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does not currently exist. We propose a new global terrestrial sink catchment (GTSC) database that delineates
the distribution of high-resolution global river networks in relation to mapped modern terrestrial sinks.

gﬁ?{fﬁt model The results show a distinct set of characteristics defining the morphology, climate, lithology and sediment dis-
Terrestrial sink charge of source catchments contributing to terrestrial sinks by tectonic regime. Foreland, intracratonic, exten-
Source-to-sink sional and strike-slip tectonic regimes are characterized by small, numerous, densely spaced and wide source
Sediment routing systems catchments where the largest source catchment contributes on average 50%, 43%, 36% and 36%, respectively, of

the total suspended sediment load. Forearc and passive margin tectonic regimes are characterized by few,
large source catchments where the largest source catchment contributes on average 64% and 63% of the total
suspended sediment load. In contrast to forearc and passive margin settings, foreland, intracratonic, extensional
and strike-slip settings show source catchments with a range of lithologies and a dominance of seasonal climates,
which will likely increase along-strike variability in sediment discharge to their terrestrial sink.
The variability of along-strike sediment discharge, sediment composition and source-derived perturbations in
sediment discharge to the terrestrial sink will influence the sediments stored and propagation of sediment dis-
charge signals. On geological timescales, marine sedimentary successions and the sediment routing system, likely
represents the characteristics of remobilized terrestrial sink sediments during millennial scale perturbations in
water discharge. The GTSC database provides a valuable resource to further our quantitative understanding on
the role of the terrestrial sink on the broader sediment routing system.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Rivers and their drainage patterns on continental land masses play a
vital role in the hydrological cycle. The hydrological drainage pattern,
known as catchments, distribute water, organize sediment and trans-
port nutrients from source to endorheic (internal) or exorheic (coastal)
sinks. This has wide ranging implications for shaping landscapes, moun-
tain building processes, water-atmosphere interactions, biogeochemical
cycles, ecological and biological influences, water resources and socio-
economic concerns (Vorosmarty et al., 2000a; Syvitski et al., 2005;
Laruelle et al., 2013; Bierkens, 2015). In the past two decades, catch-
ment models depicting hydrological drainage systems have shifted
from isolated regional scale studies to a global and quantitative perspec-
tive to improve the complete closed-system analysis of the cycle
(Vorosmarty et al., 2000a).

From a geomorphological and sedimentological perspective, the
catchment defines the sediment routing system from source, transport
and deposition of siliclastic material, otherwise known as the source-
to-sink system (for a comprehensive review, see Helland-Hansen
et al., 2016). The terrestrial sink or modern terrestrial sedimentary
basin represents areas of Earth's surface that are undergoing subsidence
and creating accommodation space for potential sediment preservation
(Jervey, 1988; Blum and Tornqvist, 2000; Romans et al., 2016). Given
that the sedimentary rock record is a history of only the preserved depo-
sitional record (Miall, 2014), distinguishing modern terrestrial sinks
from their erosional counterpart, and understanding the spatial and
temporal coupling between the two, is an important factor in applying
geomorphological observations of the present to the past (Davidson
et al.,, 2013; Helland-Hansen et al., 2016).

Recently, Nyberg and Howell (2015) aerially described the global ter-
restrial distribution of modern sedimentary basins as including 16% of the
continental land surface. These modern terrestrial sedimentary basins (or
terrestrial sinks) have in recent years been the focus of high-resolution
and freely accessible remotely sensed imagery studies through products
such as Google Earth, allowing a revitalization of global and quantitative
modern geomorphological research. For instance, Hartley et al. (2010)
and Weissmann et al. (2010) have documented that fluvial systems
within the bounds of modern terrestrial sinks are dominated by a distinct
distributive fluvial characteristics that have important paleogeographical
implications for ancient sedimentary successions (Davidson et al., 2013).
Despite the importance of the terrestrial sink on our geomorphological
understanding of the sedimentary record, its relation to the global drain-
age pattern of rivers has previously not been established.

Vorosmarty et al. (2000a) constructed a global digitized topological
river network representing drainage patterns of the non-glaciated

continental landmass highlighting stream order contributions to the
oceans at a 30-arc minute resolution. Their classification subdivided
catchments based on continents, endorheic and exorheic drainage ba-
sins and quantified geometric attributes of river segment order, river
length and catchment area. The river network delineation of
Voérosmarty et al. (2000a) has played a pivotal role in numerous hydro-
logical water balance, sediment budget models and land-atmosphere
studies (Vorésmarty et al., 2000b; Syvitski et al., 2005; Syvitski and
Milliman, 2007; Wisser et al., 2010; Diirr et al., 2011). D6ll and Lehner
(2002) suggested a new global 30-arc minute drainage direction map
for the delineation of catchments, and more recently HydroSHEDS
(Lehner et al., 2008) provides high-resolution catchments based on im-
proved digital elevation models (DEM) at 3-arc second resolution
within 4-60° latitude. In addition, procedures to delineate river net-
works and drainage catchments have continuously improved to derive
more reliable hydrological models (e.g., Wisser et al., 2010; Getirana
et al., 2012; Bierkens, 2015). However, none of the global based catch-
ment models mentioned above delineates the distribution of rivers to
terrestrial sinks.

The aim of this paper is to introduce a new digital catchment data-
base depicting the drainage patterns of rivers to global terrestrial
sinks. We describe the methodology and summarize the global tectonic,
climatic, geometrical and lithological distributions of the global terres-
trial sink catchment (GTSC) database. Finally, we discuss the implica-
tions of the results on sediment signal propagation to the terrestrial
sink and its influence on the broader sediment routing system on geo-
logical timescales.

2. Methodology

Here we present the data sources and methodology used to derive
the global terrestrial sink catchment (GTSC) database. The global-
based catchment database defines the drainage patterns to exorheic
(Fig. 1A) and endorheic sinks (Fig. 1C). In this study, we considered an
exorheic catchment as the drainage area of rivers to a coastal body of
water including the alluvial fan and its axial fluvial component. An
endorheic catchment was defined as the drainage area of a river to an
internal sink (i.e., no coastal outlet). Subsequently, sub-catchments
were defined within each exorheic/endorheic catchment (Fig. 1B and
D) to represent the distribution of rivers in relation to modern terrestrial
sinks (Fig. 2).

Terrestrial sinks, otherwise known as terrestrial sedimentary basins,
reflect a low-lying region that has undergone subsidence and created
accommodation space for sediment accumulation during the
Quaternary (Nyberg and Howell, 2015). The region represents modern
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Fig. 1. Delineation of terrestrial sink catchments. (A) shows the delineation of an exorheic catchment by calculating the cumulative upstream contribution from its marine sink. (B) shows
sub-catchments within the larger exorheic catchment representing the cumulative upstream contribution from each locality where the river network drains into the terrestrial sink.
(C) shows the delineation of an endorheic catchment by calculating the cumulative upstream contribution from an internal drainage river network. (D) shows sub-catchments within
the larger endorheic catchment representing the cumulative upstream contribution from each locality where the river network drains into the terrestrial sink. River length, relief,
width, sediment discharge, area, lithology, climate and tectonics are identified for each catchment or source catchment.

terrestrial sedimentary basins with long-term (>10° yr) sediment ag-
gradation including both alluvial fan and fluvial components that have
preservation potential. This excludes, for example, large portions of
the Canadian Shield and Siberian Platform that are in present-day iso-
static rebound since the last glacial maximum. Exorheic catchments
(i.e., externally draining systems) may or may not include a terrestrial
sink region if the river drains through a terrestrial sedimentary

0

basin (e.g., Figs. 1A-B, 3A-C). Endorheic catchments (i.e., internally
draining systems) often terminate in the region of a terrestrial sink
(e.g., Figs. 1D and 3D) but also include short-lived endorheic catchments
without long-term terrestrial sink preservation.

Geometric attributes, lithology, total suspended sediment discharge,
tectonic regime and climate were classified for each catchment and sub-
catchment region (Fig. 1). It is important to note that the current
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Fig. 2. Global distribution of rivers to terrestrial sinks. The map shows the Global Terrestrial Sink Catchment (GTSC) database depicting rivers contributing to terrestrial sinks as defined by

Nyberg and Howell (2015). The map is shown with a Robinson projection.
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Fig. 3. Examples of the Global Terrestrial Sink Catchment (GTSC) database. The figure shows the contributing source catchments to the terrestrial sink for (A) the exorheic passive margin
Mississippi catchment; (B) the exorheic foreland Ganges/Brahmaputra catchment; (C) the exorheic forearc Andean catchment and (D) the endorheic strike-slip/extensional Mongolian

catchments. See Fig. 2 for location. Maps are a Cylindrical Equal Area projection.

database does not consider any hydrological groundwater connection
or the larger drainage basin area that may merge during flood episodes
or sea-level fluctuations.

2.1. Global catchments

To define global catchments, a consistent hydrologically conditioned
digital elevation model (DEM) was created. HydroSHEDS provides a
globally conditioned DEM between 60°N and 60°S at a 15-arc second
resolution based on SRTM data. SRTM v 4.1 DEM has a vertical resolu-
tion accuracy within <16 m (Reuter et al., 2007; Lehner et al., 2008).
While a higher resolution 3-arc second SRTM DEM product exists, the
chosen resolution reflects the resolution available for DEMs at higher
latitudes (>60°N). To supplement the dataset, a 15-arc second breakline
emphasis GMTED2010 was used between 40°N and 90°N that is based
on a resampled method preserving drainage ridges. A 20° overlap en-
sures a complete coverage of catchment drainage patterns to Arctic
coastlines. GMTED2010 has root mean squared vertical error of
—1.01 m (£31.24 m; Danielson and Gesch, 2011). Antarctica and
Greenland were excluded from the analyses given that these areas are
predominately ice-covered, which is also consistent with the coverage
of global terrestrial sedimentary basins used in this study (Nyberg and
Howell, 2015). The GMTED2010 DEM was conditioned by removing
small internally draining sinks and/or barriers that are within 10 m
along the drainage profile.

