
Ethernet-Based Control System and Data Readout
for a Proton Computed Tomography Prototype

A thesis by

Karl Emil Sandvik Bohne

for the degree of

Master of Science in Physics

Department of Physics and Technology

University of Bergen

June 2018

Abstract

At the University of Bergen (UiB), work is underway to develop a proton based
computed tomography prototype. Proton CT (pCT) is an alternative to photon-
based imaging that shows great promise as a technology for use in proton treatment
planning, while also delivering lower doses of harmful radiation than its X-ray based
counterpart. Particle treatment planning is currently achieved by performing X-ray-
based CT scans, of which the results are used to estimate a particle dose through
a translation process. This introduces systemic errors due to the fundamentally
different manners in which photons and particles interact with matter. pCT used
for dosage planning purposes could eliminate the need for this conversion, allowing
for treatment more precise and effective than what is currently possible.

The work needed to realize the complete pCT is extensive, and this thesis is pri-
marily concerned with the control system for the multiple proton CT readout units
(PRU) that will be used in the machine. This system will facilitate communication
between a control room and the readout units, allowing an operator to determine
the status of various system parameters such as power consumption, voltages and
temperatures, program PRU peripherals according to a desired configuration, per-
form system initialization, trigger resets, etc. Such a system may also perform other
tasks, such as automatic system-monitoring, or could provide assistance in the data-
readout process.

This thesis discusses the requirements of such a system and how it might be realized,
details its design, and describes in addition the full implementation of the required
PRU field programmable gate array (FPGA) firmware on the current development
board. Software for a soft-core processor running a lightweight OS and instanti-
ated in the FPGA fabric is developed and tested successfully; providing serial- and
Ethernet communication links via which a board can be controlled and monitored
remotely, using a simple platform-independent API. Additionally, a DMA-based so-
lution for data-readout is designed, implemented, and verified to be working by
reading out actual detector data.

Other aspects of the system are also discussed, including ways of distributing a syn-
chronized clock and trigger, power-monitoring, and future development. A primer
on the workings of a proton CT in addition to particle-/photon matter interaction
fundamentals is provided.

iii

Acknowledgements

The work detailed in this thesis would not have been possible without the guidance
provided by my two advisors, professor Kjetil Ullaland and associate professor Johan
Alme. A special thanks goes to them, for providing me with invaluable advice
and feedback along the way. I also owe Ola Slettevoll Grøttvik a great deal for
introducing me to the project, answering my questions, for his feedback, and for
keeping me occupied throughout the past year. I am also grateful to the pCT group
for allowing me to contribute to the project.

Additional appreciation goes to the guys in room 312 for keeping the collective spirit
of the group high. Although the office at times more closely resembled an internet-
cafe/break-room hybrid than a place of study, these past two years would not have
been the same without them. I would also like to thank the fantastic group of
people with whom I first enrolled, five years ago, who has made this period not only
tolerable, but at times even enjoyable.

I thank my family for their continued encouragement, and last but not least, my
loving and supportive Julie, for being who she is, and for tolerating me these past
seven-or-so years.

v

Contents

Abstract iii

Acknowledgements v

Acronyms xv

Glossary xvii

1 Introduction 1
1.1 Project Motivation and Goals . 1
1.2 Thesis Structure . 2

2 Computed Tomography 5
2.1 Ionizing Radiation . 5
2.2 Interactions of Photons and Matter 6
2.3 Interactions of Particles and Matter 7
2.4 Particle Therapy and Proton CT Motivation 7

2.4.1 Proton CT . 8

3 The UiB pCT and the ALPIDE Pixel Sensor 11
3.1 The ALPIDE Pixel Sensor . 11

3.1.1 Basic Principles of Operation 12
3.1.2 Pixels . 12
3.1.3 Data Transmission Unit . 13
3.1.4 ALPIDE - Readout Unit Interface 13
3.1.5 Control Interface and Chip Addressing 14

3.2 The UiB pCT . 15
3.3 Existing pCT Systems . 15
3.4 Readout Electronics . 16

3.4.1 Current Implementation . 17

4 The pCT Control System 19
4.1 Features of a pCT Control System . 20

4.1.1 RU - Host Interface . 20
4.1.2 Board Initialization . 21
4.1.3 Provision of House-Keeping Data 23
4.1.4 ALPIDE Monitoring . 23

vii

viii CONTENTS

4.1.5 Additional Features and Data Readout 25
4.1.6 The AXI Master . 25

4.2 Clock- & Trigger Distribution . 26
4.3 The PRU Processor . 27

4.3.1 Operating Systems . 28
4.4 PRU Software Applications . 30
4.5 A Summary of the Previous Sections 31

5 Firmware 33
5.1 Requirements . 33
5.2 Implementation . 35

5.2.1 Ethernet Subsystem . 35
5.2.2 MicroBlaze Configuration . 37
5.2.3 UART . 37
5.2.4 Monitor Module . 37

5.3 Readout of Detector-Data . 38
5.3.1 Development-Stage Data Readout 38
5.3.2 Data-Readout in a Complete System 40
5.3.3 Other Considerations . 43

6 Control Message Format and Protocol 45
6.1 Requirements . 45
6.2 An Application-Level Protocol . 46

6.2.1 Packet Format . 46
6.2.2 Considerations for Unreliable Interfaces 47
6.2.3 COBS . 47
6.2.4 Packet Fields . 48
6.2.5 Message Replies . 50

6.3 Addressing ALPIDEs via a Peripheral Command 50
6.4 Hardware Offloading of the CRC- and COBS Calculations 51

7 Software 53
7.1 Requirements . 53
7.2 Overview . 53

7.2.1 Development Principles . 54
7.3 Software Structure . 54

7.3.1 Control interface . 55
7.3.2 Data-Readout . 56
7.3.3 Monitoring . 57

7.4 ALPIDE Control Module Driver . 58
7.5 Data-Exchange Between Threads . 58
7.6 Software Configuration . 59

7.6.1 LwIP and FreeRTOS . 59
7.7 Future development . 60

8 System Testing 63
8.1 Host-Side Software . 64

8.1.1 API . 65
8.2 Testing . 66

CONTENTS ix

8.2.1 Testing of Communication . 66
8.2.2 Test Bench for the Updated ALPIDE Data Module 67
8.2.3 Test of Data-Readout Solution 68
8.2.4 UDP Packet Loss . 70
8.2.5 TCP . 72
8.2.6 Testing of the Full Readout Chain 72
8.2.7 Testing of Self-Contained PRU Monitoring 74

9 Conclusion and Future Work 77
9.1 Performance Evaluation . 77
9.2 Design Evaluation . 78
9.3 Future Work . 79

9.3.1 Porting of the Python Software 79
9.3.2 Porting of the Embedded Software 79
9.3.3 Extension of the Readout-System 79
9.3.4 Implementation of Higher-Level Control Software 79

9.4 Conclusion . 80

A Coding Style 81

B Resource Usage 83
B.1 RAM . 83

C SPAD 85
C.1 Requests and Command Types . 86
C.2 Replies . 87
C.3 Examples . 87

D Python Framework 89

E Various 93
E.1 ALPIDE Mask-Application . 93
E.2 Documentation and Commenting . 95

F Repository Structure 97

Bibliography 99

List of Figures

2.1 2D radiography showing source, target and detector setup. 5
2.2 Showing the dose delivered by a beam of photons, modified- and native

protons as they pass through tissue. 6
2.3 Comparison of dosimetric planning with protons (top) to photons

(bottom) [5]. 7
2.4 Typical pCT layout, showing separate tracking planes and calorimeter

and the path of a proton. 8

3.1 Block diagram showing the main components of an ALPIDE chip [10]. 12
3.2 Showing how a voltage on the input to the analog section cause a

hit to be stored in the pixel buffer if it surpasses a threshold while a
strobe is applied [10]. 13

3.3 Showing the format of ALPIDE broadcasts and uni-/multicast write
operations. [10]. 14

3.4 Showing the format of an ALPIDE read operation [10]. 14
3.5 A model of the UiB pCT Digital Tracking Calorimeter (DTC), with

ALPIDE chips in a horizontal stave configuration shown in dark
blue [11]. 15

3.6 The PRU, showing the most central modules of the currently planned
design. 18

4.1 The pixel-matrix addressing scheme [10]. Writing 0xFFFF to the
address formed by the region selector field set to 0b1111 and the row
bit and both column bits set would for instance mask/clear all pixels,
depending on the pixel configuration register. 21

4.2 An external sense resistor, current-sense amplifier and ADC allows
for monitoring of chip currents and -voltages without occupying the
AXI control module. 24

4.3 Illustrating the low likelihood of non-overlapping strobe-windows. . . 26
4.4 MicroBlaze architecture, showing the optional features grayed out [19]. 27
4.5 Program flow in an RTOS-based system. 28

5.1 Simplified diagram showing modules that relate to the control system
and development-stage data readout, as implemented on the FPGA
on the VCU118 board. 34

5.2 The TCP/IP- / OSI stacks and overlap. 35

xi

xii LIST OF FIGURES

5.3 Blocks central to Ethernet-functionality, as implemented on the VCU118
FPGA. 36

5.4 Chips that are closer to center of a detector layer receive the majority
of the hits. 38

5.6 An example AXI-stream transaction. 40
5.7 Offload system showing data offload modules, buffering stages, arbiter

and UDP/TCP cores. 42

7.1 Central threads in the MicroBlaze application. 54
7.2 MicroBlaze application - UART-task flow-chart. The TCP task is

similar, but is not required to verify encoding or CRCs. 55
7.3 MicroBlaze application - Data-readout task flow-chart. 56
7.4 Illustrating the OPC UA information model. 61
7.5 A possible control system for the pCT. 62

8.1 Testing setup showing VCU118 board, FPGAMezzanine Card (FMC),
and ALPIDE carrier. 63

8.2 Core host-side software elements. Blocks are implemented as objects
with the exception of the Utilities-block. 64

8.3 Print-out of the serial output as the PRU is assigned an address via
DHCP, and as it receives a connection. 65

8.4 UDP throughput as a function of PDU size on a 100 Mb link. 69
8.5 UDP throughput as a function of PDU size on a 1000 Mb link with

Jumbo frames enabled. 70
8.6 Showing loss over UDP with datagrams sized at 8972 B. 71
8.7 A DMA transfer of ALPIDE data, as recorded by the internal logic

analyzer. 72
8.8 A print-out of an ALPIDE data-stream, formatted as PRU words by

the ALPIDE Data Module (ADM). 73
8.9 Showing a snippet of control-data read out while transfers are ongoing. 73
8.10 Showing a gap of eight cycles between assertion of tready on the DMA

receive-side. 74
8.11 Intermittent assertion of tready on the DMA engine. 74
8.12 Debug-interface print-out of the embedded software reporting ex-

ceeded thresholds. 75

E.1 The pixel-matrix addressing scheme [10]. 93
E.2 The pixel-matrix [10]. 94

F.1 The MicroBlaze subsystem as it was implemented on the VCU118
platform. 98

List of Tables

3.1 Illustrating some basic specifications of previously developed pCTs [13]. 16
3.2 ALPIDE readout-data format before processing on the PRU [10]. . . 16

5.1 Xilinx DMA v7.1 figures at 100 MHz [33]. 41
5.2 Control register . 43
5.3 FIFO depth and -threshold register 43
5.4 bytes-offloaded counter register, 32msb 43
5.5 bytes-offloaded counter register, 32lsb 43
5.6 FIFO-overflow counter register . 43

6.1 Application level protocol - Base packet format. 46
6.2 Application level protocol - Header and trailer, respectively. 46
6.3 Consistent overhead byte stuffing example. 47
6.4 A packet appended with a 16 bit CRC and byte-stuffed with COBS. . 48
6.5 Payload - format for register writes- and reads, respectively. 48
6.6 Payload - ALPIDE register writes and reads, respectively. 49
6.7 Payload - ALPIDE broadcast opcodes. 49
6.8 Application level protocol - Reply packet. 50

7.1 Showing the format of an MQTT packet. 60

8.1 Test results with the updated data module. 67
8.2 PRU Headers. 73

B.1 Resource usage of components included in the MicroBlaze subsystem 83

C.1 Application level protocol - CMDTYPes 86
C.2 Payload - format for register writes- and reads respectively, and values

of the WR/RD-field. 86
C.3 Payload - ALPIDE register writes, -reads, and opcodes, respectively. . 86
C.4 Payload - The special command type 87
C.5 Reply-data ACKs/NACKs . 87
C.6 Example write-request and response 87
C.7 Example read-request and response. 88
C.8 Example ALPIDE write-request and response, and contents of payload. 88
C.9 Example ALPIDE read-request and response. 88

xiii

Acronyms

ACM ALPIDE Control Module
ADC Analog to Digital Converter
ADM ALPIDE Data Module
ALICE A Large Ion Collider Experi-

ment
ASIC Application Specific Integrated

Circuit
AXI Advanced eXtensible Interface

BRAM Block RAM
BSP Board Support Package

CERN European Organization for Nu-
clear Research

CMS Compact Muon Solenoid
COBS Consistent Overhead Byte Stuff-

ing
CRC Cyclic Redundancy Check
CT Computed Tomography

DMA Direct Memory Access
DTC Digital Tracking Calorimeter
DTU Data Transmission Unit

FIFO First-in, First-out (queue type)
FMC FPGA Mezzanine Card
FPGA Field Programmable Gate Array

IB Inner Barrel
IP Internet Protocol / Intellectual prop-

erty (-core)
ISR Interrupt Service Routine
ITS Inner Tracking System

LVDS Low Voltage Differential Signal-
ing

LwIP Lightweight IP (software library)

MAC Media Access Control (-address)
MEB Multi Event Buffer
MQTT Message Queuing Telemetry

Transport
MTU Maximum Transmission Unit

NIC Network Interface Controller

OB Outer Barrel

pCT Proton CT
PDU Protocol Data Unit
PRU Proton CT Readout Unit

RISC Reduced Instruction Set Architec-
ture

SCADA Supervisory Control and Data
Acquisition

SCU System Control Unit
SDK Software Development Kit

TCP Transport Control Protocol

UART Universal Asynchronous Receive
Transmit

UDP User Datagram Protocol
UiB University of Bergen

xv

Glossary

8b10b encoding Encoding scheme that maps 8 bits of data into a 10 bit symbol
in order to provide DC-balance and facilitate clock-recovery.

Datagram In the context of UDP: The PDU of the UDP protocol.

Jumbo frame An Ethernet frame with more than 1500 bytes of payload, up to a
maximum of 9000.

Manchester encoding Encoding scheme where each bit is encoded as either a
high- followed by a low value, or vice versa.

SNMP Network management-/monitoring protocol for collecting information on
managed networked devices.

Struct In a C-context: an object-like data type with an arbitrary number of fields
of arbitrary type.

Super-loop Large infinite loop in software containing an application or subroutine.

TCP/IP A collection of protocols that together make up the Internet Protocol
Suite.

xvii

Chapter 1

Introduction

The use of particle therapy in clinical medicine is growing; in 2016 alone, more than
170000 patients were treated with particles, with the majority of these receiving
treatment using protons [1]. The dose a patient is to receive must be determined
beforehand, and this is currently calculated based on the results of conventional
X-ray CT scans. This introduces inaccuracies which reduce effectiveness, and can
lead to long-term health issues due to accidental radiation of healthy tissue causing
secondary cancers. With pCT, this translation process could be eliminated, leading
to more effective treatment while also reducing unnecessary exposure to radiation.

