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Abstract 

Since the 19th century, an increase in the earth’s temperature has been recorded. The rise 

in temperature is caused mainly by anthropogenic greenhouse gases, such as CO2. 

Industrial processes are the cause of 40% of the anthropogenic CO2 emissions. To lower 

the concentration of greenhouse gases several carbon capture and storage systems have 

been introduced to power plants. Post-combustion carbon capture systems using 

chemical absorption by amines are the most promising solution as they can be retrofitted 

to already existing power plants.  

 

This master’s thesis is written in collaboration with Technology Center at Mongstad and 

aim to provide an inline model to predict CO2 loading, monoethanolamine (MEA) 

concentration and the concentration of degradation products. Multivariate methods such 

as principal component analysis, partial least square and variable selection are applied to 

the data to build a model. 

 

A model for inline analysis could potentially improve efficiency and decrease cost, as well 

as provide continuous monitoring of the process. This would optimize component 

regulations involved in the process, such as amine loading, the temperature of the stripper 

and flow rate of CO2 into the system.  

 

Total inorganic carbon, total alkalinity, and density have been investigated for both CO2 -

lean and CO2-rich solutions. All models obtained have yielded in low root mean square 

error predictions (RMSEP), compared to the value of the response. The RMSEP values as 

a percentage of the average response value resulted in a maximum of 2,3 % for the total 

inorganic carbon model in the lean samples and a minimum of 0,003 % for the density 

model built on the rich samples.  
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1 Introduction 

 

Carbon dioxide (CO2) is one of the leading greenhouse gasses causing climate changes and 

global warming [1]. In the period from 1856 to 2005 the average warming rate per decade 

has been 0,045 ᵒC, while in the period 1981 to 2005 the average warming rate per decade 

has been 0,177 ᵒC [2, P.169]. The concentration of CO2 has increased considerably over 

the last years, and industrial processes are responsible for about 40 % of the 

anthropogenic CO2 emissions worldwide.  

 

An increased global temperature results in melting of sea ice. Sea ice has a higher 

capability to reflect sunlight than sea water. Thus, by the melting of the sea ice more 

seawater can absorb energy and less sea ice can reflect it, resulting in more melting of the 

sea ice and rise in sea level [2, P.204]. 

 

To reduce the amount of CO2 introduced into the atmosphere by industrial processes, 

several different Carbon Capture and Storage systems (CCS) have been developed and 

fitted to industrial power plants. In existing power plants, the most convenient form of 

CCS is to retrofit a post-combustion system in which CO2 is removed from the flue gas. 

Chemical absorption techniques commonly employ the use of aqueous amine solutions. 

The most extensively investigated and employed amine for this purpose is 

monoethanolamine (MEA) [1]. 

 

The method currently employed in an amine scrubbing plant involves the collection of 

physical samples from the scrubbing apparatus, which are subsequently analyzed 

overnight. Unfortunately, a large amount of time and resources must be devoted to this 

procedure. Additionally, this procedure does not provide real-time process control, thus 

rendering optimization problematic [3].  

 

An inline real-time measurement technique such as Attenuated Total Reflectance Fourier 

Transformed Infrared Spectroscopy, ATR-FTIR, coupled with multivariate methods could 

potentially improve the current situation drastically. 
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 ATR-FTIR can measure samples in aqueous solutions in contrast to FTIR and is, therefore, 

the preferred measurement technique in aqueous solutions. ATR-FTIR is a fast 

measurement technique that simultaneously measures all wavelength. The spectrum of 

the in-line measurement can then be used in a multivariate model created by Partial Least 

Squares, PLS, to predict real-time measurements. This is a massive advantage as it 

provides real-time measurements for process control and optimization of the process. 
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2 Theory  

2.1 Notation 
 

Bold font and upper-case letter: X = matrix 

Bold font and lower-case letter: x = vector 

Bold font, upper-case letter and raised to the power of T: XT = matrix transposition  

Bold font, lower-case letter and raised to the power of T: xT = vector transposition  

 

2.2 CO2 capture 

 
Many different techniques are possible for CO2 capture, and they can be applied at 

different stages in the process. In pre-combustion CO2 capture, combustible gasses are 

created, and CO2 is captured before the gasses are burned for power. The fossil fuel is 

gasified and reacted in a water gas shift reactor to create H2 and CO2 [4]. 

 

Post-combustion CO2 separation involves the capture of flue gasses produced by the 

combustion of fossil fuels. Both chemical and physical filtration methods have been 

developed. CO2 is captured from a conventional energy generation of fossil fuels, 

therefore, these systems are particularly of interest as they can be retrofitted to already 

existing industrial plants.  

 

2.2.1 CO2 capture by amines 

 

Amines are organic compounds where one or several of the hydrogen atoms of an 

ammonia molecule are replaced by an organic group. Amines can be divided into three 

groups; primary, secondary and tertiary. The classification of the amines is based on the 

quantity of organic groups connected to the nitrogen atom. Most amines are soluble in 

water if their organic group is not too large [5, P. 804-806]. 

 

Amines are the most commonly used chemical for CO2 separation from flue gas, where the 

primary amine, monoethanolamine (MEA) has been the most extensively researched [1]. 
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During the process of post-combustion separation, the flue gas is first cooled to 40-50 ᵒC 

and then compressed before entering the absorber column to avoid pressure loss in the 

column. The flue gas enters the absorber column at the bottom where it will be met by 

aqueous amine solution from the top of the absorber column. At the bottom of the 

absorber column, the CO2 rich amine solution is transported to the stripper, to regenerate 

the amines for recycling. The amines are regenerated in the stripper by thermal treatment 

with steam that has a temperature of 100-130 ᵒC. This thermal treatment releases the 

CO2, which then exits the top of the stripper column ready to be dried, compressed and 

stored. The CO2 lean aqueous amine solution leaving the stripper is then cooled down in 

the heat exchanger before being recycled back to the absorber column. Heating of amines 

can form unwanted degradation products because they are unstable at high 

temperatures. Degradation of amines can also occur in the absorber column by oxidative 

degradation.  

 

An illustration of an amine scrubbing plant can be seen in Figure 2-1. 

 

 

Figure 2-1: Illustration of an amine scrubbing plant [6] 
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Degradation of amines lowers the plant’s capacity to absorb CO2 due to the decreasing 

amount of amines capable of absorbing CO2. MEA is the most used amine in aqueous 

amine carbon capture systems. Aqueous MEA solutions are highly CO2 reactive and are 

therefore suitable for use with low CO2 concentration (low partial pressure). The energy 

required by an aqueous amine carbon capture system is high due to the energy required 

to regenerate the amines. Aqueous amine carbon capture systems require steam for the 

regeneration of MEA and separation of CO2, which lowers the plant's efficiency [7, 8]. 

 

 

Carbon capture utilizing an aqueous MEA solution involves either single-step (direct) or 

two-step zwitterion reactions. Two MEA molecules react with one CO2 molecule to create, 

carbamate and protonated amine. The loading capacity of MEA is therefore 0,5 mol CO2 

per mol MEA [7]. 

 

The two-step process occurs when the CO2 molecule’s carbon attaches itself to the 

nitrogen of an amine molecule, forming a zwitterion intermediate formation. The 

zwitterion intermediate then reacts with a second amine molecule to form a carbamate 

and a protonated amine. In a single step reaction, the proton transfer and amine-CO2 

reaction happen at the same time. 

 

A recent study from 2015 aimed to find the reaction mechanism of CO2 capture with MEA. 

The study found that a zwitterion intermediate was created during the reaction between 

MEA and CO2, thus the study found that the two-step zwitterion reaction mechanism 

occurs in the MEA and CO2 reaction [9]. The underlaying reaction mechanism is presented 

in Appendix C. The overall reaction is presented in Equation 2-1. 

 

2 𝑀𝐸𝐴 + 𝐶𝑂2 → 𝑀𝐸𝐴𝐶𝑂𝑂− + 𝑀𝐸𝐴𝐻+      Equation 2-1 

 

 Illustration of these reaction is presented in Figure 2-2 and Figure 2-3. 
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Figure 2-2: Illustration of a single step mechanism [7] 

 

 

Figure 2-3: Illustration of the two-step Zwitterion reaction [7] 

 

2.3 The Electromagnetic Spectrum 

 

The electromagnetic spectrum can be seen in Figure 2-4 and consists of all frequencies 

and wavelengths of electromagnetic waves that originate from a light source. A tiny 

portion of the electromagnetic spectrum is visible to the human eye, called the visible 

spectrum [10].  
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Figure 2-4 The Electromagnetic Spectrum [11] 

2.4 Infrared Spectroscopy 

 

The study of light and matter interaction is called spectroscopy [10]. Interaction of 

electromagnetic radiation with a sample can cause absorption, emission, transmission 

and reflection. If there is sample light interaction, the electron is excited to a higher energy 

state and the photon has been absorbed. If a photon is emitted while the excited electron 

relaxes to a lower energy state, emission is observed. The electromagnetic radiation can 

be reflected of the sample, the reflection of the sample depends on the physical properties 

of the sample surface where a medium difference plays a major role in reflection. 

Transmission is observed if the sample is transparent for a specific wavelength of light. 

The interactions between light and matter is illustrated in figure 2-5. 

 

 

Figure 2-5: Illustration of the different interactions between light and matter [10] 



8 

 

 

Infrared spectroscopy, IR, is a measurement technique designed to identify and quantify 

the different molecules in a sample. Infrared spectroscopy or vibrational spectroscopy 

can investigate gases, liquids and solids that have a molecular dipole moment [10]. Two 

atoms bounded together within a molecule  is never at rest but vibrates. The energy 

carried by a photon must be equal to a specific frequency mode of vibration in a molecule 

to create a change in dipole moment and be absorbed in IR [12, P. 14], bending and 

stretching are vibrational modes that can cause a change in the dipole moment.  IR is a 

popular technique for analysis of samples due to its efficiency, it is non-destructive, 

sensitive and the sample preparation is easy  [10]. 

 

Infrared radiation can be detected in the range of 14.000 to 10 cm-1 in the electromagnetic 

spectrum, [12, P. 13-14] where the most relevant region is the mid-infrared (4000-400 

cm -1), in which vibrational, rotational, bending and stretching modes is observed. Within 

the mid-infrared region, the fingerprint region is located. In the fingerprint region, each 

peak corresponds to one molecular vibration specific to a molecule [10,13].  

 

From equation 2-2 we can see that the different wavelengths of light correspond to the 

different energy of the photons.  

