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Marine-terminating glaciers and ice streams are important controls of ice sheet mass balance. However,
understanding of their long-term response to external forcing is limited by relatively short observational
records of present-day glaciers and sparse geologic evidence for paleo-glaciers. Here we use a high-
resolution ice sheet model with an accurate representation of grounding line dynamics to study the
deglaciation of the marine-based south-western Norwegian sector of the Scandinavian Ice Sheet and its
sensitivity to ocean and atmosphere forcing. We find that the regional response to a uniform climate
change is highly dependent on the local bedrock topography, consistent with ice sheet reconstructions.
Our simulations suggest that ocean warming is able to trigger initial retreat in several fjords, but is not
sufficient to explain retreat everywhere. Widespread retreat requires additional ice thinning driven by
surface melt. Once retreat is triggered, the underlying bedrock topography and fjord width control the
rate and extent of retreat, while multi-millennial changes over the course of deglaciation are modulated
by surface melt. We suggest that fjord geometry, ice-ocean interactions and grounding line dynamics are
vital controls of decadal-to centennial scale ice sheet mass loss. However, we postulate that atmospheric
changes are the most important drivers of widespread ice sheet demise, and will likely trump oceanic
influence on future ice sheet mass loss and resulting sea level rise over centennial and longer time scales.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

retreat. Moreover, some beds deepen inland, a configuration asso-
ciated with a potential marine ice sheet instability (e.g. Weertman,

Ice streams and marine-terminating glaciers are capable of
rapidly discharging significant amounts of ice into the ocean. Their
response to the current climate warming trend remains a major
uncertainty in projections of future ice sheet mass loss and sea level
rise (Nick et al., 2013; Nowicki et al., 2013; Ritz et al., 2015). Outlet
glaciers and ice shelves in Greenland and Antarctica are retreating
(e.g. Moon and Joughin, 2008; Murray et al., 2015), accelerating
(Moon et al., 2012; Joughin et al., 2014), thinning (Pritchard et al.,
2009; Paolo et al, 2015), and weakening (Borstad et al., 2013;
Flirst et al., 2016). The bed topography of most major outlet glaciers
remains below sea level far inland (Morlighem et al., 2014; Fretwell
et al.,, 2013; An et al., 2017; Millan et al., 2017), making present day
glaciers vulnerable to warm ocean waters as grounding lines
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1974; Feldmann and Levermann, 2015; Golledge et al., 2015). The
latter conditions suggest that dynamic mass loss, once triggered,
may continue largely decoupled from future changes to external
forcing and associated efforts to decrease anthropogenic emissions.
For marine margins buttressed by ice shelves, or for glaciers ter-
minating in fjords, it is uncertain to what extent such accelerated
mass loss will take place, given the additional support provided by
ice shelves and trough walls (Schoof et al., 2017; Haseloff and
Sergienko, 2018; Akesson et al., 2018).

It is unclear for how long accelerated ice discharge can be sus-
tained, and it is therefore crucial to assess the relative importance
of the drivers of mass loss over centennial-to millennial-scales. A
leading hypothesis explaining contemporary changes to marine
terminating glaciers and ice shelves is the intrusion of warm sub-
surface waters reaching ice shelf drafts and glacier grounding lines
(Holland et al., 2008; Straneo and Heimbach, 2013). However,
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reconstructions and model studies are inconclusive with regards to
whether high surface melt or ocean-driven dynamic mass loss
control long term ice sheet stability and sea level rise (Golledge
et al.,, 2015; Stokes et al., 2016).

Another source of uncertainty is which glaciers are most
vulnerable, and whether their responses are non-linear (Reyes
et al., 2014; Dutton et al., 2015; Mengel and Levermann, 2014;
Mengel et al., 2016). Both empirical ice sheet reconstructions
(Mangerud et al., 2013, 2016; Stokes et al., 2014) and modern ob-
servations (Moon et al., 2012; Bartholomaus et al., 2016; Felikson
et al., 2017) show that responses vary even within regions experi-
encing similar external forcings. This behaviour, apparently out-of-
phase with contemporary climate, complicates interpretation of
observations and excludes marine-terminating glaciers as past
climate indicators without additional knowledge of site-specific
controls.

Our ability to model past ice sheet change provides an
important metric to evaluate the accuracy of numerical models
used for future predictions. To test the accuracy of these models,
geologic evidence can be used. However, sedimentary and geo-
morphologic data provide only mean rates of change, constrained
by dating accuracy. Short-term variations may thus be masked
out and interpretations hampered. For example, glacier moraines
may be deposited several hundreds or thousand years apart.
Cosmogenically dated erratics, though useful to map ice-free
surfaces, have uncertainties in the centennial to millennial
range (e.g. Briner et al., 2005). These types of evidence provide
only snapshots in time. Sedimentary sequences, in contrast, are
inherently continuous. Yet, their spatial coverage is sparse; to
elucidate whether they represent a regional ice sheet margin or a
local anomalous feature requires many samples and extensive
field studies.

While certainly having limitations, numerical ice sheet models
give a continuous and spatially complete picture, and can resolve
ephemeral behaviour. Models can also help disentangle the extent
to which external forcing or site-specific factors dominate glacier
behaviour. Numerous large-scale, transient simulations of the
deglaciation of past ice sheets have been carried out. Studies of the
Antarctic (Golledge et al., 2012; Pollard et al., 2015), Greenland
(Robinson et al., 2011; Applegate et al., 2012), British-Irish
(Hubbard et al., 2009), Laurentide (Marshall et al., 2000; Tarasov
et al., 2012), and Eurasian Ice Sheets (Arnold and Sharp, 2002;
Kleman et al., 2002; Patton et al., 2017) have all improved our
understanding of long-term ice sheet change. However, marine-
terminating glaciers, distributed all around the coasts of
Greenland, Norway, Svalbard, Patagonia, Alaska, and parts of
Antarctica, are often too small to be resolved accurately in such
coarsely resolved large-scale ice sheet models. This issue limits
model accuracy and our understanding of past behaviour. Many
paleo-ice sheet models rely solely on the computationally-efficient
Shallow Ice Approximation (Hutter, 1983; Morland, 1984), which is
unable to capture interactions between fast-flowing ice streams
and the interior ice sheet.

One of the most important physical processes that needs to be
correctly captured by models is grounding line dynamics (e.g.
Schoof, 2007), for which accurate representation requires spatial
scales of ~1km or better (Vieli and Payne, 2005; Durand et al.,
2011; Seroussi et al., 2014; Gagliardini et al., 2016). Currently,
computational constraints prevent continental-scale, high-resolu-
tion, transient paleo-simulations, i.e. several thousand years and
longer at a resolution of ~1 km. Most work to date has therefore
been on (i) coarse spatial and long temporal scales; or (ii) fine
spatial and short temporal scales.

