretization framework, its 

abstract analysis, and a concrete example using finite elements.  

To be precise, we consider each domain Ω𝑖
𝑑 and its Neumann boundary Γ𝑖

𝑑 = 𝜕𝑁Ω ∪𝑗∈�̌� 𝜕𝑗Ω𝑖
𝑑 as 

endowed with a numerical discretization (note that Γ𝑖
𝑑 includes all boundaries to lower-dimensional 

manifolds). We will only consider linear discretizations, however the approach should be applicable also 

to non-linear discretizations (for a recent contribution in this direction from Helmig’s group, see [21]). 

We do not require that a discrete grid be defined, however we let the discrete representation of 𝐿2(Ω𝑖
𝑑) 

and 𝐿2(Γ𝑖
𝑑) as 𝑁ℎ(Ω𝑖

𝑑) and 𝑁ℎ(Γ𝑖
𝑑), respectively.  For domains 𝑖 ∈ 𝐼𝑎, i.e. where the fractures are 

permeable with 𝜅𝑖,||
𝑑 ≥ 𝜅0,||, the solution operator of the numerical discretization of the heterogeneous 

elliptic equation on a given domain 𝑖 ∈ 𝐼𝑎 can be stated as 𝒩𝑖
𝑑 ∶ [𝑁ℎ(Ω𝑖

𝑑),𝑁ℎ(Γ𝑖
𝑑)] →

[𝑁ℎ(Ω𝑖
𝑑),𝑁ℎ(Γ𝑖

𝑑)]. This solution operator maps sinks and Neumann data to pressures and pressure 

traces, as made precise below. Here, we recall that we for notational simplicity only consider 

homogeneous boundary conditions on the Dirichlet boundaries, and as such suppress the Dirichlet 

boundary data. For domains 𝑖 ∈ 𝐼𝑏, the solution operator is void, as there is no differential equation on 

these domains.  
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We will use the natural requirement that the numerical discretizations provided are consistent 

approximations in the following sense: Let 𝑖 ∈ 𝐼𝑎, and let [𝑝, 𝑡] = 𝒩𝑖
𝑑(𝜓, 𝜃), for (𝜓, 𝜃) ∈ 𝑁ℎ(Ω𝑖

𝑑) ×

𝑁ℎ(Γ𝑖
𝑑), then this quadruplet of variables approximates the solution to the elliptic differential equation  

∇𝑑 ⋅ (−𝜅𝑖,||
𝑑 ∇𝑑𝑝) + 𝜓 ≈ 0 on  Ω𝑖

𝑑    (3.1) 

(−𝜅𝑖,||
𝑑 ∇𝑑𝑝) ⋅ 𝑛 − 𝜃 ≈ 0  on  Γ𝑖

𝑑    (3.2) 

𝑡 − tr 𝑝 ≈ 0   on  Γ𝑖
𝑑    (3.3) 

tr 𝑝 ≈ 0   on  𝜕𝐷Ω𝑖
𝑑    (3.4) 

The precise interpretation of ≈ will depend on the chosen numerical method. We note that standard 

methods such as finite volume, finite element, mixed-finite element and spectral methods all fall within 

this framework, where the approximation implied by the ≈ signs of equations (3.1-3-4) can for most 

numerical methods be characterized by grid regularity, material parameters, grid resolution, etc. By 

assumption, we consider only stable numerical methods, in the sense of a negative eigenvalue-spectrum 

for the numerical solution operators 𝒩𝑖
𝑑, with potentially a single degenerate eigenvalue for 

subdomains where 𝜕𝐷Ω𝑖
𝑑 = Ø, and we will denote the smallest (i.e. most negative) nondegenerate 

eigenvalue of 𝒩𝑖
𝑑 as −𝑛𝑖

𝑑. Furthermore, the system (3.1-3.4) is self-adjoint, so that in many cases the 

numerical method 𝒩𝑖
𝑑 will be symmetric (see Section 3.3 below for the case of finite elements).   

 

3.1 MDFC: A unified discretization of fractured porous media 
To provide a discretization for fractured systems, a grid 𝒯𝑖

𝑑 is introduced on the lower-dimensional 

manifolds Ω𝑖
𝑑 on which the boundary flux variables 𝜆𝑖,𝑗

𝑑 will be defined. We emphasize that this mortar-

like grid 𝒯𝑖
𝑑 can be chosen independently of any grid used by the numerical methods  𝒩𝑖

𝑑 and 𝒩
�̂�𝑖
𝑑
𝑑+1, 

thus we impose a minimum of restrictions on the grids. Nevertheless, note that this construction 

ensures that the flux variables on either side of a fracture (or either sides of fracture intersections) are 

conforming with each other. The precise relationships between the admissible grids 𝒯𝑖,𝑗
𝑑 as implied by 

the numerical methods 𝒩𝑖
𝑑, will be made clear below. For the sake of symmetry, we also define grids 

𝒢𝑖
𝑑 for the Neumann data on 𝜕𝑁Ω𝑖

𝑑. 

To formulate discrete methods for fractured porous media, we represent the flux variable as piecewise 

constant on the mortar grid 𝒯𝑖
𝑑, thus 𝜆𝑖,𝑗

𝑑 ∈ 𝑃0(𝒯𝑖
𝑑) and 𝑔𝑖

𝑑 ∈ 𝑃0(𝒢𝑖
𝑑) (higher-order approximations are 

also possible, but the regularity of the problem does not seem to justify this). We introduce projection 

operators in order to move between the degrees of freedom of the numerical methods 𝒩𝑖
𝑑 and the 

mortar grids 𝒯𝑖
𝑑. We first define the compound operator projecting from the coupling variables on the 

mortar grids to the subdomain degrees of freedom  

Π
𝑁ℎ(Ω𝑖

𝑑)
∶ [𝑃0(𝒯𝑖

𝑑), 𝑃0 (𝒯�̌�𝑖
𝑑−1) , 𝑃0(𝒢𝑖

𝑑)] → [𝑁ℎ(Ω𝑖
𝑑),𝑁ℎ(Γ𝑖

𝑑)]   (3.5) 

and conversely from the numerical variables to the coupling variables 

Π
𝑃0(𝒯𝑖

𝑑)
∶ [𝑁ℎ(Ω𝑖

𝑑),𝑁ℎ(Γ𝑖
𝑑)] → [𝑃0(𝒯𝑖

𝑑), 𝑃0 (𝒯�̌�𝑖
𝑑−1) , 𝑃0(𝒢𝑖

𝑑)]   (3.6) 



10 
 

Now, our MDFC discretization framework for fractured porous media takes the form: For given 

numerical discretizations 𝒩𝑖
𝑑: Find 𝜆𝑖,𝑗

𝑑 ∈ 𝑃0(𝒯𝑖
𝑑), for all 𝑖 ∈ 𝐼 and 𝑗 ∈ �̂�𝑖 such that  

(𝑝𝑖
𝑑 , 𝜇𝑗)𝜕𝑖Ω𝑗

𝑑+1 − (𝑡𝑖,𝑗
𝑑 , 𝜇𝑗)𝜕𝑖Ω𝑗

𝑑+1 + (𝜅𝑖,⊥
−𝑑𝜆𝑖,𝑗

𝑑 , 𝜇𝑗)𝜕𝑖Ω𝑗
𝑑+1 = 0 for all  𝜇𝑗 ∈ 𝑃0(𝒯𝑖

𝑑) (3.7)  

subject to the discrete constraints:  

[𝑝𝑖
𝑑 , 𝑡𝑙,𝑖

𝑑−1, 𝑧𝑖
𝑑] = Π𝑃0(𝒯𝑖

𝑑)
𝒩𝑖
𝑑(𝜓𝑖

𝑑 + 𝑎𝑖
𝑑 , 𝑏𝑖

𝑑)   for 𝑖 ∈ 𝐼𝑎  (3.8) 

[𝑎𝑖
𝑑 , 𝑏𝑖

𝑑] = Π𝑁ℎ(Ω𝑖
𝑑)
[−∑ 𝜆𝑖,𝑗

𝑑
𝑗∈�̂�𝑖

𝑑 , 𝜆�̌�𝑖,𝑖
𝑑−1, 𝑔𝑖

𝑑]   for all 𝑖 ∈ 𝐼𝑎  (3.9) 

The dummy variables 𝑎𝑖
𝑑 and 𝑏𝑖

𝑑 have the interpretations of sinks and fluxes due to the interactions with 

other domains, respectively. In contrast, the variables 𝑝𝑖
𝑑 and 𝑡𝑖

𝑑 are the pressure and pressure traces 

after projection onto the grids 𝒯𝑖
𝑑. The variable 𝑧𝑖

𝑑 is the pressure trace projected onto the Neumann 

boundaries, and is not used with the boundary conditions considered herein (but would be relevant with 

Robin boundary conditions).  

This MDFC scheme has a particularly simple interpretation: For each subdomain 𝑖 ∈ 𝐼𝑎, 𝒩𝑖
𝑑 can be 

interpreted as a generalized Neumann-Dirichlet map, in the sense that it maps boundary fluxes (which 

also take the apparent form of sources for neighboring domains of 𝑑 − 1) to Dirichlet data (where 

conversely, for 𝑑 < 𝑛, the internal values are considered Dirichlet data for neighboring domains of 

dimension 𝑑 + 1). As such, equation (3.8) resolves the internal differential equations in each 

subdomain, equations (3.9) is the projection of variables from the flux grids to the numerical boundary 

(and source) data, while equation (3.7) simply states that the flux 𝜆𝑖,𝑗  between a fracture and its 

surroundings should satisfy a form of Darcy’s law, depending on the difference in pressure 𝑝 of the 

fracture and the pressure 𝑡 at the boundary of the surroundings. Equations (3.7-3.9) are thus a Schur-

complement formulation of the discrete problem.  

 

3.2 Abstract analysis 
Let the discretization methods corresponding to the solution operators 𝒩𝑖

𝑑 be collected in a linear 

system, i.e. we state equation (3.8) on the form:  

[𝔭, 𝔱] = 𝒩[𝜓 + 𝔞, 𝔟]     (3.10) 

Similarly, we denote the compound projection operators Π𝒯 and Π𝒩. Furthermore, denote by 𝐷 the 

discrete divergence operators from equation (3.9), which sums flux variables associated with a fracture 

while retaining Neumann boundary data i.e.  

𝐷ℷ|𝑖 = (
−∑ 𝜆𝑖,𝑗

𝑑
𝑗∈�̂�𝑖

𝑑

𝜆𝑖,𝑘
𝑑−1

)      (3.11) 

Finally, let the diagonal mass matrix associated with the inner product ((𝜅𝑖,⊥
𝑑 )

−1
𝜆𝑖
𝑑, 𝜇) appearing in 

equation (3.9) be denoted κ−1. Then we can eliminate the subdomain variables from the discrete 

system (3.7-3.9) to obtain a Schur-complement system only in terms of the flux variables, i.e.  
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(κ−1 + 𝐷TΠ𝒯𝒩Π𝒩𝐷)ℷ = 𝐷
𝑇Π𝒯𝒩[𝜓,Π𝒩𝑔]    (3.12) 

From the Schur complement form, we immediately obtain the following result:  

Lemma 3.1 

Let all subdomain discretization methods 𝒩𝑖
𝑑 be negative definite for 𝑖 ∈ 𝐼𝑎 (i.e. 𝜕𝐷Ω𝑖

𝑑 ≠ Ø for all 𝑖 ∈

𝐼𝑎), and furthermore let the assumptions of Lemma 2.1 hold. Then if the projection operators are 

negative transposes, such that Π𝒯
T = −Π𝒩, the Schur-complement system (3.12) is stable, with no 

degenerate eigenvalues.  

Proof: By the choice of 𝜆𝑖,𝑗 ∈ 𝑃0(𝒯𝑖
𝑑), the κ−1 matrix is diagonal, and has positive eigenvalues bounded 

below by 𝜅0,⊥
−1 . Thus, it is sufficient to show that the remaining term has non-negative eigenvalues. But 

since 𝒩 is negative definite by the assumption of the lemma, then 𝐷TΠ𝒯𝒩Π𝒩𝐷 = −(Π𝒩𝐷)
T𝒩Π𝒩𝐷 

will be non-negative definite. The result follows since the right-hand side operator is bounded by the 

assumption of the Lemma. □ 

In order to allow for fractures (and intersections, etc.) which do not have a Dirichlet boundary, the 

arguments of Lemma 3.1 must be refined. To this end, let 𝐼�̅� be the subset of 𝐼𝑎 which do not have a 

Dirichlet boundary. For these domains, we have a pure Neumann problem, and equations (3.8) are 

expected to constrain the solutions up to a constant (pressure). For the analysis, we therefore introduce 

an auxiliary constant pressure �̅�𝑖
𝑑 for each domain 𝑖 ∈ 𝐼�̅�, and introduce the modified numerical 

methods �̃�𝑖
𝑑 ∶ [𝑁ℎ(Ω𝑖

𝑑),𝑁ℎ(Γ𝑖
𝑑)] ∖ ℝ → [𝑁ℎ(Ω𝑖

𝑑),𝑁ℎ(Γ𝑖
𝑑)] ∖ ℝ, i.e., the solution corresponding to 

equations (3.1-3.4) with a compatibility condition (fluxes and sinks must sum to zero), and the additional 

constraint that the pressure has mean value zero. For 𝑖 ≠ 𝐼𝑎 ∖ 𝐼�̅�, the solution operator is unaltered, 

�̃�𝑖
𝑑 = 𝒩𝑖

𝑑. 

Equation (3.10) is then restated as  

[𝔭, 𝔱] = �̃�[𝜓 + 𝔞, 𝔟] + �̅�     (3.13) 

Inserting  

(κ−1 + 𝐷TΠ𝒯�̃�Π𝒩𝐷)ℷ + (𝐷
TΠ𝒯)𝐼,𝐼�̅�

�̅� = 𝐷𝑇Π𝒯𝒩[𝜓,Π𝒩𝑔]   (3.14) 

With the compatibility constraint that  

(Π𝒩𝐷)𝐼�̅�,𝐼ℷ = 0       (3.15) 

Lemma 3.2 

Let all subdomain discretization methods �̃�𝑖
𝑑 be negative definite for 𝑖 ∈ 𝐼𝑎, and furthermore let the 

assumptions of Lemma 2.1 hold. Furthermore, let 𝐼𝑎 ∖ 𝐼�̅� contain at least one domain.  Then if the 

projection operators are negative transposes, such that Π𝒯
T = −Π𝒩, the saddle-point system (3.14-3.15) 

is stable, with no degenerate eigenvalues.  