 

𝐸 =  
ℎ𝑐

𝜆
          Equation 2-2 

Where h is Planck’s constant (h = 6,625 * 10-34 J s), c is the speed of light (300*106 m/s) 

and  is the wavelength. Wavenumber, 𝑣̅, is extensively used in the field of IR and has the 

unit cm-1, 𝑣̅ is given by 1/ 𝜆 [14]. 

 

Absorption of a photon by a molecule can only occur if the energy of the photon is equal 

to the energy level required to excite an electron to a higher energy level of the molecule. 

Thus, the chemical structure of a molecule can be determined by the absorbed frequencies 

of the IR radiation, and the different molecules in a sample can be determined [10, 15]. 

 

The major disadvantage of IR is that it is not suitable to measure aqueous samples due to 

the strong IR absorption of water [10]. 
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2.5 Fourier Transformed Infrared Spectroscopy 

 

Fourier transformed infrared spectroscopy, FTIR, performs better than dispersive IR 

spectroscopy [15, P. 148-151]. Dispersive IR techniques uses a prism to disperse the light 

and thus obtaining component wavelengths. Diffraction gratings can also be used in 

dispersive IR and consists of many very fine parallel lines in a transparent plate (can be 

several thousand per millimeter) that disperse the light [14]. In FTIR all wavelengths are 

measured simultaneously, thus reducing the measuring time required. This technique 

reduces noise and enhances sensitivity, thus producing a more favorable signal to noise 

ratio. This makes it possible to detect components at lower concentrations [16, P. 148-

151]. 

 

FTIR is based on the interferometer. It uses the interference pattern of a measured sample 

in an interferometer and reconstructs the signal with Fourier transformation to a 

spectrum. The interferometer consists of an IR source, a beam splitter, a fixed mirror, a 

moving mirror and a detector (see Figure 2-6 for an illustration of the interferometer).  

 

 

 

                                Figure 2-6: Illustration of an interferometer [16, P. 149] 
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The beam splitter lets half the light pass through to the fixed mirror and half passes 

through to the moving mirror. The moving mirror travels a length of Z to -Z. Thus the 

optical path length of the moving mirror will differentiate from the optical path length of 

the fixed mirror, except for zero path difference, where the optical path difference is zero. 

This change in path difference causes constructive and destructive interference once the 

two IR beams recombine at the beam splitter. The IR passes through the sample and is 

detected by a detector. An interferogram plot is then created by plotting the intensity of 

light, in volt, over the optical path difference [16, P. 149-150]. 

 

2.6 Attenuated Total Reflectance Fourier Transformed Infrared 

Spectroscopy 

 

ATR-FTIR spectroscopy is based on absorption in the mid-infrared, (4000-400 cm -1) 

region. The absorption of a photon causes the molecule to be excited to a higher 

vibrational state [17]. 

 

The energy required by a photon to excite a molecule is precisely equal to the energy 

difference between the higher vibrational state and the lower vibrational state. Thus, the 

absorbance of a photon at a given wavenumber provides information as to which 

molecules are in the sample. 

 

In ATR-FTIR the measuring beam is not passed through the sample. Instead, the IR beam 

is reflected inside a highly refractive crystal on which the sample lies [10, 17]. Illustration 

of internal reflection in the crystal and the production of evanescent waves is presented 

in Figure 2-7. 
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Figure 2-7: Illustration of ATR crystal and evanescence waves [10] 

 

The internal reflections produce evanescent waves that penetrate the sample. This causes 

IR radiation and sample interaction, making it possible to obtain the spectrum of the 

sample. 

 

This is a significant advantage over IR spectroscopy as samples with aqueous solutions 

can be measured. The preparation of a sample with ATR-FTIR is easier to do, as it only 

requires one drop of sample in the middle of the crystal. ATR-FTIR is also suitable to 

analyze the surface of a sample. Altering the reflection angle causes the penetration depth 

of evanescent waves to change [10]. 

  

ATR is less sensitive than transmission techniques. In a transmission technique light 

passes directly through the sample and a detector collects what comes out after there has 

been light-sample interaction. In ATR, evanescent waves interact with the sample, 

meaning that no light passes directly through it. 

 

ATR can only measure the surface of a sample, due to the range of evanescent waves that 

are limited. If a sample requires depth to get accurate information the transmission 

technique is superior.  
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2.7 Multivariate Data Analysis  

 

2.7.1 Pretreatment of data 

The goal of pretreating data is to eliminate effects that do not reflect the chemical 

variation of the sample and to increase the signal to noise ratio. Such effects can be 

instrumental effects, light scattering effects, variation of the sample thickness or baseline 

variations [18,19, P. 129]. 

 

Pretreatment of the dataset can have an enormous effect on the result. However, the 

wrong pretreatment can destroy the information in the data set instead of improving it. 

Therefore, the choice of pretreatment should be considered based on knowledge of the 

data being investigated. 

 

 

2.7.1.1 Extended multiplicative signal correction  

The spectra of vibrational spectroscopy are subjected to many phenomena other than the 

chemical responses of the sample. These phenomena can be a challenge in the subsequent 

qualitative or quantitative analyses. The phenomena affecting the response can be 

random measurement noise, systematic errors, like interfering effects from unwanted 

physical and chemical variation or non-linear instrument response [20]. 

 

Extended multiplicative signal correction, EMSC, is a good method to correct the signal 

for multiplicative scaling effects, additive baseline effects and interference effects. 

Baseline correction with EMSC is done by polynomial fitting to a reference specter, this is 

often the average specter, xref. 

 

𝑥0 =   𝑏0 +  𝑏1𝑥𝑟𝑒𝑓 + 𝑏2𝑣̅ + 𝑏3𝑣̅
2 + ⋯ + 𝑏𝑛𝑣̅

𝑛−1     Equation 2-3 

Where the b’s are the regression coefficients and 𝑣̅ is the wavenumber. 

The corrected spectra, xc, is given by equation 2-4. 

 

𝑥𝑐 =   
 𝑥0−𝑏0+𝑏2𝑣̅+𝑏3𝑣̅

2+⋯+𝑏𝑛𝑣̅
𝑛−1

𝑏1
       Equation 2-4 
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If done correctly, baseline correction can lead to simpler and better models and ease the 

interpretation of the data [19, p.130]. 

 

Equation 2 and 3 is the basic extension of the multiplicative signal correction and can be 

further extended. The regression coefficients are calculated using least squares [20].  

 

2.7.1.2 Differentiation and smoothing  

 

Savitzky-Golay is a numeric method for differentiation of a spectrum to eliminate additive 

and sloping baselines. A first-degree differentiation eliminates an additive baseline while 

a second-degree differentiation eliminates a sloping baseline [19, P. 131-132].  

 

Differentiation and smoothing of a spectrum by Savitzky-Golay are performed by a 

moving window. The window size, w, can be altered to best accommodate various data 

types. In the moving window, a low-degree polynomial function based on least squares is 

fitted to the data. 

 

The value of the center point, ci, in the moving window is used in the polynomial function 

which is then differentiated to calculate the new value of the center point, ci. The window 

is then moved one point, and a new value is calculated for the new center point, ci+1. The 

operation only calculates new values for the center points, meaning that w 2⁄  points are 

lost at the start and end of the spectra.  

 

The polynomial of degree j can be described by equation 2-5. 

 

𝑔(𝑣̅) =  𝑏0 + 𝑏1𝑣̅ + 𝑏2𝑣̅
2 + ⋯ + 𝑏𝑗 𝑣̅

𝑗           Equation 2-5 

Where the regression coefficients, b, are calculated by the method of least squares. New 

values for the b’s need to be calculated for each time the window is moved [18]. 

 

The signal-to-noise ratio is approximately improved by the square root of the window 

size. The Savitzky-Golay method increases the signal-to-noise ratio but makes it difficult 

to interpret the spectrum after transformation due to differentiation.  
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2.7.2 Variable and Object space 

The data is collected in a matrix, X, with I rows and J columns. The matrix can be regarded 

as either being a composition by the xj vectors (columns) or the xiT vectors (rows), this is 

illustrated in Figure 2-8. The xj vectors are the variables and the xi vectors are the objects, 

where each xj is a vector in the I-dimensional space and each xi vector is a vector in the J-

dimensional space. 

 

 

 

The objects can then be plotted in the variable space to investigate the structure of the 

data and to find patterns, where the number of axes is equal to the number of variables. 

The same applies for the variables. They can be plotted in the object space where the 

number of axes is equal to the number of objects [21]. 

2.7.3 Latent Variables 

 

Large datasets consisting of many variables make it difficult to interpret the data and 

build models.  To ease this task, the number of variables can be reduced by latent 

variables, LV. LV can reduce the number of variables by creating new, and fewer variables 

that can describe most or all the variation in the original dataset [21]. 

 

Since it is difficult to handle several variables at once, a new vector is created, t, called 

scores, to replace the xj vectors. Variation in matrix X is essential to solve a problem, it is 

therefore crucial that vector t explain as much as possible of the variation in the xj vectors. 

If the amount of variation in t is sufficiently large, we can replace the xj vectors with one 

vector t, where most of the variation is preserved. 

 

 

Figure 2-8: Variable and Object space [21] 
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 The t vectors can then be described by equation 2-6. 

 

𝒕 =  𝒙𝟏 ∗  𝒘𝟏 +  … . . + 𝒙𝒋 ∗  𝒘𝒋        Equation 2-6 

Where w is a linear combination of all the measured variables. The score vector, t, is then 

found by projecting the objects on w. Vector t is a linear combination of the x variables in 

the same space as x and can be written as  

 

𝒕 =  𝑿 ∗ 𝒘          Equation 2-7 

The next step is to maximize the variation of t by optimizing the weights w1,...,wj. An issue 

with this step is that the variance of t will increase if a large number is multiplied by w. It 

is therefore necessary to normalize the weights, w, to a constant sum, 1,0. This is the same 

as requiring that the sum of squared values equal 1,0. When w is optimized the first latent 

variable, LV, is found. How w is optimized is influenced by the procedure performed (PCA, 

PLS, etc.). 

 

Now we introduce a new vector, p, called the loadings. Once the scores are optimized the 

loadings are found by projecting X on the scores, t. X can be written as 

 

 

𝑿 =  𝒕 ∗ 𝒑𝑻 +  𝑬 =  𝑿̂ + 𝑬        Equation 2-8 

𝐗̂ is the product of tpT and is a model of  X, E is the residual matrix. E contain variation 

that is not explained by the latent variable and is found by Equation 2-9. Figure 2-9 

illustrate the decomposition of the X matrix. 

