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Abstract 

 

Development of offshore wind turbines shows a clear shift from the fixed-bottom turbines to 

the floating turbines. The reason for such tendency is due to the fact that moving towards the 

deep ocean will substantially limit the feasibility of using fixed-bottom wind turbines because 

of several significant operational and environmental constraints. For such conditions, the 

floating turbine concepts, adopted from the offshore oil and gas industries, will be able to 

maximize the wind power extraction by increasing the structural reliability and decreasing the 

construction cost. 

Difficulties of structural design and development in the offshore wind energy industry, due to 

complex nature of offshore loading and structural responses (rotating mass, mooring tension, 

etc.), can be substantially reduced by utilizing accurate and reliable hydro- and aerodynamic 

numerical models. 

In this master thesis, focus is on investigating the structural responses of two spar-buoy floating 

offshore wind turbines, i.e. Hywind Demo (2.3 MW) and OC3-Hywind (5 MW). The dynamic 

responses of Hywind Demo and OC3-Hywind due to the combined action of wind and waves 

are numerically simulated by the computational tool SIMA (Simulation of Marine Operations). 

To ensure the performance of numerical simulations in order to capture efficiently the physical 

behaviour of the offshore wind turbines, model simulation results are required to be verified 

against the available reliable structural measurements.  
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The numerical model of Hywind Demo has previously been compared to full scale 

measurements. In this master thesis to extend the previous study, by using the measured 

environmental and dynamic responses as a reference, a sensitivity study is performed to better 

understand the sensitivity of various structural responses, such as e.g. platform pitch, as 

function of the various environmental parameters, such as e.g. turbulence intensity. 

Moreover, the same sensitivity study will be applied to OC3-Hywind to better understand of 

the responses of bigger wind turbine compared to the smaller one, i.e. Hywind Demo. 

The results show a high sensitivity of the investigated structural responses to the wave 

characteristics and turbulence intensity variations. Moreover, the analyses show more 

sensitivity of the local structural responses than global structural responses to alpha variation 

in wind shear profile power law. Also, the sensitivity to spatial variation of numerical wind 

field has a fluctuation pattern.  

Furthermore, OC3-Hywind has greater structural responses because of bigger rotor diameter 

and more weight than Hywind Demo. 

Co-coherence of longitudinal wind velocity fluctuation (uˊ) shows higher correlation between 

nodes for lower frequency than higher frequency for one realization. 
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CHAPTER 1 Introduction 

This report is the result of the master thesis in Renewable Energy program with specialization 

of Wind Energy at University of Bergen (UiB). 

The problem investigated in this report and thesis organization are mentioned in following 

sections. 

1.1 Problem Statement 

Offshore wind turbines have some clear advantages compared to the onshore wind turbines, 

such as e.g. stronger wind and less visual impact. This is why there is a trend toward offshore 

wind turbines in recent years, although unique challenges are introduced by offshore wind 

turbines. The expansion of offshore wind turbines industry is requiring installations in deeper 

water. As the offshore wind turbines develop toward deeper water, conventional substructures, 

such as e.g. monopiles, jackets and tripods, are not economically feasible. The best economical 

solution for deep water is floating wind turbines. 

Therefore, the development of floating offshore wind turbines is required. Numerical models 

are the key part of this development. In order to ensure that a numerical model represent the 

real physical behaviour of a structure, verification of the computer model is required. One part 

of the verification of the computer model is performing a sensitivity study. By conducting the 

sensitivity study, the results from the analysis may contribute in the improvement of existing 

knowledge in optimizing the design of floating offshore wind turbines. 
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Keeping the importance of the sensitivity study in mind, the main purpose of this master thesis 

was set to better understand the sensitivity of the selected floating wind turbines’ responses to 

various environmental parameters. 

1.2 Thesis Organization 

The importance and necessity of this study as well as presenting the thesis organization is 

introduced in CHAPTER 1. 

An overview of the offshore wind turbines, Hywind Demo, OC3-Hywind and coherence of 

numerical wind field will be presented in CHAPTER 2. 

In CHAPTER 3, the variation of environmental parameters in the sensitivity study and 

evaluation of structural responses will be described in detail. 

A brief introduction to modeling of environmental components, i.e. wind, wave and current, 

will be presented in CHAPTER 4. 

All the results will be presented without any interpretation in CHAPTER 5. 

The interpretations and discussions about the results will be presented in CHAPTER 6. 

The conclusions of the work in this thesis will be presented in CONCLUSION chapter. 

Finally, proposal of further investigation to approach more accurate results will be presented 

in RECOMMENDATION FOR FURTHER WORK chapter. 

. 
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CHAPTER 2 Background 

There has been a drive towards renewable energy in recent years. Pollution, exhaustibility of 

fossil fuels and global warming are the main reasons for this tendency to renewable energy. 

There are various sources of renewable energy, such as solar energy, wind energy, biofuel, etc.  

2.1 Floating Offshore Wind Turbine 

One of the abundant renewable energy resources is wind. Although wind energy is applied by 

humans to grind grain or sail ships since thousands of years ago, first attempts to harness wind 

energy to produce electricity back to the late nineteenth centuries [1]. A wind turbine is a device 

that converts kinetic energy of wind into electricity. 

A wind turbine is made up of different components, such as rotor blades, nacelle, tower, support 

structure, etc. Wind turbines are categorized to horizontal- and vertical-axis based on their 

rotation axis. However, most of modern wind turbines are horizontal-axis turbines.  

A wind turbine can be located both onshore and offshore. Furthermore, offshore wind turbines 

are divided to three categories based on water depth where they are installed in [2], 

- Shallow water, if the water depth is less than 30 meters, 

- Transitional water, if the water depth is between 30 to 60 meters, 

- Deep water, if the water depth is more than 60 meters. 
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Figure 1 shows the progression of wind turbines from onshore to offshore. 

 

Figure 1. Wind turbine development from onshore toward deeper water. [3] 

Although onshore wind energy for generating electricity is now competitive in cost with fossil 

fuels, further technology development of offshore wind turbines is needed [3]. Therefore, a lot 

of researches have been done in recent years. The most important reasons for the upward trend 

in use of offshore wind energy are [4]: 

- Stronger and more steady wind with less turbulence intensity and smaller shear in 

offshore than onshore, 

- No limitation to the size of an offshore wind turbine if it can be manufactured near the 

coastline, i.e. no dealing with road or rail logistical constraints, 

- Vast availability of sea surface and no dealing with land occupation, 

- No dealing with noise pollution and visual impact. 

On the other hand, offshore wind turbines introduce exceptional problems, such as a higher 

capital investment, more challenging structural design, less accessibility, higher costs relating 

to maintenance issues and electric power transmission to shore [1]. Moreover, floating offshore 

wind turbines introduce more unique difficulties, such as dealing with large inertia loading on 
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the tower and nacelle caused by induced accelerations due to floater motions and also requiring 

more advanced blade control due to the floating motions. [5] 

Substructure is the most critical part of offshore wind turbine development and must be opted 

mainly with respect to the water depth. Due to more complexity and equipment needed below 

the sea surface, cost of offshore substructures will increase as water depth increases. Figure 2 

shows the relation between water depth and cost of offshore wind turbine substructure. [3] 

 

Figure 2. the relation between cost of offshore wind turbine substructures and water depth. [3] 

Thus far most of offshore wind turbines have been installed in shallow water where technology 

of onshore wind turbines with upgraded electrical systems and corrosion systems can be used.  

Monopile, gravity base and suction bucket are economically suitable as offshore wind turbine 

foundations for shallow water, Figure 3 presents these foundations. 
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Figure 3. Offshore wind turbine foundations for shallow water. [3] 

Simplicity, minimum design developments of existing onshore monopiles and minimum 

footprint on the seabed are the main reasons that monopiles are the most deployed foundations 

in shallow waters including the 160 MW Horns Rev 1 offshore wind farm located in the North 

Sea, 14-20 km off the Danish west coast [6]. However, application of monopiles are limited in 

deeper waters due to their flexibility, i.e. the natural frequency of the structure is lowered into 

a range of the excitation sources’ frequencies. Furthermore, higher mass and more specialized 

installation equipment, and therefore higher cost are required to accommodate monopiles in 

deeper waters. [3] 

Gravity base foundation doesn’t have the flexibility issues of monopiles but require significant 

preparation of seabed and extensive soil analysis. Gravity base foundations have been installed 

in the 165.6 MW Nysted offshore wind farm located in the Baltic Sea, 10 km off the coast of 

Denmark [7]. Suction bucket foundations [8] also show some advantages for some shallow 

waters, e.g. avoiding the limitation of large pile drivers presented by monopile foundations. 

However, both gravity base and suction bucket foundations will grow rapidly in cost with 

deeper waters [3]. 
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Tripod tower, guyed monopole, full-height jacket (truss) and submerged jacket with transition 

to tube tower are some examples of economically accepted foundations for transitional waters. 

As an example, submerged jacket with transition tube tower is the selected foundation for the 

588 MW Beatrice offshore wind farm located 13.5 km off the Caithness coast of UK. Beatrice 

offshore wind farm will be fully operational in 2019 [9].  

To compare with foundations used in shallow waters, foundations used in transitional have 

wider base with multiple anchor points. Figure 5 illustrates some foundations for transitional 

waters [3]. 

 

Figure 4. Some foundations for transitional waters. [3] 

A floating substructure is the best economical option for deep waters. Providing enough 

buoyancy to support the weight of the wind turbine and withstanding environmental loads, i.e. 

wind, wave and current loads, are two vital characteristics of a floating substructure. Numerous 

substructure configurations are possible for deep water. Figure 5 shows three floating 

substructure concepts which use various methods to achieve static stability. In the spar-buoy 

concept, structure can be moored by catenary or taut lines, and stability achieves by using 

ballast to lower the center of mass below the center of buoyancy. In the tension leg platform 
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(TLP) concept, stability achieves by using mooring line tension provided by surplus buoyancy 

in the tank. In the barge concept, catenary lines are generally used as mooring system and 

stability achieves through its waterplane area. [4] 

Spar-buoy concept has successfully deployed at the 30 MW Hywind Scotland Pilot Park 

located 30 km off the east coast of Scotland. [10] 

 

Figure 5. Floating substructure concepts for deep waters. [4] 

Numerous floater concepts with variety of mooring systems, tanks and ballast options have 

been presented for offshore wind turbines. GICON-TLP [11], WindFloat [12], Dutch Tri-

floater [13], Concrete Star [14], Ideol [15] and PelaStar tension leg platform [16] are some of 

these concepts illustrated in Figure 6. 
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Figure 6. Various floater concepts. [17] 

The experiences from the offshore oil and gas industries proves the technical feasibility of 

offshore floating wind turbines. Despite many similarities, a direct transfer without adaption 

from offshore oil and gas technology to offshore wind industry would not be technically and 

economically feasible. For instance, while large wind driven overturning moments dominate 

the design of a floating wind turbine, payload and wave driven forces dominate the design of a 

floating oil and gas platform. [3] 

The loads on the offshore floating wind turbines are dominated by aerodynamic and 

hydrodynamic effects, as shown in Figure 7. Additional offshore loads such as impact of 

floating debris and sea ice, effect of varying sea level and effect of marine growth build-up on 

the substructure must also be considered in a design process. 



 

Background                                                     

 

 

20 

 

Figure 7. Loads on an offshore wind turbine. [18] 

The interaction between the wind and the airfoils of each rotor blade is the starting point of the 

power production of a wind turbine. By air blowing over airfoil of the blades, aerodynamic lift 

and drag forces are generated. The resulting aerodynamic loads on the structure can be divided 

into three categories: 

- Steady aerodynamic forces, 

- Periodic aerodynamic forces, 

- Randomly fluctuating aerodynamic forces. 

The main different between these three aerodynamic forces are their causations. Mean wind 

speed generates the steady aerodynamic forces, while periodic aerodynamic forces generated 

by wind shear, off-axis winds, rotation of rotor and tower shadow, and randomly fluctuating 

aerodynamic forces generated by turbulence, gust and dynamic effect. [18] 
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Loads on fixed bottom wind turbines are mainly dominated by aerodynamic forces, while for 

offshore floating wind turbines, hydrodynamic loads become more important. The significance 

of hydrodynamic forces depends on the floating wind turbine concept and the severity of wave 

and wind conditions. 

The linear hydrodynamic loads consist of three separate components, i.e. hydrostatic, 

diffraction and radiation forces and moments. To calculate the total non-steady-state, transient 

linear hydrodynamic loads acting on a floating substructure with a mooring system in irregular 

incident waves, the true linear hydrodynamic model, described in detail in Matha [18], can be 

utilized.  

The long-term statistical correlation of wind speed, wave height and wave period, which are 

expressed in the long-term joint probability density distribution, show that aerodynamic and 

hydrodynamic loads are related, i.e. the waves are generated by the winds in the long term. In 

other words, load cases with higher wind speeds are usually accompanied by higher wave 

heights resulting in higher aerodynamic and hydrodynamic loads on the structure. [18] 

2.2 Hywind Demo 

Hywind, shown in Figure 8, is a spar-buoy floating wind turbine concept presented by Statoil. 

The demonstration of this concept, Hywind Demo, has been installed at 10 km west coast of 

Karmøy, Norway, in June 2009. Hywind Demo is equipped with a Siemens wind turbine with 

rated electric power of 2.3 MW and was one of the first full scale offshore floating wind turbine 

in the world. The well-proven offshore oil and gas concepts and components has been used in 

the Hywind Demo. [19] 
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Figure 8. The Hywind concept. [19] 

Hywind Demo can be divided into three main parts, i.e. substructure (hull), tower and the 

Siemens wind turbine. 

The hull is the structure on which the tower is supported. The hull is a 100 m deep cylinder 

with a maximum diameter of 8.3 m. The hull has permanent ballast comprising gravel and 

water to lower the center of gravity of the structure. Therefore, center of gravity is located 

below the center of buoyancy which is why a spar buoy has exceptional stability properties. 

Moreover, the tower with a height of about 50 m is mounted on top of the hull. Furthermore, 

the Siemens wind turbine with 65 m hub height above the sea surface and 82.4 m rotor diameter 

is located on the tower. Hywind Demo schematic is presented in Figure 9. 
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Figure 9. Hywind Demo schematic. [20] 

Hywind Demo is moored to the seabed with catenary mooring system consists of three mooring 

lines and six delta lines connected to fairleads at approximately half the draft of the hull. Every 

two delta lines connect to a delta-plate and one mooring line, presented in Figure 10. Steel 

chains and ropes as well as clump weights are used to obtain sufficient force-displacement 

characteristics in the mooring lines. A 45 tons clump weight is connected to the mooring line 
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approximately 150 m from the hull, illustrated in Figure 11. To prevent the structure from 

drifting from its location and to provide adequate stiffness in yaw motion of the structure are 

the main responsibilities of the mooring system. [20] 

 

Figure 10. Overhead view of the hull and the mooring system. [20] 

 

Figure 11. One mooring line schematic of Hywind Demo. [20] 
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Main characteristics of Hywind Demo structure and the Siemens wind turbine employed in 

Hywind Demo are listed in Table 1 and Table 2 respectively. 