In 2016, the University of Bergen received funds to facilitate development of a pCT
prototype. The prototype will consist of several layers of CERN-developed pixel
detectors, originally designed for use in the ALICE experiment. These are sensitive
to impacting particles and photons, and will enable precise reconstruction of the
tracks and residual energies of individual protons, which are both required in order
to perform dose planning.

1.1 Project Motivation and Goals
Some work towards a pCT prototype has been completed: In 2016, the feasibility of
using a digital tracking calorimeter for both tracking and residual-energy measure-
ments of individual protons was verified, and in 2016 and -17, a block design for a
prototype was laid out, parts of the electronics for the readout-units designed, and
the detector-chips themselves selected and partly tested.

Several of these chips will interface to specially designed readout boards; the PRUs.
Each board will manage several pixel detectors, and contain data processing mod-
ules that handle the data these produce, firmware that allows this data to be read
out, and other auxillary modules. It is also likely to expand further as development
progresses. A system is required that allows for the configuration, monitoring and
control of these modules. Although considerable work remains before the pCT is
realized, this thesis primarily discusses the requirements- as well as the implemen-
tation of such a control- and monitoring system. One of the goals was to design a

1

2 1.2. THESIS STRUCTURE

system that was sufficiently general for it to be of use in similar projects in the fu-
ture, and that could easily be extended or built upon as the pCT project progresses.

Initial PRU development was done on a CERN-developed readout board, but has
since migrated to a new Xilinx FPGA platform. No control interface existed for
the new board, and neither did a method for readout of produced detector data.
A subsystem that could perform this task was also needed so that elements of the
design could be tested.

Finally, as the project is still in its relatively early stages, the details of the modules
that will be included in the system are not fully decided. Alterations to the existing
design that could streamline and simplify the development process could possibly
be made, and this was also explored.

1.2 Thesis Structure

Chapter 2 - Computed Tomography and Particle/Photon -
Matter Interactions
This chapter describes the workings of both conventional- and proton based CT.
How particles and photons interact with matter, how they deposit energy as they
do so and how this is used to form images is shown. Some of the promising aspects
of pCT are discussed.

Chapter 3 - UiB pCT and the ALPIDE Pixel Sensor
This chapter describes the pCT in development at UiB, including a description of the
pixel detectors used in the project, as well as the overall structure of the prototype,
and how it differs from existing pCTs.

Chapter 4 - A pCT Control System
This chapter explains the need for a system that can be used to control the various
components of the pCT. It defines the roles such a system is required to fill, any
additional tasks it might perform, how these might change as the project develops,
and outlines how such a system should be implemented.

Chapter 5 - Firmware
This chapter discusses the firmware necessary in order to provide the functionality
described in chapter 4. With the exception of a module that requires external system
components that are not yet available, this firmware was fully implemented as part
of the work performed during this thesis, and this process is detailed. In addition,
a DMA-based solution suitable for detector-data readout during the development
stage was developed, and this is also described. Additional aspects of this process
that will become relevant as the project evolves are discussed.

CHAPTER 1. INTRODUCTION 3

Chapter 6 - Development of an Application Level Protocol
This chapter develops a simple application-level protocol for transferring arbitrary
data between two parties, which can be used to provide access to memory mapped
modules on a device. It also defines optional additions to control the pixel detec-
tors as well as the master-module responsible for carrying out the control related
tasks. The former simplifies these operations while greatly reducing the overhead
this typically involves.

Chapter 7 - Software
An embedded processor was implemented in the FPGA fabric as part of the design
developed in chapter 5. Software for this CPU was written in order to provide com-
munication links to a host, using the protocol developed in chapter 6. The processor
also controls the DMA-readout process, and is capable of automatically monitoring
on-board modules. This software is described in this chapter, and possible future
development is outlined.

Chapter 8 - System Testing
This chapter details the testing performed of the developed system. The functional-
ity and reliability of the communication links and the embedded software in general
is verified, the modules present on the current system are tested, and so is the
readout solution developed in chapter 5. Finally, the full readout chain is tested.

Chapter 9 - Discussion and Conclusion
This chapter discusses the results of this thesis, evaluates design choices made, and
provides a discussion on future development of the pCT project.

Chapter 2

Computed Tomography

Conventional computed tomography (CT) is based on radiography. In 2D radiogra-
phy, high-energy X-rays are produced by a generator and passed through a target
to be imaged. Part of the radiation is absorbed in the target, while the remainder
passes through, impacting what is typically either a film or detector. The X-ray
beam is attenuated to varying degrees by the different materials that make up the
target, which is reflected by the image formed on the film or by the detector.

Target

X-rays

Source
Detector

/
Film

Figure 2.1: 2D radiography showing source, target and detector setup.

Computed tomography builds upon this principle by combining several such images
taken from different angles. This is typically done by moving the target along one
axis, around which the detector and source are simultaneously spun or vice-versa.
The end result, after processing, is a series of cross-sectional images which can be
processed further, forming a three-dimensional image of the volume. The technology
is in wide use, and in 2007 in the US alone, more than 60 million such scans were
performed [2]. In addition to diagnostic imaging, CT as already mentioned sees
broad application as a technology to aid in radiation- or particle therapy treatment
planning.

2.1 Ionizing Radiation
A criticism of the widespread use of CT for imaging purposes has been its adverse
health effects due to the ionizing effects of X-rays [2]. This use has been linked to

5

6 2.2. INTERACTIONS OF PHOTONS AND MATTER

irradiated patients experiencing a higher rate of cancer development than those not
exposed, and younger patients seeing a further increased risk [3] [4]. These effects
stem from the ionizing radiation produced by a CT, which in general is any form of
radiation sufficient in energy to liberate electrons from the nuclei they orbit. This
can occur both when the electrons are impacted by other subatomic particles, or
through their interactions with photons. The effect of this when it occurs within
tissue is cellular degradation through damage done to DNA and other cell structures;
it is thus an undesired side-effect of imaging, but forms the basis of particle-/photon
therapy.

Figure 2.2: Showing the dose delivered by a beam of photons, modified- and native
protons as they pass through tissue.

2.2 Interactions of Photons and Matter

As photons enter a physical medium, they interact with it via three central methods;
they are absorbed by it through the photoelectric effect, scattered via Compton- and
Rayleigh scattering, or cause pair production to occur.

Of these, primarily the first two are relevant in relation to CT as the latter typically
occurs at energies higher than those used for imaging. In the photoelectric effect,
a passing photon with sufficient energy1 ejects orbiting electrons from their nuclei.
Compton-scattering describes inelastic collisions between incoming photons and or-
biting electrons2, where some of the photon energy is transferred to the electron
(which are in this case not ejected). The photons then scatter away at some angle.

The effects cause a beam of photons to deposit its energy almost linearly as it passes
through a medium, and the affected photons are effectively removed from the beam.

1As governed by Ek = hf −φ, with φ being the work function, representing the binding energy
of the electron and therefore the lowest energy a photon that ejects the electron may have.

2With the photon post-collision possessing energy equal to E′γ = Eγ
1+(Eγ/mec2)(1−cos(θ))

CHAPTER 2. COMPUTED TOMOGRAPHY 7

2.3 Interactions of Particles and Matter
Protons deliver their energy to surrounding matter via several mechanisms; through
their interactions with electrons via the Coulomb force or atomic nuclei, Bremsstrahlung,
or nuclear reactions. Of these, their interactions with electrons cause the majority
of their energy loss. Below is the Bethe-formula, describing the loss of energy as
charged particles pass through a medium:

−dE

dx
= 4π
mec2 · nz

2

β2 ·
(
e2

4πε0

)2

·
(

ln
(

2mec
2β2

I · (1 − β2)

)
− β2

)
, β = v

c

From this it can be seen that the energy loss of the particles increases as 1
v2 . This

attribute gives rise to the characteristic Bragg-peak of protons as shown in figure 2.2,
displaying the Bragg-curve of two proton-beams.

2.4 Particle Therapy and Proton CT Motivation
The phenomenon of the Bragg peak is exploited in particle therapy to deliver ionizing
radiation to a localized area. Typically the target is a tumor, which the radiation
is intended to damage by ionizing the cells of which it consists.

The focused Bragg peak of particles can thus be used to deliver doses that are more
precise than their photon counterparts. This is seen in figure 2.3, showing dosimetric
planning with protons (top) and photons (bottom). Image A shows the expected
dose deposition using a single lateral beam while image C shows the result if two
opposing sources are used. The two bottom images show treatment with X-rays at
different intensities.

Figure 2.3: Comparison of dosimetric planning with protons (top) to photons (bot-
tom) [5].

8 2.4. PARTICLE THERAPY AND PROTON CT MOTIVATION

Typically, a proton beam used for this purpose consists of protons at varying en-
ergies. This causes their Bragg-peaks to appear at different depths in the tissue,
allowing an entire tumor to be irradiated. This is the cause of the appearance of
the spread-out-bragg-peak (SOBP) for the modified proton beam seen in figure 2.2.

2.4.1 Proton CT
A central difference that separates conventional CT from proton-based CT stems
from the interactions described in the previous sections. Photons either pass through
the target completely, or are absorbed, whereas particles collide on their way through.
This causes them to scatter and exit the target at an angle different to the one at
which they entered, and with their kinetic energies reduced. For proton imaging,
tracking planes are therefore also required so that the proton tracks can be recorded,
and these are typically placed behind as well as in front of the target. From these
measurements, the most-likely-path (MLP) of the particles are estimated, while the
residual energies are calculated by a separate calorimeter.

Target

Tracking planes
Calorimeter

Tracking planes

X
X X X

Proton

Figure 2.4: Typical pCT layout, showing separate tracking planes and calorimeter
and the path of a proton.

Whereas particle therapy requires the protons to stop in the area of the tumor,
Proton CT requires the protons to pass through so that their bragg peak appears
in the residual-energy detector. pCT thus require beam energies in excess of that
used for therapeutic purposes.

It was mentioned that a calculated particle dose is based on a translation process.
This involves observing the attenuation of X-rays (represented by Hounsfield Units,
or HU) as it is passes through tissue, and converting this to proton relative stopping
power, or RSP. This introduces range inaccuracies on the order of 2-3 % [6]. These
inaccuracies must be accounted for, and this is typically done by making the treat-
ment robust so that the focused Bragg peak is not fully utilized.

A pCT as shown above eliminates the errors introduced by the HU - RSP conversion
by providing a direct link between imaging and therapy, while minimizing damage
to healthy tissue due to the Bragg peak and hence the majority of the deposited
energy appearing external to the target to be imaged. Energy deposition is low
with pCT; a head scan performed by a pCT showed only 1.39 mGy delivered [7],

CHAPTER 2. COMPUTED TOMOGRAPHY 9

while a head scan performed with the conventional type was in one case found to
be approximately 57 mGy [8].

Chapter 3

The UiB pCT and the ALPIDE Pixel
Sensor

Accurate reconstructions of proton-trajectories as they pass through a medium in
addition to measurements of their residual energies are needed when using a pCT
for dosage planning purposes. The prototype under development at UiB will achieve
this by layering square arrangements of CERN-developed monolithic pixel sensors
that are sensitive to incidental photons and particles which exceed a set energy-
threshold. This chip is described in some detail in this chapter1, as is the general
design of the UiB pCT as it currently stands.

The ALPIDEs used in the UiB pCT will serve both tracking- and energy deposi-
tion measurement purposes. In this respect the system will differ from many other
designs, which typically use separate instruments to fill the two roles. However, it
is important to note that the ALPIDE itself is not a calorimeter, and that energy
deposition is calculated by observing the number of layers that are penetrated by a
proton.

3.1 The ALPIDE Pixel Sensor
The ALPIDE is a particle detector originally designed at CERN for use in the ALICE
experiment as part of the upgrade of the Inner Tracking System (ITS) [9]. It is
capable of detecting particles and photons via a 512 × 1024 array of sensitive pixels,
where each pixel consists of a sensing diode where a voltage appears as incidental
high-energy photons and particles ionize its surrounding area. In addition, the chip
contains an amplification-, shaping-, and discriminator stage as well as a digital
section. This pixel-matrix is mounted on an ASIC that facilitates data-transfer,
chip-control, and power-distribution.

1The given descriptions are largely based on the ALPIDE Operations Manual [10].

11

12 3.1. THE ALPIDE PIXEL SENSOR

3.1.1 Basic Principles of Operation
Figure 3.1 shows an ALPIDE block diagram. It displays the pixel array as separated
into regions sixteen double-columns wide, where each white square in a double col-
umn contains a pixel. The vertical bars splitting the double columns contain priority
encoders that control the order in which pixel data is read out. As hits are registered
they are first buffered in RAM, and afterwards passed to the data transmission unit
(DTU) (shown in gray), where they are framed, 8b10b-encoded, and transmitted on
a high-speed serial link at a configurable speed.

The green blocks containing control-related functionality as well as the DTU show
two sets of inputs. Which of these are used depend on the ALPIDE configuration.

16 double columns

32 readout regions

Matrix

Region Readout (1)

128x24b DPRAM

RR (2) RR (3) RR (32)

Chip Data Formatting

Module Data Management

Readout
Sequencing

Control Bus
Logic

Configuration
Registers

Pixels Config8b DACs

11b ADC

Differential
Control Port
(40 Mbps)

Single
Ended
Control Port

Bandgap +
Temp Sens Parallel Data Port

(4×80 Mbps)

Serial Data Transmission

PLL Serializer

Serial Out Port
(1200 Mbps /
400 Mbps)

24b×40MHz

24b×40MHz

8b/10b

30b×40MHz

32:1 DATA MUX

Triggers

Figure 3.1: Block diagram showing the main components of an ALPIDE chip [10].

3.1.2 Pixels
Each pixel in the array contains a sensing diode placed at the input to an analog stage
which discriminates on the voltage at this diode2. A bias voltage can be adjusted
to increase or decrease the discrimination threshold, and voltages that exceed it
cause the active-low output to be applied to the digital section. If the input to this
section is low while a strobe signal is high, it is stored in the multi event buffer

2For testing purposes, a signal can also be induced by charging a test-capacitor at this input,
while a digital pulse can be applied to the digital section to directly set the pixel state register.
Both can be used to force a "hit".

CHAPTER 3. THE UIB PCT AND THE ALPIDE PIXEL SENSOR 13

(MEB) and can be read out as a "hit". The generation of a strobe signal follows
from the reception of a trigger, which, depending on chip configuration can either
cause strobes to be generated continuously afterwards (continuous mode), or only
once (triggered mode). The strobe-window duration is configurable, and can be set
between 25 ns to 1638.4 µs. Up to three hits may be stored in the MEB; if a window
is asserted that will place a hit into a second (in the triggered mode) or third (in
the continuous mode) buffer-slot, the chip produces a BUSY-signal, causing further
triggers to be ignored until the MEB is below this threshold.

Input stage

Cin

230 aF

OUT_APIX_IN

THR

Pixel Analog Front-End

OUT_D

STROBE
Multi Event Buffer

3x

State

VPULSE

SUB

Collection
diode

t

PIX_IN
OUT_A

5-10µs

OUT_A

STROBEt

VV

ΔV=Q/C

tr>100 μs

tf≈10 ns ~2μs peaking time

threshold

t

Reset

Hit
Storage
Latch

Figure 3.2: Showing how a voltage on the input to the analog section cause a hit to
be stored in the pixel buffer if it surpasses a threshold while a strobe is applied [10].