 

𝑬 = 𝐗 −  𝑿̂          Equation 2-9 
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Figure 2-9: Illustration of decomposing matrix X. Based on Figure from [21] 

 

 

The amount of variation explained by the LV can be calculated by Equation 2-10. 

 

‖𝐗‖−‖𝐄‖

‖𝐗‖
∗ 𝟏𝟎𝟎%         Equation 2-10 

 

To find the second LV, the variation retained in the first LV must be subtracted from X.  

Equation 2-9 can thus be modified to generate Equation 2-11. 

       

𝑿𝒏𝒆𝒘 = 𝑿 − 𝑿̂         Equation 2-11 

 

Xnew  is the new X matrix from which the second LV variable can be found. This operation 

can be repeated until all J latent variables in X(I*J) is found [22]. Since none of the LV retain 

any of the same information their scalar product is zero and they are orthogonal to each 

other. 

 

Vector t is the latent variable in the variable space and vector p is the latent variable in 

the object space. In Figure 2-10 the object and variable space with the latent variables are 

illustrated. 
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Figure 2-10: Illustration of the variable and object space with latent variables. [21] 

 

2.7.4 Principal Component Analysis  

 

Principal component analysis, PCA, is a method to reduce the number of variables to a 

minimum without losing important information. PCA uses latent variables to reduce the 

number of components, which are called principal components, PC. PCA is used to find 

the PCs that explain the most variation in the dataset [21, P.126, 21]. 

 

The NIPALS algorithm can be used to perform a PCA. NIPALS algorithm works by selecting 

a weight vector, wa, and projecting the objects on wa to obtain the scores. See equation 2-

12 [22]. 

 

𝒕𝒂 = 𝑿𝒂𝒘𝒂          Equation 2-12 

 

The loadings are then found by Equation 2-13. 

 

𝒑𝒂
𝑻 =  

𝒕𝒂
𝑻𝑿𝒂

𝒕𝒂
𝑻𝒕𝒂

          Equation 2-13 

 

The principal components in PCA explain the maximum possible variation and use the 

requirement that wa equals pa. To find the maximum variation explained, the weight 

vector for PCA is calculated using Equation 2-14 [22]. 
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𝐰𝑎 =  
𝐩𝐚

‖𝐩𝐚‖
          Equation 2-14 

 

This new weight vector wa is then used to calculate new scores and new loadings. The 

operation is performed until wa  and pa converge. Once they have converged, the first PC 

has been found. The information retained in the first PC must be subtracted from Xa 

before the second PC can be found, see Equation 2-15. 

 

𝑿𝒏𝒆𝒘 =  𝑿𝒂 − 𝒕𝒂𝒑𝒂
𝑻         Equation 2-15 

 

Each object in the data set gets a score value on each PC, and each variable gets a loading 

value on each PC. The score and loading value of these PCs can be used to span a plane 

where the score values of the objects can be plotted in a score plot, and the loading values 

of the variables can be plotted in a loading plot. In the loading plot, two PCs span a plane 

and the loading values of the variables are projected on to this plane, creating a loading 

plot. The same applies for the score plot, the score value of two PCs span a plane where 

the score value of the objects are projected onto the plane, creating a score plot. In figure 

2-11 a score-plot is illustrated, showing the new coordinate system of the  score values  of 

the objects plotted on PC 1 and PC 2. Score plots can uncover patterns, like groupings, 

outliers and trends. Similarities between two objects can be investigated in the score plot 

by the distance difference from the origin and by the angle between them. If the angle 

between two objects is zero degrees they are perfectly correlated, if the angle is 90 

degrees they are not correlated at all and if the angle between them is 180 degrees they 

are perfectly negatively correlated. The same applies for variables in a loading plot [21, 

P.126, 22, 24]. 

 
        

 Figure 2-11: Illustration of the new coordinate system for the objects  with PC 1 and PC 2. Based on figure from  [21, P. 126] 
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2.7.5 Outliers 

 

Outliers are samples that have a value that differs significantly from the rest of the sample 

values. Outliers can affect the result of a model. By including outliers, the model will be 

‘’pulled’’ towards the outliers and thus explain less variation in the samples that are not 

outliers. This causes the model's predictive power to decrease. The removal of outliers is 

therefore essential prior to model building [24]. 

 

PCA is a visualization technique to detect groupings, trends and outliers. PCA can be used 

to detect outliers using score-plot, a normal plot of the scores of the PCs and by a residual 

standard deviation versus leverage plot [22]. 

 

In the score-plot presented in Figure 2-12, an ellipse is provided by Sirius to detect 

outliers. The ellipse in Sirius is created by a Hoteling’s T2-test. Hoteling’s T2-test is a 

generalized version og the students t-test used for multivariate data, which utillize the 

object’s score value to calculate how far each object is from the model center. The 

statistical limit calculated by the Hotelling’s T2-test is presented as an ellipse in the score-

plot [25, 26].  

 

Objects that are outside this ellipse are considered to have a too high deviation from the 

rest of the objects and are outliers [25]. The outliers will be removed prior to any model 

building. Example of outliers detected by the score-plot are object: 30 and 66. 
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In Figure 2-13 a normal plot of the scores of the first PC is provided. 

 

 

 

Outlier detection by a normal plot of the scores from the PC’s is performed by looking for 

samples that do not fit the linear line. The most apparent outlier that can be seen in this 

Figure 2-12: Illustrating outlier detection in a score-plot 

Figure 2-13: Illustration of outlier detection by a normal plot of the scores for the first PC 
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plot is sample 34.  If the plot is not linear or close to linear, a pretreatment should be done 

to make them linear. 

 

 

 

The residual standard deviation (RSD) versus leverage plot in Figure 2-14 can be used to 

detect outliers by looking at the residual standard deviation, RSD, value and the leverage 

value. RSD is a measure of how good or bad a sample is fitted to the model; a high RSD 

value indicates poor agreement. Leverage is a measure of how much a sample influences 

the model, a high leverage value means that the object has a more significant influence on 

the model than the rest of the objects. Thus, a high leverage value and a low RSD value 

means that the outlier heavily affects the model and ‘’pulls’’ the model towards the outlier 

[25]. The most apparent outliers in the plot are samples 51 and 46.  

 

2.7.6 Partial Least Squares 

 
Partial least squares (PLS) is a latent variable regression, which uses LVs to reduce the 

dimensions of the dataset and find the LVs that best explain the relation between X and y. 

PLS, was suggested as a better new alternative to principal component regression, PCR 

[22]. The issue with PCR is that the main latent variable could model variation in the x-

variables which had little or no relevance to the response, y. PLS, like PCA, calculates 

latent variables to reduce the dimension. However, PLS does not use the same approach 

Figure 2-14: Illustration of outlier detection by a plot of RSD versus Leverage 
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as PCA for finding the LVs. In PCA, the LVs are calculated to explain the maximum amount 

of variation, while in PLS the LVs are calculated to find the best relation between X and y.  

 

The weight vector for PLS is calculated by Equation 2-16. 

 

𝒘𝑷𝑳𝑺,𝒂
𝑻 =  

𝒚𝑻𝑿

‖𝒚𝑻𝑿‖
         Equation 2-16 

 

Scores for the PLS model is then calculated by projecting X on wTPLS,a.  

 

𝒕𝒂 = 𝑿𝒂𝒘𝑷𝑳𝑺,𝒂
𝑻          Equation 2-17 

 

 

The loadings are found by the projection of X on the scores.  

 

 

𝒑𝒂
𝑻 =  

𝒕𝒂
𝑻𝑿𝒂

𝒕𝒂
𝑻𝒕𝒂

          Equation 2-18 

 

 
The score and loading value of y also needs to be calculated, the scores are found by 
projecting y on wTPLS,a. 
 

𝒖𝒂 = 𝒚𝒂𝒘𝑷𝑳𝑺,𝒂
𝑻          Equation 2-19 

 

The loadings, qa, are found by the projection of y on the scores, ua.  

 

𝒒𝒂
𝑻 =  

𝒖𝒂
𝑻𝒚𝒂

𝒖𝒂
𝑻𝒖𝒂

          Equation 2-20 

 

The scores and loadings obtained from the first PLS component explain a part of X and y, 

this information needs to be removed for both X and y as shown in Equation 2-15 before 

the second PLS component can be calculated  
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2.7.7 Model validation 

 

Overfitting is a strong possibility when the number of variables is significantly larger than 

the number of objects. When a model is overfitted, it models noise in the data and a false 

high correlation is observed resulting in poor predictive abilities. It is therefore necessary 

to test the predictive performance of the model.  A validation set is used to test the model 

created by the training set [22]. 

 

The predictive ability of the model tested on the validation set can be investigated by 

calculating the root mean square error of prediction, RMSEP. A low value of RMSEP 

compared to the measured value means that the predictive ability of the model is good 

[27]. 

 

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
        Equation 2-21 

 

Where 𝑦̂ is the predicted values from the model, y is the measured values and n is the 
number of samples. 
 
Another essential aspect to consider in model validation, to ensure that the model is not 

overfitted, is the coefficient of multiple determination, R2 and the adjusted coefficient of 

multiple determination, R2a. R2 is the amount of variation in X that can be explained by the 

model [28, P. 686]. 

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
          Equation 2-22 

 

Where SSE is the error sum of squares and SST is the total sum of squares. SSE is 

calculated by Equation 2-23 and SST is calculated by Equation 2-24. 

 

𝑆𝑆𝐸 =  ∑(𝑦𝑖 − 𝑦̂𝑖)2         Equation 2-23 

 

Where 𝑦̂𝑖 is the predicted value of yi. 
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𝑆𝑆𝑇 =  ∑(𝑦𝑖 − 𝑦̅)2         Equation 2-24 

 

Where 𝑦̅ is the mean value of the measured y-values. 

 

R2a is calculated in such a way that if the number of components increase, the value of R2a 

decreases, however, if the increase of components leads to a lower sum of squared error 

the value of R2a increases. 

 

𝑅𝑎
2 = 1 −  

𝑛−1

𝑛−(𝑘+1)

𝑆𝑆𝐸

𝑆𝑆𝑇
         Equation 2-25 

 

Where n is the number of samples and k is the number of components in the model           

[28, P.631-633]. 