The flow direction was calculated for each DEM model by measuring
elevation change within a 3 by 3 matrix window. The flow direction can
subsequently be used to calculate the cumulative upstream contribut-
ing area for each grid cell as a flow accumulation parameter. These are
standard geographical information system (GIS) tools that were exe-
cuted within ArcGIS (ESRI, 2017). A cumulative 250 grid cell flow accu-
mulation was used as a threshold to define a global rasterized river
network. For each set of river networks, the corresponding flow accu-
mulation raster was extracted and analyzed for its highest cumulative

flow component. This highest flow accumulation grid cell within each
river network cluster defined its sink. This ensured that the sink was
properly identified, even in endorheic catchments where its sink local-
ity can occur along a river segment (e.g., Fig. 1C). The resulting product
was a global coverage of endorheic and exorheic sinks.

The area upstream of the sink defined the catchment area (Fig. 1) as
vectorized polygons. Finally, overlap between the two datasets were
handled by removing area from the GMTED2010 catchment delinea-
tions using the higher DEM resolution and accuracy of the SRTM catch-
ment delineations. A global river network product was subsequently
merged based on the relevant DEM model that was used in its global
catchment delineation.

2.2. Terrestrial sink catchments

The entry and exit localities of the global river network as it flows
into and out of the terrestrial sink area defined by Nyberg and Howell
(2015) was achieved by intersecting the two products to create a set
of coordinates. This highlightd both the drainage patterns to, as well
as the internal drainage patterns of, the terrestrial sink region
(e.g., Fig. 1). Duplicate sink coordinates in the terrestrial sink dataset
were removed that were consistent with the exorheic/endorheic sink
dataset. The terrestrial, exorheic and endorheic sinks define a global
dataset of sinks. The resulting information of sink localities was used
to define upstream area of each sink to define a global database of
terrestrial sink catchments (Fig. 2).

Given the large volume of data, sub-catchments were analyzed in
sections based on the global catchment delineation and implemented
into a multiprocessing workflow within the Python programming lan-
guage. This process sectioned catchments on the global scale into their
individual flow direction, flow accumulation, river network and sink
localities components. This significantly improved the feasibility to
process the numerous sub-catchments that may occur within a larger
catchment region in relation to the global terrestrial sinks.
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2.3. Endorheic vs. exorheic catchments

Distinguishing endorheic vs. exorheic catchments was handled by
assigning catchment sinks within 10 km of the shoreline as exorheic,
otherwise they were considered as endorheic catchments. This thresh-
old was chosen because a river network may terminate early on the
floodplain due to the inadequate representation of flow direction by
the DEM delineation. The shoreline definition included the Black Sea
but excluded land-locked water bodies including the Caspian Sea and
Aral Sea. The resulting characterization was manually analyzed by ex-
amining the classification and its catchment sink in relation to global
based imagery to include catchment definitions where a visible coastal
connection was apparent or removed where a visible coastal connection
was not apparent.

Exorheic catchments were furthermore characterized based on
epicontinental seaways or non-epicontinental seaways on narrow
(<75 km) and wide (>75 km) continental shelves based on the classifi-
cation scheme of Nyberg and Howell (2016).

2.4. Geometric attributes

Geometric attributes of length, width, relief, area and minimum
bounding box width and length were attributed to each catchment and
sub-catchment region. Sub-catchments also recorded distance from an
endorheic/exorheic sink. The length of each catchment, sub-catchment
and distance to an endorheic/exorheic sink was achieved by segmenting
the global river network at each vertex and at each terrestrial sink and
treating each segmented river line as a series of start to end coordinates
within a graph network. By assigning each coordinate pair a segment
length and cumulatively measuring the distance from each endorheic or
exorheic coordinate sink, a distance along the river network was obtained
using a modified algorithm of Nyberg et al. (2015). The cumulative river
network distance was used to derive catchment length, sub-catchment
length and sub-catchment distance from the endorheic/exorheic sink.

Due to the irregularity of catchment shape, measuring width was a
problematic and challenging issue. In the current study, the width of
each catchment was determined as twice the maximum distance of
the river segment distance from its catchment boundary. Relief of the
catchment/sub-catchment was defined as its maximum range as mea-
sured from GMTED2010 global digital elevation data. The area of each
catchment and source catchment region was defined by a global cylin-
drical equal area projection coordinate system.

2.5. Discharge

Defining the sediment load of the entire catchment system may be
estimated using the BQART formula (Eq. (1)) as proposed by Syvitski
and Milliman (2007), which explains 96% of 30-yr sediment load varia-
tion in modern rivers:

Qs = 0.0006(1 + 0.09Ag)L(1—Te)EhQ®*3'A*°RT for T2 2 'C (1a)
Qs = 0.0012(1 + 0.09Ag)L(1—Te)EhQ*3' A R for T<2'C (1b)

where Qs is sediment load (MT/yr), Ag is the glacial coverage of the
catchment as a percentage (0-100%), L is the lithology coefficient
between 0.5 and 3, Te is the trapping efficiency as a percentage
(0-100%), Eh is the anthropogenic influence that ranges from 0.3 to 2,
Qis catchment discharge (km?/yr), A is catchment area (km?), R is max-
imum relief (km) and T is the mean basin temperature (°C). The catch-
ment discharge (Q) was determined by:

Q =0.075A°% )

The glacial coverage (Ag) of each catchment was accounted for by
measuring the lithology distribution as defined by the global lithological

map database (GLiM; Hartmann and Moosdorf, 2012). The overall
catchment lithology (L) and anthropogenic influence (Eh) has been
based on the original global maps of Syvitski and Milliman (2007).
The trapping efficiency (Te) of the major global catchments was defined
based on the work by Vorosmarty et al. (2003). Relief (R) was taken by
sampling the 99th percentile range within each catchment based on
global GMTED2010 DEM coverage at a 15-arc second resolution
(Danielson and Gesch, 2011). An averaged compiled dataset of day-
time land surface temperature of 2013 based on the MODIS satellite
(NASA LP DAAC, 2001) was used to define the mean catchment temper-
ature (T).

Sediment discharge of source catchments to the terrestrial sinks was
similarly calculated based on Eq. (1) (Fig. 1B, D) and subsequently ad-
justed based on its relative sediment load to the entire catchment region
(Fig. 1A, C).

2.6. Tectonic regime

Three tectonic classifications are provided in the GTSC database. The
first classification categorizes each internal sub-catchment according to
the tectonic regime of the modern terrestrial sink classification as
defined by Nyberg and Howell (2015), which represents six main tec-
tonic regimes (Ingersoll, 2012): foreland, passive margin, intracratonic,
forearc, extensional or strike-slip. The geographical distribution of these
tectonic regimes is derived from published regional and global scale
stress-maps, neotectonic maps, plate tectonic boundaries and previous
tectonic basin classifications (e.g., Mann and Burke, 1984; Dewey
et al.,, 1986; Watson et al., 1987; Miiller et al., 1992; Zoback, 1992;
Marsaglia, 1995; Decelles and Giles, 1996; Allmendinger et al., 1997;
Honthaas et al., 1998; Bird, 2003; Yi et al., 2003; Yueqiao et al., 2003;
Wang et al., 2006; Cunningham, 2010; Hartley et al., 2010; DeCelles
et al., 2011; Ingersoll, 2012). The second tectonic regime classification
reflects the main tectonic regime of exorheic catchments as it drains
to the shoreline based on the work of Nyberg and Howell (2016). Lastly,
a combined tectonic classification was used that employs the tectonic
regime classification of the terrestrial sinks and the global exorheic tec-
tonic regime classification to create a seamless tectonic classification
scheme of both endorheic and exorheic catchments.

Each catchment was categorized based on either an active or passive
shoreline margin, which reflects a common categorical scheme used in
global geomorphological studies (Semme et al., 2009; Harris et al.,
2014) to separate mixed tectonically influenced systems. For instance,
the Ganges/Brahmaputra represents a foreland tectonic regime but its
delta and shoreline is on a predominately passive margin. In contrast,
a majority of the catchments draining to the Red Sea are passive mar-
gins that occur at the active margin of the Red Sea rift (Harris et al.,
2014).

2.7. Climate

Climate of the catchments was derived based on the K6ppen-Geiger
classification scheme (Kottek, 2006) that classifies climate regions by
the seasonality of precipitation and temperature as captured by vegeta-
tion. The classification defines climate by a first order equatorial, arid,
warm temperate, snow or polar scheme, followed by a second order
precipitation and third order temperature classification (Table 1). Its
implementation within the current dataset was handled by assigning
two classifications based on the largest aerial coverage of the first
order and second order classifications. In addition, the proportion of
aerial overlap of each third order climate classification (e.g., AWh)
within each catchment was recorded as a percentage (0-100%).

2.8. Lithological distribution

Catchment lithology plays an important role in denudation rates
(Palumbo et al., 2009) and thereby an important control on sediment
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Table 1
A summary of first- and second-order climate distributions by percentage area for each tectonic regime in the GTSC database.

Climate Tectonics

First-order climate Second-order climate Extensional Fore-arc Foreland Intra-cratonic Passive margin Strike-slip Subtotal

Equatorial (A) Humid (f) 0.05 0.58 1.71 0.36 2.13 0.02 4.85
Monsoon (m) 0.06 0.09 0.93 0.54 2.14 0.00 3.77
Dry Summer (s) 0.04 0.03 0.01 0.05 0.40 0.02 0.56
Dry Winter (w) 0.79 0.34 1.29 5.28 5.23 0.07 12.99
Subtotal 0.94 1.04 3.94 6.24 9.89 0.11 22.16

Arid (B) Dry Summer (s) 1.10 0.14 222 4.77 347 0.87 12.58
Dry Winter (w) 0.42 0.26 2.87 1133 2.71 0.92 18.50
Subtotal 1.53 0.40 5.09 16.10 6.18 1.79 31.09

Warm Humid (f) 0.20 0.37 2.55 227 333 0.10 8.80

Temperate (C) Dry Summer (s) 034 0.39 1.15 0.15 0.53 0.29 2.85
Dry Winter (w) 0.50 0.08 2.38 0.74 0.61 0.09 441
Subtotal 1.04 0.84 6.08 3.16 447 0.47 16.06

Snow (D) Humid (f) 0.37 0.57 3.61 5.75 10.46 0.02 20.78
Dry Summer (s) 0.04 0.09 0.54 0.08 0.01 0.08 0.84
Dry Winter (w) 0.33 0.00 1.92 0.29 0.53 0.55 3.61
Subtotal 0.74 0.66 6.08 6.11 10.99 0.65 25.23

Polar (E) Tundra (T) 0.00 0.00 0.00 0.03 0.01 0.00 0.04
Frost(F) 0.16 0.27 1.77 142 1.10 0.71 5.43
Subtotal 0.16 0.27 1.77 1.46 1.10 0.71 5.47

Total 4.40 3.21 22.95 33.06 32.64 3.73 100.00

discharge (Milliman and Syvitski, 1992; Syvitski and Milliman, 2007).
The global lithological map (GLiM) is a product of 1,235,400 polygons
representing 16 lithological descriptions that define the physical
properties of Earth's land surface. This describes six main lithological
categories according to Hartmann and Moosdorf (2012) as siliclastics
(su, ss, py), carbonate-rich and evaporites (sc, sm, ev), volcanics (va,
vi, vb), plutonics (pa, pi, pb), metamorphics (mt) and other (wb, ig,
nd). Although second and third order classifications are available,
these descriptive attributes of the rock lithology are not exhaustive on
the global scale. The lithology of a catchment was similarly defined to
that of the climate classification with a majority category classification
given to each catchment region. Furthermore, a proportion of each
lithology type within the catchment was given as percentage (0-100%).