Proof: By the assumptions of Lemma 3.1, (𝐷TΠ𝒯)𝐼,𝐼�̅�
= −(Π𝒩𝐷)𝐼�̅�,𝐼. Moreover, by similar argument to 

Lemma 3.1, it holds that (κ−1 +𝐷TΠ𝒯�̃�Π𝒩𝐷) is coercive. It remains to show inf-sup for (𝐷TΠ𝒯)𝐼,𝐼�̅�
. 

I.e., we must show that 
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inf
�̅�∈ℝ|�̅�𝑎|

sup
ℷ

(Π𝒩𝐷)�̅�𝑎,𝐼ℷ⋅�̅�

‖ℷ‖‖�̅�‖
≥ 𝐶    (3.16) 

This result is obtained by considering (all) 𝑖 such that 𝑖 ∈ 𝐼𝑎 ∖ 𝐼�̅�. Construct a rooted tree(s) 𝔗 from 𝑖 

spanning all subdomains (this can always be done for connected domains). Then for leaves (i.e. terminal 

nodes of the tree) 𝑗 we set 𝜆𝑗,𝑘 = �̅�𝑗, where 𝑘 is the parent of 𝑗 (we use the sign convention that 𝜆𝑗,𝑘 =

−𝜆𝑘,𝑗 if 𝑘 is in  �̌�𝑗, and it is sufficient to consider 𝜆𝑗,𝑘 constant). Proceeding in this manner recursively, let 

𝑗 be a node in the tree and let 𝜆𝑗,𝑙 be determined all branches extending from 𝑗. Then set 𝜆𝑗,𝑘 = �̅�𝑗 −

∑ 𝜆𝑗,𝑙𝑙 . Proceeding until the root of the tree, we see by construction that (Π𝒩𝐷)𝐼�̅�,𝐼ℷ = �̅�, and that 

‖ℷ‖ ≤ 𝑐‖�̅�‖, where 𝑐 increases with the depth of the tree(s) 𝔗. For a finite geometry, 𝐶 is therefore 

bounded by the geometry of the fracture network, and independent of the discretization methods. The 

solvability and bounded eigenvalues of (3.14-3.15) then follows from standard theory [17]. □  

 

In practice, it is of course also of interest to also obtain values for the discrete solutions 𝑝𝑑
𝑖 , and not only 

the flux exchanges ℷ. This result is a slightly more subtle, in a similar sense as Lemma 2.1. To prepare, we 

write equation (3.12) in the same form as used in the proof of Lemma 2.1.   

(

 
 

𝒜𝑎 (Π𝒩𝐷)𝑎,𝑎 (Π𝒩𝐷)𝑎,𝑏 0

(𝐷𝑇Π𝒯)𝑎,𝑎 𝜅𝑎 0 0

(𝐷𝑇Π𝒯)𝑏,𝑎 0 𝜅𝑏 (𝐷𝑇Π𝒯)𝑏,𝑏
0 0 (Π𝒩𝐷)𝑏,𝑏 0 )

 
 
(

𝔭𝑎
ℷ𝑎,𝑎
ℷ𝑎,𝑏
𝔭𝑏

) = (

𝜙𝑎
0
0
𝜙𝑏

) (3.17) 

Here, the linear operators 𝒜 are the inverses of 𝒩, and represent the linear discretizations underlying 

the numerical solution. Hence, equation (3.17) is also structurally similar to the natural implementation 

of the methodology. It is also important to note that the form (3.17) is agnostic to whether a domain is 

in 𝐼�̅�, thus from the perspective of implementation, it will in many cases not be necessary to introduce 

special treatment of these domains as in Lemma 3.2. We now obtain a similar result as for the 

continuous case, in the sense that 

Theorem 3.3  
Equation (3.17) is well-posed, provided that the assumptions of Lemma 2.1 and 3.1 (or 3.2) hold, and 

that furthermore  

c) The largest eigenvalues 𝑛𝑖
𝑑 of the numerical methods �̃�𝑖

𝑑 are bounded from above. 

d) The discrete projection operators Π𝒩 satisfy discrete inf-sup conditions for all pairs 𝑖 and 𝑗 

appearing in condition b) of Lemma 2.1. 

Proof: The proof is identical to Lemma 2.1 in the continuous case. □  

 

We make the following remarks regarding Theorem 3.3 and its implications for MDFC: 

1. All standard numerical methods for elliptic partial differential equations will satisfy condition c) 

in the theorem, thus essentially any numerical method can be applied to fractured porous 

media through the MDFC approach given in Section 3.1.  



13 
 

2. There are no restrictions on the grids 𝒯𝑖
𝑑 in relation to the numerical methods 𝒩𝑖

𝑑 as long as the 

fracture permeabilities 𝜅𝑖,||
𝑑  do not degenerate. In particular, for grid-based numerical methods 

𝒩𝑖
𝑑, non-matching grids, both coarser and finer, can be used between the external domain and 

𝒯𝑖
𝑑, and furthermore into the internal domain.  

3. In practice, conditions c) and d) of the theorem state that for subdomains where 𝜅𝑖,||
𝑑  

degenerates, the discrete representation of 𝑝𝑖
𝑑 must not be finer than 𝜆𝑖,𝑗

𝑑 . This is similar to the 

typical conditions encountered in traditional mortar methods [14].  

4. In the special case where 𝒩𝑖
𝑑 is chosen as the mixed-finite element method, analysis shows that 

spatially degenerating 𝜅𝑖,||
𝑑  can be allowed, thus circumventing the binary structure of Lemma 

2.1 and Theorem 3.3 [6].  

 

3.3 Worked example: Finite element methods  
In order to make the presentation more concrete, we consider the finite element method with 

continuous linear Lagrange elements in the framework presented above. Thus, for each Ω𝑖
𝑑 let 𝒰𝑖

𝑑 be 

the corresponding grid, with nodal degrees of freedom.  

Then for 𝑖 ∈ 𝐼𝑎, the elements of the sub-matrices 𝐴𝑖
𝑑 of 𝒜 are simply given by the inner products of 

𝑝,𝑤 ∈ 𝑃1(𝒰𝑖
𝑑) 

(𝜅𝑖,||
𝑑 ∇𝑑𝑝𝑖

𝑑 , ∇𝑑𝑤)Ωi
𝑑     (3.17) 

with Neumann data implemented as natural boundary conditions through the duality pairing 

∑ 〈𝜆𝑗,𝑖
𝑑−1, tr 𝑤〉

𝜕𝑗Ω𝑖
𝑑𝑗∈�̌�𝑖

      (3.18) 

The Neumann boundary conditions are exactly dual to the evaluation of traces, and thus the operator 

𝒩𝑖
𝑑 will be self-adjoint. Standard finite element theory further guarantees that the required bound on 

the eigenvalues holds independent of grid spacing with [22] 

𝑛𝑖
𝑑 ≤ 𝐶(𝜅𝑖,||

𝑑 )
−1

      (3.19) 

Since the solution 𝑝𝑖
𝑑 and its trace live in finite-dimensional subspaces of 𝐿2, the projection operators 

become defined in the standard way, i.e. for 𝜆𝑖,𝑗 ∈ 𝑃0(𝒯𝑖
𝑑) the projection Π

𝒩𝑖
𝑑𝜆𝑖,𝑗 ∈ 𝑃1(𝒰𝑖

𝑑) satisfies 

(Π
𝒩𝑖
𝑑𝜆𝑖,𝑗, 𝑣) = (𝜆𝑖,𝑗, 𝑣)   for all  𝑣 ∈ 𝑃1(𝒰𝑖

𝑑)  (3.20) 

It is therefore clear that Π𝒯
T = Π𝒩. Thus, all the conditions of Theorem 3.3 are satisfied, provided that 

the grids 𝒰𝑖
𝑑 are no finer than 𝒯𝑖

𝑑 whenever 𝜅𝑖,||
𝑑 → 0.  

We note that the finite element approximation could also be obtained directly from Section 2 by simply 

using the finite-dimensional spaces and the bilinear forms defined in equations (2.26-2.27). Thus 

equations (3.7-3.9) with the numerical methods 𝒩𝑖
𝑑 defined by equations (3.14-3.15) and projection 

operators defined by equation (3.15) is equivalent to the symmetric and bilinear saddle-point problem: 

Find (𝑝𝑖,ℎ
𝑑 , 𝜆𝑖,ℎ

𝑑 ) ∈ 𝑃1(𝒰𝑖
𝑑) × 𝑃0(𝒯𝑖

𝑑) such that  
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𝑎(𝑝𝑖,ℎ
𝑑 , 𝜆𝑖,ℎ

𝑑 , 𝑤, 𝜇) + 𝑏′(𝑝𝑖,ℎ
𝑑 , 𝜇) + 𝑏′(𝑞, 𝜆𝑖,ℎ

𝑑 ) = (𝜓𝑖
𝑠, 𝑤) for all (𝑤, 𝜇) ∈ 𝑃1(𝒰𝑖

𝑑) × 𝑃0(𝒯𝑖
𝑑) (3.21) 

This implies that the discretization is consistent, and together with the stability of the method, it follow 

that equation (3.21), and equivalently the MDFC scheme exposed in Section 3.1 with P1 finite elements 

as subdomain solvers, represents a convergent numerical discretization for equations (2.18-2.23).   

While the approach as stated above is sufficient, in the sense of obtaining a stable and convergent 

discretization, we also remark that an improved method would likely be obtained by honoring the 

structure of 𝒫 from section 2.3, and thus using 𝑝𝑖,ℎ
𝑑 ∈ 𝑃0(𝒯𝑖

𝑑) for 𝑖 ∈ 𝐼𝑏. In particular, this would 

eliminate the projection errors associated with the low-permeable fractures. This highlights the 

flexibility of the framework to accommodate different discretizations in the different domains, bespoke 

to the physical processes.  

 

 

4. Example calculations 
To confirm the theory derived above, we propose two synthetic test cases in which the ambient space is 

two- and three-dimensional, respectively. Out of the range of numerical methods to which the MDFC 

applies, we consider five discretization schemes, summarized below. 

Two mixed methods are employed, namely the mixed finite element (RT0), and the dual virtual element 

method (VEM). The mixed finite element, considered in [6], is given by Raviart-Thomas elements of 

lowest order for the fluxes and piecewise constants for the pressure in all dimensions. On the other 

hand, VEM [9] employs a single degree of freedom per face for the fluxes without explicitly specifying 

the basis functions and represents pressures as piecewise constants. Thirdly, employing nodal-based, 

linear Lagrange elements in all dimensions leads to the primal formulation (P1) as presented in Section 

3.3. This is the only method considered in this work which does not respect local mass conservation. 

Finally, two finite volume methods are considered, the two-point flux approximation (TPFA) and the 

multi-point flux approximation scheme (MPFA) [23].  

In line with the spirit of the theory presented in this work, the coupling between dimensions employs a 

flux mortar variable, defined as piecewise constants on a separately generated, lower-dimensional grid. 

All computations are performed using the open-source simulation tool PorePy [24]. 

 

4.1 Two-dimensional fracture system 
The first example, obtained from [6], consists of a unit square with five one-dimensional fractures as 

given in figure 2. Immersed in the top half of the domain are two intersecting, conductive fractures with 

permeability 𝜅⊥ = 10
4 and 𝜅|| = 1. Below are two half-immersed blocking fractures (𝜅⊥ = 1, 𝜅|| =

10−4) and finally, a conductive fracture separates the lower right corner. The boundary conditions are 

chosen as a unit pressure drop from top to bottom and no-flow conditions on the sides. The matrix 

permeability is set to 1. 
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This example is designed to contain all the elements that constitute challenges for numerical methods 

for fractured porous media: The two intersecting fractures represent both 1D and 0D domains which 

have no contact with the boundary, thus the numerical methods 𝒩𝑖
𝑑 on these domains will contain a 

degenerate eigenvalue (i.e. the pressure solutions are only defined up to a constant). Moreover, the 

low-permeable and horizontal fractures are expected to lead to singularities in the solution in the 2D 

domain. Finally, in the lower corner there is a domain which intersects both a Dirichlet and a Neumann 

boundary.  

Figure 3: The contour lines and color scale of the reference solution on the domain given in Figure 2. The 

different qualitative aspects of the solution between the conductive and blocking fractures can be 

clearly seen.  

 

In terms of mesh generation, the one-dimensional fracture grids match the trace of the adjacent two-

dimensional grids. The mortar grid is then constructed at each fracture to have approximately 75% of 

the number of elements compared to the inner, lower-dimensional mesh.  

 

Qualitatively, all numerical methods produce the same pressure distributions. Aside from artifacts due 

to the coarseness of the grid, all methods produce solutions which are visually indistinguishable from 

the figure 3. We turn to a more quantitative measure in order to expose differences between the 

discretizations. Since the only common property between the methods is the mortar variable, we 

compute its 𝐿2-error with respect to a fine-scale solution obtained using the RT0 method. In case of 

convergence, the rate will be limited to first order with respect to the mesh size, since the mortar 

variable is represented by piecewise constants.  

 

The results of this convergence test are shown in figure 4. For the one-dimensional mortar variables, 

very similar behavior is observed for the methods RT0, VEM, and MPFA, exhibiting stable and linear 

convergence. The two remaining methods show lower than first-order convergence on average. For P1, 

we speculate that this is due to its lack of local mass conservation, since the error is measured in a flux 

variable. For TPFA, this deviation is likely due to the lack of consistency in the method (i.e. the 
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approximation error to equations (3.1-3.4) does not necessarily go to zero with grid size). We emphasize 

that all methods are robust and stable from a linear algebra perspective on all grids.  

Figure 4: The errors in the mortar variable decrease with the mesh size for this range of h.  

 

The error in the mortar variables defined at the zero-dimensional intersection is analyzed in figure 

(right). These results are slightly more sporadic since an accumulation of errors can occur from the 

higher dimensions, and since this essentially represents a point evaluation of the solution. Moreover, 

the grids used in the computations are not nested and mesh sensitivities of the method with may be the 

cause of these effects. Nevertheless, the overall trend in all methods is a decrease in error as the mesh 

becomes finer. It is noteworthy that the finite element methods exhibit a more monotone decay in 

comparison to the finite volume methods.  

 

 

4.2 Stability  
It is of interest to verify the claims of Theorem 3.3. In particular, we wish to address whether the 

discrete representation leads to a linear system which has a lower bound on condition numbers, which 

is independent of grid resolutions for non-degenerate parameters, and allows for degenerate 

parameters in the sense of conditions a)-d) in the proof.  

