
INFORMATION SCIENCE

Master Thesis

Semantic Web Application for Email Receipts

Author: Fredrik Otterlei Madsen

Supervisor: Csaba Veres

1 June 2018



Abstract

This thesis is about enhancing receipts by extracting information from them

and create receipts in semantic format. It involves data mining techniques

for processing emails and categorisation of products. These techniques and

methods were implemented and tested in a web application, which confirms

that it is possible to create receipts in a semantic format. External services

were used to analyse existing semantic metadata for products and perform

category search. The findings showed that there is improvement potential

in how receipts are modelled, especially with regard to semantic category

specification of products.

I



Acknowledgements

I want to thank friends and fellow students for a memorable year with

interesting work, discussions and fun moments. They have motivated me to

complete this thesis. I would also like to thank my supervisor Csaba Veres

for his guidance and help during the work on this thesis.

II



Contents

Abstract I

Acknowledgements II

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4

2.1 E-commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 RDF and Semantic Web . . . . . . . . . . . . . . . . . . . . . 5

2.3 Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Schema.org and GoodRelations . . . . . . . . . . . . . . . . . 8

2.5 Google Knowledge Graph . . . . . . . . . . . . . . . . . . . . 11

2.6 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Research Method 16

3.1 Design Science Research . . . . . . . . . . . . . . . . . . . . . 16

3.2 Development Methodology . . . . . . . . . . . . . . . . . . . . 18

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Statistical Methods . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III



4 Development 22

4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Data Mining: Parsing Emails . . . . . . . . . . . . . . . . . . 26

4.4.1 Regular Expressions . . . . . . . . . . . . . . . . . . . 28

4.5 Data Modelling: Schema.org . . . . . . . . . . . . . . . . . . . 29

4.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Data Visualization: Sgvizler2 . . . . . . . . . . . . . . . . . . 38

5 Analysis 45

5.1 Data mining and semantic modelling . . . . . . . . . . . . . . 45

5.2 Product classification . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Product metadata . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Discussion 50

6.1 Data extraction technique . . . . . . . . . . . . . . . . . . . . 50

6.2 Adoption of Schema.org vocabulary . . . . . . . . . . . . . . . 52

6.3 Classification of products . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 58

7.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix A Subject Filter and Table Search 64

Appendix B Regular Expression 67

Appendix C Organizations JSON-LD 73

Appendix D Classification Google knowledge graph 76

Appendix E Metadata from products 78

IV



List of Figures

3.1 Conceptual model of the iterative cycle . . . . . . . . . . . . . 18

3.2 Precision and Recall equations (Wimalasuriya, 2010, p. 318) . 21

3.3 F-measure equation (Wimalasuriya, 2010, p. 318) . . . . . . . 21

4.1 Trello Board retrieved from https://trello.com . . . . . . . 25

4.2 JSON receipts from data mining . . . . . . . . . . . . . . . . . 30

4.3 Receipt in Turtle format . . . . . . . . . . . . . . . . . . . . . 31

4.4 Email identification of organizations . . . . . . . . . . . . . . 32

4.5 Response from Google knowledge graph search . . . . . . . . . 36

4.6 Schema.org definition of type Book . . . . . . . . . . . . . . . 37

4.7 Dashboard view from localhost:8080/dashboard . . . . . . . . 38

4.8 Receipt view from localhost:8080/dashboard/1001 . . . . . . . 39

4.9 Pie chart category types from brokers made in Sgvilzer2 . . . 41

4.10 Pie chart for items made in Sgvilzer2 . . . . . . . . . . . . . . 42

4.11 Bar chart made in Sgvizler2 . . . . . . . . . . . . . . . . . . . 43

4.12 Line chart made in Sgvizler2 . . . . . . . . . . . . . . . . . . . 43

4.13 Trendline chart made in Sgvizler2 . . . . . . . . . . . . . . . . 44

5.1 Metadata product results . . . . . . . . . . . . . . . . . . . . . 49

6.1 GenTax example . . . . . . . . . . . . . . . . . . . . . . . . . 56

V

https://trello.com


List of Tables

3.1 Hevner et al. (2004)/Design Science in IS Research . . . . . . 17

4.1 How the parser reads a table . . . . . . . . . . . . . . . . . . . 27

4.2 Composition of key attributes and data values . . . . . . . . . 27

4.3 Regular Expressions for total price and currency . . . . . . . . 29

5.1 Resources and properties from knowledge graph . . . . . . . . 46

5.2 Types classified for items through Google knowledge graph . . 47

VI



Acronyms

API Application Programming Interface. 30

CSS Cascading Style Sheets. 33

HTML HyperText Markup Language. 4, 12, 33, 40

JSON JavaScript Object Notation. 12

JSON-LD JavaScript Object Notation for Linked Data. 6, 30, 32, 34

OWL Web Ontology Language. 3

RDF Resource Description Framework. 3, 9, 32

RDFa Resource Description Framework in Attributes. 4, 6, 7

RDFS Resource Description Framework Schema. 3, 32

SPARQL Simple Protocol and RDF Query Language. 12, 16, 17, 33, 34, 40,

41

URI Uniform Resource Identifier. 3

XML Extensible Markup Language. 12

XSD XML Schema Definition. 41

VII



Chapter 1

Introduction

The research in this thesis is about how to implement and use semantic

vocabularies to represent digital receipts. Receipts are transitioning to elec-

tronic platforms and data formats, such as web services and smartphone apps

delivering digital receipts to customers. Digital receipts highlight information

about our purchases, by using semantic technologies such as vocabularies

and classification searches it is possible to present and identify the things we

buy. In this research project I have explored the format of digital receipts

and developed a proof of concept web application that can lift data to a

reasonable semantic level. This will help keep track of recent purchases and

improve processing of receipts.

The artefact I planned and developed as part of my thesis is a web

application. It runs in the Node.js environment and contains a client-side

for the visual representation for users, and a server side for routes, functions,

models, data retrieval and exchange with semantic services. The semantic

layer runs in Fuseki (Apache, 2017), a semantic software service for producing

and querying semantic knowledge graphs. Data is retrieved from emails

in Gmail, emails are sent from various web stores and service providers.

Furthermore, a function parses each email and reproduce them as semantic

resources which are inserted in the Fuseki endpoint.

1



The main visual features of the web application is to show things a user has

bought over time, details about receipts and graphs. Receipts are presented

in a list on the dashboard, where each unique receipt is clickable to view more

details. There is also a separate web page for graphs showing statistics from

receipts.

2



1.1 Research Questions

The following research questions are stated:

Q1. Is there sufficient metadata in web resources to categorise receipts?

Q2. What sort of categories are available in web markup for products and

services?

Q3. What other methods can be used to enhance the category structure?

Q4. Can we use the categories in aggregations and visualization?

3



Chapter 2

Theory

2.1 E-commerce

Electronic commerce is related to purchase and sale of goods and services

on the World Wide Web. It involves several types of agents and generates a

large work flow. A trade is an agreement between seller and buyer, but the

trade itself involves parties that handle involved actions. These actions are for

instance information flow, brokerage, money transaction, and transportation.

Liu et al. (2015) highlight the importance of connecting online trading and

logistic services in their research paper. They mention electronic warehouse

receipts for creating and updating information before, during, and after

delivery of goods. ”The pattern of e-commerce trading based on electronic

warehouse receipts has the characteristics of digitalization and standardization,

which can help the e-commerce platform achieve seamless docking with

logistics and have high technology feasibility” (Liu et al., 2015, p. 662).

The proposed system structure for e-commerce is based around the online

trading platform and it can be divided into five parts which are the e-commerce

platform, traders, delivery warehouse, logistics service providers and balance

bank. The e-commerce platform is an online trading platform responsible for

organizing and regulating transactions. It is capable of controlling and sharing

4



information for involved participant on the demand side. Liu et al. (2015)

conclude that an e-commerce system with integrated logistics services will

provide efficient transactions and guarantee the quality of trading products.

In relation to this thesis, the e-commerce system that Liu et al. (2015)

propose is relevant in terms of modelling agents, products, services, sales,

payment, receipts and logistics. It is a comprehensive system that covers

many entities, compared to this thesis which focus on receipts. However, we

find the same entities in the Schema.org vocabulary, which shows that there

exist tools that would fit in an e-commerce system.

2.2 RDF and Semantic Web

Resource Description Framework (RDF), Resource Description Framework

Schema (RDFS) and Web Ontology Language (OWL) are modelling languages

of the Semantic Web. These languages are used for adding additional meaning

to data, a process known as describing data and referred to as semantic

metadata. The foundation is RDF, a standard model for distributing data on

the Web according to W3C (2014). This model structure is also mentioned

and specified as a triple, the fundamental data structure of RDF. A triple

consist of a subject, predicate and object. It has two nodes, the subject and

object linked together with the predicate (subject-predicate-object). RDF

can describe all sort of things in the world, ”things” are often referred to as

resources. Each resource has a Uniform Resource Identifier (URI), Berners-Lee

(2006) specified 4 rules that are expectations of behaviour for the Semantic

Web:

1. Use URIs as names of things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL).

5



4. Include links to other URIs so that they can discover more things.

Resource Description Framework in Attributes (RDFa) is a markup language

that makes statements about resources in the form of subject-predicate-

object expressions known as triples. It is implemented in XHTML as a core

library and state explicit rules on how to define attributes for embedding

semantic markup in host languages (W3C, 2015). An example is RDFa

generated in HTML documents, which give additional meaning in tags that

contain data. Sheth & Thirunarayan (2012) provide a clear definition of RDFa:

The core subset of RDFa attributes include

• about - a URI extracted as the subject of an RDF triple that specifies

the resource the metadata is about;

• rel and rev - extracted as the object property (predicate) of an RDF

triple, this URI specifies a relationship or reverse-relationship with

another resource;

• href,source, and resource - extracted as the object of an RDF triple,

this URI specifies the partner resource;

• property - extracted as the datatype property (predicate) of an RDF

triple, this URI specifies a property for the content of an element; and

• instanceof - extracted as the object property ’rdf:type’ coupled with

and RDF triple’s object, this optional attribute specifies the RDF type

of the subject;

2.3 Regular expressions

A regular expression is capable of processing text by searching a pattern. It

is a concept from theoretical computer science and formal language theory,

6



proposed by Stephen Kleen in 1956. Since then, it has been implemented in

various systems and programming languages. ”The basic function of regular

expressions are matching, substitution and extraction” (Bakar, 2014). In

terms of data mining, it is a fitting technique for extracting and processing

data from text, especially since it does not require heavy processing.

JavaScript is a programming language that supports regular expressions,

from the syntax it is possible to use both regular expression literals and objects.

Regular expressions are composed by a large set of characters representing

logical patterns. Here are some of the often used characters with explanation

from gskinner (2018):

Character c l a s s e s

. any charac t e r except newl ine

\w \d \ s word , d i g i t , whitespace

\W \D \S not word , d i g i t , whitespace

[ abc ] any o f a , b , or c

[ ˆ abc ] not a , b , or c

[ a−g ] cha rac t e r between a & g

Anchors

ˆ s t a r t o f s t r i n g

$ end o f s t r i n g

\b \B word , not−word boundary

Escaped cha ra c t e r s

\ . \∗ \\ escaped s p e c i a l cha ra c t e r s

\ t \n \ r tab , l i n e f e e d , c a r r i a g e re turn

\u00A9 unicode escaped

Groups & Lookaround

( abc ) capture group

\1 back r e f e r ence to group #1

( ? : abc ) non−captur ing group

(?=abc ) p o s i t i v e lookahead

( ? ! abc ) negat ive lookahead

Quan t i f i e r s & Al te rnat i on

7



a∗ a+ a? 0 or more , 1 or more , 0 or 1

a{5} a {2 ,} exac t l y f i v e , two or more

a {1 ,3} between one & three

a+? a {2 ,}? match as few as p o s s i b l e

ab | cd match ab or cd

2.4 Schema.org and GoodRelations

Shema.org is a vocabulary that promote schemas for structuring data on

the Internet, it support encodings like RDFa, Microdata and JSON-LD. The

history between Schema.org and GoodRelations goes back to 2010 when

Google adopted the GoodRelations vocabulary according to Hepp (2015,

p. 726). The Schema.org project is a collaborative community founded by

Google, Yahoo, Microsoft and Yandex (Schema.org, 2018). Common for all

these organizations is that they have their own search engines optimized

for the schema vocabulary. Search engines utilize metadata to create rich

snippets presenting information about products and services, it is also used

for individualized relevance ranking.

The adoption of GoodRelations ontology into the schema vocabulary

resulted in similar structure, both vocabularies use their own namespace.

For instance, http://purl.org/goodrelations/v1#PaymentMethod is rep-

resented as http://schema.org/PaymentMethod in the schema vocabulary.

Goodrelations based the e-commerce model on the assumption that it can be

represented in 4 core entities, Hepp (2015) mentions them as:

1. An agent (e.g a person or an organization),

2. A promise (offer) to transfer some rights (ownership, temporary usage,

a certain license, etc.) on some object or to provide some service,

3. An object (e.g a camcorder, a house, a car, etc.) or service (e.g. a

haircut), and

8

http://purl.org/goodrelations/v1#PaymentMethod
http://schema.org/PaymentMethod


4. An expected compensation (e.g. an amount of money), to be provided

by the accepting agent and related to the object or service.

In addition, the entity location is often used to specify where an offer is

available. Furthermore, Hepp (2015) present classes in the GoodRelations

vocabulary:

• gr:BusinessEntity for the agent, i.e. the company or individual,

• gr:Offering for an offer to sell, repair, lease something, or to express

interest in such an offer,

• gr:ProductOrService for the object or service,

• gr:PriceSpecification for the compensation, and

• gr:Location for a store or location from which the offer is available.

The schema vocabulary has similar names on classes for e-commerce modelling.

It uses class names like Organization, Offer, Product, Service, PriceSpecifica-

tion and Location, with many properties available in each class. Classes are

extensively used to represent different models within the e-commerce domain.

Schema.org is still a work in progress with continuous implementations and

updates that introduce new classes and properties. One of the newer classes

is Invoice (http://schema.org/Invoice), which represents a receipt or bill.