 

The value of R2a can never be larger than one and cannot excide the value of R2. Thus, if 

the value of R2 and R2a do not differ significantly, the model is not overfitted [28, P. 686]. 

 

2.7.7.1 Cross-Validation 
 

Cross-validation is a method used to determine the number of components needed in a 

calibration model. Cross-validation works by leaving out one or more samples and PLS 

models with 1, 2,…,K number of components are calculated. Then, new samples are left 

out and new PLS models are calculated [27]. 

 

To determine how many components that should be included in the model the lowest 

predicted residual sum of squares, PRESS, is calculated for each model. The model with 

the lowest PRESS determines how many components that are needed. 

 

𝑃𝑅𝐸𝑆𝑆𝑘 = ∑
(𝑦𝑖−(𝑦̂(𝑖),𝑘)𝑖)2

𝐼

𝐼
𝑖=1         Equation 2-26 

 

Where yi is the ith element of y and  ŷ(i),k is the estimate of y from PLS with k components 

when the ith observation has been eliminated [23]. 

 

From Equation 2-27 the Root Mean Square Error of Cross-Validation, RMSECV, is found. 
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𝑅𝑀𝑆𝐸𝐶𝑉𝑘 =  √
𝑃𝑅𝐸𝑆𝑆𝑘

𝑛
        Equation 2-27 

 

The RMSECV values are plotted in an RMSECV plot as a bar graph. This is a visual 

presentation of how the number of components decreases the RMSECV value and 

improve the model. Once there is no significant decrease in RMSECV value of two 

components in the RMSECV plot, the number of components that should be used in the 

model is established [23]. 

 

A multitude of techniques exists for determining the optimal number of components. 

Among these, the most often utilized method in chemometrics is cross-validation [27]. 

 

2.8 Variable selection 

 
Variable selection can improve model prediction, give an improved interpretation or 

lower the cost of measurements. Removal of variables that are irrelevant, noisy or 

unreliable can improve the predictive performance of the model or reduce the complexity 

of the model. To make the variable selection optimal, all combinations of variables should 

be tested. However, this is not practically possible due to the overwhelming amount of 

calculations needed and the risk of overfitting when the number of samples is not much 

higher than the number of variables [29]. 

 

To simplifiy variable selection, several methods have been developed to determine a 

suitable variable set. The choice of  measurement instrument is the most critical variable 

selection to be made. The result of any modeling will be hugely affected by whether the 

right or the wrong instrument was used, due to the limitations of the selected instrument. 

An example of this is to use IR spectroscopy on aqueous solutions, the signal from the 

water can bury the signal from any other components due to the high absorption of water 

in IR spectroscopy and is therefore not suitable. ATR-FTIR can however measure samples 

in aqueous solutions. 
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When working with spectral data, the wavelengths are correlated to the neighboring 

wavelength. Thus, one wavelength cannot be chosen to explain one component because 

one component influence more than one wavelength. Several neighboring wavelengths or 

windows of wavelengths are better to use. 

 

Outliers can be a pitfall for variable selection if not handled properly. Many methods of 

variable selection are based on small differences in model quality or statistics like the 

significance calculated from model parameters. This makes variable selection very 

sensitive to outliers and the wrong variables could be selected if outlier detection is not 

done correctly.  

 

2.8.1 Variable Importance Projection 

 

Variable importance projection, VIP, is a method for variable selection. It is a measure of 

how much a variable contributes to describe the dependent Y and the independent 

variables X. The VIP value of a variable is calculated by equation 2-28 [29]. 

 

𝑉𝐼𝑃𝑗 =  √
∑ 𝑤𝑗𝑖

2 ∗𝑆𝑆𝑌𝑖∗𝐽𝐼
𝑓=1

𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙∗𝐼
        Equation 2-28 

 

wji is the weight value for variable j and component i. SSYi is the sum of squares of 

explained variance for the ith component. J is the number of variables. I is the number of 

components and SSYtotal is the total sum of squares explained of the dependent variable.  

 

Covariance between independent and dependent variables are reflected by the weights 

in a PLS model. VIP can reflect how well the dependent variable is described and how 

important that information is for the model of the independent variables due to the 

inclusion of the weights [25]. The VIP limit for non-important variables is usually set to 

1,0. Instead of removing every variable with a VIP value below 1,0, the VIP limit is set low 

so that only a few variables are removed. The VIP procedure is repeated until there is no 

further model improvement. Exclusion of all variables with a VIP value below 1,0 could 

potentially remove variables that should be included in the model. 
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2.8.2 Selectivity Ratio 

 
Selectivity ratio, SR, is a method of variable selection. SR describes the explained variance 

compared to the residual variance. The SR value of a variable is calculated using Equation 

2-29 [30] 

 

𝑆𝑅𝑗 =
𝑣𝑒𝑥𝑝,𝑗

𝑣𝑟𝑒𝑠,𝑗
          Equation 2-29 

 

Where vexp, j is the explained variance of variable j, and vres, j is the residual variance of 

variable j.  

 

A high SR value indicates variables with a high explained variance suitable to include in a 

model, low values indicate variables with low explained variance.  

 

2.8.3 Manual Selection of Wavenumber Regions 

 

MEA can be detected in the wavenumber region 3500-2500 cm-1, where among C-H bonds 

can be detected at wavenumbers 2927 cm-1 and 2864 cm-1. MEA  can also be detected in 

the wavenumber region from around 2000-900 cm-1 where among C-N (1081 cm-1) and  

C-O (1033 cm-1) bonds can be detected. The absorption of MEA in the wavenumber region 

3500-2500 cm-1 is however buried by the strong absorption of O-H bonds in water. The 

wavenumber region 2000-900 cm-1 is thus a better choice to be investigated and used for 

model building purposes of an MEA/CO2 system [31]. In Figure 2-15 a single CO2-lean 

spectrum is provided, showing some of the chemical bonds detected by ATR-FTIR is the 

CO2-lean solution. 
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       Figure 2-15: Illustration of chemical bonds detected by ATR-FTIR based on [31], created by Helene I. Sjo 
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3 Method 

 

The data in this master thesis is provided by the Technology Center at Mongstad (TCM).  

Two main datasets are provided, mea2 and mea3. The mea2 dataset provides 

measurements from the 13th of July to the 19th 2of October 2015. The mea3 dataset 

provides measurements from the 13th of June to the 5ft of September 2017. There is no 

difference in procedures regarding the process or MEA concentration for these two 

datasets, therefore they have been merged to create a larger dataset providing more 

samples for each model. The new dataset is called mea2&3. 

 

The samples provided can be classified into CO2-rich samples and CO2-lean samples. 

Measurements have been done on the aqueous MEA solution both before CO2 interaction 

(lean samples) and after CO2 interaction (rich samples) with the aqueous MEA solution. 

The number of samples available is different for each of the response variables 

investigated. The density model built from the lean samples had 154 samples, the total 

inorganic carbon model built from the lean samples had 202 samples and the total 

alkalinity model for the lean samples had 187 samples. The density model built from the 

rich samples had 90 samples, the total inorganic carbon model built from the rich samples 

had 92 samples and the total alkalinity model for the rich samples had 80 samples. The 

wavenumber region available for all the datasets is 4000 – 400 cm-1. The number of 

variables in the wavenumber region is 2539 variables, which corresponds to 

wavenumbers. 

 

The data from the measured quantity of the substances and the different techniques used 

were all in one document and had to be sorted. This was done by writing a MATLAB code 

to sort all data in one matrix (the code attached in Appendix A). The matrix (dimensions 

of I x J) consist of I samples and J responses, where each response refers to a measurement 

technique and the measured value of this. Thus, the point (1,1) in the matrix refers to the 

measured quantity of the first analysis of the first sample.  

 

Spectral data was sorted in a similar manner. Each spectrum was in an individual file and 

had to be merged into one matrix. This operation was done by writing another MATLAB 

code. This code opens each file in turn and constructs a matrix (of dimensions M x N) 
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where there are M samples and N wavenumbers (the code is attached in Appendix B). The 

point (1,1) in the matrix represent the intensity measured at the first wavenumber for the 

first sample. 

 

The data were then imported to Microsoft Excel where an excel file was created for each 

response variable. Each excel file contains sample numbers, analysis type, values of the 

response variable being investigated, wavenumbers and the measured absorption value 

corresponding to the wavenumber and sample.  

 

The excel files were then imported to Sirius (version 11.0) to be studied. Firstly, the data 

had to be pretreated to eliminate effects that reflect non-chemical variation in the data, 

such as instrumental effects, variation of the sample thickness or baseline variations.  

 

Multiple pretreatment techniques have been applied to each data set to investigate which 

one works best. EMSC and Savitzky-Golay are the two methods which have given the best 

results. 

 

After pretreatment, a principal component analysis (PCA) was done to find patterns in the 

data and to find outliers. The outliers were found by score-plots, RSD vs. Leverage plot 

and by a normal plot of the scores for each PC. 

 

When the outliers had been removed a training and validation set was created. The 

training set is used to build a model and consists of about half the samples available 

excluding outliers. The model is made by Partial Least Square (PLS) in Sirius, where the 

dependent variable is the response. The settings for PLS were made to be 100 iterations 

and a maximum number of components equal to 10. To select the required number of 

components, several factors were considered, such as explained variance for each 

component, the cross-validation value of each component and an RMSECV-plot. The 

RMSECV-plot provides a plot of how many components are needed in the model. The 

explained variance value of each component is a measure of how much variation in the 

dataset the components explain. The higher the value, the better. Cross-validation 

standard deviation is a measure of how good a component is to predict the measured 

value of the data used to build the model. A low value indicates that the prediction power 
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is good while a value over one indicates that the predictive power of the component is 

weak, and thus, should not be included in the model. 

 

The number of components is then selected, and the model is built. Successful models are 

expected to generate residual values with a normal distribution. A normal probability plot 

of residuals is constructed using Sirius for verification. The plot should be close to linear 

and go through the point y = 0,5. 

 

The model is then tested against the validation set, the data that were not used to create 

the model. To check if the model is a good fit the predicted value is plotted against the 

measured value. A successful model should result in a linear plot. If the model is not a 

good fit variable selection can be implemented to improve the model. Several methods for 

variable selection exist; this master’s thesis incorporates  VIP, SR and the manual selection 

of wavenumber based on which bonds that can be found using ATR-FTIR in the available 

region. The manual selection of wavenumbers gave the best results. Further variable 

selection by VIP and SR was performed to increase the model's predictive power. 