3.1.3 Data Transmission Unit

The DTU provides a fast serial link for readout of pixel data. The ALPIDE can
be used in two different configurations: Outer Barrel (OB)- and Inner Barrel (IB)
mode, but is only used in the latter in the UiB pCT. In this case, each chip transmits
8b10b-encoded data via low voltage differential signaling (LVDS) at a max rate of
1.2 Gb/s. Without decoding, this corresponds to a 960 Mb/s data rate. Data rates
of 600 Mb/s and 400 Mb/s are also possible in this mode.

3.1.4 ALPIDE - Readout Unit Interface

In the IB-configuration, nine ALPIDEs are mounted together on a stave. In this
arrangement, the pixel detectors share a global differential 40.08 MHz clock which is
multi-dropped to the chips. A differential control line (slow control) is also shared
amongst the ALPIDEs that provides access to the 16 bit address-space of a chip,
where control-commands are addressed either to a single chip via a chip ID system,
or to an entire stave via multicast. Readout-data is sent off-chip via differential links
unique to each ALPIDE at one of the three possible speeds.

14 3.1. THE ALPIDE PIXEL SENSOR

3.1.5 Control Interface and Chip Addressing
One of the inputs on the ALPIDE is the seven-bit chip ID. Chips in the IB configura-
tion shall have the three most significant bits of this input set to 0b000 to designate
them as such, while the four least significant bits assign a unique identifier, which
is then used when addressing it via slow-control.

Protocol
Transactions via slow-control are by default manchester encoded to facilitate AC-
coupling, which can be toggled by writing to an ALPIDE register. Data sent via
the differential control line consists of 10 bit wide characters; beginning and ending
respectively with a low start- and stop-bit, and having a byte of payload between the
two. Several operations consisting of one or more characters are supported, which
are identified by an initial opcode. These operations are shown in figures 3.3 and
3.4. A multicast write is performed on all chips on a stave.

IDLE

 MASTER DRIVER ON

IDLE

BROADCAST COMMAND

BROADCAST OPCODE

CHIP IDWRITE OPCODE REG ADDR [7:0] REG ADDR [15:8] DATA [7:0] DATA [15:8]

G
A

P

G
A

P

G
A

P

G
A

P

G
A

P

IDLEIDLE

UNICAST WRITE

MULTICAST IDWRITE OPCODE REG ADDR [7:0] REG ADDR [15:8] DATA [7:0] DATA [15:8] IDLE

G
A

P

G
A

P

G
A

P

G
A

P

G
A

P

MASTER DRIVER ON

IDLE

MULTICAST WRITE

TRIGGER IDLE

 MASTER DRIVER ON

IDLE

TRIGGER COMMAND

Fast Trigger Decoding

Figure 3.3: Showing the format of ALPIDE broadcasts and uni-/multicast write
operations. [10].

CHIP IDREAD OPCODE REG ADDR [7:0] REG ADDR [15:8] DATA [7:0] DATA [15:8]CHIP ID

BUS TURNAROUND

 MASTER DRIVER ON

IDLE IDLE

G
A

P

G
A

P

G
A

P

G
A

P

G
A

P

BUS TURNAROUND

IDLE IDLE IDLE

SLAVE DRIVER ON MASTER DRIVER ON

IDLE

UNICAST READ

Figure 3.4: Showing the format of an ALPIDE read operation [10].

The bus-turnaround phase shown in figure 3.4 requires the master to stop driving
the bus for fifty clock cycle in order to allow the chip to respond to the received
request.

CHAPTER 3. THE UIB PCT AND THE ALPIDE PIXEL SENSOR 15

3.2 The UiB pCT
The UiB pCT will utilize the ALPIDEs both for tracking- and energy measurements,
and only in their IB configuration as this allows for the highest data rate and for the
chips to mounted in the stave configuration. Several staves can then be mounted in
parallel, forming a square arrangement in what is referred to as a layer.

A number of detector- and aluminum absorber layers that decelerate the protons
will be sandwiched together and fixed in a support-structure that combined will
make up the DTC; the detector structure enabling tracking- and energy deposition
measurements of the protons.

Figure 3.5: A model of the UiB pCT DTC, with ALPIDE chips in a horizontal stave
configuration shown in dark blue [11].

The tracking layers will not be external to the DTC, but will instead be realized by
excluding the absorbing layers between the two foremost detector layers. These will
then perform the tracking, while the remaining layers act as the calorimeter. The
implementation of the rear tracking planes is not yet decided, but these will likely
also be ALPIDE-based. The light-blue bars on the red plate seen at the top of the
structure facilitates cooling of the DTC.

3.3 Existing pCT Systems
Several prototype designs have been developed in the recent years due to the in-
creasing use of particle therapy, with the majority of these being of the type with
separate tracking instruments and calorimeters. One example is a head scanner us-
ing 200 MeV protons developed at the Loma Linda University Medical Center [12].

16 3.4. READOUT ELECTRONICS

The machine is capable of measuring more than 1 million protons per second, en-
abling a scan to be performed in 7 minutes, making it one of the fastest currently
available pCTs. A phantom3 is rotated between two silicon-strip tracking stages,
and residual energy is measured via a final scintillator stage. Table 3.1 lists some
additional systems and their basic specifications.

Table 3.1: Illustrating some basic specifications of previously developed pCTs [13].

Group Position sensitive
detector technoloy

Residual energy
detector technology

Proton rate
(Hz)

LLU/UCSC/NIU x-y SiSDs Csl calorimeters 15K
LLU/UCSC/NIU x-y SiSDs Plastic scintillator hybrid telescope 2M

PRIMA II x-y SiSDs YAG: Ce calorimeters 1M
INFN x-y Sci-Fi x-y Sci-Fi 1M

NIU/FNAL x-y Sci-Fi Plastic scintillator telescope 2M

Compared with existing systems, the very high readout speeds that are possible with
the ALPIDEs will represent one of the prime advantages of the UiB prototype. This
has the effect of greatly reducing the time needed to perform a full scan, making the
UiB design very efficient. In addition, the fine granularity of the pixel arrays should
provide high spatial resolution.

3.4 Readout Electronics
Readout-data produced by the ALPIDEs, as well as their slow-control signals, will
interface to electronics located on the pCT Readout Unit (PRU), of which there will
be several. Each board will contain a Xilinx FPGA that centrally will be used to
process detector-data as it is streamed to the unit in the form shown in table 3.2.

Table 3.2: ALPIDE readout-data format before processing on the PRU [10].

Data Word Length (bits) Value (binary)
IDLE 8 1111_1111

CHIP HEADER 16 1010<chip_id[3:0]<BUNCH_COUNTER_FOR_FRAME[10:3]>
CHIP TRAILER 8 1011<readout_flags[3:0]>

CHIP EMPTY FRAME 16 1110<chip_id[3:0]><BUNCH_COUNTER_FOR_FRAME[10:3]>
REGION HEADER 8 110<region_id[4:0]>

DATA SHORT 16 01<encoder_id[3:0]><addr[9:0]>
DATA LONG 24 00<encoder_id[3:0]><addr[9:0]>_0_<hit_map[6:0]>
BUSY ON 8 1111_0001
BUSY OFF 8 1111_0000

Each ALPIDE will connect to its own ALPIDE data module, which handles a large
part of this process. It performs 8b10b-decoding, filters out the IDLE-words pro-
duced by a chip when no data is ready for readout, packets data according to a
custom format (PRU words), and monitors the busy-signal produced by a chip if it
is unable to process additional hits. Several words will be buffered in block RAM
(BRAM) FIFOs and afterwards forwarded to a data-readout stage where the data
is streamed off-board; likely over Ethernet.

Communication between the ALPIDEs and PRUs as well as chip trigger-delivery
3An object used to evaluate and tune the performance of medical imaging devices.

CHAPTER 3. THE UIB PCT AND THE ALPIDE PIXEL SENSOR 17

will be facilitated by the CERN-developed4 ALPIDE Control Module (ACM) that
interfaces the shared stave control line and handles the distribution and timing of
the commands shown in figures 3.3 and 3.4. Operations on a chip are performed fol-
lowing a three-step process, where a chip-write is performed by writing the register-
address and value to two of the module’s registers, and triggering the execution of
the operation by writing the chip ID and write-opcode to a third. A read requires
only an address and the triggering write, with the value at the requested address
available in a further control module register. With a layer size of 108 detector-chips,
each PRU FPGA will require 12 of these blocks.

To control the PRU devices in general, and to provide a direct or indirect control
link with a host, a master control module is required. This will also be responsible
for the configuration of PRU modules on startup, automatic power- and tempera-
ture monitoring, and possibly other tasks. This module and its implementation is
discussed thoroughly in the following chapters. There will also be a block that inter-
faces to the external voltage regulators that supply the ALPIDEs, allowing control
of these and providing the host with monitoring data.

The ALPIDE trigger source will be a device external to the PRUs, and may also be
responsible for distributing a synchronized clock to the readout units. The imple-
mentation of this module is not yet decided, but possible alternatives are discussed
in chapter 4.

Ideally each unit will handle one ALPIDE layer although this will dictated based
on the amount of readout-data produced. Additionally, all modules on the PRU
FPGAs will be compliant with the Advanced eXtensible Interface (AXI) standard,
which simplifies connectivity as it is supported by all Xilinx IP, and also allows for
automatic generation of interconnects between modules, and for these to automat-
ically handle any clock-domain-crossings. A block diagram of the PRU FPGAs is
shown in figure 3.6.

3.4.1 Current Implementation
While the PRUs that will be installed in the complete pCT prototype will consist of
custom boards, current work is being done using a VCU118 development board on
its Xilinx Virtex Ultrascale+ VU9P FPGA. Any implementations that were made
as part of the work done in this thesis were made on this device. When work
was started, the design included a single ACM and ADM, and a connection to an
ALPIDE is provided via a custom FMC, interfacing to a FireFly-to-PCIe adapter,
which in turn connects to the ALPIDE carrier board.

4Since modified by Ola Slettevoll Grøttvik (ola.grottvik@uib.no) to be AXI-compliant, whereas
the original was a Wishbone-module.

18 3.4. READOUT ELECTRONICS

Ethernet

n modules

Ethernet

Offload-
module

S
t
a
v
e

AXI bus

AXI master /
control
module

ALPIDE
control-moduleALPIDE

control-moduleALPIDE
control-module

S
t
a
v
e

n staves

Power-module

UART / Ethernet
control-interfaces

Data
moduleData

module

S
t
a
v
e

Ethernet

Offload-
module

PRU
FPGA

AXI
stream

9n modules

9n

i2C/
SPI

Data-
module

(x9)

9n

9n

Ethernet

n modules

Ethernet

Offload-
module

S
t
a
v
e

AXI bus

AXI master /
control
module

ALPIDE
control-moduleALPIDE

control-moduleALPIDE
control-module

S
t
a
v
e

n staves

Power-module

UART / Ethernet
control-interfaces

Data
moduleData

module

S
t
a
v
e

Ethernet

Offload-
module

PRU
FPGA

AXI
stream

9n modules

9n

i2C/
SPI

Data-
module

(x9)

9n

9n

Ethernet

n modules

Ethernet

Offload-
module

S
t
a
v
e

AXI bus

AXI master /
control
module

ALPIDE
control-moduleALPIDE

control-moduleALPIDE
control-module

S
t
a
v
e

n staves

Power-module

UART / Ethernet
control-interfaces

Data
moduleData

module

S
t
a
v
e

Ethernet

Offload-
module

PRU
FPGA

AXI
stream

9n modules

9n

I2C
/

SPI

Data-
module

(x9)

9n

9n

Figure 3.6: The PRU, showing the most central modules of the currently planned
design.

Chapter 4

The pCT Control System

In the complete pCT, each PRU will contain a multiple of several of the modules
discussed in section 3.4, and a subsystem on the PRU that allows for complete
control and monitoring of these is required. This involves in part the design and
implementation of the AXI master control module located on the readout boards,
any additional firmware this requires, as well as host-side software that interfaces
to this module and allows for visualization and remote control. The master control
module can be either embedded within the FPGA, or be an external unit. In any
case, the system will be responsible for the following:

• Implementation of protocols for PRU AXI master - host (control room, testing
setup, etc) communication.

• Facilitation of communication between the AXI master and all modules on the
PRU.

• Initialization of the readout boards: on power-up, automatically configure
devices present.

• Provision of assistance related to procedures such as data-readout.

• Provision of house-keeping data for monitoring and logging purposes.

• Application of chip-specific configurations for the ALPIDEs. Possibly streamed
to the master-device or collected from on-board memory.

• Automatic monitoring of chip- and board currents and voltages.

The system may be required to fulfill additional roles, and a design must be flexible
enough to accommodate this. In addition, the PRUs will interface to the control
room either directly or through some other device, and making this interface simple
is therefore an additional consideration. This will reduce the need for specialized
hardware, and allow use of tried-and-tested protocols. This chapter further specifies
the requirements of such a system, considers several options for its design, and
proposes some alternatives.

19

20 4.1. FEATURES OF A PCT CONTROL SYSTEM

The realization of a complete control system lies outside the scope of this thesis, but
core elements are developed, implemented and tested, and are described in chapters
5, 6, 7, and 8. Future extensions and alterations are also discussed towards the
end of their respective chapters. During the design process, emphasis was placed
on developing a scalable-, self-sufficient-, and flexible system that could be used by
itself in the development- and testing phase, and further built upon for use with the
finished product.

4.1 Features of a pCT Control System

4.1.1 RU - Host Interface
For a host to communicate with the PRUs, data must be transmitted to the control-
unit on the readout-boards over a suitable interface such as Ethernet, USB, RS-
232 or others. RS-232 defines electrical signal characteristics such as voltage levels
and timing, as well as the properties of related mechanical connectors and the cir-
cuitry [14]. Signals are transmitted over a single wire, limiting transmission distance
and resulting in poor signal integrity. The high voltage swings limits performance,
and there is no concept of addressing. RS-422 is a similar standard, but has a lower
swing, operating between -6V and +6V, which improves signaling-rate. Differen-
tial signaling is used, which enhances noise immunity1. Still, the upper data-rate
of RS-422 is 10 Mb/s, and if, during the development stage, detector-data is to be
read out over the same link as the control- and monitoring data, then this will not
suffice. Again, there is no built-in concept of addressing, which would have to be
developed. RS-485 is in many ways similar to RS-422, but can be multidropped
to several devices. The 10 Mb/s bandwidth must however be shared amongst the
connected devices.

USB can provide much better throughput, but is unsuitable for transmission over
longer distances; although the standard does not explicitly define an upper limit
to cable length, it defines the electrical characteristics it must meet, which puts an
upper limit at around 1.2 m. PCIe is an additional option, which offers performance
up to 126 Gb/s if using third generation PCIe and 16x links. PCIe over cable is
possible, and mounting the board in a specialized enclosure is therefore not neces-
sary, although a PCIe card on the host side that interfaces with such a cable is.
This introduces some complexity and cost. For control, there is no need for such
performance, and sourcing and purchasing the cabling and interface card would be
problematic for development. Range is limited if copper cabling is used, but Samtec
for instance offers third generation PCIe over optical at ranges up to 300 m at 4x or
8x link-widths [15].

Ethernet is a family of protocols and standards that defines physical interconnects
and cabling, the discrete transmission of data in the form of Ethernet frames, ad-
dressing schemes, and error checking. On top of Ethernet the TCP/IP protocol
suite is often used, which handles aspects of addressing, lost frames (depending on

1Noise that is picked up by one wire will be picked up by the second to an almost equal degree.
As the "signal" is interpreted as the difference between the two, the noise is cancelled out.