Flowline models remain an exception, as they can finely track
grounding line motion over long time scales. These models have

been used to study Antarctic ice streams (Jamieson et al., 2012,
2014), Greenlandic outlet glaciers (Nick et al., 2009, 2013; Vieli and
Nick, 2011; Lea et al., 2014; Steiger et al., 2018), as well as idealised
glaciers (e.g. Vieli et al., 2001; Nick et al., 2010; Enderlin et al., 2013;
Akesson et al., 2018). While useful to better understand physical
processes, including calving dynamics, flowline models are not
suitable for complex geometries, nor can they capture interactions
between neighbouring drainage basins. These models are also
width-averaged by definition, which precludes accurate represen-
tation of across-flow topographic features such as local pinning
points.

Here, we use an alternative approach to simulate the deglacia-
tion of south-western Norway by applying a high resolution,
regional ice sheet model to assess this area's sensitivity to ocean
and atmospheric warming. We resolve individual fjords and their
interactions, and provide a spatially complete, transient picture
from 18 to 11 ka before present (BP). South-western Norway was
the marine-based western Norwegian sector of the Scandinavian
Ice Sheet and is exceptionally data-rich (e.g. Hughes et al., 2016;
Mangerud et al., 2017), yet the ice sheet behaviour has not been
studied in a detailed model framework before.

This paper is structured as follows. First, we briefly describe
relevant ice sheet changes in south-western Norway over the
modelled period 18—11 ka BP (Sect. 2). Details of the ice sheet
model and implementation of atmosphere and ocean forcing are
given in Sect. 3, followed by a description of experimental design
and empirical constraints (Sect. 4). Our results are divided into
sensitivity experiments to forcing from the ocean (Sect. 5.2) and the
atmosphere (Sect. 5.3), as well as simulations of the deglaciation
18—11 ka BP (Sect. 5.4). We discuss the relative influence of the
forcing (Sect. 6.1), topography (Sect. 6.2), as well as model limita-
tions (Sect. 6.3), and finally highlight implications for past and
future stability of ice sheets in Sect. 6.4.

2. Deglacial history of south-western Norway

During the Last Glacial Maximum (LGM) c. 21-20 ka BP, the
Scandinavian Ice Sheet was connected with the British-Irish Ice
Sheet (e.g. Hughes et al., 2016). Subsequently, the major Norwegian
Channel Ice Stream was activated in the Norwegian Channel. This
ice stream flowed northwards along the west coast of Norway
before collapsing 19—18 ka BP (Svendsen et al., 2015; Sejrup et al.,
2016). Here we do not model these early phases, instead we
examine the triggers and drivers of deglaciation of south-western
Norway over the period 18—11 ka BP. Once the Norwegian Chan-
nel Ice Stream collapsed, a new stable ice margin roughly parallel
with the Norwegian coast was established (Mangerud et al., 2017)
(see Fig. 1). Our simulations start from this period, when western
Norway resembled present-day Greenland, with marine-
terminating glaciers and deeply incised subglacial valleys drain-
ing the interior ice sheet (Morlighem et al., 2014, 2017).

Deglaciation of western Norway started around 18 ka BP with
the southernmost offshore islands and coastal areas becoming ice-
free first (Fig. 2). In contrast, coastal areas farther north remained
ice-covered until 15 ka BP, during which time sea surface temper-
atures (SSTs) remained relatively stable in the Norwegian Sea
(Eldevik et al., 2014; Dokken et al., 2015). Widespread retreat in
western Norway only occurred after 15 ka BP. The paleoclimate
record suggests an asynchronous retreat history across different
outlet glaciers, despite similar changes to the maritime climate.
Stratigraphic evidence from lakes and bogs, as well as cosmogeni-
cally dated erratics, suggest that retreat of the Boknafjorden outlet
glacier and Jeren regions (Fig. 2) to the south commenced 17—16 ka
(Briner et al., 2014; Svendsen et al., 2015; Lunnan, 2016; Johnsen,
2017; Gump et al., 2017). In contrast, Hardangerfjorden glacier,
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Hughes et al. (2016)

Fig. 1. Reconstructed Eurasian Ice Sheet extent (Hughes et al., 2016) for our initial model state at 18 ka BP. Ice sheet retreat is simulated within the indicated orange area. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

only 50 km north, started to retreat 1-2000 years later, at the
transition into the warm Bpglling inderstadial c. 14.8 ka BP
(Mangerud et al., 2013, 2016).

During the Bglling-Allered c. 14.8—12.7 ka BP, ice sheet retreat
was extensive (Fig. 2), with margins in some areas retreating c.
40-50 km inland of their subsequent Younger Dryas (YD) positions.
Readvance during the following YD cold reversal c. 12.7—11.6 ka BP
produced prominent moraines that can be traced from sea level to
the high uplands (Andersen, 1954; Follestad, 1972). This YD read-
vance overran any Allered deposits, erasing evidence of the ice
configuration prior to the YD, for which knowledge is limited to
stratigraphic records (Mangerud et al., 2016).

Reconstructions thus imply that retreat during deglaciation in
western Norway differed between outlet glaciers (Mangerud et al.,
2013, 2016; Briner et al., 2014; Gump et al., 2017). Similarly, Stokes
et al. (2014) suggested that retreat of marine-terminating glaciers
in northern Norway during deglaciation 15—10 ka BP was out-of-
phase with contemporary climate changes. These lines of evi-
dence suggest that glacier-specific factors such as local topography
alter the expected response to the climate forcing. Nevertheless,
quantitative explanations of these intraregional differences are yet
to be established.

3. Ice sheet model
3.1. Ice dynamics and model mesh

We use the two-dimensional Shelfy Stream Approximation
(SSA, MacAyeal, 1989) within the Ice Sheet System Model (ISSM,
Larour et al., 2012). This stress balance approximation is well suited
to model fast ice streams and regions experiencing significant
sliding at the bed. In contrast to the Shallow Ice Approximation
(Hutter, 1983; Morland, 1984), commonly used in paleoclimate
studies, the SSA includes a non-local stress balance, accounting for
membrane stresses. The SSA also significantly reduces the
computational cost compared to higher-order ice flow physics.

Note, however, that SSA is less suited for land-based flow, where
internal deformation is important.

We construct a non-uniform model mesh with resolution
varying from 1km in areas of high basal relief, to 10 km in areas
with smoother topography. In addition, we enforce 1 km resolution
in all areas below sea level, consistent with requirements to accu-
rately simulate grounding line dynamics (Durand et al.,, 2011;
Seroussi et al., 2014). In practice, a resolution of 1 km is enough to
accurately capture grounding line dynamics when using a sub-
element hydrostatic scheme (Seroussi et al., 2014) developed for
this purpose.

Ice is assumed isothermal with a viscosity equivalent to an ice
temperature of -5°C (Cuffey and Paterson, 2010, p.73; rate factor
listed in Table 1), consistent with what is used in model studies
for the western and eastern Greenland Ice Sheet (e.g. Nick et al,,
2013).