Table 1. Main specification of Hywind Demo structure. [19] 

Draft hull [m] 100 

Water depth [m] 210 

Displacement [tons] 5388 

Diameter at sea level [m] 6 

Diameter at keel [m] 8.3 

Tower including transition piece [tons] 399 

Substructure [tons] 1305 

Ballast [tons] 3516 

 

Table 2. Characteristic data for the Siemens wind turbine. [19] 

Rated electric power [MW] 2.3 

Rotor diameter [m] 82.4 

Rotor speed [rpm] 6-18 

Rotor weight [tons] 54 

Nacelle weight (excluding rotor) [tons] 82 

Hub height above sea surface [m] 65 

Cut-in wind speed [m/s] 3-5 

Rated wind speed [m/s] 13 

Cut-out wind speed [m/s] 25 

 

Statoil provided the complete model of Hywind Demo, simulated by the computational tool 

SIMA (Simulation of Marine Operations) [21], for the present thesis. 

2.3 OC3-Hywind 

Wind turbines are designed and analyzed using simulation tools, i.e. design codes. The 

complexity of design codes to analyze offshore wind turbines, and the limited data available to 

validate them, emphasize the need to verify their accuracy. The Offshore Code Comparison 

Collaboration (OC3) was established to meet this need. [22] 

The specifications of the wind turbine were the fundamental set of inputs to the codes 

controlled within OC3. The OC3 used the publicly available specifications of NREL 5 MW 

baseline wind turbine [23]. 
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The rated mechanical power of the NREL wind turbine is 5.3 MW, with rated electric power 

of 5 MW and a generator efficiency of 94.4%. The rotor radius is 63 m, and rotor mass and 

nacelle mass are 110000 kg and 240000 kg respectively. The hub height for the turbine is 90 

m above still water level (SWL). Cut-in, rated and cut-out wind speed for the turbine are 3 m/s, 

13 m/s and 25 m/s respectively. 

Some of the main specifications of NREL 5 MW baseline wind turbine are tabulated in Table 

3. [23] 

Table 3. Main specifications of NREL 5 MW baseline wind turbine. [23] 

Rated electric power [MW] 5 

Rated mechanical power [MW] 5.296610 

Rotor orientation, configuration Upwind, three blades 

Control Variable speed, collective pitch 

Rotor diameter [m] 126 

Cut-in, Rated rotor speed [rpm] 6.9, 12.1 

Rotor mass [kg] 110000 

Nacelle mass [kg] 240000 

Hub height above SWL [m] 90 

Cut-in wind speed [m/s] 3 

Rated wind speed [m/s] 11.4 

Cut-out wind speed [m/s] 25 

 

Four different support structures investigated in separate phases of the OC3 project to cover 

the variety of support structures required for cost effectiveness at varying offshore sites [22]: 

- In Phase I, support structure was a monopile with a rigid foundation in 20 m water 

depth. 

- In Phase II, the foundation of the monopile from Phase I made flexible to represent the 

soil-pile interactions by applying different models. 

- In Phase III, support structure was a tripod in intermediate water (45 m). 

- In Phase IV, support structure was a floating spar-buoy in deep water (320 m).  

The same NREL 5 MW baseline wind turbine was installed in all phases. 

All the phases I, II, III, IV are described in detail in Jonkman [22]. 
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The rotor-nacelle assembly of the NREL 5 MW baseline wind turbine including aerodynamic 

and structural properties remains unchanged in phase IV, however the support structure (tower 

and substructure) and control system properties are changed. [24] 

The spar-buoy concept of Hywind, developed by Statoil, was chosen for the modelling of Phase 

IV of OC3 project. Simplicity in design and suitability to modelling and commercialization are 

the reasons that this concept selected for Phase IV. Statoil supplied detailed platform and 

mooring system data. The data provided was for the conceptual version of the Hywind platform 

developed to support a 5 MW wind turbine. Aspects of the original data adapted by Jason 

Jonkman so that the platform design is appropriate for supporting the NREL 5 MW baseline 

wind turbine. The new system referred to as the OC3-Hywind system.  

The top of the OC3-Hywind spar-buoy platform is at 10 m above SWL and the draft of the 

platform is 120 m. The platform consists of two cylindrical regions connected by a linearly 

tapered conical region. To reduce the hydrodynamic loads near the free surface, the cylinder 

diameter of 9.4 m below the taper reduces to 6.5 m above the taper. The mass of the floating 

platform, including ballast is 7466330 kg. This mass includes weight of the rotor-nacelle 

assembly, tower, platform and the weight of mooring system in water, balances with the 

buoyancy of the undisplaced platform in still water. The mooring system of the structure 

consists of three mooring lines, with 120° angle between adjacent line. Some of structural 

properties of the platform are mentioned in Table 4. [24] 

Table 4. Floating platform structural properties. [24] 

Draft hull [m] 120 

Elevation to platform top (tower base) above SWL 10 

Water depth [m] 320 

Diameter at sea level [m] 6.5 

Diameter at keel [m] 9.4 

Platform mass, including ballast [kg] 7466330 

 

OC3-Hywind is simulated by the computational tool SIMA and is available as an example of 

coupled RIFLEX-SIMO model in SIMA. 

 



 

Background                                                     

 

 

28 

Figure 12 presents schematics of both Hywind Demo and OC3-Hywind concept with their 

main dimensions. 

 
Figure 12. Dimensional comparison between Hywind Demo concept and OC3-Hywind concept. The 

illustration is taken from Malhotra [25]. 
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2.4 Coherence of the numerical wind field 

Wind simulation is an important part of a wind turbine structural analysis. As the relationship 

between atmospheric turbulence and aerodynamic loads on wind turbine blades is highly 

nonlinear, there continues to be interest in numerically simulating the winds and then 

calculating time series of blade loads. [26] 

A good description of the wind field including turbulence intensity and spatial characteristics 

of turbulence is important for a good estimate of dynamic loads on some spatially extended 

structures, such as towers, large bridges wind turbines. For many of these structures the cross-

spectra of wind fluctuations at different points on the structures are so vital in the estimation 

of dynamic wind loads. The spectrum of the modal forces on the structure can be written as 

weighted integrals of the cross-spectra under some simplifications. For more complicated 

structures such as wind turbines which have moving parts and nonlinear structural responses, 

there is not a simple relation between characteristics of the flow and the forces. However, for 

these structures also cross-spectra are important for the description of dynamic loads. [27] 

The magnitude of cross-power spectral density between points x and y can be defined in terms 

of the power spectral densities and the coherence function by Eq. (1): 

|𝑺𝒙𝒚(𝒇)| = 𝑪𝒐𝒉𝒙𝒚(𝒇, ∆𝒓𝒙𝒚, 𝑼𝒙𝒚)√𝑺𝒙(𝒇). 𝑺𝒚(𝒇)                                                                                           (1) 

Where the coherence is a function of frequency (𝑓), distance between points 𝑥 and 𝑦 (∆𝑟𝑥𝑦) 

and mean wind speed at points 𝑥 and 𝑦 (𝑈𝑥𝑦). The imaginary parts of the cross-spectra are zero by 

assuming that there is an average phase of zero between any two points. Therefore, the entire spectral 

matrix is defined by the power spectral densities and the coherence. [26] 

Hence, the coherence which is a measurement of correlation of spectra measured at two 

arbitrarily chosen points, 𝑥 and 𝑦, is defined in Eq. (2): 

𝑪𝒐𝒉𝒙𝒚(𝒇) =
𝑺𝒙𝒚(𝒇)

√𝑺𝒙(𝒇). 𝑺𝒚(𝒇)

                                                                                                                               (2) 

Where 𝑆𝑥 and 𝑆𝑦 are the one-sided power spectral density functions for the random processes 

𝑥 and 𝑦 and 𝑆𝑥𝑦 is the cross-power spectral density function. 
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To estimate wind loads on structures for both lateral and vertical separations, the root-

coherence, defined in Eq. (3), could be used. The root-coherence is expressed as the normalized 

cross-spectral density of the wind fluctuations at two arbitrarily chosen points, 𝑥 and 𝑦. [28] 

𝑹𝒐𝒐𝒕_𝒄𝒐𝒉𝒙𝒚(𝒇) = √𝑪𝒐𝒄𝒐𝒉𝒙𝒚
𝟐 (𝒇) + 𝑸𝒖𝒂𝒅𝒄𝒐𝒉𝒙𝒚

𝟐 (𝒇)                                                                                     (3) 

Where 𝐶𝑐_𝑐𝑜ℎ𝑥𝑦 and 𝑄𝑢𝑎𝑑_𝑐𝑜ℎ𝑥𝑦 are the co-coherence and quad-coherence of the velocity 

fluctuations respectively. Co-coherence and quad-coherence are defined in Eq. (4) and Eq. (5) 

respectively. 

𝑪𝒐_𝒄𝒐𝒉𝒙𝒚(𝒇) = 𝑹𝒆

(

 
𝑺𝒙𝒚(𝒇)

√𝑺𝒙(𝒇). 𝑺𝒚(𝒇))

                                                                                                            (4) 

𝑸𝒖𝒂𝒅_𝒄𝒐𝒉𝒙𝒚(𝒇) = 𝑰𝒎

(

 
𝑺𝒙𝒚(𝒇)

√𝑺𝒙(𝒇). 𝑺𝒚(𝒇))

                                                                                                     (5) 

Where 𝑆𝑥𝑦 is the cross-spectral density of the velocity fluctuations at two arbitrarily chosen 

points, 𝑥 and 𝑦. The co-coherence is used to quantify only the in-phase correlation of the wind 

velocity fluctuations and is therefore a governing parameter to estimate wind loads on 

structures [28]. In the present thesis, only the co-coherence is considered. 

To simulate the turbulent wind field, the design standard for wind turbines, IEC 61400-1 [29], 

recommends both the Kaimal spectral [30] combined with exponential coherence model 

(Kaimal model) and the Mann uniform shear turbulence model (Mann model) [27]. The 

turbulent wind spectrum at the hub height is similar for both turbulence models, although there 

are significant differences in the spatial distribution [31]. The Kaimal model uses a one-point 

spectrum and an exponential coherence function between points (uˊ) in the longitudinal 

direction and no coherence in other wind components. The Mann turbulence model generates 

turbulence using a spectral velocity tensor and therefore there is coherence in all three wind 

directions [32]. The Mann turbulence model includes a more natural and direct representation 

of the three dimensional turbulent flow, although both models contain the same amount of 

information. [31] 
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The numerical wind fields which used in analysis of the structures was generated by DTU 

turbulence generator which is based on Mann model. [33]  
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CHAPTER 3 Methods 

To better understand the sensitivity of the responses to various environmental parameters, a 

sensitivity study was performed. In this study, the sensitivity of various motion parameters was 

investigated as function of the wave conditions, wind speed, turbulence intensity, wind shear 

as well as the spatial resolution of the numerical wind field. Moreover, the responses of OC3-

Hywind were studied to understand the effect of bigger wind turbine structure. 

Both Hywind Demo and OC3-Hywind were modelled by computational tool SIMA. The total 

length of simulations were 2000 seconds while first 200 seconds of simulations were eliminated 

due to transition part, therefore 30 minutes of simulations were investigated. 

The numerical model of Hywind Demo has previously been compared to full scale 

measurements by Skaare et al. [19]. The environmental conditions studied by Skaare et al. [19] 

are considered as the base cases which are shown in Table 5 and Table 6 for the below- and 

above-rated wind speed respectively. 

Table 5. Environmental conditions for below-rated wind speed base case. [19] 

Mean 

estimated wind 

speed [m/s] 

Turbulence 

intensity 

[%] 

Wind 

direction 

(towards) [°] 

Hs 
[m] 

Tp 

[s] 

Wave 

direction 

(towards) [°] 

Mean current 

speed [m/s] 

Current 

direction 

(towards) [°] 

10.8 10 195 1.4 8.6 146 0.32 316 

 

Table 6. Environmental conditions for above-rated wind speed base case. [19] 

Mean 

estimated wind 

speed [m/s] 

Turbulence 

intensity 

[%] 

Wind 

direction 

(towards) [°] 

Hs 
[m] 

Tp 

[s] 

Wave 

direction 

(towards) [°] 

Mean current 

speed [m/s] 

Current 

direction 

(towards) [°] 

18.7 11 327 4.0 10.0 355 0.43 337 
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Firstly, results were checked to be consistent with the results produced by Skaare et al [19]. 

Thereafter, the environmental characteristics were varied around the values corresponding to 

the base cases. 

Environmental parameters such as wave characteristics, turbulence intensity of wind field, the 

exponent (α) in wind shear profile power law and the spatial resolution of the numerical wind 

field were changed. Keep in mind that to perform sensitivity study of a parameter, only that 

parameter was changed while other environmental parameters remained unchanged. 

3.1 Environmental parameters variation 

The same following environmental parameters variation were applied to both Hywind Demo 

and OC3-Hywind SIMA model. 

3.1.1 Wave characteristics variation 

Nine cases of significant wave heights, Hs, and wave peak periods, Tp, for each below- and 

above-rated wind speed were studied. The cases with highest probability of occurrence form 

scatter diagram based upon approximately 18 years of measurement data from the North Sea, 

presented in APPENDIX 1, were selected. Wave characteristics cases are presented in Table 7 

and Table 8 for the below- and above-rated wind speed respectively. Case2 in Table 7 is the 

base case for the below-rated wind speed, while Case3 in Table 8 is the base case in the above-

rated wind speed. 

Table 7. Wave characteristics cases in the below-rated wind speed (Case2 is the base case). 

 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 

Hs [m] 0.75 1.4 2.25 4.25 5.75 7.25 8.75 10.25 12.25 

Tp [s] 6.5 8.6 8.5 9.5 10.5 11.5 12.5 13.5 15.5 

 

Table 8. Wave characteristics cases in the above-rated wind speed (Case3 is the base case). 

 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 

Hs [m] 0.75 2.25 4 4.25 5.75 7.25 8.75 10.25 12.25 

Tp [s] 6.5 8.5 10 9.5 10.5 11.5 12.5 13.5 15.5 
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3.1.2 Turbulence intensity variation 

The turbulence intensity is defined as the ratio of the root-mean-square of the wind velocity 

fluctuations, 𝑢ˊ, to the mean wind velocity, 𝑢𝑚𝑒𝑎𝑛. The defined coordinate system and wind 

components are presented in Figure 13. Three cases of turbulence intensity of wind field were 

investigated for both below and above-rated wind speed. The cases are presented in Table 9. 