CHAPTER 4. THE PCT CONTROL SYSTEM 21

transport protocol), routing, checksums and congestion handling. Generally, the
lower levels consist of pre-existing firmware/software solutions while the user imple-
ments or uses a specific application-layer protocol. Compared to the alternatives
listed above, Ethernet is more demanding in terms of implementation on the PRU
side, and real-time control and monitoring, if this is wanted, is generally not possi-
ble. However, interfacing Ethernet requires only twisted pair cable and a network
switch. Multiple applications may also transmit over a single Ethernet link through
the use of sockets, allowing in this case both control- and readout-data to be trans-
mitted through the same cable, during the early stages of the project.

For control, Ethernet is a suitable choice, providing speed, flexibility in terms of
use (control and data-readout) and expansion, ease of setup, low cost, and offering
existing communication protocols for all levels. A serial UART interface should also
be available in order to provide a simple debugging channel for each board.

Relaying control-data to individual readout units via a master PRU and other in-
direct host - board interfaces are also possible, but it can be argued that a direct
channel between each board and host provides both better flexibility as well as sim-
plicity of implementation; The master PRU would mandate the design of a separate
board, and separate interfaces between host - PRU and PRU - PRU would have to
be developed.

4.1.2 Board Initialization
The PRU modules must be configured on start-up, or on reception of one or more
commands instructing this to be performed. For an ALPIDE, initialization consists
of a register programming sequence and the application of a pixel-mask that is
applied in order to exclude noisy or otherwise defective pixels from readout. The
AXI-master is responsible for carrying out these procedures, and could possibly do
so by using chip-specific settings stored in on-board flash memory. However, local
storage of configurations will likely not be necessary, which can be argued by first
noting that for each ALPIDE there are only eighteen periphery control- and fifteen
DAC registers that must be set, as well as one ADC control register that must be
configured with chip-specific settings. Mask-application is a more comprehensive
task, and the number of operations required to apply these will vary based on
the number of defects in the chips. All 524288 pixels can in theory be masked
on an individual basis (see section E.1 for a brief overview of this process), but the
addressing scheme used to access the pixels is implemented in a manner that reduces
the number of necessary write-operations. This allows masking of even a significant
number of pixels in an efficient manner.

Configuration address bus

Region Selector Field < 4:0> 3’b100
Region
Broad-
cast

Not Used Not Used
Toggle

Bit

Pulse
<15:0>
Select

Row
<15:0>
Select

Column
<31:15>
Select

Column
<15:0>
Select

Bit < 15:11> Bit < 10:8> Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure 4.1: The pixel-matrix addressing scheme [10]. Writing 0xFFFF to the address
formed by the region selector field set to 0b1111 and the row bit and both column
bits set would for instance mask/clear all pixels, depending on the pixel configuration
register.

22 4.1. FEATURES OF A PCT CONTROL SYSTEM

In other words, the amount of data that must be written in order to configure a chip
is not excessive. Configurations may also change over time, and if data is stored on-
board, it would have to be updated on a per-board basis. It is likely that updating a
central repository will be easier to manage. Instead, ALPIDE-specific settings could
be kept in a database and applied from the host side. Ignoring any protocol-specific
overhead, the amount of data needed to configure each chip can be estimated:

The width of the ALPIDE address space as well as its registers is 16 bits. In addition,
a control value of 16 bits must also be written to the control module. The transaction
is performed on the 32 bit AXI bus however, and therefore 24 B must be written per
write-transaction. If a particularly bad detector requires, for instance, a third of
its pixels to be masked, the amount of data that would need to be provided to the
ACM would be approximately:

24B × 3 operations× Npixels/16
3 ≈ 0.78MB

30 % is in essence a non-functional detector, so this number is pessimistic. Addition-
ally, the ALPIDE addressing scheme allows for several rows, columns or regions to
be masked simultaneously, which might often be the case if pixels are malfunction-
ing. For instance, the ALPIDE chip that was used to test the systems developed in
this thesis has one entire inoperative column.

If configuration data is stored on-board, the overhead in the above operation does
not need to be stored. Masks could be represented as a group of 32 bit unsigned
integers, with each bit of an integer indicating whether or not to mask a pixel. Each
ALPIDE would then need 65.5 kB to store a complete mask, and an additional 136 B
(approximately) to store the remaining registers. A layer consisting of 108 ALPIDEs
would then require 7.09 Mb of data in total.

Board Configuration Times

Some estimations should be made regarding the time required to complete the pro-
cedures mentioned in section 4.1.2, as it could dictate whether configuration data
should be stored on-board or streamed to each unit.

The majority of the modules on the AXI bus require little configuration, possessing
only a few registers each. Likewise, setting the periphery control-, DAC- and the
chip-specific ADC registers on the ALPIDEs is not an extensive procedure. As such
it is the pixel masks that will require the largest amount of configuration data. An
estimate on the time required to perform this procedure can be found by first noting
that the ALPIDE write-operation equates to 1.8 µs/pixel2 if the module is operat-
ing on a 40 MHz clock. Masking the pixels of the hypothetical ALPIDE would then
complete in about 0.019 s, or 2.12 s for a layer of size 108, again without regards to
the master control module overhead.

If configuration data is streamed to each board by sending the AXI addresses and -
data to write to the ACMs, this equates to 72 bytes per group of 16 pixels, excluding

23writes×3operations×(((7+1)cycle)/write)/40MHz≈ 1.8µs. 7 cycles are needed to initiate
an AXI transaction, while 1 cycle is needed to transfer the data bits.

CHAPTER 4. THE PCT CONTROL SYSTEM 23

any protocol overhead, as stated. With 0.78 MB of data required in order to apply
a mask, a layer of size 108 would require 84.9 MB of data to be streamed to the
PRU in this case. On saturated 10 Mb, 100 Mb, or 1000 Mb links, this would take
67.2 s, 6.72 s, or 0.672 s, respectively, to transfer. These are all acceptable numbers,
and more effective ways of transferring this data is possible, as the majority in the
above estimations stem from overhead. In any event it is desirable to minimize time
spent on the configuration stage, although gigabit transfer rates if using a soft core
processor at a relatively low clock rate are unlikely.

4.1.3 Provision of House-Keeping Data
The ALPIDE is equipped with a 10-bit ADC, which after calibration provides values
of chip temperature as well as all its voltages and currents. For monitoring-purposes,
these must be read out, with the calibration procedure performed by either the
master control module or the host. The conversion between raw ADC register values
and corresponding units requires some floating point arithmetic, but the amount is
small enough3 that it can be performed by the on-board master control module,
even if this is a low-performance soft core CPU. The control-unit can either provide
these values automatically, or as a response to a request.

4.1.4 ALPIDE Monitoring
Monitoring the pixel detectors is a two-part process, involving the ALPIDE built-in
ADCs and their related registers, as well as the external regulators that provide the
analog- and digital supply voltages to the chips on a stave-basis. The ADC values
should be read at regular intervals by the AXI master (i.e without host/control-room
instruction), with the reasoning being that the system should not rely on manual
input in order to protect itself from damage. A scenario can be imagined where a
disconnect occurs and temperature increases beyond a safe threshold, for instance.

Secondly, the voltages and currents supplied by the regulators must be monitored,
which can be done either indirectly by reading the ALPIDE ADC registers, or by
having a separate power-monitoring module on the PRU perform the task. An
argument for the latter is that performing a full ADC-measurement is time con-
suming. With the ADC ramp speed setting set to its default value of 1 µs/step
this process takes 25 ms4. In CMOS transistors, and especially in those operating
in high-radiation environments, latchup can present an issue [16]. The effect oc-
curs when a low-impedance path is formed between the n-well-/p-well and substrate
of transistors, appearing due to charge deposition caused by single event upsets.
This causes conduction through the parasitic bipolar junction transistors present in
CMOS circuits, and these currents can be significant, possibly damaging the affected
part and in any case requiring a power-cycle to resolve.

The speed at which this occurs would require that if the master control module is to
monitor for latchup directly, it would have to take frequent readings of the ALPIDE

3One FLOP is required to perform each conversion, equating to 4536 FLOPS for a layer of size
108.

4With the fastest ramp speed setting, this is reduced to 15 ms.

24 4.1. FEATURES OF A PCT CONTROL SYSTEM

ADCs. Single-channel reads can be performed, and the time needed for the ADC
to complete a single-channel measurement is in this case approximately 1.1 ms at
the default ramp-speed setting. However, this would cause appreciable traffic on
the AXI bus, and requires an ADC control register setting different than the one
that allows for complete (all-channel) ADC measurement. In addition, although the
ALPIDE is not latchup-immune [17], it is not likely to occur at a high rate, and the
frequent polling might burden the master control module unnecessarily. To avoid
the direct polling but still allowing the master control module to be informed on
any events, the current can instead be sensed by an external ADC in combination
with a sense-resistor and current-sense amplifier, as shown in figure 4.2.

Rsense

Stave

ADC

FPGA

Monitor
module

CPU

Interrupt

Board
Voltage

regulator

VDD

GND

AXI

I2C / SPI

CSA
I2C /
SPI

Figure 4.2: An external sense resistor, current-sense amplifier and ADC allows for
monitoring of chip currents and -voltages without occupying the AXI control module.

The monitor module can either use the value provided by the ADC to instruct the
voltage regulator to perform the power cycle if it detects a value that exceeds a con-
figurable setting, or this can be done directly by the regulator as current limiting is a
common feature. If the monitoring module is made AXI4-Lite compliant, the ADC
measurements can be provided to the control module and hence a host by reading
one of its registers. If interfaced directly to the FPGA, I2C might be preferable to
SPI due to the smaller number of wires needed. In this case, for a layer consisting
of 12 staves, only two pins will be required for the I2C lines in order to interface
both ADCs (if these are also I2C-compatible) and regulators, although an external
I2C multiplexer might be required in order to resolve any addressing conflicts. If
the control module monitors latchup by polling registers of the ALPIDE ADCs,
connections to the regulators are still required in order to perform the power cycle.

CHAPTER 4. THE PCT CONTROL SYSTEM 25

The readout of the ALPIDE ADC registers will place some requirements on the
Ethernet bandwidth, but these are not great. High temporal resolution is not re-
quired, as real-time monitoring is provided by the on-board master control module
and possibly the monitor module as described in this section. In that case, up-
dates of these values on the host side does not need to occur at a particularly high
frequency, and a rate of twice per second is likely sufficient. This requires that a
start measurement opcode is first written to all ALPIDEs, which can be sent as a
broadcast. If it is again assumed that data is acquired by providing the ACMs with
addresses and data, readout of all 21 ADC-registers for a layer of 108 ALPIDEs will
require approximately 870 kb/s of data to be sent to the PRUs, and 73 kb/s to be
received by the host5.

4.1.5 Additional Features and Data Readout

During the development stage of the pCT project, it might be beneficial if the
control system could assist in the data acquisition process, primarily through data-
readout. This would involve collecting data from the ALPIDE data-modules and
transmitting it to a host via the Ethernet link. The viability and implementation of
such a solution and its applicability in later stages of the design is discussed further
in chapter 5.

4.1.6 The AXI Master

It has been assumed that the AXI master on the PRU will be a processor (soft- or
hard core), but implementing it in the FPGA fabric as a custom logic module is
also possible. There are, however, reasons for using a CPU. One of these is that
it facilitates the implementation of high-level communication protocols. TCP/IP
is usually implemented in software, and others such as Modbus TCP, OPC UA, or
Message Queuing Telemetry Transport (MQTT) are also available. TCP can be
implemented in firmware, but due to the complexity of the protocol it is expensive
in terms of resource use, and not many open source alternatives exist. A processor
also provides a higher degree of flexibility; if functionality is added, this is trivial
in software and done simply by adding more code. Appending parts to HDL state
machines usually requires more effort.

An additional aspect is the necessary performance: it can be argued that the per-
formance of the FPGA logic is not required, as running the communication stack,
reading ADC-values, performing initialization procedures, and writing to- and read-
ing from registers are not tasks that benefit greatly from parallelization. Finally,
there will be many paths through the control-system logic. Although difficult to
quantify, these types of operations are typically easier to implement as sequential
instructions on a processor.

5108chips×21registers×192b×2Hz and 108chips×21registers×32b×2Hz for the send/receive
cases, respectively.

26 4.2. CLOCK- & TRIGGER DISTRIBUTION

4.2 Clock- & Trigger Distribution
A central aspect of the PRU-design is clock and ALPIDE-trigger distribution. To
the ALPIDE control module, 40 MHz- and 160 MHz clocks are required. The AXI
master and support modules discussed in this chapter also require a clock. While
some skew between boards in the clocks supplied to firmware related to the control-
and monitoring system is tolerable, it should be kept to a minimum for the ALPIDE
control- and data module, and so should the inter-board skew in trigger arrival times.
As mentioned in section 3.1.2, triggers cause the generation of the ALPIDE strobe-
windows. Furthermore it is likely that the chips will operate in continuous mode,
meaning that strobes are automatically generated by the ALPIDEs upon reception
of the first trigger. Since data is tagged as belonging to a specific window, an event
tagged by two layers, but tagged by the second as belonging to the previous strobe-
window results in useless data as the events cannot be related. However, due to the
approximately 2 µs duration of the peaking time of the signal on the analog section
output, some skew will be tolerable; the strobe windows are wide (2 µs-1638.4 µs),
and the gaps between them small (a few nanoseconds). The long peak time of the
analog pulse and wide windows provide slack, in the sense that the probability of
skew between boards in the nanosecond-range causing an event to be detected by
one layer but not the other will be low.

strobe window 1

strobe window 2

non-overlap

Small ns non-overlap

Several μs-long window

Figure 4.3: Illustrating the low likelihood of non-overlapping strobe-windows.

Distributing the clocks and triggers is the role of the system control unit. As these
are the only roles of this module, its design is simplified. Signals can be transmitted
over either optical- or coaxial cable, as both provide good noise immunity. As the
SCU is only occupied with distributing the clocks and possibly triggers, there are
commercial solutions that can perform this task. Several vendors offer cards with
PCIe connectivity for programmability that can distribute a number of clocks6. If
the distributor is developed as a custom board, this can be done by providing a
single reference input clock which is then split using a clock divider. If the trigger
is generated by a second device, this can be synchronized to the distributed clock.

To avoid the unknown latency that follows if the trigger is received over the Ethernet
interface of the PRU, the signal must be received by a separate trigger-distributor
on the FPGA. Several aspects cause this uncertainty; for one it is impossible to
know where in the execution of a program the CPU will be on trigger-arrival, which
will effect context-switch time. Secondly, Ethernet is not deterministic and hence
triggers might arrive with a delay, and due to the possibility of packet-loss, they

6For instance these solutions offered by Pentek: https://www.pentek.com/iocentral/
IOCentral.cfm

https://www.pentek.com/iocentral/IOCentral.cfm
https://www.pentek.com/iocentral/IOCentral.cfm

CHAPTER 4. THE PCT CONTROL SYSTEM 27

might not arrive at all7. Excluding the CPU, the bus might be in use on one PRU
and idle on another, resulting in a delay. The local distributor module does not
need to be a bus-master as the ALPIDE control modules features an asynchronous
trigger-input in addition to the AXI-interface. During the very early development
phase where no separate trigger-input is available however, it must be possible to
transmit this signal via the Ethernet link.