 

After variable selection, a new model is built using PLS to assess if the model improved its 

predictive power. Variable selection can be done many times until there are no more 

improvements on the models. 

 

3.1 Software 

 

The spectra provided by TCM of the samples is measured using an ALPHA-P ATR-FTIR 

spectroscope. The measured range is from 4000 to 400 cm-1 with a resolution of 4 cm-1 

and an interferogram size of 10 452 points. 

 

The codes generated in this thesis is done with MATLAB R2017b (The MathWorks, 

Natick Massachusetts, USA) 

 

The multivariate data analysis is performed by Sirius version 11.0 (Pattern Recognition 

System AS, Bergen, Norway) 



32 

 

4 Results and discussion  

 
Of the variables provided by TCM, only total inorganic carbon (TIC), total alkalinity (TOT 

ALK) and density provided sufficient data to construct viable models. The models built on 

these variables are separated into lean and rich samples. As they are measured at different 

stages in the process the content of the sample will be different. Thus, models for lean and 

rich had to be created for each variable.  

 

4.1 Lean samples 

 

The lean samples are obtained with an ATR-FTIR spectroscope before flue gas has 

interacted with the amine solution. The CO2 has been separated from the MEA solution in 

the stripper, an inline measurement is collected as the MEA solution is in route to the 

absorber cylinder. The best model obtained from the lean samples is presented in the 

results and is compared to models of similar quality. The plot of the lean samples is 

obtained in Sirius (11.0) by plotting the intensity against the wavenumbers, see Figure 4-

1. 

 

 

Figure 4-1: Lean Spectra of the mea2&3 dataset   
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As can be seen from figure 4-1, the organic C-H bonds at 3000 – 2800 cm-1 are not 

completely buried by the O-H bond absorption from water in the lean samples and it is 

possible to get information from this region. 

 

4.1.1 Total Inorganic Carbon 

 

The spectra of the lean samples from dataset mea 2 & 3 is obtained in Sirius (11.0) by 

plotting the intensity against the wavenumber. Several methods of pretreatment have 

been applied to the spectrum to make the results of a model better. The method that gave 

the best results is Savitzky-Golay pretreatment with a moving window of 21-points, 3rd 

degree polynomial fitting with a 2nd degree differentiation.  

 

The size of the window has been tested for all values up to 25-points. Where a 21-point 

window seemed to be the best fit, and the 25-point was a good second. The 21-point and 

the 25-point window both gave an RMSEP value of 0.027 with three components. The 

choice to use a 21-point window is based on the number of outliers in the model, the 21-

point window had six fewer outliers than the 25-point window and was therefore chosen. 

 

2nd degree Extended Multiplicative Signal Correction, EMSC, also gave good results. The 

difference in root mean square error prediction, RMSEP, was only 0.001. Pretreatment 

with Savitzky-Golay produced fewer outliers in the model and in the predicted values. 

Thus, this model has better predictive power in a wider range of samples and for samples 

which might be weak outliers. The pretreated spectra are presented in Figure 4-2 and the 

selected wavenumber region is presented in Figure 4-3. 

 

The response variable Total Inorganic Carbon (TIC) is used to determine the CO2 

concentration in the aqueous MEA solution, where the unit of TIC is given as moles/kg. 
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Several methods for variable selection have been tested, such as VIP and SR. These 

methods test each individual variable, or wavelength, independently. This might not be 

the best variable selection process as the wavelength in the spectra is correlated to the 

neighboring wavelengths. The software does not always recommend an appropriate 

Figure 4-2: Lean spectra with a 21-point moving window, 3rd degree polynomial fitting and 2nd degree Savitzky-Golay pretreatment 

Figure 4-3: Wavenumber region 1680-960 of the pretreated spectra 
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scope of wavenumbers, therefore, additional manual selection was at times necessary. 

The variable selection that has yielded the best result in a Savitzky-Golay pretreatment 

when analyzing TIC was the manual selection of wavenumbers from 1680 to 960. The 

organic bonds found at 3000-2800 cm-1 is not included as a model for inorganic carbon is 

investigated. The score-plot of PC 1 and PC 2 is presented in Figure 4-4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As presented in the theory, the ellipse represents a measure for deviation of samples. 

Samples outside this ellipse have a higher deviation than accepted and are considered 

outliers. Together with the RSD versus Leverage plot and the normal plot of the scores for 

the PCs the outliers are detected and removed from the data set.  

Figure 4-4: Score-plot of PC1 and PC2 

DataSet: mea2og3_lean_spektre_resp_tic, Subset: 1680-960 wavenumber, Scores 1 vs 2
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See Table 1 for a complete list of outliers. The largest outliers are removed first, then a 

new PCA is performed, and the largest outliers are removed again.  

 

 

 
 
The residual standard deviation versus the leverage plot, Figure 4-5, does not indicate any 

outliers as there are no values with a low RSD and high Leverage. 

 

 

Figure 4-6: Normal plot of scores of the first component 

In Figure 4-6, a normal plot of the scores for the first component is presented. There can 

be seen a ‘’tail’’ at the beginning of the plot. This is an indication of outliers as the scores 

should be close to linear. Sample 40 and 96 are among the outliers that can be detected 

from this plot. 

 

DataSet: mea2og3_lean_spektre_resp_tic, Subset: 1680-960 wavenumber, 3 Comps. (92.6%)
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Figure 4-5: RSD versus Leverage for a three-component model 
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Table 1: Outliers in lean TIC model 

Outliers  

40, 70, 96, 119, 145, 159, 

171, 173, 179, 181, 183. 

 

Eleven samples are removed from the original 202 samples. Of the remaining 191 

samples, 95 samples are used in the training set to build the model, and 96 samples are 

used to create a validation model. The training set is created in Sirius by selecting every 

odd-number sample in the data set, excluding outliers. The rest of the samples excluding 

outliers is used in the validation set to validate the model.  

 

 

Figure 4-7: RMSECV plot 

In Figure 4-7 the yellow bar in the RMSECV plot indicate how many components Sirius 

suggest using in the model, the RMSECV plot suggests using two components. A response 

residual plot was created for both two- and three-component model. The three-

component model exhibited the greatest response residual improvement and was 

therefore chosen. Component information can be found in Table 2. 
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Table 2: Overview of components used in the model, their explained variation and cross-validation value: 

Component number Explained 

variation in % 

(Independent) 

Explained variation 

in % (Dependent) 

Cross-validation 

value 

1 78,16 74,04 0,28 

2 10,48 5,98 0,71 

3 3,63 0,85 0,85 

 

Component 3 has a very low explained variation, and it is possible that the variation 

explained by this component can be due to noise. The cross-validation value is below 1,0, 

indicating that the component does contribute to explaining the response. A further 

investigation of R2 and R2a revealed that there is no reason to believe this third component 

is overfitting the model. 

 

 

From the response residuals in Figure 4-8 sample 173 is a clear outlier and is removed 

from the training set. The removal of sample 173 reveals several other weak outliers. 

These weak outliers were not removed and was not found to influence the models 

predictive abilities.  
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Figure 4-8: Response residuals for lean TIC model 
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As can be seen in the predicted versus measured plot in Figure 4-9, sample 168 has a high 

deviation from the model and influences it significantly. Sample 168 is an extreme value 

and has a much higher value than any of the other samples. A new PCA is performed to 

evaluate sample 168. The sample is included in the training set and is not found to be an 

outlier.  This may represent an unreliable data point due to erroneous error. The sample 

is removed and a new PLS is performed. The predicted versus measured plot without 

sample 168 is presented in Figure 4-10. 
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Figure 4-9: Predicted versus measured for lean TIC model 

Figure 4-10: Predicted versus measured for lean TIC model afer removal of sample 168 
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The removal of sample 168 has significantly improved the model. The RMSEP value has 

dropped from RMSEP = 0,122 to RMSEP = 0,027. The average value of TIC is 1,153, thus 

the RMSEP value corresponds to 2,3 % of the average TIC value. The low RMSEP value 

compared to the typical value of TIC indicates that this model is reliable. 

 

Table 3: Lean TIC model performance values 

R 0,994 

R2 0,987 

R2a 0,987 

RMSEP 0,027 

 

As can be seen from R2 and R2a, there is no difference in value. Since the values are equal, 

there is no reason to believe that three components are overfitting the model and 

modeling noise in the data.  

 

4.1.2 Total Alkalinity  

 

Total alkalinity (TOT ALK) is a measure of alkaline substances dissolved in a solution, such 

as carbonates [32].  Alkaline substances can neutralize acids, thus, by titration of the 

solution by a strong acid such as hydrochloric acid the total alkalinity can be determined. 

Weak bases such as carbamate is produced is the process of CO2 capture by amines. Thus, 

by calculating the TOT ALK of the solution and knowing the concentration of amines 

introduced to the system, the concentration of amines can be determined. TOT ALK is 

therefore a measure of the concentration of amines present is the solution, where the unit 

of TOT ALK is moles/kg. 

 

When modeling TOT ALK, several methods of pretreatment have been tested such as 

Savitzky-Golay and EMSC. Both methods gave good values for the RMSEP.  2nd-degree 

EMSC had a lower RMSEP value and a higher explained variation for both independent 

and dependent. The EMSC model is presented and the two models are compared at the 

end. The EMSC pretreated spectrum is presented in Figure 4-11 and the selected 

wavenumber region is presented in Figure 4-12. 



41 

 

 

 

Figure 4-11: Spectra of mea 2 and 3 with EMSC 2nd degree pretreatment 

Variable selection has been done to eliminate noise in the data so that the model would 

not be influenced by the noise. A region of wavenumbers from 3640-2750 and 1680-900 

was chosen manually. Further variable selection has been applied to these regions after a 

complete model had been built to improve the models predictive power. The methods 

applied are SR and VIP. VIP and SR both decreased the models predictive power. Thus, 

only the selected region of wavenumbers was used to build the model.  

 

 

Figure 4-12: Spectra of mea 2 and 3 with 2nd-degree EMSC pretreatment in the wavenumber region 3640-2750 and 

1680-900 



42 

 

Organic bonds can be found in the wavenumber region 3000 – 2800, therefore only noise 

in the spectral data has been removed.  

 

An additional model was built for the wavenumber region 1680-960 but did not perform 

as well as the model with the wavenumber region 3640-2750 and 1680-900. 

 

The outlier detection procedure is the same as explained in the theory and in the chapter 

on TIC modeling (4.1.1). A complete list of outliers detected by score-plot, normal-plot of 

scores of the PCs and RSD versus leverage can be found in Appendix D-1. 