3. Results

The GTSC database delineates 69,586 catchments to endorheic and
exorheic sinks and 239,831 sub-catchments representing drainage pat-
terns of the terrestrial sink for the global non-glaciated landmass (Figs. 2
and 3). Of these, 180,737 catchments (75%) are from source catchments
with a surface area of 106 x 10° km? (82%) and 59,094 are then modern
terrestrial sink catchments (25%) with a surface area of 24 x 10® km?
(18%). Of the global non-glaciated land surface, source catchments
drain 71 x 10° km? (67%) to a terrestrial sink.

Below we describe the geographical distribution and proportion of
catchments as endorheic, exorheic, tectonic regime, climate, lithology,
geometric attributes and sediment load.

3.1. Endorheic and exorheic distribution

The global endorheic catchment distribution represents 30
x 10° km? (23%) while the remaining 100 x 10 km? (77%) are exorheic
catchments (Fig. 4). The proportion of endorheic basins differs signifi-
cantly from previous works (e.g., Vorosmarty et al., 2000a at 13%)
with the main differences being attributed to a larger endorheic extent
of the Sahara Desert, southern Patagonia and Australia. Part of this is due
to the higher resolution DEM model used by the HydroSHEDS delinea-
tion (Lehner et al., 2008), which is incorporated in our study and results
in a similar endorheic basin distribution.

Of the 100 x 10° km? exorheic draining land surfaces, 35 x 10° km?
are on epicontinental seaways (36%) with the remaining 65 x 10° km?
(64%) draining to the continental shelf (Fig. 4). Geographically, the
Atlantic Ocean represents the highest proportion of the total exorheic

draining area (~20%), followed by the Indian Ocean (3.2%), the Pacific
Ocean (3.2%) and the Arctic Ocean (<0.1%) (Appendix A).

The largest catchments draining to seas are the Kara Sea (7%), the
Laptev Sea (3.5%), the Beaufort Sea (2.1%), the Arabian Sea (1.8%) and
the East Siberian Sea (1.3%). Furthermore, the Gulf of Mexico (5%), the
Gulf of Guinea (3.7%), the Gulf of St. Lawrence (1.6%), the Persian Gulf
(1.2%) and the Gulf of California (1%) represent a large proportion of
the world's exorheic draining landmass. With the exception of the Arc-
tic Ocean, exorheic catchments draining to oceans generally tend to be
associated with a large terrestrial sink component (Atlantic 12.5%,
Indian 15%, Pacific 5.7% and Arctic < 0.1%). Epicontinental seaways and
gulfs have more varied terrestrial sink contributions (Appendix A).
The plate tectonic configuration at present is a main control on the
endorheic, exorheic and epicontinental seaway distribution (e.g.
Nyberg and Howell, 2016).

3.2. Tectonic distribution

Classifying catchments by their main terrestrial sink tectonic re-
gimes shows a variable influence (Fig. 5). Aerially, 33% of catchments
that drain to terrestrial sinks are intracratonic including significant por-
tions of the African and Australian interior, northern Europe, the
Caspian Sea, central Asia, southern South America and Northwestern
Passages of Canada. Catchments associated with a foreland tectonic re-
gime represent 28% with the majority contributed from the Asian conti-
nental landmass. Passive margins account for 27% of the catchment area
and are concentrated around the shorelines of Africa, South American,
the Atlantic Ocean, the Indian Ocean, and the Gulf of Mexico. Interior
settings comprise 5.7% extensional settings including the Basin and
Range, the United States, the central Andean region, the East African
Rift and Lake Baikal extension, and Russia. Strike-slip catchments
(4.2%) are present in central China and surrounding the Gulf of Califor-
nia region. Only 1.4% of the land surface drains to terrestrial forearc
sinks that predominantly occur around the Pacific Rim margin (Fig. 5).

In contrast, the global exorheic catchments by shoreline tectonic re-
gime (e.g., Nyberg and Howell, 2016) are dominated by passive conti-
nental margins draining 63% of the land surface to a majority of the
coastlines of the Arctic, Atlantic, and Indian oceans. The contributing
areas of intracratonic catchment settings drain 11.5%, including the
Northwestern Passages and the Kara Sea of the Arctic Ocean, the Gulf
of Carpentaria in Australia, the Persian Gulf from Saudi Arabia and sec-
tions of the Yellow Sea in China/Korea. Forearc settings, while contribut-
ing aerially a small portion of terrestrial sinks (Nyberg and Howell,
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2015), contribute ~5% of the land surface area to the shoreline. Lastly,
strike-slip and extensional regimes aerially comprise the least catch-
ment surface area to ocean sinks at 2.8% and 2.2%, respectively.

The combined terrestrial, endorheic and exorheic catchment contri-
bution by tectonic regime is summarized in Figs. 5 and 6. Intracratonic
and passive margins play a most prominent role representing 33%
each of the continental land surface. Foreland settings represent 23%
followed by extensional and strike-slip settings at 4.4% and 3.7%, respec-
tively. Forearc basins represent the least of the world's land surface area
ata mere 3.2%. For the remainder of the article, analyses that refer to the
tectonic classification utilize this terrestrial, endorheic and exorheic tec-
tonic catchment classification.

Global passive and active continental shelf/slope margins represent
76% and 24%, respectively (Fig. 7). Extensional, forearc and strike-slip
tectonic regimes are exclusively of active tectonic margins while
intracratonic settings are exclusively passive. The drainage point of fore-
land tectonic catchments represents a significant proportion of passive
settings at 53%, including parts of the Andean, Brook Range, Himalayan,
Mackenzie, Zagros, Gulf of Thailand, Yellow Sea and interior Central Asia
foreland basin systems. Active foreland margins contribute 47%,
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Fig. 5. Primary tectonic regime of global catchments by area. The proportion of catchments
by area is defined by a tectonic model as terrestrial sinks, exorheic sinks and a combined
tectonic model.

including significant parts of Indonesia and Malaysia, Central Asia, the
Sea of Okhotsk, the Sea of Japan, the Mediterranean and portions of
Alaska and the southern Andean mountain belts. Passive continental
margins are primarily associated with passive oceanic margins (95%)
with a small proportion draining along active ocean margins (5%) in-
cluding the Red and Mediterranean seas.

3.3. Climate distribution

Arid climates are the most aerially extensive (31%) and are found
around the equatorial and mid-latitudes, including Australia, northern
Africa, central Asia, the Middle East and western North America. Source
catchments are however significantly less arid (24%) and are influenced
by seasonal precipitation patterns of either dry summers (11%) or dry
winters (13%; Appendix B). Snow or continental climate patterns repre-
sent the second highest proportion of catchments (25%) and drain
mainly to the Arctic continental shelf, such as the Canadian Shield and
the Siberian platform. Within the source catchment, snow climates are
the most common representing nearly a third of the land surface
(30%) with 25% of that region being fully humid (f), while only 1% and
4% are dry summers and dry winters, respectively (see Appendix B).

Equatorial climates of Central and South America, Australasia and
the Pacific islands represent 22% of the non-glaciated landmass. The
source catchments have an equatorial climate proportion of 23% with
a majority associated with seasonal dry winters conditions (13%)
followed by humid (5%), monsoons (4%) and dry summers (<1%).
Warm temperate regions (16%) are distributed predominately along
mid-latitude regions such as North America, Europe and southern
South America. Within the source catchment, catchments are propor-
tionally very humid (9%) although dry winters (4%) and dry summers
(3%) are significant. Lastly, polar regions represent a small proportion
of global climates (5% globally and <7% of the source catchment) and
are mainly found in high altitude or high latitude regions such as the
Himalayas, the Andes or the Arctic.

Table 1 summarizes the climatic distributions of catchments, which
have been subdivided based on tectonics. The results show that exten-
sional settings are dominated by either a dry winter (w) in equatorial
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and warm temperate climates and by dry summers (s) in arid climates.
Snow climates in extensional tectonic settings are evenly distributed
between humid (f) or dry winters (w). Forearc catchments in equatorial
and snow climates tend be humid, while those in arid or warm temper-
ate settings are more evenly distributed between dry summers and dry
winters (arid) and humid and dry summer (warm temperate) settings.
In foreland settings, humid settings dominate catchments in equatorial,
warm temperate and snow climates followed by a high dry winter cli-
mate contribution. In addition, monsoonal seasonality represents a sig-
nificant proportion of equatorial regions.

Intracratonic regimes of dry winter climates are predominately in
equatorial and arid settings, whereas warm temperate and snow envi-
ronments are largely humid. Passive margins are similarly dominated
by dry winters in equatorial and arid climates, while warm temperate
and snow climates are mainly humid. Furthermore, equatorial climates
of passive margins are documented with monsoonal conditions. Strike-
slip tectonic regimes are the least significant, and are mostly found in
arid and snow climate conditions with dry summers and dry winters.
No discernable trends in the number of climates that influence a catch-
ment and its size can be detected in the current database (Fig. 8).

W Active

% of Total
Catchment Area

Passive

Fig. 7. Proportion of global catchments by area within each tectonic regime that have an
active or passive continental shelf/slope margin.