Even if perfect synchronicity between the PRU CPUs could be assumed, unaccept-
able skew between trigger arrival time to the ACMs would occur if these are written
via the bus, due to the time needed to perform an AXI write transaction. A delay
of at least five cycles is introduced on each write operation, meaning that with a
100 MHz clock, a 70 ns second delay occurs between successive control modules (and
hence two staves) receiving a trigger. From the discussion above, this might be
tolerable if only a few staves are used. However, the delay between the first and last
stave in a 12-stave system would in this case be at least 840 ns.

4.3 The PRU Processor
Several soft-core processors that can be embedded in FPGA fabric exist, includ-
ing open-source- and vendor-independent alternatives. However, the PRUs will be
built using Xilinx devices, and as such it is beneficial to select the MicroBlaze. The
MicroBlaze is a 32 bit Reduced Instruction Set Architecture (RISC) soft-core pro-
cessor with native AXI support. It can be configured to a great degree, trading
performance for footprint8, and is compatible with several operating systems.

Data-sideInstruction-side

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

I-C
ach

e

D
-C

ach
e

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose
Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..

M15_AXIS

S15_AXIS

M_ACE_DCM_ACE_IC

M_AXI_DP

DLMB

Figure 4.4: MicroBlaze architecture, showing the optional features grayed out [19].

7Or they arrive delayed due to some reliability mechanism of the transport level protocol used.
8On a Virtex Ultrascale+ platform, minimum area- and frequency optimized configurations

consume respectively 556/6070 flip-flops and 242/5949 look-up-tables.

28 4.3. THE PRU PROCESSOR

The demands on the processor will vary through the stages of design; if in the
earlier stages it assists in the data readout process, it should be configured for
maximum performance so it does not become a bottleneck. If these procedures
are later delegated to other firmware on the PRUs, this is not required, and the
additional features can be disabled in the event that FPGA resources become scarce.

4.3.1 Operating Systems
There is an option to run an operating system on the MicroBlaze, and several
alternatives exist, either real- or soft real-time. An OS provides the capability of
multi-threading and real-time handling of events, but can also lead to reductions
in performance due to the overhead introduced by context switching, background
tasks and daemons. In addition, higher requirements are placed on board-resources,
and this should be weighed against the possible benefits.

In a system with no OS, a program is written as a single loop, and the flow is linear
with any context-switching achieved through the use of interrupts. As bare-metal
systems grow large, the time interval between successive executions of any one task
grows. An RTOS-based system can place hard upper bounds on these intervals by
spawning tasks to handle jobs; these can then be given a priority and set to perform
work at fixed frequencies. In relation to the pCT control system this can be used
to spawn a high-priority task that wakes to monitor selected PRU modules and
ALPIDEs. Section 4.1.4 discussed monitoring of ALPIDEs and real-time capability
could be helpful in this regard.

Time

Task1

Task2

Task3

Suspended
at t=0

OS tick

Task1 and Task2
w/ equal priorities
share available time

Task2 suspends

High-priority Task3 wakes,
preempting Task2

Figure 4.5: Program flow in an RTOS-based system.

Operating systems also facilitate event-driven programming; tasks that are idle and
would otherwise waste CPU time can be suspended. Alternatively, if several running

CHAPTER 4. THE PCT CONTROL SYSTEM 29

tasks are assigned the same priority, they may each be given an equal amount of
time. Different processes might also share access to common resources such as global
variables through semaphores and mutexes, and communicate data through queues.
Using an OS also simplifies expansion in the sense that if additional jobs are added
to the system, a new task may simply be spawned, whereas added functionality
might cause a task in a bare-metal system to be performed too infrequently.

Alternatives

One option is Linux. As an embedded operating system it sees broad use and
the functionality it provides is extensive. The OS provides built-in networking-
functionality, as well as a file-system, command line interface, and more. A further
benefit of Linux stems from its popularity, which means that pre-developed software
is easily available. However, the requirement that the embedded system is prefer-
ably not to use any external memory will be a challenge in this case. The VU9P
chip on the VCU118 board features approximately 9.5 MB of BRAM [18], and this
will not be sufficient by itself. In addition, the majority of this is to be used in
the buffer stages between the ADM and data-readout stage(s). Xilinx offers the
Petalinux tool-chain to aid in deployment of Linux distributions to Xilinx silicon.

Another alternative is FreeRTOS. It is a freely distributed, lightweight real-time
operating system maintained as an Amazon Web Services (AWS) project. The ker-
nel itself occupies between 6 kB-12 kB, whereas a Linux distribution may be several
megabytes. The OS functions primarily as a way to enable multitasking and facili-
tates inter-task communication, and as such introduces little overhead. It includes
an implementation of the TCP/IP stack, although this is not natively compatible
with Xilinx IPs. The Lightweight IP (LwIP)-library can however be used with the
OS, and features such as a CLI are available as optional add-ons. FreeRTOS is in
addition truly real-time whereas Linux is not. This may or may not be useful, for
instance depending on the power-monitoring scheme chosen, as described in sec-
tion 4.1.4.

The performance penalty resulting from using an OS stems in part from con-
text switching. With FreeRTOS, this represents the majority of the performance
overhead. On an ARM Cortex-M3 CPU, it was found that with stack overflow
protection-, trace features- and run-time stats turned off (as would be the case in a
release-build), a switch time of 84 cycles was found. This will wary somewhat from
CPU to CPU, but not by an extreme amount. A division instruction on the Mi-
croBlaze consumes by comparison 29 cycles [19]. There are also other alternatives
in this category such as VxWorks, QNX or RTEMS, but FreeRTOS is preferable
due to its simplicity and its widespread use, meaning that there is a broad range of
software available for it.

A further option is to not use any form of operating system, and run compiled
C/C++ code directly on the processor. Any tasks run must be either in a con-
tinuous super-loop or be based on interrupts. For scalability-reasons, this is not
considered a good alternative.

Of the three alternatives, FreeRTOS is a good option. One of the reasons for this

30 4.4. PRU SOFTWARE APPLICATIONS

is that the scheduler allows for flexibility in terms of expansion; in an interrupt-
based design, any additional functionality might mandate the restructuring of these
routines. Another advantage that the OS brings is in making the application event
driven; there is no need for a thread that is idle (for instance any thread that waits
on data to appear on an input) to consume resources. An OS in general allows such
threads to be suspended.

FreeRTOS is found to be a better alternative to Linux due to the complex feature set
of the latter offering few advantages, while at the same time the various background
threads and daemons could be detrimental to performance. A further advantage is
that FreeRTOS provides actual real-time capabilities whereas Linux does not, which
could be required for monitoring, where events needs to be handled quickly. This
could in the FreeRTOS case be related to a high-priority task that is guaranteed to
act within a set time period.

The additional memory required for a Linux distribution also represents a problem;
the PRU should if possible not require external memory as this requires a large
number I/O pins, and this could result in an issue as a large portion of the I/O is to
be used to interface the ALPIDEs. This ideally leaves only the block RAM available
as explained in the previous section.

4.4 PRU Software Applications

There are a few options for the type of application that would provide control of
the PRU FPGAs, and the needs will likely change somewhat as the pCT project
evolves. It is argued that especially during development, what is required is a flexible
system that allows primarily for access to the device’s address space, and thereby
the modules on the boards. This is due to the system in this period undergoing
frequent alterations, where modules are replaced or removed, addresses are altered,
and test procedures are written that usually need to access these directly.

To accomplish this, a web server could for instance be implemented and used to
display central parameters such as voltages and temperatures, running/not running,
or similar statistics [20]. A user could type in addresses that they wish to poll or
alter the value of, buttons could be added to run procedures, etc. This allows for
visualization and basic use of a board, but is not particularly general; functionality
would have to be hard-coded into the PRU CPU software. Additionally, HTTP
transmits requests as ASCII-strings, which is not bandwidth-efficient; particularly
on an embedded platform. Another option is to embed an MQTT client or OPC
server on the units. This may work very well at a later stage, and is discussed
further in chapter 7. These are however static structures that could complicate use
especially during the early development stage when frequent changes are made to
the design. In addition, it must be possible to control the processor via the UART
interface. Chapter 6 further discusses the choice of protocol.

CHAPTER 4. THE PCT CONTROL SYSTEM 31

4.5 A Summary of the Previous Sections
From the discussions in in this chapter, it is clear that a system able to perform
all required roles would be one where the PRUs feature soft-core microprocessors
that communicate with a host directly. A processor allows for an implementation of
the TCP/IP stack which provides a reliable control channel and support for many
higher-level applications, and would be suitable for development of procedures that
automatically configure PRU devices and perform monitoring. Device drivers can
be written to control the ALPIDEs through the ACM, as well as for all remaining
firmware on the PRUs. The processor can also implement routines that allow de-
tector data to be read out via the Ethernet link during development. Configuration
data can likely be streamed to the readout units instead of stored locally. The SCU
is reduced to a unit that only distributes clocks and possibly triggers, simplifying
design, and it was explained that some skew between boards will be tolerable.

Ethernet provides a simple PRU - host interface, which can consist only of a network
switch and twisted-pair cabling. It also provides flexibility in the number of boards,
as each PRU might simply be given a MAC address by which it can be identified.
Reliability is also provided if the protocol that is used to transfer data to the PRUs
is carried by TCP, as any data sent via TCP is guaranteed to reach its destination
except in cases of physical disconnects or broken links, through sequence numbers
and retransmissions. Ethernet generally does not permit real-time monitoring, but
this will not be necessary, as it can be performed by the PRU CPU and the mod-
ule(s) that monitor the voltage regulators.

An application-layer protocol that defines communication between a PRU and a
host which can be carried by TCP over Ethernet and via the serial interface is re-
quired. This must provide access to all PRU modules, and allow for CPU-specific
functionality to be performed. It was argued that what is required at the current
stage of the project is primarily a way to directly access the memory space of the
readout unit.

The following chapter details the requirements- and implementation of the PRU
firmware required to perform the tasks detailed in this chapter; including support
for data-readout. Chapter 6 describe the development of a simple protocol that
provides access to the PRU modules and ALPIDEs in addition to the processor,
and chapter 7 discusses the implementation of the embedded software that runs on
the MicroBlaze CPU.

Chapter 5

Firmware

The pCT control system, whether used in the development phase or for the complete
prototype, is dependant on PRU firmware in order to implement the functionality
described in chapter 4. Considerations that must be taken in this regard, as well as
the implementation of these elements on the VCU118 platform, is detailed in this
chapter. In chapter 4 it was also described how it would be beneficial if during the
development stage the control system could assist in data readout. To achieve this,
an extendable DMA-based solution was developed, and this is also described here.
Considerations that will become relevant as the project progresses are discussed
towards the end of the chapter. Chapter 7 describes the software on the embedded
processor that controls the firmware discussed in this chapter.

5.1 Requirements
The PRU firmware related to the pCT control system must provide the communi-
cation channels, the processor, memories, and any necessary support modules.

Although very high performance is not required of the Ethernet link, some demands
can be made based on the estimates made in section 4.1.2, where it was said that
streaming individual pixel masks to a layer of 108 hypothetical ALPIDEs where
each chip required 30 % of its pixels masked would be completed in about 6.72 s
or 67.2 s on saturated 100 Mb or 10 Mb links, respectively. Although both numbers
are tolerable and that this pixel number was explained to be unreasonably high, it
is preferable to minimize the time spent on configuration. When not in the con-
figuration phase, the required bandwidth will be low, as described in section 4.1.4.
For the early testing- and development phase, there is the additional consideration
stemming from the single RJ45-connector and Ethernet PHY on the VCU118 board.
This requires any Ethernet MAC used to be capable of gigabit-speeds as this port
will be shared between readout-data and control.

Additional demands are placed on the CPU when it is involved in the data read-
out process, as it implements the User Datagram Protocol (UDP)- and TCP/IP
protocols. During development the processor should therefore be optimized for per-

33

34 5.1. REQUIREMENTS

formance, whereas in a system where separate links carry control- and readout-data,
this will be a lesser concern.

n modules
AXI bus

MicroBlaze

ALPIDE
control-module

Data module
w/buffering

stage

VCU118
FPGA

UART

Ethernet subsystem

DMA

BRAM

Timer

To ALPIDE To ALPIDE

Ethernet
DMA

Figure 5.1: Simplified diagram showing modules that relate to the control system
and development-stage data readout, as implemented on the FPGA on the VCU118
board.

A further requirement is that the use of block RAM be should be minimized, and
external RAM preferably avoided. The BRAM is to be used for ALPIDE data
buffer-stages, while external RAM consumes a large amount of I/O which is required
for interfacing the chips. Although there is 5 GB of external DDR4 RAM on the
development board, the system is built with this in mind. The lightweight OS aids in
this regard, and during testing1, acceptable performance was achieved while keeping
the total memory usage below 1.2 MB.

The processor requires a small amount of block RAM in addition to an interrupt
controller. Furthermore, any use of an operating system requires a timer in order
to produce a system tick, and an AXI timer can fill this role. A debug module
should be enabled as well as exceptions as this catches many silent faults that would
otherwise go unnoticed. If the program and data are stored in external RAM, then
the processor should in addition be equipped with instruction- and data caches of
maximally allowable sizes. If however only block RAM is used, no caches are needed

1See chapter 8.

CHAPTER 5. FIRMWARE 35

since they provide no benefit in this case. No demands are placed on the serial UART
interface.

5.2 Implementation
Firmware capable of satisfying the requirements above was implemented on the
VCU118 platform, as part of the pre-existing design which consisted only of the
single ADM, ACM, and the external ALPIDE that these interface to. Xilinx IP
was used wherever possible as this simplifies compatibility with other components
already present as well as future versions of Xilinx software.

While the solution for data-readout will eventually need replacement due to the
amount of data produced by the full system as will be explained in section 5.3, the
remainder of the modules contained in figure 5.1 and detailed in this section will be
suitable for all stages of the design process.

5.2.1 Ethernet Subsystem
In order to handle reception and transmission of Ethernet frames, one or more mod-
ules that can handle the lower-two layers (physical and data-link) of the OSI-model
is needed. While the physical layer is handled by an off-chip Ethernet PHY, every-
thing above this layer must be realized by the FPGA. With regards to the control
system, the internet- (IP) and transport (UDP/TCP) layers will be implemented in
software running on the MicroBlaze, which leaves only parts of the Link-layer.

Internet
IP, ICMP, IGMP...

Link
Phy, RJ45, Ethernet,

Cat6...

Transport
UDP, TCP

Physical

Data-Link

Network

Transport

Application
Presentation

Session

TCP /IP OSI

Application

Figure 5.2: The TCP/IP- / OSI stacks and overlap.

Ethernet is common functionality on FPGAs, and Xilinx offers IP-cores that can fill
this role. The license-free AXI Ethernet Lite can not be used during development
as performance is limited at 100 Mb/s. The Tri-Mode Ethernet-MAC ("Tri" for
10/100/1000 Mb/s modes) however is an option. The MAC implements functionality
defined by IEEE 802.3 [28], which specifies the link-layer and by extension the
responsibilities of the MAC:

• Data encapsulation (transmit and receive)

36 5.2. IMPLEMENTATION

– Framing (frame boundary delimitation, frame synchronization)
– Addressing (handling of source and destination [MAC-] addresses)
– Error detection (detection of physical medium transmission errors)

• Media Access Management

– Medium allocation (collision avoidance)
– Contention resolution (collision handling)

This core is by itself (together with the PHY) sufficient for speeds at either 10 Mb/s
or 100 Mb/s. For 1 G and above, two additional layers are required: the Physical
Coding- and the Physical medium Attachment Sublayer. This functionality is de-
livered via another Xilinx IP-core, and together with the MAC these make up the
bulk of the 1G/2.5G Ethernet-Subsystem [29], which was implemented as part of
the design on the VCU118 platform.