Case_TI2 in Table 9 is the base case for both below- and above-rated wind speed. 

Table 9. Turbulence intensity (TI) cases (Case_TI2 is the base case). 

 Case_TI1 Case_TI2 Case_TI3 

TI in below-rated wind speed 5% 10% 15% 

TI in above-rated wind speed 5% 11% 15% 

3.1.3 Alpha variation 

The formula of wind shear profile power law, which is a frequently used engineering 

approximation, is presented in Eq. (6): 

𝒖

𝒖𝒓𝒆𝒇
= (

𝒛

𝒛𝒓𝒆𝒇
)

𝜶

                                                                                                                                                     (6) 

Where 𝑢 is the mean wind speed at height 𝑧, 𝑢𝑟𝑒𝑓 is the known mean wind speed at a reference 

height 𝑧𝑟𝑒𝑓 and α is the power law exponent. 

Therefore, the mean wind velocity at a certain height, 𝑧, could be found by Eq. (7): 

𝒖 = 𝒖𝒓𝒆𝒇 (
𝒛

𝒛𝒓𝒆𝒇
)

𝜶

                                                                                                                                                 (7) 

In the present thesis, 𝑧𝑟𝑒𝑓 = 65 𝑚 is the hub height for Hywind Demo, 𝑧𝑟𝑒𝑓 = 90 𝑚 is the hub 

height for OC3-Hywind, 𝑢𝑟𝑒𝑓 = 10.8
𝑚

𝑠
 for the below-rated wind speed, 𝑢𝑟𝑒𝑓 = 18.7

𝑚

𝑠
 for the 

above-rated wind speed and 𝛼 = 0.12 for the base cases. 

The exponent (α) in wind shear profile power law were increased, shown in Table 10, to find 

out the effect of this parameter on the responses of the structures. Case_alpha4 in Table 10 is 

the base case for both below- and above-rated wind speed. 
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Table 10. Alpha (α) cases (Case_alpha4 is the base case). 

 Case_alpha1 Case_alpha2 Case_alpha3 Case_alpha4 Case_alpha5 

α 0 0.05 0.1 0.12 0.14 

3.1.4 Spatial resolution variation 

Figure 13 illustrates the spatial resolution of the numerical wind field. For the below-rated wind 

speed base case, the spatial resolution in x-direction set to be 1.318 m and in y- and z-direction 

set to be 2 m. However, the spatial resolution for the above-rated wind speed base case in x-

direction set to be 2.283 m and in y- and z-direction set to be 2 m. 

 
Figure 13. The spatial resolution of the numerical wind field. 

 

Four cases were considered to investigate the effect of spatial resolution of the numerical wind 

field. While Case_Sp1 is the base case, resolution of Case_Sp2, Case_Sp3 and Case_Sp4 are 

2, 4 and 8 times of the resolution of the base case respectively, shown in Table 11. 

Table 11. Spatial resolution of the numerical wind field cases where Case_Sp1 is the base case. 

 Case_Sp1 Case_Sp2 Case_Sp3 Case_Sp4 

times 1 2 4 8 
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3.2 Evaluated structural responses 

In order to understand sensitivity of structural responses to mentioned environmental 

parameters in previous section, mean and standard deviation of structural responses such as 

electrical generator output, platform pitch and tip out-of-plane deflection for one blade were 

investigated. 

3.2.1 Electrical power 

The ultimate goal of a wind turbine is to convert the kinetic energy of wind to generate 

electricity. The energy in the wind turns blades around a rotor which is connected to the main 

shaft. The main shaft spins a generator to create electricity. The power is an integrated effect 

of the wind over the rotor disk. As electrical power output is the most important structural 

responses, the sensitivity of this response to environmental parameters is investigated. 

3.2.2 Platform pitch 

Due to existence of wind shear, gust, turbulence and yaw motion of nacelle, the flow field 

around a rotating blade is complex. For a floating offshore wind turbine, the flow field becomes 

more complex due to motion of floating platform. The motion of floating platform includes 

three translational components, i.e. heave in the vertical, sway in the lateral and surge in the 

axial, and three rotational components, i.e. yaw about the vertical axis, pitch about the lateral 

axis and roll about axial axis, illustrated in Figure 14. Therefore, the additional effect of the 

wind contribution which is basically transmitted to the rotor due to the motion of floating 

platform needs to be considered. In the six degrees of freedom of the floating offshore wind 

turbine, platform pitch and yaw motion significantly lead to the unsteady aerodynamic effects 

on the rotating blades. [5] 
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Figure 14. Degrees of freedom of a floating offshore wind turbine. [5] 

Platform pitch is also an integrated effect, with some smoothing also over time due to the low 

eigenfrequency. Therefore, the sensitivity of platform pitch to environmental parameters was 

studied in the present thesis due to the mentioned importance of this structural response. 

3.2.3 Tip out-of-plane deflection for one blade 

One of the main criteria for the design of a blade is to ensure that blade tip out-of-plane 

deflections do not violate the minimum distance between the blade tip and turbine tower to 

avoid collision between the blade and turbine tower. Moreover, as the alpha variation in wind 

shear profile is expected to affect a local structural response, sensitivity of tip out-of-plane 

deflection of one blade to environmental parameters was also evaluated. Tip out-of-plane 

deflection of one blade is much more local effect, picking up turbulence as well as shear profile. 

Figure 15 shows an illustration in order to better understand tip out-of-plane deflection of one 

blade relative to the undeflected blade. 
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Figure 15. illustration of tip out-of-plane deflection of one blade. The illustration is taken from 

MARINTEK [21]. 

The responses of blade1 was selected to present tip out-of-plane deflection of one blade. It 

should be noted that the results for blade2 and blade3 are slightly different than blade1, 

however only the results for blade1 are presented in the present master thesis. 
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CHAPTER 4 Environment Components Modeling 

Comprehensive simulation tools called design codes, which are capable of predicting the 

coupled dynamic loads and response of the system, are used to design and analyze wind 

turbines. For onshore wind turbine analysis, these design codes are known as “aero-servo-

elastic” tools. These tools are compound of aerodynamic (aero) models, control system (servo) 

models and structural-dynamic (elastic) models in a coupled simulation environment. While in 

the offshore environment, additional dynamics pertinent to offshore structures, such as incident 

wave, sea current, hydrodynamics and foundation dynamics of the support structure, must also 

be considered. Moreover, the dynamic coupling between the motions of the substructure and 

the wind turbine, as well as the dynamic characteristics of the mooring system must also be 

accounted. Therefore, design codes known as “aero-hydro-servo-elastic” tools are used for 

offshore wind turbine analysis. [4] 

The design tool SIMA (coupled RIFLEX-SIMO) which is an aero-hydro-servo-elastic 

simulation tool was used for analysis of the model of Hywind Demo and OC3-Hywind wind 

turbines.  

Extensive SIMA model of Hywind Demo was provided by STATOIL and the SIMA model of 

OC3-Hywind is available as an example of coupled RIFLEX-SIMO model in SIMA software. 

The changes which applied to the models were limited to environmental conditions. The same 

environmental conditions, presented in Table 5 and Table 6, were applied to both Hywind 

Demo and OC3-Hywind. In the following sections, all three environment components which 

were applied to the structures in the above-rated wind speed base case will be presented. 
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4.1 Environment components 

4.1.1 Wind 

The wind profile used for the wind spectrum is described by Eq. (8): 

𝒖̅(𝒛) = 𝒖̅𝒓 (
𝒛

𝒛𝒓
)
𝜶

                                                                                                                                                 (8) 

Where 𝑧 is height above water plane, 𝑧𝑟 is reference height which is hub height, 𝑢̅𝑟 is average 

velocity at the reference height above water plane, 𝛼 is height coefficient and 𝑢̅ is average 

velocity at height 𝑧. 

“Fluctuating three components” spectrum was used as the wind spectrum. The wind spectrum 

was compound of mean wind velocity and wind velocity fluctuations. The wind spectrum used 

wind shear profile power law with a reference point at hub height and added wind velocity 

fluctuations to the wind profile. Longitudinal, lateral and vertical wind velocity fluctuations 

were generated by DTU turbulence generator [33]. All three wind velocity fluctuation 

components were generated for all nodes of the numerical wind field. The numerical wind field 

is illustrated in Figure 16. 

 

Figure 16. The illustration of the numerical wind field. 
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It is important to be noted that the length of numerical wind field in y- and z-direction are 128 

m and in x-direction for the above-rated wind speed base case is 35600 m (multiplication of 

mean wind speed, 18.7 m/s, and simulation time, 2000 s). 

Figure 17 shows the average longitudinal wind velocity fluctuation (uˊ) for the above-rated 

wind speed base case in y-z plane. The average longitudinal wind velocity fluctuation (uˊ) in 

y-z plane should be zero when there are many realizations. However, the average uˊ has small 

variation and also there is dominant positive average uˊ in the left side of y-z plane because 

there is only one realization in Figure 17. 

 

Figure 17. Average longitudinal wind velocity fluctuation (uˊ) for the above-rated wind speed base 

case in y-z plane. 

Figure 18 illustrates the standard deviation of longitudinal wind velocity fluctuation (uˊ) for 

the above rated wind speed base case along z-axis. Based on the design standard for wind 

turbines, IEC 61400-1 [29], the average standard deviation of uˊ shall be assumed to be 

invariant with height when there are many realizations. However, the average standard 

deviation has small variation as there is only one realization in Figure 18. 
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Figure 18. Std of longitudinal wind velocity fluctuation (uˊ) for the above-rated wind speed base case 

along z-axis. 

The stated wind direction towards the wind turbine is 195 degrees for the below-rated wind 

speed base case in Table 5 and 327 degrees for the above-rated wind speed base case in Table 

6. It is important to be noted that the wind turbine was turned towards wind direction, i.e. the 

wind direction in the SIMA model was 0 degree. Moreover, the wave and current directions 

were adjusted relative to the wind direction. 

4.1.2 Wave 

A three parameter JONSWAP spectrum was used as the wave spectrum applied to the structure. 

Figure 19 shows Jonswap wave spectrum used in the above-rated wind speed base case with 

Hs = 4 m and Tp = 10 s. 
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Figure 19. Jonswap wave spectrum used in the above-rated wind speed base case. 

The stated wave direction towards the wind turbine is 146 degrees for the below-rated wind 

speed base case in Table 5 and 355 degrees for the above-rated wind speed base case in Table 

6. As the wind turbine was turned toward the wind direction, the relative angle of wave 

direction to the wind turbine is -49 degrees for the below-rated wind speed base case and 28 

degrees for the above-rated wind speed base case in SIMA model. 

4.1.3 Current 

The constant current profile was used in SIMA model. The constant current value is 0.32 m/s 

for the below-rated wind speed base case and 0.43 m/s for the above-rated wind speed base 

case. The relative angle of current profile to the wind turbine is 121 degrees for the below-rated 

wind speed base case and 10 degrees for the above-rated wind speed base case. 
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CHAPTER 5 Results 

Hywind Demo and OC3-Hywind concepts were employed for investigation and analysis. Wave 

characteristics (Hs and Tp), turbulence intensity (TI), alpha (α) in wind shear power law and 

spatial resolution of the numerical wind field were varied and their effects were investigated 

on the structures’ responses. For each sensitivity study, mean and standard deviation of 

structures’ responses such as electrical generator output, platform pitch and tip out-of-plane 

deflection for one blade were investigated to understand the importance of each studied 

parameter on the responses. The results for both below- and above-rated wind speed are 

presented. It is important to be noted that only some of the results without any interpretation 

are presented in following sections while the full results are presented in APPENDIX 2. 

5.1 Hywind Demo results 

5.1.1 Below-rated wind speed 

5.1.1.1 Variation of wave characteristics 

Higher wave characteristics (Hs and Tp) generated higher standard deviations while the mean 

values remained almost constant in evaluated responses. 

As an example, Figure 20 shows a dramatic growth in standard deviation of platform pitch 

from 0.2202 degree for case1 compare to 1.489 degrees for case9. Moreover, mean platform 

pitch remains fairly static, changes from 1.564 degrees for case1 to 1.524 degrees for case9. 

Mean and standard deviation of platform pitch for all cases are presented in Table 12. 
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Figure 20. Mean and standard deviation of platform pitch for different wave characteristics in the 

below-rated wind speed. 

Table 12. Mean and standard deviation of platform pitch. 

 Case1 Case2 Case3 Case4 

 

Hs=0.75 [m] 

Tp=6.5 [sec] 

Hs=1.4 [m] 

Tp=8.6 [sec] 

Hs=2.25 [m] 

Tp=8.5 [sec] 

Hs=4.25 [m] 

Tp=9.5 [sec] 

Mean platform pitch [deg] 1.564 1.563 1.562 1.561 

Std of platform pitch [deg] 0.2202 0.2345 0.2574 0.3825 

 

 Case5 Case6 Case7 Case8 Case9 

 Hs=5.75 [m] 

Tp=10.5 [sec] 

Hs=7.25 [m] 

Tp=11.5 [sec] 

Hs=8.75 [m] 

Tp=12.5 [sec] 

Hs=10.25 [m] 

Tp=13.5 [sec] 

Hs=12.25 [m] 

Tp=15.5 [sec] 

Mean platform pitch [deg] 1.558 1.555 1.548 1.541 1.524 

Std of platform pitch [deg] 0.5337 0.7096 0.9098 1.0990 1.4890 
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5.1.1.2 Variation of turbulence intensity 

Higher turbulence intensity produced significantly higher standard deviations while mean 

values decreased gently in evaluated responses.  

For instance, Figure 21 illustrates that by increasing the turbulence intensity from 5% to 15%, 

the standard deviation of electrical generation output increases from 127.5 to 341 kW, while 

the mean electrical generation output slightly decreases from 1.339 MW to 1.291 MW. Mean 

and standard deviation of electrical generator output for different turbulence intensities are 

presented in Table 12. 

  

 

Figure 21. Mean and standard deviation of electrical generator output for different turbulence 

intensities in the below-rated wind speed. 
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Table 13. Mean and standard deviation of electrical generator output. 

 TI=5% TI=10% TI=15% 

Mean electrical generator output [MW] 1.339 1.313 1.291 

Std of electrical generator output [kW] 127.5 240.8 341 

5.1.1.3 Variation of alpha in wind shear profile power law 

Varying α in wind shear profile power law showed no significant effect on both mean and 

standard deviation of the investigated responses. 

To present an example, Figure 22 depicts that mean tip out-of-plane of one blade reduces 

gradually from 1.742 m to 1.725 m when alpha increases from 0 to 0.14. However, standard 

deviation of the response gradually increases from 17.21 cm to 18.3 cm. Mean and standard 

deviation of tip out-of-plane deflection of one blade for different alphas are tabulated in Table 

14.  