Our model domain is restricted to south-western Norway, and
we assume a fixed ice divide corresponding to present-day water
divides (Fig. 2) with no influx into our domain. In contrast to our
model, the ice divide likely migrated over the course of degla-
ciation. However, we make this assumption for simplicity and
technical reasons, avoiding unphysical model behaviour associ-
ated with an imposed migration of the ice divide. We assess this
approach by comparing with large-scale model output of the
Eurasian Ice Sheet (L. Tarasov, unpubl. data). This assumption is
reasonable for the later part of the deglaciation, and less accurate
for the earlier part, when the ice divide is likely to have been
located further east. However, since this is far from the ice sheet
margin in the early part of our deglaciation simulation (18—15
ka), and modelled ice flow in the interior is slow, we find this
bias acceptable.

While we accurately model grounding line migration, we
deliberately neglect migration of the floating ice front as we do not
have sufficient data to calibrate a calving model. Note, however,
that the floating tongue is affected by oceanic melt and will impact
the stability of the glacier.
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Fig. 2. Map of southwestern Norway showing the model domain following present-
day water divides (red solid line), western model boundary (red dashed line),
approximate reconstructed ice margins for 18 ka (Hughes et al., 2016; Gump et al.,
2017), 15 ka, 13 ka, 11 ka, and the well-constrained reconstructed margin at the
Younger Dryas (YD) maximum c. 12 ka (Ehlers et al., 2011; Mangerud et al., 2013, 2017;
Briner et al., 2014; Hughes et al., 2016; Gump et al., 2017). Place names from north to
south: F—Fensfjorden, He—Herdla, Hj—Hjeltefjorden, Ha—Hardangerfjorden, B—Bergen,
Ko—Korsfjorden, Se—Selbjernsfjorden, Beg—Bemlafjorden, N-—Nedstrandsfjorden,
Bo—Bokn, Bf—Boknafjorden, Kv-Kvitsey, S-Stavanger, J—J@ren. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)

3.2. Basal conditions for grounded ice

Basal motion is modelled using a linearly viscous sliding law
(Budd et al., 1984):

Th = —azNeVm (1)
where 7, is the basal drag, « is a friction parameter, v}, is the basal

velocity and N, the effective pressure. We assume that the sub-
glacial hydrological system is a uniform sheet of water connected to

the ocean, and the effective pressure is taken as the difference
between the weight of ice and the hydrostatic height: N. = p;gH —
pw8lzp|, where p;, g, H, p,,, and z, are ice density, gravitational ac-
celeration, ice thickness, freshwater density and bed elevation,
respectively. We construct a spatially variable basal drag coefficient
« proportional to bed elevation z,:

min(max(0, z, + 800),2000) 2)
2000

Using this simple approach, we capture the expected fast flow
(low drag) in the fjords, and simulate slow flow (high drag) on
uplands and in the ice sheet interior. No friction (e = 0) is applied
for floating ice. In some areas in the interior, thin-ice areas might
have been frozen to the bed (e.g. Kleman and Hattestrand, 1999).
This is implicitly accounted for by introducing a very high basal
drag at high elevations, where we expect ice to be thin.

a=120

3.3. Surface mass balance

For simplicity, we represent changes in surface mass balance by
imposing variations in the equilibrium line altitude (ELA). The
strength of this approach is that the ELA implicitly accounts for
changes in summer and winter surface mass balance, for which
knowledge of a number of near-surface processes is not available.
We thereby avoid tuning a suite of poorly constrained parameters
required for a surface energy balance (Hock, 2005) or insolation-
temperature model (e.g. Robinson et al.,, 2010). An alternative
would have been to use a simple positive-degree day (PDD) model
(e.g. Reeh, 1989; Hock, 2003). However, they require calibration of
melt factors for snow and ice, which are not known for this region
in the past.

Temperature and precipitation records are also poorly con-
strained during deglaciation. This is especially true for the first few
thousand years, when most of south-westernern Norway was ice-
covered, preventing formation of terrestrial records.

Observed ELAs in western Norway follow an E-W gradient
gradually falling towards the coast (@strem and Liestel, 1964). We
define a spatially variable initial reference ELA(x,y),s based on
present-day ELAs (Lie et al,, 2003a; b; Andreassen et al., 2005;
Giesen and Oerlemans, 2010). The ice surface is oriented approxi-
mately parallel to this E-W gradient. We therefore represent the
gradient by constructing an ELA(x,y).r as a function of the initial
(pre-spinup) surface elevation z; (see Sect. 4.1):

ELA(X,Y) f = 300 + 0.42z. (3)

This function is a simplification of the detailed spatial maps of
ELA for southern Norway calculated by Lie et al. (2003b). The latter

Table 1

Constants and parameter values used in this study.
Parameter Symbol Value Unit
Ice density pi 917 kg m™
Freshwater density P 1000 kg m™
Gravitational acceleration g 9.81 m s2
Rate factor A 1.0753 x 10724 sTpa3
Basal friction parameter o 0-120 (Paah!?
Sliding law exponent m 1
Glen's law exponent n 3
Vertical SMB gradient, ablation zone | 0.0037 a1
Vertical SMB gradient, accumulation zone Tace 0.002 a'!
Upper bound on SMB Bmax 1 m w.e
Lower bound on SMB Bunin -6 m w.e.
Mesh resolution Ax 1-15 km
Time step At 0.05 a
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calculated ELAs based on modern temperature and precipitation
records for southern Norway, using observed ELAs from local gla-
ciers and ice caps as validation.

A temporally varying ELA is calculated by adding an time-
dependent anomaly AELA(t) to the initial reference ELA(X,y) "

ELA(X,,t) = ELA(X.Y)yy + AELA(1). (4)

We thus have a spatially varying surface forcing, with temporal
changes applied uniformly in space. Here, the temporal changes
(AELA(t)) will be based on reconstructions for the deglaciation (see
Sect. 4.3).

An elevation dependent surface mass balance rate B is calcu-
lated using separate vertical mass balance gradients I'j,; and I'gec in
the ablation and accumulation zones, respectively (see Table 1).
These gradients are based on present-day and past studies of
Greenland, Alaska, and Norway (Van de Wal, 1996; Van de Wal
et al., 2005; Rea and Evans, 2007; Van Beusekom et al., 2010;
Huss and Farinotti, 2012), which is representative of the regional
climate in our modelled area. We also compared our gradients
against large-scale, coarse-resolution simulations of the entire
Eurasian Ice Sheet (L. Tarasov, unpubl. data) and found our gradi-
ents to be appropriate time-averaged values for the deglaciation.

In the ablation zone, B at a certain elevation z is calculated by
B(2) = max (T (2 — ELA(X.Y,0)). B ). (5)
and similarly, in the accumulation zone
B(z) = min (I‘acc(z — ELA(x,y,1)), Bmax>, (6)

The limits of B, = —6 m water equivalent (w.e.) and Bpax = 1
m w. e. are introduced to avoid unphysical surface mass balance
rates and are consistent with a range of observations from the
Greenland Ice Sheet and Alaska (Van de Wal, 1996; Van de Wal
et al,, 2005; Van Beusekom et al., 2010; Helsen et al., 2012).