Ethernet Subsystem

CPU
PCS/PMA

MAC
DMA

G
M
II

BUFFER

M
D
IO

MDIO

SGMII

Board

rx

tx

tx (AXI Stream MM2S)

rx (AXI4 S2MM)

tx/rx interrupt

BRAM/DDR

AXI-lite

tx control

FPGA

Figure 5.3: Blocks central to Ethernet-functionality, as implemented on the VCU118
FPGA.

The subsystem was in turn connected to an AXI DMA core, the interrupt controller
for the MicroBlaze, and the external PHY as shown in figure 5.3. Furthermore,
both RX- and TX-channels were configured for full firmware-offload of the TCP-,
UDP-, and IPv4 checksums, as this significantly improves performance when using
a software implementation of the TCP/IP stack.

This core will eventually provide insufficient performance for data-readout. At that

CHAPTER 5. FIRMWARE 37

stage a transition must be made; likely to the UltraScale Integrated 100G Ethernet
Subsystem in the case of the VCU118. Detector-data must in this case be read out
via the SFP28 interfaces on the board.

5.2.2 MicroBlaze Configuration
The processor was configured for maximum performance to allow it to assist in data
readout from the VCU118 board. This includes adding to it the barrel shifter, basic
FPU, 32 bit integer multiplier and -divider, as well as the pattern comparator. As
explained in section 5.1, these features might not be necessary if the processor is
not involved in data readout. The MicroBlaze application requires only a small part
of the internal BRAM, hence no caches are needed. An interrupt controller was
also added in order to handle the interrupts generated by the Ethernet subsystem,
UART, and the DMA-system to be described in section 5.3.

5.2.3 UART
The UART itself can be of any type, but should be compliant with the AXI-interface.
The design implemented on the VCU118 uses the AXI UART16550 [30] as it allows
for greater customization than some simpler options including configuration of the
threshold at which the RX-interrupt fires; triggering when either 1, 2, 4, 8, or 14
bytes are present in the hardware receive-FIFO. Many UARTs will fire an interrupt
as long as there is even a single byte in the receive-buffer, which wastes processing
time spent in ISRs. It is also possible to configure the baud rate by accessing a
firmware register, while the UART lite for instance requires re-synthesis for such a
change.

5.2.4 Monitor Module
The monitor module discussed in section 4.1.4 was not implemented, as focus was
placed on providing communication interfaces and functionality for data-readout.
This can likely be a simple module, however. It should be AXI4-lite compliant,
and must feature an external I2C interface. Registers must be added that allow for
control of the regulators, and to provide access to the values read by the external
ADCs. Functionality that allows the module to perform a power cycle via the regu-
lators if it reads ADC values in excess of some threshold over a given time interval
is also required, if this is not automatically performed by the regulators. Both the
threshold and time interval should be configurable parameters of the module.

38 5.3. READOUT OF DETECTOR-DATA

5.3 Readout of Detector-Data
The complete pCT system will consist of PRUs that each interface to 108 ALPIDEs2
which at run-time each produce up to 1.2 Gb/s of data. This is reduced to 960 Mb/s
after the data module removes the 8b10b-encoding, resulting in a combined worst-
case output of 103 Gb/s per PRU. This places high demands on bandwidth, which
are lessened by the fact that the beam is pencil-shaped. This has the effect of
clustering hits around the center of a layer, leaving the outer detectors idle much
of the time. In addition, IDLE-words are filtered away by the data modules as
explained in section 3.4, and even if a chip is registering hits, this does not equate
to a chip registering hits at full capacity.

Alpide layer

Figure 5.4: Chips that are closer to center of a detector layer receive the majority
of the hits.

Combined, this will reduce the amount of data to be read out. Still, no simulations
that predict the volume of data that will be produced, other than the worst-case
scenario above, currently exist. Producing these simulations should be a top priority
for the pCT team.

5.3.1 Development-Stage Data Readout
Design and verification of the full offloading-solution required by the complete pCT
falls outside the scope of this thesis, but a subsystem capable of offloading the data
produced by a single- or possibly a stave of ALPIDEs was implemented to aid the
development-process towards the full design. The supported number of devices is
partly dependant on the degree of ALPIDE threshold settings, and partly by the
upper limit set on the TX-throughput by the MicroBlaze-, FreeRTOS-, and LwIP-
system.

The subsystem involves first buffering data produced by an ADM with an AXI
Stream FIFO, which also serves to bridge the clock-domains that separates the
ALPIDE data module and the MicroBlaze Subsystem. An AXI DMA-block receives
data from the FIFO, and places it into BRAM. On completion of a transfer, the
processor is notified via an interrupt, after which it transmits the data via TCP
or UDP. The system was implemented to accommodate one ALPIDE, but can be
expanded further by operating the DMA-engine in multi-channeled, scatter-gather
mode, connected to the FIFOs through an AXI Stream Interconnect. Up to 16

2Given that each PRU handles an entire layer.

CHAPTER 5. FIRMWARE 39

channels are available if using the AXI DMA module. Alternatively, the streams
could be aggregated to a single FIFO-stage by a priority encoder-like module, of
the type discussed in section 5.3.2. Elements central to the simple- and extended
subsystem are displayed in figures 5.5a and 5.5b. For testing purposes, a simple
counter that adheres to the AXI Stream protocol was written and used as a data
source.

Alpide Data-/offload
module(s) FIFO DMA

AXI stream

Ethernet Subsystem to PHY

AXI stream

CPU

DDR/BRAM

interrupt

Ethernet DMA

(a) Development-stage offload-system.

Alpide Data-/offload
module(s) FIFO

Multi-channel DMA
w/SG

Ethernet Subsystem to PHY

AXI stream

CPU

DDR/BRAM

interrupt

Ethernet DMA

Alpide Data-/offload
module(s) FIFO

AXI stream

Alpide Data-/offload
module(s) FIFO

AXI stream

Alpide Data-/offload
module(s) FIFO

AXI stream

Alpide Data-/offload
module(s) FIFO

AXI stream

Alpide Data-/offload
module(s) FIFO

AXI stream

AXI Stream
interconnect

1-16 Alpides

(b) Extended development-stage offload-system.

The results of testing the solution shown in figure 5.5a, as described in chapter 8,
showed that acceptable performance was possible also with the MicroBlaze, but
that this was dependant on larger packet sizes being used. The data-offload module
should therefore be made to buffer a number of frames, before passing it to the
FIFO from which DMA streams it into RAM; ideally a number that places the total
number of bytes close to the maximum transmission unit (MTU) of the network.
A timeout-mechanism will also be required in order to prevent a situation where
the offload module has a partially filled buffer below this threshold for an extended
period of time. This could also be performed by the processor by aggregating data
from multiple transfers, and sending it only when some threshold is exceeded. The

40 5.3. READOUT OF DETECTOR-DATA

software overhead introduced however means that this is not recommended.

A transfer is set up by first starting the stream-to-memory-mapped channel, followed
by writing to two registers the destination-address and desired transfer length in
bytes, where this last write-operation starts the transfer. AXI Stream is comprised
of eight signals, but most are optional and application specific. Typically, three
signals control stream transactions: tvalid, tready, and tlast3. A master that has
data available indicates this by asserting tvalid, tready is indicated by the slave to
signify that it is ready to accept data, and tlast is indicated by the master on the
final transfer of a packet. A master transfers no data unless tready is asserted, and
is not allowed to wait for this signal to be asserted before asserting its tvalid. In
figure 5.6, a master transmits a packet over the duration of ten clock cycles, which
it indicates on the tenth cycle by asserting tlast; data is shifted out on to tdata only
if both tready and tvalid were high on the previous rising edge of the clock.

clk

tvalid

tready

tlast

tdata[X:0] d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Figure 5.6: An example AXI-stream transaction.

Regardless of the set transfer-length, the AXI DMA module terminates a transfer
upon the assertion of tlast, and thus less than the desired amount of data may
be received. The actual amount can be determined by reading the contents of
the transfer-length register after completion of the transfer. It is essential that a
transfer-length greater than the largest possible packet that might be received is
set, as undefined behavior can occur if the requested amount is transferred without
tlast being asserted [33]. This also means that the stream-device on the receive side
of the DMA module is obligated to generate this signal. Additionally, four pipeline
registers on the stream-to-memory-mapped side will fill with data given that tvalid
is set, even if a transfer is not initiated. If the stream-device contains stale data,
this can be accounted for by flushing the stream-device before configuration of the
module is performed.

5.3.2 Data-Readout in a Complete System
Due to the extensive bandwidth requirements, it is likely that the the data-readout
procedure in the finished system should not involve a processor at all, except when
used to configure the readout-subsystem itself.

The upper-bound of achievable throughput with a 100 MHz clocked MicroBlaze-
system running LwIP in socket (multi-threaded) mode is listed in XAPP10264 as

3In true streaming applications, this too is often not required.
4Newest version dated 2014.

CHAPTER 5. FIRMWARE 41

approximately 70 Mb/s [32]. In chapter 8 it is shown that much higher perfor-
mance is reachable with increased clock rates and use of jumbo frames. However,
even if gigabit rates were achievable, this would still be insufficient for the num-
ber of ALPIDEs that will be included in the complete prototype. Using LwIP in
raw-mode (single-threaded mode) greatly improves TX/RX-performance, with the
system above achieving TX-throughput of 250 Mb/s; again it is expected that this
number will in reality be higher. This however would exclude any multi threading on
the processor, which would complicate software development, and is still far below
what is required.

A Zynq platform (XC7Z020-CLG484-1) is listed as being able to attain much higher
numbers due to its hard MAC and higher clock frequency, with 542 Mb/s and
949 Mb/s of bandwidth in threaded and single-threaded mode listed, respectively.
Still, this will not be sufficient for the full system.

Eventually, any solution that utilizes DMA will be limited by the upper throughput
of this block, but this limit is placed high: with a clock rate of 100 MHz and a bus-
width of 32 bits, it lies at approximately 3.2 Gb/s in the stream-to-memory-mapped
mode as shown in table 5.1. The block however supports higher clock rates, and
the stream-width can be increased to 128 bits5. Virtex 7 devices are typically listed
as comparable to Ultrascale devices in most Xilinx product guides, and for these,
the upper supported clock rate is listed at 200Mhz-280Mhz, depending on the chip’s
speed grade. Higher data rates should therefore be possible.

Table 5.1: Xilinx DMA v7.1 figures at 100 MHz [33].

Channel Clock Frequency (MHz) Bytes Transferred Throughput (MB/s)
Percent of
Theoretical

MM2S 100 10000 399.04 99.76
S2MM 100 10000 298.59 74.64

Two of the limiting factors in a DMA based solution lies in transferring data in and
out of memory, as well as the overhead introduced by software when setting up DMA
descriptors and framing the data according to the network protocols. Another is the
number of DMA modules that will be required for a full layer and the complexities
that this brings; The AXI DMA module can interface up to sixteen AXI stream
modules, and a 9x12 layer will thus require seven of these. Each must be set up
with their own set of descriptors, and their completion interrupts handled. If this is
handled by the processor, the software overhead will be significant.

For the complete prototype, a readout-system that excludes the CPU from this
process should therefore be explored, as this will result in better performance and
simpler implementation. Such a system could involve:

• AXI Stream data-FIFOs; one per data-module.
5This matches the width of the words produced by the ADM, and is done when testing the

block as described in chapter 8.

42 5.3. READOUT OF DETECTOR-DATA

• Arbiter(s) to aggregate the data streams.

• A larger FIFO with a programmable full signal.

• Dedicated UDP/TCP / IP-core(s) implemented in FPGA fabric.

The system would work by each data module first posting to a FIFO as it produces
data. The arbiter monitors the output of the occupancy-counters belonging to the
FIFOs, and selects the one with the highest value. Data is then passed through to
a larger FIFO, which programmable-full signal can then be used to indicate that a
transfer can be initiated by the UDP/TCP + IP core. More than one such subsystem
might be necessary in order to satisfy the bandwidth demands. The reason that data
is again buffered after the arbiter instead of streamed directly to the UDP/TCP core,
is that it simplifies the arbiter itself. Without a second buffering stage, the arbiter
must instead select the ideal combination of FIFOs on each clock cycle, in essence
attempting to solve the Knapsack problem6, whereas with it, it is primarily a priority
encoder. Figure 5.7 shows a block diagram of the components of such a subsystem.

Alpide Data-/offload
module(s)

Alpide Data-/offload
module(s)

Alpide Data-/offload
module(s)

Alpide Data-/offload
module(s)

FIFO

FIFO

FIFO

FIFO

AXI stream

AXI stream

AXI stream

Arbiter

AXI stream

AXI stream

AXI stream

AXI stream

occupancy counter

UDP/TCP core MAC
to PHY

AXI stream

AXI stream

Board

occupancy counter

occupancy counter

occupancy counter

FIFO

FPGA

Figure 5.7: Offload system showing data offload modules, buffering stages, arbiter
and UDP/TCP cores.

6Given a set of values S, find the subset Su of S such that the sum of its elements is as close
to, but not larger than, some target value K: max(

∑|Su|
i=1 Su,i) ≤ K

CHAPTER 5. FIRMWARE 43

If the data modules handle timestamping and chip-/stave-identification, then the
arbiter needs only to select the FIFOs to drain, and handle the AXI stream hand-
shake between itself and the larger FIFO. Several alternatives for the UDP/TCP
IP-core itself exists, and Xilinx offers multiple through third-party vendors, offering
>10 G performance. For instance [34] or [35]. Alternatively, open-source options are
available via OpenCores. The latter is suitable in the development-phase in order
to verify the operation of the remainder of the chain.

Registers and Interface

To facilitate communication with the processor, the arbiter should be made AXI-Lite
compliant, and feature status- and control-registers. As a minimum, the following
should be included: Statistics-counters should also be implemented:

COUNTERS_RST TARGET_SUM RUN/HALT

Table 5.2: Control register

FIFO_DEPTH FIFO_THRESHOLD

Table 5.3: FIFO depth and -threshold register

BYTES_OFFLOADED_UPPER

Table 5.4: bytes-offloaded counter register, 32msb

BYTES_OFFLOADED_LOWER

Table 5.5: bytes-offloaded counter register, 32lsb

OVERFLOW_ERROR_COUNTER

Table 5.6: FIFO-overflow counter register

The overflow-counter is incremented any time the arbiter reads an occupancy counter
equal to the FIFO depth.

5.3.3 Other Considerations
In applications where any lost data is completely unacceptable, UDP cannot be
used as a transport-layer protocol due to its unreliability. This is likely the case for
the pCT when it is at a stage where proton-tracks are to be reconstructed; if a hit
penetrates for instance three layers, but datagram-loss results in it being reported
only in two, an incorrect value on the residual energy of the proton that made the
track will be produced. Loss on high-quality modern hardware can be made low,
but is not insignificant and can never be guaranteed to be zero; see for instance
[36]. In this case, there are two options if readout is done using Ethernet: Develop
an application layer protocol for UDP that ensures reliability, or use TCP. To meet
bandwidth requirements, this must be offloaded to firmware.

44 5.3. READOUT OF DETECTOR-DATA

CERN has previously used UDP in the ALICE experiment, where the detection
(but not recovery) of lost datagrams was made possible by prepending datagrams
with sequence numbers [37], and currently deploy TCP in readout-builders7 used in
the CMS, where 4 × 10 Gb/s links carry a modified implementation of it, removing
some features considered redundant in order to improve efficiency [38]8. Of course,
the data offloaded must be stored host-side, but this should not be an issue, and
servers with the necessary performance are easily found. Lastly, it is again noted
that TCP is a streaming protocol with no concept of "packets", and so the format of
the ALPIDE data transmitted from the PRUs must therefore be either delimited,
length-prefixed or constant in length. The current format uses the latter approach,
with a word originating from a data module always consisting of 128 bits.