In order to emphasize grids and parameters, we simplify the example from Section 4.1 by omitting the 

fractures which do not touch the boundary, and replacing the no-flow boundary conditions on the sides 

of the domain by a linear pressure variation. We can then consider Theorem 3.1 purely in terms of the 

mortar variables 𝜆𝑖,𝑗. Furthermore, in order to reduce the parameter space, we will let the remaining 

three fractures have the same parameters 𝜅⊥ and 𝜅||.  

We fix the grid in the 2D domain with a resolution corresponding to the second-coarsest grid 

(approximately 4.5k triangles) in the convergence test of Section 4.1. Then in addition to the two 

fracture parameters, we introduce two grid parameters: The relative resolution of the outer grid to the 

mortar grid, and the relative resolution from the mortar grid to the fracture grid.  
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Our aim is to see how the lowest eigenvalue of the discrete Schur-complement system (3.12) depends 

on the fracture parameters and grid parameters. To this end, we have conducted a suite of simulations 

for all methods, exploring the full 4D parameter space. We observe that the results are completely 

independent of 𝜅|| and the ratio of the mortar grid to the inner grid. When varying the perpendicular 

permeability 𝜅⊥, the results depend primarily on whether the mortar grid is finer or coarser than the 

outer grid, and weakly depends on the ratio. These results are summarized in Figure 4.  

 

Figure 4: The minimum eigenvalue of equation (3.12) is plotted against 𝜅⊥ for all five ambient numerical 

methods, in the case of both a finer, conforming, and coarser mortar grid (with respect to the outer 

grid). In all cases, the results are independent of the coarsening/refinement ratio.   

 

From Theorem 3.3, the expected results are that the minimum eigenvalue should scale linearly with 

𝜅⊥
−1. Indeed, this is what is observed for all methods in the case of small values of 𝜅⊥. Moreover, all 

methods are also stable for coarse mortar grids for large values of 𝜅⊥. This result reflects the fact that 

for coarse mortar grids, the Neumann-Dirichlet maps stabilize the system, and that numerically there is 

an inf-sup condition on Π𝒩𝐷 such that 𝐷TΠ𝒯𝒩Π𝒩𝐷 has a lowest eigenvalue. We note however, that 

this does not hold for the continuous system given in equation (2.30), since the trace spaces for the 

pressure are not rich enough to control the mortar space. This, explains why stability is lost on fine 

mortar grids for all methods. Thus in all cases and for all grids, the MDFC method is stable, with 

eigenvalue bounded from below by the continuous problem.   

In general, we thus conclude that for non-degenerate parameters, all discretizations lead to stable 

systems for the mortar variable, independent of grid resolution between matrix, flux-variable, and the 

fractures. For degenerate fracture flow 𝜅||, all methods remain stable. Finally, for degenerate fracture 

cross-flow 𝜅||, the results are in accordance with Theorem 3.3.  
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4.3 Three-dimensional Example 

 

Figure 5:  On the left a) the geometry of the example. On the right b) the pressure computed with RT0. 

Finally, we consider simulations in a 3D problem. The computational domain is taken as the unit cube, 

and the fracture network for this example is reported in Figure 5a. The latter consist of 9 fractures with 

a structure similar to the Benchmark 1 in [Flemisch2017], extended to 3D. The matrix permeability is the 

identity tensor. We introduce the scaling factor 𝜁 = 10−4(3−𝑑), for each lower dimensional object the 

normal permeability is given by 𝜅⊥ = 10
4/𝜁 and the tangential by 𝜅||  = 10

4𝜁. Flow is forced diagonally 

across the domain by specifying a pressure value of 1 at boundaries characterized by (𝑥, 𝑦, 𝑧) < 0.4, and 

similarly a pressure of −1 at  boundaries with (𝑥, 𝑦, 𝑧) > 0.8. On all other boundaries, no-flow 

conditions are assigned. For illustration, the numerical solution computed using RT0 is reported in Figure 

5b. 

To compare the numerical schemes, we investigate numerical convergence of the mortar variables in 

the same way as in Section 4.1. Three simplex grids are considered, with cell counts of about 3.5k, 4.5k 

and 10k tetrahedrals, together with a suitable number of triangles, line elements and points. For 

simplicity, we consider only matching grids in this case. Errors in the mortar variables are computed 

relative to a reference solution obtained with RT0 on a grid with about 37k tetrahedral cells. The 

resulting error decay is depicted in Figure 6. The simulation confirms the findings in section 4.1: MPFA, 

RT0 and VEM all exhibit at least first order convergence for all dimensions, while TPFA again suffers from 

lack of consistency on the ambient grid, thus the low accuracy of the numerical method pollutes the flux 

variable.  
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Figure 6: Error decay in the mortar variable for the 3d simulation reported in section 4.3.  

 

5. Conclusions 
We have developed a new, unified, approach to discretizing fractured porous media, termed Mixed-

Dimensional Flux Coupling. The MDFC approach allows for arbitrary numerical discretizations to be used 

both for the porous media and the fractures. We have supported the development by both theoretical 

analysis, as well as numerical examples using five different numerical methods.  

Several of the limitations included in this work appear to be possible to overcome. In particular, we 

expect that the extension to both non-linear discretizations [21] to be straight-forward in practice. 

Moreover, due to being agnostic of the numerical methods used, our theoretical results are not optimal 

nor exhaustive, and a more explicit treatment of the precise characteristics of the numerical methods 

chosen for the various components of the problem is known to provide more nuanced results [6].   

In applications, coupled problems, are of particular interest. In particular, the fluid flow is often coupled 

to transport of either mass or energy. Preliminary work in this direction is ongoing, and we expect that 

the MDFC framework proposed herein will accommodate such coupled problems.  

We conclude by noting the importance of open-source code availability. The methods developed herein 

have been implemented in PorePy, and both methods and the scripts used to generate the presented 

results are available in the public domain at time of publication.  
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Abstract Domain transformation methods are useful tech-
niques for solving problems on non-stationary domains. In
this work, we consider the evolution of the water table
in an unconfined aquifer. This nonlinear, time-dependent
problem is greatly simplified by using a mapping from the
physical domain to a reference domain and is then further
reduced to a single, (nonlinear) partial differential equation.
We show well-posedness of the approach and propose a sta-
ble and convergent discretization scheme. Numerical results
are presented supporting the theory.
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1 Introduction

The temporal change of the water table in an unconfined
aquifer is challenging to model efficiently while main-
taining a desired accuracy. Affected by natural processes
including precipitation and subsurface flows combined with
artificial factors such as wells and dams, this non-stationary
problem emerges in a variety of engineering applications.

From a modeling perspective, the water table evolution
problem is challenging because the computational domain
will typically depend on the solution to the problem. Specif-
ically, the hydraulic head is the unknown variable, yet it
defines the elevation of the water table and thereby the upper
boundary of the saturated region. As a result, the domain of
computation and the variables of interest cannot be consid-
ered independently. Several methods have been developed
to solve this problem, which we review concisely in the
following summary.

A first approach to describe the non-stationary domain
is to use a moving mesh. This way, the computational
domain is able to follow the dynamic geometry of the
saturated region [6]. However, this approach can be com-
putationally demanding for three-dimensional problems
and furthermore, large deformations of the domain may
cause instabilities [3]. The primary reason for this is that
significant stretching of the mesh may lead to undesirable
aspect ratios in the elements and cause oscillations in the
solution. For the problem considered here, it is imperative
that the solution method is able to handle such large defor-
mations and gradients, for example, those occurring in the
vicinity of wells.

Alternatively, it is possible to expand the domain of
computation towards the surface and treat this problem as
saturated-unsaturated flow governed by Richards’ equation.
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The solution is then obtained using, for example, finite dif-
ference [7, 8] or finite element methods [9]. A drawback
with this approach is the nonlinearity of Richards’ equation
which results in a substantial computational cost to obtain a
solution.

A third approach is to assume vertical equilibrium and
integrate all equations in the z-direction. The problem is
then simplified by reduction of dimensionality which allows
for the derivation of analytical solutions [2]. However, this
approach is only valid if vertical flows (and head gradients)
are negligible. Thus, for the sake of generality, we will not
make such an assumption in this work.

Finally, the use of coordinate transformations eliminates
the challenges of modeling deformable domains by map-
ping the problem to a stationary reference domain. This has
been applied successfully for saturated-unsaturated flow [1,
10]. In those works, the highly nonlinear Richards’ equa-
tion is considered leading to a computationally demanding
method.

Herein, we propose a discretization method by applying
a mapping from the saturated region to a reference domain,
therewith considering only saturated flow. We then further
reduce the original system of equations to a single, nonlin-
ear equation with a single variable, namely the hydraulic
head. These two manipulations simplify the problem to such
an extent that the stability and convergence of the proposed
discretization follow naturally.

The structure of this paper is as follows. Section 2 intro-
duces the governing equations and presents an explicit
choice for the mapping to a reference domain. Next, the
problem is reduced to a single equation in Section 3 as
part of the derivation of the variational form. Sections 4
and 5 are devoted to the discretizations in time and space,
respectively, and introduce the Picard scheme used to han-
dle the included nonlinearity. Numerical results confirming
the expected stability and convergence of the scheme are
presented in Section 6.

2 Model description

In this section, we introduce the water table evolution
problem from a modeling perspective. Here, we state the
necessary definitions and elaborate on the governing equa-
tions included in the model. First, let Ω(t) denote the
d-dimensional spatial domain representing the saturated
region with d equal to 2 or 3. In particular, the time-
dependent top boundary, �(t) is of interest since it repre-
sents the water table.

The governing equations for the problem are the mass
balance equation, Darcy’s law and the water table boundary
condition. For the mass conservation equation, we assume
incompressibility of both the fluid and the surrounding

matrix. This allows us to reformulate mass conservation as
volume conservation given by the equation

Ss

∂h

∂t
+ ∇ · u = 0, (1)

in which Ss represents the specific storativity [ 1
L
], h is the

hydraulic head [L], and u represents the volumetric flux
[L
T

]. Secondly, we assume that the flux is governed by
Darcy’s law, i.e., it satisfies

u = −K∇h. (2)

Here, K represents the conductivity tensor [L
T

] which is
assumed to be symmetric and positive definite. Finally, a
key component of this problem is that the top boundary rep-
resents the water table and thus, it is time dependent. To
incorporate this in the model, we parametrize the boundary
�(t) by x3 = ζ(x||, t). Here, and later, we use the parallel
stroke to indicate the horizontal spatial components of a vec-
tor, e.g., x|| = (x1, x2) in the 3D case and x|| = x1 in the 2D
case. In the following, we will continue with dimensionality
d = 3. The description in two dimensions is analogous.

The newly introduced variable ζ which represents the
elevation of the water table is then subject to the evolution
equation [13]

φ
∂ζ

∂t
= I (t) + u3 − u|| · ∇||ζ, (3)

in which φ represents the porosity, I (t) is a function rep-
resenting the infiltration, and u3 is the third component of
the flux. I (t) is positive for a downward flux. To close the
model, we impose boundary conditions on the boundary
∂Ω . For unconfined aquifers, the elevation of the water table
is equal to the hydraulic head at the water table [13]. Thus,
our first boundary condition becomes

h = ζ on �(t). (4)

The remaining boundaries are split up into two parts,
namely �D and �N . On �D , we assume that the hydraulic
head is given by a known function f . On the other hand,
we assume no flow is possible on �N . These two conditions
are:

h = f, on �D(t), (5a)

n · u = 0, on �N(t). (5b)

Here, n is the outward pointing, unit normal vector on the
boundary ∂Ω .

2.1 Transformation to reference space

The problem introduced up to this point may be diffi-
cult to solve since the spatial domain is not fixed in time.
Therefore, we transform the problem to a stationary domain
Ω̂ = Ω|| × [0, 1], i.e., a domain with unit height. In the sub-
sequent derivation of the transformed governing equations,
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the hat notation will consistently refer to variables in the
transformed domain.

Let Ψ (t) : Ω̂ → Ω denote any invertible trans-
formation and let Φ(t) denote its inverse. For simplicity,
we will require that Ψ (t) leaves horizontal components
unchanged. In particular, this means that Ψ

([x̂||, 1], t) =
[x||, ζ(x||, t)]. The specific choice of Ψ (t) is discussed in
Section 2.2, and an illustration of these definitions is shown
in Fig. 1. We continue with the transformation on the vari-
ables included in the model to the reference domain. The
hydraulic head in reference space ĥ will be defined such that
h(x, t) = ĥ(Φ(x, t), t). For the flux vector û, we will use
the Piola transform in order to preserve the divergence struc-
ture of the original problem [4]. In particular, we define û
such that

u = ∇̂Ψ

J
û, (6)

with J = det
(
∇̂Ψ

)
. The transformed version of Eq. 1 then

becomes

Ss

∂ĥ

∂t
+ ∇̂ · û = 0. (7)

Secondly, we reformulate Darcy’s law given by Eq. 2 for the
reference domain. Substitution of h(x, t) = ĥ(Φ(x, t), t)
leads us to

u(x, t) = −K∇ĥ(Φ(x, t), t). (8)

Next, we use Eq. 6 and the chain rule to obtain the following
formulation in transform space

∇̂Ψ

J
û = −K(∇Φ)T ∇̂ĥ. (9)

It follows that we may write Darcy’s law in transform space
as

û = −K̂∇̂ĥ, (10)

in which the transformed conductivity K̂ is given by

K̂ = J (∇̂Ψ )−1K(∇̂Ψ )−T . (11)

Here, we have made the final substitution ∇Φ = (∇̂Ψ )−1.
Following the same procedure, we aim to find the equa-

tion for the water table evolution in reference space, i.e.,
the equivalent to Eq. 3. First, we note that since Ψ leaves

Fig. 1 The transformations between the time-dependent, physical
domain Ω(t) and the stationary, reference domain Ω̂

horizontal components unchanged, we can express Ψ in
terms of only the third component Ψ3

Ψ (x̂) = [x̂||, Ψ3(x̂3, ζ )]. (12)

This allows us to derive the Jacobian matrix

∇̂Ψ =
[

I2 0
∇T|| ζ

∂
∂x̂3

Ψ3

]

at x̂3 = 1. (13)

We now continue by rewriting Eq. 3 in the reference space.
First, we note that

u3 = e3 · ∇̂Ψ

J
û =

[∇T|| ζ, ∂
∂x̂3

Ψ3]
J

û. (14)

Secondly, the last term of Eq. 3 is rewritten using Eqs. 6
and 13 as

u|| · ∇||ζ =
(

eT||
∇̂Ψ

J
û

)

· ∇||ζ =
( [I2, 0]

J
û
)

· ∇||ζ. (15)

With J = ∂
∂x̂3

Ψ3, the water table evolution (3) is reformu-
lated as

φ
∂ζ

∂t
= I (t) + û3. (16)

The three equations (7), (10), and (16) form our system in
reference space, which we repeat here for convenience:

Ss

∂ĥ

∂t
+ ∇̂ · û = 0, (17a)

û = −K̂∇̂ĥ, in Ω̂, (17b)

φ
∂ζ

∂t
= I (t) + û3, on �̂. (17c)

The associated boundary conditions are obtained from
(4) and (2):

ĥ = ζ, on �̂, (18a)

ĥ = f, on �̂D, (18b)

n · û = 0, on �̂N . (18c)

2.2 A choice of transformation

The transformation Ψ (t) can in principle be chosen as
any monotone function. However, although certain complex
choices may hold desirable properties, we aim for a com-
putationally efficient discretization scheme. Therefore, we
choose Ψ (t) to be a linear transformation in the vertical
coordinate, such that:

x = Ψ (x̂, t) = [
x̂||, x̂3ζ(x̂||, t)

]
. (19)

The inverse transformation Φ is then given by

x̂ = Φ(x, t) =
[
x||,

x3

ζ(x||, t)

]
. (20)
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Furthermore, the Jacobian matrices can be stated explicitly
as follows.