 

Table 4: Outliers in lean TOT ALK 

Outliers: 

27, 34, 52, 53, 84, 97, 99, 100, 103, 104, 105, 109, 129, 137, 138, 139, 140, 141, 142, 

143, 144, 145, 146, 147, 154, 171, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182 

 

36 outliers are removed from the original 186 samples. Of the remaining 150 samples, 76 

samples are used in the training set to build the model and 74 samples are used in the 

validation set to validate the model. The training set is created in Sirius by selecting every 

odd-number sample in the data set, excluding outliers. The rest of the samples excluding 

outliers is used in the validation set to validate the model.  The number of outliers in the 

model corresponds to 19 % of the samples. The score-plot of component one versus 

component two after the largest outliers have been removed is provided in Figure 4-13. 

From figure 4-13 a linear trend can be observed. Samples in this trend are mainly from 

the mea2 dataset from 2015. This linear trend could imply that there has been a change 

of some sort in the carbon capture system from 2015 to 2017, causing many of the 

samples to be outliers. Information provided by TCM does not indicate any apparent 

changes in the amine scrubbing plant from 2015 to 2017, therefore the cause of this linear 

trend is unknown. 
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   Figure 4-13: Score-plot of PC1 and PC2 

 

 

Figure 4-14: Response residuals in the CO2-lean model for TOT ALK 

 

DataSet: mea2&3_lean_TOT_ALK, Subset: Def_mea2&3_lean_TOT_ALK, Scores 1 vs 2
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From Figure 4-14 further outliers are detected such as sample 27 and 139. These are 

removed from the model and a new PLS model is created without these samples. 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: RMSECV plot showing how many components are suggested for the model by Sirius 

 
Figure 4-15 shows that the RMSECV-plot in Sirius suggests using five components. 
Component information can be found in Table 5. 
 
Table 5: Component information in the model 

Component 

number 

Explained variation 

(Independent), % 

Explained variation 

(Dependent), % 

Cross-validation 

value 

1 82,36 24,69 0,88 

2 6,94 48,85 0,60 

3 4,67 20,77 0,47 

4 5,51 3,13 0,70 

5 0,07 1,07 0,87 

6 0,04 0,62 0,98 

 

Component 5 and 6 suggested by Sirius explain little variation. A four-components model 

was therefore investigated first. The four-component model resulted in poor response 

residuals. Both five- and six- component models were then tested. Even though 

component six has very little explained variance, the six-component model had the best 

RMSECV +/- 0.310 Percentiles.(Minimum: 0.033 - Comp. 5) (p-Value= 0.193)
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predictive power and the most normally distributed response residuals. The response 

residuals from the six-component model can be found in Figure 4-16. 

 

 

 

The response residuals are close to linear and are normally distributed as the response 

residuals pass through the point y = 0,5 and the center of the distribution is at x equal 0. 

Sample 163 deviate some from the rest of the response residuals. Sample 163 is not 

removed as the deviation is not significantly large. However, a PCA was performed on the 

training set to investigate the sample to check if the sample has the characteristics of an 

outlier in the score-plot and the RSD versus leverage plot. Sample 163 was not found to 

be an outlier in the subsequent PCA analysis and are therefore included in the model. The 

predicted versus measured plot is presented in Figure 4-17. 

 

Figure 4-16: Response residuals 
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Figure 4-17: Predicted versus measured 

A 21-point Savitzky-Golay 2nd-degree derivative resulted in an RMSEP value of 0,061, 

which is higher than the EMSC but Savitzky-Golay had fewer components and fewer 

outliers. The two models are compared in Table 6. 

 

 

 

Table 6: Comparison of the two best models obtained for lean TOT ALK 

 EMSC Savitzky-Golay 

Number of outliers 36 25 

Number of components in 

the model 

6 4 

Explained variance 

Independent:  

Dependent: 

 

99,54 % 

98,51 %  

 

95,55 % 

95,06 % 

RMSEP value 0,039 0,061 

R 0,985 0,973 

R2 0,970 0,947 

R2a 0,969 0,946 
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Both models performed well, exhibiting insignificant variation. The EMSC has a higher 

explained variance and lower RMSEP value, while the Savitzky-Golay has fewer 

components in the model and fewer outliers. As can be seen from R2 and R2a, there is little 

difference in value between the models. There is therefore no reason to believe that either 

of these models is overfitted. 

 

The average value of TOT ALK in the model built on lean samples is 4,76 and the 

corresponding RMSEP value of the EMSC model is 0,039. The RMSEP value corresponds 

to 0,82 % of the average value for TOT ALK. The RMSEP value is much smaller than the 

average value indicating that this model is reliable. 

 

4.1.3 Density 

 

The absorption of CO2 in the aqueous MEA solution will increase the density of the 

solution, therefore the response variable density is used to determine the CO2-loading 

(moles CO2/mole amine) in the aqueous MEA solution, where the unit of density is given 

as kg/m3. In the density model, a 2nd-degree EMSC resulted in the best model. The 

pretreated spectrum is presented in Figure 4-18 and the selected wavenumber region is 

presented in Figure 4-19. 

 

Figure 4-18: Spectra of mea 2 and 3 with EMSC 2nd degree pretreatment 

 



48 

 

Manual selection of wavenumbers has been made in the wavenumber region 3640-2750 and 

1680-900 cm-1.  

 

 

 

Figure 4-19: Spectra of mea 2 and 3 with 2nd-degree EMSC pretreatment in the wavenumber region 3640-2750 and 

1680-900 

 

The outlier detection procedure is the same as explained in the theory and in the chapter 

on TIC modeling (4.1.1). A complete list of outliers detected by score-plot, normal-plot of 

scores of the PCs and RSD versus leverage can be found in Appendix D-2. 

 

Outliers found in the dataset are listed in Table 7. 

 

Table 7: Outliers for lean density model. 

Outliers 

40, 92, 100, 113, 115, 117, 125, 126, 127, 

128, 129, 130, 131, 134, 135, 138, 139, 140, 

141, 142, 143, 144, 145, 146, 147, 148, 149, 

 

27 samples of the original 154 samples are removed. Of the remaining 127 samples, 64 

samples are used in the training set to build the model and 63 samples are used to 

construct the validation model. The training set is created in Sirius by selecting every odd-

number sample in the data set, excluding outliers. The rest of the samples excluding 
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outliers is used in the validation set to validate the model. A model of the training set was 

built and sample 113 and 115 as listed in table 7 were found to be outliers from the 

response residual plot, see figure 4-20 

 

 

These samples were removed and a new PLS model was built. Figure 4-21 shows how 

many components Sirius suggest and Table 8 shows the component information. 
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     Figure 4-20: Response residuals of lean density model. Showing sample 113 and 115 as outliers. 

           Figure 4-21: RMSECV plot. Showing how many components are suggested by Sirius. 
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The RMSECV plot suggests using five components even though the difference in RMSECV 

value for component three and four is very small. The insignificant difference in RMSECV 

value for component three and four suggest that a three-component model is adequate. 

 

Table 8: Component information for lean density 

Component 

number 

Explained variation 

in % (Independent) 

Explained variation 

in % (Dependent) 

Cross-validation 

value 

1 83,11 90,74 0,29 

2 9,39 5,41 0,54 

3 4,49 3,47 0,44 

4 2,12 0,03 0,95 

5 0,20 0,17 0,70 

 

Component 4 and 5 have a very low amount of explained variance and was not included 

in the model at the beginning. The three-component model generated poor response 

residuals and a higher RMSEP value for the predicted values in the validation set than the 

four-component model. With five components the response residuals improved 

significantly, but the RMSEP value was the highest of the three models. The four-

component model had a better RMSEP value, but not equally good normally distributed 

response residuals as the five-component model. The RMSEP values for each of the model 

can be found in Table 9. 

 

Table 9: Comparison of the best models for lean density 

Number of components in 

the model 

RMSEP value 

3 0,470 

4 0,463 

5 0,490 

 

From Table 9 the RMSEP value differentiates very little compared to the high values of the 

density measurement. A five-component model is concluded to be reliable due to more 

normally distributed response residuals and higher explained variation by the model. 

 



51 

 

 

 

 

The RMSEP value was slightly inflated for this model due to the three measurements that 

do not fit the model. These three samples were investigated further in a PCA by including 

them in the model building set. Sample 118 was found to be an outlier while sample 116 

and 36 did not show any sign of being outliers.  

 

PCA only investigate the how the objects and variables relate to one another respectively. 

Thus, any deviation in the response will go unnoticed by the PCA. Sample 36 and 116 are 

extreme values, meaning they either have a very high value or a very low value.  

 

Sample 116 has a lower value than any other samples in this plot and sample 36 has one 

of the highest.  This may represent unreliable data points due to erroneous error. Sample 

36, 116 and 118 were removed and a new plot of the predicted versus measured plot was 

created. The plot is presented in Figure 4-23. 

 

 

 

Predicted vs Measured for DENSITY DEN20, RMSEP = 6.167, Comp. 5
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Figure 4-22: Predicted versus measure for lean density 
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The RMSEP value has significantly improved with the removal of sample 36, 116 and 118, 

from RMSEP = 6,167 to RMSEP = 0,490. The RMSEP values for this model are larger than 

for the other models. This is to be expected as the measured values are much higher. The 

average value of the density samples is 1082,51, thus the RMSEP value corresponds to 

0,045 % of the average value. The low RMSEP value compared to the average value of 

density indicates that this model is reliable. 

 

Table 10: Lean TOT ALK model performance values 

R 0,999 

R2 0,998 

R2a 0,998 

RMSEP 0,490 

 

As can be seen R2 and R2a, there is no difference in value and the model is not overfitted. 

 

Using a 2nd degree EMSC in the wavenumber region 3640-2750 and 1680-900 with 

multivariate methods has shown to be a acceptable method for predicting density. 