7Aggregates collected data to form full events.
8Removes for instance the TCP close- and listen mechanisms.

Chapter 6

Control Message Format and Protocol

In chapter 4 the roles of the pCT control system was specified, and these often in-
volve reading- or modifying values related to memory mapped devices located on the
PRUs. For this to be possible, messages that instruct these actions to be performed
must adhere to a specified format and protocol; when requests for register-values
are received, a certain response should follow, etc. Malformed packets must also be
handled; the board can be interfaced via a UART, which has no way of detecting
and handling corrupt packets except for parity checks. Although one of the features
of TCP is automatic error-detection of corrupt protocol data units (PDU), it will
bring any data into the application layer, whether or not it conforms to a protocol.
In addition, as both TCP and UART are streaming interfaces, packet boundaries
must be indicated.

This chapter develops a simple application level protocol for communication between
a host and and a device that allows for transfer or arbitrary data, and uses it to
transfer information regarding the memory space of a device. It is not dependant on
use specifically with the UiB pCT or even an embedded processor, but does define
special (optional) functionality for targeting the ALPIDE chips. It is suitable for
use with all streaming interfaces, such as UART and TCP/IP over Ethernet. A few
similar protocols were found, but these consisted either of proprietary hardware/-
software and were not available (See AXI over Ethernet [25]) or targeted Wishbone
buses [26]. In addition, the need for communication over the serial interface had to
be regarded.

6.1 Requirements
Packets must first of all contain the information necessary to specify their desti-
nation, payload, and the nature of the request (read, write, broadcast, etc). The
serial interface mandates that data sent over it must feature a form of error de-
tection so that corrupted packets can be detected and discarded. Error correction
of malformed packets might not be necessary, but being capable of detection is a
must. Simple parity-checks are not sufficient as errors are hidden if the number of
bit-errors are even. A better approach is to append a cyclic redundancy check to a

45

46 6.2. AN APPLICATION-LEVEL PROTOCOL

packet, and to also include a mechanism that allows a receiver to re-synchronize if
such bit errors occur. This is only applicable for the UART interface, as TCP/UDP
PDUs include their own checksum.

Furthermore, although very high performance is not required for a control channel,
a data format should have a high payload-to-framing ratio to maximize the useful
bandwidth. It is also required that packets are allowed to vary in size, as it should
be possible to embed several commands in a single packet. In addition, a sender
should be made aware of whether or not a sent command was executed successfully.
For generality, the protocol should be usable in any project that feature a remote
processor or microcontroller with access to memory mapped peripherals.

6.2 An Application-Level Protocol
A control-data format is defined where packets of data are sectioned into three parts:
a header, payload, and a trailer. The header specifies the type of command(s)
contained within the payload and its length, the payload contains the actual data,
and the trailer a sequence number that lets a sender associate a sent message to a
received reply. The length field occupies 2 bytes, allowing for messages to contain
between 1 and 65535 bytes of data. Buffer limitations (especially) on the board side
will usually place a practical limitation lower than this. Furthermore, transmitting
data over unreliable mediums such as serial interfaces mandate that packets must
contain information to aid in locating the beginning of a packet; a receiver might
connect while a message is partly sent, or data might be corrupted, causing a receiver
to misinterpret received data. A lightweight byte-stuffing technique and a checksum
is used to ensure these situations can be recovered from. The built-in reliability of
TCP means that it requires neither of these.

6.2.1 Packet Format
The base format of a packet is shown in 6.1

HEADER(3B) Payload(1B-65535B) TRAILER(1B)

Table 6.1: Application level protocol - Base packet format.

LEN(2B) CMDTYP(1B)

SEQNUM(1B)

Table 6.2: Application level protocol - Header and trailer, respectively.

For reliable, streaming interfaces1, sending data packaged as shown in table 6.1 is
sufficient. Any type of data can in theory be contained in the payload. Values in all
fields are sent in big-endian form.

1Also works for packet-based transport-layer protocols, although the length-field is in this case
redundant.

CHAPTER 6. CONTROL MESSAGE FORMAT AND PROTOCOL 47

6.2.2 Considerations for Unreliable Interfaces
To resolve situations where a receiver and sender become de-synchronized, or to
avoid those where a receiver would issue erroneous commands due to having received
corrupted data, streaming data sent over unreliable interfaces must be delimited and
preferably attached a checksum. In the case of the protocol discussed here, this is
achieved by appending a 16 bit CRC of the CCITT type to the trailer of a packet,
while delimiting is achieved by byte stuffing.

6.2.3 COBS
Data sent via unreliable interfaces must be properly delimited if the size of packets
is to vary, and if a receiver is expected to recover from bit errors. Consistent Over-
head Byte Stuffing (COBS) [27], is a simple encoding scheme used for this purpose,
reserving use of the value 0x00 for use as a delimiter. It carries a fixed overhead
of one byte per 254 bytes of data, plus one additional byte appended to the end of
the message which might consist of one or more such blocks. The first COBS-byte
functions as a pointer to the next byte in the message that in un-encoded form
would be a 0x00-byte. This byte is encoded with a value specifying the relative
position of the next encoded 0x00, and so-forth. If no such byte exists in the block,
the first COBS-byte simply points to the end of the message, where an actual 0x00
should be located. The example below illustrates the technique; red bytes being the
encoded components.

un-encoded 01 04 00 12 03 A1 00 00 CA
encoded 03 01 04 04 12 03 A1 01 02 CA 00

Table 6.3: Consistent overhead byte stuffing example.

Packets longer than 254 bytes can also be encoded; if a COBS byte has the value
0xFF, this implies that 254 data bytes follow, but that no encoded zero is to be
found at the end, but instead a regular COBS byte. Larger packets can therefore
be encoded with the use of one or more such max-length blocks, followed by a final
block delimited by a zero. Arbitrarily sized packets can thus be encoded with COBS,
with the upper limit in this case set by the length field.

Including both COBS as well as a length indicator is not redundant as it aids in
detecting malformed packets. It also means that a receiver is not required to check
every received byte for the delimiter-value, but can instead receive a larger chunk
as specified by the length field.

For unreliable streaming interfaces, a packet as shown in table 6.1 is thus appended
a checksum, COBS-encoded and delimited. This ensures reliability, and allows a
receiver to quickly re-synchronize on the next received packet if an error occurs.

48 6.2. AN APPLICATION-LEVEL PROTOCOL

COBS1(1B) HEADER(3B) Payload(1B-65535B) TRAILER(1B)
CRC(2B) COBS2(1B)

Table 6.4: A packet appended with a 16 bit CRC and byte-stuffed with COBS.

6.2.4 Packet Fields

This section provides an overview of the fields of a packet and their purpose. A
thorough description as well as examples can be found in the appendix.

COBS1

The first COBS-byte which always appears at the start of a message, pointing to
the position of the next encoded zero-byte in the block. If none exists, it points to
an additional COBS byte if there is more than one block, and if not, to the final
delimiting zero-byte.

CMDTYP

Indicates to a receiver how to interpret the payload that follows. Three types were
defined to be used with the PRU, Indicating data meant for one or several ALPIDEs,
PRU peripheral, or if the packet is of the reply type.

LEN

Specifies the number of bytes of payload.

PAYLOAD

The payload of a packet contains its usable data. Arbitrary data can be contained
in the field, requiring only a matching CMDTYP. For PRU purposes, three types
were defined as specified by the command types mentioned above: ALPIDE data,
via the ACM, peripheral data, or special commands directed at the CPU.

PAYLOAD - Memory-Mapped Module

Payload intended for memory-mapped modules follow a simple format, requiring a
write-code and the 32 bit register value and -address in the case of a write, or a
read-code and the address in case of a read:

WRCODE(1B) REGVAL(4B) REGADDR(4B)

RDCODE(1B) REGADDR(4B)

Table 6.5: Payload - format for register writes- and reads, respectively.

CHAPTER 6. CONTROL MESSAGE FORMAT AND PROTOCOL 49

PAYLOAD - ALPIDE

A payload type that addresses ALPIDEs is defined. This has the effect of reducing
the number of bytes necessary to access one or more ALPIDEs, while also allowing
software on the PRU to handle the timing of writes performed to the ACM. Packets
intended for one or more ALPIDEs follow the format as given by the ALPIDE user
manual, with two modifications: a field designating the target stave (STAVEID) is
added in addition to a NSNGL-field allowing up to 7 messages to be written to one
chip without repeat of the opcode-, chip ID- and stave- fields. The value of this field
corresponds to the number of messages that follow.

The use of the NSNGL field reduces the number of bytes needed to perform multiple
writes or reads. This is useful for instance during configuration. In addition, one of
the primary tasks of the PRU CPU is to transmit housekeeping data; this involves
reading the ALPIDE ADC registers of which there are 22, and the NSNGL field
allows these to be contained within three sub-message in a compact way.

OPCODE(1B) CHIPID(1B) STAVENSNGL(1B) REGADDR(2B)
REGVAL(2B)

OPCODE(1B) CHIPID(1B) STAVENSNGL(1B) REGADDR(2B)

Table 6.6: Payload - ALPIDE register writes and reads, respectively.

OPCODE(1B)

Table 6.7: Payload - ALPIDE broadcast opcodes.

CRC16

Field containing the CRC16 as calculated by the sender. A sender calculates this
using the non-encoded contents of a packet as input. The receiver performs the
same calculation on the received packet after decoding the message, removing the
COBS-bytes and excluding the received CRC itself, and validates that it matches
the received value.

SEQNUM

Contains an 8 bit sequence number that can be used to relate a received reply to a
sent command. A sender increments the number any time it transmits a message,
while a receiver stores it and appends it to its reply.

COBS2

Unique identifier signaling the end of the message; always 0x00.

50 6.3. ADDRESSING ALPIDES VIA A PERIPHERAL COMMAND

6.2.5 Message Replies

Packets ideally arrive intact and correctly formatted, after which data is written or
read or some other operation performed. Alternatively, the framing could be erro-
neous, the sequence number out of order, the command type unknown, or contain
some other error. A receiver handles this by sending a reply containing a status code
specifying what (if any) type of error occurred, in addition to data related either
to the error or the successful reception. A reply follows a format identical to that
of a command, with its sequence number that of the command to which is being
responded. Like commands, replies must be COBS encoded and appended with a
CRC when required.

See section C in the appendix for a description of the defined status codes that can
be contained within replies, as well as the general format in the case of responses to
read-/write requests.

LEN(2B) REPTYPE(1B) Payload(1B-65535B) RECVDSEQNUM(1B)

Table 6.8: Application level protocol - Reply packet.

6.3 Addressing ALPIDEs via a Peripheral Com-
mand

The ACMs are memory mapped components on the PRU, and hence the ALPIDEs
can be manipulated through peripheral writes, i.e by packets with the CMDTYP
field set to "peripheral". This however may result in timing issues, and requires more
data to be sent over the Ethernet links.

Using the ALPIDE CMDTYP ensures the timing of writes performed to the ACM is
kept. It was mentioned that three writes to this module are necessary to write to an
ALPIDE, and two in order to perform a read. If the latter is attempted by writing
to the ACM CTRL- and ADDR registers and immediately followed by a read of its
READ_DATA register, invalid data will be found here due to the execution time
of the ACM state machine. Software on the PRU CPU ensure that these types of
errors do not occur.

Furthermore, the AXI bus on the PRU defines a 32 bit address space. The three
writes to the control module entail three 32 bit addresses and corresponding values
per ALPIDE-write; a total of 24 bytes. The same action performed using the format
developed here requires only nine2. For reads, the numbers are 16 and 5 in the
respective cases.

2If several writes are performed by using the NSNGL field, the result is skewed even further.
For seven messages written to the same ALPIDE, 31 bytes are needed when using the ALPIDE
format, compared to 224.

CHAPTER 6. CONTROL MESSAGE FORMAT AND PROTOCOL 51

6.4 Hardware Offloading of the CRC- and COBS
Calculations

If required, calculation of the CRC can be offloaded to hardware where this is an
option, as is often done for the checksum carried in a TCP/UDP PDU. Table-driven
implementations of CRC calculations can be used however, and these are quite
efficient as the calculation is reduced to a single XOR and table-lookup per byte. The
XOR is a single-cycle instruction on many processors, including the MicroBlaze [19],
and the table-lookup consists of collecting a single value from RAM. If the UART
is operated at low baud rates, this is in any case a non-issue.

Likewise, one of the advantages of COBS is its low computational cost. In the worst
case, a packet consists of a string of zeroes which must then all by encoded. In this
case the algorithm must iterate over as many bytes as the packet is long, replacing
each value as it goes. The overhead introduced by COBS is very low in general; on
random data, the theoretical average is only 0.23 % [27].

Chapter 7

Software

In chapter 4, the roles of the pCT control system were defined, and the implementa-
tion of all necessary firmware in addition to a DMA-based solution for data-readout
was detailed in chapter 5. In chapter 4 it was also argued that what is required
at the current stage of development is a flexible system that can provide access to
the address space of the device, and thereby the modules on the AXI bus, including
ALPIDE(s); a simple protocol that could provide this functionality was developed
in chapter 6. Software was written for the MicroBlaze processor in order to facil-
itate the above, which is described in this chapter. Complete code and additional
documentation can be found in the pCT WP3 GitLab repository1.

7.1 Requirements
The software deployed on the MicroBlaze processor is responsible for providing the
communication links between a host and the PRUs. Through it, access to all PRU
modules must be provided, so that these can be configured, controlled, and mon-
itored. Functionality that can control the DMA transfer process is also required,
and, additionally, it was stated that the processor should be capable of monitoring
system-modules without external input. A driver for the ACM will also be beneficial,
as this can handle the timing of the ACM state machine, and implement some of
the more complex procedures that the ALPIDEs require, such as mask-application
and ADC calibration. This would also simplify future development, should different
software be deployed.

7.2 Overview
The embedded software implements a client/server-style architecture, where the
PRU fills the role of a command server that accepts commands that adhere to the
chapter 6 protocol. In chapter 4, FreeRTOS was chosen as a suitable OS for the
embedded CPU, and the software is implemented as tasks running under this OS.
Two tasks are dedicated to the serial- and Ethernet interface. These provide data to

1https://git.app.uib.no/pct/wp3

53

https://git.app.uib.no/pct/wp3

54 7.3. SOFTWARE STRUCTURE

a consumer task which interfaces to the greater PRU system, executing the received
commands and returning any requested data. Another performs the automatic
monitoring, while a final task controls the DMA subsystem developed in chapter 5.
Networking is implemented by using the open-source LwIP TCP/IP stack. A block
diagram of the components of the software as it was implemented on the MicroBlaze
is shown in figure 7.1.

Application

UART

TCP/IP

Controlinterface

Offload

Queue send / -receive Instantiate / delete

DMA UDP/TCP readout

Packet receive-thread
TCP/IP-thread

RX/TX

RX/TX

Monitor

Alpide control-module / peripherals

monitor regs

Figure 7.1: Central threads in the MicroBlaze application.

The software described here is developed primarily in the Xilinx Software Develop-
ment Kit (SDK), and is written in C. At the time, the current version number of the
OS was 9.0.1, and 1.4 in the case of LwIP. Control of the CPU from the host-side
is performed via an API implemented in Python, which is described in chapter 82.