3.4. Ocean forcing

At the base of ice shelves, we apply a uniform reference sub-
marine melt rate M,ef =20m a’l. This melt rate is close to obser-
vations of Greenland outlet glaciers (Rignot et al., 2010) and
Antarctic ice shelves (Rignot et al., 2013). We expect ocean condi-
tions for the Norwegian coast to be similar, considering changes in
sea surface temperatures (SSTs) reconstructed for the Norwegian
Sea during deglaciation (Bakke et al., 2009; Eldevik et al., 2014;
Dokken et al., 2015). For simulations of the deglaciation, submarine
melt rates are scaled with atmospheric forcing as follows:

M = M, +0.05a~ ' AELA(t), (7)

where AELA(t) is given in Fig. 9a (see details in Sect. 4.3). This
corresponds to a 1:20 submarine melt rate to ELA scaling, e.g., a
100 m change in ELA implies a 5m a™! change in submarine melt
rate. This scaling assumes that atmosphere and ocean changes are
coupled on the centennial to millennial time-scales considered
here. This coupling may occur via direct air-sea interactions, or
through varying atmospheric-induced runoff, resulting in subgla-
cial discharge and changes in submarine melt (Slater et al., 2016).
Melt rate magnitudes are arbitrary yet consistent with measured
submarine melt rates on Greenland (Rignot et al., 2010; Motyka
et al., 2011; Fried et al., 2015).

4. Experimental design and empirical constraints
4.1. Initial conditions

As initial conditions we impose a simplified representation of
the 18 ka ice sheet. We choose 18 ka as a starting point since the
Norwegian Channel Ice Stream collapsed prior to this time
(Svendsen et al., 2015; Sejrup et al., 2016; Morén et al., 2017). This
means the ice sheet margin was at the coast, similar, albeit slightly
more extensive than the margins of the Greenland Ice Sheet today.
We initialise our ice sheet model with estimated 18 ka grounding
lines based on empirical evidence (Hughes et al., 2016; Gump et al.,
2017; Mangerud et al., 2017). As the 18 ka grounding line positions
are not well constrained, we let the grounding line evolve freely
during a spin-up period, relaxing it to a stable position. We start
with a polynomial-shaped ice sheet surface covering all sites of
younger °Be exposure dates (Mangerud et al., 2013; Briner et al.,
2014; Svendsen et al., 2015; Gump et al., 2017), and such that the
interior ice sheet surface is in approximate agreement with
Eurasian Ice Sheet simulations (L. Tarasov, unpubl. data). The
spinup simulation is run for 2000 years using fixed model param-
eters and a constant climate with ELA.¢. We assume that the model
reaches steady-state when rates of thickness change is smaller than
1 cm per year. Empirical evidence document a gradually falling
relative sea level during deglaciation (Lohne et al., 2007; Lunnan,
2016). We therefore run our simulations using a sea level 20 m
higher than today, in line with deglaciation-averaged sea levels
from these reconstructions.

4.2. Sensitivity to atmospheric and ocean forcing

To quantify the ice sheet response to climate change, we
perform a sensitivity study to step changes in surface mass balance

Fens- +
fjorden|
Hjelte-1 ,
fjorden \\ 2

440
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Velocity (m/a)

- 16.2

=15
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- - Reconstructed
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Fig. 3. High-resolution, steady-state velocity field at the end of the model spinup
phase at 18 ka BP. The reconstructed grounding line is from 18 ka, also shown as '18’ in
Fig. 2. The velocity field is shown for areas with ice-cover within the model domain.
See red-lined delineated area in Fig. 2 for map reference. Note log-scale. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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and submarine melt relative to the 18 ka model steady-state (Fig. 3).

Perturbations to the ELA range from +100 to +1200 m relative
to 18 ka ELAs. For comparison, Younger Dryas ELAs are estimated to
be c. 500 m higher than those at 18 ka, while present-day ELAs are
c. 1000 m higher than 18 ka ELAs (Andreassen et al., 2005;
Mangerud et al., 2016).

Submarine melt rates are perturbed in two separate sensitivity
experiments, increasing from the reference melt rate Mref =20m
a’! at 18 ka, to 100 and 200 m a™.

Following these step perturbations of the ELA and submarine
melt rates, starting with the 18 ka ice sheet, we let the model evolve
to a new steady-state. In reality, changes would not have been
instantaneous, or as large as applied here. The rationale behind
making step changes, as opposed to a time-dependent forcing, is to
isolate the relative ice sheet response to a different atmosphere and
ocean, irrespective of the time scale of the forcing.

4.3. Deglaciation 18—11 ka

To model the deglaciation, we use the time-varying function
AELA(t), developed from a conceptual curve in Mangerud et al.
(2016), as our atmosphere forcing (Fig. 9a). In order to scale this
curve we have used the Younger Dryas ELA determined from the
highest Younger Dryas lateral moraines, the present day ELA for the
early Holocene (11 ka), and available paleoclimate reconstructions
to estimate AELA(t) for the rest of the period.

One of our objectives is to quantify the significance of ocean
forcing as a driver of long-term ice sheet mass loss. To test this, we
perform two parallel experiments for the period 18—11 ka using
different submarine melt rates: (i) constant at 20 m a”', (ii) time-
dependent, scaled to AELA(t) over the course of deglaciation (Eq.
(7); Fig. 9a).

Reconstructions of Norwegian Sea SSTs exist for the deglaciation
(Bakke et al., 2009; Eldevik et al.,, 2014; Dokken et al., 2015).
However, these do not give sufficient basis to spatially refine sub-
marine melt rates in our region. We therefore keep our external
forcing spatially uniform throughout the simulations.

5. Results
5.1. Ice sheet flow at 18 ka

For the state at 18 ka BP, we compare modelled ice velocities and
flow directions (Fig. 3) with observations of glacial striae. In the
entire area north of Korsfjorden and northwest of Hardangerfjor-
den (cf. Fig. 2) the model shows overall westward ice-flow across
mountain areas. The ice flow direction is modulated by the un-
derlying topography, particularly by the major fjords, where ve-
locities are higher. However, note that the simulated ice-flow is
unobstructed by several deep N—S trending fjords.

The simulated ice-flow across fjords is consistent with the oldest
recorded glacial striae. These striae, found on the westernmost
islands and on mountain summits inland, are all directed west to-
wards the coast. These observations suggest that ice flow at the
early stages of the deglaciation, when the ice was thick, was rela-
tively independent of the underlying bed topography (Aarseth and
Mangerud, 1974; Aa and Mangerud, 1981; Hamborg and Mangerud,
1981; Sale, 2017). During the deglaciation, as the ice became
thinner, the glacial striae show that the ice movement gradually
became controlled by the bed topography.