Table 14. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 α=0 α=0.05 α=0.10 α=0.12 α=0.14 

Mean tip out-of-plane deflection of one blade [m] 1.742 1.736 1.730 1.727 1.725 

Std of tip out-of-plane deflection of one blade [cm] 17.21 17.35 17.73 18.00 18.30 
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Figure 22. Mean and standard deviation of tip out-of-plane deflection of one blade for different 

alphas in wind shear power law in the below-rated wind speed. 

5.1.1.4 Variation of the spatial resolution of the numerical wind field 

Both mean and standard variation values of the studied responses fluctuated by changing the 

spatial resolution of the numerical wind field. 

For example, the results, shown in Figure 23, indicate that the mean electrical generator output 

fluctuates from 1.313 MW for case1 to 1.384 MW for case 2, 1.391 MW for case3 and 1.374 

MW for case4. Moreover, the standard deviation of the response also shows the pattern of 

fluctuation with lowest value of 208 kW for case2 and highest value of 250 kW for case3. Table 

15 presents mean and standard deviation of electrical generator output for all cases. 
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Figure 23. Mean and standard deviation of electrical generator output for different spatial resolutions 

in the below-rated wind speed. 

Table 15. Mean and standard deviation of electrical generator output. 

 Case1 Case2 Case3 Case4 

 

dx=1.318 [m] 

dy=2 [m]   

dz=2 [m] 

dx=2.636 

[m] dy=4 [m]    

dz=4 [m] 

dx=5.272 

[m] dy=8 [m]   

dz=8 [m] 

dx=10.544 [m] 

dy=16 [m]     

dz=16 [m] 

Mean electrical generator output [MW] 1.313 1.384 1.391 1.374 

Std of electrical generator output [kW] 240.8 208 250 222.8 
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5.1.2 Above-rated wind speed 

5.1.2.1 Variation of wave characteristics 

While mean values of the evaluated responses remained almost constant, standard deviation of 

the responses rapidly increased as significant wave height and wave peak period increased. 

As an example, Figure 24 illustrates that standard deviation of tip out-of-plane deflection of 

one blade rises from 37.93 cm for case1 to 54.4 cm for case9 while the mean tip out-of-plane 

deflection of one blade is almost stable and changes barely between 1.039 m and 1.049 m. 

Mean and standard deviation of tip out-of-plane deflection of one blade for different wave 

characteristics are presented in Table 16. 

Table 16. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 Case1 Case2 Case3 Case4 

 

Hs=0.75 [m] 

Tp=6.5 [sec] 

Hs=2.25 [m] 

Tp=8.5 [sec] 

Hs=4 [m] 

Tp=10 [sec] 

Hs=4.25 [m] 

Tp=9.5 [sec] 

Mean tip out-of-plane 

deflection of one blade [m] 
1.039 1.039 1.042 1.041 

Std of tip out-of-plane 

deflection of one blade [cm] 
37.93 38.80 41.62 41.54 

 

 Case5 Case6 Case7 Case8 Case9 

 Hs=5.75 [m] 

Tp=10.5 [sec] 

Hs=7.25 [m] 

Tp=11.5 [sec] 

Hs=8.75 [m] 

Tp=12.5 [sec] 

Hs=10.25 [m] 

Tp=13.5 [sec] 

Hs=12.25 [m] 

Tp=15.5 [sec] 

Mean tip out-of-plane 

deflection of one blade [m] 
1.043 1.049 1.045 1.048 1.043 

Std of tip out-of-plane 

deflection of one blade [cm] 
44.66 47.86 50.29 52.51 54.40 
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Figure 24. Mean and standard deviation of tip out-of-plane deflection of one blade for different wave 

characteristics in the above-rated wind speed. 

5.1.2.2 Variation of turbulence intensity 

By increasing turbulence intensity, the standard deviation of the responses grew significantly, 

and mean value of the studied responses changed gently. 

To present an example, it can be seen from Figure 25 that standard deviation of platform pitch 

goes up from 0.3696 degree to 0.5502 degree for turbulence intensity of 5% and 15% 

respectively. Moreover, the mean value of platform pitch increases slowly from 1.295 degrees 
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for TI=5% to 1.325 degrees for TI=15%. Mean and standard deviation of platform pitch for 

different turbulence intensities are presented in Table 17. 

  

 

Figure 25. Mean and standard deviation of platform pitch for three turbulence intensities in above-

rated wind speed. 

Table 17. Mean and standard deviation of platform pitch. 

 TI=5% TI=11% TI=15% 

Mean platform pitch [deg] 1.295 1.310 1.325 

Std of platform pitch [deg] 0.3696 0.4556 0.5502 
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5.1.2.3 Variation of alpha in wind shear profile power law 

The results showed that the effect of alpha variation in wind shear profile is negligible in both 

mean and standard deviation of the investigated responses. 

For example, Figure 26 proves that the standard deviation of tip out-of-plane deflection of one 

blade increases gently from 38.85 cm to 42.56 cm by increasing of alpha from 0 to 0.14 while 

the mean value remains constant at approximately 1.04 m, with minimum value of 1.037 m 

and maximum value of 1.042 m. Mean and standard deviation of tip out-of-plane deflection of 

one blade for different alphas are tabulated in Table 18. 

  

 

Figure 26. Mean and standard deviation of tip out-of-plane deflection of one blade for different 

alphas in wind shear power law in the above-rated wind speed. 



 

Results                                                                        

 

 

57 

Table 18. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 α=0 α=0.05 α=0.10 α=0.12 α=0.14 

Mean tip out-of-plane deflection of one blade [m] 1.037 1.041 1.042 1.042 1.041 

Std of tip out-of-plane deflection of one blade [cm] 38.85 39.35 40.81 41.62 42.56 

5.1.2.4 Variation of the spatial resolution of the numerical wind field 

The results showed minor effect of the spatial resolution variation on the studied responses. 

For instance, Figure 27 illustrates a fluctuation in the standard deviation of electrical generator 

output between 20.26 kW for case3 and 30.02 kW for case1, while mean value changes slightly 

between 2.297 MW for case1 and 2.299 MW for case2 and case3. Mean and standard deviation 

of electrical generator output for different spatial resolutions are presented in Table 19. 

  

 

Figure 27. Mean and standard deviation of electrical generator output for different spatial resolutions 

in the above-rated wind speed. 
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Table 19. Mean and standard deviation of electrical generator output. 

 Case1 Case2 Case3 Case4 

 

dx=2.283 [m] 

dy=2 [m]   

dz=2 [m] 

dx=4.566 [m] 

dy=4 [m]    

dz=4 [m] 

dx=9.132 [m] 

dy=8 [m]   

dz=8 [m] 

dx=18.264 [m] 

dy=16 [m]     

dz=16 [m] 

Mean electrical generator output [MW] 2.297 2.299 2.299 2.298 

Std of electrical generator output [kW] 30.02 20.74 20.26 23.32 

5.2 OC3-Hywind results 

5.2.1 Below-rated wind speed 

5.2.1.1 Variation of wave characteristics 

The results showed the standard deviation of the studied responses rose by higher wave 

characteristics while the mean value of the responses remained almost unchanged. 

To present an example, Figure 28 illustrates that standard deviation of platform pitch rises 

about 100% when wave characteristics increase from case1 to case9. The standard deviation is 

0.5157 degree for case1 and grows to 1.023 degrees for case9. The mean platform pitch changes 

only 0.282 degree, from 4.968 degrees for case1 to 4.686 degrees for case9. Mean and standard 

deviation of platform pitch for different wave characteristics are presented in Table 20. 

Table 20. Mean and standard deviation of platform pitch. 

 Case1 Case2 Case3 Case4 

 

Hs=0.75 [m] 

Tp=6.5 [sec] 

Hs=1.4 [m] 

Tp=8.6 [sec] 

Hs=2.25 [m] 

Tp=8.5 [sec] 

Hs=4.25 [m] 

Tp=9.5 [sec] 

Mean platform pitch [deg] 4.968 4.967 4.966 4.957 

Std of platform pitch [deg] 0.5157 0.5195 0.5229 0.5466 

 

 Case5 Case6 Case7 Case8 Case9 

 Hs=5.75 [m] 

Tp=10.5 [sec] 

Hs=7.25 [m] 

Tp=11.5 [sec] 

Hs=8.75 [m] 

Tp=12.5 [sec] 

Hs=10.25 [m] 

Tp=13.5 [sec] 

Hs=12.25 [m] 

Tp=15.5 [sec] 

Mean platform pitch [deg] 4.937 4.907 4.864 4.791 4.686 

Std of platform pitch [deg] 0.6011 0.6666 0.7614 0.8673 1.0230 
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Figure 28. Mean and standard deviation of platform pitch for different wave characteristics in the 

below-rated wind speed. 

5.2.1.2 Variation of turbulence intensity 

While the mean value of the investigated responses dropped gradually, the standard deviation 

of the responses rose significantly when the turbulence intensity increased from 5% to 15%. 

For example, from Figure 29 the decline of mean mechanical power from 4.544 MW when 

TI=5% to 4.252 MW when TI=15% can be clearly observed. The standard deviation grows 

though by increasing turbulence intensity. The standard deviation is 401.7 kW and 859.8 kW 
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when turbulence intensity equals to 5% and 15% respectively. Mean and standard deviation of 

mechanical power for different turbulence intensities are tabulated in Table 21. 

Table 21. Mean and standard deviation of mechanical power. 

 TI=5% TI=10% TI=15% 

Mean mechanical power [MW] 4.544 4.411 4.252 

Std of mechanical power [kW] 401.7 663.9 859.8 

 

  

 

Figure 29. Mean and standard deviation of mechanical power for different turbulence intensities in 

the below-rated wind speed. 
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5.2.1.3 Variation of alpha in wind shear profile power law 

The variation of alpha in wind shear profile power law has a slight effect on both mean and 

standard deviation of the evaluated responses. 

For instance, the mean tip out-of-plane deflection of one blade changes from 5.197 m for 

α=0.14 to 5.217 m for α=0.05, presented in Figure 30. It can be seen from the data that the 

minimum standard deviation, 55.32 cm, occur when α=0.05. Moreover, the standard deviation 

is in its maximum, 59.23 cm, for α=0.14. Mean and standard deviation of tip out-of-plane 

deflection of one blade for different alphas are tabulated in Table 22. 

  

 

Figure 30. Mean and standard deviation of tip out-of-plane deflection of one blade for different 

alphas in wind shear power law in the below-rated wind speed. 
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Table 22. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 α=0 α=0.05 α=0.10 α=0.12 α=0.14 

Mean tip out-of-plane deflection of one blade [m] 5.216 5.217 5.208 5.202 5.197 

Std of tip out-of-plane deflection of one blade [cm] 56.92 55.32 56.67 57.73 59.23 

5.2.1.4 Variation of the spatial resolution of the numerical wind field 

The results indicated fluctuation in the studied responses of the structures with respect to the 

variation of spatial resolution of the numerical wind field. 

As an example, Figure 31 illustrates that mean mechanical power is in its maximum, 4.661 

MW, for case2 while the minimum mean value is 4.411 MW for case1. The data also show that 

the standard deviation fluctuates more widely. The standard deviation is 663.9 kW and 563.3 

kW for case1 and case2 respectively. Mean and standard deviation of mechanical power for 

different spatial resolutions are presented in Table 23. 

Table 23. Mean and standard deviation of mechanical power. 

 Case1 Case2 Case3 Case4 

 

dx=1.318 [m] 

dy=2 [m]   

dz=2 [m] 

dx=2.636 [m] 

dy=4 [m]    

dz=4 [m] 

dx=5.272 [m] 

dy=8 [m]   

dz=8 [m] 

dx=10.544 [m] 

dy=16 [m]     

dz=16 [m] 

Mean mechanical power [MW] 4.411 4.661 4.573 4.602 

Std of mechanical power [kW] 663.9 563.3 664 614.6 
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Figure 31. Mean and standard deviation of mechanical power for different spatial resolutions in the 

below-rated wind speed. 

5.2.2 Above-rated wind speed 

5.2.2.1 Variation of wave characteristics 

The analyses showed that by increasing significant wave heights and wave peak periods, 

standard deviation of the investigated responses increased while the mean values remained 

almost steady. 

To present an example, Figure 32 indicates that the standard deviation of tip out-of-plane 

deflection of one blade is 107.3 cm for case1 and rises constantly to 136.4 cm for case9. 
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Moreover, the mean value goes up and down slightly. The mean value fluctuates between 1.403 

m for case1 and 1.339 m for case9. It also can be seen from Figure 32 that the standard deviation 

is higher than the mean value in case9, 1.364 m and 1.339 m respectively. Mean and standard 

deviation of tip out-of-plane deflection of one blade for different wave characteristics are 

presented in Table 24. 

  

 

Figure 32. Mean and standard deviation of tip out-of-plane deflection of one blade for different wave 

characteristics in the above-rated wind speed. 
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Table 24. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 Case1 Case2 Case3 Case4 

 

Hs=0.75 [m] 

Tp=6.5 [sec] 

Hs=2.25 [m] 

Tp=8.5 [sec] 

Hs=4 [m] 

Tp=10 [sec] 

Hs=4.25 [m] 

Tp=9.5 [sec] 

Mean tip out-of-plane 

deflection of one blade [m] 
1.403 1.397 1.391 1.431 

Std of tip out-of-plane 

deflection of one blade [cm] 
107.3 108.2 110.2 110.9 

 

 Case5 Case6 Case7 Case8 Case9 

 Hs=5.75 [m] 

Tp=10.5 [sec] 

Hs=7.25 [m] 

Tp=11.5 [sec] 

Hs=8.75 [m] 

Tp=12.5 [sec] 

Hs=10.25 [m] 

Tp=13.5 [sec] 

Hs=12.25 [m] 

Tp=15.5 [sec] 

Mean tip out-of-plane 

deflection of one blade [m] 
1.419 1.411 1.399 1.331 1.339 

Std of tip out-of-plane 

deflection of one blade [cm] 
114.3 118.3 121.2 127.4 136.4 

 

5.2.2.2 Variation of turbulence intensity 

The standard deviation of studied responses grew rapidly when turbulence intensity increases 

from 5% to 15%. However, the mean value slightly dropped by increasing turbulence intensity. 

For example, Figure 33 illustrates that the standard deviation of platform pitch changes widely 

from 0.3396 degree for TI=5% to 0.8310 degree for TI=15%. The mean value drops about 0.1 

degree when turbulence intensity grows 10%. The mean value is 2.810 degree for TI=5% and 

2.706 degrees for TI=15%. Mean and standard deviation of platform pitch for different 

turbulence intensities are tabulated in Table 25. 
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Figure 33. Mean and standard deviation of platform pitch for different turbulence intensities in the 

above-rated wind speed. 

Table 25. Mean and standard deviation of platform pitch. 