 

Predicted vs Measured for DENSITY DEN20, RMSEP = 0.490, Comp. 5

Measured (DENSITY DEN20)

P
re

d
ic

te
d

 (
D

E
N

S
IT

Y
 D

E
N

2
0
)

1.05 1.06 1.07 1.08 1.09 1.1
*10

31050.000

1060.000

1070.000

1080.000

1090.000

1100.000

1110.000

2
4

68
10

12
14

1618

2022

24

26
2830

3234

38

42

4446

4850

52

54

56

5860

62646668

70

72

747678

80
82

84
8688

90

94

96

98102

104

106

108110112
114

120

122

124

132

136

150

152

Slope =

   1.002

Interc. =

   -2.070

Bias =

   0.045

R =

   0.999

R2 =

   0.998

Adj. Corr. =

   0.998

Figure 4-23: Predicted versus measured without sample 36, 116 and 118 
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4.2 Rich samples 

 

The rich samples are obtained with an ATR-FTIR spectroscope after flue gas has 

interacted with the amine solution. An inline measurement is made when the CO2-rich 

amine solution is on the way to the stripper. The plot of the rich samples is obtained in 

Sirius (11.0) by plotting the intensity against the wavenumbers. 

 

 

Figure 4-24: Rich spectra 

As can be seen from the figure 4-24, the organic C-H bonds at 3000 – 2800 cm-1 is not 

entirely buried by the O-H bond absorption from water in the rich samples and it is 

possible to get information from this region. 

 

The number of samples in the rich models are about half of the number of lean samples. 

This is due to very few rich measurements in the mea3 dataset from 2017. However, this 

has resulted in very few outliers in the rich models compared to the lean models, 

suggesting that there is some difference in the dataset from 2015 to 2017. 
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4.2.1 Total Inorganic Carbon 

 

Building a model for TIC in the rich amine solution proved to be a challenge. Pretreatment 

with a 2nd degree EMSC and pretreatment with a Savitzky-Golay 3rd degree polynomial fit, 

2nd degree differentiation with a window size range of 11-25 points have been tested. On 

each of these models, variable selection has been performed using VIP, SR and manual 

selection of different wavenumber regions.  

 

The pretreated spectrum is presented in Figure 4-25. The model that resulted in the best 

RMSEP value was a 2nd-degree EMSC in the wavenumber region 1680-960, the spectra is 

found in figure 4-26. Even though the region 3000-2800 cm-1 does contain information, 

the molecular bonds found there are organic and are not included in the model for total 

inorganic carbon in the rich samples. The region has been included in an effort to improve 

the model but generated less reliable predictions.  

 

 

Figure 4-25: Rich spectra with a 2nd degree EMSC pretreatment 
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The outlier detection procedure is the same as explained in the theory and in the chapter 

on TIC modeling (4.1.1). A complete list of outliers detected by score-plot, normal-plot of 

scores for the PC’s and RSD versus leverage can be found in Appendix D-3. A complete list 

of outliers is found in Table 11. 

 

Table 11: Outliers in the rich TIC model 

Outliers 

23, 30, 39, 68, 76, 77, 78, 79, 87, 88, 90, 91 

 

12 outliers of the original 90 samples have been removed. Of the remaining 78 samples, 

39 samples are used in the training set to build the model and 39 samples are used in the 

validation set to validate the model. The training set is created in Sirius by selecting every 

odd-number sample in the data set, excluding outliers. The rest of the samples excluding 

outliers is used in the validation set to validate the model. 

Figure 4-26: Manual variable selection of the wavenumber region 1680-960. 
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Figure 4-27: RMSECV plot for the rich TIC model 

As seen in figure 4-27 the RMSECV-plot suggest using two components in the model. The 

component information is provided in Table 12. 

 

Table 12: Component information for the rich TIC model 

Component 

number 

Explained variance 

(Independent), % 

Explained variance 

(Dependent), % 

Cross-validation 

value 

1 68,79 31,87 0,81 

2 27,23 37,63 0,74 

3 2,32 5,00 0,94 

 

 

Two components are suggested by the RMSECV-plot created by Sirius. However, a three-

component model had a more normally distributed response residual and gave a lower 

RMSEP value for the predicted samples in the validation set.  
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Figure 4-28: Response residuals for rich TIC model 

In figure 4-28 a line has been fitted to the response residual plot where the most 

significant effects of the samples, the outliers, have been removed. Sample 23 and 39 are 

clear outliers and were removed from the training set prior to the prediction of the 

validation set. After removal of sample 23 and 39, sample 55 and 17 fit the line much 

better. There is still some deviation from these two samples, but they are not removed as 

the deviation is minimal. The new plot of the response residuals without sample 23 and 

39 is presented in Figure 4-29. 

 

Figure 4-29: Response residuals without sample 23 and 39 
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The predicted versus measured values for the validation set is presented in Figure 4-30 

 

 

 

Figure 4-30: Predicted versus measured values for the validation set 

The predicted versus measured plot for the rich TIC model is significantly more scattered 

than the other models. However, the scale of the plot is very small. The axis range in both 

x and y-direction is only 0,4. The average value of TIC for the rich model is 2,31.  

 

Thus the RMSEP value is 2,03 % of the average TIC value. The RMSEP value is appreciable 

low, indicating that this model is reliable. 

 
Table 13: Rich TIC model information 

R R2 R2a RMSEP 

0,846 0,716 0,706 0,047 

 

 

4.2.2 Total Alkalinity 

 

The method for building a model for total alkalinity that gave the best results were a 2nd-

degree EMSC pretreatment in the wavenumber region 3640-2750 and 1680-960. In 

Predicted vs Measured for TIC TIC, RMSEP = 0.047, Comp. 3
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Figure 4-31 the pretreated spectrum is presented and in Figure 4-32 the pretreated 

selected wavenumber region is presented. 

 

  

 

From the spectra, it is obvious that one lean sample has not been removed from the rich 

TOT ALK dataset. Outliers were detected by a score-plot, RSD versus leverage plot and by 

a normal-plot of the scores of the PCs. The plots are presented in appendix D-4 and a 

complete list of outliers is presented in Table 14. 

 

Figure 4-31: Rich spectra with 2nd degree EMSC pretreatment 

Figure 4-32: Wavenumber region 3640-2750 and 1680 - 960 
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Table 14: Outliers in TOT ALK 

Outliers 

24, 75, 77. 

 

Three outliers of the original 92 samples have been removed. Of the remaining 89 

samples, 45 samples are used in the training set to build the model and 44 samples are 

used in the validation set to validate the model. The training set is created in Sirius by 

selecting every odd-number sample in the data set, excluding outliers. The rest of the 

samples excluding outliers is used in the validation set to validate the model. 

 

Sample 24 is a clear outlier and was most likely a lean sample that had not been removed. 

After the removal of sample 24, a new PCA was performed to find outliers.  

Only a few very weak outliers were detected but not removed. After building a model 

sample 75 and 77 turned out to be outliers in the model and was removed.  

 

 

Figure 4-33: RMSECV plot 

Two components are suggested by Sirius in the RMSECV plot in Figure 4-33, marked by 

the yellow bar. Both a two- and three-component model were tested. The three-

components model performed better at predicting samples in the validation set and had 

RMSECV +/- 0.310 Percentiles.(Minimum: 0.033 - Comp. 2) (p-Value= 0.003)
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a more normally distributed response residual (see Figure 4-34). The three-component 

model was chosen, and the component information can be found in Table 15. 

 

Table 15: Component information for rich TOT ALK 

Component 

number 

Explained 

variance 

(Independent), % 

Explained 

variance 

(Dependent), % 

Cross-validation 

value 

1 87,51 52,04 0,72 

2 8,92 42,39 0,38 

3 1,89 1,40 0,94 

 

 

Figure 4-34: Response residuals for rich TOT ALK model 

 From the response residuals in Figure 4-34 sample 27 is a weak outlier in the model. 

Sample 27 is not removed from the model and were not found to influence the models 
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predictive ability. The predicted versus measured values for the TOT ALK samples in the 

rich model are presented in Figure 4-35. 

 

 

Figure 4-35: Predicted versus measured for rich TOT ALK model 

Table 16: Comparison of two and three components to describe the model 

Number of 

components 

R R2 R2a RMSEP 

3 0,977 0,954 0,953 0,034 

2 0,954 0,909 0,907 0,038 

 

From Table 16 there can be seen very little difference in the two models. The three-

component model performs marginally better than the two-component model. From R2 

and R2a, there is minimal divergence between the models. The three-component model is 

therefore concluded to be the best as the RMSEP value is lower and the difference in 

coefficient of multiple determination and the adjusted coefficient of multiple 

determination is low. 

 

The average value of TOT ALK is 4,70, thus the RMSEP value corresponds to 0,72 % of the 

average value. The RMSEP value is much lower than the typical value of  TOT ALK and the 

model is concluded to be satisfactory. 
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Sample 34 has a high response residual compared to the other samples and is a possible 

outlier. Further investigation of the validation set by PCA is performed and sample 34 is 

concluded not to be an outlier, but it might be an erroneous error. 

 

4.2.3 Density 

 

In the rich density model, a 2nd-degree EMSC pretreatment and a variable selection of 

wavenumbers in the region 1680-900 gave the best result. The pretreated spectrum is 

presented in Figure 4-36. 

 

 

 

Figure 4-36: Rich spectra with 2nd-degree EMSC pretreatment 

Unlike the density model built from the lean samples, the model for density built from the 

rich samples performed better when not including the wavenumber region 3640-2750 

cm-1. The selected pretreated wavenumber region is presented in Figure 4-37. 
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Figure 4-37: Wavenumber region 1680 - 960 

 

From the spectra collected from all samples, two spectra differentiate significantly from 

the rest. A score-plot is provided to illustrate the severity of deviation. 

  

Outlier detection is done by score-plots, RSD versus leverage and by normal-plots of the 

scores versus the objects. The plots can be found in Appendix D-5. 

 

      Figure 4-38: Score-plot of PC1 and PC2 
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As can be seen from the score-plot in Figure 4-38, the two samples 30 and 66 are obvious 

outliers. The reason for this large deviation can be seen in Figure 4-36. The spectra of 

sample 30 and 66 deviate from the rest, this is because these samples are lean samples 

that had not been removed along with the rest. These samples are removed first and then 

a new evaluation of the score-plot was made to identify the other outliers. A complete list 

of outliers can be found in table 17. 

 

Table 17: Outliers in rich density 

Outliers: 

30, 66, 68, 73, 74, 79, 82, 85, 86, 87 

 

Ten outliers of the original 90 samples have been removed. Of the remaining 80 samples, 

41 samples are used in the training set to build the model and 39 samples are used in the 

validation set to validate the model. The training set is created in Sirius by selecting every 

odd-number sample in the data set, excluding outliers. The rest of the samples excluding 

outliers is used in the validation set to validate the model. 

 

A PLS model was created and only two of the components had a cross-validation value 

below one. The component information is given in Table 18. 