It has 15 properties that are used for describing attributes that are required

in receipts. The properties ”accountId”, ”confirmationNumber”, ”minim-

umPaymentDue”, ”paymentDueDate”, ”paymentMethod”, ”paymentMetho-

dId”, ”paymentStatus”, ”scheduledPaymentDate” and ”totalPaymentDue”

are meant for identifying the transaction process. Agents involved in the trans-

action are described in properties like ”broker”, ”customer” and ”provider”.

Products are defined in orders linked through the property ”referenceOrder”.

It is possible to define several orders, each order can contain multiple products.

Below is a simple example of an Invoice in RDFa:

9

http://schema.org/Invoice


<div vocab=”http :// schema . org /” typeo f=”Invo i c e”>

<h1 property=”d e s c r i p t i o n”>Pizza</h1>

<div property=”broker ” typeo f=”/Loca lBus ines s”>

<b property=”name”>Pizzabakeren</b>

</div>

<div property=”customer” typeo f=”Person”>

<b property=”name”>Ola Nordmann</b>

</div>

<time property=”paymentDueDate”>2018−03−15</time>

<div property=”totalPaymentDue” typeo f=”P r i c e S p e c i f i c a t i o n”>

<span property=”p r i c e ”>199.00</span>

<span property=”pr iceCurrency”>NOK</span>

</div>

<meta itemprop=”paymentStatus” content=”PaymentComplete” />

<div property=”re f e r ence sOrde r ” typeo f=”Order”>

<span property=”d e s c r i p t i o n”>pizza</span>

<time property=”orderDate”>2018−03−15</time>

<span property=”orderNumber”>0121446</span>

<div property=”orderedItem” typeo f=”Product”>

<span property=”name”>09 DEN MARINERTE</span>

<meta property=”productId ” content=”09” />

</div>

</div>

</div>

10



2.5 Google Knowledge Graph

Google Knowledge Graph is a database of knowledge repositories about entities

or things in the real world. It is described as a graph, an intelligent model

that understand entities and their relationship to one another (Singhal, 2012).

The important factor is relationships between entities making it possible to

build a graph. In this context, structured data with markup in RDF is useful

for building and adding knowledge into the graph. The knowledge graph must

be available for online search so that applications can use structured data.

It is also important that generated structured data can be properly added

into the knowledge graph. A major advantage is that the knowledge graph

can provide answers to different queries in the same sequence, based on the

relationships in data. Singhal (2012) states that one of the main purposes is

to improve Google search. The knowledge graph enhance search in three ways,

first one is finding the right thing by using entities. Secondly, it will present

relevant content around the topic with key facts from entities. Lastly, the

search will reveal other relations for an entity, making it possible to discover

deeper and broader knowledge.

Uyar & Aliyu (2015) investigate three main aspects of semantic search

engines, they used Google Knowledge Graph and Satori from Microsoft Bing.

In their study they looked at what kinds of entity types do they cover, how

common is the support for entity list searches and what kind of natural

language queries do they support. The method applied was to investigate

entity types based on a test set that covered general and specific entity types.

Entity types were randomly selected from Freebase, a knowledge graph with

approximately 2000 entity types from 76 different domains (Uyar & Aliyu,

2015, p. 202). At the time, Freebase had around 44 million of entity instances

for different topics. ”Since there is no way of testing the availability of entity

types directly, we retrieved ten instances of each entity type from Freebase

and tested their availability. If one of these instances exist on the semantic

search engines as an entity, we assume that the entity type is indexed. If one

11



of the instances exist on the web but is not recognized by the search engines,

we assume that the entity type is not indexed. To check the availability of an

instance, we submit the name of the entity as the query to the search engines”

(Uyar & Aliyu, 2015, p. 202). The random selection process resulted in 100

entity types, they used English interfaces for the search engines.

The results from entity type search showed that Google Knowledge Graph

indexed 60 entity types and Satori managed 66 entity types. There was a

total of 100 entity type in this test scenario, 25 entity types were not indexed.

The range of entity types showed that both search engines covered similar and

popular entity types. The searches did also pick up unindexed entity types

such as ”Degree”, ”Infectious disease”, ”Olympic games” and ”File format”.

These types are common and almost expected to be indexed. However, this

shows that Google Knowledge Graph search and Satori are not indexing all

possible entity types. Uyar & Aliyu (2015) claims that this is because of

limitations in automated extraction algorithms. In particular, there is a lack

of applying entity types and updating them.

Entity list searches was tested for 51 entity types that were indexed by

both Google Knowledge Graph search and Satori. An entity list is the result

of a query where the most relevant entities are gathered. For search engines

like Google and others, it is a strategic tool for catching the attention of

users without redirecting them to other websites. Results are presented in a

carousel where you can move left and right, which is an appropriate interface

for personal computers and smart phones. The results from entity list searches

showed that Google Knowledge Graph supported ten entity types out of 51

(Uyar & Aliyu, 2015, p. 206). Satori supported seven entity types, which

indicates that both search engines have a small representation of entity types

for entity list search. The types found were common such as products, services,

persons, organizations, attractions and places.

The last research question was about investigating natural language query

interfaces of semantic search engines. Uyar & Aliyu (2015) used a data

12



set about US geography with 877 entries. They made queries with various

complexity to see if Google Knowledge Graph search and Satori were able

to correctly index entity types. This was done manually by comparing

search results with test data. Results from comparison were categorized

as simple queries, moderate queries, complex queries, and more complex

queries. Simple queries had unambiguous intent and targeted a single entity.

Moderate queries had ambiguous intent and conditional statements, such as

count, max/min and transitive relations. Complex queries had two conditional

statements combined with compound or nested grammatical structures. More

complex queries had more than two conditional statements, they only applied

three conditional statements during tests. According to the results, Google

Knowledge Graph search managed to correctly answer 60 percent of simple

queries (Uyar & Aliyu, 2015, p. 208). However, it did not correctly answer

any of the moderate, complex, and more complex queries. Uyar & Aliyu

(2015) point out three main reasons for failure:

1. Complexity of queries. Neither search engine seemed to implement

advanced natural language processing techniques to parse the grammat-

ically complex queries.

2. Unsupported terms. Search engines seem to support a limited set of

terms in queries.

3. Statistical queries. Some queries involve calculation of basic statist-

ical functions such as counting, max/min calculation and averaging.

Some queries add more complexity by requiring conditional counting,

conditional max/min calculation and averaging. Currently these two

semantic search engines provide very limited support for statistical

queries.

13



2.6 Data visualization

Visualization of semantic linked data increase readability and knowledge for

a larger group of consumers. This way of representing data is known as

infographics, a tool that enables graphical visual representations of data.

One of the perks with applying infographics is to make data more readable

for humans, instead of interpreting tables with rows, columns and values.

Infographics are practical when presenting information in front-end designs,

especially since they scale well and highlight results for further analysis.

Sgvizler2 is a modern and efficient JavaScript wrapper for visualization,

it is a reboot of the original project Sgvizler by Martin G. Skjæveland.

”What makes Sgvizler special is the ease with which it lets one integrate the

visualization of SPARQL SELECT query result sets directly into web pages,

combined with the large number of visualization types it supports and its

compatibility of different origin SPARQL endpoint querying for all major

modern browsers and most SPARQL endpoints” (Skjæveland, 2015, p. 362).

Input parameters are grouped in different attributes, such as ”data-sgvizler-

endpoint” for specifying the endpoint address and ”data-sgvizler-query” which

holds the SPARQL query. The attribute ”data-sgvizler-chart” supports a

wide range of charts, while ”data-sgvizler-chart-options” is used to customize

the given chart model.

Skjæveland (2015) points out how Sgvizler works in practise for web devel-

opment. Assuming that SPARQL queries are defined in HTML markup, each

query is performed asynchronously using jQuery’s ajax function. Asynchron-

ously means that it will await an response, either XML or JSON, which is

further parsed into a Google DataTable object. The DataTable with options

is then drawn in a function that fills the HTML element. Google’s Chart

Tools contain all functions that can draw charts from DataTable objects as

input, this means that new charts added in the future are automatically

supported. However, it is important to ensure that the order of variables in

the SELECT block are correct for SPARQL queries.

14



One concern that is mentioned is that JavaScript has to abide by the same

origin policy. This is a security measure that prohibits a script from retrieving

data from a different domain other than where the scripts lives (Skjæveland,

2015, p. 364). The solution to this problem is Cross-Origin Resource Sharing

(CORS) which enables communication for external domains. However, it will

only work if SPARQL endpoints are CORS enabled.

15



Chapter 3

Research Method

3.1 Design Science Research

In this research project with development of an artifact I have adopted the

Design Science Methodology for Information and Software Engineering. It

is a common and widely used methodology within the field of Information

Systems and provides a well structured framework for solving problems in

smaller portions. Applying design science has improved project structure,

understanding of problems and revealed solutions for advancement in the

research.

Hevner et al. (2004) present 7 guidelines of design science research, inher-

ently described as problem solving process. By acquring knowledge about a

design problem, we are capable of creating solutions in the form of artifacts.

The purpose of these guidelines is to ”assist researcher, reviewers, editors, and

readers to understand the requirements of effective design-science” (Hevner

et al., 2004). Each guideline is a fraction of the problem, none of them are

considered mandatory, but they should be explored for design-science research

to be complete. The structure of my research project is inspired by the

guidelines seen in table 3.1. They have been a good reminder of important

tasks to prioritize throughout the research project.

16



Design-Science Research Guidelines
Guideline Description
Guideline 1: Design as an Artifact Design-science research must

produce a viable artifact in the
form of a construct, a model, a
method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science
research is to develop
technology-based solutions to
important and relevant business
problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a
design artifact must be rigorously
demonstrated via well-executed
evaluation methods.

Guideline 4: Research
Contributions

Effective design-science research
must provide clear and verifiable
contributions in the areas of the
design artifact, design foundations,
and/or design methodologies.

Guideline 5: Research Rigor Design-science research relies upon
the application of rigorous methods
in both the construction and
evaluation of the design artifact.

Guideline 6: Design as a Search
Process

The search for an effective artifact
requires utilizing available means to
reach desired ends while satisfying
laws in the problem environment.

Guideline 7: Communication of
Research

Design-science research must be
presented effectively both to
technology-oriented as well as
management-oriented audiences.

Table 3.1: Hevner et al. (2004)/Design Science in IS Research

17



3.2 Development Methodology

In relation to development methodology, I have used iterative and incremental

method from agile approach towards software development. Iterative since

parts of the system has been developed through repeating cycles and incre-

mental due to following steps over time. Figure 3.1 below is a conceptual

model of the iterative cycle with steps. By following these steps you en-

sure that important aspects are covered, since it is a cycle you will revisit

steps with knowledge and experience from earlier iterations. In this sense,

iterative development ensures that there is time and opportunity to make

improvements.

Figure 3.1: Conceptual model of the iterative cycle

Developing a system with iterative and incremental method involves imple-

menting small parts at a time, for instance a graphical interface or module for

data handling. Each requirement will run through the cycle several times until

you have a result that works. The whole process of implementing requirements

follows a plan that keeps an overview of components critical for making the

18



system work. In addition, the plan specifies time estimates for implementing

requirements. However, the important factor is how many iterations you need

in order to complete a requirement ready for deployment.

Scrum, Extreme Programming and Kanban are some of the prescriptive agile

methodologies that are inspired by iterative and incremental development.

Through the development phase of the artifact in this research project, I have

not bound my development strictly to one of these methodologies. Since I

have had the responsibility as the sole developer, I have borrowed some of

the methods and tools for each task through its cycle.

3.3 Evaluation

The evaluation of the artefact, including data mining and semantic graph

production, is based on statistics and metrics. Multiple SPARQL queries

with aggregate functions have been tested on the semantic graph in order to

provide data statistics. The receipts produced are compared to the model

from Schema.org vocabulary (schema:Invoice), which is the reference standard.

Classification searches of items in Google knowledge graph are assessed by

type given and expected type. In addition, I have inspected 50 products from

various online stores to find types and properties that can be reused when

generating receipts from existing metadata.

3.3.1 Statistical Methods

SPARQL supports aggregate functions of data which is convenient for produ-

cing statistics. ”Specifically, it provides aggregate functions COUNT, MIN,

MAX, AVG, and SUM. These aggregates can be used alongside any graph

pattern, computing a result for all matches for the pattern” (Allemang &

Hendler, 2011, p. 101). Aggregate functions appear in the SELECT clause of

queries with specified graph variable and a new variable bound to function.

It is possible to group data by a valid graph variable, this is achieved with

19



the GROUP BY keyword. The keyword FILTER can also be used on graph

variables to match specific values.

Furthermore, SPARQL supports subquery which is an additional query

within a query. ”Subqueries can be useful when combining limits and ag-

gregates with other graph patterns” (Allemang & Hendler, 2011). However,

subqueries of aggregates are only available in SELECT queries. Another

keyword that is practical for SELECT queries with aggregate functions is

UNION. ”UNION combines two graph patterns, resulting in the set union

of all bindings made by each pattern. Variables in each pattern take values

independently (just as they do in subqueries), but the results are combined

together” (Allemang & Hendler, 2011, p. 105).

There are scenarios where data sets are large and only available from the

Web. In these cases it is necessary to conduct federated queries. Federate

means to combine data sources, this is done via SPARQL endpoints specified

as URLs. ”When each data set is published via a SPARQL endpoint, SPARQL

allows subqueries to be dispatched to different endpoints. The endpoint for

the subquery is specified by putting the keyword SERVICE followed by a

URL for the SPARQL endpoint before a graph pattern” (Allemang & Hendler,

2011, p. 110).

Drawing a trend line graph is accomplished with linear regression. ”Linear

regression is one of the many types of regression analysis, which models the

relationship between a scalar variable y (the so called ’dependent’ variable) and

one or more differing and assumed independent variables xi. A correlation

between xi and y is supposed. This kind of regression analysis is often

performed when examining predictions or forecast based on observed data set

of y and x. Given multiple x values the strength or grade of relation between

a single variable xj and y can be detected” (Zapilko & Mathiak, 2011, p. 120).