The model shows westward ice flow out of the outer half of
Hardangerfjorden, which is the longest and deepest fjord in the
area, a picture consistent with glacial striae (Follestad, 1972;
Holtedahl, 1975; Hamborg and Mangerud, 1981). Further south, the

pattern of striae is more complicated, but for the western part, it is
reasonably consistent with our modelled directions (Ringen, 1963;
Reonnevik, 1971; Anundsen, 1972, 1990). We also note that there are
locally conflicting ice movements between the model and obser-
vations, for which we have no straightforward explanation. For
example, Andersen and Wangen (1987) found that ice flow was
directed out of Boknafjorden and across northern Jeren, in contrast
to our model results, which show ice-flow directions towards the
Boknafjorden trough. Since modelled flow directions appear sen-
sitive to underlying topography in coastal areas with thinner ice, a
potential explanation is that an underestimated ice thickness leads
to local flow inconsistent with the empirical evidence. Indeed, °Be
exposure ages indicate that mountains which featured as small
nunataks in the 18 ka model scenario were still covered by ice at
this time, suggesting that the model underestimates ice thickness
slightly in coastal areas.

5.2. Ocean forcing as a selective trigger

We start with a sensitivity study of the 18 ka ice sheet as
described in Sect. 4.2. A spatially uniform increase in submarine
melt rates from 20 to 100m a! causes significant differences in
timing and magnitude of grounding line retreat between fjords
(Fig. 4). Retreat occurs through deep sections of the northernmost
fjords in our domain (Fensfjorden and Hjeltefjorden), despite these
fjords being relatively narrow (~ 3—5 km). A lack of prominent sills
gives a ~25 km retreat in Fensfjorden, compared to 5—10 km in the
nearby Hjeltefjorden, where the grounding line stabilises just south
of the YD moraine at Herdla (e.g. Aarseth and Mangerud, 1974;
Mangerud et al., 2016). Our sensitivity experiment is not meant to
represent YD climate conditions, but the simulated stable
grounding line off Herdla is consistent with reconstructions for the
YD.

In stark contrast to the significant retreat in the north, the
grounding line retreats only a few kilometres at the three narrow,
shallow fjord mouths in the center of our domain (Korsfjorden,
Selbjernsfjorden, Bemlafjorden; Fig. 4). In the south, the most
sensitive area is Boknafjorden. Fast-flowing ice in the main trough
of Boknafjorden is fed by multiple tributaries from the east and
south (Fig. 3). Following the increase in submarine melt (to 100 m a”
1), Boknafjorden's grounding line is dislodged from a ~200m
shallow sill south of the island Bokn and retreats ~25 km inland in
less than 30 years, with a mean retreat rate exceeding 800m a™'.
The grounding line stabilises a few kilometres upstream on a sec-
ond sill (at km 55 in Fig. 5a). The glacier speeds up by 40% during
the fast retreat, but slows down and flows only 5—10% faster at its
new stable position compared to before retreat (Fig. 5b).

In our sensitivity experiments with a higher submarine melt
rate of 200m a’! (Fig. 6), comparable to present-day Jakobshavn
Isbrae in Greenland (Motyka et al., 2011), retreat proceeds past the
second sill in Boknafjorden (at km 55). Counter to canonical marine
ice sheet instability theory (Weertman, 1974), retreat does not
accelerate over the retrograde slope around km 55—65. This part of
the bed coincides with the narrow entrance (bottleneck) to the
inland Nedstrandsfjorden (Fig. 4). Retreat and flow accelerate again
at the end of the overdeepened bed (at km 70) and up the prograde
bed towards km 80. Here, the glacier stabilises with a steep surface
just upstream of the grounding line. The steady-state velocities
close to the front vary by a factor of three over less than 10 km, in
stark contrast to the dynamics of the flatter initial surface topog-
raphy at 18 ka (Fig. 6).

Fig. 7a shows the 18 ka and perturbed steady-state grounding
lines for experiments with our reference and perturbed melt rates,
20 and 100 m a’!, respectively. There is little difference between
grounding lines associated with 100 and the more extreme 200 m
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a’! melt rate. The exception is Boknafjorden, where the grounding
line is dislodged from a sill located in a lateral constriction of the
fjord, and thereby migrates into the inland Nedstrandsfjorden, as
shown along its flowline in Fig. 6.

5.3. Surface mass balance: a slow trigger and long-term driver

In our second set of sensitivity experiments, we raise the ELA
relative to the 18 ka state, as described in Sect. 4.2. Here we describe
the 300 m ELA rise. To put this forcing in perspective, the air tem-
perature following the Younger Dryas cold reversal (See Sect. 5.4 for
more details) may have increased by 4—5°C in southern Norway
(Birks et al.,, 2013), accompanied with ELA increases of up to
300—-500 m (Lie et al., 2003b; Mangerud et al., 2013, 2016).

As with the ocean forcing, the model shows a spatially variable
response to the regionally uniform ELA increase of 300 m (Fig. 7b).
This imposed step increase of the ELA corresponds to an

instantaneous inland migration of the ELA by c. 30—40km,
depending on the topographic setting. Retreat due to atmospheric
warming and ELA rise is more extensive than the response to ocean
warming and enhanced submarine melt, particularly for land-
based ice. The flat Jeren area in the south and the dynamic
Boknafjorden ice stream experience the most extensive retreat
(Fig. 7b). Most of the margin in this region is on the verge of
transitioning from marine-to land-terminating ice in response to
the ELA change.

Ice in the central fjords of our domain (Bemla-Hardangerfjor-
den, Selbjernsfjorden, Korsfjorden) retreat 20—25km inland of
their 18 ka margins. Retreat is more modest in the central fjords
than in the nearby Bergen area to the north. This results in a
complex ice sheet margin, where uplands generally become ice-
free first. In contrast, marine-terminating glaciers survive, fed by
upstream ice discharge and pinned by topography in an otherwise
too warm climate for land-based ice to persist. Conversely, the
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marine based Boknafjorden ice stream retreats further inland than
the nearby land based ice.

We find that from the 18 ka state, a warmer atmosphere with
elevated ELA (Fig. 7b) causes substantially more ice volume loss
than our most extreme ocean warming with 200 m a™! submarine
melt rates (Fig. 7a). As an example, raising the ELA by 300 m in-
creases the surface melt and ice discharge by a factor of two.

A summary of the experiments starting from the 18 ka state
employing a range of ELA and submarine melt rates is shown in
Fig. 8. However, a fair comparison between magnitudes of ELA
changes and submarine melt rates is not straightforward. For small
changes of the ELA, more ice is retained in the fjords and a warmer
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Fig. 8. Loss of volume above flotation in response to changes in submarine melt rate
and ELA, with the 18 ka ice sheet as initial conditions. Black dots represent individual
model experiments. For reference, the Younger Dryas and present-day ELA are esti-
mated to be ~500m and ~1000 m above the ELA at 18 ka, respectively (Lie et al.,
2003a; b; Andreassen et al., 2012; Mangerud et al., 2016).

ocean is indeed important. For example, a 100 m ELA increase
combined with five times higher submarine melt rates yields 40%
more mass loss than the ELA increase alone. Note that submarine
melt rates are an order of magnitude higher than surface melt rates
(cf. Sect. 3.3 and 4.2), yet submarine melt affects a significantly
smaller area than does the surface melt across the ablation area. For
larger ELA changes, much of the margin becomes land-terminating
(Fig. 7b). Beyond this point (an ELA increase of c. 300 m), surface
mass balance almost completely determines the amount of mass
lost (Fig. 8).

