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Abstract

The main objective in this thesis is to give numerical solution for advection
term of heat transport equation in fractured geothermal reservoir. To get
better insight in the fracture influence on the processes we will present all
numerical results for domain with and without fracture field. Fracture field
is modeled explicitly using discrete fracture model. Advection term of heat
transport equation is discretized in space using upwind scheme for time dis-
cretization we use implicit method: Euler’s backward scheme. For advection
term upscaling we use the known flux values that we get from numerical
solution of pressure equation. To get comutationally more efficient transport
solver we will use upscaling and upgridding. We will use flow-based indica-
tors for upgridding fine scale grid. In the case of fractured domain beside
standard flow-based indicators: permeability, velocity and time of flight we
will use distance to the nearest fracture and the combination of distance and
time of flight as indicators. At the end we will compare results on different
coarse grids with result on fine scale grid.
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Chapter 1

Introduction

In this thesis we will present a numerical solution method for fluid flow
and heat transport model in fractured geothermal reservoirs. The reason
we are interested in studying these processes is related to the extraction of
the geothermal energy. Geothermal reservoirs are renewable energy resource
with wide potential. Most of the geothermal reservoirs occurs in fractured
porous rocks at high temperatures [4]. Thus, it is important to consider the
fractures when modeling a geothermal reservoir. The characteristic of the
physical processes are highly dominated by the occurrence of the fractured
field [22].

When we do reservoir simulations geothermal reservoir is modeled as a
3D grid with cells that contains geological properties of the reservoir while
fractures are represented explicitly using discrete fracture model. Simula-
tions of these structurally dominated processes are very large with a lot of
details to be resolved in the discrete model [22]. We need to develop effective
discretization strategies to limit computational effort and on the other hand
to maintain good accuracy.

We will examine both fluid flow through the reservoir and the heat trans-
port process. The fluid flow is modeled using the pressure equation. The heat
transport is modeled using an advection-conduction equation for temperature
and in this thesis, we are focused just on the advection term of the equation.
Pressure equation is solved once on the fine scale grid to obtain pressure
and flux values and apply these parameters to solve advection-conduction
equation [27]. Advection term is solved both on the fine scale grid and on
the coarse scale grid. For both equations we will consider case without frac-
tures and with presence of fractures. Coarse scale grid was constructed using
amalgamation of fine grid cells and using different coarse scale partitions in
order to obtain most efficient computational grid. We will analyze which grid
is most efficient for our test cases.
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1.1 Geothermal Reservoirs

Geothermal energy consists of the thermal energy contained in the Earth
subsurface. Geothermal energy is important because it can provide both
electrical power and heat. The main advantages of geothermal energy are
its availability, continuity and renew-ability. By availability we considered
at geothermal energy is independent of weather conditions [21]. Continuity
means that it does not need any backup source [21]. In 2016 world geother-
mal power production was 13.8 GW and it is in constant growth in 2021
production is expected to be 23 GW [9], [7]. Overall the geothermal share
in global power generation is about 0.3%, however in some countries it is
significant energy source such as Kenya with (44%) and Iceland with (27%)
of power [9].

A naturally occurring geothermal system is known as hydrothermal sys-
tem. Hydrothermal resources usage depending on the temperature and how
deep they are [11]. An enhanced geothermal system (EGS) occurs in reser-
voirs with high temperatures but with lack of fractures, pores and water
[21], [8]. In (EGS) cold water is injected into the hot rock and fracturing
rock sufficiently to enable water to flow [4], [8], [2]. The water flow through
the permeable pathways and transport heat via production well [27], [8], [2].
While flow through these permeable pathways water absorbed heat form the
surrounding hot rock in the process known as conduction [4], [8]. Process
of heat transport with water flow is convection. At the surface the fluid
passes through the power plant where the electricity is generated (Figure
1.1). Geothermal reservoirs are typically situated in igneous rock where
the permeability of the reservoir is dominated by the presence of the discrete
fractures [22]. Flow and transport processes are highly dominated by these
structural heterogeneities. In the following chapters the processes of fluid
flow and heat transfer through the porous material will be present in more
detail.

4



Figure 1.1: Enhanced geothermal system [3]
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1.2 Outline

Our goal is to present 3D simulations of advection term of heat transport
equation in fractured geothermal reservoir and to give a closer look at process
within fractures. The course we have chosen is as follows:

In chapter 2 we define fluid and rock parameters together with the equa-
tions which describe fluid flow in porous media. This chapter will give us a
brief introduction in the fracture flow in porous media.

In chapter 3 we present heat transfer in porous media. The chapter
contains the governing equations for advection-conduction equation which
we use later on in numerical computations.

In chapter 4 we will present numerical methods we used to solve par-
tial differential equations from previous two chapters. Pressure equation will
be discretized in space while advection part of energy equation will be dis-
cretized both in space and time. TPFA method used for space discretization
will be explained. Advection equation will be discretized in space with up-
wind scheme and in time using implicit scheme. We will give explanation
of fractures discretization. The implementation of source term in numerical
schemes are given here.

In chapter 5 we will construct coarse grid for our simulations. Upscaling
techniques by standard arithmetic mean for rock properties is described.
The coarse scale advection term is upscaled using the sums of fine scale
fluxes [22]. We will discuss upgridding procedures to best represent that
we will further use in the simulation of advection term of heat transport
equation. For coarse grid construction we will use flow based nonuniform
coarsening algorithm with different flow indicators for grid construction such
as time of flight, velocity and permeability. To examine fractures influence on
heat transport we will use the distance to the nearby fractures as coarsening
indicator. Fine scale cells in the matrix are classified by their Euclidean
distance to the nearest fracture [22].

In chapter 6 we will present and analyze numerical experiments. We will
implement pressure equation on homogeneous media on fine grid scale with
and without fractures.

Numerical experiments for advection term of heat transport equation for
homogeneous media are simulated on different grids such as fine scale grid
and different coarse scale grids all these experiments are performed for case
without and with fractures.
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Chapter 2

Fluid Flow in Fractured Porous
Media

The focus in this chaper is on the fluid flow in fractured porus media. The
presentation in this chapter follows [23], [27], [18], [26] and [13].

2.1 Porous Media

A porous medium is material consists of a solid part usually called matrix
and a pore space allows for fluid to flow through the medium. Fluid flow
through the porous medium is considered as single-phase flow if the pore
space is filled with just one fluid. In this thesis only, single-phase flow will
be considered and below we are going to describe porous media parameters
and governing equations related to it.

The geometry of porous medium is highly complex and cannot be de-
scribed in mathematically manner directly. The microscopical point of a
porous medium is either in the matrix or in the pore space hence properties
such as porosity cannot in general be defined point-wise [18], [21]. To cope
with this issue the concept of representative elementary volume, REV first
introduced by Bear [13] is used. The REV concept underlines continuum
approach where the passage from microscopic level to the macroscopic is
obtained by averaging the microscopic values of the porosity over a certain
volume of porous medium [12]. The REV is particular length scale where
the parameter of interest in our case porosity does not change significantly,
which allows us to take its average value over the REV scale [13].

We will use the porosity as one of the basic macroscopic matrix properties
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Figure 2.1: Representative elementary volume (from [28])

to illustrate the REV concept 2.1. Porosity is denoted by φ is:

φ =
Vp
Vt
, (2.1)

where Vp is the volume of the pore space in REV and Vt is total volume
of REV [23]. Figure 2.1 give as visualization of the REV concept. A
displacement on the microscopic scale (left) lead to huge value changes of
the porosity, values changes from one to zero if the movement happened
from the rock to the small-scale pore [26]. On the REV scale (middle) these
heterogeneities are averaged. If the property varies depending on position in
domain the medium is called heterogeneous (right), otherwise the medium is
called homogeneous [21].

2.2 Darcy’s Law

The law was stated by Henry Darcy French hydraulic engineer in 1856 as
a result of a series of experiments [13],[23]. In this thesis we will use the
generalized Darcy’s law obtained from Navier-Stokes equation and express
the conservation of momentum [27],[19]. The equation

~v = −K

µ
(∇p− ρ~g), (2.2)

generalizes Darcy’s law, where ~v is volumetric velocity flux called Darcy’s
velocity, K is permeability tensor, µ is viscosity of the fluid, ρ is fluid density,
p is pressure and ~g is gravitational acceleration vector.
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As it is stated above Darcy velocity is not actual velocity but rather
averaged volume flux density over the entire domain including both fluid
and matrix [18]. The averaged fluid velocity V called intrinsic velocity is
flow only through cross section of fluid [18]. Relation between these two
velocities referred to as:

~V =
~v

φ
, (2.3)

where φ is porosity.
Permeability denoted by K can be defined as a porous medium ability to

transmit fluid through it. The SI unit for permeability is m2 or derived units
Darcy 1D ≈ 0.987 × 10−12m2 or more common milliDarcy mD [23]. The
permeability in single point of medium can varie with respect to direction in
which case the medium is referred to as anisotropic and permeability is rep-
resent using second order tensor [23]. Medium is referred to as isotropic if the
property values are independent of directions. Using hydraulic conductivity
tensor κ permeability can be defined as follows:

K = κ
µ

ρg
. (2.4)

Permeability values for fractured ingenious and metamorphic rock is in range
from 10−15 m2 to 10−11 m2 [23]. There is difference in permeability between
matrix and fractures. In this thesis we consider high permeable fractures
which dictate fluid flow.