 TI=5% TI=11% TI=15% 

Mean platform pitch [deg] 2.810 2.759 2.706 

Std of platform pitch [deg] 0.3396 0.6109 0.8310 

5.2.2.3 Variation of alpha in wind shear profile power law 

Influence of alpha variation on standard deviation of tip out-of-plane deflection of one blade 

was noticeable. However, the effect of alpha variation was barely observed on other mean and 

standard deviation of the evaluated responses. 
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For instance, by variation of alpha, the difference between maximum and minimum of the mean 

tip out-of-plane deflection of one blade is 2.1 cm while the difference between maximum and 

minimum of the standard deviation is 21 cm, illustrated in Figure 34. The mean value falls 

from 1.405 m when α=0 to 1.384 m when α=0.14. However, the standard deviation grows from 

94.7 cm when α=0 to 115.7 cm when α=0.14. Mean and standard deviation of tip out-of-plane 

deflection of one blade for different alphas are presented in Table 26. 

  

 

Figure 34. Mean and standard deviation of tip out-of-plane deflection of one blade for different 

alphas in wind shear power law in the above-rated wind speed. 

Table 26. Mean and standard deviation of tip out-of-plane deflection of one blade. 

 α=0 α=0.05 α=0.10 α=0.12 α=0.14 

Mean tip out-of-plane deflection of one blade [m] 1.405 1.404 1.397 1.391 1.384 

Std of tip out-of-plane deflection of one blade [cm] 94.7 96.7 105.3 110.2 115.7 
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5.2.2.4 Variation of the spatial resolution of the numerical wind field 

By variation of spatial resolution of the numerical wind field, the standard deviation of the 

studied responses showed fluctuations, although the mean values remained almost stable. 

As an example, Figure 35 indicates that mean mechanical power is almost constant for different 

cases. However, the standard deviation shows more variation over different cases, increase 

from 144.4 kW for case1 to 162.4 kW for case2 and decreases to 143.8 kW for case4. Mean 

and standard deviation of mechanical power for different spatial resolutions are tabulated in 

Table 27. 

  

 

Figure 35. Mean and standard deviation of mechanical power for different spatial resolutions in the 

above-rated wind speed. 
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Table 27. Mean and standard deviation of mechanical power. 

 Case1 Case2 Case3 Case4 

 

dx=2.283 [m] 

dy=2 [m]   

dz=2 [m] 

dx=4.566 [m] 

dy=4 [m]    

dz=4 [m] 

dx=9.132 [m] 

dy=8 [m]   

dz=8 [m] 

dx=18.264 [m] 

dy=16 [m]     

dz=16 [m] 

Mean mechanical power [MW] 5.190 5.188 5.187 5.190 

Std of mechanical power [kW] 144.4 162.4 160.7 143.8 

5.3 Coherence of the numerical wind field 

Mann turbulence generator was used to generate a numerical wind field for both the below- 

and above-rated wind speed. By generating the numerical wind field, longitudinal (uˊ), lateral 

(vˊ) and vertical (wˊ) velocity fluctuations were available for each node. 

 

Figure 36. Numerical wind field. 

longitudinal velocity fluctuation spectra for all nodes in y-z plane were calculated. Moreover, 

cross-spectral of longitudinal velocity fluctuation between each node and mid-node in y-z plane 

were calculated. Co-coherence, presented in Eq. (4), of longitudinal velocity fluctuation 

between each node and mid-node in y-z plane for frequency of 0.2 Hz and for the above-rated 

wind speed, 18.7 m/s, with 11% turbulence intensity is illustrated in Figure 37. 
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Figure 37. Co-coherence of longitudinal wind velocity fluctuation (uˊ) between each point and mid-

point for frequency of 0.2 Hz. 

Figure 38 shows the average co-coherence of longitudinal wind velocity fluctuation (uˊ) in 

various radius around mid-node in y-z plane for frequency of 0.2 Hz. 

 

Figure 38. Average co-coherence of longitudinal wind velocity fluctuation (uˊ) in a radius around 

mid-node for frequency of 0.2 Hz. 

Figure 39 presents co-coherence of longitudinal velocity fluctuation between each node and 

mid-node in y-z plane for frequency of 0.04 Hz and for the above-rated wind speed, 18.7 m/s, 

with 11% turbulence intensity. 
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Figure 39. Co-coherence of longitudinal wind velocity fluctuation (uˊ) between each point and mid-

point for frequency of 0.04 Hz. 

Figure 40 presents the average co-coherence of longitudinal wind velocity fluctuation (uˊ) in 

various radius around mid-node in y-z plane for frequency of 0.04 Hz. 

 

Figure 40. Average co-coherence of longitudinal wind velocity fluctuation (uˊ) in a radius around 

mid-node for frequency of 0.04 Hz. 
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73 

CHAPTER 6 Discussion 

In this chapter the results of dynamic analysis of both Hywind Demo and OC3-Hywind 

structures presented in previous chapter will be discussed. Moreover, the result of coherence 

will be discussed. 

6.1 The dynamic responses of the structures 

Various environmental parameters, i.e., wave characteristics, turbulence intensity, alpha in 

wind shear profile power law and spatial resolution of the numerical wind field, were varied to 

understand the effect of these parameters on structures’ responses, i.e., electrical generator 

output, platform pitch and tip out-of-plane deflection of one blade. The effect of the parameters 

on the responses of Hywind Demo and OC3-Hywind presented in CHAPTER 5 will be 

discussed in following sections. 

6.1.1 Wave characteristics 

As presented in CHAPTER 5, standard deviation of responses rose significantly by increasing 

significant wave height (Hs) and wave peak period (TP) for both studied structures and for both 

the below- and above-rated wind speed. Higher significant wave height and wave peak period 

cause higher excitation force on the structure which result in higher standard deviation of the 

responses. 

Table 28 an Table 29 present that for both Hywind Demo and OC3-Hywind, mean power 

output increases, while standard deviation of power output decreases for the above-rated wind 

speed compared to the below-rated wind speed. It is important to be noted that all the minimum 
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and maximum values of structural responses in this chapter are presented to only have a quick 

overview over the variation of the responses. The exact numbers could be changed if the seed 

number changes. 

Table 28. The maximum and minimum values of the Hywind Demo responses when wave 

characteristics were varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 1.313 1.316 

Std of power output [kW] 239.40 411.60 

Mean platform pitch [deg] 1.524 1.564 

Std of platform pitch [deg] 0.2202 1.4890 

Mean tip out-of-plane deflection of one blade [m] 1.697 1.727 

Std of tip out-of-plane deflection of one blade [cm] 17.91 27.73 

above-rated  

wind speed 

(18.7 m/s) 

Mean power output [MW] 2.281 2.300 

Std of power output [kW] 11.07 112.30 

Mean platform pitch [deg] 1.294 1.360 

Std of platform pitch [deg] 0.2819 1.6770 

Mean tip out-of-plane deflection of one blade [m] 1.039 1.049 

Std of tip out-of-plane deflection of one blade [cm] 37.93 54.40 

 

Table 29. The maximum and minimum values of the OC3-Hywind responses when wave 

characteristics were varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 4.410 4.433 

Std of power output [kW] 659.20 890.60 

Mean platform pitch [deg] 4.686 4.968 

Std of platform pitch [deg] 0.5157 1.0230 

Mean tip out-of-plane deflection of one blade [m] 4.905 5.202 

Std of tip out-of-plane deflection of one blade [cm] 57.19 109.20 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 5.140 5.195 

Std of power output [kW] 140.00 213.80 

Mean platform pitch [deg] 2.736 2.765 

Std of platform pitch [deg] 0.5735 1.1070 

Mean tip out-of-plane deflection of one blade [m] 1.331 1.431 

Std of tip out-of-plane deflection of one blade [cm] 107.30 136.40 
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The growth in the mean power output for the above-rated wind speed compared to below-rated 

wind speed can be explained by Eq. (9): 

𝑷𝒐𝒖𝒕 =
𝟏

𝟐
𝑪𝑷𝑨𝝆𝒖

𝟑                                                                                                                                                 (9) 

Where 𝑃𝑜𝑢𝑡 is the output power, 𝐶𝑃 is the power extraction coefficient, A is swept area of blades, 

𝝆 is air density and u is the wind velocity. 

As it can be seen from the Eq. (9), the wind speed is extremely important for the amount of 

energy a wind turbine can convert to electricity, i.e. the power output will increase cubically 

with wind speed. Therefore, as the wind velocity is higher for the above-rated wind speed 

compared to the below-rated wind speed, mean power output is higher. 

In order to understand why the standard deviation of output power decreased for the above-

rated wind speed compared to the below-rated wind speed, the power curve for a wind turbine, 

presented in Figure 41, has to be investigated. It is obvious from Eq. (9) that power is 

proportional to the cube of wind speed and the figure shows this proportional for a below-rated 

wind speed. Therefore, small wind speed changes in a below-rated wind speed cause large 

power output differences. However, wind speed changes in an above-rated wind speed cause 

so small power output differences due to blade pitch control mechanism. 

 

Figure 41. Typical wind turbine power output curve. 
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The results presented in Table 28 and Table 29 also show that for both structures, mean 

platform pitch declines, while standard deviation of platform pitch increases for the above-

rated wind speed compared to the below-rated wind speed.  

 

Figure 42. Thrust force on the Hywind Demo wind turbine. [19] 

 

Figure 43. Thrust force on the 5 MW NREL baseline wind turbine. [34] 

The decline in mean platform pitch for the above-rated wind speed compared to the below-

rated wind speed can be explained by thrust force on the Hywind Demo and OC3-Hywind 

illustrated in Figure 42 and Figure 43 respectively. As it is clear from the figures, thrust force 

is higher for the below-rated wind speed, 10.8 m/s, compared to thrust force for the above-rated 

wind speed, 18.7 m/s. As thrust force is higher for the below-rated wind speed, therefore the 

mean platform pitch is bigger for the below-rated compared to above-rated wind speed. 
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The standard deviation of platform pitch increased for the above-rated wind speed compared 

to the below-rated wind speed. There could be two reasons for higher standard deviation of 

platform pitch for the above-rated wind speed,  

• It could be related to less resonant response in power spectrum of the response. There 

is auto damping in the below-rated wind speed while the damping in the above-rated 

wind speed depends on turbine controller, 

• As there are almost the same turbulence intensity for both below- and above-rated wind 

speed base case, therefore there is higher wind velocity fluctuations for the above-rated 

wind speed, and higher wind velocity fluctuations introduce higher standard deviation. 

The numbers in Table 28 and Table 29 also indicate that for both Hywind Demo and OC3-

Hywind, mean tip out-of-plane deflection of one blade decreases, while standard deviation of 

tip out-of-plane deflection of one blade increases for the above-rated wind speed compared to 

the below-rated wind speed. 

The decrease in mean tip out-of-plane deflection of one blade for the above-rated compared to 

the below-rated wind speed can also be explained by the thrust force. As the thrust force is 

lower for the above-rated wind speed, 18.7 m/s, compared to the below-rated wind speed, 10.8 

m/s, therefore tip out-of-plane deflection of one plane is smaller for the above-rated wind speed. 

The rise in standard deviation of tip out-of-plane deflection of one blade for the above-rated 

wind speed compared to the below-rated wind speed could also be explained with the same 

reasons that stated for the standard deviation of platform pitch. 

By comparing the results for Hywind Demo and OC3-Hywind in Table 28 and Table 29, it can 

be found that the standard deviation for all three studied responses are higher for OC3-Hywind 

than Hywind Demo, except maximum standard deviation of platform pitch at nacelle level. 

6.1.2 Turbulence intensity 

The results presented in CHAPTER 5 indicated that the standard deviation of investigated 

responses rose significantly when turbulence intensity increased for both studied structures and 

for both the below- and above-rated wind speed. 
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The turbulence intensity is defined as the ration of the root-mean-square of the wind velocity 

fluctuations, 𝑢ˊ, to the mean wind velocity, 𝑢𝑚𝑒𝑎𝑛. Therefore, by increasing turbulence 

intensity, there are higher wind velocity fluctuations which cause higher standard deviation of 

the responses. Furthermore, the effect of turbulence on the global structural responses, e.g. the 

platform pitch, can be explained by large-scale turbulence, while the effect of turbulence on 

the local structural responses, e.g. the tip blade deflections, can be explained by small-scale 

turbulence. 

The effect of turbulence intensity variation on the evaluated responses of structures are 

presented in Table 30 and Table 31. By comparing the results can be realized: 

• For both Hywind Demo and OC3-Hywind, mean power output goes up, while standard 

deviation of power output declines for the above-rated wind speed compare to the 

below-rated wind speed. 

• For both structures, mean platform pitch drops, while standard deviation of platform 

pitch increases for the above-rated wind speed compared to the below-rated wind speed. 

Table 30. The maximum and minimum values of the Hywind Demo responses when turbulence 

intensity was varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 1.291 1.339 

Std of power output [kW] 127.50 341.00 

Mean platform pitch [deg] 1.529 1.595 

Std of platform pitch [deg] 0.1406 0.3394 

Mean tip out-of-plane deflection of one blade [m] 1.699 1.751 

Std of tip out-of-plane deflection of one blade [cm] 11.63 24.24 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 2.290 2.300 

Std of power output [kW] 11.25 68.51 

Mean platform pitch [deg] 1.295 1.325 

Std of platform pitch [deg] 0.3696 0.5502 

Mean tip out-of-plane deflection of one blade [m] 1.015 1.069 

Std of tip out-of-plane deflection of one blade [cm] 26.51 53.18 
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• For both structures, mean tip out-of-plane deflection of one blade declines, while 

standard deviation of tip out-of-plane deflection of one blade rises for the above-rated 

wind speed compare to the below-rated wind speed. 

• By comparing the results of Hywind Demo and OC3-Hywind, it can be found that the 

standard deviation for all three studied responses are higher for OC3-Hywind than 

Hywind Demo, except minimum standard deviation of platform pitch at nacelle level. 

Table 31. The maximum and minimum values of the OC3-Hywind responses when turbulence 

intensity was varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 4.252 4.544 

Std of power output [kW] 401.70 859.80 

Mean platform pitch [deg] 4.673 5.203 

Std of platform pitch [deg] 0.2820 0.7967 

Mean tip out-of-plane deflection of one blade [m] 4.895 5.437 

Std of tip out-of-plane deflection of one blade [cm] 32.06 84.30 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 5.154 5.241 

Std of power output [kW] 74.63 195.80 

Mean platform pitch [deg] 2.706 2.810 

Std of platform pitch [deg] 0.3396 0.8310 

Mean tip out-of-plane deflection of one blade [m] 1.361 1.452 

Std of tip out-of-plane deflection of one blade [cm] 77.02 137.90 

6.1.3 Alpha in wind shear profile power law 

The results for both studied structures and for both the below- and above-rated wind speed 

presented in CHAPTER 5 revealed insignificant effect of alpha variation on the standard 

deviation of the responses. However, the alpha variation has greater effect on local structural 

response, i.e. tip out-of-plane deflections for one blade, than global structural responses. 