3.4. Lithology

The global distribution of source catchment lithology by tectonic re-
gime shows a variable contribution to terrestrial sinks (Fig. 9). Exten-
sional and strike-slip tectonic source catchments are the most diverse
lithologically. Extensional settings are composed of the largest volcanic
(va, vb, vi) contribution (17%) of all tectonic regimes, whereas siliclastic
material (su, ss, py) are the least (35%). High carbonate rich/evaporites
(sc, sm, ev) content (18%) followed by plutonics (pa, pi, pb; 8%) and
metamorphics (mt; 12.5%) and other (wb, ig, nd; <1%). Strike-slip
catchments are at present dominated by lithologies of carbonate rich
sources (>50%) while the remaining are siliclastics (28%), volcanics
(10%), plutonics (5%), metamorphics (3.2%) and other (<3%).
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Fig. 8. Number of climate zones by source catchment area. The number of climate zones as
defined by the Képpen-Geiger classification and contributing source catchment size to a
terrestrial sink where the climate represent at least 15% of the total catchment area.
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Intracratonic and passive margin source catchments have a higher
siliclastic and metamorphic content. Passive margins are represented
by siliclastics (63%), metamorphics (15%), carbonates (12%), plutonics

Total source catchment area
> 10,000km?
n =547

Size ' | |

(3%) and volcanics (<2%). Intracratonics are represented by siliclastics
(52%), carbonates (25%), metamorphics (17%), plutonics (3%) and
volcanics (<2%). Foreland settings have a similar high siliclastic content
(50%) with a high carbonate content (33%) and a higher volcanic
proportion (5%) while metamorphics (4%) and plutonics (4%) are both
low. Finally, forearc settings show a high siliclastic (65%), carbonate-
rich (13%), plutonics (7%), volcanic content (5%) and a low metamor-
phic distribution (1%).

Spatially, the lithology of terrestrial sinks source catchments differ as
well (Fig. 10). Passive margins along the Americas, Australia and Europe
contain a high proportion of unconsolidated sediments and siliclastic
sedimentary rocks whereas passive margins on the African continent
contains a higher proportion of metamorphics and a higher volcanic
content on the Indian plate. Foreland settings along the Sunda shelf,
Himalayas and Sea of Okhotsk have a high volcanic influence with less
unconsolidated siliclastic content. Strike-slip (e.g., Gulf of California)
and extensional tectonic regimes (e.g. Basin and Range, East African
rift system) have the highest volcanic content. Finally, intracratonic set-
tings of the interior Australian and African continents demonstrate a
high unconsolidated sediment and siliclastic sedimentary rock content
similar to that of passive margins though a lower proportion of meta-
morphics and volcanics.

3.5. Geometrical characteristics

We describe below the geometrical characteristics of source catch-
ment area, width and relief by tectonic regime for the GTSC dataset.

3.5.1. Catchment area

The number of source catchments decreases logarithmically with
catchment area, though the nature of the relationship differs between
tectonic regimes (Fig. 11). Passive margins show the lowest power
law constant and exponent suggesting a greater proportion of large
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Fig. 10. Geographical distribution of source catchment lithology. Lithology of source catchments draining to a terrestrial sink for the largest drainage source catchments (>10,000 km?). The
size of the pie chart reflects the size of the source catchment drainage area. Lithology classification after the GLiM by Hartmann and Moosdorf, (2012, see Fig. 9).
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source catchments. In comparison, intracratonic, extensional and strike-
slip settings have a low proportion of large source catchments.

Plotting the cumulative percentage of source catchments by source
catchment size for each individual exoheric/enorheic drainage show
comparable power-law relationships by tectonic regime (Fig. 12). This
shows that given the size of a source catchment, the number and size
of source sub-catchments to a particular terrestrial sink can be
estimated.

The size of a catchment is related to its river length draining to its
lowest endorheic or exorheic point (i.e., Fig. 1A) by a power law rela-
tionship (Fig. 13A) following Hack's law (Hack, 1957). A similar rela-
tionship exists between source catchment river length and source
catchment area draining to terrestrial sinks (Fig. 13B), reiterating the
validity of defining source catchment area from river length (and vice
versa, Rigon et al., 1996).

The size of the largest source catchment as a percentage of the entire
catchment area is shown in Fig. 14. The results show that extensional,

foreland, intracratonic and strike-slip tectonic regimes have positive
skewness of 0.63, 0.42, 1.18 and 0.68 and a mean size of 36%, 40%, 27%
and 33%, respectively. Forearc and passive margins have a negative
skewness at —0.37 and —0.56 and a mean size of 62% and 65% of the
total catchment area, respectively.

The number of source catchments that represents at least 1% of the
total source catchment area is shown in the box plots in Fig. 15. The re-
sults show a large variability within, and significant overlap between
tectonic regimes. The fewest source catchments draining to terrestrial
sinks occur in passive margins and forearc settings, with a mean of 6.3
(44.4) and a median of 5 for the passive margins, and a mean of 6.7
(+4.8) and a median of 5 in the forearc settings. Foreland and
intracratonic regimes show means of 9.0 (4+6.1) and 9.6 (+£6.1) and a
median of 7 and 8, respectively. Finally, extensional and strike-slip set-
tings have the largest number of source catchments draining to terres-
trial sinks, with means of 11.6 (£7.0) and 12.5 (+7.3) and a median
of 10 and 11, respectively.
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regimes.

Of those source catchments that drain to a terrestrial sink, the size of
the terrestrial sink in relation to its total catchment area is summarized
in Fig. 16. The results show that passive margins have the smallest
relative terrestrial sink with an average of 14% (+£20.8) of its total catch-
ment area. Forearc settings are represented at 15.6% (+24.7), exten-
sional settings at 26.1% (4-24.7%), foreland settings at 27.1% (£25.1),
strike-slip at 38.2% (421.7) and intracratonic at 44.3% +30.1).

3.5.2. Catchment width

Source catchment width shows a power-law relationship with the
length of its longest river (Fig. 17). The results suggest that smaller
source catchments, that are typical along active tectonic margins (e.g.
Fig. 11), have on average a higher width to length ratio. Intracratonic
settings which are similarly characterized by smaller source catchments
(e.g. Figs. 11 and 14) and are characterized by a higher width to length
ratio. In comparison, passive margins and foreland settings have a lower
width to length ratio that reflect the absolute size of their largest source
catchments.

3.5.3. Relief

The variability of relief amongst the different tectonic regimes for
the distribution of global catchments is summarized by the box plots
in Fig. 18A. Forearc tectonic regimes are characterized by the highest el-
evation of 1.9 km (+£1.3), with foreland at 1.4 km (+1.3), extensional at

1.1 km (£0.75, strike-slip at 0.99 km (+£0.72), passive margins at
0.64 km (40.84) and intracratonic at 0.3 km (40.52). The range of ele-
vation within the sinks by tectonic setting is defined in Fig. 18B. The re-
sults show that extensional and strike-slip settings have the highest
elevation range with a mean of 742 m (£530) and 505 m (+467)
followed by foreland basins with a mean of 346 (+471). Forearc,
intracratonic and passive margins are characterized by low relief with
amean of 198 (4-195), 171 (£168) and 162 (£195), respectively. On
average, the elevation change between the sink and source catchment
is 17.9 times for forearc settings, 8.9 for foreland settings, 7.3 for passive
margins settings, 2.8 for strike-slip settings, 2.6 for intracratonic settings
and 2.4 for extensional settings.

3.6. Sediment load

The influence of lithology, area, relief and temperature on the calcu-
lation of sediment load based on BQART (Eq. (1); Syvitski and Milliman,
2007) show that source catchments account for a majority of sediment
transport across the spectrum of tectonic regimes (Fig. 19). However, an
examination of the maximum total suspended sediment load contribu-
tion from a single source catchment within the larger exorheic/
endorheic catchment (e.g., Fig. 1B) shows variance by tectonic regime
(Fig. 20).
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On average, forearc (64%) and passive (63%) margins have one
source catchment contributing about two-thirds of the total suspended
sediment load (Fig. 20). Foreland settings have a single source catch-
ment contribution to the terrestrial sink of approximately 50%,
while intracratonic settings contribute 43%. The average maximum
contribution from a single source catchment is the least for extensional
and strike-slip source areas (both are 36%). In addition, foreland,
intracratonic, extensional and strike-slip tectonic regimes show a varied
range of maximum contributing sediment load from the main source
catchment. This suggests that numerous source catchments have a po-
tential contribution to the total sediment load of rivers to the oceans
in those tectonic regimes. This, in turn, will influence along-strike vari-
ability of source catchment sediment discharge and sediment composi-
tion in the terrestrial sink (Weltje, 2012).

3.6.1. Sediment load versus climate/tectonics

Table 2 maps the total suspended sediment load by climate. Propor-
tionally within equatorial climates, extensional, forearc, foreland and
passive margins have a high representation of their total global contri-
bution. Extensional and passive margins are mainly characterized by
dry equatorial winter climates. The highest sediment contribution in

forearc and foreland settings is in humid equatorial climates, while pas-
sive margins also have a significant contribution. Monsoonal climates
are important in foreland and passive margin tectonic regions.

Of the arid climates, all tectonic settings make a significant contribu-
tion. Dry winters are most prevalent of all tectonic regimes
(e.g., intracratonic regimes 9.66% vs 2.21%) with the exception of exten-
sional settings where dry summers dominate (0.94% vs 0.51%). Dry win-
ters in forearc and strike-slip tectonic regimes are twice as prevalent as
dry summers. Foreland and passive margin settings have a relatively
even contribution from both dry winters and dry summers.

In warm temperate settings, foreland and passive margins contrib-
ute a significant proportion to the total suspended sediment load. Fore-
land settings tend to be characterized by dry winters (6.96%), whereas
passive margins are in humid regions (3.55%). Extensional and forearc
settings are evenly distributed in humid, dry summer and dry winter
conditions. Snow climates are mainly characterized by either foreland
(2.62%) or passive margin (1.29%) regimes with humid conditions. Fi-
nally, polar climates are primarily characterized by frost conditions in
foreland settings (2.26%) of high altitude regions such as the Himalayas.

4. Discussion

The global distribution of the coupled source catchments and
their terrestrial sinks have implications for a wide range of topics such
as water-atmospheric interactions, biogeochemical cycles, socio-
economic concerns, geomorphological processes and understanding
the controls on the stratigraphic record. In this discussion, we will
focus our attention on the implication of the results from a geomorpho-
logical and sedimentological viewpoint. First, we describe source catch-
ment characteristics by morphology, outlet spacing, lithology and
climate for different tectonic regimes. Second, we describe the influence
of source catchment characteristics on sediment discharge to the terres-
trial sink. Finally, we discuss the implications of the source catchment
influence on the terrestrial sink for sediment signal propagation to the
marine realm on geological timescales (>10* yr) that characterize
source-to-sink systems.