5.4. Simulated deglaciation of western Norway

In the previous sections, the sensitivity experiments employ
constant perturbations starting from a fixed 18 ka climate. In
contrast, now we run the model with time-varying climate forcing
approximating the deglaciation from 18 to 11 ka (Sect. 4.3),
including a time-varying ELA and submarine melt (Fig. 9a). We are
thus in a position to compare our model results with independent
empirical evidence (Fig. 10). Note, that the submarine melt rate is
scaled to the ELA, as described in Sect. 3.4 (Eq. (7)).

For the deglaciation 18—11 ka, our model results suggests that
the Boknafjorden and Jeren areas to the south are the most sen-
sitive to changes in climate. Consistent with reconstructions and
our sensitivity experiments outlined in Sect. 5.2 and 5.3, this is
where marine-based ice retreats first, progressing into the wide,
deep trough inland of the stabilising shallow sill between the
islands Bokn and Kvitsay (Fig. 10a).

Except for the detailed reconstructed Younger Dryas margin, our
spatially continuous model history makes it possible to examine
the ice margin in more detail than in the reconstructions (Fig. 2; red
lines in Fig. 10). The modelled ice margin for the warm Bolling-
Allergd period c. 14.8—12.7 ka BP is in good agreement with re-
constructions (Fig. 10b and c). An exception is the retreat of the
Hardangerfjorden glacier in the Allergd, which we are not able to
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capture. Retreat of this outlet glacier is also documented for the
early Holocene (e.g. Mangerud et al., 2013), while the model glacier
front is still located close to the Younger Dryas position (Fig. 10d) at
the end of our simulation at 11 ka (not shown here). We discuss this
mismatch in Sect 6.3.

Marine-based fronts generally lag retreat on land, consistent
with our sensitivity experiments in Sect. 5.3. This is particularly
clear during the Belling-Allergd (Fig. 10b and c) and the Younger
Dryas (Fig. 10d), resulting in an ice margin with marine-based
outlet glaciers chiselled in between nearby ice-free mountains.

For the Younger Dryas cold reversal, the modelled margin is
largely consistent with the reconstructions, which for this time
period are highly precise. There is a small mismatch in the southern
part of the model domain, likely due to the influence of the nearby
domain boundary. We also underestimate the well-documented
advance in the north (Mangerud et al., 2016). However, overall
the agreement between the model and the reconstructions is
excellent for the Younger Dryas.

We end our simulation in the early Holocene (11 ka). At this
time, the model fits well with reconstructions in the south, while
ice margin retreat in the north is underestimated (not shown here).

Overall, we find that temporally variable ocean forcing has a
minor effect on long-term mass loss over the course of the degla-
ciation in south-western Norway (Fig. 9). Differences between
model experiments with and without variable oceanic melt only
causes a difference of 4% in mass loss during the Younger Dryas
(Fig. 9b).

6. Discussion
6.1. Atmospheric warming drives deglaciation

Our sensitivity experiments and 18—11 ka BP simulations sug-
gest that the deglaciation of western Norway was mainly driven by
atmospheric warming, with little long-term influence by the ocean.
The subdued importance of the ocean can be explained by a com-
bination of small long-term upstream effects of submarine melt,
and marine-based fronts becoming land-terminating. In addition,
increased surface ablation leads to surface thinning and thereby
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less ice supplied to marine-terminating fronts. Since grounding line
stability depends on the upstream flux to the grounding line, and
the water depth at the grounding line (e.g. Schoof, 2007), enhanced
surface ablation causes 'grounding line starvation’ and further
retreat up the fjords.

Ocean-induced melt affects only a fraction of the area that is
affected by surface melt, as mentioned in Sect. 5.3. Sustained ice
sheet retreat must have required large, persistent changes in sur-
face mass balance. This is supported by models and reconstructions
of the Laurentide Ice Sheet, where surface melt rather than dy-
namic discharge has been suggested to control ice stream activity
and ice sheet mass balance (Carlson et al., 2009; Ullman et al., 2015;
Stokes et al., 2016). However, this comparison is complicated by the
different topographic settings, since Laurentide ice streams were
active over more subdued topography than the fjord landscape of
western Norway. Western Norway is more comparable to the fjord
landscapes of Greenland and the Antarctic Peninsula.

In Greenland, recent dynamic retreat and acceleration is
thought to have been triggered at the ice-ocean boundary (Holland
et al., 2008; Murray et al., 2010), in addition to coupling between
increased surface ablation and more vigorous submarine melt
(Straneo and Heimbach, 2013). Similarly, ocean warming may have
triggered initial retreat in the early-to middle part of the deglaci-
ation in western Norway. For example, foraminifera-based marine
reconstructions suggest up to 6 °C change in SSTs in the Norwegian
Sea entering the Belling-Allergd warm period (Eldevik et al., 2014;
Dokken et al., 2015). At this time, both our model simulations and
ice marginal reconstructions suggest a widespread retreat.

Our simulated ocean-triggered retreat and resulting initial dy-
namic surface thinning in western Norway support the hypothesis
that recent observed retreat of marine-terminating glaciers in
Greenland was triggered by the ocean. Further, our results are
consistent with the inference that the ocean will continue to exert
control on Greenland marginal mass loss over the next few de-
cades. However, based on our experiments, we expect that wide-
spread retreat and substantial deglaciation of Greenland on time
scales beyond a few decades will be driven primarily by atmo-
spheric warming and surface melt.

In reality, higher surface melt leads to increased runoff, sub-
glacial discharge and increased buoyancy driven oceanic melt at the
ice-ocean interface (Slater et al., 2016). As a consequence, surface
mass balance is likely to dominate on long timescales, as it also
paces the mass loss at the ocean boundary. This is not explicitly
resolved in our model: instead, it is implicitly accounted for by
scaling the submarine melt to changes in the ELA (cf. Sect. 3.4).

Over the course of deglaciation, calculation of individual ice
sheet-wide fluxes shows that rates of mass loss from surface and
submarine melt are comparable in magnitude during the warm
periods (Bolling-Allered and Holocene), while ice discharge pro-
vides the largest contribution to the total rate of ice sheet mass loss
(not shown here). The results also show that the submarine melt
dominates over surface melt in the cold periods with extended
marine terminating margins (early deglacial and Younger Dryas),
with surface melt increasing in the Holocene, as the ice sheet
margins retreat. Eventually, surface melt overcomes submarine
melt as the ice becomes land terminating.

This behaviour is expected, as submarine melt rate in the model
is scaled to the ELA forcing (cf. Eq. (7)). In other words, given no
change in the floating area, mass loss from submarine melt scales
directly with the imposed ELA changes (surface melt). However, the
floating area of ice is not fixed: it changes as a function of grounding
line dynamics and buttressing. As a consequence, the mass loss
from submarine melt is highly dependent on the total are of
floating ice (cf. Fig. 9b). Given that grounding line dynamics and
buttressing depend on topographic changes along the fjords

(including deepening/shoaling of the bed, widening/narrowing of
the trough walls), the fjord topography strongly influences the
magnitude of mass loss from submarine melt.