2.3 Conservation of Mass

Mass conservation law states that any change of mass in the arbitrary volume
Ω is equal to the net mass flow into the volume through the boundaries plus
mass added to the volume through the source Q [23].
Mass conservation equation referred to as:∫

Ω

∂

∂t
(φρ)dΩ +

∫
∂Ω

(ρ~v) · ~ndS =

∫
Ω

QdΩ, (2.5)

where Ω is domain with boundary ∂Ω, ~n is outward normal unit vector and Q
is possible source or sink. After applying divergence theorem for an arbitrary
domain Ω we get [18]∫

Ω

(
∂(φρ)

∂t
+∇ · (ρ~v)−Q)dV = 0, (2.6)
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and in differential form

∂(φρ)

∂t
+∇ · (ρ~v) = Q. (2.7)

Mass conservation equation has velocity vector components as unknowns and
in addition either density or porosity could be unknowns if either of them
changes over time. This leads to conclusion that mass conservation equation
cannot be solved without combining with other constitutive equations such
as Darcy’s law 2.2 for example [27].

In this thesis we consider a single phase flow for incompressible fluid
without gravity, under these assumptions mass conservation equation 2.5
stated as follows [22]:

∇ · ~v = Q. (2.8)

This equation in combination with Darcy’s law 2.2 give us an elliptic partial
differential equation for pressure [22]:

−∇ · (K
µ
∇p) = Q, (2.9)

where K is permeability tensor, µ is constant viscosity, p is pressure and Q
contains any sources or sink.

2.4 Time of Flight

In order to give explanation for time of flight we use the following sources [24],
[27], [19]. The time of flight τ(x) is time that passive fluid particle travels
from injector to a given point x [20]. To define τ(x) we will use streamlines.
Streamlines Ψ are family of curves that is identical to the path traced out by
a fluid particle under the assumption of steady velocity (considered herein)
[20]. Particle moves with fluid velocity field and we can assume that ~v = ~v(x).
Velocity field vector is tangential to the streamline Ψ at every point x thus
the streamline is an integral curve of the velocity field [20],[27].
Time of flight along the streamline can be mathematically expressed as dif-
ferential equation:

~v · 5τ = φ, (2.10)

or equivalently as parametric equation:

τ(r) =

∫ r

0

φ(~x(s))

|~v(~x(s))|
ds, (2.11)

where r is a distance fluid particle makes along a streamline ~v is Darcy’s
velocity and φ is porosity.
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2.5 Fracture Flow

This section is based on the following sources [14], [15], [25], [18] and [22].
Most geothermal systems are found in fracture rock. The size of fractures in
fractured geothermal reservoir typically follow a power low distribution [14],
[22]. The main characteristics of fractal geometry is the lack of homogeniza-
tion scale or representative elementary volume [14]. Fractures can be dis-
tinguished as large-scale fractures and small-scale fractures [14]. Large-scale
fractures tend to dictate fluid flow through the reservoir and is of particular
interest in this thesis [22].

The fracture network possesses various properties that needed to be de-
fined to fully characterize fractures, most common are fracture aperture and
fracture density [18]. A fracture aperture is defined as a perpendicular dis-
tance between fracture walls [15]. The fracture aperture has essential influ-
ence on fluid flow and transport through fractures making aperture crucial
parameter to determine [18], [15], [14]. However, the determination is not
trivial because in nature this value is not constant but rather varies through-
out the fracture from a few micrometers up to centimeters [14], [15].
Fracture density is the ratio of fracture space in the medium [18].
The fluid flow through fractures can be explained by considering it as laminar
between two parallel plates with constant aperture af see 2.2, [18]. To ap-
ply parallel concept we assume that the fracture length is significantly larger
then fracture aperture [15]. The model is developed from continuity equation
and Navier-Stokes equation for incompressible flow referred to as:

ρ(
∂~v

∂t
+ ~v∇~v) = −∇p+ µ∇~v (2.12)

Boundary conditions assume constant pressures p1 and p2 at the inlet and
outlet boundaries respectively where p1 ≥ p2 [18]. Under this boundary
conditions 2.12 reduces to:

p1 − p2

l
+ µ

∂2vy
∂z2

= 0 (2.13)

Flow takes place only in y direction, in other directions is equal to zero. Here
l denotes fracture length. After 2.12 is integrated twice and after boundary
conditions are implemented we obtained the following velocity field:

vy(z) =
1

2µ

p1 − p2

l
[(a2

f − z2)], (2.14)

using 2.14 velocity is equal to
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Figure 2.2: Laminar flow between two parallel plates

vy(z) =
1

wb

∫ af/2

−af/2

∫ w

0

vy(z)dydz. (2.15)

Using equation 2.15 the average velocity is [18]:

v =
1

wb

∫ af/2

−af/2

∫ w

0

vy(z)dydz

=
1

2µb

p1 − p2

l

∫ af/2

−af/2
[(af/2)2 − (z)2]dz

=
a2
f

12µ

p1 − p2

l
. (2.16)

This average velocity can be seen as Darcy’s velocity [18].
Fracture permeability is equal to:

K =
a2
f

12
. (2.17)

The product of fracture permeability and the cross sectional area is the vari-
able known as transmissivity:

T = KA =
wa3

f

12
(2.18)
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Volumetric flow rate is

qv =
wa3

f

12µ

p1 − p2

l
. (2.19)

Equation 2.19 is known as cubic law.
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Chapter 3

Heat Transfer

In this chapter we will discuss heat transfer in porous media. There are three
different processes of heat transfer: conduction, convection, radiation [18].
The aim of this chapter is to arrive to advection-conduction equation, in this
purpose we will explain heat transfer due to conduction and convection, the
heat transfer due to radiation is neglected. For presentation of heat transport
and governing equations in this chaper we use the following sources [27], [18],
[23].

3.1 Conduction

Conduction or diffusion is heat transfer that occurs at a molecular level,
where energy is transferred from more energetic particles to less energetic
particles. At the molecular level, heat flow can be explained via collisions of
molecules for fluids, and via the vibrations of particles and free electrons for
solids. In geothermal reservoir conduction is the way that heat reaches and
leaves the surface of the matrix [27].

At the macroscopic level heat is transferred form the object with high
temperature to the object with low temperature this is also known as a
Fourier’s law or a thermodynamics analogue of Darcy’s law [18]. Mathemat-
ically conductive heat flux is described by Fourier’s law [27]:

~qcond = −k∇T (3.1)

where ~qcond is conductive heat flux, k is the thermal conductivity while T is
temperature [27]. The thermal conductivity k is material ability to conduct
heat, it is a second order tensor and depends on pressure and temperature
[27]. In this paper we will assume that thermal conductivity is equal to zero.
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3.2 Convection

Convection is a heat transfer that occurs by the molecular movement of
a fluids. It consists of two separate mechanisms: diffusion and advection.
Diffusion occurs due to random motion and interaction of the fluid molecules,
while advection represents collectively fluid moving. Considering the cause of
convection, it can be classified as either natural or forced convection. Natural
convection occurs due to buoyancy forces (warming or cooling) at the other
hand the forced convection occurs due to some external source or mechanism
(pump, fan). The heat flux due to advection can be found as:

~qad = e~V , (3.2)

where e is the thermal energy density and ~V is fluid velocity (intrinsic volume
flux) [27].

Advective heat flux can be defined in terms of heat capacity cp as:

~qad = ρcp~V T (3.3)

where ~qad is advective heat flux, ρ is fluid density, ~V fluid velocity, T is
temperature and cp is heat capacity under constant pressure [27].