∇̂Ψ =
[

I2 0
x̂3∇T|| ζ ζ

]
and ∇Φ =

[
I2 0

−x3ζ
−2∇T|| ζ ζ−1

]
.

(21)

A more complex choice, adapted for layered systems, will
be considered in the numerical examples.

3 Time-continuous formulation

In this section, we establish some basic properties for the
time-continuous problem. We start by stating the variational
form and rewrite the system (17a–17c) to a single equa-
tion with a single unknown variable. In turn, this gives us
a noteworthy advantage in the consequent analysis of the
well-posedness of the problem.

3.1 Variational formulation

The first step is to note that according to Eq. 18a, the vari-
able ζ is the trace of ĥ on �̂. Thus, the definition of ζ as an
independent variable is obsolete and it becomes convenient
to discard the notation of ζ and use the variable ĥ, instead.
However, it is important to note that the transformation Ψ

and therewith the conductivity tensor K̂ only depend on the
trace of ĥ on �̂ and not the whole function ĥ. To emphasize
this, we will occasionally revert to the notation

K̂(ζ ) = K̂(ĥ|
�̂
). (22)

In the following steps, we will continue to simplify the
system (17a–17c). With the aim of solving this problem with
the use of the finite element method, we derive the vari-
ational formulation. For this, we employ the conventional
inner product notation

(h, g)
Ω̂

=
∫

Ω̂

h(x̂)g(x̂)dx̂, (23)

and omit hats on variables and gradients for brevity. Let us
multiply Eq. 7 with a test function g ∈ H 1 and integrate
over the domain Ω̂ . We pay special attention to the second
term in Eq. 7, in which we first substitute Darcy’s law (10).
With the application of partial integration and the associated
boundary conditions, this term becomes

−(∇ · (K̂(h)∇h), g)
Ω̂

= (K̂(h)∇h, ∇g)
Ω̂

− (n · (K̂(h)∇h), g)
�̂

= (K̂(h)∇h, ∇g)
Ω̂

+ (u3, g)
�̂

= (K̂(h)∇h, ∇g)
Ω̂

+ φ

(
∂h

∂t
, g

)

�̂

− (I (t), g)
�̂
. (24)

Here, we have used Eq. 16 in order to eliminate u3. We are
now ready to write the weak form of Eq. 7 as

Ss

(
∂h

∂t
, g

)

Ω̂

+ (K̂(h)∇h,∇g)
Ω̂

+ φ

(
∂h

∂t
, g

)

1̂
= (I (t), g)

�̂
.

(25)

Thus, we have reduced the system of equations derived in
the previous section to a single equation. The advantage of
this becomes evident in the next sections.

3.2 Well-posedness

Next, we analyze the well-posedness of the derived problem
with the use of the following lemma.

Lemma 1 Let the initial and boundary conditions satisfy
h0 ≥ δ > 0 and f ≥ 0. Then the solution to Eq. 25 exists
and is unique.

Proof The proof is done by showing that the conductivity
tensor K̂(ζ ) in Eq. 25 is symmetric and positive definite
under these assumptions. Then, the problem is identified as
a diffusion-type problem which is known to be well-posed.

Let us start with the assumption that the physical con-
ductivity tensor K is symmetric and positive definite.
Equation 11 states that K̂(ζ ) is equal to K which is left-
and right- multiplied by transpose matrices. Thus, if ζ is
bounded away from zero, it follows that K̂(ζ ) is symmetric
and positive definite as well.

In order to ensure that ζ is non-zero, it is essential that the
solution to Eq. 25 is also non-zero for all time. This property
can be shown by using the maximum (or rather, minimum)
principle related to problem (25).

From this principle, we deduce that the solution h attains
its minimum on the boundary. On this boundary, we distin-
guish three different cases. First, if the minimum is attained
on �̂D , then it follows h = f . Since f > 0 by assumption,
it follows that h is strictly positive as well.

Secondly, the minimum could be attained in a point x̂0

on �̂. We then introduce Hopf’s Lemma which states that
∂h
∂n (x̂0) < 0, yet this contradicts the homogeneous Neumann
boundary condition (2) prescribed there.

Finally, if the minimum is attained on x̂0 ∈ �̂, we recall
that the boundary condition there is given by

I (t) − n · K̂(ζ )∇h = φ
∂h

∂t
. (26)

Again, using Hopf’s lemma, it follows that ∂h
∂n (x̂0) < 0. The

prescribed boundary condition then implies that ∂h
∂t

> 0
since the infiltration is a positive function. A positive tempo-
ral derivative in combination with the assumed h0 ≥ δ > 0
means that the function h remains strictly positive in time.
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Thus, we conclude that the solution h is bounded away
from zero. This implies positive definiteness of the conduc-
tivity tensor K̂(h) and therewith the well-posedness of the
problem.

4 Time-discrete formulation

In this section, we continue by discretizing problem (25)
in time. We show that using a Backward Euler approach is
sufficient to obtain a stable discretization.

Let us introduce 
t as the time step and hn as the solution
at time tn. Using a Backward Euler discretization scheme,
we solve the following problem for hn+1

Ss
t−1(hn+1, g)
Ω̂

+
(
K̂(hn+1)∇hn+1, ∇g

)

Ω̂

+φ
t−1(hn+1, g)
�̂

= Ss
t−1(hn, g)
Ω̂

+ φ
t−1(hn, g)
�̂

+ (I (t), g)
�̂
. (27)

Note that the nonlinearity in the diffusive term requires spe-
cial attention. In order to solve the problem, we propose
using a Picard iterative scheme. In this context, let the super-
script k denote the iteration number. The next iterate can
then be found by solving the following problem:

Ss
t−1(hk+1
n+1, g)

Ω̂
+

(
K̂(hk

n+1)∇hk+1
n+1, ∇g

)

Ω̂

+φ
t−1(hk+1
n+1, g)

�̂

= Ss
t−1(hn, g)
Ω̂

+ φ
t−1(hn, g)
�̂

+ (I (t), g)
�̂
. (28)

Each iterate remains subject to the Dirichlet boundary con-
dition

hk+1
n+1 = f, on �̂D. (29)

A natural choice as an initial guess is h0
n+1 = hn, i.e., the

solution at the previous time step.
We are interested in convergence of this scheme to a

certain limit solution as this limit solution will solve the
nonlinear problem. Therefore, a formal proof concerning
the existence and uniqueness of such a limit solution is given
by the following lemma.

Lemma 2 Let the same assumptions from Lemma 1 hold
and let the time step 
t be sufficiently small. Then the time-
discrete problem (27) has a unique solution.

Proof For this proof, the essential tool is the set H 1
δ (�̂)

which contains (weakly) differentiable functions bounded
away from zero. More precisely, for a given δ > 0, this set
is defined as follows

H 1
δ (�̂) = {h ∈ H 1(�̂)| h ≥ δ, a.e.}. (30)

If w ∈ H 1(Ω̂) solves (28) for a given ζ ∈ H 1
δ (�̂), then we

can construct the operator A : H 1
δ (�̂) → H 1

δ (�̂) given by

A[ζ ] = w|
�̂
. (31)

With these definitions, the lemma states that if f ∈ H 0
δ (�̂D)

and hn ∈ H 1
δ (Ω̂) for some δ > 0, then the system (27) has a

unique solution. The proof is done through an application of
Banach’s Fixed Point theorem on the introduced, nonlinear
mapping A related to system (28).

Let us consider two functions ζ1, ζ2 ∈ H 1
δ (�̂) and

denote the corresponding solutions to Eq. 28 by w1 and w2,
respectively. Subtraction of these two equations leads us to

(K̂(ζ1)∇w1 − K̂(ζ2)∇w2, ∇g)
Ω̂

+
t−1(w1 − w2, g)
�̂

= 0. (32)

We then set g = w1 − w2 to obtain

Ss
t−1‖w1 − w2‖2
0,Ω̂

+ φ
t−1‖w1 − w2‖2
0,�̂

= −
(
K̂(ζ1)∇w1−K̂(ζ2)∇w2, ∇(w1−w2)

)

Ω̂

= −1

2

(
(K̂(ζ1)−K̂(ζ2))∇(w1+w2),∇(w1− w2)

)

Ω̂

−1

2

(
(K̂(ζ1)+K̂(ζ2))∇(w1− w2),∇(w1−w2)

)

Ω̂
. (33)

Next, we observe that (K̂(ζ1) + K̂(ζ2)) is positive defi-
nite. By rearranging the terms and applying the Cauchy-
Schwarz-Young inequality, we derive

Ss
t−1‖w1 − w2‖2
0,Ω̂

+ φ
t−1‖w1 − w2‖2
0,�̂

+C1‖∇(w1 − w2)‖2
0,Ω̂

≤ −1

2

(
(K̂(ζ1) − K̂(ζ2))∇(w1 + w2),∇(w1− w2)

)

Ω̂

≤ 1

2
‖K̂(ζ1)−K̂(ζ2)‖0,Ω̂

‖∇(w1− w2)‖0,Ω̂
‖∇(w1+w2)‖0,Ω̂

≤ 1

2

( 1

2ε
‖K̂(ζ1) − K̂(ζ2)‖2

0,Ω̂

+ε

2
‖∇(w1 − w2)‖2

0,Ω̂
‖∇(w1 + w2)‖2

0,Ω̂

)
. (34)

The next step is to choose the constant ε. In order to do this,
we form a bound for ‖∇(w1 + w2)‖2

0,Ω̂
. Let us reconsider

Eq. 28 and set g = w1 − hn. This choice gives us

Ss
t−1‖w1 − hn‖2
0,Ω̂

+ ‖K̂(ζ1)
1/2∇w1‖2

0,Ω̂

+φ
t−1‖w1 − hn‖2
0,�̂

= (I (t), w1 − hn)�̂ +
(
K̂(ζ1)∇w1, ∇hn

)

Ω̂

≤ 1

2
φ−1
t‖I (t)‖2

0,�̂
+ 1

2
φ
t−1‖w1 − hn‖2

0,�̂

+1

2
‖K̂(ζ1)

1/2∇w1‖2
0,Ω̂

+ 1

2
‖K̂(ζ1)

1/2∇hn‖2
0,Ω̂

. (35)
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Using the positive definiteness of K̂ once more, we obtain

‖∇w1‖2
0,Ω̂

≤ C−1
2 ‖K̂(ζ1)

1/2∇w1‖2
0,Ω̂

≤ C−1
2

(
φ−1
t‖I (t)‖2

0,�̂
+ ‖K̂(ζ1)

1/2∇hn‖2
0,Ω̂

)
. (36)

A bound on ‖∇w2‖2
0,Ω̂

is formed analogously. This

allows us to construct the desired bound on ‖∇(w1 +
w2)‖2

0,Ω̂
which takes the following form:

‖∇(w1 + w2)‖2
0,Ω̂

≤ 2
(
‖∇w1‖2

0,Ω̂
+ ‖∇w2‖2

0,Ω̂

)

≤ C3
t + C4. (37)

Note that if C3
t + C4 = 0, then ∇(w1 + w2) = 0 as well.
Consequently, we obtain w1 = w2 from inequality (34) and
conclude that A is a contraction.

Otherwise, we set ε = C1(C3
t + C4)
−1 and derive


t−1‖w1 − w2‖2
0,� ≤ C3
t + C4

4C1φ
‖K̂(ζ1) − K̂(ζ2)‖2

0,Ω̂

≤ (C5
t + C6)‖ζ1 − ζ2‖2
0,�̂

. (38)

Here, we used the property that K̂(ζ ) is Lipschitz contin-
uous when ζ is bounded away from zero. (Note, however,
that the values of C5 and C6 depend on δ > 0.) After
multiplication with the time step 
t , we obtain

‖w1 − w2‖2
0,� ≤ (C5
t2 + C6
t)‖ζ1 − ζ2‖2

0,�̂
. (39)

Substitution of A[ζ ] = w|
�̂

and taking the square root leads
us to the main result

‖A[ζ1]−A[ζ2]‖0,� ≤ (C5
t2+C6
t)1/2‖ζ1−ζ2‖0,�̂
. (40)

Thus, A is a contraction if we choose the time step 
t

sufficiently small. Since we are considering the continuous
problem, this constraint is independent of grid size. Now,
by Banach’s Fixed Point Theorem, it follows that A has a
unique, fixed point ζ ∈ H 1

δ (�̂) satisfying

A[ζ ] = ζ. (41)

The unique solution h can then be obtained by solving
problem (28) with ζ as the trace value.

5 Finite element formulation

The analytical results shown up to this point all concern the
continuous case. The next step is to discretize the problem
spatially using the finite element method leading to a dis-
crete problem. First, the domain Ω̂ is partitioned using a
Delaunay triangulation.

The Galerkin method is then applied to approximate the
solution by a combination of N known basis functions ϕj (x̂)

with j = 1, ..., N . In particular, we assume that the solution
can be written as follows:

h(x̂) =
N∑

j

hjϕj (x̂), (42)

with hj constants representing the values of h at node x̂j .
These values are collected in a vector denoted by h. Finally,
the test functions g will be chosen as ϕi and the system (28)
is rewritten to the following matrix-vector multiplication.