The maximum and minimum values of the responses are presented in Table 32 and Table 33. 
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Table 32. The maximum and minimum values of the Hywind Demo responses when alpha was 

varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 1.310 1.334 

Std of power output [kW] 240.10 243.00 

Mean platform pitch [deg] 1.563 1.563 

Std of platform pitch [deg] 0.2344 0.2352 

Mean tip out-of-plane deflection of one blade [m] 1.725 1.742 

Std of tip out-of-plane deflection of one blade [cm] 17.21 18.30 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 2.297 2.298 

Std of power output [kW] 28.52 30.80 

Mean platform pitch [deg] 1.267 1.315 

Std of platform pitch [deg] 0.4541 0.4557 

Mean tip out-of-plane deflection of one blade [m] 1.037 1.042 

Std of tip out-of-plane deflection of one blade [cm] 38.85 42.56 

 

Table 33. The maximum and minimum values of the OC3-Hywind responses when alpha was varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 4.400 4.491 

Std of power output [kW] 643.60 665.40 

Mean platform pitch [deg] 4.918 4.972 

Std of platform pitch [deg] 0.5176 0.5241 

Mean tip out-of-plane deflection of one blade [m] 5.197 5.217 

Std of tip out-of-plane deflection of one blade [cm] 55.32 59.23 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 5.190 5.191 

Std of power output [kW] 142.90 144.60 

Mean platform pitch [deg] 2.633 2.774 

Std of platform pitch [deg] 0.6036 0.6117 

Mean tip out-of-plane deflection of one blade [m] 1.384 1.405 

Std of tip out-of-plane deflection of one blade [cm] 94.70 115.70 

 

When the standard deviation of tip out-of-plane deflections for one blade presented in the tables 

are considered, it could be found that for the both studied structures, the variation of alpha has 

greater effect in the above-rated wind speed compared to the below-rated wind speed due to 

higher wind speed variations within swept area of blades. Furthermore, the variation of alpha 

has more greater effect on OC3-Hywind compared to Hywind Demo due to higher wind speed 
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variations for OC3-Hywind than Hywind Demo. Mean below- and above-rated wind speed 

with different alpha within swept area of blades of Hywind Demo and OC3-Hywind are 

illustrated in Figure 44 and Figure 45 respectively. Crossing point of all wind speed profiles in 

Figure 44 and Figure 45 is in hub height, i.e. 65 m for Hywind Demo and 90 m for OC3-

Hywind. 

  

Figure 44. Mean below- and above-rated wind speed profiles with different alpha within swept area 

of blades of Hywind Demo. 

  

Figure 45. Mean below- and above-rated wind speed profiles with different alpha within swept area 

of blades of OC3-Hywind. 

High turbulence intensity of wind could also be an important player that variation of alpha has 

insignificant effect on the responses. For instance, Figure 46 and Figure 47 show that when 

turbulence intensity reduced from 11% to 1% for the above-rated wind speed base case for 
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Hywind Demo, the variation of standard deviation of tip out-of-plane deflection of one blade 

increases significantly. 

 

Figure 46. Standard deviation of tip out-of-plane deflection of one blade for various alphas 

for the above-rated wind speed base case for Hywind Demo with turbulence intensity of 11%. 

 

Figure 47. Standard deviation of tip out-of-plane deflection of one blade for various alphas 

for the above-rated wind speed base case for Hywind Demo with turbulence intensity of 1%. 

Although the effect of alpha variation on the results of the investigated responses is small, the 

results presented in Table 32 and Table 33 reveals: 

• For both structures, mean power output grows, while standard deviation of power 

output goes down for the above-rated wind speed compared to the below-rated wind 

speed. 
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• For both structures, mean platform pitch falls, while standard deviation of platform 

pitch rises for the above-rated wind speed compared to the below-rated wind speed. 

• For both structures, mean tip out-of-plane deflection of one blade decreases, while 

standard deviation of tip out-of-plane deflection of one blade goes up for the above-

rated wind speed compared to the below-rated wind speed. 

• By comparing the results of Hywind Demo and OC3-Hywind, it can be realized that 

the standard deviation for all studied responses are higher for OC3-Hywind than 

Hywind Demo. 

6.1.4 Spatial resolution of the numerical wind field 

The results in CHAPTER 5 disclosed that the standard deviation of studied responses fluctuated 

by variation of spatial resolution of the numerical wind field. The reason of these fluctuations 

is variation of wind speed due to spatial resolution variation. As the grid size of the numerical 

wind field changes, the average wind speed applied on the structure will change and therefore 

the structural responses will change. Table 34 and Table 35 present the minimum and 

maximum values of structural responses of Hywind Demo and OC3-Hywind respectively. 

Table 34. The maximum and minimum values of the Hywind Demo responses when spatial 

resolutions were varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 1.313 1.391 

Std of power output [kW] 208.00 250.00 

Mean platform pitch [deg] 1.563 1.619 

Std of platform pitch [deg] 0.2234 0.2370 

Mean tip out-of-plane deflection of one blade [m] 1.727 1.769 

Std of tip out-of-plane deflection of one blade [cm] 16.54 18.19 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 2.297 2.299 

Std of power output [kW] 20.26 30.02 

Mean platform pitch [deg] 1.275 1.310 

Std of platform pitch [deg] 0.4360 0.4677 

Mean tip out-of-plane deflection of one blade [m] 0.9912 1.0420 

Std of tip out-of-plane deflection of one blade [cm] 38.35 41.62 

 



 

Discussion                                                                    

 

 

84 

Table 35. The maximum and minimum values of the OC3-Hywind responses for when spatial 

resolutions were varied. 

  Min. Max. 

below-rated 

wind speed 

(10.8 m/s) 

Mean power output [MW] 4.411 4.661 

Std of power output [kW] 563.30 664.00 

Mean platform pitch [deg] 4.967 5.118 

Std of platform pitch [deg] 0.5195 0.6419 

Mean tip out-of-plane deflection of one blade [m] 5.141 5.316 

Std of tip out-of-plane deflection of one blade [cm] 56.73 63.41 

above-rated 

wind speed 

(18.7 m/s) 

Mean power output [MW] 5.187 5.190 

Std of power output [kW] 143.80 162.40 

Mean platform pitch [deg] 2.712 2.759 

Std of platform pitch [deg] 0.5673 0.6248 

Mean tip out-of-plane deflection of one blade [m] 1.293 1.391 

Std of tip out-of-plane deflection of one blade [cm] 107.50 111.00 

 

By considering the maximum and minimum results of the responses for both structures, 

presented in Table 34 and Table 35,  it could be realized that: 

• For both Hywind Demo and OC3-Hywind: 

- The standard deviation of power output drops while the mean power output 

increases for above-rated wind speed compared to below-rated wind speed. 

- While the standard deviation of platform pitch grows, mean platform pitch falls 

for above-rated wind speed compared to below-rated wind speed. 

- The standard deviation of tip out-of-plane deflection of one blade shoots up 

while mean tip out-of-plane deflection of one blade declines for above-rated 

wind speed compared to below-rated wind speed. 

• The standard deviation of OC3-Hywind responses are higher compared to the standard 

deviation of Hywind Demo responses. 
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6.2 Coherence of the numerical wind field 

Co-coherence of longitudinal wind velocity fluctuation (uˊ) for frequencies of 0.04 Hz and 0.2 

Hz were presented in CHAPTER 5. As it was clear from the results, the co-coherence of uˊ for 

the higher frequency had not a sensible pattern. Figure 48 also shows the co-coherence for 

higher frequency in flatten view. As it is clear from the figure, the middle nodes have the 

highest co-coherence as expected. 

 

Figure 48. flatten view of co-coherence of longitudinal wind velocity fluctuation (uˊ) between each 

point and mid-point for frequency of 0.2 Hz. 

However, the average co-coherence of longitudinal wind velocity fluctuation (uˊ) in radius 

around mid-node decreased sharply from small radius around mid-node until the radius of 14 

m around mid-node, presented in Figure 38. For greater radius around mid-node, the average 

co-coherence was almost flattened. 

For frequency of 0.04 Hz, the result showed a clear pattern, more correlation of spectra around 

the mid-node and less correlation of spectra away from mid-node. Figure 49 also clearly shows 

the pattern of correlations. 
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It was also obvious from averaging of co-coherence of longitudinal wind velocity fluctuation 

(uˊ) in various radius that the correlation of spectra faded away when the radius around the 

mid-node increased. 

 

Figure 49. flatten view of co-coherence of longitudinal wind velocity fluctuation (uˊ) between each 

point and mid-point for frequency of 0.04 Hz. 

More correlation of spectra between two nodes is more favorable for structure. Higher wind 

loads will be applied on structure when there is small correlation of spectra between two 

arbitrary points in rotor plane. 
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Conclusion 

The aim of this study was to conduct a sensitivity study to understand the sensitivity of various 

structural responses as function of the various environmental parameters using the 

computational tool SIMA. Also, coherence of the numerical wind field was investigated. 

Based on the below- and the above-rated wind speed base case, environmental components in 

both Hywind Demo and OC3-Hywind SIMA models were modified. Then, in each simulation, 

one environmental parameter was changed while other parameters remained unchanged. 

Thereafter, the sensitivity of the responses to the parameter variation were evaluated. 

The wave characteristics variation and turbulence intensity variation had significant effect on 

the dynamic behaviour of both Hywind Demo and OC3-Hywind. The standard deviation of the 

investigated responses showed clear agreement with variation of the wave characteristics and 

turbulence intensity, i.e. the standard deviations rose by increasing significant wave height and 

wave peak period or turbulence intensity. 

The wind shear exponent (α) variation had insignificant impact on the evaluated global 

structural responses, i.e. power output and platform pitch. However, the studied local structural 

response, i.e. tip out-of-plane deflection of one blade, had greater sensitivity to alpha variation. 

Moreover, the tip out-of-plane deflection of one blade for the above-rated wind speed had 

greater standard deviation compared to the below-rated wind speed due to higher wind velocity 

variation within rotor area. Also, the tip out-of-plane deflection of one blade for OC3-Hywind 

had greater standard deviation compared to Hywind Demo due to bigger rotor diameter and 

therefore greater wind velocity variation. It is also important to be noted that by reducing 
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turbulence intensity, tip out-of-plane deflection of one blade had greater sensitivity to alpha 

variation. 

The evaluated structural responses fluctuated by changing the spatial resolution of the 

numerical wind field. As the grid size of the numerical wind field changed, the average wind 

speed applied on the structure changed and therefore the structural responses changed. 

When the responses of two structures compare to each other, the responses of OC3-Hywind 

were greater than the responses of Hywind Demo. The reason was due to larger rotor size of 

OC3-Hywind compared to rotor size of Hywind Demo. The larger the rotor size, the greater 

the thrust loads on the structure. The greater thrust loads on the structure caused greater 

platform pitch and tip out-of-plane deflection of one blade. It is also obvious that larger rotor 

swept area produces higher power output. 

Co-coherence of longitudinal wind velocity fluctuation (uˊ) showed higher correlation between 

nodes for lower frequency than higher frequency for one realization. 
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Recommendations for Further Work 

The most important further works are conducting more simulations to converge the structural 

responses.  

In addition, the sensitivity study with respect to other important environmental parameters must 

be performed to better understand the structural responses. It also would be useful if the 

sensitivities of different parameters could be rank based on Robertson [35]. 

For coherence of numerical wind field evaluation, more realizations need to have more reliable 

results. 

Moreover, it is recommended to perform the sensitivity of even larger wind turbine, e.g. 10 

MW wind turbine, to environmental parameters. 



 

 

 

 

90 

Bibliography 

1. Ehrlich, R., RENEWABLE ENERGY - A First Course. 2013: CRC Press. 

2. Roddier, D. and J. Weinstein, Floating Wind Turbines. Mechanical Engineering, 2010. 

132(4): p. 28-32. 

3. Musial, W., S. Butterfield, and B. Ram, Energy From Offshore Wind, in Offshore 

Technology Conference. 2006: Houston. 

4. Jonkman, J., Dynamics Modeling and Loads Analysis of an Offshore Floating Wind 

Turbine. November 2007, National Renewable Energy Laboratory (NREL). 

5. Tran, T.-T. and D.-H. Kim, The platform pitching motion of floating offshore wind 

turbine: A preliminary unsteady aerodynamic analysis. Journal of Wind Engineering 

and Industrial Aerodynamics, 2015. 142: p. 65-81. 

6. VATTENFALL. Horns Rev 1.  January 15th, 2018]; Available from: 

https://powerplants.vattenfall.com/horns-rev. 

7. Ørsted. Nysted.  January 15th, 2018]; Available from: https://orsted.com/en/Our-

business/Wind-Power/Our-wind-farms. 

8. Ibsen, L.B., M. Liingaard, and S.A. Nielsen, Bucket Foundation, a status. Proceedings 

of the Copenhagen Offshore Wind, 2005. 

9. Beatrice Offshore Wind Farm.  January 15th, 2018]; Available from: 

https://www.beatricewind.com/. 

10. STATOIL. World’s first floating wind farm has started production.  Januray 15th, 

2018]; Available from: https://www.statoil.com/en/news/worlds-first-floating-wind-

farm-started-production.html. 

11. Adam, F., et al., GICON-TLP for wind turbines - Validation of calculated results, in 

The Twenty-third International Offshore and Polar Engineering Conference. 2013: 

Anchorage, Alaska. 

12. Roddier, D., et al., WindFloat: A floating foundation for offshore wind turbines. 2010. 

2(3). 

13. Bulder, B.H., et al., Study to feasibility of and boundary conditions for floating offshore 

wind turbines. 2002. 

14. Landbø, T., OO-STAR WIND FLOATER, THE FUTURE OF OFFSHORE WIND?, in 

EERA DEEPWIND. 2018: Trondheim, Norway. 

15. IDEOL. THE FLOATING FOUNDATION.  February 10th, 2018]; Available from: 

http://ideol-offshore.com/en/floating-foundation. 

https://powerplants.vattenfall.com/horns-rev
https://orsted.com/en/Our-business/Wind-Power/Our-wind-farms
https://orsted.com/en/Our-business/Wind-Power/Our-wind-farms
https://www.beatricewind.com/
https://www.statoil.com/en/news/worlds-first-floating-wind-farm-started-production.html
https://www.statoil.com/en/news/worlds-first-floating-wind-farm-started-production.html
http://ideol-offshore.com/en/floating-foundation


 

Bibliography                                                                                                                

 

 

91 

16. PELASTAR. PelaStar tension leg platform (TLP) technology.  February 10th, 2018]; 

Available from: http://pelastar.com/. 