20



3.3.2 Metrics

Metrics are used for measurement, comparison and tracking performance,

in relation to this research project it is relevant for information extraction

and retrieval of data. Precision and recall are two acknowledged metrics

for performance measurement. According to Wimalasuriya (2010), precision

shows the number of correctly identified items as a proportion of total items

retrieved. Recall shows the number of correctly identified items as a proportion

of total number of correct items available.

Precision =
{Relevant} ∩ {Retrieved}

{Retrieved}

Recall =
{Relevant} ∩ {Retrieved}

{Relevant}

Figure 3.2: Precision and Recall equations (Wimalasuriya, 2010, p. 318)

The F-measure uses precision and recall, the equation produces a weighted

average of the two metrics. ”Symbol β denotes the weighting of precision

versus recall. In most situations, 1 is used for β , giving equal weights for

precision and recall” (Wimalasuriya, 2010, p. 318).

F −Measure =
(β2 + 1) ∗Relevant ∗Retrieved
(β2 ∗ Precision) +Retrieved

Figure 3.3: F-measure equation (Wimalasuriya, 2010, p. 318)

21



Chapter 4

Development

The system development phase has followed a continuous work flow progressing

over time. In this chapter I will describe tools used and important aspects of

the development process resulting in the final artifact.

4.1 Tools

Software development tools have been important in the long process of making

the artifact. The thesis project is developed in a web environment called

NodeJS, a lightweight software program built on Chrome’s V8 Javascript

engine (NodeJS, 2017). NodeJS builds, compiles and runs the web application.

The web application holds several packages using the built in ecosystem called

NodeJS package manager (npm). The ecosystem offers free access to a large

registry of reusable code, some of the implemented packages will be mentioned

and described in more detail later in this chapter.

During development I used Sublime Text for code writing and Bitbucket

for version control. Sublime Text is my preferred text editor when working

with web development, it serves the simple purpose of accessing files and

editing code without any troubles. Bitbucket is a version control system

available online and as software installed on your computer. Throughout

22



the entire development phase I used one Git repository for the project. No

major problems occurred while using Bitbucket and Git, these tools have

made it easier to share the work and files between my two computers. In

addition, they provide valuable insight in development processes and serves as

documentation. For instance, I can easily identify when project requirements

were started on and completed.

Semantic tools are well represented in the web application. The know-

ledge graph is served and handled in Fuseki, a server for querying semantic

datasets (Apache, 2017). It runs in Java and creates a localhost endpoint

capable of serving RDF data over HTTP. A typical endpoint is specified as

”http://localhost:3030/db”, where the two last letters represent the dataset.

Data visualization is part of the front-end experience, it is available from

a JavaScript library called Sgvizler2. This library can render a wide selection

of graphs based on SPARQL queries. The idea behind data visualization

is to present readable information and demonstrate a few examples of how

knowledge graphs can be utilized.

4.2 Artifact

Based on the research questions the main idea is to develop a proof of concept

web application capable of tracking receipts. Receipts are transitioning to

electronic platforms and data formats, such as web services and smartphone

apps delivering digital receipts to customers. Digital receipts contain detailed

information about our purchases, by utilizing semantic technologies and

tools such as vocabularies and classification searches it is possible to identify

the things we buy. For this specific prototype, the available data is based

on existing information from semi-structured digital content. Lifting semi-

structured data into a semantic data model is one of the important tasks at

hand.

A known challenge in this context is different data structures and how to

23



efficiently process and add these to the knowledge graph for receipts. The

most practical case is to use established web standards such as HTML, XML

or JSON. These semi-structured formats do not conform to strict models

other than following the valid syntax. It is necessary to consider a lot of

keywords and attributes for filtering purposes, as well as verifying that data

is in the correct format and linked to the attribute it represents. Developing

an algorithm that can traverse emails, sort out attributes and process data

as key-value pairs is required. Once accessed, it is possible to parse these files

and extract specific values which is then used in the semantic data model.

RDF will be used together with relevant vocabularies, such as Schema.org to

describe receipts. The process will also include Google Knowledge Graph for

classification of products and services.

Once the receipts are available from the knowledge graph served by Fuseki,

it is interesting to apply data visualization. First of all, the receipts need to

be available and easy to retrieve. For instance, it should be possible to find

a specific receipt and read off characteristics such as date, name of item(s),

price and organization. Another interesting feature is to use classifications,

making it possible to track how many items you buy and total cost for each

category. Clearly, this feature is motivated by tracking personal receipts and

cost, but there are definitely other relevant use cases for receipts stored in

knowledge graphs.

4.3 Planning

The first stage was to create a plan on how to conduct phases of the develop-

ment and reaching defined goals. An overview of the development process was

made in a digital board called Trello (Trello, 2017). Trello is a tool available

online, it is primarily a collaboration tool for development teams, but it is

also applicable to one man projects. I structured my digital board with three

lists named ”TO DO”, ”IN PROGRESS” and ”DONE” as shown in figure 4.1.

24



Each list consist of one or more cards which describes system requirements.

Instead of creating many cards for specific tasks, I made them module based

focusing on important system components like data mining and modelling.

Figure 4.1: Board from Trello

Cards kept an overview of the development, the idea is to move them to

the right and implement the requirements until done. For this development

project, the cards stayed a long time inside the ”IN PROGRESS” list, since

each module contained several tasks that had to be solved. In addition, each

module had to be implemented in the web application layer responsible for

running modules and render views with results.

System architecture is based on a three-layered architecture that contains

client, application and database layer. Client layer is the front end interface

allowing users to interact with content. For this particular web application

the front end experience is about exploring receipts and interact with graphs

showing statistics. The application layer is defined in Node.js and includes

running the web environment, utilizing modules and connect the flow of data,

such as handling input and output. Database layer is responsible for storing

receipts with semantic markup, also known as a knowledge graph. The web

application uses a module with SPARQL support for retrieving data from

the local endpoint.

25



4.4 Data Mining: Parsing Emails

The first card or implementation was to retrieve emails from Google Mail

and parse through each one of them. Google access is given through the

login webpage and stored in a session. The user has to approve that the

web application is given access before the authentication process is fulfilled.

Afterwards, the application will start to retrieve emails through Google Mail

API. When searching through the mailbox it is possible to insert a smart filter

label as parameter. I applied the following label: ”label:ˆsmartlabel receipt”,

which narrowed down the search to emails classified as receipts.

Each email is identified with Multipurpose Internet Mail Extensions

(MIME). It extends the email format to support text in various character sets,

file attachments like audio, video, images and message bodies with multiple

parts. Google Mail API return emails in JavaScript Object Notation (JSON),

accessing attributes and values is achieved by using JSON-path. For instance,

I could easily access attributes like sent from, date and email identification

number. One of the main attributes is content, which is available as both

plain text and HyperText Markup Language (HTML). I discovered that the

majority of email receipts had HTML content, but the content was encoded

in Base64. This is a binary to text encoding added as content attribute in

the email headers, but it was possible to decode it to American Standard

Code for Information Interchange (ASCII). Once decoded into a string of

HTML format, you can build a Document Object Model (DOM). DOM is

a tree structure where HTML tags correspond to nodes in the DOM tree

hierarchy. It is a structure that can easily be traversed, such as jumping

between nodes and exploring nested nodes which is necessary when parsing

data. I implemented a recursive method in a module called receipt-scanner,

this method traverse all the nodes in the DOM structure. A recursive method

is a powerful method to solve repetitive tasks, ”using recursion we can provide

a solution to a problem by applying the same solution to its subproblems, an

approach known as divide and conquer” (Subramaniam, 2014).

26



Programming the parser was a challenging task, it includes several methods

and tests in order to find relevant data such as key attributes in a receipt.

More specifically, the parser is searching for attributes like title of product,

cost, tax, purchase method and organization. In order to find all these key

attributes in receipts, I have combined traversing, pattern match and regular

expressions to achieve reasonable results. The receipt-scanner module conduct

multiple method calls when traversing the HTML nodes. First off, it builds a

text representation of the receipt stored in a variable of type string. This is

for conducting regular expression matches at a later point if the table parser

is not capable of finding some of the key attributes. Secondly, the module

builds an array of table nodes with text values performed by the table parser.

After analysing several emails by inspecting the HTML structure, I found that

key attributes describing receipts are available in table structures. Parsing

tables returns data which follows a two-dimensional structure, but the order

of keywords are random in each table. The reason why tables and order of

keywords are different is due to different structures from organizations who

send email receipts. Here is an example of how tables are interpreted by the

parser seen in table 4.1 and table 4.2.

{0, 0} {0, 1} {0, 2}
{1, 0} {1, 1} {1, 2}

Table 4.1: How the parser reads a table

title/product/item tax/subTotal/mva total
jrollon-crj200 $0.00 $25.00 usd

Table 4.2: Composition of key attributes and data values

Since the keywords in the table headers appear random, it is necessary to

recognize the order of specific keywords to locate the associated values. For

instance, the title of a product in table 4.1 is found by linking table cell {0, 0}
Ý {1, 0} or {title/product/item} Ý {jrollon-crj200}. The table is traversed

27



from left to right, jumping into each neighbour cell until it reaches the end

and starts on a new row. As mentioned, the receipt-scanner module builds an

array based on these cells and rows. By knowing the structure of the table,

you can easily pair a key attribute with value through the distance between

them. However, you need to make sure that each cell and row in the table is

added to the array to keep the distance intact.

Considering that each email from various organizations are unique, I

made a pattern file in JSON which gives instructions on how to parse tables

from a given organization (see Appendix A). As for now this method is

semi-automatic, meaning that the parser is not capable of reading, recognize

keywords and extract values without any instructions. A better implement-

ation is to create a more general parser capable to perceive a large set of

keywords. This would require use of artificial intelligence for efficient pro-

cessing with large knowledge bases, such as machine learning in natural

language processing.

4.4.1 Regular Expressions

Regular expressions are extensively used in the receipt-scanner module for

pattern match and extracting text. During traversing the module finds HTML

tags that contain text, these tags are further processed by running customized

regular expressions. Key attributes found by using these expressions are price,

currency, tax and payment method. Table 4.3 below contains three regular

expressions and shows how total price and currency attributes are found. In

Appendix B you can see all of the expressions implemented.

First off, the expression checks if a text value matches ”total” followed by

a number. It will not match ”subtotal” or ”total before tax”, since we are

searching for the total amount including all costs. The price number is

retrieved as text, by using a JavaScript method called ”parseFloat()” it is

converted to a floating point number. Lastly, we find the specified currency

by matching known abbreviations for currencies.

28



Example Regular Expression Result
total: 14.9 usd
(match phrase)

(?!subtotal)(?!total
before
tax)(total).\n.([0-
9]{1,9}.[0-9]{0,2})

total: 14.9 usd

total: 14.9 usd
(find number)

[0-9]+,[0-9]{1,3}|[0-
9]+.[0-9]{1,3}

14.9

total: 14.9 usd
(find currency)

(kr|usd|eur|gbp|$) usd

Table 4.3: Regular Expressions for total price and currency

Combining traversing with regular expressions provide data values applic-

able for further modelling. The advantage of jumping between nodes and

running regular expressions is processing less text and reducing the complexity

of expressions. Problems that I stumbled upon when parsing email receipts

was invalid formatting of HTML and strange formatting of prices. Ideally,

it would have been easier to parse email receipts if they used metadata to

describe content in HTML, but this is rarely the case for organizations selling

products and services.

4.5 Data Modelling: Schema.org

Data retrieved from the data mining process is reproduced as semantic models.

Keywords and assigned values from receipts are temporarily stored in a JSON

structure as seen in figure 4.2. This made it possible to store receipts in

memory and process new ones, before reproducing them as semantic structured

data models.

The leap from JSON structure to semantic model is efficient and simple.

Primarily, the values from each JSON receipts is inserted into a resource with

markup from ”schema:Invoice” (Schema.org, 2018). Resources are added to

the semantic graph available through the Fuseki service. Each resource has

predicates similar to the attributes defined in the JSON structure. Figure 4.3

29



var obj = {
” id ” : id ,
” t i t l e s ” : t i t l e s ,
” t o t a l ” : t o ta l ,
” tax ” : tax ,
” currency ” : currency ,
”paymentMethod ” : paymentMethod ,
” invo ice ID ” : invoiceID ,
” from ” : from ,
” emai l ” : email ,
” date ” : date

}

Figure 4.2: JSON receipt

is a test example generated in the web application that shows how receipts are

represented in Turtle format. The vocabulary context is based on schema.org

with mixed properties from types like Invoice, Product and Thing. There

are many ways to set up a model for receipts, but I have adapted this

model to the format used in email receipts and followed guidelines stated

in the Schema.org vocabulary. First off I create a new instance of type

Invoice, such as ”invoice:1001” in figure 4.3, to represent a unique instance

of the class ”schema:Invoice”. Each instance has a unique number attached,

this id can be used to track the original email from Google. Next, type

”schema:Invoice” is added along with predicates like amount, broker, email,

itemListElement, paymentMethod, totalPaymentDue, priceCurrency and

purchaseDate. Amount and totalPaymentDue are both associated with

total cost of products, but I have used them for specific purposes. Firstly,

totalPaymentDue is representing the total price in original currency for

all the products included in the invoice. Amount is presenting the value

of totalPaymentDue in local currency, which was norwegian krone during

development. In hindsight, this could have been implemented as a personal

preference in the web application. The purpose of amount is to run calculations

on all the invoices at a later point in order to produce info-graphics based on

costs. Naturally, it is much easier to achieve this when total price is available

30



PREFIX schema : <http :// schema . org/>
PREFIX invo i c e : <http :// schema . org / Invo i c e#>
PREFIX broker : <http :// example/ broker#>

i n v o i c e :1001
a schema : Invo i c e ;
schema : amount ”34”ˆˆ xsd : i n t ;
schema : broker broker :Meny ;
schema : itemListElement [ schema : name ”Banana” ] ;
schema : itemListElement [ schema : name ”Apple ” ] ;
schema : paymentMethod ” v i s a ” ;
schema : totalPaymentDue ”34” ;
schema : pr iceCurrency ”nok” ;
schema : purchaseDate ”2017−11−15T00 : 0 0 : 0 1”

ˆˆxsd : dateTime .

broker :Meny
a ”http :// schema . org /GroceryStore ” ,

” http :// schema . org /Corporat ion ” ,
” http :// schema . org /Organizat ion ” ;

schema : name ”Meny” .
schema : emai l ”mai l to : kundeservice@meny . no” ;

Figure 4.3: Receipt in Turtle format

as one defined currency for all invoices. Hence, I implemented a currency

converter for this purpose.