A(hk)hk+1 = b. (43)

The elements in the matrix A and vector b can be computed
as follows

Ai,j (hk) = Ss
t−1(ϕi , ϕj )Ω̂ +
(
K̂(hk)∇ϕi,∇ϕj

)

Ω̂

+φ
t−1(ϕi , ϕj )�̂, (44)

bi = Ss
t−1(hn, ϕi)Ω̂ + φ
t−1(hn, ϕi)�̂ + (I (t), ϕi)�̂ . (45)

Here, in an abuse of notation, K̂ acts upon the function hk

given by the vector hk .
During the transition to a discrete problem, it is not trivial

that the resulting, discrete problem is also well-posed. We
therefore present the following, separate lemma concerning
the discrete problem.

Lemma 3 Let the the assumptions from Lemma 1 hold and
let the spatial discretization be linear Lagrange elements
on a Delaunay triangulation. If, furthermore, a sufficiently
small time step is chosen, then the solution to the fully
discrete problem (43) exists and is unique.

Proof The choice of linear Lagrange elements on a Delau-
nay triangulation ensures that the matrix A is an M-matrix
[11, 14]. In turn, the discrete maximum principle holds [5,
14]. Thus, following the same arguments from the proofs of
Lemmas 1 and 2, we obtain the result.

Finally, we note that Eq. 43 is a diffusion-type problem
and Lagrangian finite elements are a classic choice to obtain
a stable discretization. Together with the well-posedness
from the Lemma 3, quadratic convergence of the hydraulic
head and linear converge of its gradient are to be expected.

6 Numerical results

In this section, we introduce a model problem in order to
demonstrate the theoretical results concerning stability and
convergence. To capture the importance of vertical flows,
we base our example on the water table evolution in the
vicinity of an extraction well. A broader comparison to
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1.0

0.5

1.0

Fig. 2 The computational domain is split into two layers with (possi-
bly different) permeabilities

existing numerical techniques and application to field data
is forthcoming.

As an initial condition, we will assume that the hydraulic
head is equal to one uniformly, i.e.,

h0 ≡ 1. (46)

The extraction well is incorporated as a Neumann bound-
ary condition and starts to operate at time t = 0. We will
assume no flow conditions on the bottom boundary and a
constant unit head on the boundaries far from the well, i.e.
f = 1. Furthermore, the top boundary is governed by the
water table evolution as prescribed by Eq. 16.

The (dimensionless) parameters are as follows, K = I
where I is the d × d identity tensor, Ss = 0.1, φ = 0.1,
and we introduce a small, constant infiltration I (t) = 10−3.
As a result of the previous analysis, the magnitude of the
extraction rate may not be too large in order to ensure that
the hydraulic head remains strictly positive. Thus, we set
this rate to −0.3 in the 2D case and to −1.0 for the 3D
equivalent.

Fig. 3 Water table evolution for the two-dimensional, homogeneous
case at different times. The solution is monotone, approaching an
equilibrium state at t = 1.0

Table 1 Convergence results for the 2D, homogeneous test case show-
ing the expected quadratic convergence of the hydraulic head and
linear converge of its gradient

h ∇h

hmesh error rate error rate

1/2 7.02E-03 1.04E-01

1/4 1.89E-03 1.89 5.57E-02 0.90

1/8 4.86E-04 1.96 2.90E-02 0.94

1/16 1.21E-04 2.00 1.48E-02 0.97

1/32 2.91E-05 2.06 7.38E-03 1.01

1/64 6.13E-06 2.25 3.35E-03 1.14

Although these values may not coincide with physical
values, this choice suffices to demonstrate the performance
of the scheme. All computations are implemented within
the open-source environment FEniCS [12]. In the follow-
ing subsections, the model problem is considered on a
two-dimensional domain followed by a 3D equivalent.

6.1 2D test case

Let us introduce the two-dimensional, reference domain Ω̂ ,
which we define as the unit square. Heterogeneity is incor-
porated by defining two permeability tensors K1 and K2

(Fig. 2). We emphasize that radial symmetry is not assumed
here and therefore the left boundary can be viewed as an
infinite strip sink rather than an extraction well.

The problem is solved on a uniform, triangular mesh
using a fixed time step 
t = 0.1. Adaptive time stepping or
local grid refinement may hold certain advantages, but this
exceeds the focus of this work.

Let us first consider the homogeneous case, i.e.,
K1 = K2 = I. As depicted in Fig. 3, the solution obtained
is stable in space and time, showing no sign of oscillations.
Furthermore, the water table evolves rapidly to a steady
state, which is to be expected.

Table 2 The scheme remains convergent when heterogeneities are
included with a slight deterioration in the rates

h ∇h

hmesh error rate error rate

1/2 7.70E-03 3.44E-01

1/4 4.88E-03 0.66 2.48E-01 0.47

1/8 3.24E-03 0.59 1.66E-01 0.58

1/16 5.34E-04 2.60 7.96E-02 1.06

1/32 1.67E-04 1.68 5.20E-02 0.62

1/64 6.86E-05 1.28 3.25E-02 0.68
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Table 3 The convergence rates can be recovered in the heterogeneous
case by only applying the coordinate transformation in the upper part
of the domain

h ∇h

hmesh error rate error rate

1/2 3.28E-03 8.30E-02

1/4 8.84E-04 1.89 4.45E-02 0.90

1/8 2.31E-04 1.94 2.32E-02 0.94

1/16 5.90E-05 1.97 1.19E-02 0.97

1/32 1.49E-05 1.99 5.93E-03 1.00

1/64 3.60E-06 2.05 2.70E-03 1.14

Next, we consider the convergence of the discretization.
Due to the nonlinearity of the problem, an analytical solu-
tion is not at our disposal. Instead, the relative error is
computed with respect to a solution obtained on a fine mesh
at time t = 1.0. The results in Table 1 show that the scheme
is convergent with rates as expected from linear finite ele-
ments, namely second-order convergence of the L2-error in
h and first-order convergence of its gradient.

The incorporation of heterogeneity is done by choos-
ing a higher permeability in the upper domain. Specifically,
we set K1 = 4K2 = 4I. As the numerical results show
in Table 2, the scheme remains convergent with a moder-
ate decrease in the convergence rates. The deterioration is
mainly due to the fact that the heterogeneities are not sta-
tionary in the reference domain. Nevertheless, the results
show that convergence is maintained despite the unresolved
heterogeneities.

If the water table remains within the upper region, a full
recovery of the convergence rates from the homogeneous

Fig. 4 The hydraulic head in the 3D test case represented in the
physical domain at time t = 1.0

Table 4 Convergence results for the 3D test case. The observed rates
approach the rates expected from the theory

h ∇h

hmesh error rate error rate

1 3.62E-02 6.45E-01

1/2 1.66E-02 1.13 4.61E-01 0.48

1/4 6.30E-03 1.40 2.87E-01 0.68

1/8 1.95E-03 1.69 1.60E-01 0.84

problem can be achieved by choosing a transformation
which allows the heterogeneity to be stationary in the com-
putational domain. For this purpose, the transformation is
chosen such that it only applies to the upper layer. The
recovered convergence rates are shown in Table 3.

We emphasize that this choice of coordinate transfor-
mation gives rise to a natural coupling with the saturated
region situated below. This is an advantage compared to
approaches with Richards’ equation where the coupling
with deeper, saturated layers is typically less trivial.

6.2 3D test case

In the 3D case, we consider Ω̂ to be a unit cube. The well,
positioned along the z-axis with radius 0.2 is removed from
the domain and is incorporated as a Neumann boundary
condition.

As shown in Fig. 4, the scheme once again produces a
stable solution. Qualitatively, a decrease in the water table
can be seen in the vicinity of the well, as expected. The
equilibrium state, depicted in Fig. 4, is attained at time
t = 1.0.

Table 4 shows that the convergence rates approach the
asymptotic rates as the nonlinearities are resolved. These
numerical results therefore support the theory presented in
previous sections.

Open Access This article is distributed under the terms of the
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
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link to the Creative Commons license, and indicate if changes were
made.

References

1. An, H., Ichikawa, Y., Tachikawa, Y., Shiiba, M.: Three-
dimensional finite difference saturated-unsaturated flow model-
ing with nonorthogonal grids using a coordinate transformation
method. Water Resour. Res. 46(11) (2010)

2. Bear, J.: Dynamics of Fluids in Porous Media. Dover Civil and
Mechanical Engineering Series. Dover (1972)



Comput Geosci (2017) 21:3–11 11

3. Bresciani, E., Davy, P., Dreuzy, J.R.: A finite volume approach
with local adaptation scheme for the simulation of free surface
flow in porous media. Int. J. Numer. Anal. Methods Geomech.
36(13), 1574–1591 (2012)

4. Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elastic-
ity, vol. 1. Elsevier (1993)

5. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform con-
vergence for the finite element method. Comput. Methods Appl.
Mech. Eng. 2(1), 17–31 (1973)

6. Darbandi, M., Torabi, S., Saadat, M., Daghighi, Y., Jarrahbashi,
D.: A moving-mesh finite-volume method to solve free-surface
seepage problem in arbitrary geometries. Int. J. Numer. Anal.
Methods Geomech. 31(14), 1609–1629 (2007)

7. Dogan, A., Motz, L.H.: Saturated-unsaturated 3d groundwater
model. i: development. J. Hydrol. Eng. 10(6), 492–504 (2005)

8. Freeze, R.A.: Three-dimensional, transient, saturated-unsaturated
flow in a groundwater basin. Water Resour. Res. 7(2), 347–366
(1971)

9. Keating, E., Zyvoloski, G.: A stable and efficient numerical
algorithm for unconfined aquifer analysis. Ground Water 47(4),
569–579 (2009)

10. Kinouchi, T., Kanda, M., Hino, M.: Numerical simulation of infil-
tration and solute transport in an s-shaped model basin by a
boundary-fitted grid system. J. Hydrol. 122(1), 373–406 (1991)
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a b s t r a c t

Groundwater discharge to streams depends on stream morphology and groundwater flow direction, but
are not always well understood. Here a 3-D groundwater flow model is employed to investigate the
impact of meandering stream geometries on groundwater discharge to streams in an unconfined and
homogenous sandy aquifer at the reach scale (10–200 m). The effect of meander geometry was examined
by considering three scenarios with varying stream sinuosity. The interaction with regional groundwater
flow was examined for each scenario by considering three groundwater flow directions. The sensitivity of
stream morphology and flow direction to other parameters was quantified by varying the stream width,
the meander amplitude, the magnitude of the hydraulic gradient, the hydraulic conductivity, and the
aquifer thickness. Implications for a real stream were then investigated by simulating groundwater flow
to a stream at a field site located in Grindsted, Denmark. The simulation of multiple scenarios was made
possible by the employment of a computationally efficient coordinate transform numerical method.
Comparison of the scenarios showed that the geometry of meanders greatly affect the spatial distribution
of groundwater flow to streams. The shallow part of the aquifer discharges to the outward pointing
meanders, while deeper groundwater flows beneath the stream and enters from the opposite side. The
balance between these two types of flow depends on the aquifer thickness and meander geometry.
Regional groundwater flow can combine with the effect of stream meanders and can either enhance or
smooth the effect of a meander bend, depending on the regional flow direction. Results from the
Grindsted site model showed that real meander geometries had similar effects to those observed for
the simpler sinuous streams, and showed that despite large temporal variations in stream discharge,
the spatial pattern of flow is almost constant in time for a gaining stream.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

An understanding of the interaction between groundwater and
streams is needed to map water fluxes and the transport of con-
taminants from groundwater into streams (Cey et al., 1998; Derx
et al., 2010; Anibas et al., 2012; Karan et al., 2013; Ou et al.,
2013; Freitas et al., 2015). This interaction is governed by several
factors such as the hydraulic gradient between the aquifer and
the stream, the stream channel geometry, and the hydraulic
conductivity distribution of the aquifer and the streambed

(Larkin and Sharp, 1992; Cey et al., 1998; Krause et al., 2007;
Anibas et al., 2012; Binley et al., 2013; Fernando, 2013; Flipo
et al., 2014). Furthermore, flow processes between groundwater
and streams are scale dependent and so must be investigated at
different scales (Dahl et al., 2007; Anibas et al., 2012; Flipo et al.,
2014; Poulsen et al., 2015).

At the reach scale (10–200 m), groundwater flow to streams is
both vertical and horizontal; thus, an analysis in three-
dimensions is required (Harvey and Bencala, 1993; Modica et al.,
1998; Flipo et al., 2014). Reach scale groundwater flow paths to
streams are not adequately resolved at the larger regional or catch-
ment scales considered by Toth (1963) and many other later larger
scale studies (e.g. Larkin and Sharp, 1992; Wroblicky et al., 1998;
Modica et al., 1998; Anibas et al., 2012; Aisopou et al., 2015a;
Flipo et al., 2014; Gomez-Velez et al., 2015).

http://dx.doi.org/10.1016/j.jhydrol.2017.06.042
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Studies investigating reach scale groundwater flow to streams
have generally considered straight streams, and have not
accounted for the effect of meander bends (Derx et al., 2010;
Guay et al., 2013; Miracapillo and Morel-Seytoux, 2014, see also
overview in Table S1). Thus, a better understanding of how ground-
water flow varies in space because of stream meanders is needed
(Modica et al., 1998; Diem et al., 2014; Krause et al., 2014;
Boano et al., 2014). This is particularly important when investigat-
ing contaminant plume discharge to a stream system, where
insight is needed to improve site investigations, data interpretation
and to design more efficient monitoring campaigns (Harvey and
Bencala, 1993; Conant et al., 2004; Anibas et al., 2012; Weatherill
et al., 2014). The appropriate scale for contaminant plume studies
will often be similar to the stream reach scale (Conant et al., 2004;
Byrne et al., 2014; Weatherill et al., 2014; Freitas et al., 2015).

Only a few studies have analyzed groundwater flow to mean-
dering streams (e.g. Dahl et al. (2007), Nalbantis et al. (2011),
Flipo et al. (2014), and Boano et al. (2014)). A literature review is
shown in Table S1 and shows that the majority of research on
meandering stream-aquifer interaction has focused on the hypor-
heic exchange processes (Wroblicky et al., 1998; Salehin et al.,
2004; Cardenas et al., 2004; Revelli et al., 2008; Cardenas, 2008,
2009a,b; Boano et al., 2006; Stonedahl et al., 2010; Boano et al.,
2009, 2010; Brookfield and Sudicky, 2013; Gomez-Velez et al.,
2014, 2015). Hyporheic exchange processes take place in the
hyporheic zone just under the stream bed, where stream water
mixes with groundwater, before returning to the stream. For exam-
ple, Boano et al. (2010) applied an analytical approach to examine
3-D groundwater flows directly under a streambed, but did not
consider the surrounding groundwater flow system.