17. Nielsen, F.G. Hywind – From idea to world’s first wind farm based upon floaters. 2017  

February 10th, 2018]; Available from: 

https://www.uib.no/sites/w3.uib.no/files/attachments/hywind_energy_lab.pdf. 

18. Matha, D., Model Development and Loads Analysis of an Offshore Wind Turbine on a 

Tension Leg Platform, with a Comparison to Other Floating Turbine Concepts. April 

2009, National Renewable Energy Laboratory (NREL). 

19. Skaare, B., et al., Analysis of measurements and simulations from the Hywind Demo 

floating wind turbine. Wind Energy, 2015. 18: p. 1105-22. 

20. Neuenkirchen Godø, S., Dynamic Response of Floating Wind Turbines. June 2013, 

NTNU. 

21. MARINTEK, SIMA User Guide. 2018: Available as an application built into SIMA. 

22. Jonkman, J. and W. Musial, Offshore Code Comparison Collaboration (OC3) for IEA 

Task 23 Offshore Wind Technology and Deployment. December 2010, National 

Renewable Energy Laboratory (NREL). 

23. Jonkman, J., et al., Definition of a 5-MW Reference Wind Turbine for Offshore System 

Development. February 2009, National Renewable Energy Laboratory (NREL). 

24. Jonkman, J., Definition of the Floating System for Phase IV of OC3. May 2010, 

National Renewable Energy Laboratory (NREL). 

25. Malhotra, S., Selection, Design and Construction of Offshore Wind Turbine 

Foundations. 2011: INTECH Open Access Publisher. 

26. Veers, P., Three-Dimensional Wind Simulation. 1988, Sandia National Laboratories. 

27. Mann, J., The spatial structure of neutral atmospheric surface-layer turbulence. Journal 

of Fluid Mechanics, 1994. 273: p. 141-168. 

28. Cheynet, E., et al., Application of short-range dual-Doppler lidars to evaluate the 

coherence of turbulence. Experiments in Fluids, 2016. 57(12). 

29. (IEC), I.E.C., IEC61400-1 Wind turbines - Part 1: Design requirements. 3rd Edition, 

2005. 

30. Kaimal, J.C., et al., Spectral characteristics of surface-layer turbulence. Quarterly 

Journal of the Royal Meteorological Society, 1972. 98: p. 563–589. 

31. Eliassen, L. and C. Obhrai, Coherence of Turbulent Wind Under Neutral Wind 

Conditions at FINO1. Energy Procedia, 2016. 94: p. 388-398. 

32. Eliassen, L. and E.E. Bachynski, The Effect of Turbulence Model on the Response of a 

Large Floating Wind Turbine, in OMAE2017. 2017: Trondheim, Norway. p. 

V010T09A062; 10 pages. 

33. DTU Wind Energy. Pre-processing tools - Mann 64bit turbulence generator.  [cited 

2017 November 15th]; Available from: http://www.hawc2.dk/download/pre-

processing-tools. 

34. Desmond, C., et al., Description of an 8 MW reference wind turbine. Journal of Physics 

Conference Series, 2016. 753. 

35. Robertson, A., et al., Assessment of Wind Parameter Sensitivity on Extreme and Fatigue 

Wind Turbine Loads, in AIAA Wind Energy Symposium. 2018. 

http://pelastar.com/
https://www.uib.no/sites/w3.uib.no/files/attachments/hywind_energy_lab.pdf
http://www.hawc2.dk/download/pre-processing-tools
http://www.hawc2.dk/download/pre-processing-tools


 

 

 

 

I 

APPENDIX 1 Scatter diagram 

Scatter diagram based upon approximately 18 years of measured data from the North Sea is 

presented in Figure 50. 

 

Figure 50. Example upon scatter diagram based upon approximately 18 years of measured data from 

the North Sea.  
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APPENDIX 2 Complete structural responses 

Hywind Demo and OC3-Hywind concepts were employed to investigate and analyse. Wave 

characteristics (Hs and Tp), turbulence intensity (TI), alpha (α) in wind shear power law and 

spatial resolution of the numerical wind field varied and investigated their effects on the 

structures’ responses. For each sensitivity study, mean and standard deviation of structures’ 

responses such as electrical generator output, platform pitch and tip out-of-plane deflection for 

one blade were investigated to understand the importance of each studied parameter on the 

responses. All the results without any interpretation for both below- and above-rated wind 

speed are presented. 

2.1 Hywind Demo results 

2.1.1 Below-rated wind speed 

2.1.1.1 Variation of wave characteristics 

Higher Hs and Tp generated higher standard deviations while the mean values remained almost 

constant in evaluated responses. 
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II 

Figure 51 indicates that the mean electrical generator output remains unchanged in 1.313 MW. 

However, the standard deviation of electrical generator output rises steadily from 239.4 kW for 

case 1 to 411.6 kW for case 9. 

  

 

Figure 51. Mean and standard deviation of electrical generator output for different Hs and Tp in 

below-rated wind speed. 
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III 

Figure 52 shows a dramatic growth in standard deviation of platform pitch from 0.22 degree 

for case1 compared to 1.49 degrees for case9. Moreover, mean platform pitch remains fairly 

static, changes from 1.564 to 1.524 degrees. 

  

 

Figure 52. Mean and standard deviation of platform pitch for different Hs and Tp in below-rated wind 

speed. 
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IV 

While the mean tip out-of-plane deflection of one blade shows no change for case1, case2 and 

case3, the value falls slightly from 1.727 m for case3 to 1.697 m for case 9 illustrated in Figure 

53. Furthermore, the standard deviation increases from 17.91 cm for case1 to 27.73 cm for case 

9. 

  

 

Figure 53. Mean and standard deviation of tip out-of-plane deflection of one blade for different Hs 

and Tp in below-rated wind speed. 
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V 

2.1.1.2 Variation of turbulence intensity 

Higher turbulence intensity produced higher standard deviations while mean values decreased 

gently in evaluated responses.  

It is shown in Figure 54 that by increasing the turbulence intensity from 5% to 15%, the 

standard deviation of electrical generation output increases from 127.5 to 341 kW, while the 

mean electrical generation output slightly decreases from 1.339 to 1.291 MW. 

  

 

Figure 54. Mean and standard deviation of electrical generator output for three turbulence intensities 

in below-rated wind speed. 
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VI 

Figure 55 shows the same pattern as the previous figure, i.e. by increasing turbulence intensity, 

the mean value gradually drops while standard deviation rises steeply. The mean platform pitch 

falls from 1.595 to 1.529 degrees while standard deviation goes up from 0.1406 to 0.3394 

degrees. 

  

 

Figure 55. Mean and standard deviation of platform pitch for three turbulence intensities in below-

rated wind speed. 
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VII 

Mean and standard deviation of tip out-of-plate deflection of one blade for 5%, 10% and 15% 

turbulence intensity are presented in Figure 56. The mean value decreases from 1.751 to 1.699 

m and the standard deviation climbs from 11.63 to 24.24 cm. 

 

  

 

Figure 56. Mean and standard deviation of tip out-of-plane deflection of one blade for three 

turbulence intensities in below-rated wind speed. 
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VIII 

2.1.1.3 Variation of alpha in wind shear profile power law 

Varying α in wind shear profile power law showed no significant effect on both mean and 

standard deviation values of the responses. 

Figure 57 illustrates that both mean and standard deviation of electrical generator output 

decline slightly by increasing alpha. The results show the mean value decreases from 1.334 to 

1.310 MW and the standard deviation falls from 243 to 240.1 kW. 

  

 

Figure 57. Mean and standard deviation of electrical generator output for five alphas in wind shear 

power law in below-rated wind speed. 

 



 

Complete structural responses                                                                                                           

 

 

IX 

The mean values of platform pitch for all alphas are the same, 1.563 degrees. However, the 

standard deviations barely decrease from 0.2352 to 0.2344 degrees. The results are shown in 

Figure 58. 

  

 

Figure 58. Mean and standard deviation of platform pitch for five alphas in wind shear power law in 

below-rated wind speed. 
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Figure 59 shows that mean of tip out-of-plane of one blade reduces gradually from 1.742m to 

1.725m while alpha increases from 0 to 0.14. However, standard deviation of the response 

gently increases from 17.21 cm to 18.30 cm. 

  

 

Figure 59. Mean and standard deviation of tip out-of-plane deflection of one blade for five alphas in 

wind shear power law in below-rated wind speed. 
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XI 

2.1.1.4 Variation of the spatial resolution of the numerical wind field 

Both mean and standard variation values of the responses fluctuated by changing the spatial 

resolution of the numerical wind field. 

Figure 60 shows mean electrical generator output fluctuates from 1.313 MW for case1 to 1.384 

MW for case 2, 1.391 MW for case3 and 1.374 MW for case4. Moreover, the standard 

deviation of the response also shows the pattern of fluctuation with lowest value of 208 kW for 

case2 and highest value of 250 kW for case3. 

  

 

Figure 60. Mean and standard deviation of electrical generator output for four spatial resolutions in 

below-rated wind speed. 
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XII 

The results, shown in Figure 61, indicate that the variation of spatial resolutions have a slight 

effect on the platform pitch at nacelle level. The maximum and minimum of the mean values 

are 1.619 degrees for case3 and 1.563 degrees for case2 respectively. The standard deviations 

fluctuate from 0.2234 degrees for case2 to 0.2370 degrees for case4. 

  

 

Figure 61. Mean and standard deviation of platform pitch for four spatial resolutions in below-rated 

wind speed. 
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Figure 62 shows a slight change in mean and standard deviation values of tip out-of-plane 

deflection of one blade. The mean value increases from 1.727 m for case2 to 1.769 m for case3 

and then decreases to 1.763 m for case4. Furthermore, the highest standard deviation is 18.19 

cm for case3 while the lowest standard deviation is 16.54 cm for case4. 

  

 

Figure 62. Mean and standard deviation of tip out-of-plane deflection of one blade for four spatial 

resolutions in below-rated wind speed. 
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2.1.2 Above-rated wind speed 

2.1.2.1 Variation of wave characteristics 

While mean values of the responses remained almost constant, standard deviation of the 

responses rapidly increased as significant wave height and wave peak period increased from 

case1 to case9. 

The mean electrical generator output falls slightly from 2.3 MW for case1 to 2.281 MW for 

case9, illustrated in Figure 63. However, the standard deviation of electrical generator output 

increases dramatically from 11.07 for case1 to 112.3 kW for case9. 

  

 

Figure 63. Standard deviation of electrical generator output for different Hs and Tp in above-rated 

wind speed. 
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As is illustrated by Figure 64, standard deviation of platform pitch rises rapidly from 0.28 to 

1.68 degrees while mean value grows gradually from 1.29 to 1.36 degrees for case1 and case9 

respectively. 

  

 

Figure 64. Standard deviation of platform pitch for different Hs and Tp in above-rated wind speed. 
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XVI 

As it is shown by Figure 65, the mean tip out-of-plane deflection of one blade is almost stable, 

changes between 103.9 to 104.9 cm, while the change of standard deviation of tip out-of-plane 

deflection of one blade is 16.47 cm from case1 to case9, 37.93 and 54.4 cm respectively.  

  

 

Figure 65. Standard deviation of tip out-of-plane deflection of one blade for different Hs and Tp in 

above-rated wind speed. 
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XVII 

2.1.2.2 Variation of turbulence intensity 

By increasing turbulence intensity, the standard deviation of the responses grew significantly, 

and mean value of the responses changed gently.  

Figure 66 depicts that while turbulence intensity increases from 5% to 15%, the standard 

deviation of electrical generator output rapidly rises from 11.25 to 68.51 kW and mean value 

slightly reduces from 2.3 to 2.29 MW. 

  

 

Figure 66. Mean and standard deviation of electrical generator output for three turbulence intensities 

in above-rated wind speed. 
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It can be seen from Figure 67 that standard deviation of platform pitch is 0.37, 0.45 and 0.55 

degree for turbulence intensity of 5%, 11% and 15% respectively. Moreover, the mean value 

of platform pitch changes from 1.295 degrees for TI=5% to 1.31 degrees for TI=11% and 1.325 

degrees for TI=15%. 

  

 

Figure 67. Mean and standard deviation of platform pitch for three turbulence intensities in above-

rated wind speed. 
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The mean and standard deviation of tip out-of-plane deflection of one blade for turbulence 

intensity of 5% are 101.5 cm and 26.51 cm, for turbulence intensity of 11% are 104.2 cm and 

41.62 cm, and for turbulence intensity of 15% are 106.9 cm and 53.18 cm respectively, 

presented in Figure 68. 

  

 

Figure 68. Mean and standard deviation of tip out-of-plane deflection of one blade for three 

turbulence intensities in above-rated wind speed. 
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2.1.2.3 Variation of alpha in wind shear profile power law 

The studies showed that the effect of alteration of alpha in wind shear profile is negligible in 

both mean and standard deviation of the investigated responses. 

Figure 69 depicts that mean value of electrical generator output remains constant while the 

standard deviation increases slightly. The mean value is 2.298 MW when alpha is 0, 0.05 and 

0.1, while the mean value decreases 1 kW to 2.297 MW when alpha is 0.12 and 0.14. Moreover, 

the data also show that the standard deviation grows about 2 kW when alpha changes from 0 

to 0.14. The standard deviation is 28.52, 29.41 and 30.8 kW when alpha is 0, 0.1 and 0.14 

respectively. 

  

 

Figure 69. Mean and standard deviation of electrical generator output for five alphas in wind shear 

power law in above-rated wind speed. 



 

Complete structural responses                                                                                                           

 

 

XXI 

Mean platform pitch rises steadily from 1.267 degrees to 1.315 degrees when alpha increases 

from 0 to 0.14 respectively, shown in Figure 70. However, the standard deviation is pretty 

constant in 0.45 degree for all alphas. Minimum and maximum standard deviation are 0.4541 

for α=0 and 0.4557 for α=0.14 respectively. 

  

 

Figure 70. Mean and standard deviation of platform pitch for five alphas in wind shear power law in 

above-rated wind speed. 
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Figure 71 proves that the standard deviation of tip out-of-plane deflection of one blade 

increases gently from 38.85 cm to 42.56 cm by increasing of alpha from 0 to 0.14 while the 

mean value remains constant at approximately 104 cm, with minimum value of 103.7 and 

maximum value of 104.2. 

  

 

Figure 71. Mean and standard deviation of tip out-of-plane deflection of one blade for five alphas in 

wind shear power law in above-rated wind speed. 
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XXIII 

2.1.2.4 Variation of the spatial resolution of the numerical wind field 

The results showed minor effect of variation of the spatial resolution on the studied responses. 

Figure 72 illustrates a fluctuation in the standard deviation of electrical generator output 

between 20.26 kW for case3 and 30.02 kW for case1, while mean value changes slightly 

between 2.297 MW for case1 and 2.299 MW for case2 and case3. 