Newton’s law of cooling is the experimental law which states that convec-
tive heat transfer between the fluid and the solid is proportional to differences
in temperature between fluid and solid [18]. Mathematically this can be writ-
ten as:

~q = ah(Ts − Tf ) (3.4)

where ~q is heat flux due to diffusion, energy is transferred from solid to
fluid, the temperatures Ts and Tf are the temperatures of solid and fluid,
respectively, a is a surface area, h is a heat transfer coefficient [27]. Due to
the fact that determining the heat transfer coefficient h is one of the most
difficult part in describing the system and that Newton’s law of cooling is
valid only for some idealized cases, we assume the local thermal equilibrium
[18]. Local thermal equilibrium LTE is achieved if the temperature difference
in REV is smaller than temperature difference in system[27].Local thermal
equilibrium in practice mean that Ts = Tf .

3.3 The Conservation of Energy

The Conservation of Energy law also known as The First Law of Thermo-
dynamics states that total energy of an isolated system is conserve, i.e. the
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change in energy of an arbitrary system is equal to the energy added or re-
moved to the system over the boundaries or through the sources or sinks.
The total energy of the system is equal to the sum of the mechanical energy
and internal energy. For the purposes of this thesis we will consider only the
last term, due to relatively slow fluid velocities and under the assumption
of no gravity, term mechanical energy can be neglected. The internal en-
ergy may consists of different types of energy however, in this thesis we will
assume that the internal energy is equal to thermal energy of the system.
From the first law of thermodynamics the internal energy is equal to the sum
of heat fluxes (advective and conductive) and heat flux through sources or
sinks. The energy conservation equation for fluid phase is [27]

φ
d

dt

∫
Ω

efdx︸ ︷︷ ︸
change in thermal energy

= −φ
∫
∂Ω

~qad · ~ndS︸ ︷︷ ︸
advective term

−φ
∫
∂Ω

~qcond · ~ndS︸ ︷︷ ︸
conductive term

+

∫
Ω

Qfdx︸ ︷︷ ︸
source term

, (3.5)

where subscript f states for fluid phase, φ is porosity, e energy density , ~qad
is advection heat flux, ~qcond conductive heat flux, and Qf is the source term
resulting from internal heat sources and convection from the matrix. Source
term Qf can be divided into two term:
Qf = Qcond + φQsource = ah(Ts − Tf ) + φQsource.

Further, we insert equations 3.1 and 3.2 in 3.5 and in terms of LTE
Qf = φQsource we get [27]:

φ
def
dt

+ φ∇ · (ef ~V )− φ∇ · (kf∇Tf ) = Qf , (3.6)

and for solid phase:

(1− φ)
des
dt
− (1− φ)∇ · (ks∇Ts) = Qs. (3.7)

The equation for solid phase differ from the equation for fluid phase because
it does not include advection term and it is multiplied by (1− φ) and source
term for solid phase is Qs = (1 − φ) Qsource [27]. After we sum these two
equations for solid and fluid phase we will apply divergence theorem and
use 3.3 and arrive to the expression for advection-conduction equation for
temperature in differential form [27]:

(ρcp)eff
∂T

∂t
+ (ρcp)f~v · ∇T︸ ︷︷ ︸

advective term

−∇ · (keff∇T )︸ ︷︷ ︸
conductive term

= Qeff , (3.8)

where keff is effective thermal conductivity and Qeff is effective source term:
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keff = (1− φ)ks + φkf ,
Qeff = Qs +Qf ,

(ρcp)eff = (1− φ)(ρcp)s + φ(ρcp)f .

The system of equations 2.9 and 3.8 is decoupled system of equations that
together with source term and initial conditions we will solve sequentially in
numerical simulations in the following chapter [22].
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Chapter 4

Numerical Methods

In this chapter we will use the following sources [27], [19], [18], [17], [22] and
[26]. In this chapter we will describe numerical solution of mathematical
model that simulate the physical processes in the reservoir.

Mathematical model describes processes of fluid flow and heat transport
from the source throughout geothermal reservoir, it is given as a set of partial
differential equations, PDE derived in chapter 2 and 3 [19]. Geothermal
reservoir is modeled as a 3D grid where grid cells contains rock properties
porosity and permeability. Furthermore, we will describe modeling approach
that we are going to use for fractured geothermal reservoir.

In this chapter we will diverse solution methods for pressure equation
2.9 and advection term of heat transport equation 3.8 that we will solve
computationally in the chapter 6 . Equations will be solved sequentially
first pressure equation and then advection term of heat transport equation.
These equations usually cannot be solved analytically except for some simpli-
fied cases [27]. Various numerical methods have been developed in order to
computationally solve PDE. Since pressure equation is elliptic while advec-
tion term of heat transport equation is hyperbolic PDE we will use different
discretization techniques for them. This chapter is organized in the way that
the section on the discretization in space will be followed with the section on
fine scale discretization and discretization in time. Discretization in space
will give us grid construction in more details and motivation for using dis-
crete fracture matrix DFM model and the construction of the model. We
will describe two different discretization methods for mathematical model of
fluid flow and heat transport processes. Finally, time discretization explains
temporal discretization of advection term of heat transport equation.
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4.1 Discretization in Space

Numerical methods for solving porous media problems are run on some spa-
tial domain which represent geothermal reservoir. Due to its complexity
geothermal reservoir is modeled using gridding techniques, while fracture
network is modeled explicitly using discrete matrix model. Some of the most
used numerical methods include the finite difference method (FDM), the
finite element method (FEM) and finite volume method (FVM) [18]. Each
of the methods stated above have its advantages and constraints and the
choice of the method is related to the particular problem [18]. In this thesis
we will use the (FVM) method.

4.1.1 Gridding

Geothermal reservoirs are characterized by their geometry and by their rock
properties and can be modeled using different gird types [17]. The simplest
grid type is structured gird with regular grid cells. In this thesis we will
consider a 3D Cartesian grid as a simplest model of geothermal reservoir
without fractures. In figure 4.1 Cartesian 3D grid is shown on the left-
hand side and on the right-hand side we can see grid cell with its basic
geometry characteristics. The advantages of this grid included that they are
relatively easy to construct and can be easily partitioning into coarse grid if
need see chapter 5 [17]. In addition, they are all orthogonal which allows us
to apply simple numerical discretization schemes for instance two-point flux
approximation that in turn produces simpler systems to solve [17]. The main
disadvantage of Cartesian 3D grid is that it is not flexible for modeling of
geological features [17]. In 3 D Cartesian grid cell is a cube associated with
a certain number of parameters to be determined when the system is solved
4.1 [19]. Each of the grid cell represents representative elementary volume
REV [17]. The geometry of the grid cell is defined by a set of vertexes, a
set of edges that connect pair of vertexes and a set of faces [19]. Faces are
surfaces delimited by a subset of the edges, that define the interface between
two cells [19]. In three dimensions face is the plate between two neighboring
cells. We say that two cells are connected if they have a common face [19].
In our grids fracutres are plates papallel to one of the axis.

4.1.2 Fractures and Discrete Fracture Matrix (DFM)
Methods

This section is mainly based on the sources [26], [22] and [18]. In some cases,
fractures may not satisfy the conditions allowing us to use the averaging by
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Figure 4.1: 3 D Cartesian grid and a single grid cell with belonging information

REV and must be accounted for explicitly [26].
Their properties may differ dramatically from the properties of the rest of

the rock. Consequently fluid and transport properties are strongly dominated
by the presence of the fractures. Although we do not know scale separations
for realistic scenarios we will assume that we can determine which fractures
are significant one to be resolved explicitly [26].

Modeling approaches for fractured reservoirs can be classified into three
main categories according to their spatial representation in the reservoir:
single-continuum models, multi continuum models and discrete fracture mod-
els [22]. Single continuum models assume that the fractures effects on the
fluid flow is within some limit and that it could be upscaled and included in
the modified permeability [26]. The concept of REV is valid for this model.
The advantage of this model is that the standard reservoir simulations can
be applied.

In multi-continuum models fractures and matrix are modeled by a repre-
sentative continuum with associated flow characteristics. The main advan-
tage of this model comparing to the single model is that it allows us to better
capture the integral transport behavior[22].

Discrete fracture network (DFN) models assume that the flow takes place
in the fractures neglected the surrounding pores medium [26], [22].

Discrete fracture-matrix (DFM) models represents the combination of
the multi-continuum models and (DFN) models. The main characteristics
of the discrete fracture model is that large-scale fractures are represented
explicitly while the effects of the small-scale fractures are included into the
permeability of the porous matrix [22]. Fractures are very thin compared
to their length, this characteristic allows us to model them in co-dimension
[19]. In DFM model fractures are constructed by converting faces into a thin
cells called hybrid cells with a volume equal to the product of aperture and
a hybrid face area. Hybrid cells are lower dimensional objects i.e. plates in
our case and consists of hybrid faces i.e. lines [6]. Hybrid cells are connected
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both with other hybrid cells and matrix cells, except in the case of isolated
fracture and matrix cells [24]. These connections will be furthered analyzed
in section 4.2.1.