4.1. Source catchment morphology

Catchments with strike-slip tectonic regimes are characterized by a
relatively larger terrestrial sink in comparison to the total catchment
area with numerous wide but small source catchments (Figs. 12,
14-17). Relief of the source area for strike-slip regimes is on average
up to 2.8 times higher than the terrestrial sink (Fig. 18). Extensional set-
tings show a similar set of characteristics but a more varied terrestrial
sink area in comparison to the total catchment area, reflecting a range
in basin maturity (Figs. 14, 16, 20). Extensional settings show a median
of 11 source catchments (Fig. 15), second only to strike-slip tectonics,
and a source catchment relief 2.4 times higher than the terrestrial sink
(Fig. 18). The lower source catchment:terrestrial sink relief ratio of
strike-slip and extensional settings (2.8 and 2.4 times, respectively) re-
flect the higher relief alluvial fans that comprise the terrestrial sink. The
largest contribution of total suspended sediment load from a single
source catchment is relatively low for both tectonic regimes (Fig. 20).

On average, foreland regimes are characterized by slightly fewer
(i.e., median = 7) and narrower source catchments that feed a larger
terrestrial sink with relief 8.9 times greater than the terrestrial sink
(Figs. 12, 14-18). The large absolute size of foreland source catchments
explains the source catchment elongation (Fig. 17) as catchments nar-
row with increasing size due to the limited amount of available space
(Hack, 1957; Rigon et al., 1996). The suspended sediment load derived
from a single source catchment is more varied than extensional and
strike-slip tectonic regimes but remains small (Fig. 20), suggesting
that the total suspended sediment load of the total catchment area is
the contribution from its numerous source catchments. Intracratonic
settings are representative of the largest relative terrestrial sink area
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settings. Based on source catchments with a total suspended sediment load > 1 MT/yr.

but are otherwise similar in characteristics to strike-slip and extensional
settings, with numerous wide and small source catchments (Figs. 12,
14-17). Source catchment:terrestrial sink relief ratio is also similar to
strike-slip and extensional settings at 2.6, although the absolute source
catchment relief is significantly lower (~<500 m; Fig. 18A).

Passive margins and forearc tectonic regimes generally have the
smallest terrestrial sink area relative to the total catchment area
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Fig. 15. Box plots showing the number of source catchments contributing to terrestrial
sinks by tectonic regime. The boxes indicate the 25th and 75th percentiles, the whiskers
show the 10th and 90th percentiles, the square shows the mean, and line shows the
median.

(Fig. 16). The terrestrial sink is fed by a few relatively large and narrow
catchments and the change in relief between the terrestrial sink and
source catchment is significant, on average 17.9 times for forearc set-
tings and 7.3 times for passive margins (Figs. 12, 14-18). The largest
source catchment in forearc settings and passive margins contributes
a majority of the sediment production to their terrestrial sinks
(Fig. 20). However, as peak discharge following a storm event increases
with increasing catchment width (e.g., S6lyom and Tucker, 2004), the
narrower morphology of passive margin and forearc source catchments
will decrease the peak discharge at their terrestrial sinks in comparison
to foreland, intracratonic, extensional or strike-slip settings.

The spacing of source catchments depends on source catchment area
given that there is a limited amount of area for catchments to occupy
along a mountain belt. Considering that source catchment area is related
to river length (Fig. 13B) following Hack's Law (Hack, 1957), the width
of the mountain belt, and thus the maximum river length, controls
catchment spacing (Hovius, 1996; Semme et al., 2013). Hovius (1996)
observed that the spacing of catchments along linear mountain belts
of active orogens is approximately half of the width of the mountain
belt. In this study, the power-law relationship between the cumulative
number of source catchments and source catchment size (Fig. 12) fur-
ther suggests an internal distribution in source catchment sizes and
thus an internal distribution in source catchment spacing. In other
words, there exists a spacing of source catchments at the mountain
belt scale and at smaller internal scales between the larger source catch-
ments. This would be expected considering that smaller source catch-
ments are similarly constrained by the available space between the
larger source catchments.

Interesting, the power-law relationships showing the number of
source catchments and size in Fig. 12 differ between active margins of
strike-slip, extensional and foreland settings versus passive margins
and forearc settings. This implies that passive margins and forearc set-
tings are represented by a proportionally greater number of larger
source catchments, and hence a larger spacing between those source
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catchments in comparison to strike-slip, extensional and foreland set-
tings. This will result in a lower spacing ratio (half width of mountain
belt/source catchment spacing) than the narrow range of 1.91 to 2.23
as observed by Hovius (1996). It is important to note that Hovius
(1996) only mapped source catchments along active linear mountain
belts, whereas the current study considers source catchments across
all tectonic regimes. In addition, the current study relates source catch-
ments to the terrestrial sink, which may not necessarily be situated at
the base of a mountain belt (i.e., passive margins). Source catchment
spacing in relation to the terrestrial sink, however, is important because
it controls the apices of fluvial systems that have preservation potential
(Hovius, 1996; Nyberg and Howell, 2015). The spacing of those source
catchments will influence the architecture of the preserved strati-
graphic record as Owen et al. (2017) noted for a Palaeocene/Eocene dis-
tributary fluvial succession in an intermontane foreland basin of the
Bighorn basin, Wyoming, USA.
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Fig. 17. Power-law relationships between source catchment river length and width. The
power-law relationship show source catchments typically narrow with increasing
catchment length. Catchments are shown with a river length > 10 km.

4.2. Source catchment lithology

The lithology of a source catchment will control denudation rates
and sediment discharge to the terrestrial sink (e.g., Arribas and
Tortosa, 2003; Palumbo et al., 2009; Norton et al., 2011). Lithologies
that describe modern extensional and strike-slip source catchments as-
sociated with active young basin lifespans (Ingersoll, 2012) are varied
and contain a high proportion of siliclastics, carbonates, volcanics and
plutonics (Fig. 9). Source catchments of foreland and intracratonic tec-
tonic regimes, in contrast, have a more uniform lithology distribution
of siliclastics and carbonates (Fig. 9), which may reflect their longer
lived sedimentary basins (Ingersoll, 2012). A more varied provenance
distributed through numerous smaller source catchments will intro-
duce along-strike variability in sediment discharge and composition to
the terrestrial sink (Fig. 21).

The majority of forearc settings and passive margins are character-
ized by a few large source catchments (Figs. 15, 20), suggesting
a lower along strike variability of sediment discharge and composition
from different source catchment outlets to the terrestrial sink
(e.g., Weltje, 2012; Fig. 21). Forearc settings show a higher percentage
of volcanics, whereas passive margins have a higher proportion of meta-
morphics at present. A majority of large passive margins source catch-
ments are furthermore characterized by high percentages of siliclastic
lithologies (Figs. 9 and 10) that may indicate a large transport zone
from hinterland to terrestrial sink (e.g., Fig. 22B).

The influence of source catchment morphology and lithology on sed-
iment discharge along-strike of the terrestrial sink is illustrated in
Fig. 21 for different tectonic regimes. Given three catchments (1, 2 and
3) in an extensional setting (Fig. 21A), foreland setting (Fig. 21B) and
passive margin setting (Fig. 21C), each respective catchment has a sim-
ilar proportion of siliclastics, metamorphics and volcanics regardless of
tectonic regime as illustrated by the ternary diagram (Fig. 21). However,
the different source catchment morphologies that define each tectonic
regime (see Section 4.1) will influence the dominant control on the ter-
restrial sink. Extensional or foreland settings (Fig. 21A and B) composed
of numerous equally contributing source catchments have a high
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potential for along-strike variability in terrestrial sink composition
and sediment discharge in comparison to a single dominant source
catchments that influences the entire passive margin terrestrial sink
(Fig. 21C).

4.3. Source catchment climate

Seasonal dry winters or summers in the contributing source catch-
ments influencing a majority of extensional and strike-slip tectonic re-
gimes (Table 1) will cause infrequent higher magnitude discharge
events. Meybeck et al. (2003) showed the higher temporal variability
of global daily sediment discharge from smaller versus larger catch-
ments. The high proportion of arid climates in tectonically active
small catchments (Table 1) is a result of the present-day geographical
distribution of continental plates (Nyberg and Howell, 2015) and the

orographic shielding influence of intermontane basins from steady pre-
cipitation (Roe, 2005; D'Arcy and Whittaker, 2014).

In contrast, terrestrial sinks of forearc and foreland tectonic regimes,
situated at the base of mountainous ranges of converging plate tecton-
ics, have a higher proportion of humid climates, though seasonal mon-
soonal and dry winters and dry summers are also important (Table 1).
The windward flank of the orogenic range typically receives higher pre-
cipitation than its leeward side and variability of seasonal trade-winds
(Roe, 2005) result in variable precipitation (Wulf et al., 2010). The
small source catchments of the high relief, equatorial forearc tectonic
regimes, yield high sediment load to the oceans (Milliman and
Syvitski, 1992), with a short temporal lag response between precipita-
tion and discharge (Meybeck et al., 2003). The short temporal response
to precipitation in foreland settings associated with larger terrestrial
sediment basins (Fig. 16) produces rapid sediment deposition as
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terrestrial fans. Such fans have been well documented in literature
(DeCelles and Cavazza, 1999; Leier et al., 2005; Weissmann et al., 2015).

Source catchments of passive margins have a more varied climatic
contribution (Tables 1 and 2) as their terrestrial sinks are typically not
associated on the flank of a mountain belt and the present-day distribu-
tion of passive margins that span a wide range of latitudes (Fig. 2). The
terrestrial sink climate may thus be significantly different than its
source catchment that spans a large distance and are associated with cli-
matic influence from orogens. In fact, arid climates represent 60% of the
surface area of present-day terrestrial sinks (Nyberg and Howell, 2015),
nearly twice that compared to the surface area of arid climates in global
catchments at 31% (Table 1).