Broker or organization affiliated with sale of products is added as an

instance of type ”schema:Organization” and ”schema:Corporation”. The

broker in each of the receipts is not to be confused with organizations that

own and manufacture products, also known as product owners. However, it

is possible that a product is sold directly from the manufacturer without a

middleman, meaning that broker and product owner is the same entity. Each

instance of broker contains two predicates which are ”schema:name” and

”schema:email” retrieved from data mining. In relation to organizations, I

made a simple knowledge graph in JSON-LD to demonstrate how organizations

can be identified based on email addresses. Appendix C contains all of the

organizations retrieved in emails when using my own Google account. The

dataset is limited, however it describes reusable attributes such as types and

31



list of email addresses central for identification and classification. Identification

is done by matching email address in broker with email addresses from the

organization knowledge graph. This is done in SPARQL, it runs through

all of the organizations and applies a regular expression filter based on the

input email address and available addresses in ”schema:email” list. Whenever

the query matches an organization, it select types and add these to the

broker instance as seen in figure 4.4. Seemingly, it is an option to replace

broker with the matched organization, since it is the same entity with a

more comprehensive model description. For future development it would be

interesting to run web based queries on knowledge graphs to match specific

organizations. In this regard, email addresses have served as a good filter

criterion. Another challenge that occurred in the modelling process was how

SELECT DISTINCT ? type
WHERE
{

? sub j e c t ? p r ed i c a t e ? ob j e c t .
? sub j e c t rd f : type ? type .
? sub j e c t schema : emai l ? emai l .
FILTER regex (? email , ${ inputEmail })

}

INSERT
{

? broker a ${ type} ;
}
WHERE
{

? sub j e c t ? p r ed i c a t e ? ob j e c t .
${{ i n v o i c e : r e c e i p t I d }} schema : broker ? broker .

}

Figure 4.4: Email identification

to support multiple products part of invoices. Semantic vocabularies do not

support lists as in object oriented languages, such as Java and Javascript. It is

only possible to specify a range of values in semantic vocabularies, for instance

”rdf:type” and ”schema:email” as already mentioned. The solution was to

32



add blank nodes in order to deal with products part of an invoice. Blank

node represents a resource with an unspecified URI, also called an anonymous

resource (Allemang & Hendler, 2011, p. 47). This made it possible to add

unique resources representing products for every single invoice. Each product

can be further described by adding type and predicates with values from

vocabularies, for instance ”schema:Product” accommodate several properties

for this purpose.

33



4.6 Classification

Data manipulation between web application modules and knowledge graphs

is based on SPARQL. SPARQL enables directly editing and updating of

semantic graphs, a few examples has already been specified. The vision of

semantic web is to make information machine readable by adding metadata.

In this sense, is is also possible to reuse metadata to increase knowledge

about any given resource. This is a central part of the research questions

stated, whether metadata is available and how to reuse resources in knowledge

graphs.

A specific case where this concept can be applied is product classification

for receipts, especially since the invoices and products generated in the web

application lack specific type declarations. In an attempt to explore this chal-

lenge, I added a wrapper module called ”google-kgsearch”, which access the

Google knowledge graph through their web based Application Programming

Interface (API). ”The Knowledge Graph Search API lets you find entities in

the Google Knowledge Graph. The API uses standard Schema.org types and

is compliant with the JSON-LD specification” (Google, 2018a). By running

a search on the title of a product we get JSON-LD format in response. For

instance, the query string ”agile principles, patterns, and practices in c#”

executed in search will return the response seen in figure 4.5. From the

response we can access all of the available properties, but for classification

it is favourable to add type values. The types ”Book” and ”Thing” were

returned based on the input query. All instances from Schema.org is defined

with the type ”Thing”, this is the root or highest level of all types defined in

the hierarchy. Accordingly, ”Thing” is also the least precise classification of a

resource and the classification module should aim for finding types with high

depth relative to the hierarchy. In this sense, ”Book” is a more precise type

with a depth of 2 according to the hierarchy Thing > CreativeWork > Book.

From the type definition we learn that the title used as input is the title of a

book.

34



Schema.org currently has 597 types arranged in the hierarchy and these

are used in the response elements retrieved from Google Knowledge Graph

Search. In addition to the query input, it is possible to add search parameters

like language code, limit, prefix and types. Type as parameter is interesting

to add, but in Google Knowledge Graph it will only work if parameter type(s)

input match the given type of the resource you are looking for. Therefore, I

did not specify any types when using this module, it would only limit response

elements or return an empty response. For instance, adding ”CreativeWork”

as type parameter in the search in figure 4.5 will result in an empty response,

since ”CreativeWork” is not part of the type values. Although ”CreativeWork”

is a parent class of ”Book”, Google knowledge graph is not reasoning with

class definitions and inheritance. This means you have to match the exact

type parameter to get results.

SPARQL and knowledge graphs populated with RDF triples support

reasoning with class definitions and inheritance. Schema defines 597 types in

the main hierarchy were each type or ”class” is defined according to depth and

inheritance. I downloaded the JSON-LD file of the core Schema.org vocabulary,

in order to have a closer look at the hierarchy. For instance, the type ”Book”

is represented as seen in figure 4.6 below. Type and class definitions are

described in RDFS, which builds on RDF but allows for expressing relationship

between things or resources. Specifically, ”rdfs:Class” and ”rdfs:subClass”

are used to describe class relations and inheritance. In figure 4.6 ”Book” is a

”rdfs:Class” and ”rdfs:subClassOf schema:CreativeWork”. In addition, the

JSON-LD format has an attribute called ”children” holding an array as value.

There is one element in the array with type name ”schema:Audiobook”,

which is a subclass of type ”schema:Book”. The hierarchy is as follows

Thing > CreativeWork > Book > Audiobook, ”Audiobook” with a depth

of 3 is the most specific type or class available for describing books according

to core Schema.org vocabulary.

35



{
”@context ” : {
”@vocab ” : ” http :// schema . org /” ,
”goog ” : ” http :// schema . goog l e ap i s . com/” ,
” Ent i tySearchResu l t ” : ”goog : Ent i tySearchResu l t ” ,
” d e t a i l e dDe s c r i p t i o n ” : ”goog : d e t a i l e dDe s c r i p t i o n ” ,
” r e s u l t S c o r e ” : ”goog : r e s u l t S c o r e ” ,
”kg ” : ” http :// g . co/kg”
} ,
”@type ” : ” I temList ” ,
” itemListElement ” : [
{
”@type ” : ” Ent i tySearchResu l t ” ,
” r e s u l t ” : {
”@id ” : ”kg : /m/06dnh8k ” ,
”name” : ”Ag i l e P r i n c i p l e s , Patterns , and Pra c t i c e s in C#”,
”@type ” : [
”Book” ,
”Thing”
] ,
” d e s c r i p t i o n ” : ”Book by Micah Martin and Robert Cec i l Martin

”
} ,
” r e s u l t S c o r e ” : 590.100525
}
]
}

Figure 4.5: Google knowledge graph search

36



”@type ” : ” r d f s : Class ” ,
” r d f s : subClassOf ” : ”schema : CreativeWork ” ,
” d e s c r i p t i o n ” : ”A book . ” ,
”name” : ”Book” ,
”@id ” : ”schema : Book” ,
” l ay e r ” : ” core ” ,
” ch i l d r en ” :

[
{
”@type ” : ” r d f s : Class ” ,
” r d f s : subClassOf ” : ”schema : Book” ,
” d e s c r i p t i o n ” : ”An audiobook . ” ,
”name” : ”Audiobook ” ,
”@id ” : ”schema : Audiobook ” ,
” l ay e r ” : ” bib ”
}

]

Figure 4.6: Book definition Schema.org

37



4.7 Data Visualization: Sgvizler2

Visualization of data is an important part of the front end experience and

user interaction in the web application. A graphical interface makes data

readable and highlights information of interest for the user. I used the tool

Sgvizler2 (Rafes, 2017), a JavaScript library capable of rendering results from

SPARQL select queries into charts in HTML format. The web application

support two ways of interacting with receipts, first view is a ”Dashboard”

containing a list off all the receipts available from the knowledge graph.

Figure 4.7: Dashboard view

In figure 4.7 you see the dashboard with a table list of receipts. The table

is structured in HTML and styled with Cascading Style Sheets (CSS) from

Bootstrap (Otto & Thornton, 2018). Table consist of headers ”Receipt

ID”, ”From” and ”Date”. Table body is populated with all the receipts,

each ”Receipt ID” is a clickable link that opens a new view with details.

Creation of list and detailed views is based on data from the knowledge

graph. I implemented two methods, first method collects all the available

receipts and the second for viewing details about a single receipt. Data is

38



selected from the knowledge graph by using SPARQL combined with views

in the web application for processing and presenting data. The combination

of data retrieval with SPARQL and views work well, especially since it is

straightforward to write queries and process responses in JSON-LD format.

It is easy to filter the results from queries, for instance the dashboard list is

filtered by date showing new receipts first.

In figure 4.8 you can see a detailed view of a single receipt, it is partly

inspired by type ”schema:Invoice” and the structure from email receipts,

although the order of properties are mixed. First attribute is a unique

resource indication (URI), followed by organization name, email, date, items

and total price. It is a simple and clear view consistent for all the receipts

available, but it can easily be extended if new properties are added to the

semantic resource.

Figure 4.8: Receipt view

On the top page you will find a fixed navigation bar, it has links to ”Dash-

board”, ”Graph” and ”Logout”. The ”Dashboard” view is similar to how you

would read and interpret emails, but ”Graph” view is exclusively focusing

on infographics. I implemented four types of graphs which are pie chart, bar

39



chart, line chart and trendline chart. Utilizing visual representation of data

was one of the requirements for this web application. It is convenient to have

the opportunity to read a graph, rather than interpreting a table with rows,

columns and values. Graph production is based on data values like cost, date

and quantity for a given type or organization. Sgvizler2 made it efficient to

create graphs based on queries. The important part in these queries, was

to select right data values and filter on a key attribute. In the first graph

produced, the goal was to create a pie chart of things bought from various

brokers. Broker is a property from schema, in this context it is used for

specifying the seller as a organization. Category types from brokers are found

in the query seen in figure 4.9, each slice in the pie chart represent quantity

of how often a type is identified by using a count function. A significant issue

in this regard is that a single broker may have multiple types. The query

does not account for what type of item you bought, which would originally

belong in one of the category types specified in broker. Therefore it is not a

precise approach, it only provides an estimated overview of category types

from brokers.

40



PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX schema : <http :// schema . org/>
SELECT SUBSTR(? type , 19) (COUNT(? type ) as ?nb)
WHERE {

? sub j e c t ? p r ed i c a t e ? ob j e c t .
? sub j e c t a schema : Invo i c e .
? sub j e c t schema : broker ? broker .
? broker a ? type .
FILTER (? type != ’ http :// schema . org /Organizat ion ’ && ? type

!= ’ http :// schema . org /Corporation ’ && ? type != ’ http ://
schema . org /CreativeWork ’ )

} GROUP BY ? type

Figure 4.9: Pie chart of category types from brokers

41



Figure 4.10 below is similar to the first pie chart, but this chart gives an

overview of item types that have been classified using Google knowledge

graph.

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX schema : <http :// schema . org/>
SELECT ? type (COUNT(? type ) as ?nb)
WHERE {

? sub j e c t ? p r ed i c a t e ? ob j e c t .
? sub j e c t a schema : Invo i c e .
? sub j e c t schema : itemListElement ? item .
? item a ? type .
FILTER (? type != schema : Thing )

} GROUP BY ? type

Figure 4.10: Pie chart for item types

42



The second graph implemented is a bar chart with organization names along

the y-axis and total cost presented in rectangular bars seen in figure 4.11.

It gives an overview of the current total cost for any organization based on

receipts from the knowledge graph. In the third graph, I added a chart that

Figure 4.11: Bar chart

draws a line for 62 ”schema:Invoice” resources from the knowledge graph.

Each resource is placed according to date along the x-axis and total cost

along the y-axis, resulting in a drawn line seen in figure 4.12.

Figure 4.12: Line chart

43



Lastly, I added a trendline chart which is based on the mathematical principle

of exponential regression. The form is eax+b, it draws the median based on

the blue data points along the x-axis. The result is a slightly curved red line

showing the overall trend of cost. It is intended as an indicator of whether

you spend more or less money on goods and services. The curve is affected

by cost and how often you buy things.

Figure 4.13: Trendline chart

44



Chapter 5

Analysis

In this chapter I will analyse processes like data mining, semantic modelling,

classification, and finding product metadata from the web.

5.1 Data mining and semantic modelling

Data is collected from Google Mail and processed in HTML format, for devel-

opment and testing I used my own Google account to retrieve emails labelled

as receipts. A total of 106 emails were retrieved from the collection process.

These emails are further filtered in methods were 61 out of 106 emails are qual-

ified for semantic model production. This implies a reduction of 42.5 % using

filter methods in the data mining module. Next step is production of semantic

resources of type ”schema:Invoice”, the web application managed to success-

fully insert 61 resources to the endpoint ”http://localhost:3030/trackReceipt”.

The insertion is done in two steps, first step is adding the instance of type

”schema:Invoice” with properties followed by inserting items or products.

Table 5.1 gives an overview of properties belonging to all of the 61 re-

sources. SPARQL is used to count how many properties that are present

for each unique instance of type ”schema:Invoice”. The table shows that

6 out of 7 properties are defined for all resources, except for the property

45



”schema:itemListElement”. This implies that 8 resources are missing the

property ”schema:itemListElement”, which holds values of item. The underly-

ing cause of missing properties like this one, is due to lack of data, formatting

errors or shortcoming of pattern match expressions in the parser. Apart from

this, it is satisfying that the other 6 properties are defined. Furthermore,

two of the properties uses XML Schema Definition (XSD) for specifying

data format. The property ”schema:amount” has a value of ”xsd:int” and

”schema:purchaseDate” uses ”xsd:dateTime”.