 

Table 18: Component information for rich density 

Component 

number 

Explained variance 

(Independent), % 

Explained variance 

(Dependent), % 

Cross-validation 

value 

1 90,17 98,96 0,12 

2 7,00 0,11 0,99 

 

The response residuals are provided in figure 4-39 and as can be seen, the response 

residuals are linear and pass through the point y = 0,5. The response residuals are 

therefore normally distributed, indicating that the model is reliable. 
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Figure 4-39: Response residuals for the model 

 

The predicted versus measured plot for the validation set is provided in Figure 4-40.  

 

 

Figure 4-40: Predicted versus measured values 

As can be seen from the predicted versus measured density plot the model is a good fit 

and can predict the values in the validation set with a low RMSEP value compared to the 

measured values. The average value of the density samples in the rich model is 1129,83, 

thus the RMSEP value (of 0,038) corresponds to 0,003 % of the average density value.  
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The low RMSEP value compared to the average value indicates that this model is reliable. 

Component information for the model is provided in table 19. 

 

Table 19: Model information 

Number of 

components 

R R2 R2a RMSEP 

2 0,993 0,986 0,985 0,038 

 

As can be seen from R2 and R2a, there is little difference in value and the model is not 

overfitted. 
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5 Conclusion 
 

This master thesis aimed to provide models for an in-line measurement with ATR-FTIR 

spectroscopy for an amine scrubbing plant. The data provided by TCM was not sufficient 

to model all the variables, as such, only models for TIC, TOT ALK and density are created. 

Principal Component Analysis has proven to be an excellent tool to find outliers and 

patterns in the data set. The elimination of outliers in the data improved the models 

significantly. A further investigation on the rich TIC model should be performed to 

increase the models predictive abilities. In general, the models generated demonstrated 

good predictive abilities.  

 

Both a 2nd degree Extended Multiplicative Signal Correction and a 21-point Savitzky-Golay 

3rd-degree polynomial fitting, 2nd-degree differentiation has performed good as 

pretreatment of the data, separately. All the models were tested for both pretreatments 

and the best model was chosen based on the Root Mean Square Error Prediction, number 

of outliers and number of components in the model.  

 

In the model for total inorganic carbon, TIC, for the lean CO2 samples, a Savitzky-Golay 

pretreatment with a 21-point window, 3rd-degree polynomial fitting and 2nd-degree 

differentiation resulted in the best model. The wavenumber region used to build the 

model is 1680-960 cm-1. The model is built on two components and resulted in an RMSEP 

value of 0,027, where the average value of TIC is 1,153. The RMSEP value corresponds to 

2,3 % of the average TIC value, indicating that the model is reliable.  

 

The best model obtained for total alkalinity, TOT ALK, in the lean CO2 samples was 

subjected to a 2nd degree EMSC pretreatment and used the wavenumber region 3640-

2750 and 1680-960 cm-1. The model is built on six components and resulted in an RMSEP 

value of 0,039 where the average TOT ALK value is 4,76. The RMSEP value is much lower 

than the average TOT ALK value and corresponds to 0,82 % of the average value. It is 

concluded that the model is reliable given how minor the RMSEP value is compared to the 

average TOT ALK value. 
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In the lean CO2 samples, the best model for density was obtained by a 2nd-degree EMSC 

using the wavenumber region 3640-2750 and 1680-900 cm-1. The model contained five 

components and resulted in an RMSEP value of 0,490 where the average density value is 

1082,51. The RMSEP value for the density model is much lower than the average value. 

The RMSEP value corresponds to 0,045 % of the average value indicating that the model 

is reliable.  

 

The TIC model built from the rich CO2 samples has been pretreated with a 2nd degree 

EMSC and uses the wavenumber region 1680-960 cm-1. Three components are included 

in the model and resulted in an RMSEP value of 0,047. The average value of TIC in the rich 

samples is 2,31 thus, the RMSEP value corresponds to 2,03 % of the average value. The 

RMSEP value is low compared to the typical values of TIC and the model is concluded to 

be reliable. The model should be further refined as there are some scattered results in the 

predicted versus measured plot of the validation set. 

 

The TOT ALK model built from the rich samples has been pretreated with a 2nd degree 

EMSC and uses the wavenumber region 3640-2750 and 1680-960 cm-1. Three 

components are included in the model and gave an RMSEP value of 0,034. The average 

value of TOT ALK in the rich samples is 4,70. The RMSEP value corresponds to 0,72 % of 

the average TOT ALK value, indicating that the model is reliable.  

 

The best model obtained for density when using the rich samples were pretreated with a 

2nd degree EMSC and used the wavenumber region 1680-900. Two components are 

included in the model and resulted in RMSEP value of 0,766, where the average value of 

density for the rich samples is 1129,83. The RMSEP value thus corresponds to 0,003 % of 

the average density value, indicating that the model is reliable.  

 

An inline measurement with ART-FTIR coupled with multivariate methods has proven 

able to build models and predict values with a low RMSEP value compared to the value of 

the response variable.  
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6 Further work 

 

More samples are needed to build a complete model of the degradation products 

produced in this process and to generate a reliable validation model. From the models 

created the lowest sample size was 80 samples. This was sufficient to build the rich CO2 

total alkalinity model and validate the model. Thus, a sample size of 80 should be enough 

to model the degradation products and validate the models. 

 

An in-depth assessment of the net energy requirements of the power station to operate 

the carbon capture and storage system is still needed. This would presumably be 

associated with an economic feasibility study to determine the alterations required to 

return energy output capacity to original levels. To minimize degradation caused by high 

temperatures in the stripper, we suggest investigating the lower temperature threshold 

at which CO2 separation from MEA is still viable.  

 

 

If the temperature of the stripper is reduced, the rich CO2-rich solution would require 

extended time in the stripper to separate the CO2 from the aqueous MEA solution.  

The negative impact to energy output capacity resulting from this reduction in efficiency 

would need to be thoroughly examined. 
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Appendix A 

function [res, ana, idnr,lor, unit] = mea218(filename) 
  
% This file can read and sort the different analysis methods, 
% and put the right value of each measurement to the correct analysis 
% and sample number. 
  
% Removes information that is not needed. 
m = readtable(filename); 
m(:, [2, 4, 9, 10]) = []; 
  
m1 = table2cell(m); 
  
[n] = size(m1); 
  
id = cell2mat(m1(:,1)); 
  
% Turns characters into numbers 
res1 = char(m1(:,5)); 
res2 = string(res1); 
res3 = str2double(res2); 
  
v = char(m1(1,3)); 
v = string(v); 
  
w = char(m1(1,4)); 
w = string(w); 
  
v = [v, w]; 
v = join(v); 
  
ana(1) = v;   
minus = 0; 
idnr(1,1) = id(1); 
trekk = 0; 
res(1,1) = res3(1); 
lor(1,1) = m1(1,2); 
unit(1,1) = m1(1,6); 
for e = 2:n 
     
    f = id(e-1,1); 
    g = id(e,1); 
         
    if f ~= g 
        idnr(e-trekk,1) = g; 
        lor(e-trekk,1) = m1(e,2); 
        unit(e-trekk,1) = m1(e,6);         
    else 
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        trekk = trekk + 1; 
    end 
end 
  
for i = 2:n 
    a = char(m1(i-1,3)); 
    a = string(a); 
     
    b = char(m1(i,3)); 
    b = string(b); 
     
    c = char(m1(i-1,4)); 
    c = string(c); 
     
    d = char(m1(i,4)); 
    d = string(d); 
  
    a = [a, c]; 
    a = join(a); 
     
    b = [b, d]; 
    b = join(b); 
  
    p = 0; 
    p1 = 0; 
     
    
    % This loop places the measurement to the right analysis 
    l = length(ana); 
    for k = 1:l 
        
        if b ~= ana(k) 
            p  = p + 0; 
    
        else 
            p = p + 1; 
            co1 = k; 
        end 
             
    end 
    if p > 0 
        minus = minus + 1; 
    else 
        ana(1,i-minus) = string(b); 
        co1 = i-minus; 
    end 
     
     
    % This loop places the sample to the right ID-tag (sample number) 
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    lid = length(idnr); 
    for h = 1:lid 
       if id(i) == idnr(h) 
          co2 = h; 
       end 
    end 
     
    % Coordinate for the measurement in the matrix 
    res(co2,co1) = res3(i); 
  
end 
  
end 
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Appendix B 

 

function [idnr, bolgetall, verdi, lor] = mea2_spekter(filename) 
  
% This function can open multiple files and create a matrix consisting of 
% wavenumbers, sample number and the intensity of each sample at each 
% wavenumber. This file also produces a lean or rich vector to be able to 
% separate the rich and lean samples. 
  
a = importdata(filename); 
a = string(a); 
  
% This loop creates a matrix consisting of the intensities measured at each 
% wavenumber for all the samples. 
  
for i = 1:length(a) 
    b = dlmread(a(i)); 
    bolgetall(:,i) = b(:,1); 
    verdi(:,i)= b(:,2); 
end 
  
idnr = char(a); 
idnr = idnr(:,1:5); 
idnr = string(idnr); 
idnr = double(idnr); 
  
lor = char(a); 
lor = lor(:,12:15); 
lor = string(lor); 
  
end 
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Appendix C 

 

 

 

𝑀𝐸𝐴 + 𝐶𝑂2 → 𝑀𝐸𝐴+𝐶𝑂𝑂− 

 

𝑀𝐸𝐴+𝐶𝑂𝑂− +  𝐻2𝑂 →  𝑀𝐸𝐴𝐶𝑂𝑂− +  𝐻3𝑂+ 

 

𝑀𝐸𝐴 +  𝐻3𝑂+ +  𝑀𝐸𝐴𝐶𝑂𝑂− → 𝑀𝐸𝐴𝐻+ +  𝐻2𝑂 + 𝑀𝐸𝐴𝐶𝑂𝑂−  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

Appendix D 

 

 

D-1. Lean TOT ALK 
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D-2. Lean Density 
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D-3. Rich TIC 
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D-4. Rich TOT ALK 
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DataSet: mea2_rich_tot_alk_v2, Subset: Training set, Scores 1 vs 2
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DataSet: mea2_rich_tot_alk_v2, Subset: Training set, 2 Comps. (96.9%)
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D-5. Rich Density 
 

 

 

DataSet: Mea2_rich_density_2, Subset: Training set, Scores 1 vs 2
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Scores vs Objects, Comp. 1 (87.6%)
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