A major challenge in discrete fracture model is large computational cost
due to individual representation of fractures in large-scale simulations. At
the other hand regarding accuracy, results obtained by DFM model gives
the most accurate impact of the fracture network on the fluid flow.
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4.2 Fine Scale Discretization

We consider that Ω is reservoir domain represented by a discrete model i.e
grid that consists of grid cells denoted Ωi referred to as control volumes . The
finite volume method (FMV) is based on integration of the PDE over each
control volume Ωi [17]. In the next step volume integral will be converted
using divergence theorem into the flux over the surface ∂Ωi. This principle
leads to a method with the mass conservation law within each control volume
[18]. To illustrate the method, we will use pressure equation with source term
2.9. Under the assumptions of constant density and viscosity without gravity
condition equation becomes:

−∇ · (K∇p) = Q (4.1)

Let Ω be a fine grid domain and Ωi set of fine grid cells i.e. control volumes
such that Ω = ∪Ωi, where i = 1, ..., Nf , Nf is the total number of fine grid
cells. The equation 4.1 is integrated over each grid cell Ωi and after applying
divergence theorem it becomes [18]:∫

∂Ωi

~v · ~ndS =

∫
Ωi

QdV, i = 1, ...Nf (4.2)

where ∂Ωi is the boundary of the grid cell Ωi, and ~n is the outward normal
vector of the ∂Ωi. Here ~v = K∇p is the velocity vector.

The system of equations 4.2 depend on the finite set of unknowns that
can be solved over each control volume Ωi [27]. We suppose that the PDE
2.9 is solved over the domain Ω if the corresponding system of discretized
equations are solved over each control volume Ωi [17]. The discretization of
equation 2.9 rises to a linear system:

Apf = Q, (4.3)

where vector pf contains cell-centred pressure values.

4.2.1 Two Point Flux Approximation

A two-point flux approximation TPFA is used to discretized pressure equa-
tion 2.9. TPFA is the simplest of FVM discretization. It is widely used
due to its advantages as simplicity, computational efficiency and robustness.

The equation 4.2 is the mass conservation equation for each grid cell and
using Darcy’s law the flux over each side can be approximated by the pres-
sures from the neighboring sides [27]. The idea is to express the pressure
gradient as the difference between the pressure at the face centroid and the
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Figure 4.2: Two-point flux approximation for grid cells Ωi and Ωk in 3D Cartesian
grid

pressure at the cell centroid [19]. The flux from cell Ωi to cell Ωk is approxi-
mated by [19]

vi,k ≈ Ai,kKi
(pi − πi,k)~ci,k
| ~ci,k |2

· ~ni,k = Ti,k(pi − πi,k), (4.4)

where Ai,k is the area of shared edge, Ki is the permeability in cell Ωi, ~ci,k
is the distance vector from centroid of the cell to the face center, pi is the
pressure at the centroid in the cell Ωi, πi,k is the pressure in the face center
Γi,k and Ti,k is a half transmissibility (Figure 4.2). Considering the continuity
of fluxes and the continuity of face pressures, we get the formula for the flux
across the interface Γik between the cells Ωi and Ωk

T−1
i,k vik = pi − πik, (4.5)

− T−1
k,i vik = pk − πik, (4.6)

After we eliminate the interface pressure πik we obtain the following
TPFA system of equations:

Σ
nf

k=1Tik(pi − pk) = qi (4.7)

for each cell Ωi, where nf is the face number for the cell Ωi. Face trans-
missibility denoted by Tik is equal to the harmonic average of the two half
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transmissibility associated to the common face for cells i and k [19], [27].
Half transmissibility is equlal to:

αi,k =
Ai,k~ni,kKi

~ci,k · ~ci,k
~ci,k (4.8)

Ai is area, ~ni is a unit normal vector, Ki is permeability assigned to the cell
i and ~ci is distance vector from cell center to the face centroid. The system
4.7 is made symmetric and positive definite by adding the positive constant
p1 = 0 to the first diagonal of the matrix A = [aij] where

aij =

{
ΣkTik, if i = j

−Tij, if i 6= j
.

The matrix A is sparse and will have a heptadiagonal structure for 3D grid
[19].

Now we will take into account the fractures and we will implement TPFA
method for them. The unknowns associated with the fracture cells remains
after the completing the unknown’s pressures at the centroids of the matrix
cells [26]. As lower dimensional objects fracture faces are converted into
fracture cells by multiplying the fracture apertures with original face area
[6]. This way the volume of the fracture cell is obtained. Hybrid faces are
defined as faces parallel to the fracture faces displaced half an aperture to
either side [6]. Half transmissibility is corresponding to each hybrid face [6].
Since fracture cell may have common face with matrix cell or with other
fracture cell, we will distinguish matrix-fracture connections and fracture-
fracture connections. For common face between fracture cell and matrix cell
i.e. matrix fracure connection, half transmissibility is obtained the same way
as for the matrix-matrix connections with adjustment to the distance vectors
[24], [26]. Two different vectors are used on the matrix and on the fracture
side of the face [24]:

~cf =
af
2
~nf , (4.9)

and
~cm = ~cm − ~cf , (4.10)

where ~cf and ~cm represents the distance from fracture and from matrix while
af is fracture aperture (Figure 4.3). For common face between two fracture
cells i.e.fracture-fracture connections and under the assumption that fracture
length is bigger than fracture aperture, half transmissibility is [26]

Tij =
αiαj

Σn
k=1αk

(4.11)
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Figure 4.3: Grid domain and computational domain for matrix-fracture connec-
tions

αi, αj, αk are half transmissibility of fracture cells while n is the number of
fracture cells meeting intersection.

We will close this section with discussion of convergence of TPFAmethod.
TPFA method converge if the grid is K−orthogonal. The K−orthogonality
condition means that vectors K~ni,k and ~ci,k are parallel [19]. In the case that
K − orthogonality condition is not fulfilled TPFA discretization is not con-
sistent and numerical solution may not converge to the true solution [18].

4.2.2 Upwind discretization

Advection term of heat transport equation is discretized using the upwind
method. The reason for this type of discretization is that the flux direction
is known to us. The advantage of this method is that it distinguishes inflow
and outflow through the edge of the cell and based on that gives the positive
or negative sign to the flux vector [27]. The advection term referred to as:

∇ · (T~v) = Q (4.12)

After integrating the equation over each grid cell and applying divergence
theorem we get [27] ∫

∂Ωi

(T~v) · ~ndS =

∫
Ωi

QdΩi. (4.13)

We will explore the flux flow through the internal edges. Let Γij be the
common face between two cells Ωi and Ωj. The flux over the edge Γij in the
direction of the unit normal vector ~nij is the scalar product of the vectors
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~nij and ~v [27]. The heat flux through the edge Γij is∫
∂Ωi

(T~v) · ~ndS ≈

{
Ti

∫
Γij
~vij · ~nijdS, if ~vij · ~nij ≥ 0

−Tj
∫

Γij
~vij · ~nijdS, if ~vij · ~nij < 0

.

4.3 Discretization in Time

The pressure equation 2.9 for incompressible fluid flow with constant porosity
and viscosity becomes elliptic partial differential equation not dependent on
time [27]. This equation is solved once using the TPFAmethod. At the other
hand advection-conduction heat transport equation 3.8 consists of two terms
advection and conduction and needs temporal discretization. The coupled
system of equations is of the form [18]:

∂

∂t

∫
Ωi

TdΩ =

∫
Ωi

F (T )dΩ, (4.14)

where F is operator depends on fine scale temperature T , time t, and Darcy’s
velocity ~v and Ωi is grid cell. After multiplying with reciprocal domain we
get:

∂

∂t
(

1

| Ωi |

∫
Ωi

TdΩ) =
1

| Ωi |

∫
Ωi

F (T )dΩ. (4.15)

The product on the left-hand side is the average of the integrand in cell
Ωi while the right-hand hide is the function average in cell Ωi [18]. If we list
values and functions in all cells of the grid as a vector we get the followed
simplified system of equations [18]:

dTi
dt

= Fi(T ), (4.16)

where T is temperature vector and F is operator containing discretization
of advection-conduction equation

T =

T1
...
TN

F =

F1
...
FN


.