Semantic r e s ou r c e s o f type ”schema : Invo i c e ” .
61 r e s ou r c e s i n s e r t e d in knowledge graph .

Property Total
schema:amount 61
schema:broker 61

schema:itemListElement 53
schema:paymentMethod 61
schema:priceCurrency 61
schema:purchaseDate 61

schema:totalPaymentDue 61

Table 5.1: Resources and properties from knowledge graph

5.2 Product classification

Items added as value to the property ”schema:itemListElement” are tested for

type classification in a method that runs queries through Google knowledge

graph. From table 5.1 we can see that 53 items are added to resources in the

knowledge graph. A count query performed in SPARQL reveals that 23 items

have been given a type, this indicates that 43.4 % of the items are classified.

Table 5.2 below is an overview of type classification found for item names

further described in Appendix D.

The type ”schema:Place” was incorrect according to assessment, item name

46



Type Total
schema:Book 3
schema:Place 1

schema:VideoGame 19
schema:Brand 1

schema:SportsTeam 1

Table 5.2: Types classified for items through Google knowledge graph

was actually the title of a book, therefore ”schema:Book” is expected as type.

Otherwise, the method managed to classify 3 books, 1 brand, 1 SportsTeam

and notable 19 video games. SportsTeam and Brand are additional types

found in two of the video games. However, this also means that 30 items

were not classified with a type, due to empty result from query in Google

knowledge graph.

5.3 Product metadata

Exploring use of semantic markup on the web is one of the research questions.

It is a relevant question for learning more about how organizations utilize

semantic markup in products and services. In order to research this question

further, I looked into 50 products retrieved from web stores. Metadata is

gathered from 50 web pages by using Google test tool for structured data

(Google, 2018b). All results from structured data gathering are available in

Appendix E. There are 10 products in each of clothes, books, electronics,

games and grocery categories. The class or type ”Product” (http://schema.

org/Product) from Schema.org is present in all of the collected products.

From the overview in figure 5.1 we see that types ”schema:Product” and

”schema:Book” are defined for products, no other types were found other

than in property values. Considering that type is an appropriate classifier, it

would be advantageous that metadata for products included more types and

classes. In ”schema:Product” it is possible to add the property ”category” and

47

http://schema.org/Product
http://schema.org/Product


”additionalType” to specify additional types. This is actually the case for two

products in the category for books. They specify type ”schema:Book” before

adding the property ”additionalType” with value ”schema:Product”, which

is valid markup for structuring metadata. It clearly states that this is a book

and a product with available properties from these types. Another relevant

property found in product is ”brand”, which can contribute to classification.

20 out of 50 products had the property ”brand” with types ”Thing” and

”Brand”, along with the properties name and logo.

According to findings there are 10 properties used in total from type

”schema:Product”. One of the important properties like ”offers” contains

”price” and ”priceCurrency”, which are also used in ”schema:Invoice”. There

are also other relevant properties like ”aggregateRating”, ”color”, ”manufac-

turer”, ”sku” (Stock Keeping Unit), ”productID”, ”releaseDate” and ”gtin”

(Global Trade Item Number). In other words, the products contain metadata

that can be directly reused in receipts and utilized for product classification.

48



@type : schema : Product [ 5 0 ] , schema : Book [ 8 ]

P rope r t i e s from schema : Product
∗ add i t i ona lPrope r ty
∗ aggregateRat ing : {@type AggregateRating , rat ingValue ,

reviewCount , bestRating , worstRating }
∗ c o l o r
∗ gt in13
∗ brand : {@type Brand/Thing , name , logo }
∗ o f f e r s : {@type Offer , @id , a v a i l a b i l i t y , availableAtOrFrom {

@type Place , name} , areaServed , sku , sku13 priceCurrency ,
pr i ce , a v a i l a b i l i t y }

∗ manufacturer
∗ productID
∗ r e l ea s eDate
∗ sku

Prope r t i e s from schema : Thing
∗ name
∗ image
∗ d e s c r i p t i o n
∗ u r l
∗ sameAs
∗ thumbnailUrl

P rope r t i e s from schema : Book
∗ author : {@type Thing/Person , u r l }
∗ pub l i s h e r : {@type Organizat ion , name}
∗ genre
∗ dateCreated

Figure 5.1: Metadata product results

49



Chapter 6

Discussion

In this section I will discuss findings from research and development of the

artefact. The research process and development have included multiple

domains as reflected in the initial research questions. In short, these domains

are data mining, semantic data modelling and visualization. The artefact and

evaluation methods have provided interesting results which will be further

discussed in this section.

6.1 Data extraction technique

The data extraction is done by recursive parsing and regular expression for

finding specific attributes. These two methods are efficient and produces

fair results, according to the results 61 out of 106 emails are parsed and

reproduced as semantic resources. Before the parsing starts of each email, it

runs a filter check on the subject header (see Appendix A). Currently there

are only 19 keyword phrases, this is definitely a low number of keywords but

then again there are only 106 emails which is a limited sized dataset. For a

larger and more comprehensive system, it would be necessary to include more

keyword phrases with language support or translating emails to English.

Traversing the semi structured HTML nodes with a recursive method is

50



effective, however there are various factors to consider that affect performance.

These factors are typically how much input is the recursive function capable of

processing, is there a proper defined base case, are there checks implemented,

and not at least execution time from start to finish. Subramaniam (2014)

points out the importance of using tail call optimization. This removes the

concern of risking stack overflow for recursive functions with large inputs.

”A tail call is a recursive call in which the last operation is a call to itself”

(Subramaniam, 2014, p. 121). The recursive function implemented in the web

application project uses the tail call principle. There have been no issues with

stack overflows in the recursive function, but the content size in emails is also

small in memory size. Usually the size of each email range from around 15

kilobytes to a few megabytes if they have attachments, but only the message

body in HTML format is parsed. Regarding the base case for the implemented

recursive function, it will end when there is no more nodes to loop through.

One area of improvement for the recursive method I have implemented,

is to include consistent checks to prevent redundancy. In relation to regular

expressions it makes sense to check if a value is set. It is not necessary to

run regular expressions on remaining nodes if the value is already found.

Although, it is debatable whether you need to check each node or build an

comprehensive text from all the nodes, before running the regular expressions.

The current approach is to check each node with text, this has proven to

work well based on the results produced. By running regular expressions on

each text node, you reduce the complexity of the query and each text node is

quickly processed. For larger pieces of text you have to consider the structure

when designing regular expressions. It will also increase the input size to be

processed, which in turn will increase time consumption. A good feature with

regular expressions is that they are accurate on matching keywords. It was

not a problem to optimize them for keywords that are present in receipts.

However, it is important to consider that there exist synonyms for keywords

and that misspellings are a source of error.

51



In terms of time spent for the recursive function, I have measured execution

time using an integrated function in Node.js, but it has not been a system-

atically implemented tool for analysis. The execution time for the recursive

function with results from 61 emails ranged between 4 and 36 milliseconds.

This shows that input size is influencing the execution time. There are also

other factors such as software version and computing hardware (processor

and memory) which affect execution time.

6.2 Adoption of Schema.org vocabulary

The reproduction of receipts from parsed emails to RDF triples worked

well, 61 receipts or resources of type ”schema:Invoice” were inserted in the

Fuseki endpoint. In total, 3 of 15 properties from the type ”schema:Invoice”

are used in the RDF triples. The three properties are ”schema:broker”,

”schema:paymentMethod” and ”schema:totalPaymentDue”. In addition there

are 4 other properties from different types used for markup:

• schema:amount used on the types DatedMoneySpesification, Invest-

mentOrDeposit and LoanOrCredit. Values expected to be of one of the

types: MonetaryAmount or Number.

• schema:itemListElement used on the type ItemList. Values expected to

be one of the types: ListItem, Text, or Thing.

• schema:priceCurrency used on the types Offer, PriceSpecification, Re-

servation and Ticket. Values expected to be of type Text.

• schema:purchaseDate used on the types Product and Vehicle. Values

expected to be one of type Date.

The property ”schema:amount” was used to represent the local currency,

as for now the value is a number returned from the currency convert func-

tion. There is no special property from schema that can be applied for

52



a currency conversion. The closest properties are ”schema:amount” and

”schema:currency” from type ”schema:DatedMoneySpecification”. The next

property ”schema:itemListElement” is a linked list of blank nodes that con-

tains all the products. The products found in emails are added with this

property, most of the emails only had one product. This way of modelling

invoices with products differs from how it is done according to the schema

vocabulary. In the type ”schema:Invoice”, products are added as part of an

order with the property ”schema:referencesOrder”. This can be illustrated

with an example based on one of the receipts (Figure 4.3) inserted in the

knowledge graph.

{
”@context ” : ” http :// schema . org /” ,

”@type ” : ” Invo i c e ” ,

” broker ” : {
”@type ” : ”GroceryStore ” ,

”name” : ”Meny” ,

” emai l ” : ”mai l to : kundeservice@meny . no ” ,

} ,
” customer ” : {

”@type ” : ”Person ” ,

”name” : ” Fredr ik Madsen”

} ,
”paymentStatus ” : ” http :// schema . org /PaymentComplete ” ,

” r e f e r ence sOrde r ” : [

{
”@type ” : ”Order ” ,

” orderDate ” : ”2017−11−15”,
”orderNumber ” : ”1” ,

” orderedItem ” : {
”@type ” : ”Product ” ,

”name” : ”Apple ” ,

}
} ,
{

”@type ” : ”Order ” ,

” orderDate ” : ”2017−11−15”,
”orderNumber ” : ”2” ,

53



” orderedItem ” : {
”@type ” : ”Product ” ,

”name” : ”Banana” ,

}
}

] ,

”paymentMethod ” : ” v i s a ” ,

” totalPaymentDue ” : {
”@type ” : ” P r i c e S p e c i f i c a t i o n ” ,

” p r i c e ” : 34 . 00 ,

” pr iceCurrency ” : ”NOK” ,

}
}

This example of a invoice shows the purchase process with orders and products

added to a purchase list. The markup format is in JSON-LD, but it is possible

to add this format in a query and insert it into the graph endpoint. The use

of blank nodes and ”schema:itemListElement” for products is similar, but it

is a more general list with no references to orders.

The way orders are included in ”schema:Invoice” and other types is similar

to how Liu et al. (2015) envisioned information flow in e-commerce platforms.

In the system proposal for e-commerce platforms, information is created,

linked and updated before, during and after delivery of goods. The schema

vocabulary is suitable for this kind of use, although some types and properties

are missing for such a comprehensive system. In particular, logistic operations

such as transport with loading, transloading and unloading to a warehouse is

one of the ”offline” actions that lacks information. This is also the case for

e-commerce schemas, which are optimized for ordering products and payment

transactions. However, applying structured data would be a good contribution

in the flow of e-commerce information. This will make it easier to process

data, especially when structured data formats are implemented in production

systems and available for developers.

54



6.3 Classification of products

Classification of products with Google Knowledge graph is an applicable

approach, although it only managed to classify 43.3 % of the product titles

as input. It was positive that it managed to classify most of the game

titles. There was one incorrect categorization of a book that was given

the type ”schema:Place”. This misinterpretation can be caused by many

reasons, such as ambiguous words, context, representative selection, filtering,

etc. However, one specific critique is the lacking support of reasoning around

schema types. If the Google Knowledge graph supported a SPARQL endpoint,

it would be possible for developers to implement their own filtering methods

in queries. This is the case for reasoning with schema types, a feature that

could potentially improve filtering of products in e-commerce. The incorrect

classification of the book mentioned above could have been avoided, if it was

possible to include a set of types for products in the e-commerce domain.

Another challenge with classification of products, is that the types or

classes used in markup of web pages are generic. By generic, it means

that they rarely use subclasses of types or classes from the hierarchical

structure of a vocabulary or ontology. Findings from metadata inspection

of products (see Appendix E) shows that only two types, ”schema:Product”

and ”schema:Book”, from the schema.org vocabulary were in use. This

provide low coverage of product types that do not contribute to better

classification. In addition to specifying types, there are also other possibilities

for classification in properties like ”schema:category” and ”schema:sameAs”.

The ”schema:category” property can be used for specifying a category from

a hierarchy, whereas ”schema:sameAs” expects an URL to a web page that

unambiguously indicates the identity of an item.

Stolz et al. (2014) present a semi-automatic approach for deriving classi-

fications from existing industry standards and proprietary product category

systems into product ontologies. ”The tool consist of a modular architec-

ture that builds upon three layers, namely parser, transformation process,

55



and serializer” (Stolz et al., 2014, p. 647). The parser reads a standard

or structure of a hierarchy, which is then further processed in the internal

model. Transformation process takes places in the internal model and includes

creation of classes and properties describing logical rules in RDF. The internal

model is finally serialized as RDF/XML. One of the good qualities in the

transformation process is the use of the GenTax approach. This approach

makes it possible to generate a consistent OWL ontology while preserving the

taxonomic structure of the original categories from the product classification

system. It makes two OWL classes, one for the taxonomic class that represents

the category from the product category system. The second taxonomic class

is context specific, it could for instance be within the domain of products and

services. Figure 6.1 below shows an example of how GenTax would represent

two items (Apple and Banana). The left hand side contains the generated

categories for context product, while the right hand side have the original

taxonomy classes from product classification system.

Figure 6.1: GenTax example

There is definitely a potential for the GenTax approach within product

classification. First and foremost, it is applicable when parsing websites with

56



a product classification system where the hierarchical depth is minimum 2. It

is a method that can reuse existing categories from the web, although they

vary in quality. One challenge is how to merge categories without breaking the

hierarchical structure, especially when dealing with more extensive ontologies

with great depth.

57



Chapter 7

Conclusion

In this thesis I have explored how to implement and use semantic vocabularies

to create receipts. I have built an artifact that is capable of parsing emails

and create receipts as RDF triples. The receipts use the Invoice type from

schema.org along with other types. In addition I have implemented Google

Knowledge Graph search, a service capable of returning types which are used

for classifying products.

7.1 Research questions

Q1. Is there sufficient metadata in web resources to categorise

receipts?

There exist a considerable amount of semantic markup for products and

services on the web, but according to my results and findings there is a

significant improvement potential in how categories are used. First of all

the types that are applied in metadata for products and services are general.