In a warming climate, sea-level rise may act as a positive feed-
back for glaciers close to flotation, rendering glaciers terminating in
deeper water vulnerable, potentially causing more vigorous calving
and retreat (e.g. Brown et al., 1982; Warren, 1992). This argument
can be ruled out for the deglaciation of the western Scandinavian
Ice Sheet, since relative sea level was falling along the coast of
western Norway (Lohne et al., 2007; Lunnan, 2016).

We find that the Boknafjorden ice stream and the flat Jeren area
was the most sensitive sector in western Norway, consistent with
reconstructions of early deglaciation in this region. The deep, wide
trough in Boknafjorden makes it particularly vulnerable to unstable
grounding line retreat (e.g. Schoof, 2007; Jamieson et al., 2012;
Akesson et al., 2018), while the low-lying Jaren region is deprived
from the supply of upstream ice in our simulations, making it
highly sensitive to increased surface melt. Our results suggest that
the fjords act to channel ice from upstream accumulation areas
towards otherwise ice-free coastal regions. Upstream ice discharge
is the main control of long-term retreat, rather than retreat being
dominated by warm ocean water at the terminus. An efficient
resupply of ice is not possible for Jeren, since this region is not fed
by any fjords or upstream valleys, and is ~70—90 km away from
large accumulation areas located in the vast interior mountain
plateau. In the central and northern parts of western Norway, this
mountain plateau extends closer to the coast (Mangerud et al., 2011,
p. 291) and transitions into deep valleys and fjords over distances of
~5-30 km (Fig. 2).

To summarise, with increased surface melt, our simulations
suggest that high mountain areas along the coast become ice-free
first, while marine-terminating glaciers in fjords tend to survive.
This pattern is consistent with contemporary changes in Greenland,
where outlet glaciers in fjords persist even when exposed to
extensive melt because they are efficiently fed by large accumula-
tion areas upstream. In contrast, dynamically stagnant ice on up-
lands are more vulnerable to surface melt.

6.2. Retreat and readvance modulated by topography

The model simulations exhibit an excellent fit with the recon-
structed marginal positions for the Younger Dryas (Fig. 10d). This
agreement is rather remarkable considering our simplified repre-
sentation of surface mass balance, ice dynamics, ocean forcing and
temporally invariant basal friction. Despite these simplifications,
the model is close to the empirically well-documented ice sheet
margin. We therefore suggest that the role of subglacial hydrology
and ice-ocean interactions are not critical in providing a first-order
picture of long-term ice sheet evolution and sensitivity. We also
note that the modelled ice sheet margin at this time is largely land-
based, incised by a few marine-terminating glaciers in deep fjords.

Ample evidence support the YD as a major climatic event
involving both the atmosphere and the ocean (e.g. Bakke et al,
2009; Eldevik et al., 2014), and that the large-scale readvance
during the YD in western Norway was driven by a change in
climate. Nevertheless, the excellent fit to the reconstructed YD
margin, given the many limitations of our model and forcing, leads
us to hypothesise that the YD margin positions were strongly
modulated by the local topography.

In addition to the YD, our simulations suggest that movements
of the ice sheet margin in western Norway were heavily influenced
by geometry also between 18 ka and the Bglling period
commencing 14.8 ka BP. Strong topographic controls of ice stream
and outlet glacier retreat have been found elsewhere, including in
Greenland (Hogan et al.,, 2016), Scandinavia (Mangerud, 1980;
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Mangerud et al., 2016), Antarctic Peninsula (Jamieson et al., 2012,
2014), Patagonia (Warren, 1994), and Alaska (Mercer, 1961), though
none of these include a high-resolution model of grounding line
dynamics allowing for comparison across glaciers along the ice
sheet margin.

Because of their strong dependency on topography, individual
marine-terminating glaciers are questionable climate indicators
(Mann, 1986; Post et al., 2011). Our asynchronous, simulated retreat
during deglaciation in western Norway supports this idea, and is
also consistent with the highly variable observed retreat for
Greenland outlet glaciers (e.g. Moon and Joughin, 2008; Hill et al.,
2017). In Greenland, fjord geometry has been suggested as key to
both the stability of glacier fronts (Morlighem et al., 2016), and the
sensitivity to submarine melt, surface melt and subglacial discharge
(Bartholomaus et al., 2016; Motyka et al., 2017), as well as the
extent of upstream thinning following terminus retreat (Felikson
et al.,, 2017). Studying the detailed impact of each of these factors
on paleo-time scales remains a focus for future work.

Our findings, and the growing amount of evidence for Green-
land's outlet glaciers, suggest that present-day changes to glaciers
include geometric influences that may be overlooked, or worse,
falsely attributed to external forcing. This reasoning does not
contradict marine-terminating glaciers as vulnerable to a warming
climate, but individual glacier behaviour is not a sufficient basis to
infer regional patterns. Given that stable positions are largely
determined by the underlying topography, we may also turn the
problem around and seek to estimate stable (moraine) positions in
the past and future by studying the (three-dimensional) bedrock
topography.

To the authors' knowledge, this is the first study to finely resolve
the deglaciation of multiple fjords over a large coastal region. The
experiments presented here are focused on south-west Norway,
but are important for our understanding of other regions with past
or present marine-terminating glaciers, including Greenland,
Alaska, Patagonia, Svalbard, and the Antarctic Peninsula. Our sim-
ulations demonstrate a new avenue for high-resolution, continuous
paleoclimate model studies at spatial scales approaching those for
which geological evidence is collected.

6.3. Model limitations

We use the Shelfy Stream Approximation (SSA) to simulate ice
flow. This approximation neglects vertical shear and is therefore
suitable in areas of fast flow, such as marine-terminating glaciers
and ice shelves. However, SSA is less accurate in the interior of ice
sheets where vertical shear dominates. Thus, we expect that our
model underestimates flow from the interior, giving a slightly too
thick ice near the ice divide. However, 2D SSA has been shown to
capture ice flow even in regimes where its applicability should be
limited (Larour et al., 2012). In addition, we expect that uncertainty
in the surface mass balance will be more important than differ-
ences due to approximations in the representation of ice flow.

Neither in the Allergd period (Fig. 10c), nor in the early Holocene
(not shown) are we able to capture the documented retreat of the
Hardangerfjorden glacier. This may be because we do not include
calving in our model, as explained in Sect. 3.1. Including a calving
law is therefore a priority for future work.

In the north of the domain, we underestimate the ice sheet
retreat following the Younger Dryas. At this time, the margins in
this region are mostly land-based. This suggests that we may un-
derestimate surface ablation, or that the simulated Younger Dryas
ice sheet is too thick and therefore able to persist during the early
Holocene.

Glacial isostatic adjustment (GIA) is not included in our simu-
lations. Shoreline diagrams indicate a postglacial emergence of

~100 m in the inner Hardangerfjorden area (Mangerud et al., 2016),
decreasing towards the coast. This may lead to the model over-
estimating the surface elevation of ice, in particular for the interior.
However, uplift has been minor along the coast due to the smaller
ice load. Therefore, we expect that our exclusion of GIA has little
impact on our modelled grounding line dynamics.