Time scale is discretized as t0, t1, ..., tN with time step 4tn = tn+1 − tn.
After applying theta method for Θ ∈ [0, 1) we get:

T n+1
i − T ni
4tn

= ΘFi(T
n+1
i )− (Θ− 1)Fi(T n

i ). (4.17)
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Advection-conduction heat transport equation is discretized using TPFA
method for conduction term and upwind scheme for advection term. Since
in this thesis we are focused on advection part of the equation while assume
that the conduction part is equal to zero, we will assume that Θ = 1 and
obtain Euler’s backward method. The Euler’s backward scheme is:

T n+1
i = T ni +4tFi(tn +4t, T n+1

i ). (4.18)

Advection part contains heat capacity cp which usually depends on temper-
ature thus the system 4.18 is not linear and we need to use iterative Newton
Raphson method to approximate T n+1 [27]. For simplicity, we will in this
thesis assume, that heat capacity is constant which give us that operator F
is linear. We have to solve the system:

Fi(Ti) = ATi. (4.19)

In MATLAB linear system of equations is solved using LU solver [19].
This mean that the matrix A is decomposed into lower and upper triangular
matrices respectively L and U where A=LU[27]. Euler’s backward method
as an implicit scheme is time stable [26].
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Chapter 5

Coarse Scale Discretization

The presentation in this chapter follows [16], [17] and [27]. For section Error
Computaion we use [26] for source. Fine scale reservoirs models are very
detailed which leads to large matrices in transport solvers. Sufficient com-
putational capacities are needed to process these detailed models in short
time. In this thesis we will present two techniques to increase computational
efficiency: upscaling and uppgidding. Upgridding is a process of creating a
coarse grid while upscaling bring reservoir properties from the fine scale grid
to coarse scale grid. Typically, upscaling of the reservoir properties is carried
out in combination with upgridding.

5.1 Upscaling

There are numerous techniques developed to upscale reservoir parameters.
The choice of the adequate upscaling procedure depends on the problem we
are faced with. Here we will explain upscaling using standard arithmetic
mean. Reservoirs properties included in heat transport equation need to be
upscaled. Fluid porosity on coarse scale can be upscaled through the simple
volumetric average:

φ∗ =
1

VΩc
l

∫
VΩc

l

φdV ≈ (Σi∈Ωl
c
φiVi/VΩc

l
) (5.1)

where Ωc
l denotes a coarse block with a bulk volume denoted as VΩc

l
. Coarse

block Ωc
l consists of fine grid cells denoted with i, porosity of a fine cell i is

equal to ψi and volume is equal to Vi.
Since in this thesis we consider fine scale grid with homogeneous medium,

the only rock parameter that we are going to upscale is porosity. In the case
of single phase flow with constant porosity, such is in this thesis, the resulting
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porosity in each coarse grid blocks will be constant value the same as for fine
gird cells. Permeability is used only once when solving the pressure equation
so we will not upscale it.

Coarse scale flow rate q∗vol across the interface l, between two grid blocks,
is equal to the sum of the flow rates corresponding to fine scale faces which
gain the interface l i.e [27]:

q∗vol = Σ
Nf

l
i=1qi (5.2)

qi = Ai~vi · ~ni (5.3)

where N f
l is the total number of fine scale faces contains in coarse face l. For

fine scale face i which belong to coarse interface l we denote Ai as face area,
~ni as normal outward vector and ~vi as velocity vector. Normal on a coarse
face is equal to sum of normal vectors on fine scale faces which belong to the
coarse face [27].

5.1.1 Coarse Scale Advection Term

The advection term of heat transport equation on the coarse scale referred
to as: ∫

∂Ωc
l

(~v · ~n)dS =

∫
Ωc

i

QdΩ (5.4)

The sub-script c indicating that integration is done on the coarse grid block
Ωc
i . The flux over the coarse scale interface γij is equal to the sum of fluxes

over the corresponding fine scale interfaces Γij. We will find all fine scale
faces that lie on the interface between the coarse grid blocks. The fine-scale
fluxes are obtained after we solved pressure equation using TPFA method.
The influx on fine scale face has sign 1, while out flux from the fine scale face
has a sign -1 [19]. To get flux values on the coarse grid we need to multiply
fine scale flues with sign before summing them along coarse scale interface to
obtain coarse net flux [5]. We assume that temperature is constant over each
grid block Ωc

i . Temperature in the coarse grid block is equal to upscaled fine
scale temperature [17]:

Tl =
1

| Ωc
l |

∫
Ωc

l

TdΩ ≈ Σi∈Ωc
l
Ti
| Ωc

i |
| Ωc

l |
(5.5)

Then conservative coarse scale discretization of advection term is obtained
by summing a single point discretization for all fine grid cells in coarse grid
block [17].∫

∂Ωc
l

(~vT ) · ~ndS ≈ Σk 6=lmax(TlΣΓij∈γkl~vij − TkΣΓij∈γkl~vij), (5.6)
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From the formula for advection term discretization on coarse grid we can
notice that this is a single point upwind scheme on the coarse grid [17].

5.2 Upgridding

Coarse grid is constructed by grouping fine grid cells into blocks Ωc
l where

l = 1, ..., Nc, Nc is the total number of coarse grid blocks [16]. We use a
partitioning vector to represent coarse grid. Partitioning vector consists of
Nf elements, where Nf is the number of fine grid cells. If fine grid cell
i belongs to coarse block Ωc

l partitioning vector has value l on the i − th
position. The relationship between coarse grid blocks and belonging fine
grid cells that make each of the blocks can be seen in figure 5.1.

In this paper we present the flow-based non-uniform partitioning of the
fine scale grid using amalgamation algorithm see [1]. We consider coarsening
of fine scale grid with fracture filed and fine scale grid without fractures.
Since fracture cells are low dimensional objects, coarsening for fine grid with
fractures cannot be done directly. Special emphasis is put on how to treat
fine scale fracture cells. The approach we use is to add the set of the fine
scale fracture cells to the set of fine scale matrix cells thus, fracture cells and
matrix cells will be treat equally.

For upgridding algorithm based on amalgamation we need to define in-
dicators based on flow parameters: time-of-flight, permeability and velocity.
Since velocity is vector we will rather use magnitude of velocity instead. We
ideally, would like that resulting coarse grid for two different idicators: time
of flight and prermeability, have small grid blocks both for a case of low
values of time-of-flight and for case with high values of permeability. This
leads to scaling of flow indicators using indicator function. For a chosen flow
parameter, we define indicator function as [27]:

g(y) = log|y| −min(log|y|) + 1. (5.7)

Flow parameters are absolute permeability, magnitude of velocity and time-
of-flight. For upgridding of fractured fine scale gird, we will introduce two
new coarsening parameters: square root to the nearest fracture and com-
bination of the time-of-flight and square root to the nearest fracture. The
motivation for introducing these parameters is that we are focused on coarse
scale discretization that give us a good representation of fractured network.
In that context the choice of distance parameter seems as a natural choice,
the main reason for using square root instead of distance to the nearest frac-
ture is its smaller scale and smoothness. The combination of two parameters
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Figure 5.1: Flow based coarse grid with coarse grid blocks consist of fine grid cells

flow parameter time-of-flight and distance parameter square root to the near-
est fracture is the result of our wish to construct coarse grid that works fine
for transport problems dominated by fracture flow. For square root distance
as indicator we will not use indicator function from 5.7 but rather indicator
itself, in the case of combination of two indicators we will define indicator
function as a sum of scaled time-of-flight using 5.7 and square root distance.

Flow-based non-uniform coarsening method consists of four steps as follows:
[16]:

1. Compute an initial partitioning using the flow indicator function

2. Merging of small grid blocks with volumes under the lower volume
bound into the larger blocks [21]

3. Refining grid blocks with total volume that exceeds defined upper
bound

4. Repeat step 2.

In order to start the algorithm we need to define N as number of bins
which is utilized in the first step, NL as lower volume bound, NU as upper
bound of total amount of flow through each grid block. The indicator function
defined with 5.7 is segmented into N uniform blocks after the first step. A
lower bound NL prevented algorithm from generating to small grid blocks
[17]. If the condition | Ωc

l |< NL

N
| Ω | is fulfilled for coarse gird block Ωc

l

obtained after first step this block is merged with neighboring block that has
the closest value of indicator function [17]. The upper bound NU prevented
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(a) Step1: 164 grid blocks (b) Step2: 25 grid blocks

(c) Step 3: 1345 grid blocks (d) Step 4: 805 grid blocks

Figure 5.2: Four steps of the coarsening algorithm described in 5.2 based on time-
of-flight flow indicator

algorithm from generating too large gird blocks [16], [19]. This value is
used to refine coarse grid blocks with volume grater than NU . Refining
algorithm starts from the fine grid cell which is furthered away from coarse
grid block center and letting it add the neighboring fine grid cells until the
upper bound is exceeded [21]. The algorithm is repeated if the upper bound
in the remaining fine grid cells inside the block violate the upper bound.
After refining grid blocks we repeat step 2 because there might remain grid
blocks that violate the lower bound [16]. Predefined values: N , NL and NU

have significant impact on the number of grid blocks and on the quality of
the grid see [19],[16]. From [16] we can notice that smaller number of bins
lead to a larger grid blocks, also small values of lower and upper bound lead
to smaller coarse blocks in regions with low flow. The coarse grid blocks
constructed this way are connected components. In figure 5.2 we can see
four steps of coarsening algorithm described in 5.2. From figure 5.2 we can
see that coarse blocks after first step are very large especially in the regions
with low time-of-flight and some of them go all around the domain. After
refining steps step3 and step4 resulting grid is with higher number of grid
blocks than after step1 but we achieved better distribution of grid blocks
specially within regions of low time-of-flight.