There is little use of properties that are meant for classification, such as

hierarchical class definition from an ontology.

58



Q2. What sort of categories are available in web markup for

products and services?

The majority of big organizations and corporations use Schema.org with

types from the vocabulary. These types are general, since they are meant to

cover a wide range of things. Thus, there is a lack of more specific categories

that can better distinguish resources like products and services.

Q3. What other methods can be used to enhance the category

structure?

Google Knowledge graph search is a service that can provide useful categories

for products and services. It managed to classify some of the product titles

retrieved in the web application, but far from all.

Q4. Can we use the categories in aggregations and visualization?

Yes, it is possible to use categories in aggregations, the web application use

SPARQL to retrieve data for visualizations. One particular challenge is to

create queries that filter resources on available types or classes.

7.2 Future work

Recommendations for future work involves most of the domains visited and

used in the development of the artefact. First off it is necessary to improve

the parser in the data mining module with new capabilities. Extending the

keyword lists for filtering and regular expressions is necessary along with

advancing the logic for finding and recognizing HTML elements. This can be

done by implementing artificial intelligence methods, such as analysing and

remember the structure of data from a specific email address. The important

59



part is to automate the processes of reading, extracting information and save

data structure as template for learning.

In the semantic module it is necessary to expand resources with more

information. Receipts in the schema type ”Invoice” need to include more

properties with value types and literals. Organisations registered in receipts

need more information, this can be done by services capable of searching

through semantic metadata on the web. The currency convert function for

receipts should add a resource type with properties like amount, currency

and date. Classification of products and services needs more work, it can be

expanded with new search methods from external services. It is preferable

that these methods use knowledge graphs from the web to acquire types

and classes. Further research and exploration of categories from websites is

desirable, especially if it is possible to extract categories and create an ontology

populated with products and services. This would generate a knowledge graph

suitable for queries and classification.

60



Bibliography

Allemang, Dean, James Hendler (2011). Semantic Web for the Working
Ontologist. isbn: 9780123859655. doi: 10.1016/C2010-0-68657-3.

Apache (2017). Apache Jena Fuseki. url: https://jena.apache.org/

documentation/fuseki2/index.html (visited on 03/10/2017).
Bakar, N. S. Awang Abu (2014). ‘Using regular expressions for mining

data in large software repositories’. In: The 5th International Confer-
ence on Information and Communication Technology for The Muslim
World (ICT4M), pp. 1–6. doi: 10.1109/ICT4M.2014.7020649.

Berners-Lee, Tim (2006). Linked Data. url: https : / / www . w3 . org /

DesignIssues/LinkedData.html (visited on 11/03/2018).
Google (2018a). Google Knowledge Graph Search API. url: https : / /

developers.google.com/knowledge-graph/ (visited on 15/03/2018).
— (2018b). Test tool for structured data. url: https://search.google.

com/structured-data/testing-tool (visited on 02/02/2018).
gskinner (2018). RegExr. url: https://regexr.com/ (visited on 12/03/2018).
Hepp, Martin (2015). ‘The web of data for e-commerce: Schema.org and

GoodRelations for researchers and practitioners’. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Vol. 9114, pp. 723–727. isbn:
9783319198897. doi: 10.1007/978-3-319-19890-3_66.

Hevner, Alan R et al. (2004). ‘Design Science in Information Systems Research’.
In: MIS Quarterly 28.1, pp. 75–105. issn: 02767783. doi: 10.2307/

25148625. url: http://dblp.uni-trier.de/rec/bibtex/journals/
misq/HevnerMPR04.

Liu, Bingwu, Hua Hui, Juntao Li (2015). ‘The Research of Commodity E-
commerce and Logistics Collaborative System Based on the Electronic
Warehouse Receipts’. In: LISS 2013. Ed. by Runtong Zhang et al. Berlin,

61

https://doi.org/10.1016/C2010-0-68657-3
https://jena.apache.org/documentation/fuseki2/index.html
https://jena.apache.org/documentation/fuseki2/index.html
https://doi.org/10.1109/ICT4M.2014.7020649
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://developers.google.com/knowledge-graph/
https://developers.google.com/knowledge-graph/
https://search.google.com/structured-data/testing-tool
https://search.google.com/structured-data/testing-tool
https://regexr.com/
https://doi.org/10.1007/978-3-319-19890-3_66
https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04


Heidelberg: Springer Berlin Heidelberg, pp. 659–666. isbn: 978-3-642-
40660-7.

NodeJS (2017). NodeJS Foundation. url: https://nodejs.org/en/ (visited
on 03/10/2017).

Otto, Mark, Jacob Thornton (2018). Bootstrap. url: https://getbootstrap.
com/ (visited on 06/01/2018).

Rafes, Karima (2017). Sgvizler2. url: https://github.com/BorderCloud/
sgvizler2 (visited on 10/01/2018).

Schema.org (2018). Schema.org. url: https://schema.org/ (visited on
09/03/2018).

Sheth, Amit, Krishnaprasad Thirunarayan (2012). ‘Semantics Empowered
Web 3.0: Managing Enterprise, Social, Sensor, and Cloud-based Data
and Services for Advanced Applications’. In: Synthesis Lectures on
Data Management 4.6, pp. 1–175. issn: 2153-5418. doi: 10 . 2200 /

S00433ED1V01Y201207DTM031.
Singhal, Amit (2012). Introducing the Knowledge Graph: things, not strings.

url: https : / / googleblog . blogspot . no / 2012 / 05 / introducing -

knowledge-graph-things-not.html (visited on 16/03/2018).
Skjæveland, Martin G. (2015). ‘Sgvizler: A javascript wrapper for easy visual-

ization of SPARQL result sets’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 7540, pp. 361–365. isbn: 9783662466407.
doi: 10.1007/978-3-662-46641-4_27.

Stolz, Alex et al. (2014). ‘PCS2OWL: A generic approach for deriving Web
ontologies from product classification systems’. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Vol. 8465 LNCS, pp. 644–658. isbn:
9783319074429. doi: 10.1007/978-3-319-07443-6_43.

Subramaniam, Venkat (2014). ‘Functional Programming in Java: Harnessing
the Power of Java 8 Lambda Expressions’. In: Harnessing the Power of Java
8 Lambda Expressions, p. 171. issn: 0717-6163. doi: 10.1007/s13398-
014-0173-7.2.

Trello (2017). Trello Inc. url: https : / / nodejs . org / en/ (visited on
10/08/2017).

Uyar, Ahmet, Farouk Musa Aliyu (2015). ‘Evaluating search features of Google
Knowledge Graph and Bing Satori’. In: Online Information Review 39.2,
pp. 197–213. issn: 1468-4527. doi: 10.1108/OIR-10-2014-0257. url:
http://www.emeraldinsight.com/doi/10.1108/OIR-10-2014-0257.

62

https://nodejs.org/en/
https://getbootstrap.com/
https://getbootstrap.com/
https://github.com/BorderCloud/sgvizler2
https://github.com/BorderCloud/sgvizler2
https://schema.org/
https://doi.org/10.2200/S00433ED1V01Y201207DTM031
https://doi.org/10.2200/S00433ED1V01Y201207DTM031
https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://doi.org/10.1007/978-3-662-46641-4_27
https://doi.org/10.1007/978-3-319-07443-6_43
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
https://nodejs.org/en/
https://doi.org/10.1108/OIR-10-2014-0257
http://www.emeraldinsight.com/doi/10.1108/OIR-10-2014-0257


W3C (2014). RDF. url: https://www.w3.org/RDF/ (visited on 10/03/2018).
— (2015). XHTML+RDFa 1.1 - Third Edition. url: https://www.w3.org/

TR/xhtml-rdfa/#xhtml-rdfa-1.1-definition (visited on 10/04/2018).
Wimalasuriya, D. C. (2010). ‘Ontology-based information extraction: An

introduction and a survey of current approaches’. In: Journal of In-
formation Science 36.3, pp. 306–323. issn: 0165-5515. doi: 10.1177/
0165551509360123. url: http://jis.sagepub.com/content/early/
2010/03/19/0165551509360123.abstract.

Zapilko, Benjamin, Brigitte Mathiak (2011). ‘Performing statistical methods
on linked data’. In: International Conference on Dublin Core and Metadata
Applications, pp. 116–125. issn: 19391358.

63

https://www.w3.org/RDF/
https://www.w3.org/TR/xhtml-rdfa/#xhtml-rdfa-1.1-definition
https://www.w3.org/TR/xhtml-rdfa/#xhtml-rdfa-1.1-definition
https://doi.org/10.1177/0165551509360123
https://doi.org/10.1177/0165551509360123
http://jis.sagepub.com/content/early/2010/03/19/0165551509360123.abstract
http://jis.sagepub.com/content/early/2010/03/19/0165551509360123.abstract


Appendix A

Subject Filter and Table Search

{
” s u b j e c t s ” : [

” thank you f o r your steam purchase ” ,
” thank you f o r your in−game steam steam

purchase ” ,
” thank you f o r your purchase ” ,
” thank you f o r your order ” ,
” k v i t t e r i n g f o r be ta l i ngen din ” ,
”amazon . com order o f ” ,
” order o f ” ,
” order con f i rmat ion ” ,
” o r d r e b e k r e f t e l s e ” ,
”your s u b s c r i p t i o n ” ,
”your order from ” ,
”your ebook ” ,
” r e c e i p t ” ,
” b e s t i l l i n g s k v i t t e r i n g e n din ” ,
” b e s t i l l i n g s b e k r e f t e l s e ” ,
” be ta l i ngen din t i l ” ,
” b e t a l i n g t i l ” ,
” k v i t t e r i n g p̊a ordre ” ,
” k v i t t e r i n g f o r be ta l i ngen din t i l ”

]
}

64



{
” pat t e rn s ” : [
{
” phrase ” : [{” co rpora t i on ” : ”amazon ” ,” t ext ” :” d e l i v e r y

in fo rmat ion ” ,” l ength ” : true , ”jump ” :1} ,
{” co rpo ra t i on ” : ”amazon ” ,” t ext ” :” p laced on ” ,” l ength ” :

f a l s e , ”jump ” : 1 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ” komplett ” ,” t ex t ” :” p r i s ” ,”

l ength ” : true , ”jump ” :2} ,
{” co rpo ra t i on ” : ” komplett ” ,” t ext ” :” b e s k r i v e l s e ” ,” l ength

” : true , ”jump ” : 4 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ” paypal ” ,” t ext ” :” b e s k r i v e l s e

” ,” l ength ” : true , ”jump ” : 4 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ”steam ” ,” tex t ” :” l i b r a r y page

o f the base game” ,” l ength ” : f a l s e , ” jump ” :1} ,
{” co rpo ra t i on ” : ”steam ” ,” t ext ” :” f r e e steam a p p l i c a t i o n

” ,” l ength ” : f a l s e , ” jump ” :2} ,
{” co rpo ra t i on ” : ”steam ” ,” t ext ” :” sub to ta l : ” , ” l ength ” :

true , ” jump”:−2} ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ” s p o t i f y ” ,” t ex t ” :” items

bought : ” , ” l ength ” : true , ” jump ” : 1 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ”x−plane . org ” ,” t ext ” :”

download ” ,” l ength ” : true , ” jump ” : 2 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ” the pragmatic bookstore ” ,”

t ext ” :” item ” ,” l ength ” : true , ” jump ” : 4 } ]

65



} ,
{
” phrase ” : [{” co rpora t i on ” : ” tv2 ” ,” t ext ” :” g r a t u l e r e r med

d i t t kjc8p av ” ,” l ength ” : f a l s e , ” jump ” : 1 } ]
} ,
{
” phrase ” : [{” co rpora t i on ” : ” goog l e play ” ,” t ext ” :” vare

” ,” l ength ” : true , ” jump ” : 2 } ]
}
]
}

66



Appendix B

Regular Expression

/∗∗
∗ f i n d t o t a l co s t us ing regexp
∗
∗ @param { textNode} t ex t input from node
∗/
f indTota l : f unc t i on ( textNode )
{

var r e s2 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l ) ( ? ! t o t a l
b e f o r e tax ) (\\ b t o t a l \\b) .\n

. ( [ 0 −9 ]{1 ,9} . [ 0 −9 ]{0 ,2} ) ” , textNode ) ;
var r e s3 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l ) ( ? ! t o t a l

b e f o r e tax ) (\\ b t o t a l \\b) .∗ [ 0 −9 ]” , textNode ) ;
var r e s4 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l ) ( ? ! t o t a l

b e f o r e tax ) (\\ b t o t a l \\b) .∗\n .∗ [ 0 −9 ]” , textNode )
;

var r e s5 = u t i l s . searchRegexp (” ( b e t a l t ) .∗ [ 0 −9 ]” ,
textNode ) ;

var r e s6 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l ) ( ? ! t o t a l
b e f o r e tax ) (\\ b t o t a l t \\b) .∗\n .∗ [ 0 −9 ] .∗” ,

textNode ) ;
var r e s7 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l ) ( ? ! t o t a l

b e f o r e tax ) (\\bsum\\b) .∗\n .∗ [ 0 −9 ] .∗” , textNode )
;

i f ( typeo f r e s2 !== ’ undef ined ’ && re s2 != n u l l ) {

67



t h i s . findAmount ( r e s2 ) ;
// conso l e . l og (” r e s2 : ”+re s2 ) ;

} e l s e i f ( typeo f r e s3 !== ’ undef ined ’ && re s3 !=
n u l l ) {

t h i s . findAmount ( r e s3 ) ;
// conso l e . l og (” r e s3 : ”+re s3 ) ;

} e l s e i f ( typeo f r e s4 !== ’ undef ined ’ && re s4 !=
n u l l ) {

t h i s . findAmount ( r e s4 ) ;
// conso l e . l og (” r e s4 : ”+re s4 ) ;

} e l s e i f ( typeo f r e s5 !== ’ undef ined ’ && re s5 !=
n u l l ) {

t h i s . findAmount ( r e s5 ) ;
// conso l e . l og (” r e s5 : ”+re s5 ) ;

} e l s e i f ( typeo f r e s6 !== ’ undef ined ’ && re s6 !=
n u l l ) {

t h i s . findAmount ( r e s6 ) ;
// conso l e . l og (” r e s6 : ”+re s6 ) ;