For many problems, it is necessary to move beyond the hypor-
heic zone, and consider larger scale groundwater flows at the reach
scale. Thus, the focus of this paper is groundwater flow to mean-
dering streams at the reach scale.

This study analyses the spatial variability of the groundwater
flow discharge to streams along meander bends in a full 3-D sys-
tem at the reach scale. The first aim is to simulate the groundwater
flow paths to streams and investigate how those paths are affected
by stream meanders and groundwater flow direction in an uncon-
fined sandy aquifer. A 3-D numerical model is presented simulat-
ing the discharge to streams for a synthetic gaining sinuous
stream with three scenarios of sinuosity: a straight stream, a mod-
erately sinuous stream, and a highly sinuous stream. For each sce-
nario, three groundwater flow directions are assumed with the
dominant groundwater flow being: perpendicular to the stream;
along the stream; and diagonally across the stream. The resulting
groundwater flow to the stream for different sinuosities was quan-
tified for different stream widths, meander geometries, aquifer
thicknesses, homogenous hydraulic conductivities, and hydraulic
gradients in order to assess the combined effects and the robust-
ness of the results. All numerical models were designed to simulate
the groundwater flow to the stream, disregarding the hyporheic
flow. The second aim is to apply the 3-D numerical model to a
meandering stream at Grindsted in Denmark in order to assess
the effects in a field scale system (unconfined, sandy aquifer) with
a real geometry and time varying stream water levels. Finally, the
implications for our current understanding of discharges to
streams are discussed.

To address these aims, the 3-D numerical model employed a
novel coordinate transformation method developed by Boon
et al. (2016). This method solves the equation for groundwater
flow in a transformed domain, which is constant in time, while
the coordinate system changes depending on the groundwater free
surface variations. The application of the linear transformation
allows the transformed domain geometry to be simpler than the

original problem; thus, the method is computationally efficient
and can be applied to complex geometries. Boon et al. (2016)
employs the method to simulate groundwater flow to wells, but
it has not been applied to other relevant groundwater systems.
Since the application of the coordinate transform method to
groundwater/surface water interaction is new, it was first tested
and compared to existing approaches (the moving mesh and the
saturated-unsaturated groundwater flow method). It is shown that
the coordinate transform method is far more computationally effi-
cient than the other methods (see Supporting Information,
Section S1).

2. Method

2.1. Sinusoidal stream model

In this study, the effect of the stream sinuosity on the ground-
water flow to streams is analyzed by extending the two-
dimensional steady state model developed by Cardenas (2009a,b)
to three dimensions. The stream is assumed to be sinusoidal with
a constant wavelength (k) of 40 m and amplitude (a), which is var-
ied in order to reproduce different levels of sinuosity. The sinuosity
(S) is calculated by dividing the sinuous stream length along the
channel by the straight valley length (300 m in this study). Three
sinuosity scenarios (Fig. 1) are considered: a) straight stream
(S = 1, a = 0 m), b) moderately sinuous stream (S = 1.14, a = 5 m),
and c) a highly sinuous stream (S = 1.74, a = 13.5 m). The choices
of sinuosity, wavelength, and amplitude are the same as those of
Cardenas (2009a,b).

The spatial variability of the groundwater flow to the stream is
affected by the stream morphology, the groundwater flow direc-
tion, and the distribution of hydraulic conductivities (Krause
et al., 2012; Gomez-Velez et al., 2014). In order to isolate and ana-
lyze the effect of the streammorphology and the groundwater flow
direction, the aquifer is assumed to be homogenous and isotropic
with a hydraulic conductivity of 40 m/d. The stream cross section
is a half-ellipsoidal with a depth of 3 m and a width of 5 m. The
stream-aquifer interface is a constant-head boundary where the
head varies linearly along the channel with a gradient determined
by dividing the overall gradient in the x-direction (0.001) by the
sinuosity. Thus, the stream is a gaining stream along the entire
length. The top and bottom boundary, except for the stream
boundary, are no-flow boundaries and the remaining boundaries
are constant-head boundaries. The head gradient is assumed to
change linearly depending on the direction.

In order to simulate different groundwater flow directions, the
head gradient on the boundary in the x-direction and in
the z-direction are constant (0.001 and 0 respectively) while the
y-direction gradient is 0.004 for simulating regional groundwater
directed laterally toward the stream and 0.0005 for regional
groundwater flowing in the direction of stream flow. These values
were selected based on Cardenas (2009a,b). The third groundwater
flow scenario assumes groundwater directed south-west diago-
nally across the stream, with a boundary gradient in the
y-direction of 0.0005 in the area north of the stream and 0.0001
south of the stream.

The effect of the hydraulic gradient on the x-direction (Fig. 1)
was tested by comparing results for a low gradient of 0.0005 and
a high gradient of 0.01. The effect of the 40 m constant aquifer
thickness was tested by modeling aquifer with thicknesses of
5 m and 80 m. Similarly, different stream morphologies were
tested by varying the stream width between 2 and 10 m, and the
meander wavelength between 30 (S = 1.94) and 60 m (S = 1.39).
The effect of the constant hydraulic conductivity was investigated
by varying the hydraulic conductivity between 20 and 80 m/d.
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These scenarios were simulated for the highly sinuous stream with
groundwater flow directed laterally toward the stream.

2.2. Grindsted stream field site

To examine the implications of findings for real streams with
more complex geometries with time varying boundary conditions,
a 500 m reach scale numerical model of a field site in southern Jut-
land, Denmark (Fig. 2) was constructed. Grindsted stream has a
catchment area of approximately 200 km2, is 1–2.5 m deep and
8–12 m wide. The unconfined aquifer is 80 m thick and is in
hydraulic contact with the stream. The geology is composed of a

Quaternary sand formation for the first 10–15 mbgs and, below
that, a Tertiary sand formation. The aquifer is underlain by a thick
and extensive Tertiary clay layer at 80 mbgs (Barlebo et al., 1998;
Heron et al., 1998). Two contaminated sites are present in the sur-
rounding area: Grindsted factory located 1.5 km north of the
stream, and Grindsted landfill located 2 km south of the stream
(Kjeldsen et al., 1998). From these sites, contaminant plumes dis-
charge into the stream, as evident by examination of stream water
quality (Rasmussen et al., 2016). The domain of the numerical
model was designed in order to include the area where the con-
taminant plumes discharge to the stream. This paper focuses on
an assessment of the 3D groundwater flows to the stream. The

Fig. 1. Model domain, finite element mesh, and boundary conditions for the three scenarios of the synthetic stream model: straight stream (a), the moderately sinuous
stream (b), and the highly sinuous stream (c) models.

Fig. 2. Overview of the Grindsted stream study site and model set up. The blue lines indicate the equipotential lines with an interval of 1 m. The equipotential map is based on
groundwater head measurements collected at the wells indicated by the blue dots. The name of the observation wells used to set up boundary conditions or for comparison
with model results are shown on the map. The model domain area is defined by the black line. The bottom figure shows an orthophoto of the simulated stream reach. The
middle right figure shows the model grid, the boundary conditions, the model size, and the location of boreholes in the model domain. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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analysis of the coupled contaminant transport processes is beyond
the scope of this paper and will not be discussed further.

The regional equipotential map (Fig. 2) was used to define the
lateral extent of the model domain and its geometry. Equipotential
boundaries, where the flow is perpendicular to the boundary and
the head is constant over depth, are employed (Aisopou et al.,
2015b). The remaining boundaries are placed along streamlines
where a no-flow condition is assumed on vertical sides. The tem-
poral variability of groundwater flow to streams was modeled
accounting for variation in precipitation, stream water level and
groundwater head. Precipitation data were collected by the Danish
Meteorological Institute at a measurement station at Billund
Airport, 15 km from the study site (DMI, 2015). The temporal vari-
ation in groundwater heads was monitored at several wells in the
Grindsted area (selected wells are shown in Fig. 2). Well 114.1996
was used to set the variable head on the southern boundary,
adjusting all measured heads by 1.2 m because the well is not
located exactly on the boundary. Similarly, the head at well
114.1447 was applied on the northern boundary, with an adjust-
ment of 0.9 m. The adjustment was made as part of the model cal-
ibration in order to fit the simulated with the observed
groundwater head level at the two wells located inside the model
domain: 114.1448 and 114.1997. The Quaternary and the tertiary
layers are both sandy and have similar hydrogeological properties.
Therefore, it was decided to assume a homogenous sandy aquifer.
During the model calibration, values of 30 m/d for the horizontal
hydraulic conductivity and 3 m/d for the vertical hydraulic conduc-
tivity were selected. These values are being similar to the hydraulic
conductivities from other field and model studies in the area
(Barlebo et al., 1998; Bjerg et al., 1995; Lønborg et al., 2006).

Stream water level data was obtained at the Tingvejen gaging
station, located 2.5 km upstream of the model domain, and at Eg
BrO, located 8.1 km downstream of the model domain. The average
water slope between the two gaging stations is 0.001. The mean
annual stream discharge is 2150 l/s at Tingvejen and 2980 l/s at
Eg BrO. The simulated stream reach is about 900 m long and the
annual average groundwater discharge to the stream in the reach,
estimated from annual average discharge measurements from the
gaging stations, is 70 l/s.

Based on three measured streambed cross sections, the stream
cross section is modeled using a half-ellipsoidal with depth of 3 m
and width of 10 m. The depth of 3 m is larger than the stream
water depth to allow for in stream head variations without over-
bank flow. The stream is implemented as a time varying head
boundary where the head varies linearly along the channel with
a gradient of 0.001, corresponding to the average water slope
between the two gaging stations. The slope of the streambed is
assumed to be 0.001, as to the stream water slope.

2.3. Modeling groundwater flow to streams with the coordinate
transformation method

The groundwater head at the interface between groundwater
and the streambed which controls the flow to/from the stream is
temporally variable and is difficult to simulate with a traditional
groundwater flow model employing a regular grid. Two methods
have been developed to describe the variability of groundwater
head in unconfined aquifers: the moving mesh (Knupp, 1996;
Darbandi et al., 2007; Bresciani et al., 2011) and the saturated-
unsaturated groundwater flow (Freeze, 1971; Sugio and Desai,
1987; Dogan and Motz, 2005; Keating and Zyvoloski, 2009;
Camporese et al., 2010; Walther et al., 2012). A review of studies
applying these methods is provided in Table S2. These methods
were developed for unconfined aquifers without considering
stream interaction, which introduces large local variations in
groundwater head.

The moving mesh method solves the groundwater flow prob-
lem under saturated conditions and adjusts the mesh depending
on the groundwater head calculated at the previous time step.
The method requires re-meshing at each time step, which is very
computationally demanding (Freeze, 1971; Kinouchi et al., 1991;
Knupp, 1996) and can fail for large changes in the water head
between time steps or for steep gradients, such as at the stream-
aquifer interface (Bresciani et al., 2011; COMSOL, 2013). The
saturated-unsaturated method solves the flow equation in both
the saturated and unsaturated zone avoiding the problem of
explicitly describing the water table surface (An et al., 2010;
Kinouchi et al., 1991). However, the method is more computation-
ally demanding than saturated flow models and is rarely justified
when the main focus is the saturated flow (Keating and
Zyvoloski, 2009).

The new coordinate transformation of Boon et al. (2016) was
used to solve the groundwater flow equations in the model
domain. The method reduces computational time by employing a
coordinate transformation so that the saturated groundwater flow
equations are solved on a fixed mesh (Fig. 3). For comparison pur-
poses, the equations were also solved on a domain with a dynam-
ically deforming mesh, and by a coupled saturated/unsaturated
flow solver (Supporting information S1).

To test the three methods for the groundwater flow to streams
problem, they were implemented for a two-dimensional test case
and their computational accuracy and efficiency compared
(Section S1 in the Supporting Information). The comparison between
the methods shows (Table S4) that the coordinate transformation
method is the least computationally demanding of the three meth-
ods for a 2-D test problem, requiring 32 times less computational
effort than the saturated-unsaturated approach and 3 times less
time than moving mesh, for a relatively coarse discretization. Dif-
ferences become larger in 3-D and when the grid is refined: the
computational time required by the moving mesh in a 3-D test
(137 min) is 32 times more computational time than the coordi-
nate transformation (4 min). Furthermore, the coordinate transfor-
mation method does not lead to instabilities and oscillations,
problems that were encountered with the moving mesh. The coor-
dinate transformation is a much more computationally efficient
solution making it possible to simulate a variety of scenarios and
properly explore the problem. Thus, the coordinate transformation
method is employed for all examples in this study.

In the coordinate transformation method (Boon et al., 2016), the
groundwater flow equation for saturated conditions is solved in a

transformed domain X̂:

Ss
@ĥ
@t

þr � ð�K̂ � rĥÞ ¼ 0inX̂ ð1Þ

Where Ss is the specific yield [1/m], ĥ is the hydraulic head in

the transformed space [m] and K̂ is the hydraulic conductivity ten-
sor in the transformed space [m/s]. The groundwater flow velocity

in the transformed domain X̂ becomes:

Fig. 3. The coordinate transformation method for modeling unconditioned aquifers
interacting with streams of Boon et al. (2016) employs a fixed domain (right)
instead of the real deformable domain (left). A coordinate transformationW is used
to map the governing equations between the two domains.
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Fig. 4. Groundwater discharge to the stream at the upper edge of the stream-aquifer interface shown by the red arrows, which are proportionate to the flow. The equipotential lines are indicated by the black lines and are separated
by 0.05 m interval. Jyx represent the ratio between the hydraulic gradient in the y and in x-direction. The moderately sinuous stream has sinuosity (S) of 1.14 and amplitude (a) of 5 m. The highly sinuous stream has sinuosity (S) of
1.74 and amplitude (a) of 13.5 m.
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q̂ ¼ �K̂ � rĥ ð2Þ
The conditions at the top boundary C are:

ĥðx̂; tÞ ¼ fðx̂; tÞ on C ð3Þ

�eC � ð�K̂ � rĥÞ ¼ I� Sy
@f
@t

� �
on C ð4Þ

where Sy is the specific yield [–],f is the elevation for the free sur-
face [–], and eC is the unit normal to C. The governing equations
are solved in Comsol Multiphysics, which employs a finite element
numerical approximation (COMSOL, 2013). The finite element
method employs the weak form of (1) with a linear polynomial

Lagrange test function g 2 H1ðX̂Þ which is combined with the
boundary equation (4) and input into COMSOL Multiphysics:

Ss
@ĥ
@t

þr�ð�K̂ �rĥÞ;g
 !