32



5.3 Error Computation

In this thesis we will use different indicators to construct coarse girds and we
are interesting in the quality of the results obtained on each of these coarse
grids. One of the most common measure of quality is to calculate errors of
the solution on the coarse grid relative to the reference solution. Errors could
be calculated for the parameters of interests such as pressure, time of flight
and temperature. In order to calculate errors, parameters have to be defined
in each grid cell. Since we will solve pressure equation only once on the fine
scale we will calculate values for pressure and time of flight only on the fine
scale grid so we cannot use this parameters as a measure of quality of coarse
grid. We will use temperature as quality measure. The error we are going to
use is defined using L1 norm where as a reference solution is taken fine scale
solution:

EΩ =
Σ
Nf

i=1 | Tcoarse − Tfine |
Σ
Nf

i=1Tfine
(5.8)

where Ω is domain, Nf is total number of fine grid cells, while Tcoarse and
Tfine are temperatures in fine grid cell i respectively.
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Chapter 6

Numerical Experiments

The main objective of this chapter is to discuss the effects of fractures on fluid
flow and heat transport processes and demonstrate coarsening methods de-
scribed in previous chapter. For this purpose, we will run our numerical mod-
els described in detail in chapter 4 on the fine scale grids without fractures
and with fracture field. Geothermal reservoir is modeled by different grids
fine scale grid and coarse scale grids obtained by coarsening with different in-
dicator function. We will investigate which coarse grid is best approximation
of geothermal reservoir i.e. which coarse grid model give us the smallest error
for the advection term in heat transport equation. In this chapter we will
present simulations of mathematical models for fluid flow described in chap-
ter 2 and advection part of the heat transport equation chapter 3. Numerical
methods that have been used for these simulations are described in detail in
chapter 4. For code writting in this thesis we use Matlab Reservoir Simu-
lation Toolbox (MRST ) developed by (SINTEF ) [10]. MRST is an open
source sofware in use for reservoir simulation and modelling which contains
core funcionality and different ad-ons modules [10]. The basic pressure and
transport solvers that implement TPFA model is consist in the core part of
MRST [18], [10]. In this thesis we will use (MRST ) add-ons modules such
as: agglom and DFM . We used a coarse by amalgamation module agglom
with main characteristics that the coarse blocks are generated by amalga-
mating cells of the original fine grid [1], [27]. For generating fractures in this
paper we use a DFM module as described above in section 4.1.2. DFM
module has TPFA solver and is compatible for unstructured grids[6].

MRST does not have any heat transfer solver for linear advection-conduction
equation thus we use the solvers created in Reservoir group of the University
of Bergen. The transport solvers for advection term of heat transport equa-
tion for the fractured 3D grid was developed by Ivar Stefansson as a part of
his master thesis see [26]. In this thesis we will use solver for implicit advec-
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tion term of energy conservation equation and modeled it for a coarse grid.
The solvers can simulate the advection part of the heat transport equation
and return temperatures in every grid cells as a result [26].

6.1 Numerical Experiments on the Fine Scale

In this section we consider two different test cases in order to illustrate the
applicability of numerical methods described in chapter 4 for pressure equa-
tion 2.9 and advection part of heat transport equation 3.8. The section is
divided into three subsections: case set up, numerical results on the fine scale
and discussion of numerical results. In the first subsection we will describe
our two test cases with parameters that described them. In the second sub-
section we will give numerical results for fluid flow model and advection term
of heat transport on the fine scale for test cases. In the third subsection we
will give the further explanation of numerical results.

6.1.1 Case setup

Here we will describe test cases we are going to use for numerical simulation.
We will construct two test cases. These test cases are very simple but at the
other hand illustrative to see the difference between the processes that are
run on the fractured grid and on the grid without fractures. We will further
use them in the next section 6.2.

Case 1 assumes Cartesian grid with dimensions 40 × 40 × 30 and with
physical dimensions 80m× 80m× 60m with rock and fluid properties stated
in 6.1. In further text we will also call this grid: fine scale grid without
fractures. We use source term to implement fluid flow into and out the
interior points of domain [19].
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Number of grid cells 48000
Porosity φ = 0.01

Permeability K = [1 1 1] mD
Density ρ = 1014 kg / m3

Viscosity µ = 1 centiPoise

Table 6.1: Fine grid fluid and rock parameters. We list number of grid cells
and rock porosity, isotropic permeability and fluid parameters density and
viscosity.
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Figure 6.1: Fracture field

Case 2 is grid with the same dimensions as in Case 1, with fracture filed
as in figure 6.1, where matrix and fractures properties are described in table
6.2. From 6.2 we can notice that dispute the same dimensions this grid
has more cells due to the presence of fracture filed, it can be also seen that
fractures are high permeable comparing to the surrounding rock. Fractures
in our simulations are constructed in MRST module DFM see 4.3. In
DFM module fracture cells are distinguished from matrix cells by mark
them as a hybrid cells [6]. DFM has predefined functions for computed
transmissibility with a two-point flux approximation 4.3 modified from the
original functions in core MRST to include hybrid cells [6]. Here we will
define initial conditions for our test cases. Source is set in the first grid cell
in the left upper corner and at the last grid cell with flux rate respectively
of 1m3/Day and −1m3/Day. We assume zero fluid flow through boundaries
of domain. In the case of incompressible fluid with no boundary condition
considered here flux must sum to zero to have a well posed model [19]. Let
us set initial temperature of the reservoir at 1◦C and the injection cold water
temperature at 0◦C. We inject water at the upper left corner and pump the
warm water at the right down corner. We assume zero heat flow through the
boundaries. Next, we specify thermal conductivity to be equal to zero, thus
we obtain only advection term of the equation.
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Number of grid cells 49980
Porosity φ = 0.01

Matrix permeability Km = [1 1 1] mD
Density ρ = 1014 kg / m3

Viscosity µ = 1 centiPoise
Fracture permeability Kf = 10000× [1 1 1]mD

Fracture aperture af = 0.001

Table 6.2: Fractured grid. We list number of grid cells and rock porosity,
isotropic permeability and fluid parameters density and viscosity, finally we
list fracture properties fracture permeability and fracture aperture.
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6.1.2 Numerical Results on the Fine Scale

Here we will represent numerical solutions for pressure equation and for ad-
vection term of heat transport equation for our two test cases. Numerical
methods for both equations are described in detail in chapter 4. As it is
described in chapter 4 we will use two different numerical methods for equa-
tions and solve them consequently. We begin with numerically solving pres-
sure equation for the first test case. Considering that we have source term
and no boundary conditions the fluid flow from the left upper corner to the
right down corner. TPFA method 4.2.1 is used to numerically solve pressure
equation. In figure 6.2 we can see solution of pressure equation 2.9 on the
fine grid. Pressure values are highest near the upper left corner and lowest
near the right down corner. Time of flight is calculated using formula 2.10
these values are lowest near the upper left corner and highest on the left and
the right down edges opposite to the upper left source term. We follow with
simulations for Case 2.

Pressure equation 2.9 is numerically solved using predefined function for
TPFA method in DFM module. We compute time-of-flight in DFM mod-
ule using fluxes from TPFA in DFM and predefined function to account for
hybrid grid cells. In figure 6.3 we can see pressure distribution and time-of-
flight on fine scale fracture grid.

We will follow with numerical solution of advection part of heat transport
equation. Fluxes obtained using TPFA method is used in upwind discretiza-
tion 4.2.2. To numerically solve advection term of heat transport equation we
use Euler′s backward scheme 4.18. As an implicit method Euler′s backward
scheme has no requirements on time step size, but it needs large computa-
tional time. We will set number of time steps to be equal to 10. In figure
6.4 we can see how the heat is transferred through the reservoir due to fluid
motion at time 14e8 [s] which is approximately 41 years. Cold water is trans-
ferred from upper left corner to the right. Temperature due to advection is
passed by the motion of the fluid. Figures 6.5a and 6.5 give us temperature
distribution for Case 2. Fracture field 6.5a is noticeable as two darker lines
comparing to the rest of the grid, due to its lower temperature.
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Figure 6.2: Pressure and time-of-flight distribution for Case 1, grid is rotated from
left to right so we can see the back side of the grid, white cells represent source
term.
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Figure 6.3: Pressure and time-of-flight distribution for Case 2, grid is rotated from
left to right so we can see the back side of the grid, white cells represent source
term.
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Figure 6.4: Temperature distribution for Case 1 at time 14e8 [s].
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(a) Temperature distribution for Case 2.