} e l s e i f ( typeo f r e s7 !== ’ undef ined ’ && re s7 !=
n u l l ) {

t h i s . findAmount ( r e s7 ) ;
}

} ,
/∗∗
∗ f i n d amount/number o f t o t a l
∗
∗ @param { r e s } from regexp
∗/
findAmount : f unc t i on ( r e s )
{

i f ( r e s != n u l l ) {
var r e sTota l = u t i l s . searchRegexp

(”[0−9]+ , [0−9]{1 ,3}| [0−9]+. [0−9]{1 ,3}” , r e s .
t oS t r i ng ( ) . tr im ( ) ) ;

i f ( r e sTota l != n u l l ) {
r e sTota l = re sTota l . t oS t r i ng ( ) ;
r e sTota l = re sTota l . r e p l a c e (” , ” , ” . ” ) ;
r e sTota l = re sTota l . r e p l a c e (/\ s+/g , ’ ’ ) ;

68



var t o t a l = parseF loat ( r e sTota l ) ;
r e c e i p t . t o t a l = t o t a l ;

}
var currency = u t i l s . searchRegexp (” ( kr | nok | usd |

eur | \ $ ) ” , r e s . t oS t r i ng ( ) ) [ 0 ] . t oS t r i ng ( ) ;
i f ( currency == n u l l | | currency . l ength == 0) {

f o r ( var i = 0 ; i < r e s . l ength ; i++) {
i f ( r e s [ i ] . i n c l u d e s (” $ ”) | | r e s [ i ] .

i n c l u d e s (” usd ”) ) {
r e c e i p t . currency = ”usd ” ;

} e l s e i f ( r e s [ i ] . i n c l u d e s (” kr ”) ) {
r e c e i p t . currency = ” kr ” ;

} e l s e i f ( r e s [ i ] . i n c l u d e s (” nok ”) ) {
r e c e i p t . currency = ”nok ” ;

} e l s e i f ( r e s [ i ] . i n c l u d e s (” eur ”) ) {
r e c e i p t . currency = ” eur ” ;

} e l s e i f ( r e s [ i ] . i n c l u d e s (”\ pounds ”) ) {
r e c e i p t . currency = ”gbp ” ;

}
}

}
r e c e i p t . currency = currency ;

}
} ,

/∗∗
∗ f i n d currency used
∗
∗ @param { textNode} t ex t input
∗/
f indCurrency : func t i on ( t ext )
{

i f ( t ex t . i n c l u d e s (” $ ”) | | t ex t . i n c l u d e s (” usd ”) ) {
r e c e i p t . currency = ”usd ” ;

} e l s e i f ( t ex t . i n c l u d e s (”\pound ”) ) {
r e c e i p t . currency = ”gbp ” ;

} e l s e i f ( t ex t . i n c l u d e s (” kr ”) ) {
r e c e i p t . currency = ” kr ” ;

69



} e l s e i f ( t ex t . i n c l u d e s (” nok ”) ) {
r e c e i p t . currency = ”nok ” ;

} e l s e i f ( t ex t . i n c l u d e s (” eur ”) ) {
r e c e i p t . currency = ” eur ” ;

}
} ,

/∗∗
∗ f i n d value added tax us ing regexp
∗
∗ @param { textNode} t ex t input from node
∗/
findTax : func t i on ( textNode )
{

var r e s = u t i l s . searchRegexp (” ( vat ) ( ? !\\ ) ) .∗ [ 0 −9 ] . (
kr ) | ( usd ) | ( eur ) ” , textNode ) ;

var r e s2 = u t i l s . searchRegexp (”(\\ btax c o l l e c t e d \\b
) .∗\n .∗ [ 0 −9 ] .∗” , textNode ) ;

var r e s3 = u t i l s . searchRegexp ( ” ( ? ! t o t a l | o t a l t ) . ∗ (
mva) .∗\n .∗ [ 0 −9 ] .∗” , textNode ) ;

var r e s4 = u t i l s . searchRegexp ( ” ( ? ! sub to ta l | t o t a l )
.∗ (\\ btax\\b) .∗\n .∗ [ 0 −9 ] .∗” , textNode ) ;

var r e s5 = u t i l s . searchRegexp ( ” ( ? ! t o t a l ) (\\bmva\\b)
.∗ [ 0 −9 ] .∗” , textNode ) ;

i f ( r e s != n u l l ) {
t h i s . findTaxAmount ( r e s ) ;

} e l s e i f ( r e s2 != n u l l ) {
t h i s . findTaxAmount ( r e s2 ) ;
// conso l e . l og ( r e s2 ) ;

} e l s e i f ( r e s3 != n u l l && ! r e s3 . input . i n c l u d e s (”
t o t a l t i n k l . ” ) && ! r e s3 . input . i n c l u d e s (” id ”) ) {

t h i s . findTaxAmount ( r e s3 ) ;
// conso l e . l og ( r e s3 ) ;

} e l s e i f ( r e s4 != n u l l ) {
t h i s . findTaxAmount ( r e s4 ) ;
// conso l e . l og ( r e s4 ) ;

} e l s e i f ( r e s5 != n u l l && ! r e s5 . input . i n c l u d e s (”

70



t o t a l t i n k l . ” ) && ! r e s5 . input . i n c l u d e s (” id ”) ) {
t h i s . findTaxAmount ( r e s5 ) ;
// conso l e . l og ( r e s5 ) ;

}
} ,

/∗∗
∗ f i n d tax value
∗
∗ @param { r e s } r e s u l t from searchRegexp
∗/
findTaxAmount : f unc t i on ( r e s )
{

var taxAmount = u t i l s . searchRegexp
(”[0−9]+ , [0−9]{1 ,3}| [0−9]+. [0−9]{1 ,3} $ ” , r e s .
t oS t r i ng ( ) ) ;

i f ( taxAmount == n u l l ) {
taxAmount = u t i l s . searchRegexp

(”[0−9]+ , [0−9]{1 ,3}| [0−9]+. [0−9]{1 ,3}” , r e s .
t oS t r i ng ( ) ) ;

}
i f ( taxAmount != n u l l ) {
taxAmount = taxAmount . t oS t r i ng ( ) ;
taxAmount = taxAmount . r e p l a c e (” , ” , ” . ” ) ;
var tax = parseF loat ( taxAmount ) ;
r e c e i p t . tax = tax ;

}
} ,

/∗∗
∗ f i n d payment method us ing regexp
∗
∗ @param { textNode} t ex t input from node
∗/
findPayment : f unc t i on ( textNode )
{

var r e s = u t i l s . searchRegexp (”(\\ bv i sa \\b) | (\\
bpaypal\\b) | (\\ bmastercard \\b) ” , textNode ) ;

71



i f ( r e s != n u l l ) {
var payTit l e = u t i l s . searchRegexp ( ” ( ? : v i s a |

paypal | mastercard | cash | kontant ) ” , r e s .
t oS t r i ng ( ) ) ;

i f ( payTit l e != n u l l ) {
payTit l e = payTit l e . t oS t r i ng ( ) ;
r e c e i p t . paymentMethod = payTit l e ;

}
}

} ,

/∗∗
∗ f i n d i n v o i c e id us ing regexp
∗
∗ @param { textNode} t ex t input from node
∗/
f ind Invo i c e ID : func t i on ( textNode )
{

var r e s = u t i l s . searchRegexp (” ( i n v o i c e .∗ [ 0 −9 ] |
o rd r e id .∗ [ 0 −9 ] | ordrenr .∗ [ 0 −9 ] ) ” , textNode ) ;

i f ( r e s != n u l l ) {
var i n v o i c e I d = u t i l s . searchRegexp

(”( [0 −9 ]{1 ,40} ) ” , r e s . t oS t r i ng ( ) ) ;
i f ( i n v o i c e I d != n u l l ) {

i n v o i c e I d = par s e In t ( i n v o i c e I d [ 0 ] . t oS t r i ng
( ) ) ;

r e c e i p t . invo i ce ID = i n v o i c e I d ;
}

}
}

72



Appendix C

Organizations JSON-LD

[
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”Amazon” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ” Store ” ] ,
” emai l ” : [ ” mai l to : auto−shipping@amazon . co . uk ” , ”

mai l to : auto−shipping@amazon . co . uk ” , ” mai l to :
d i g i t a l−no−reply@amazon . com” , ” mai l to : auto−
confirm@amazon . co . uk ” ] ,

”name ” : ”Amazon”
} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ” GooglePlay ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

CreativeWork ” , ”BookStore ” , ” MovieRentalStore ” , ”
So f twareAppl i cat ion ” , ” Mobi l eAppl i cat ion ” ] ,

” emai l ” : ” mai l to : goog lep lay−noreply@google . com” ,
”name ” : ”Google Play”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”Komplett ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

73



E l e c t r o n i c s S t o r e ” , ”ComputerStore ” ] ,
” emai l ” : ” mai l to : komplett@komplett . no ” ,
”name ” : ”Komplett”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”Meny” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

GroceryStore ” ] ,
” emai l ” : ” mai l to : kundeservice@meny . no ” ,
”name ” : ”Meny”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ” O r e i l l y ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”BookStore

” ] ,
” emai l ” : ” mai l to : o r d e r @ o r e i l l y . com” ,
”name ” : ”O’ R e i l l y Media”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”PayPal ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

PaymentMethod ” ] ,
” emai l ” : [ ” mai l to : serv ice@paypal . com” , ” mai l to :

s e r v i c e @ i n t l . paypal . com ” ] ,
”name ” : ”Paypal”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ” Spo t i f y ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ” MusicStore

” ] ,
” emai l ” : ” mai l to : no−r ep ly@spot i f y . com” ,
”name ” : ” Spo t i f y ”

} ,
{

74



”@context ” : ” http :// schema . org ” ,
”@id ” : ” Ste inberg ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

CreativeWork ” , ” MusicRecording ” , ”
So f twareAppl i cat ion ” ] ,

” emai l ” : ” mai l to : s te inberg@asknet . de ” ,
”name ” : ” Ste inberg o n l i n e shop”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”TV2” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

Te lev i s ionChanne l ” ] ,
” emai l ” : ” mai l to : do . not . reply@tv2 . no ” ,
”name ” : ”TV 2”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”Valve ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”

ComputerStore ” , ”VideoGame ” ] ,
” emai l ” : ” mai l to : noreply@steampowered . com” ,
”name ” : ”Valve Corporat ion ”

} ,
{

”@context ” : ” http :// schema . org ” ,
”@id ” : ”X−Plane . org ” ,
”@type ” : [ ” Organizat ion ” , ” Corporat ion ” , ”VideoGame

” ] ,
” emai l ” : ” mai l to : sales@x−plane . org ” ,
”name ” : ”X−Plane . org ”

}
]

75



Appendix D

Classification Google
knowledge graph

76



Item name Schema type Assessment
speedrunners schema:VideoGame correct type
agile principles,
patterns, and practices
in c#

schema:Book correct type

rise of nations:
extended edition

schema:VideoGame correct type

quiplash schema:VideoGame correct type
playerunknown’s
battlegrounds

schema:VideoGame correct type

fallout 4 schema:VideoGame correct type
xplane 11 schema:VideoGame correct type
blackwake schema:VideoGame correct type
cities: skylines schema:VideoGame correct type
rocket league schema:VideoGame correct type
squad schema:VideoGame correct type
learning web design: a
beginner’s guide to
html, css, javascript,
and web graphics

schema:Book correct type

ultimate chicken horse schema:VideoGame correct type
african politics in
comparative
perspective

schema:VideoGame correct type

sonic and all-stars
racing transformed

schema:VideoGame correct type

human-computer
interaction

schema:Place incorrect type,
expected schema:Book

owlboy schema:VideoGame correct type
microsoft flight
simulator x: steam
edition

schema:VideoGame correct type

viscera cleanup detail schema:VideoGame correct type
day of defeat: source schema:VideoGame correct type
portal 2 schema:VideoGame correct type
sid meier’s civilization
v

schema:VideoGame correct type

ark: survival evolved schema:VideoGame correct type

77



Appendix E

Metadata from products

Google t e s t t o o l f o r s t ruc tu r ed data :
https://search.google.com/structured-data/testing-tool

# Category : Clothes

∗ 2 products from XLL
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : name , co lo r , image , d e s c r i p t i o n
brand : {@type Thing , name}
o f f e r s : {@type Offer , pr iceCurrency , pr i c e , a v a i l a b i l i t y }

∗ 2 products from Jack & Jones
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : sku , image , name , d e s c r i p t i o n
brand : {@type Brand , logo , name}
o f f e r s : {@type Offer , p r i c e , pr iceCurrency , itemCondition ,

a v a i l a b i l i t y }

78

https://search.google.com/structured-data/testing-tool
https://xxl.no/nike-essential-hooded-running-jacket-lopejakke-herre/p/1140946_2_style
https://xxl.no/champion-elastic-cuff-pant-usx-new-navy/p/1089910_4_style
https://www.stylepit.no/jack-jones-svart-jcoshelby-knit-crew-325199-4
https://www.stylepit.no/adidas-originals-svart-sst-tp-332552-4


∗ 2 products from Adidas
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : name , image , d e s c r i p t i o n
brand : {@type Brand , name}
o f f e r s : {@type Offer , pr iceCurrency , pr i c e , u r l }

∗ 2 products from Ebay
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : @id , image , name
brand : {@type Brand , name}
o f f e r s : {@type Offer , @id , itemCondition , pr i c e , a v a i l a b i l i t y ,

pr iceCurrency , areaServed , availableAtOrFrom : {@type Place ,
name}}

∗ 2 products from Boohoo
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : @id , image , name
o f f e r s : {@type Offer , @id , ur l , sku , pr iceCurrency , pr i ce ,

a v a i l a b i l i t y }

79

https://www.adidas.no/campus-sko/CQ2048.html
https://www.adidas.no/supernova-storm-jakke/CF7038.html
https://www.ebay.com/itm/Lacoste-Men-Crocodile-Solid-V-Neck-Long-Sleeve-Sweater-Free-0-Shipping/271235745216?var=570169934777&_trkparms=%26rpp_cid%3D568ed0cae4b0ea4a1a6a1bde%26rpp_icid%3D568ec51ae4b0533df4702fcd&rpp_cat_id=568ec51ae4b002387e8d567c
https://www.ebay.com/itm/2pcs-Summer-Winter-Mens-Athletic-Sock-Soft-Cotton-Sport-Gym-Casual-Socks/201416063353?hash=item2ee5553979:m:mx4JXQQjAErX-iW01MLZ03Q
http://us.boohoo.com/over-the-head-towelling-hoodie/MZZ67871.html
http://us.boohoo.com/nadine-ruffle-tie-neck-floral-skater-dress/DZZ32558.html