We do not model sediment dynamics, hydrology or thermal
regime explicitly, due to their unconstrained nature, and to keep
computational needs down. However, we expect that temperate
basal conditions prevailed in the fjords throughout the deglacia-
tion. This is supported by numerous glacial striae, p-forms and ice-
front deposits consisting of glaciofluvial sediments (e.g. Hamborg
and Mangerud, 1981; Sollid and Serbel, 1994; Mangerud et al,,
2011; Szele, 2017). Sediment cover is sparse at present, and we do
not expect that sediment thickness varied considerably during
deglaciation. However, we acknowledge that our parameterization
of basal motion (Sect. 3.2) is simple, and future experimental work
will elaborate on the effects of different parameterizations. Our
results also suggest that the details of these processes may not be
required when estimating ice sheet sensitivity to a first-order (see
Sect. 6.2).

Regarding the ocean forcing, we refrain from adding additional
parameters and keep submarine melt rates depth-independent.
Observations and models suggest that melt rates vary with depth
with a maximum at a given depth above the grounding line
(Jenkins, 2011). In addition, undercutting by warm fjord water may
influence calving rates (O'Leary and Christoffersen, 2013; Rignot
et al.,, 2015; Benn et al., 2017). As we exclude calving dynamics in
our simulations, we may somewhat underestimate the sensitivity
of the model to the ocean forcing. However, we do not expect this to
change our main conclusions.

While we do not include explicit calving in the model, subma-
rine melt is applied to the floating ice and modulates the length and
thickness of any floating tongues present. In this respect, the
imposed ocean forcing implicitly acts as a variable calving rate. The
ocean forcing also affects the upstream ice by changing the but-
tressing of the floating tongue. This has been shown to stabilise
grounding lines located in otherwise 'unstable’ topographic set-
tings, such as retrograde (upstream deepening) beds and widening
troughs (Gudmundsson et al., 2012; Gudmundsson, 2013; Schoof
et al., 2017; Akesson et al., 2018). We expect that the additional
buttressing associated with the neglected explicit calving renders a
slightly delayed and subdued response of marine-terminating parts
of the ice sheet margin in our model. We note that for grounded
termini, without floating tongues, the submarine melt applied in
the model would have no impact. This is not strictly consistent with
observations of grounded marine-terminating glaciers in
Greenland.

6.4. Implications for past and future ice sheet stability

Our experiments emphasise that warm ocean water is a selective
trigger for glacier retreat, and that basal sills and fjord constrictions
may delay or even prevent continued retreat. However, once trig-
gered, retreat and thinning may be rapid, since geometric features
lead to glaciers responding out-of-sync with their external forcing,
as manifested by retreat rates higher than 800m a™' for the
Boknafjorden ice stream in our sensitivity experiments (Fig. 5).
Such short-lived behaviour will likely be missed and in-
terpretations biased accordingly in low-resolution geological evi-
dence, or worse, if evidence is overridden and destroyed by an
advancing ice sheet. This highlights the advantages of using a
detailed numerical ice sheet model together with geological data to
study long-term changes.

The behaviour found in our study corroborates recent
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observations of accelerated yet spatially variable Greenland outlet
glacier retreat over the last two decades (Moon and Joughin, 2008;
Howat and Eddy, 2011; Straneo and Heimbach, 2013). However, fast
retreat is not likely to be sustained in the long-term, as illustrated
by our modelled slowdown and stabilisation of the Boknafjorden
ice stream at a new basal pinning point after 30—40 years (Fig. 5).
Similarly, decadal-scale stabilisation on basal pinning points has
been found in ocean-forced experiments focusing on the sensitivity
of Greenland outlet glaciers to future warming (Morlighem et al.,
2016; Choi et al., 2017).

Our results suggest that the ocean is a potential trigger for
glacier retreat, and can dominate decadal-scale mass loss. However,
for large-scale retreat over multiple centuries to millennia the
surface mass balance dominates. In other words, ice-ocean in-
teractions and grounding line dynamics can control the short-term
response of outlet glaciers, while surface mass balance controls the
long-term ice sheet response. This result has important implica-
tions for the future of the Greenland and East Antarctic Ice Sheets,
as well as for paleo-ice sheets. These ice sheets will, to a varying
extent, all transition from marine-to land-terminating ice sheets,
similar to our modelled history of the deglaciation of the western
Scandinavian Ice Sheet. Note, that for regions with widespread
marine-terminating margins, the ocean has a strong influence. For
example, during times in the past when the Greenland Ice Sheet
extended to the continental shelf, we expect ice-ocean interactions
to have been the major drivers of ice sheet retreat. Similarly, West
Antarctica rests on a marine-based bed extending far inland
(Fretwell et al., 2013), and is expected to be vulnerable to warming
ocean conditions for a significantly longer period of time
(Hillenbrand et al., 2017).

7. Conclusion

We have used a high resolution two-dimensional ice sheet
model with detailed grounding line dynamics and simplified
physics and climatology to study deglaciation of the western
Scandinavian Ice Sheet, and its sensitivity to ocean and atmosphere
forcing.

Our experiments suggest that the ocean is a potent yet selective
trigger of decadal scale grounding line retreat for the marine-
terminating margins of the ice sheet covering western Norway. In
contrast, we find that longer term mass loss over the course of the
deglaciation of western Norway was dominated by surface melt,
with the ocean playing a minor role. Once a retreat is triggered, the
simulated extent and rate of retreat is highly dependent on the
presence of sills and lateral constrictions in the fjords.

In south-western Norway, the Boknafjorden ice stream and the
Jeren area to the south are the most sensitive to climate change.
Boknafjorden's deep, wide trough makes it geometrically unstable
and more vulnerable to warm subsurface waters, resulting in a
transient rapid grounding line retreat of up to 800 m a. The flat
Jaeren area lacks upstream supply of ice, and is therefore highly
sensitive to increased surface melt.

The details of our modelled ice sheet margins are heavily
influenced by topography. This is particularly important for the
widespread readvance during the Younger Dryas cold-reversal c.
12.7—-11.6 ka BP. We reproduce the reconstructed Younger Dryas
margin with excellent detail, despite our simple forcing and model
physics. When estimating first-order ice sheet sensitivity, we
therefore suggest that the details of basal motion and ice-ocean
interactions are not critical, and that individual outlet glaciers
may respond out-of-phase with ambient climate forcing. However,
high model resolution is needed to capture topographic effects and
grounding line migration accurately.

Our findings imply that ice-ocean interactions and grounding

line dynamics are fundamental to short-term ice sheet mass loss.
These are the likely controls of decadal to centennial scale re-
sponses of outlet glaciers and require high-resolution representa-
tion in models. For long-term past and future changes on
centennial to millennial scales, our experiments suggest that at-
mospheric changes are the main drivers of mass loss and resulting
sea level rise.
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