X̂

¼ Ss
@ĥ
@t

;g

 !
X̂

þðK̂ �rĥ;rgÞX̂

þðe � ð�K̂ �rĥÞ;gÞC ¼ Ss
@ĥ
@t

;g

 !
X̂

þðK̂ �rĥ;rgÞX̂� I�Sy
@f
@t

� �
eCz;g

� �
C

¼ 0

ð5Þ
The linear transformation w is:

x ¼ wðx̂; ẑ; tÞ ¼ ½x̂;0� þ fðx̂; tÞẑez ð6Þ

hðx; z; tÞ ¼ ĥðx̂; ẑ; tÞ ð7Þ
where ez is the unit vector in the z-direction. The hydraulic conduc-
tivity field is a function of the elevation of the free surface f and can
be derived from the linear transformation:

K̂ðx̂; ẑ; tÞ ¼ det r̂wðr̂wÞ�1
Kðr̂TwÞ�1

¼ f
Kh �Khẑf

�1r̂f

�Khẑf�1r̂Tf ðKhẑ2r̂Tfr̂fþ KvÞf�2

" # ð8Þ

In Eq. (8) f ¼ fðx̂; tÞ, Kh ¼ Khðx; zÞ, Kv ¼ Kvðx; zÞ, and K̂ depends
on the linear transformation described in Eqs. (6) and (7).

Apart from the boundary condition for the top boundary (5), the
boundary conditions applied in the transformed domain are: no-
flow for the bottom boundary, and time-variable fixed-head for
the lateral boundaries. The transform formulation, as well as its
numerical implementation using lowest-order Lagrange finite
elements is provably stable and convergent (Boon et al., 2016).

3. Results

In this section, the effect of meander bends on groundwater
flow to streams is presented, with focus on both the vertical and

horizontal variability of groundwater flow patterns. The difference
between the vertical and horizontal flow could neither have been
observed, nor investigated, with a 2-D model. First, the effect of
sinuosity is analyzed in combination with other parameters affect-
ing groundwater flow to streams through the synthetic sinuous
stream model; then, the results from the Grindsted stream field
site are described.

3.1. Horizontal variability of the groundwater flow to the stream

The groundwater discharge to the stream at the upper edge of
the stream-aquifer interface is shown in Fig. 4, where the red
arrows are proportional to the horizontal groundwater discharge.
Table 1 shows the mean flux over one meander from both stream
sides (m/s) for each scenario and the percentage of flow discharged
at the outward pointing side of the meander and at the inward
pointing side of the meander.

The straight stream has a constant discharge along the stream
for all hydraulic gradients (Fig. 4a, b, and c), except at the bound-
aries, where the boundary conditions affected the results. In the
moderately sinuous stream (Fig. 4d, e, and f), the groundwater dis-
charge to the stream is not constant and changes depending on the
location along the stream meander, as shown by the arrow size.
The discharge is largest at the extremes of the stream meanders,
with 68% and 67% of the groundwater flux entering the stream
on the outward pointing side of the meanders for a Jyx (ratio
between the hydraulic gradient in the y-direction and in the
x-direction) of 4 and 0.5 respectively (Table 1). This variation in
the groundwater discharge to the stream is due to the stream sin-
uosity and increases with the sinuosity: 85% and 82% of the ground-
water flux enters at the outward pointing side of the meander for a
Jyx of 4 and 0.5 respectively (corresponding to Fig. 4g and h). This
effect can also be seen by comparing Fig. 4d and e with Fig. 4g, h.

The ratio between the hydraulic gradient in the y and
x-direction (Jyx) and, thus, the hydraulic gradient in the
y-direction affect the groundwater direction to the stream. In the
straight stream, for a large Jyx (Fig. 4a), the groundwater direction
is more perpendicular to the stream (compared with a lower Jyx
in Fig. 4b). When two different values of Jyx are applied on each
side of the stream (Fig. 4c), both the direction of groundwater to
the stream and the magnitude of the discharge changes on each
side of the stream. A lower value of Jyx corresponds to a lower
groundwater discharge to the stream, as shown on the southern
part of the stream in Fig. 4c. Therefore, the percentage of ground-
water flux to the stream is lower (39%) on the southern side of
the stream, where the hydraulic gradient in the y-direction is
higher, compared to northern side where the gradient in the
y-direction is lower (61%).

The effect of the hydraulic gradient can also be observed in the
moderately (Fig. 4f) and highly sinuous stream (Fig. 4i). The high-
est groundwater flow to the stream is located further upstream

Table 1
Mean groundwater fluxes to the stream at a meander and percentage of the fluxes entering the stream on the outward pointing side and on the inward pointing side of the
meander. The mean flux was calculated as the integral of the discharge along the meander at the stream-aquifer interface divided by the interface area.

Model Sinuosity Meander side Jyx = 4 Jyx = 0.5 Jyxnorth = 0.5
Jyxsouth = 0.1

Straight stream 1 Northern side [%] 50 50 61
Southern side [%] 50 50 39
Mean flux [m/s] 0.58 0.06 0.04

Moderately sinuous stream 1.14 Outward side [%] 68 67 74
Inward side [%] 32 33 26
Mean flux [m/s] 0.51 0.06 0.05

Highly sinuous stream 1.74 Outward side [%] 85 82 84
Inward side [%] 15 18 16
Mean flux [m/s] 0.48 0.05 0.05
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on the outward pointing side of the meander bend when decreas-
ing the value of Jyx. Therefore, the groundwater flux on the outward
pointing side increases from 67% to 74% for the moderately sinuous
stream, when the flux is measured on the meander pointing north,
where the gradient in the y-direction is higher. The effect of the
gradient decreases when the sinuosity increases: for the highly sin-
uous stream the flux increases from 82% to 84%.

The results shown in Fig. 4 and Table 1 are based on simulations
where all parameters are fixed, except for the amplitude of a mean-
der which affects the stream sinuosity, and the ratio between the
hydraulic gradient in the y and x-direction. The fixed parameters
include the wavelength of a meander (40 m), the hydraulic gradi-
ent in the x-direction (1‰), the stream width (5 m), homogenous
hydraulic conductivity (40 m/d), and the aquifer depth (40 m). In
order to study how these model parameters affect the results
shown in Table 1 and Fig. 4, the parameters were varied for the sce-
nario with the highly sinuous stream and Jyx of 4. The results are
summarized in Table 2 and Fig. S3 (Supporting Information), with
bold values indicating the parameter values used for the simula-
tions in Table 1 and Fig. 4.

The mean groundwater flux to a streammeander increases with
the hydraulic gradient in the x-direction and with the hydraulic
conductivity, as described by Darcy’s law: from 0.24 m/s to
4.84 m/s for a hydraulic gradient of 0.5‰ and 10‰ respectively,
and from 0.25 m/s to 0.94 m/s for conductivities of 20 m/d and
80 m/d respectively. However, the percentages of groundwater
entering the stream on one side or the other of the meander do
not change. This indicates that the magnitude of the hydraulic
gradient and of hydraulic conductivity affect the magnitude of
groundwater flow entering the stream, but not the direction of
the groundwater flow to the stream.

The mean groundwater flux to a stream decreases when
increasing the stream width, from 0.53 m/s to 0.42 m/s for, respec-
tively, a 2 m and an 8 m wide stream, because the same discharge
enters through a larger area for a larger stream. The percentage of
groundwater flux entering the stream on the outward pointing side
of the meanders is lower (79%) for a 2 m wide stream, compared to
an 8 m wide stream (88%). In a wider stream, the stream bank on
the outward pointing side is closer to the model boundary condi-
tions, leading to a steeper hydraulic gradient and a higher ground-
water flux to the stream. Even though the stream width affects the
magnitude of the groundwater flux to the stream, it does not affect
the direction of groundwater flow to the stream (see Supporting
Information, Fig. S3).

The wavelength of the stream meanders affects both the aver-
age discharge to the stream and the percentage of groundwater
entering on each side of a meander bend. The average discharge
to the stream is 0.44 m/s for the scenario with the wavelength of
30 m, and 0.55 m/s with the wavelength of 60 m. The groundwater
flux on the outward pointing side of a meander decreases, from
89% to 75%, by increasing the wavelength from 30 to 60 m. When
the amplitude of a meander is held constant and the wavelength

increases, the sinuosity of the stream decreases. Thus, the flow to
the stream is also dependent on sinuosity.

Theaveragegroundwater flux increaseswith increasing theaqui-
fer thickness: from 0.12 m/s to 0.64 m/s for an aquifer thickness of
5 m and 80 m respectively. This can be explained by looking at the
depth of the origin of groundwater, discharging to the stream, com-
pared to the depth of the origin of groundwater exiting themodel at
the downstream boundaries (as seen in Section 3.2 and Fig. 6). The
percentage of water entering the stream on the outward pointing
side of a meander is also affected and decreases from 99% for the
5 m thick aquifer to 83% for the 80 m thick aquifer.

Based on the model sensitivity analysis, the parameters most
strongly affecting the spatial distribution of the groundwater flow
to a stream are the groundwater flow direction, the stream sinuos-
ity, and the aquifer thickness. The effect of these parameters is fur-
ther analyzed in Section 3.2 where the groundwater flow to the
stream in a vertical cross section is examined.

3.2. Vertical variability of the groundwater flow to the stream

In order to analyze the vertical spatial variability of the ground-
water close to the stream, the groundwater flow direction on a ver-
tical cross section perpendicular to the stream is shown in Fig. 6
with particle tracks to highlight the streamlines: blue for the par-
ticles originating south of the stream and red for particles originat-
ing from the north. The contour lines (black lines) show the
equipotential lines separated by 0.005 m interval.

In the straight stream (Fig. 5a and b), the groundwater stream-
lines enter the stream through the stream bank closest to the
boundary of streamline origin. In Fig. 5c, the hydraulic gradient
in the y-direction is larger on the northern side of the stream com-
pared to the southern side. Here, the groundwater streamlines
originating from the north enter the stream on both the northern
and southern side of the stream, with the discharging bank
depending on the depth of origin of the groundwater flow.

In the moderately sinuous stream and in the highly sinuous
stream, the cross section was placed at a point with a meander
pointing south. When the hydraulic gradient in the y-direction is
the same on both sides of the stream (moderately sinuous stream:
Fig. 5d and e; highly sinuous stream: Fig. 5g and h), the groundwa-
ter streamlines originating from the south enter the stream on
both the southern and northern side of the stream, with the dis-
charging bank depending on the depth of the groundwater flow.
This effect increases with the stream sinuosity, as can be observed
by comparing Fig. 5d and g. Furthermore, a similar, but reversed
situation occurs in Fig. 5c, where flow patterns are driven by the
difference in hydraulic gradient in the y-direction.

In Fig. 5f and i, the effects of stream sinuosity and a change in
the flow direction at the stream are combined. The two factors
have an opposing effect on results; thus, the combined effect is
smoothed (compare Fig. 5c, f, and i). In contrast, at meander bends

Table 2
Groundwater discharge to the stream at a meander bend. The base parameter values, shown in bold, are the same as those used for the simulation, whose results are summarized
in Figs. 4, 5, and Table 1. Each parameter is then varied and results shown. The ratio between the hydraulic gradient in the y- and x-direction (Jyx = 4) and the meander amplitude
(a = 13.5) were fixed for these simulations.

Wavelength [m] Hydraulic gradient in
x-direction [‰]

Stream width [m] Hydraulic
conductivity [m/d]

Aquifer thickness [m]

30 40 60 0.5 1 10 2 5 8 20 40 80 5 40 80
Sinuosity 1.94 1.74 1.39 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74
Meander side Outward side [%] 89 85 75 85 85 86 79 85 88 85 85 87 99 85 83

Inward side [%] 11 15 25 15 15 14 21 15 12 15 15 13 1 15 17
Mean flux [m/s] 0.44 0.48 0.55 0.24 0.48 4.84 0.53 0.48 0.42 0.25 0.48 0.94 0.12 0.48 0.64
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Fig. 5. Groundwater paths from the northern (red lines) and southern (blue lines) sides of the stream at a vertical cross section perpendicular the stream located at the edge of a meander pointing south. The black lines show the
equipotential lines separated by 0.005 m. Jyx represent the ratio between the hydraulic gradient in the y and in x-direction. The moderately sinuous stream has sinuosity (S) of 1.14 and amplitude (a) of 5 m. The highly sinuous
stream has sinuosity (S) of 1.74 and amplitude (a) of 13.5 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pointing to the north, the effects of the meander bend and the
changes in hydraulic gradient reinforce each other.

The effect of the aquifer thickness on the groundwater flow to a
stream is shown in Fig. 6 for the highly sinuous stream with Jyx of
4. In the shallow aquifer, which is 5 m thick, all groundwater dis-
charges to the stream. However, for the 40 m thick aquifer, ground-
water in the top 32 m discharges to the stream, while the deepest
groundwater, in the lowest 8 m of the aquifer, flows horizontally
beneath the stream and is not affected by the stream. Increasing
the thickness of the aquifer, from 5 m to 40 m, results in an
increase from 0.12 to 0.48 m/s of the average groundwater flux
to the stream, as observed in Table 2. When further increasing
the aquifer thickness to 80 m, groundwater in the deepest 32 m
of the aquifer flows horizontally downstream without entering
the stream, as shown by the horizontal groundwater flow paths

in the plan view section 60 mbgs (Fig. 6d). The horizontal hydraulic
gradient is affected by the stream in the deepest part of the aquifer,
while the vertical gradient is not. This indicates that streams have a
diminishing effect on groundwater discharge as aquifer thickness
increases. Moreover, the area discharging to the stream does not
linearly increase with the aquifer thickness. These results are based
on three scenarios where the aquifer depth is varied and the
stream depth is assumed to be constant. The effect of the stream
depth is likely to combine with effect of the aquifer depth, when
both parameters are varied. However, this is beyond the scope of
this analysis.