(b) Temperature distribution within fracture filed

Figure 6.5: Temperature distribution for Case 2 and temperature distribution
within fracture field at time 14e8.
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6.1.3 Discussion of the Numerical Results on Fine Scale

Comparing fluid flow solutions for test cases it can be noticed how time-of-
flight depend on the presence of fractures. Fractures are much more perme-
able than the matrix, so it needs less time for fluid to flow through them
and time of flight values are lower within the fracture field. In the case of
fractures parallel to the x− z plane, we can see that the time-of-flight values
decreases under the fractures. Comparing pressure distribution for our two
test cases we can see that in Case 2, pressure values are higher and that differ-
ence in pressure distribution is not that visible as in the case of time-of-flight.
From figures 6.9 and 6.5a we can see that temperature distribution due to
advection depends on the presence of the fractures. Fracture field is clearly
visible in the second figure and temperature distribution is not symmetrical
regarding diagonal from the left upper to the right down corner as in the
first test case but rather translated to the fracture filed. Temperature within
the fractures are lower than in the rest of the grid this is because fractures
are high permeable cold water flow easier through the fractures than through
the neighboring rock and heat is transported with motion of the fluid. From
figures for fluid flow and heat transport for the test case without fractures
and with fracture field we can see that fluid flow and heat transport depend-
ing on the presence of the high permeable fractures which makes fluid flow
parameters as natural choice for coarsening indicator.
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6.2 Numerical Experiments on the Coarse Scale

In this section we will run numerical experiments for advection term for each
of the test cases defined in section 6.1 on the different coarse grids. We
will close this section with discussion about the quality of the solution. The
quality of the solution is measured by calculating errors using equation 5.8.
In addition, computational times for different coarse grids is presented, we
will compare these times with time obtained on the fine grid.

6.2.1 Coarse Grid Construction

Coarse grid for Case 1 To construct three different girds for Case 1, we
will use the following cell-wise indicators: time-of-flight, the, absolute perme-
ability, the magnitude of velocity at cell center. For all indicators we use loga-
rithmic scaling form equation 5.7. We will use MATLAB module agglom for
coarse grids construction. The resulting algorithm for non-uniform coarsen-
ing in module agglom is a special case of a more general algorithm described
in 5.2 [1]. The main improvement in agglom is that the last two steps are
repeated few times to get better grids [1]. Term better grid in this context
mean that we will repeat steps so we get small number of the grid blocks
that volatile the predefined upper and lower bounds and that resuliting grid
blocks are connected. We set number of bins value as N = 10 and segment
the indicator value into ten bins after the first step in coarsening algorithm.
We need to define the lower volume bound as NL = 20 and upper volume
bound as NU = 60. The non-uniform coarse algorithm needs to know all
the neighbors of a given cell on the boundary of the block that we are go-
ing to merge in step two using the lower bound to choose which fine cells it
should add to the growing block [16]. After merging the grid blocks we will
use refineGreedy2 function for refinement of blocks in which the indicator
function volatile the upper bound.
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(a) Time-of-flight, 796 grid coarse grid blocks

(b) Permeability, 785 coarse grid blocks

(c) Velocity, 798 coarse grid blocks

Figure 6.6: The resulting coarse scale grids for different flow parameters for Case
1 46



Coarse grids for Case 2. We will follow with coarse girds construction
for the Case 2, since this case has fracture field, before we start with grid
coarsening, we need to redefine fracture grid cells into ordinary fine grid
cells. This allows us to use the same coarsening algorithm as for the Case
1. We will use the same values for N , NL and NU as for coarsening of fine
grid without fractures. Flow indicators for Case 2 are: time-of-flight and
absolute permeability. The indicators will be scaled the same way as for the
Case 1 using 5.7. In addition, two new indicators will be used for Case 2
there are: square root distance and combination of square root distance and
time-of-flight. By the distance we consider minimum distance to the nearest
fracture. The combination of two indicators is the sum of the logarithmic
scaled time-of-flight and the square root distance.
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(a) Time-of-flight, 1585 grid coarse grid blocks

(b) Permeability, 1060 grid coarse grid blocks

Figure 6.7: Coarsening of Case 2 using different indicators respectively permeabil-
ity, time-of-flight, distance to the nearest fracture, combination of the time-of-flight
and distance to the nearest fracture.
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(a) Square root distance, 1630 grid coarse grid blocks

(b) Combination of time-of-flight and square root distance, 2519 coarse
grid blocks

Figure 6.8: Coarsening of Case 2 using square root distance and combination of
time-of-flight and distance.
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6.2.2 Numerical Results on the Coarse Grid

After a coarse grid construction for our two cases we will numerically solve
advection term of heat transport equation on each of the coarse grids de-
scribed in the previous subsection. As we described in chapter 4 to solve
advection term of heat transport equation we need to numerically solve the
pressure equation on the fine scale to get the flux values. The fluxes for Case
1 are obtained from TPFA discretization of pressure equation.

For Case 2 we will use coarse grids as described in the previous section.
We will keep flux values for fracture cell to fracture cell connections after
we redefined fracture cells into ordinary grid cells. Fluxes are furthered used
for upscaling of advection term of heat transport equation as described in 5.
Since advection term of heat transport equation is temporally depending we
will use the implicit scheme Euler′s backward scheme, as in our simulations
on the fine scale, thus as a result we will obtain temperature distribution at
a given time. In figure 6.9 advection term solution on the coarse grids for
Case 1 are shown.

In figures 6.10 and 6.8 we can see the temperature distribution for all four
coarse grids for Case 2.

In addition we are interested in the quality of numerical results for ad-
vection term of heat transport on the coarse scale. We will calculate errors
from equation 5.8. In figure 6.12a errors for three coarse grids for Case 1 are
shown while in figure 6.12b we can see errors for Case 2. In table 6.3 the
CPU time for different grid types for Case 1 are listed. In table 6.4 compu-
tational times for different grids for Case 2 are presented. The computations
were done on the with operation system Ubuntu and with following features
memory 16GiB, processor: Intel Corei5 − 6300U CPU@2.40GHz 4 and
graphics: Intel HD Graphics 520. These computational times can differ
depending on the computer capacity.
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(a) Time-of-flight

(b) Permeability

(c) Velocity

Figure 6.9: Temperature distribution for Case 1 using different coarsening indica-
tors at time 14e8 [s] 51



(a) Time-of-flight

(b) Permeability

Figure 6.10: Temperature distribution for Case 2 with flow based indicators re-
spectively time-of-flight and permeability at time 14e8 [s]
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(a) Square root distance

(b) Combination of time-of-flight and square root distance

Figure 6.11: Temperature distribution on the fractured coarse grid with square
root distance and combination of time-of-flight and square root distance at time
14e8 [s]

53



Type of grid CPU Time [s]
Fine scale 22.279658
Coarse scale time-of-flight as indicator 2.119540
Coarse scale permeability as indicator 1.679754
Coarse scale velocity as indicator 1.665713

Table 6.3: Computational time on different grids for Case 1 for advection
term of heat transport

Type of grid CPU Time [s]
Fine scale grid with fractures 26.011763
Coarse scale time-of-flight as indicator 5.124017
Coarse scale permeability as indicator 5.683667
Coarse scale square root distance as indicator 5.720738
Coarse scale combination of indicators 8.083078

Table 6.4: Computational time on different grids for Case 2 for advection
term of heat transport
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(a) The error in L1 norm for different flow indicators for Case 1 ,
x-axis represents time in seconds, y-axis represents error

(b) The error in L1 norm for various coarsening indicators for Case
2, x-axis represents time in seconds, y-axis represents error
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6.2.3 Discussion of Numerical Results on Coarse Scale

The aim of this subsection is to compare numerical results on the different
coarse grids for Case 1 and Case 2. We will begin with comparing different
coarse grids. Coarse grids are compared according the following criteria:
number of grid cells, adaption to the fluid flow pattern, visibility of the
fracture filed for Case 2, shape, size and distribution of gird cells.