  

 

Figure 72. Mean and standard deviation of electrical generator output for four spatial resolutions in 

above-rated wind speed. 
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Figure 73 indicates that standard deviation of platform pitch first decreases from 0.4556 for 

case1 to 0.436 degree for case3 and then increases to 0.4677 degree for case4. Furthermore, 

the mean value is 1.31 degrees for case1, falls to 1.275 degrees for case2 and then rises to 1.282 

degrees and 1.291 degrees for case 3 and case4 respectively. 

  

 

Figure 73. Mean and standard deviation of platform pitch for four spatial resolutions in above-rated 

wind speed. 
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It can be seen from Figure 74 that both mean and standard deviation of tip out-of-plane 

deflection of one blade change slightly with variation of the spatial resolution of the numerical 

wind field. The mean and standard deviation are 104.2 cm and 41.62 cm for case1, 99.12 cm 

and 39.61 cm for case2, 99.4 cm and 40 cm for case3 and 100.6 cm and 38.35 cm for case4. 

  

 

Figure 74. Mean and standard deviation of tip out-of-plane deflection of one blade for four spatial 

resolutions in above-rated wind speed. 
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2.2 OC3-Hywind results 

2.2.1 Below-rated wind speed 

2.2.1.1 Variation of wave characteristics 

The results showed the standard deviation of the studied responses rose by higher wave 

characteristics while the mean value of the responses remained quite constant. 

Mean mechanical power has a range between 4.41 MW for case1 and 4.433 MW for case7, 

presented in Figure 75. However, the standard deviation grows rapidly from 659.2 kW for 

case1 to 890.6 kW for case9. 

  

 

Figure 75. Mean and standard deviation of mechanical power for different 𝐇𝐬 and 𝐓𝐩 in below-rated 

wind speed. 
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Standard deviation of platform pitch rises about 100% from case1 and case9, illustrated in 

Figure 76. The standard deviation is 0.5157 degree for case1 and grows to 1.023 degrees for 

case9. The mean platform pitch changes only 0.282 degree, from 4.968 degrees for case1 to 

4.686 degrees for case9. 

  

 

Figure 76. Mean and standard deviation of platform pitch for different 𝐇𝐬 and 𝐓𝐩 in below-rated wind 

speed. 
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As is shown by Figure 77, mean tip out-of-plane deflection of one blade declines slightly from 

5.197 m for case1 to 4.905 m for case9 while the standard deviation goes up sharply from 57.19 

cm for case1 to 109.2 cm for case9. 

  

 

Figure 77. Mean and standard deviation of tip out-of-plane deflection of one blade for different 𝐇𝐬 

and 𝐓𝐩 in below-rated wind speed. 

 

 

 



 

Complete structural responses                                                                                                           

 

 

XXIX 

2.2.1.2 Variation of turbulence intensity 

While the mean value of the investigated responses dropped gradually, the standard deviation 

of the responses rose significantly when the turbulence intensity increased from 5% to 15%. 

From Figure 78 it is clear the decline of mean mechanical power from 4.544 MW when TI=5% 

to 4.411 MW when TI=10% and 4.252 MW when TI=15%. The standard deviation grows 

though by increasing turbulence intensity. The standard deviation is 401.7 kW, 663.9 kW and 

859.8 kW when turbulence intensity equals to 5%, 10% and 15% respectively. 

  

 

Figure 78. Mean and standard deviation of mechanical power for three turbulence intensities in 

below-rated wind speed. 
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As can be seen from Figure 79, the standard deviation of platform pitch goes up from 0.282 

degree for TI=5% to 0.5195 degree for TI=10% and 0.7967 degree for TI=15%. In contrast, 

the mean value drops when turbulence intensity increases. The mean value is 5.203, 4.967 and 

4.673 when turbulence intensity equals to 5%, 10% and 15% respectively. 

  

 

Figure 79. Mean and standard deviation of platform pitch for three turbulence intensities in below-

rated wind speed. 
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Figure 80 illustrates that by increasing turbulence intensity from 5% to 10% and 15%, mean 

tip out-of-plane deflection for one blade decreases from 5.437 m to 5.202 m and 4.895 m and 

the standard deviation increases from 32.06 cm to 57.73 and 84.3 cm respectively. 

  

 

Figure 80. Mean and standard deviation of tip out-of-plane deflection of one blade for three 

turbulence intensities in below-rated wind speed. 
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2.2.1.3 Variation of alpha in wind shear profile power law 

The variation of alpha in wind shear profile power law has a slight effect on both mean and 

standard deviation of the responses. 

Figure 81 indicates that the maximum mean and standard deviation of mechanical power are 

4.491 MW for α=0 and 665.4 kW for α=0.14 respectively. Furthermore, the minimum mean 

and standard deviation of mechanical power are 4.4 MW for α=0.14 and 643.6 kW for α=0 

respectively. 

  

 

Figure 81. Mean and standard deviation of mechanical power for five alphas in wind shear power law 

in below-rated wind speed. 
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As can be seen from Figure 82, both mean and standard deviation of platform pitch are quite 

constant. The maximum and minimum of the mean value are 4.972 degrees for α=0.14 and 

4.918 degrees for α=0 respectively. However, the maximum and minimum of the standard 

deviation are 0.5241 degree for α=0 and 0.5176 degree for α=0.14 respectively. 

  

 

Figure 82. Mean and standard deviation of platform pitch for five alphas in wind shear power law in 

below-rated wind speed. 
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The mean tip out-of-plane deflection of one blade changes from 5.197 m for α=0.14 to 5.217 

m for α=0.05, presented in Figure 83. It can be seen from the data that the maximum mean 

value, 5.217 m, and minimum standard deviation, 55.32 cm, occur when α=0.05. Moreover, 

the standard deviation is 56.92 cm for α=0, falls to 55.32 cm for α=0.05 and increases to 59.23 

cm for α=0.14. 

  

 

Figure 83. Mean and standard deviation of tip out-of-plane deflection of one blade for five alphas in 

wind shear power law in below-rated wind speed. 
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2.2.1.4 Variation of the spatial resolution of the numerical wind field 

The results indicate fluctuation in the studied responses of the structure with respect to the 

variation of spatial resolution of the numerical wind field. 

As presented by Figure 84, mean mechanical power is 4.411 MW, 4.661 MW, 4.573 MW and 

4.602 MW for case1, case2, case3 and case4 respectively. The standard deviation fluctuates 

more widely, the analysis shows the standard deviation is 663.9 kW, 563.3 kW, 664 kW and 

614.6 kW for case1, case2, case3 and case4 respectively. 

  

 

Figure 84. Mean and standard deviation of mechanical power for four spatial resolutions in below-

rated wind speed. 
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Figure 85 shows mean platform pitch is in its maximum value, 5.118 degrees, for case2 while 

the standard deviation is in its maximum value, 0.6419 degree, for case3. Both mean and 

standard deviation values are in their minimum values for case1 where mean value is 4.967 

degrees and the standard value is 0.5195 degree. 

  

 

Figure 85. Mean and standard deviation of platform pitch for four spatial resolutions in below-rated 

wind speed. 
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Mean tip out-of-plane deflection of one blade, shown in Figure 86, goes up and down. The 

mean value is 5.202 m, 5.316 m, 5.141 m and 5.262 m for case1, case2, case3 and case4 

respectively. The standard deviation grows from 57.73 cm for case1 to 63.41 cm for case3 and 

then falls to 56.73 cm for case4. 

  

 

Figure 86. Mean and standard deviation of tip out-of-plane deflection of one blade for four spatial 

resolutions in below-rated wind speed. 
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2.2.2 Above-rated wind speed 

2.2.2.1 Variation of wave characteristics 

The analyses showed by increasing significant wave heights and wave peak periods, standard 

deviation of the investigated responses increased while the mean values remained quite steady. 

Figure 87 depicts that mean mechanical power decreases slightly from 5.195 MW for case1 to 

5.140 MW for case9 by increasing wave characteristics. However, the standard deviation rises 

rapidly from 140 kW for case1 to 213.8 kW for case9. 

  

 

Figure 87. Mean and standard deviation of mechanical power for different 𝐇𝐬 and 𝐓𝐩 in above-rated 

wind speed. 
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Figure 88 shows that the mean platform pitch is quite constant over various wave 

characteristics, for instance maximum and minimum of mean platform pitch are 2.765 degrees 

for case5 and 2.736 degrees for case9 respectively. The standard deviation of platform pitch 

changes widely from 0.5735 degree for case1 to 1.107 degree for case9. 

  

 

Figure 88. Mean and standard deviation of platform pitch for different 𝐇𝐬 and 𝐓𝐩 in above-rated wind 

speed. 
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The variation of mean tip out-of-plane deflection of one blade is narrower than two other 

studied responses, illustrated in Figure 89. The maximum standard deviation is 136.4 cm for 

case9 and the minimum standard deviation is 107.3 cm for case1. The mean values go up and 

down slightly. The mean value is 1.403 m for case1, falls to 1.391 m for case3, increases to 

1.431 m for case4, again decreases to 1.331 m for case8 and finally rises to 1.339 m for case9. 

Moreover, it can be seen from Figure 89 that the standard deviation is higher than the mean 

value in case9, 1.364 m and 1.339 m respectively. 

  

 

Figure 89. Mean and standard deviation of tip out-of-plane deflection of one blade for different 𝐇𝐬 

and 𝐓𝐩 in above-rated wind speed. 
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2.2.2.2 Variation of turbulence intensity 

The mean mechanical power reduces only 87 kW when turbulence intensity increases from 5% 

to 15%, illustrated in Figure 90. The mean value is 5.241 MW for TI=5%, 5.190 MW for 

TI=11% and 5.154 MW for TI=15%. The standard deviation of mechanical power however 

rises significantly by increasing turbulence intensity. The standard deviation is 74.63 kW for 

TI=5%, 144.4 kW for TI=11% and 195.8 kW for TI=15%. 

  

 

Figure 90. Mean and standard deviation of mechanical power for three turbulence intensities in 

above-rated wind speed. 
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Figure 91 illustrates that the standard deviation of platform pitch changes widely from 0.3396 

degree for TI=5% to 0.6109 degree for TI=5% and 0.8310 degree for TI=15%. The mean value 

drops about 0.1 degree when turbulence intensity grows 10%. The value is 2.810 degree for 

TI=5%, 2.759 degrees for TI=11% and 2.706 degrees for TI=15%. 

  

 

Figure 91. Mean and standard deviation of platform pitch for three turbulence intensities in above-

rated wind speed. 
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Figure 92 shows the same pattern as previous responses by increasing turbulence intensity, i.e. 

the mean tip out-of-plane deflection of one blade decreases slightly, and the standard deviation 

increases widely. The mean value and standard deviation of tip out-of-plane deflection of one 

blade are 1.452 m and 77.02 cm, 1.391 m and 110.2 cm, 1.361 m and 137.9 cm for turbulence 

intensity of 5%, 11% and 15% respectively. 

  

 

Figure 92. Mean and standard deviation of tip out-of-plane deflection of one blade for three 

turbulence intensities in above-rated wind speed. 
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2.2.2.3 Variation of alpha in wind shear profile power law 

Variation of alpha in wind shear profile power low influenced standard deviation of tip out-of-

plane deflection of one blade, i.e. the standard deviation rose by increasing alpha. However, 

the effect of variation of alpha was rarely observed in other mean and standard deviation of 

responses. 

The mean and standard deviation of mechanical power remain almost unchanged by variation 

of alpha, presented in Figure 93. The mean value is 5.191 MW when alpha is 0, 0.05 and 0.1, 

and decreases to 5.190 MW when alpha is 0.12 and 0.14. The standard deviation is 142.9 kW 

for α=0, 143.7 kW for α=0.05, 144.2 kW for α=0.1, 144.4 kW for α=0.12 and 144.6 kW for 

α=0.14. 

  

 

Figure 93. Mean and standard deviation of mechanical power for five alphas in wind shear power law 

in above-rated wind speed. 
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Variation of alpha has more effect on mean platform pitch than the standard deviation of the 

response, shown in Figure 94. The minimum and maximum mean value are 2.633 degrees 

when α=0 and 2.774 degrees when α=0.14 respectively. The standard deviation is almost 

constant, 0.6 degree, with minimum of 0.6036 degree when α=0 and maximum of 0.6117 

degree when α=0.14. 

  

 

Figure 94. Mean and standard deviation of platform pitch for five alphas in wind shear power law in 

above-rated wind speed. 
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By variation of alpha, the difference between maximum and minimum of the mean tip out-of-

plane deflection of one blade is 2.1 cm while the difference between maximum and minimum 

of the standard deviation is 21 cm, illustrated in Figure 95. The mean value falls from 1.405 m 

when α=0 to 1.384 m when α=0.14. However, the standard deviation grows from 94.7 cm when 

α=0 to 115.7 cm when α=0.14. 

  

 

Figure 95. Mean and standard deviation of tip out-of-plane deflection of one blade for five alphas in 

wind shear power law in above-rated wind speed. 
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2.2.2.4 Variation of the spatial resolution of the numerical wind field 

By variation of spatial resolution of the numerical wind field, the standard deviation of the 

studied responses showed fluctuations, although the mean values remained almost stable. 

As can be seen from Figure 96, mean mechanical power shows almost constant value for 

different cases, 5.190 MW for case1 and case4, 5.188 MW for case2 and 5.187 MW for case3. 

The standard deviation shows more variation over different cases, goes up from 144.4 kW for 

case1 to 162.4 kW for case2 and goes down to 160.7 for case3 and 143.8 kW for case4. 

  

 

Figure 96. Mean and standard deviation of mechanical power for four spatial resolutions in above-

rated wind speed. 

 

Figure 97 indicates the mean platform pitch is almost 2.7 degrees over different cases, with 

2.759 degree for case1 as maximum value and 2.712 degrees for case2 as minimum value. The 
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XLVIII 

standard deviation fluctuates more and changes from 0.5673 degree for case3 as maximum 

value to 0.6248 degree for case4 as minimum value. 

  

 

Figure 97. Mean and standard deviation of platform pitch for four spatial resolutions in above-rated 

wind speed. 

 

 

 

 

As is illustrated by Figure 98, mean tip out-of-plane deflection of one blade is in its maximum, 

1.391 m, for case1 while the minimum value, 1.293 m, occurs in case2. The mean value is 

1.321 m and 1.315 m for case3 and case4 respectively. The results also show that the standard 
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deviation changes slightly over different cases. The standard deviation is 110.2 cm for csae1, 

111 cm for case2, 107.7 cm for case3 and 107.5 cm for case4. 

  

 

Figure 98. Mean and standard deviation of tip out-of-plane deflection of one blade for four spatial 

resolutions in above-rated wind speed.  