The groundwater flow component in the y-direction is shown in
Fig. 7. The figure shows two cross section: one follows the path to
the stream (Fig. 7a, c, and e) while the other is centered in the mid-
dle of the model domain (Fig. 7b, d, and f). The results are shown

Fig. 6. Effect of the aquifer thickness on the groundwater paths from the northern side of the stream (red lines) and from the southern side of the stream (blue lines) at three
vertical cross sections perpendicular the stream and located at the edge of a meander bend pointing south (a, b, and c). The black lines show the equipotential lines separated
by 0.005 m interval. The green line in the 80 m deep aquifer (c) show the depth of the plan view section (d). The highly sinuous stream scenario with a Jyx of 4 was employed.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Groundwater flow in the y direction (qy) in m/s through vertical cross sections along the stream: the left panels show cross sections that follow the meandering stream
path (a, c, and e), while the right hand panels show straight cross sections centered in the middle of the model domain (b, d, and f). Positive flow is directed to the north. The
results are shown for the straight, the moderately sinuous and the highly sinuous stream with Jyx = 0.5 and an aquifer thickness of 40 m. The moderately sinuous stream has
sinuosity (S) of 1.14 and amplitude (a) of 5 m while the highly sinuous stream has a sinuosity (S) of 1.74 and amplitude (a) of 13.5 m.
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for the straight, the moderately, and the highly sinuous stream sce-
narios with a constant Jyx of 0.5. The green color indicates the
absence of flow in the y-direction, the blue color indicates a nega-
tive flow, directed to the south, and the red color indicates a posi-
tive flow, directed to the north.

On the cross section following the stream, the straight stream
(Fig. 7) shows that y-directional groundwater flow below the
stream is zero. The results are presented only for a constant Jyx of
0.5 and a constant aquifer thickness of 40 m, but are valid when-
ever the hydraulic gradient and the aquifer thickness is constant.
The scenario with different hydraulic gradients in the y-direction
at the two sides of the stream shows groundwater flow below
the stream from north to south, as shown in Fig. 7c.

The moderately sinuous stream (Fig. 7c) shows areas colored in
blue, associated with a meander pointing toward north, and the
areas colored in red, with a meander pointing south. For meanders
pointing north, groundwater from the northern side of the stream
flows beneath the stream in a southerly direction (the flow has a
negative sign), while for meanders pointing south, groundwater
from the southern side of the stream flows beneath the stream in
a northerly direction (the flow has a positive sign). Between two
meander extremes, an area with no flow in the y direction occurs
(Fig. 7c). Y-directional groundwater flow under the stream is great-
est for shallow depths and decreases deeper in the aquifer. The
same pattern in the groundwater flows can be observed for the
highly sinuous stream (Fig. 7e), but is more pronounced than for
the moderately sinuous stream.

The groundwater flow between the northern and southern side
of the stream is further analyzed by showing the y-direction flow
on a vertical cross section centered in the middle of the model
domain (Fig. 7b, d, and f). Curiously, Fig. 7d show that the greatest
amount of groundwater flow across the stream centerline occurs
for the moderately sinuous stream. When sinuosity increases there
is less flow inside the meander bend (Fig. 4), and a lower y-
directional flow across the stream centerline (Fig. 7e). This effect
is related to the higher discharge to the outward pointing side of
a meander bend in the highly sinuous stream, compared to the
moderately sinuous stream. In the highly sinuous stream more
water enters the stream at the meander bend, instead of crossing
the line placed in the middle of the model domain and entering
the stream in the inward pointing side of the meander.

3.3. Grindsted stream field site

The model implemented at the Grindsted stream field site was
first evaluated by comparing model results with the observed
groundwater head and discharge to the stream. In Fig. 8, the sim-
ulated groundwater head is compared to the observed head at
wells located within the model domain: 114.1448 and 114.1997
(Fig. 2). In well 114.1448, the model describes the variation
groundwater head well, except for the period May–July 2014
when the simulated head (red line) is higher than the observed
(black dots). In well 114.1997, the meandering stream model
properly simulates the head until June 2014, but the head is
overestimated for the remaining simulation time. This is con-
firmed by the Nash-Sutcliffe efficiency coefficient (Nash and
Sutcliffe, 1970) for the entire simulation period of 0.63 and
0.68 at the two observation wells 114.1448 and 114.1997 respec-
tively. The simulated annual average groundwater discharge to
the stream is 75 l/s, which matches well the annual averaged dis-
charge estimated from the gaging stations (70 l/s). The inflow at
the upgradient groundwater boundaries resembles the discharge
to the stream, with small differences due to changes in storage in
the domain and recharge.

The simulated groundwater discharge to the stream along the
entire modeled stream stretch is shown in Fig. 8 (green line). The
groundwater discharge to the stream varies up to 40% during the
one year simulation. Despite this, the spatial patterns of the
groundwater flow to the stream in the simulations are not time
varying. This is because the modeled stream is always a gaining
stream, and head variations are small (up to 0.4 m over a one year
simulation) compared to the aquifer thickness (80 m). We carefully
note, however, that the spatial patterns of groundwater flow to the
stream will probably change with time for a stream that switches
between being gaining and losing conditions.

The horizontal groundwater flow at the upper edge of the
stream-aquifer interface is shown in Fig. 9 by the red arrows,
whose length is proportionate to the magnitude of the flow. The
groundwater discharge is not constant, but changes depending
on the location along the stream. As for the sinusoidal stream
geometries (Fig. 4), the groundwater discharge peaks at the outside
extremes of the meander bends and is smallest on the inside of the
meander bends.

Fig. 8. Model results from Grindsted stream compared to groundwater head data from well 114.1448 and 114.1997 (Fig. 2). The stream water level at the closest location to
well 114.1448 is indicated by the blue columns. The stream water level was calculated from the water level measurements at the Tingvejen station assuming a stream water
slope, which was calculated at each day from the water level measurements at the Tingvejen and the Eg bro stations. The groundwater discharge to the stream (green line) is
plotted to the secondary y-axes, which starts at 40 l/s, and is the integrated value of the discharges along the modeled stream stretch. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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The groundwater flow to the stream at two vertical cross sec-
tions perpendicular to the stream is shown in Fig. 10. The cross
section in Fig. 10a is placed at the location of a meander bend
pointing to the north and the cross section in Fig. 10b is placed
where a meander bend is pointing to the south. In Fig. 10a, the
particles originating in the shallow part of the aquifer north from
the stream enter the stream at the northern bank. The particles
originating in the deep part of the aquifer north of the stream
enter the stream on the southern bank while the particles com-
ing from the southern side of the aquifer enter the stream on
the shallow part of the southern bank. The reverse pattern is
observed in Fig. 10b. This is similar to the results of the moder-
ately sinuous stream (Fig. 5d and e) and the high sinuous stream
(Fig. 5g and h).

4. Discussion

This study shows that meander bends lead to significant spatial
variability in groundwater flow to streams. The results show that
most of groundwater flowing to the stream enters the stream at
the outward pointing side of the meander bend (85% for the highly
sinuous stream with a Jyx of 4), just upstream of the extremities of
the meander (Fig. 4 for the synthetic stream and Fig. 9 for Grind-
sted stream). The groundwater discharge to the stream is lowest
on the inside of meander bends, where only 15% of groundwater
enters the stream for the highly sinuous stream with a Jyx of 4.
The amount of groundwater entering the stream is affected by
the groundwater flow direction in the aquifer. In case of regional
groundwater flowing perpendicularly to the stream direction,

Fig. 10. Groundwater paths from the northern side of the stream (red lines) and from the southern side of the stream (blue lines) at two vertical cross sections perpendicular
the stream and located at the edge of a meander bend pointing north (a) and south (b). The black lines show the equipotential lines with a 0.1 m interval. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Horizontal groundwater flow at the upper edge of the stream-aquifer interface. The red arrows are proportional to the fluxes. The equipotential lines are separated by
0.2 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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85% of groundwater discharge occurs on the outward pointing side
of a meander, compared to 82% for regional groundwater flowing
in the direction of the stream. In this case, the largest groundwater
flows occur on the upstream part of the outward pointing mean-
der. For real streams, such as the Grindsted stream (Fig. 9) the vari-
ations in the groundwater discharge at the stream-aquifer
interface are not as regular as for the synthetic streams (Fig. 4).
In the synthetic streams, all meanders have the same amplitude
and period and are oriented in the same way relative to the
groundwater flow direction. In the Grindsted stream, the meanders
have different size and are oriented differently. Thus, the spatial
variability of the groundwater flow to streams is affected by the
size as well as by the orientation of the meander bend.

In the field study of Weatherill et al. (2014), a high concentra-
tion of contaminants in groundwater discharge was detected at
the outside of a meander bend. Our study, which indicates that
the outward pointing side of the bends is the dominant location
for groundwater discharge, helps explain those results.

The groundwater flow to the stream is observed to vary greatly
with depth for both the synthetic (Fig. 5, 6, and 7) and Grindsted
streams (Fig. 10). This confirms that groundwater flow to streams
at meandering streams is three dimensional, as previously sug-
gested by Harvey and Bencala (1993), Modica et al. (1998), and
Flipo et al. (2014). The present study investigates how the vertical
variability of the groundwater flow to the stream is affected by the
meander bends with the discharging bank being dependent on the
depth of origin of the groundwater and the stream geometry. The
amount of groundwater entering the stream on the opposite bank,
increases with the sinuosity (Fig. 7a and b) and amplitude of the
meanders (Fig. 5). Curiously the magnitude of the flow crossing
the stream center line is highest for moderately sinuous streams
and decreases when increasing the sinuosity (Fig. 7d and e).
Groundwater can enter the stream on the opposite bank from its
origin because of difference in hydraulic gradient in the aquifer
between the two sides of the stream, as occurring when the regio-
nal groundwater flow direction is across the stream. The regional
groundwater flow can either enhance or smooth the effect of the
stream sinuosity, depending on the direction of the regional
groundwater flow and the orientation of the meander bends.

The observation that groundwater can flow below a stream and
enter the stream through the opposite bank has previously been
described by Aisopou et al. (2015a) and Miracapillo and Morel-
Seytoux (2014). However, the factors causing groundwater to enter
the stream through the opposite bank are different in those papers
than here. In Aisopou et al. (2015a), the presence of a pumping well
on one side of the stream creates a head gradient that forces
groundwater to cross to the opposite side of the stream and enter
the stream at the bank closest to the well. In Miracapillo and
Morel-Seytoux (2014), the difference of the horizontal gradient
between the two sides of the stream imposed by the boundary
conditions, is responsible for the flow below the stream. Here we
focus on the combined influence of stream geometry and ground-
water flow direction on the location of groundwater discharge to a
stream.

The synthetic stream and the Grindsted stream models have
been implemented using different boundary conditions. In the syn-
thetic stream, all the lateral boundary conditions (Fig. 1) are con-
stant head and account for the head gradient in the x and y
direction. In the Grindsted stream model (Fig. 2), the boundaries
perpendicular to the stream are streamlines (no-flow boundaries)
and the upstream groundwater boundaries are fixed-head. The
constant head boundaries of the synthetic stream model assume
no vertical groundwater gradients. As previously discussed, this
is not the case close to a meandering stream. The streamline
boundaries applied in the Grindsted stream model allow a vertical
gradient. However, the streamline boundaries of the Grindsted

model do not allow a horizontal flow across the stream lines in
the aquifer. Thus along-stream groundwater flow is better mod-
eled by constant head boundaries. Neither the no-flow nor the con-
stant head boundary conditions perfectly describe conditions
under streams. However, this paper has shown that the effect of
meanders is similar for both types of groundwater boundary con-
ditions (compare the sinusoidal examples with fixed head bound-
aries with the Grindsted model with the no flow boundaries). In
addition, the results from a larger modeling domain (Fig. S4) show
that the effect of stream meanders on the groundwater flow pat-
tern to the stream do not change when the model boundaries are
further from the stream (compare Fig. 5i with Fig. S4), so the con-
clusions are robust despite boundary condition uncertainty.

The hydraulic conductivity distribution in the aquifer and in the
stream bed is one of the factors, together with the streammorphol-
ogy and the hydraulic gradient, known to affect the groundwater
flow to streams. Recent studies by Krause et al. (2012),
Brookfield and Sudicky (2013), Gomez-Velez et al. (2014), and
Poulsen et al. (2015) have focused on the effect of the hydraulic
conductivity distribution on the groundwater discharge to streams.
Since the aim of this study is to investigate the effect of stream
meanders and groundwater flow direction on the groundwater
flow to streams at the reach scale, the models assume a homoge-
nous sandy aquifer and a constant stream hydraulic gradient.
Future studies that investigate the combined effect of stream
meanders, varying stream-aquifer hydraulic gradients, and hetero-
geneous aquifer systems (spatially varying hydraulic conductivity
distributions) or layered aquifers would enhance the understand-
ing on groundwater flow to streams.

5. Conclusions

A numerical modeling study analyzing the effect of meander
bends on the spatial variability of the groundwater flow in an
unconfined and homogenous sandy aquifer to a gaining stream at
the reach scale is presented. Results were obtained by applying the
coordinate transformation method of Boon et al. (2016) to a new
problem: the groundwater flow to streams.

The results showed that presence of meander bends leads to
significant spatial variability in groundwater discharge to streams.
The groundwater fluxes are highest at the meander bend extremes,
up to 85% of the mean fluxes to a meander with a sinuosity of 1.74,
and much lower on the inside of meander bends. This effect
increases with the stream sinuosity. The magnitude of the hydrau-
lic gradient of groundwater and of the hydraulic conductivity in
the aquifer affects the mean groundwater flux to the stream, while
the stream width and the direction of groundwater affects the
groundwater flow direction to the stream. Groundwater gradients
combine with the effect of stream meanders and can either
enhance or smooth the effect of a meander bend, depending on
groundwater flow directions.

The location of the discharge of groundwater along the stream
cross section is affected by the stream sinuosity, the direction of
the groundwater flow, and the aquifer thickness. At the meander
extremes, groundwater coming from the shallow part of the aqui-
fer enters the stream at the outward pointing bank. Groundwater
originating from the deep part of the aquifer often flows beneath
the stream and enters the stream at the opposite bank at the
inward side of a meander bend, with the amount of groundwater
flow under the stream increasing with aquifer thickness.

The field site application confirmed the finding of the synthetic
study case and showed that the irregular geometry of the stream
meanders affects the groundwater discharge to the stream. This
study improved our conceptual understanding of the groundwater
flow paths to meandering streams in an unconfined homogenous
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sandy aquifer and shows how stream meanders, combined with
groundwater flow direction, affect the spatial variability of the
groundwater flow to streams at the reach scale in both synthetic
and field systems.
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