Figure 6.6 give us the resulting coarse grids for flow indicators. The
highest number of grid cells is obtained for magnitude velocity as indicator
798, than comes time-of-flight with 796 and at the end permeability has 785
blocks. Magnitude of velocity and time-of-flight comparing to permeability
as indicator give coarse grids that are better adopt to flow pattern. This
is since permeability is isotropic and defined values N , NL and NU defined
the grid look. Looking closer at permeability upgridding we can see that
the coarse blocks are of the roughly same size and shape, this grid remind
us on the uniform grids. From figure 6.6 we can see that coarse grids have
approximately the same number of blocks. From table 6.12a we can see that
the samllest error has velocity with the highest number of grid cells, while
the highest error has permeability with smallest number of grid cells. Since
we have small differences in number of grid blocks it is not clearly if the
smallest error is related to the highest number of grid bloks. In paper see
[16], we can fine more about how grid quality is influenced by values N , NL,
NU . This give us the idea that grid quality in our examples can be better if
we increase number of bins, and decrease upper bound. However, this can
lead to very small grid blocks in the regions of low flow [16].

In figures 6.7 and 6.8 we can see four different coarse grids for Case 2.
Number of grid cells are highest for combination of square root distance and
time of flight 2519, followed by square root distance with 1630 and time-
of-flight with 1585 grid blocks at the end comes permeability with smallest
number of grid blocks equal to 1060. Since we treat equally fracture cells
with other gird cells during the grid construction we can notice that the
neighboring fracture cells belong to different coarse blocks. Grid constructed
with time-of-flight as indicator is well adopted to the flow pattern, we can
see that it forms ring shape around the source, however the fracture field
is not clearly distinguished. Permeability as indicator give us a coarse grid
with grid cells almost uniformly distributed. Since we have only two values
for permeability one for the rock and the other significantly higher value
for fracture field we could expect that the resulting gird will give us better
representation of fracture field. Unfortunately, this is not the case, the values
for N , NL and NU , similar as for Case 1, dictate the size and distribution of
gird blocks.
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Square root distance indicator gives grid with clearly presented fracture
field, gird cells are smaller around the fractures and bigger as we go further
form them. We can also notice that some grid blocks for example grid blocks
near the left-hand edge are surprisingly smaller although they are further
from fracture this can be due to the effect of the upper and lower bound
which tend to create smaller grid blocks in the regions with low flow volume.
The main disadvantage of coarse grid constructed this way is that it is not
good adopted to flow field.

Combination of two indicators gives good representation of fracture field
and ring distributed coarse blocks around the upper left corner. Indicators
are scaled in the way that values for logarithm scaled time-of flight goes
from 1 [s] to approximately 5.6 [s], while the values for square root distance
goes from zero m for the fractures to 7.3 m. The values for two indicators
are in the same range which contribute that both fracture field and fluid
flow are good represented in the coarse gird, thus combination of indicators
works fine for the Case 2. Quality of indicator defined this way needs further
investigation, since we do not know how it can behave if the two values are
in disbalance.

In addition, we will compare temperature distribution on the different
coarse grids for Case 1 and Case 2 In this purpose, we will use L1 norm error
from 5.8. The solution in 6.4 is considered as a true solution for Case 1, while
the solution 6.5a is assumed as true solution for Case 2.

From figure 6.12a for Case 1 we can see that the smallest error is obtained
for coarse grid with time-of-flight as flow indicator, then for the magnitude
velocity, while permeability gives the biggest error. This very similar error
for time-of-flight and magnitude velocity is related to the very similar grid
blocks shape, size and number, distribution of grid blocks especially around
the left upper source term is also very similar. Permeability upridding give
us higher error which we related to the relatively huge grid blocks around
the source term. We can also notice that with time propagation the errors
are bigger.

In figure 6.10 temperature distribution for Case 2 using flow indicators:
time-of-flight and permeability are shown. Comparing temperature distribu-
tion with true solution we can notice that, since fracture filed is not distin-
guished from the rock field, in the process of grid coarsening the temperature
distribution within fracture field is not good represented. Furthermore, form
the resulting temperature distribution it is not possible to notice the presence
of fracture field.

When we look at temperature field using square root distance as indicator
in figure 6.8 we can notice that it is strongly dominated by the presence of
the fractures. Fractures are clearly distinguished from the surrounding rock,
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large grid blocks around the source and on the top of the grid lead to the tem-
perature filed with lower temperatures in the rock comparing to true solution.
Combination of time-of-flight and square root distance as indicator give us
the temperature distribution that looks similar to temperature distribution
for the true solution. This indicator is good adopted to the flow filed thanks
to the time-of-flight part and give us clearly visible fractures thanks to the
distance part. Since grid blocks are bigger comparing to the fine scale cells
the resulting temperature distribution give us lover temperatures comparing
to the true solution.

In figure 6.12b we can see that the combination of time-of-flight and
square root distance give us the smallest error, time-of-flight is also very
effective indicator while the square root distance alone is not good indicator.
Permeability give us large error and should be avoid as coarsening indicator
in the case of isotropic permeability. We can also notice that errors getting
higher as times go. Comparing errors for different grids and their number of
blocks we can not relate the grid quality with number of blocks for example
permeability give us smaller error than square root distance, although it is
grid with smaller number of grid blocks. Considering [16] we can improve
grid quality by increasing the number of grid blocks.

One of the benefits of using coarse grids in our computations is faster
computational time in comparison to the computational time on fine scale
grid with same properties. From tables 6.3 and 6.4 we can see that compu-
tation time for coarse grids is much lower comparing to the computational
time on the fine grid. This smaller computation time in combination with
small errors make coarse grids as very useful for fluid flow and heat transport
computations.
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Chapter 7

Summary and Further Work

We have upscaled advection term of the heat transport equation and solved
it for homogeneous grid without and with fracture field. In order to give
better illustration of the heat transport due to advection we constructed two
test cases. These cases are very simply and we use them to see the difference
between fluid flow and advection term on the fine scale grid without fractures
and with fracture field. As it can be seen from experiments on the fine scale,
fluid flow faster through high permeable fractures and the temperature is
values are lower in the fracture and its surroundings than in the rest of
the rock. Further we will use these two test cases to construct coarse grids
with different indicators and solve advection term of heat transport equation
on each of the grids. Flow based indicators such as time-of-flight, velocity
and permeability were used for upgridding of the fine scale grid without
fractures. As it can be noticed time-of-flight and velocity give us a small
errors for temperature distribution and a good approximation of the fine
grid. Permeability is not such a good indicator thus can be because we use
homogeneous medium with isotropic permeability.

Next we were focused on the construction of coarse grid upgridding the
fractured fine grid. We decided to start with grid construction using flow
based indicators this time time-of-flight and permeability, we decided not to
use velocity because from the case of the coarse grid without fractures we see
that it give us almost the same temperature distribution as time-of-flight.
The main issue with upgridding fractured fine scale grid is how to threat the
fracture cells. In this thesis we choose the approach to redefine fracture cells
into ordinary grid cells but to keep their flux values. These flux values are
used in upscaling of the advection term. However, in the grid coarsening frac-
ture cells are add to the total number of cells and treated equally as matrix
cells. Since we are interested to best represent fracture filed in our simula-
tions we introduced square root to the nearest fracture and combination of
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this distance and time of flight as new coarsening indicators. Square root
distance give us good approximation of temperature distribution within the
fractures but not at the rest of the grid. The grid coarsening using combina-
tion of time-of-flight and square root distance give us the best approximation
in the sense of errors and in the sense of the temperature distribution in the
matrix and within the fracture field. Results on the different coarse grids
were compared using L1 norm error and computational time. Since amalga-
mation algorithm a wide range of choice, we can improve grid quality with
different combinations of values for number of bins, upper and lower bound,
and with different choices of scaling of indicators [16]. In this thesis we used
very simple fracture field with only two fractures with intersection, this work
can be tested on the more complex grids i.e. on the grids with more complex
fracture filed. Further work can also include the effect on the conduction
term on the heat transport in the fractured geothermal reservoir.
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List of Symbols

Simbol Explanation Units
Ω domain
Γ, ∂Ω boundary of domain
~qad advective heat flux W/m2

~qcond conductive heat flux W/m2

~q heat flux W/m2

κ hydraulic conductivity m/s
Q source m3/Day
p pressure Pa
µ viscosity Pa · s
ρ density kg/m3

~g gravitational acceleration m/s2

~v Darcy’s velocity m/s
~V intrinsic velocity m/s
af fracture aperture m
l, L length m
e energy desity J/m3

K permeability m2 or mD
m mass kg
τ time of flight s
T transmissibility m/(s · Pa)
T temperature C0

α half-transmissibility m/(s · Pa)
qvol volumetric flow rate m3/s
A cross sectional area m2

c specific heat capacity J/(kg · C0)
V volume m3

k thermal conductivity W/(m · C0)
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