# Category : Books

∗ 2 products from Akademika
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : image , name , gt in13 , d e s c r i p t i o n

Remarks : miss ing use o f ” o f f e r s ” with currency and p r i c e

∗ 2 products from Ark Bokhandel
Product u r l s :
product1
product2

Metadata :
@type : Book
addit iona lType : Product
p r op e r t i e s : @id , bookFormat , schemaVersion , ur l , isbn ,

thumbnailURL , name , d e s c r i p t i on , author : {@type : Person , name
}

Remarks : miss ing use o f ” o f f e r s ” with currency and p r i c e

∗ 2 products from Tandum
Product u r l s :
product1
product2

Metadata :
@type : Book
p r op e r t i e s : image , name , de s c r i p t i on , author : {@type Thing , u r l }
o f f e r s : {@type Offer , @id , pr i c e , pr iceCurrency }

80

https://www.akademika.no/python-in-easy-steps/mike-mcgrath/mcgrath-mike/9781840785968
https://www.akademika.no/forvaltningsrett/eckhoff-torstein/smith-eivind/9788215022994
https://www.ark.no/boker/Jules-Verne-En-verdensomseiling-under-havet-9788242133984
https://www.ark.no/boker/Frode-Overli-Pondus-16-16-hjerneceller-og-dansefot-9788242956262
https://www.tanum.no/_the-midnight-line-lee-child-9780593078174
https://www.tanum.no/_russlands-hemmelige-krig-mot-vesten-oystein-bogen-9788248921660


∗ 2 products from Ebay
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : @id , image , name , productID ,
aggregateRat ing : {@type AggregateRating , @id , rat ingValue ,

reviewCount}
o f f e r s : {@type Offer , @id , itemCondition , gt in13 , pr i ce ,

a v a i l a b i l i t y , pr iceCurrency , areaServed , availableAtOrFrom : {
@type Place , name}}

∗ 2 products from Apple iBooks
Products u r l s :
product1
product2

Metadata :
@type : Book
p r op e r t i e s : name , de s c r i p t i on , image , genre , dateCreated , author

: {@type Person , name}
o f f e r s : {@type Offer , name}
pub l i s h e r : {@type Organizat ion , name}
aggregateRat ing : {@type AggregateRating , rat ingValue ,

reviewCount}

Remarks : e r r o r type value reviewCount , expected i n t e g e r

81

https://www.ebay.com/itm/Harry-Potter-Complete-Book-Set-1-7-with-gift-Wand-Keychain/263452592079?epid=1334576659&hash=item3d56ff87cf:g:bxMAAOSw8W5aZZtP
https://www.ebay.com/itm/Dirk-Gentlys-Holistic-Detective-Agency/302449753237?epid=129209147&hash=item466b68fc95:g:87kAAOSwEWtZt4fo
https://itunes.apple.com/us/book/fire-and-fury/id1313387153?mt=11
https://itunes.apple.com/us/book/a-distant-mirror/id424428886?mt=11


# Category : E l e c t r on i c s

∗ 2 products from Komplett
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : ur l , name , de s c r i p t i on , mpn, sku , image , rat ingValue

, reviewCount
manufacturer : {@type Organizat ion , name}
o f f e r s : {@type Offer , a v a i l a b i l i t y , pr iceCurrency , p r i c e }

Remarks : warning miss ing aggregateRat ing with @type
AggregateRating

∗ 2 products from Power
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : name , image , ur l , gt in13 , productID
brand : {@type Thing , name}
aggregateRat ing : {@type AggregateRating , rat ingValue ,

reviewCount}
o f f e r s : {@type Offer , p r i c e , pr iceCurrency , a v a i l a b i l i t y }

∗ 2 products from Ebay
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : @id , image , name , mpn, model , g t in13
o f f e r s : {@type Offer , @id , itemCondition , pr i c e , a v a i l a b i l i t y ,

pr iceCurrency , areaServed , availableAtOrFrom : {@type Place ,
name}}

brand : {@type Brand , name}

82

https://www.komplett.no/product/918245/mobil/mobiltelefon/mobiltelefon/samsung-galaxy-s8-64gb-graa
https://www.komplett.no/product/918707/hvitevarer/vaskemaskin/vaskemaskin/aeg-l6fbn842g-vaskemaskin?offerId=KOMPLETT-310-918707
https://www.power.no/hjem-og-fritid/belysning/lamper-og-stemningsbelysning/philips-hue-beyond-pendellampe/p-249745/
https://www.power.no/kjoekkenutstyr/kaffe-og-te/kaffetrakter/moccamaster-kbgc863aopb-sort/p-239500/
https://www.ebay.com/itm/SAMSUNG-UE40MU6400U-40-Smart-4K-Ultra-HD-HDR-LED-TV-Freeview-HD-Freesat-HD/352270376061?epid=239086456&hash=item5204f35c7d:g:RIQAAOSwMqBaYj3Y
https://www.ebay.com/itm/DJI-Mavic-Air-Fly-More-Combo-w-3-Axis-Gimbal-4K-Camera-Arctic-White/253388036687?hash=item3aff1a9a4f:g:sbcAAOSwIHlaaXZ7


∗ 2 products from Al iExpress
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : @id , name
aggregateRat ing : {@type AggregateRating , rat ingValue ,

reviewCount}
o f f e r s : {@type Offer , pr iceCurrency , p r i c e }

∗ 2 products from K j e l l & Company
Product u r l s :
product1
product2

Metadata :
@type : Product
p r op e r t i e s : name , de s c r i p t i on , sku , image , u r l
brand : {@type Brand , name}
o f f e r s : {@type Offer , p r i c e , pr iceCurrency , itemCondition ,

a v a i l a b i l i t y , s e l l e r : {@type Organizat ion , name}}

83

https://www.aliexpress.com/item/JBL-E55BT-Quincy-Edition-Headphone-Detachable-Remote-Microphone-Bluetooth-Headphones-Wireless-Headset-Over-Ear-Microphone/32835417544.html
https://www.aliexpress.com/item/Original-Huawei-Fit-Honor-S1-Smart-Watch-5ATM-SWIM-CONTINUOUS-HEART-RATE-LONG-BATTERY-LIFE-TO/32810835511.html
https://www.kjell.com/no/produkter/lyd-og-bilde/mediespillere/google-chromecast-ultra-p97250
https://www.kjell.com/no/produkter/elektro-og-verktoy/arduino/arduino-pakke/arduino-startpakke-p87875


# Category : Games

∗ 2 products from Steam
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : image , name
aggregateRat ing : {@type AggregateRating , d e s c r i p t i on ,

reviewCount , rat ingValue , bestRating , worstRating }
o f f e r s : {@type Offer , pr iceCurrency , p r i c e }

∗ 2 products from Nintendo
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : @id , logo , d e s c r i p t i on , re l easeDate , sameAs , u r l
o f f e r : {@type Offer , pr iceCurrency , a v a i l a b i l i t y }
i sRelatedTo : {@type Thing , name}
brand : {@type Thing , name}
manufacturer : {@type Organizat ion , name}

Remarks : schema p r i c e s p e c i f i c a t i o n i s miss ing in Of f e r

∗ 2 products from Gamezone
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : @id , name , productID , d e s c r i p t i o n
o f f e r s : {@type Offer , @id , pr i c e , pr iceCurrency }
Remarks : i n v a l i d format o f p r i c e

∗ 2 products from Ark Bokhandel
Product u r l s :
product1
product2
Metadata :
@type : Book
addit iona lType : Product
p r op e r t i e s : @id , schemaVersion , ur l , isbn , thumbnailUrl , name ,

d e s c r i p t i o n
aggregateRat ing : {@type : AggregateRating , rat ingValue ,

ratingCount , reviewCount}
Remarks : no o f f e r type added with p r i c e and currency

84

http://store.steampowered.com/app/289070/Sid_Meiers_Civilization_VI/
http://store.steampowered.com/app/252950/Rocket_League/
https://www.nintendo.com/games/detail/xenoblade-chronicles-2-switch
https://www.nintendo.com/games/detail/mario-kart-8-deluxe-switch
https://gamezone.no/avdelinger/brettspill-nettbutikk/familie/klassikere/jenga-klosser-brettspill-originalen-25023-p0000006285
https://gamezone.no/avdelinger/brettspill-nettbutikk/familie/klassikere/maxi-yatzy-og-andre-terningspill-norsk-115861-p0000044201
https://www.ark.no/boker/unknown-Escape-Room-8714649007116?gclid=CjwKCAiAtorUBRBnEiwAfcp_Y5fMt6Nxa8oSOx5MQgzR6tJV-WiZiqrAAXchIBRyf_QxNF2k66e_DhoCQSQQAvD_BwE
https://www.ark.no/boker/unknown-Monopol-5023117404955


∗ 2 products from Outland
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : image , name , sku , d e s c r i p t i o n
o f f e r s : {@type Offer , p r i c e , pr iceCurrency }

# Category : Grocery

∗ 2 products from Walmart
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : name , sku , gt in13 , image , d e s c r i p t i o n
aggregateRat ing : {@type AggregateRating , rat ingValue , bestRating

, reviewCount}
brand : {@type Thing , name}
o f f e r s : {@type Offer , pr iceCurrency , pr i c e , a v a i l a b i l i t y ,

itemCondition , ava i lab leDel iveryMethod , availableAtOrFrom : {
@type Place , name , branchCode}}

∗ 2 products from Whole Foods
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : name , de s c r i p t i on , image

Remarks : miss ing use o f ” o f f e r s ” with currency and p r i c e

∗ 2 products from Meny
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : name
add i t i ona lPrope r ty : {@type PropertyValue , name}
o f f e r s : {@type Offer , pr iceCurrency , p r i c e }

85

https://www.outland.no/dungeons-dragons-5th-edition-dungeons-dragons-5th-edition-starter-set-
https://www.outland.no/puslespill-satellite-map-2000-
https://www.walmart.com/ip/Chef-Boyardee-Beefaroni-15-Oz/10308533?findingMethod=wpa&tgtp=0&cmp=11583&relRank=7&tax=976759&pt=cp&adgrp=12267&bt=1&plmt=1145x345_B-C-OG_TI_5-20_HL-MID&wpa_qs=o7Ut3FtXEkhdfT9eHjIPIpsvoH0W59IR2CGa3NfuNgf1_bZyVBbZUPSN4uHeapwM&bkt=&pgid=976759&itemId=10308533&relUUID=d7554a81-4d82-4603-ab10-2416578a9fc7&adUid=0e01fbec-abe9-4bea-96e7-751b993e831b&adiuuid=94dfecf2-83a5-4562-a0b5-7e4c3d88fa87&adpgm=wpa&pltfm=desktop
https://www.walmart.com/ip/Reese-s-Peanut-Butter-Cups-Snack-Size-19-5-Oz/10449921?findingMethod=wpa&tgtp=2&cmp=12263&relRank=4&tax=__tax__&pt=hp&adgrp=13032&bt=1&plmt=1145x345_B-C-OG_TI_1-20_HL-MID-HP-SIGNED-OUT&wpa_qs=IAa3Dyse_gwFRQhoagzzyapFUAVFUjcjfkUSsa-6qOL1_bZyVBbZUPSN4uHeapwM&bkt=homepage_category_976759_1096070_1224976-1085666_133225_1058964&pgid=0&itemId=10449921&relUUID=fb7032de-a720-4247-80b8-fdfdcae7fcc5&adUid=4fd51c8b-46f1-4e36-a660-af44d08c7193&adiuuid=b9fc7039-efdb-4091-abfd-30cfdd9beb1f&adpgm=wpa&pltfm=desktop
https://www.wholefoodsmarket.com/products/wild-kratts%C2%AE-organic-zip-zap-apple-juice
https://www.wholefoodsmarket.com/products/garlic-chicken
https://meny.no/varer/meieri-egg/melk/lettmelk/lettmelk-1-2-7038010001642
https://meny.no/varer/frukt-gront/frukt/bananer/bananer-2000401100000


∗ 2 products from Kolon ia l
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : name , image
brand : {@type Thing , name}
o f f e r s : {@type Offer , p r i c e , pr iceCurrency , a v a i l a b i l i t y ,

i temCondit ion }
add i t i ona lPrope r ty : {@type PropertyValue , name , va lue }

∗ 2 products from Mat Smart
Product u r l s :
product1
product2
Metadata :
@type : Product
p r op e r t i e s : image , name

Remarks : miss ing use o f ” o f f e r s ” with currency and p r i c e

86

https://kolonial.no/produkter/4423-godehav-kamskjell-2030-400g/
https://meny.no/varer/frukt-gront/frukt/bananer/bananer-2000401100000
http://no.matsmart.com/eggpasta-fettuccine-250g
https://meny.no/varer/frukt-gront/frukt/bananer/bananer-2000401100000

	Abstract
	Acknowledgements
	Introduction
	Research Questions

	Theory
	E-commerce
	RDF and Semantic Web
	Regular expressions
	Schema.org and GoodRelations
	Google Knowledge Graph
	Data visualization

	Research Method
	Design Science Research
	Development Methodology
	Evaluation
	Statistical Methods
	Metrics


	Development
	Tools
	Artifact
	Planning
	Data Mining: Parsing Emails
	Regular Expressions

	Data Modelling: Schema.org
	Classification
	Data Visualization: Sgvizler2

	Analysis
	Data mining and semantic modelling
	Product classification
	Product metadata

	Discussion
	Data extraction technique
	Adoption of Schema.org vocabulary
	Classification of products

	Conclusion
	Research questions
	Future work

	Appendix Subject Filter and Table Search
	Appendix Regular Expression
	Appendix Organizations JSON-LD
	Appendix Classification Google knowledge graph
	Appendix Metadata from products