No relationship is observed between the number of climate zones
and the size of a source catchment (Fig. 8). This shows that the partial

independence between catchment area and water discharge (Syvtiski
and Milliman, 2007) is not explained solely by larger catchments incor-
porating a larger variety of climates. Regional topography appears to be
an important factor controlling the distribution of source catchment cli-
mates (Roe, 2005). Topographic influence may introduce a similar
along-strike variability in sediment discharge to the terrestrial sink as
source catchment lithology. The lithologies represented in Fig. 21 may
be substituted for climates of arid, equatorial and warm temperate
and each climate may be assumed to produce a different sediment dis-
charge. Thus, systems characterized by numerous smaller source catch-
ments (e.g., extensional, strike-slip, foreland and intracratonic settings)
would show a high along-strike variability in sediment discharge at the
terrestrial sink (Fig. 21A and B). In comparison, the terrestrial sink of
systems characterized by fewer larger source catchments (e.g., forearc

Table 2
The relative contribution to the global total suspended sediment load in percentage by climate and tectonic regime subdivision for the GTSC database.

Climate Tectonics

First-order climate Second-order climate Extensional Fore-arc Foreland Intra-cratonic Passive margin Strike-slip Subtotal

Equatorial (A) Humid (f) 0.01 3.10 5.70 0.15 3.46 0.14 12.55
Monsoon (m) 0.04 0.54 2.16 0.21 2.03 0.02 499
Dry Summer (s) 0.08 0.11 0.03 0.19 0.53 0.03 0.97
Dry Winter (w) 1.10 1.16 244 243 5.97 0.45 13.54
Subtotal 1.23 490 10.32 297 11.99 0.64 32.05

Arid (B) Dry Summer (s) 0.94 0.62 348 221 411 0.85 1221
Dry Winter (w) 0.51 1.75 4.67 9.66 5.52 1.74 23.85
Subtotal 145 2.37 8.15 11.87 9.63 2.59 36.06

Warm Humid (f) 0.43 0.61 333 0.74 3.55 0.08 8.73

Temperate (C) Dry Summer (s) 048 0.57 222 0.11 0.78 0.56 4.71
Dry Winter (w) 0.58 0.24 6.96 0.17 1.14 0.10 9.19
Subtotal 1.49 141 12.51 1.02 5.46 0.75 22.63

Snow (D) Humid (f) 0.07 0.33 1.17 0.29 122 0.01 3.09
Dry Summer (s) 0.01 0.02 0.58 0.05 0.00 0.11 0.76
Dry Winter (w) 0.04 0.00 0.87 0.08 0.07 0.15 1.22
Subtotal 0.12 0.36 2.62 0.42 1.29 027 5.07

Polar (E) Tundra (T) 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Frost(F) 0.25 0.98 2.26 0.11 0.26 0.32 4.18
Subtotal 0.25 0.98 2.26 0.12 0.27 032 419

Total 4.54 10.01 35.86 16.39 28.64 4.57 100.00
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and passive margin settings) would be representative of the climate in-
fluence and sediment discharge of its largest source catchment
(Fig. 21C).

For example, the Mississippi and Ganges/Brahmaputra systems
(Fig. 3A and B) are both large but given a similar sized storm cell, the
smaller source catchments of the Ganges/Brahmaputra foreland basin
may locally influence an entire source catchment while only influencing
a small portion of the larger Mississippi source catchment. The influence
of a storm cell on the entire source catchment of a localized region in the
Ganges/Brahmaputra system suggests a direct sediment discharge re-
sponse to its terrestrial sink (Fig. 21B). In comparison, the larger source
catchment of the Mississippi system may be able buffer a similar sized
storm cell before a sediment signal propagation is recorded at the ter-
restrial sink (Fig. 21C).

4.4. Source catchment influence on the terrestrial sink

The terrestrial sink is of particular importance because it marks the
first zone of sediment sequestration and potential preservation in the
stratigraphic record (Fig. 22). Furthermore, the terrestrial sink is often
understated even though it plays a vital role in understanding the dy-
namics of sedimentary delivery to the marine environment (see
Castelltort and Van Den Driessche, 2003, Simpson and Castelltort,
2012; Romans et al., 2016).

The character of a sediment signal propagation will depend on the
transfer efficiency and the perturbation of the sediment supply. Allen
(2008) termed a sediment signal response at a terrestrial sink that is
able to respond to perturbations in sediment supply as a system in a
steady state. Otherwise the system enters a reactive, buffered or tran-
sient state that will influence the cumulative and temporal response
of sediment discharge downstream. Ultimately, sediment signal propa-
gation will depend on the timescales of tectonic and climatic perturba-
tions influencing sediment discharge and the capacity of a system to
response to those changes (Blum and Hattier-Womack, 2009; Romans
et al., 2016).

It is not our intention here to review each type of sediment signal
propagation (see Romans et al.,, 2016 and references therein), but rather
to discuss the likely overarching influence source catchment morphol-
ogy has on sediment signal propagation into the terrestrial sink. A
large terrestrial sink fed by smaller but all significantly contributing
source catchments may receive a different sediment discharge signal
from different contributing source catchment characteristics because
of variations in their morphology, climate, outlet spacing and lithology
(Figs. 21A, B, and 22A). In addition, each source catchment may have
different perturbations of sediment discharge and a different response
time to that sediment supply input. The variability in sediment dis-
charge and repeat-response times of each contributing source catch-
ment will interfere with one another downstream of the terrestrial
sink (Fig. 22B). This type of response would be characteristic of a fore-
land, extensional, strike-slip or intracratonic tectonic regime.

A small terrestrial sink fed by one large source catchment
would have a sediment discharge and a sediment signal propagation
that is representative of that one source catchment characteristic
(e.g., morphology, climate, lithology, tectonics; Fig. 21C). Any sediment
signal propagation change is representative of the sediment discharge
and perturbations controls of its largest contributing source catchment
(Fig. 22A). As such, it may be easier to infer changes in perturbations
and/or sediment discharge volumes in systems fed by one large source
catchment rather than an amalgamation of multiple source catchments.
This response type would be characteristic of a passive margin or forearc
setting.

The scale of the terrestrial sink and transport zone will influence sed-
iment signal propagation downstream by increasing potential sediment
signal shredding with increasing transport distance (Castelltort and Van
Den Driessche, 2003; Jerolmack and Paola, 2010; Romans et al., 2016).
Large passive margins and foreland settings with a large absolute
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Fig. 21. Schematic illustration of the morphology of source catchment contributions to
terrestrial sinks by tectonic regime. (A) Typical catchment configuration of intracratonic,
strike-slip or extensional tectonic regimes consisting of numerous smaller source
catchments contributing to a relatively large terrestrial sink with a low source-to-sink
relief change. (B) Typical foreland basin that consists of numerous smaller source
catchments draining through a relatively mid-sized terrestrial sink and a medium
source-to-sink relief change. (C) Typical forearc or passive margin configuration
consisting of few larger source catchments draining through a relatively small terrestrial
sink and a medium to high source-to-sink relief change. The ternary diagram shows the
proportion of siliclastics, metamorphics and volcanics for specific source catchments 1, 2
and 3 (modified after Weltje, 2012). See text for discussion. Note the illustration is
shown without scale and relates the terrestrial sink area relative to its total catchment size.

terrestrial sink area will thus have a large area to diffuse a sediment sig-
nal in comparison to smaller systems of extensional, strike-slip and
forearc settings. However, it is important to reiterate that while passive
margins typically have a large terrestrial sink component, the terrestrial
sink is small relative to its total catchment area in comparison to a fore-
land setting. A larger transport zone of sediments from source to terres-
trial sink in passive margins will likely decrease both water and
sediment discharge first recorded in the terrestrial sink (Fig. 22B). A de-
crease in water discharge may be especially important for millennial
scale perturbations by reducing the amount of water that is able to re-
mobilize sediments stored in the terrestrial sink.
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Source catchment characteristics influencing sediment discharge
will influence grain size distributions of the terrestrial sink. For instance,
an increase in initial sediment discharge decreases the rate of initial
grain size fining (Duller et al., 2010). Tectonic uplift in the source catch-
ment will initially increase grain size at the proximal fan while in-
creased precipitation will increase in the lateral extent of a coarse
grained fan (Armitage et al., 2011). This is particularly relevant to exten-
sional, strike-slip and foreland tectonic settings where the terrestrial
sink is typically bounded by numerous but smaller high relief source
catchment regions. The use of grain size in defining spatial trends,
sediment supply characteristics and controls on fluvial successions
over different spatial and temporal scales (Duller et al., 2010) is thereby
complicated by the along strike variability observed in sediment dis-
charge of the contributing source catchments. Grain size profiles in
these systems may then represent a lateral coalescence of variability
in source catchment discharge that contribute over different spatial
and temporal scales. Large mature passive margins that are represented
by a few but large source catchments with a large low-gradient transfer
zone before their terrestrial sink would potentially show less spatial and
temporal variability in grain size (Fig. 22B). Forearc and young passive

margins settings would similarly show a reduced along-strike variabil-
ity in grain size from fewer significant source catchments. However,
the temporal change in grain size profiles may be more dramatic than
a large passive margin because there is less low-gradient area to buffer
any change in boundary conditions of its source catchment.

4.5. Terrestrial sink influence on the source to sink system

The influence of source catchment morphology on sediment dis-
charge, grain size distributions, sediment composition and a range in
source-derived perturbations in sediment discharge to the terrestrial
sink, will have a broader influence on the source-to-sink system (see
Helland-Hansen et al., 2016). A change in sediment discharge and com-
position at the marine sink may reflect a change in source catchment
controls on the terrestrial sink. This may represent the entire source
catchment area or a regional influence on only a few or a single source
catchment (Fig. 22A). For instance, sediment budgets of the Indus
system are an exceptional example showing that since the last glacial
maximum, approximately 31-40% of the total sediment stored on its
continental shelf is explained by the release of sediments from the
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Fig. 22. (A) shows the sediment signal propagation along the strike of a large terrestrial sink (e.g., foreland setting) and a small terrestrial sink (e.g., passive margin) for a similar sized S2S

system. (B) shows the sediment signal propagation along the dip of the same system for a

large and small terrestrial sink for a baseline and a millennial sediment discharge perturbation.

See text for discussion. Part B is modified after Castelltort and Van Den Driessche (2003) and Romans et al. (2016).
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Naga Parbat region that accounts for only 5% of the mountainous source
catchment (Clift and Giosan, 2014).

Sediment discharge variability at the marine sink increases with de-
creasing catchment size (Wood et al., 1990; Singh, 1997; Meybeck et al.,
2003). For instance, the Santa Ana River in southern California is a good
example of a small S2S system with a small terrestrial sink where
climatic signals in the source catchment are directly transmitted to sed-
imentation in the deep-sea sink (Covault et al,, 2010). In contrast, a large
low gradient region and/or terrestrial sink (e.g., large mature passive
margins and foreland settings) will increase sediment signal shredding
(Jerolmack and Paola, 2010) and decrease the potential to transfer a
source-derived sediment signal to the marine sink. In fact, Castelltort
and Van Den Driessche (2003) calculated a transport zone (including
its terrestrial sink) >300 km can diffuse even millenial scale
pertubations before sedimentation occurs at the marine realm. Further-
more, sea level fluctuations will introduce variability by not only
remobilizing floodplain deposits but causing upstream catchment
denudation as the fluvial system responds to base level change
(Schumm, 1993; Bentley et al., 2016) and fluvial systems potentially
extend basinward, reaching the shelf edge and causing sediment bypass
to the basin floor (see Shanmugam, 2016). The Indus (Clift and Giosan,
2014), Ganges/Bahramputra (Goodbred and Kuehl, 1999) and
Missisippi River basins (Bentley et al., 2016) are examples where
changes to deep water deposition have been attributed to sea-level
flucations as opposed to changes affecting sediment discharge from
source catchment change (Shanmugam et al., 2015; Romans et al.,
2016).

While source catchment sediment signal propagation is reduced and
potentially destroyed completely in the terrestrial sink of passive mar-
gins and foreland settings, the characteristics of the terrestrial sink
may have a long-term geological influence on marine sedimentation.
As the preserved stratigraphy is composed of an incomplete record of
infrequent but large magnitude events (Leeder et al., 1998; Corbett
etal,, 2014; Miall, 2014), the composition of sediments stored in the ter-
restrial sink can remobilize during larger millennial episodes that influ-
ence the entire system. Simpson and Castelltort (2012) showed
numerical models indicating that while the terrestrial sink (>300 km)
has the potential to diffuse millennial scale episodes (e.g., Castelltort
and Van Den Driessche, 2003), an increase in sedimentation can occur
at the marine environment due to an increase in water discharge
remobilizing previously stored sediments.

Two similar sized systems, a foreland basin with a large terrestrial
sink at the base of an orogeny and a passive margin with a small terres-
trial sink but a large transport zone, will likely influence sedimentation
differently. During a regular flood episode, both systems can dampen a
sediment discharge signal to a similar magnitude at its marine sink
(Fig. 22B). In addition, a millennial scale perturbation (tectonic or cli-
matic) in source-derived sediment discharge may not necessarily in-
crease the sediment discharge significantly of either system at the
marine sink. However, a millennial scale perturbation in increased
water discharge will likely increase sediment remobilization of stored
terrestrial sink sediments (Simpson and Castelltort, 2012). A foreland
setting with a large terrestrial sink will have a large surface area for
the increased water discharge to remobilize sediment downstream. In
comparison, a passive margin with a small terrestrial sink system and
a large transport zone may not only have less sediment to remobilize
but an increase in water discharge may be reduced before any
sediments have a chance to be remobilized from the terrestrial sink
(Fig. 20A and B).

4.6. Terrestrial sink sediment budgets

Milliman and Syvitski (1992) suggested that if subsidence rates in
the foreland Bengal basin were as high as 1-2 cm/yr, 40-80% of the
Ganges/Brahmaputra sediment load could be sequestrated in its subaer-
ial delta. These are reasonable numbers when compared to recent

subsidence rates recorded around the region (Brown and Nicholls,
2015) and may explain the actively accreting and eroding shoreline
but limited net land gain over the past two decades (Sarwar and
Woodroffe, 2013). In fact, Goodbred and Kuehl (1999) calculated that
30% of the Ganges/Brahmaputra sediment load is stored in floodplains
downstream of gauging stations that are typically used to model sedi-
ment flux to the Bay of Bengal. A 30% reduction in sediment discharge
to the ocean from the Ganges/Brahmaputra River would result in a
1-3%reduction in global sediment budgets, highlighting the importance
of terrestrial sinks to global sediment budgets.

Similarly, current empirical models used to predict the global total
suspended sediment load are typically constrained by sediment budgets
at the oceans (Milliman and Meade, 1983; Milliman and Syvitski, 1992;
Ludwig and Probst, 1998; Syvitski and Morehead, 1999; Syvitski and
Milliman, 2007) and do not consider the sediment that is lost in the ter-
restrial sink. Studies in the Amazon basin suggest that approximately
half of sediment load of the Amazon is lost in the terrestrial sink
(Aalto et al,, 2006). While numerical models have started to bridge the
gap (e.g., WBMsed; Cohen et al., 2013), the models are often limited
by a lack of intra-basinal gauging stations, thereby extrapolating empir-
ical observations from well documented systems (e.g., Mississippi) to
the global scale. Our current analysis of source catchment contribution
to the terrestrial sink is also limited in that it only shows the relative dis-
charge from each source catchment relative to its total catchment area
(e.g., Fig. 1).

The controls on total suspended sediment discharge to the ocean
(ie., lithology, water discharge, catchment area, relief and temperature;
Syvtiski and Milliman, 2007) are also likely controls influencing the sed-
iment discharge of source catchments to terrestrial sinks. However,
morphological differences between source catchments and the total
catchment area may change the relative importance of each parameter.
For instance, Mueller and Pitlick (2013) noted the importance of lithol-
ogy rather than relief or climate on the sediment discharge of small in-
termontane river catchments. In addition, Aalto et al. (2006) stress the
importance of lithology and relief on sediment discharge when analyz-
ing larger catchment contributions to the terrestrial sink of the Bolivean
foreland basins. Although beyond the scope of this article, the GTSC da-
tabase (Fig. 2) provides a digital delineation to evaluate the governing
controls on sediment discharge to global terrestrial sinks. Such a study
could significantly improve and quantify our current understanding
on the diffusive nature of the terrestrial sink (e.g., Castelltort and Van
Den Driessche, 2003) and its relation to sediment remobilization arising
from larger millennial scale perturbations (e.g., Simpson and Castelltort,
2012).

5. Conclusion

A new global terrestrial sink catchment (GTSC) database depicts
drainage patterns of large rivers to modern terrestrial sinks. Our contri-
bution here focuses on a geomorphological and sedimentological
perspective on source catchments controls influencing sediment dis-
charge to terrestrial sinks and its implications to broader source-to-
sink studies. Observations of source catchment morphology, outlet
spacing, climate and lithology distributions show results that imply:

1. In relation to the total catchment area; extensional, strike-slip,
intracratonic and foreland tectonic regimes are characterized by a
relatively large terrestrial sink that is fed by smaller but numerous,
densely spaced and wider source catchments. Passive margins and
forearc tectonic regimes are typically characterized by few but larger
contributing source catchments feeding a relatively small terrestrial
sink. It is important to note, however, that the absolute size of the
terrestrial sink is typically large for large passive margins and fore-
land settings.

2. Seasonal dry summer or winter climates are most common in
intracratonic (91%), extensional (81%), strike-slip (77%) and foreland
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(59%) tectonic regimes, while less common in forearc (45%) and pas-
sive margins (41%).

3. Passive margins, intracratonic, foreland and forearc tectonics regimes
are all dominated by high proportion of siliclastics (>50%). Metamor-
phics are more important in passive margins (>15%), carbonates in
foreland regimes (33%) and volcanics/plutonics in forearc regimes
(12%). Extensional and strike-slip regimes have lower proportions
of siliclastics (<35%) and high volcanic (25%) and plutonic lithologies
(15%).

4. Foreland, extensional, strike-slip and intracratonic systems charac-
terized by small, numerous and wider source catchments with sea-
sonal climates and varied lithologies will increase along-strike
variability in sediment discharge to their terrestrial sinks. Passive
margins and forearc characterized by few but large source catch-
ments with less seasonal climates and less variance in lithology will
decrease along-strike variability in sediment discharge to their ter-
restrial sinks.

5. Along strike variability in sediment discharge can mix and increase
destruction of sediment signal propagation downstream as each
source catchment will have different sediment discharge perturba-
tions and response times. Foreland, extensional, strike-slip and
intracratonic settings will thus have a greater shredding of individual
source catchment sediment signal propagations in their terrestrial
sinks in contrast to passive margins and forearc settings.

6. On longer geological timescales that form a source-to-sink perspec-
tive, millennial scale perturbations in sediment discharge that dom-
inate the stratigraphic record are influenced by the remobilization

Appendix A

of previously stored sediments from the terrestrial to marine sink.
Source catchment morphology, climate and lithology influencing
sediment discharge and composition of the terrestrial sink may
thus influence the longer term preservation of marine sedimentary
successions.

The GTSC database highlights the controls on the terrestrial sink, its
influence on the broader sediment routing system, yet our quantitative
knowledge in understanding the relationships between the two is lim-
ited. In fact, global denudation rates and the sequestration of sediment
in terrestrial sinks over various temporal and spatial scales remain a
large unknown. This contribution provides but one small piece towards
the objective to understand and quantify the controls on sedimentary
budgets of source-to-sink systems.
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The contribution of exorheic catchments draining to a body of water in ascending order based on its contribution to the total exorheic area. The data
shows the number of catchments, percentage that those are source catchments, total catchment area, percentage of the total exorheic area, percent-
age of the total catchment area that is a terrestrial sink and the distribution of catchments draining to epicontinental, narrow shelves or wide shelves.

Body of water Number of % source Total catchment % of total % of catchment % epicontinental % narrow % wide cont.
catchments  catchments  area (km?) exorheic  area as terrestrial ~ seaway cont. shelves  shelves
area sink (<75 km) (>75 km)
South Atlantic Ocean 13,449 74.7 15,732,896 15.78 10.0 0.0 472 52.8
Kara Sea 9531 62.5 6,926,092 6.95 3.8 96.4 1.0 2.6
Gulf of Mexico 4390 62.1 4,960,852 498 8.7 0.0 71.9 28.1
North Atlantic Ocean 7631 69.7 4,163,361 4.18 153 0.0 60.8 39.2
Laptev Sea 2037 76.4 3,696,963 3.71 0.7 0.0 0.9 99.1
Gulf of Guinea 4021 67.9 3,438,739 345 15.0 0.0 95.2 4.8
Mediterranean Sea - Eastern Basin 7529 72.2 3,431,506 3.44 249 0.0 98.3 1.7
Indian Ocean 5472 71.6 3,234,878 3.24 14.5 1.2 79.9 189
Hudson Bay 1132 100.0 3,128,343 3.14 0.0 100.0 0.0 0.0
Rio de La Plata 2333 74.9 3,092,018 3.10 413 0.0 0.0 100.0
Bay of Bengal 3534 68.6 2,895,903 2.90 26.5 0.0 36.2 63.8
Mozambique Channel 3576 72.7 2,761,742 2.77 15.0 0.0 45.6 54.4
Sea of Okhotsk 7262 873 2,688,999 2.70 145 99.7 0.3 0.0
South China Sea 4049 70.0 2,364,409 2.37 12.7 99.7 0.3 0.0
Eastern China Sea 2753 81.7 2,134,875 2.14 133 100.0 0.0 0.0
Beaufort Sea 1072 59.7 2,055,886 2.06 2.8 0.0 13.1 86.8
North Pacific Ocean 4927 833 1,928,001 1.93 6.0 0.6 62.1 374
Arabian Sea 2691 72.7 1,788,898 1.79 373 1.0 10.9 88.1
Black Sea 3228 75.2 1,779,842 1.78 13.7 100.0 0.0 0.0
Yellow Sea 3561 79.3 1,662,074 1.67 25.2 100.0 0.0 0.0
Bering Sea 8284 67.6 1,619,480 1.62 125 92.1 6.6 13
Gulf of St. Lawrence 1008 100.0 1,547,605 1.55 0.0 98.2 0.2 1.6
The Northwestern Passages 5191 98.6 1,442,068 145 0.1 95.5 45 0.0
East Siberian Sea 3381 64,6 1,313,518 1.32 11.6 50.0 0.1 50.0
South Pacific Ocean 4958 91.5 1,264,867 1.27 5.4 0.9 79.1 19.9
Persian Gulf 2565 59.5 1,196,389 1.20 25.0 99.5 0.5 0.0
Great Australian Bight 2239 80.0 1,080,674 1.08 45.6 0.0 103 89.7
Caribbean Sea 3909 71.5 1,037,343 1.04 209 0.0 76.4 23.6
Gulf of California 2451 66.0 958,019 0.96 175 0.0 31.6 68.4
Arafura Sea 2033 64.5 861,951 0.86 389 100.0 0.0 0.0
Andaman or Burma Sea 1162 77.6 780,660 0.78 10.2 98.3 1.7 0.0
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Body of water Number of % source Total catchment % of total % of catchment % epicontinental % narrow % wide cont.
catchments  catchments area (km?) exorheic  area as terrestrial ~ seaway cont. shelves  shelves
area sink (<75 km) (>75 km)
Coral Sea 1665 75.8 700,992 0.70 5.8 1.1 224 76.5
White Sea 596 85.9 656,752 0.00 13 99.5 0.0 0.5
North Sea 1429 72.8 606,309 0.61 14.5 419 3.6 54.6
Sea of Azov 782 52.0 587,704 0.59 12.4 100.0 0.0 0.0
Barents Sea 1160 89.5 583,442 0.59 2.0 66.7 2.8 30.5
Baltic Sea 1554 70.1 569,129 0.57 9.0 100.0 0.0 0.0
The Coastal Waters of Southeast 1655 99.0 564,608 0.57 0.2 0.0 6.5 93.5
Alaska and British Columbia
Red Sea 2275 60.4 523,428 0.52 16.6 100.0 0.0 0.0
Gulf of Finland 146 100.0 505,421 0.51 0.0 100.0 0.0 0.0
Gulf of Bothnia 306 100.0 481,267 0.00 0.0 100.0 0.0 0.0
Hudson Strait 586 100.0 413,503 0.41 0.0 13.6 0.2 86.2
Timor Sea 1002 70.6 349,945 0.35 15.7 100.0 0.0 0.0
Japan Sea 1260 94.4 341,776 0.34 1.6 100.0 0.0 0.0
Gulf of Thailand 1056 734 323,427 032 31.0 100.0 0.0 0.0
Mediterranean Sea - Western Basin 747 83.1 314,450 0.32 4.4 0.0 100.0 0.0
Java Sea 1130 63.4 308,662 0.31 26.9 96.5 35 0.0
Labrador Sea 760 100.0 289,426 0.29 0.0 0.0 33.7 66.3
Bay of Biscay 343 84.5 282,395 0.28 19 0.0 154 84.6
Gulf of Alaska 1009 87.6 241,193 0.24 31 399 58.0 2.2
Tasman Sea 813 92.7 238,251 024 2.0 0.0 87.6 124
Adriatic Sea 861 82.2 230,989 0.23 16.8 0.0 711 28.9
Aegean Sea 1118 93.5 214,308 0.21 5.8 26.2 56.2 17.6
Chukchi Sea 994 68.2 199,973 0.20 10.2 77.7 13 21.0
Gulf of Aden 811 68.3 198,329 0.20 9.1 14 98.6 0.0
Philippine Sea 1309 92.4 175,908 0.18 2.5 45.8 53.6 0.6
Malacca Strait 839 65.9 169,472 0.17 15.9 100.0 0.0 0.0
Makassar Strait 618 82.5 163,003 0.16 8.5 100.0 0.0 0.0
Celebes Sea 512 88.7 144,621 0.15 2.6 99.9 0.1 0.0
Balearic (Iberian Sea) 209 90.0 136,556 0.14 19 0.0 100.0 0.0
Bismarck Sea 392 87.0 133,162 0.13 42 95.3 4.7 0.0
English Channel 267 95.1 127,276 0.13 0.5 99.1 0.0 0.9
Gulf of Oman 457 66.3 115,964 0.12 8.9 0.0 100.0 0.0
Laccadive Sea 322 75.5 107,914 0.11 19.6 0.0 84.9 15.1
Norwegian Sea 759 100.0 106,681 0.11 0.0 0.0 67.7 323
Davis Strait 629 100.0 105,859 0.11 0.0 0.2 63.6 36.2
Skagerrak 113 100.0 99,548 0.10 0.0 0.0 98.7 13
Baffin Bay 578 100.0 99,274 0.10 0.0 11.2 88.8 0.0
Kattegat 271 100.0 93,418 0.09 0.0 41.5 2.8 55.6
Bass Strait 361 834 91,889 0.09 4.1 0.0 36.5 63.5
Alboran Sea 250 83.2 88,113 0.09 119 0.0 100.0 0.0
Solomon Sea 559 98.9 86,237 0.09 0.5 3.9 94.5 1.6
Tyrrhenian Sea 420 90.2 84,460 0.08 4.0 0.0 100.0 0.0
Bay of Fundy 118 100.0 80,739 0.08 0.0 99.6 0.0 0.4
Sulu Sea 478 84.7 69,252 0.07 5.0 100.0 0.0 0.0
Greenland Sea 373 100.0 65,269 0.07 0.0 0.0 100.0 0.0
Banda Sea 513 97.9 64,082 0.06 0.2 100.0 0.0 0.0
Ceram Sea 292 87.7 62,240 0.06 5.5 92.8 7.2 0.0
Gulf of Riga 83 100.0 62,219 0.06 0.0 100.0 0.0 0.0
lonian Sea 429 91.1 58,748 0.06 2.2 0.0 94.6 54
Irish Sea and St. George's Channel 207 100.0 39,234 0.04 0.0 100.0 0.0 0.0
Sea of Marmara 120 95.8 39,027 0.04 2.0 92.8 7.2 0.0
Seto Naikai or Inland Sea 206 93.2 38,739 0.04 2.0 98.0 1.2 0.8
Arctic Ocean 206 100.0 34,437 0.03 0.0 6.1 93.9 0.0
Gulf of Suez 142 93.0 33,755 0.03 0.9 100.0 0.0 0.0
Gulf of Boni 204 824 32,965 0.03 10.8 100.0 0.0 0.0
Inner Seas off the West Coast of Scotland 333 100.0 31,392 0.03 0.0 6.2 3.0 90.8
Bristol Channel 60 100.0 29,007 0.03 0.0 0.0 0.0 100.0
Gulf of Tomini 163 96.9 28,072 0.03 1.0 100.0 0.0 0.0
Celtic Sea 106 100.0 21,890 0.02 0.0 2.1 1.2 96.7
Savu Sea 196 100.0 18,554 0.02 0.0 100.0 0.0 0.0
Gulf of Aqaba 64 100.0 17,873 0.02 0.0 100.0 0.0 0.0
Flores Sea 145 100.0 13,620 0.01 0.0 100.0 0.0 0.0
Halmahera Sea 124 100.0 13,000 0.01 0.0 100.0 0.0 0.0
Bali Sea 139 100.0 10,185 0.01 0.0 96.4 3.6 0.0
Molukka Sea 160 100.0 9255 0.01 0.0 99.0 1.0 0.0
Lincoln Sea 40 100.0 5992 0.01 0.0 0.0 100.0 0.0
Singapore Strait 29 100.0 3731 0.00 0.0 100.0 0.0 0.0
Ligurian Sea 41 100.0 3208 0.00 0.0 0.0 100.0 0.0
Strait of Gibraltar 18 100.0 2471 0.00 0.0 0.0 100.0 0.0
Total/average 169,271 85.1 99,712,836 100 7.9 49.9 30.0 20.1
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Appendix B

A summary of first- and second-order climate distribution for global catchments and source catchments according to the Képpen-Geiger (Kottek,

2006) classification scheme.

Climate Humid (f) Monsoon (m) Dry summer (s) Dry winter (w) Tundra (T) Frost (F) Total
Global catchments

Equatorial (A) 4.85 3.77 0.56 12.99 N/A N/A 22.16
Arid (B) N/A N/A 12.58 18.50 N/A N/A 31.09
Warm temperate (C) 8.80 N/A 2.85 4.41 N/A N/A 16.06
Snow (D) 20.78 N/A 0.84 3.61 N/A N/A 25.23
Polar (E) N/A N/A N/A N/A 543 0.04 5.47
Total 34.40 3.80 16.80 39.50 5.40 0.04 100.00
Source catchments

Equatorial (A) 5.40 4.02 0.57 13.25 N/A N/A 23.24
Arid (B) N/A N/A 10.90 13.46 N/A N/A 24.36
Warm temperate (C) 8.85 N/A 3.15 437 N/A N/A 16.38
Snow (D) 24.64 N/A 0.98 391 N/A N/A 29.52
Polar (E) N/A N/A N/A N/A 6.46 0.05 6.51
Total 38.8 4.02 15.7 35.1 6.5 0.05 100

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.geomorph.2018.05.007.
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