7.2.1 Development Principles
While developing the software, focus was placed on modularity so that the ap-
plication could be easily expanded or used alongside other software. In addition,
readability and proper documentation was prioritized, and complete Doxygen doc-
umentation was generated by commenting code in the Javadoc style. To keep mem-
ory use transparent, all FreeRTOS objects-, in addition to larger constructs such as
receive-buffers, are allocated at compile-time. A modification of the OS distribution
was required in order to do this, which is described in section 7.6.1. In an effort to
make the application event-driven, subroutines were implemented using interrupts
instead of polling, when possible.

7.3 Software Structure
The two threads responsible for reception and transmission of host - PRU control
data are implemented as simple state machines. These verify the framing of received

2An overview of this API is also included in the appendix, section D.

CHAPTER 7. SOFTWARE 55

packets, discard those that are erroneous, and forwards the remainder to a task that
executes the commands contained within the packets. In the case of the thread
handling the serial interface, received data is written to a software FIFO from an
ISR any time an RX-interrupt is received, whereas the thread that receives and
transmits packets via TCP/IP only calls its receive-function when a complete packet
is not buffered, and always requests the maximum number of bytes that will fit into
its buffer when it does so; one, several or no full packets might be received at a time
in this case. Packets are delivered to the task that executes the commands via a
queue. Figure 7.2 shows this process in the case of the UART-thread.

Post to queue

numElem(FIFO) >=3

if(pkt_size) > MAX

Find delim or empty
FIFO

if(end == DELIM)

while(!recvd_full)

N

N

Read FIFO

COBS-decode OK

Y

Formulate
reply TX

Control task

UART ISR

Write to
FIFO

RX
Fill HW tx

buffer

TX

interrupt

HW-FIFO-
non-empty
timeout

Check receive
queue

CRC OK

Y

Y

N

w
as

R
X err

not RX err

Timeout

Y

N

recv and
discard

Y

Figure 7.2: MicroBlaze application - UART-task flow-chart. The TCP task is simi-
lar, but is not required to verify encoding or CRCs.

7.3.1 Control interface
The control-interface task is responsible for processing the payload in the received
packets, and executing the contained commands. The task controls only the payload,
and not the framing. The CMD-field is checked for validity, and if valid, the task
calls the function responsible for carrying out the specific command, which is either
of the ALPIDE-, peripheral- or special command type. The packet is iterated over,
with the number of messages in the packet indicated by the LEN-field. After each
message, reply-data corresponding to the completed action is written to a FIFO,
consisting either of a status-/error code or data. Finally, the contents of the FIFO
is used to formulate a reply which is posted to the appropriate queue, determined

56 7.3. SOFTWARE STRUCTURE

by the ID-field of the received message. Afterwards, the process repeats, with the
task blocked and using no CPU resources as long as no data appears in its queue.

7.3.2 Data-Readout
The data-readout solution from chapter 5 is controlled by a task that is spawned and
deleted upon reception of a command. It is kept in a tight loop in order to maximize
performance. On creation, a flag is first set to indicate that it is active in order to
prevent multiple instances being spawned. The task then opens- and binds to a
socket, and optionally connects if configured for TCP. A DMA transfer is initiated,
and the task is notified upon its completion through an interrupt; this interrupt
fires after tlast is asserted and the last transfer is made on the outgoing side. This
event also causes any other thread that might have been switched in during this
period to yield to the data-readout task. A register on the DMA module is read to
determine the number of bytes transferred which are then sent to a receiver. The
task is not suspended while waiting for a transfer due to the latency that is incurred
when waking it.

is_alive(1)
socket(),

bind()
:

while(!trnsfr_cmplt)

if(notification_take() ||
dma_err == 1)

Control task

send_to_host(data)

init_transfer()

spawn

close()
is_alive(0)

delete_self()

N

timeout

Y

Figure 7.3: MicroBlaze application - Data-readout task flow-chart.

Instead of deleting the task directly from the control thread, a notification is posted
to allow any ongoing transfers to finish, and for the socket to be properly closed. A
timeout can occur if there is no data on the receive-side for an extended period of
time, and a DMA error can be generated if the device that is being received from
fails to generate the required tlast-signal, as described in section 5.3.1. The length
of a timeout is configurable via a macro; this is a software timer as the module
has no built in mechanism that provides this functionality. Figure 7.3 shows the
task’s behavior. As also stated in section 5.3.1, the ADM is made responsible for

CHAPTER 7. SOFTWARE 57

providing the stream FIFO with adequately sized packets, although this could easily
be implemented in software by aggregating smaller transfers until some threshold is
exceeded, sending this and copying any remainder to the front of the DMA buffer
and repeating the process.

7.3.3 Monitoring
The PRU should be capable of monitoring its devices without manual external input,
as explained in section 4.1.4. This was achieved by implementing a high priority
task that wakes at configurable intervals to perform measurements and act in case
set thresholds are exceeded. Two data types are defined for this purpose, shown in
listing 7.1.

Listing 7.1: Data types that facilitate monitoring of items.
typede f s t r u c t monitored_reg {

u32 reg_addr ; //!< The address to monitor
u32 va l_thresho ld ; //!< Threshold set for the address

/**
* @brief Function to be called if value at regAddr exceeds
* valThreshold .
* @param * ptrToSelf A pointer to the monitoredReg
*/

void (∗ threshold_exceeded) (void ∗ ptr_to_se l f) ;
} monitored_reg ;

typede f s t r u c t monitored_alp {
u8 chip_id ; //!< ChipId
u32 control_base_addr ; //!< Base address of chip ’s control module

} monitored_alp ;

A monitored_reg can thus be added to the list of monitored items by providing a
register, threshold value and a callback. The ALPIDE type is simpler as any ADC
value in excess of the set threshold on any ALPIDE is handled in the same manner.
The thresholds for the chips are set in a separate header file. Monitored items and
ALPIDEs are added before compilation. Being able to do this at runtime is not
necessary, as a board is static in the sense that its modules do not change once
it is programmed and running. The intervals at which the task performs work is
configurable, as is the selection of ALPIDE ADC registers and thresholds at which
these are limited.

As an example, listing 7.2 shows the adding of a monitored register with address
0x40000000 and a threshold value 0x0A, that if exceeded causes the function exam-
pleFunc() to be called, which simply prints the register value and sets it to 0x00.

Listing 7.2: Arbitrary procedures can be called in response to an exceeded threshold.
s t a t i c u8 add_all_monitored_items () {}

. . .
add_monitored_item (0 x40000000 , 0x0A , &example_func) ;
. . .

}

s t a t i c void example_func (void ∗ ptr_to_monitored_reg) {
monitored_reg ∗ item = ptr_to_monitored_reg ;
x i l_p r i n t f (" Reg i s t e r at address %x has value %x . Threshold %x\n" ,

item−>reg_addr , Xil_In32 (item−>reg_addr) ,
item−>val_thresho ld) ;

Xil_Out32 (item−>reg_addr , 0x00) ;
}

58 7.4. ALPIDE CONTROL MODULE DRIVER

Any type of functionality can in this manner be related to a monitored item. In
addition to monitoring the ALPIDE ADC values, the task can for instance be set
to monitor the phase alignment process of the ADM, resetting the module if errors
occur within some given time frame as explained in section 4.11.1 of [39]. Due to the
relatively long (minimum) execution time (>15 ms) of an ALPIDE ADC full-read
operation, monitoring does not cause appreciable activity on the AXI bus.

7.4 ALPIDE Control Module Driver
A driver was developed to interface to the ALPIDE control module. This driver
by extension allows execution of most ALPIDE functionality; writing-/reading reg-
isters, calibration of the on-chip ADC, application of chip-specific configurations,
conversion of raw ADC-register values to corresponding (volts, amperes, celsius)
values, etc. Functionality to apply the pixel masks is also provided. Some of this
functionality was also implemented host-side through the Python API, but should
future developments offload a greater degree of processing to the PRU CPU, this
driver can be leveraged further. The driver also maintains timing of writes performed
to the ACM in regards to its state machine.

7.5 Data-Exchange Between Threads
Tasks in multi-threaded applications must often exchange information. In FreeR-
TOS, this is done primarily via queues which hold data of arbitrary type, and where
the data is passed by value. In the embedded software discussed in this chapter, this
data consists of messages in the form of structs, and a few techniques for sending
these between tasks were explored before deciding on a buffer pool solution, which
are outlined here.

One possibility when passing data is for the sender to keep a struct variable. A
pointer to the struct can then be copied onto the queue. This allows the queues
to be compact, only occupying whatever the pointer-size is times its capacity, but
results in issue due to the asynchronicity of the threads; messages might be posted
faster than the receiver can handle. If the pointers point to locally declared vari-
ables, these might be overwritten before they are fully processed by the receive,
which forces the queues to be of size one.

Another option is to copy the structs themselves on to the queues. This is simple
to implement, since for the sender there is no risk of overwriting posted-, but not
yet processed data, and for the receiver there is no need to de-allocate memory or
otherwise indicate completion of processing. Copying the structs is however resource
intensive: each struct consist of an array of bytes equal to the maximum size of a
message, an ID-field, and a socket-descriptor; copying this information is time con-
suming. In addition, the queues must be large in order to accommodate several of
the structs.

A further solution is dynamic allocation: A sender can dynamically allocate mem-
ory to fit the given message, and a pointer to this memory passed. On reception, a

CHAPTER 7. SOFTWARE 59

receiver dereferences the pointer, processes the contents and frees the memory. This
is a common way to handle data exchange in multi threaded applications, and allows
queues to be small in size. However, memory leaks can occur if care is not taken,
dynamic allocation is generally not fast, and it has the additional drawback that
run-time memory usage is obfuscated. Finally, the queues are sized at compile-time;
If in the worst case it is expected that they might be filled, there is no reason not
to allocate a queue-sized number of messages at compile time.

The final approach is to allocate a buffer pool of structs at compile-time. Tasks
may take pointers from a FIFO that points to structs in this pool when sending
messages. After processing the message, the receiver again puts the pointer in the
queue, allowing it to be used again. This allows the queues to be compact, requires
no dynamic memory allocation and allows better determination of program memory
usage at compile time.

7.6 Software Configuration

Several settings that alter aspects of the embedded software such as IPs, ports, baud
rates and queue-/buffer sizes are defined as C macros and can be set in a separate
header file.

7.6.1 LwIP and FreeRTOS

Both the networking stack and OS can be configured through their respective con-
figuration headers, or via the Board Support Package (BSP).

FreeRTOS v9.0.0 added support for static allocation of objects such as tasks, queues,
mutexes and semaphores, but this is not included in the current (v2018.4) Xilinx
SDK distribution of the OS. As memory usage should be well defined, this was made
possible through alterations to this distribution, as well as to the .tcl-scripts that
builds the OS; a section in the embedded-software documentation in the pCT WP3
GitLab repository describes this process.

Furthermore, both the OS and LwIP use a heap implementation that allocates a
block of memory at compile-time, and provide their own implementations of the
malloc()- and calloc() functions. The heap defined in the linker script is hence only
used when calls are made to the C standard-library malloc(). If this is never done3,
this is wasted memory and should be set to its minimum value. Likewise, the stack
defined in the linker script is only used when objects are allocated before the sched-
uler is started. This is only done in main(), and is therefore set to a low value of
512 bytes. The OS heap was set to 262 144 bytes and the tick-rate left at its standard
frequency of 100 Hz. Tasks that block before their alloted time (10 ms in this case)
is spent are immediately switched out, and higher switching speeds were found to be
detrimental to performance; explained by the overhead introduced by the increased
number of context-switches.

3This is the case for the application described here.

60 7.7. FUTURE DEVELOPMENT

LwIP can be configured extensively, and this can make a large impact on its memory
consumption. The Ethernet subsystem was set up to enable checksum-offloading,
and this must also be enabled in software. In addition, the TCP window is increased
to its maximum size of 65 535 bytes, the send-buffer to 16 384 bytes, and the max
number of queued TCP segments to 512.

7.7 Future development
Supervisory control and data acquisition (SCADA) systems allows for monitoring
and configuring of individual components that make up a system. On the host side,
such systems should eventually be interfaced to the PRUs. SCADA systems are typ-
ically hierarchical, with some human-machine interface that displays data, a central
computer or a group thereof that acts on the received data and sends commands
to lower-level modules (typically PLCs in an industrial setting) which in turn com-
municate the commands to sensors, valves, relays etc. Ethernet is often used in the
physical- up to and including the transport layer, while standardized protocols fill
the application layer (Modbus TCP, OPC, SNMP, and MQTT are some examples).

While Modbus will not suffice due to the 16 bit-address limitation, some of the other
alternatives may be suitable. MQTT lies on top of TCP/IP and is a protocol de-
veloped in order to service IoT devices over low-speed networks. It is based on
a publish/subscribe-model were clients subscribe to topics that are then delivered
by a broker. A topic can contain a hierarchy of information, each separated by a
slash; the temperature as read by an ALPIDE for instance could be published as
boardW/staveX/chipY/tempZ. In turn a PRU could subscribe to the topic board-
W/staveX/chipY/setRegZ and alter register-values in this manner. Wildcards also
allow several boards to subscribe to the same topic, or a board to subscribe to all
available temperature-topics, for instance. Several options for embedded deploy-
ment of MQTT exist, with one of the larger being the Eclipse Paho project. This
includes support for FreeRTOS, but with a different socket-layer that would have to
be modified [21]. Additionally, recent additions to the AWS-FreeRTOS repository
includes an MQTT client implementation and example4. MQTT is agnostic to the
contents of the packet-payload, and as such primarily provides transport of data
between parties, with the format and handling of this data having to be defined by
the parties. Table 7.1 shows the format of an MQTT packet, where the fixed header
indicates packet type and -length, and quality of service. The variable header defines
the message- and client ID as well as the topic. The payload contains any data, if
present.

Table 7.1: Showing the format of an MQTT packet.

Fixed header(2B) Variable header(1B-4B) Payload(0B-NB)

Another alternative is OPC, which unlike MQTT is built on a client/server-type
architecture. It encompasses a number of standards, and was initially developed to
". . . abstract PLC specific protocols . . . into a standardized interface . . . [that] would
convert generic OPC read/write requests into device-specific requests and vice-versa." [22].

4https://github.com/aws/amazon-freertos

https://github.com/aws/amazon-freertos

CHAPTER 7. SOFTWARE 61

The modern iteration of OPC is OPC UA which among other features include plat-
form independence, and a focus on scalability and security. A strength of OPC UA
is its information model, allowing the definition of abstract data types and concepts
typically associated with object-oriented programming languages such as objects, in-
heritance and instance methods. In the context of a pCT control system this could
be used to define a base type board module, having a name, address and read()-
and write() instance methods. From this an ALPIDE module could inherit, defining
functionality specific to it, etc.

ObjectTypeNode
board_module

VariableNode
name

ObjectTypeNode
ALPIDE

VariableNode
ADC_value_X

hasComponent

hasSubtype

hasComponent

VariableNode
ADC_value_Y

hasComponent

Figure 7.4: Illustrating the OPC UA information model.

This standardized data representation has the further advantage that it can be
understood by any part of a system that implements OPC UA, something the un-
defined MQTT payload does not allow. Furthermore, OPC UA allows the content
of VariableNodes as shown in figure 7.4 to be related to arbitrary data sources; one
approach that is used in the CERN ATLAS experiment is to use a low-level protocol
providing memory-mapped access to connect readout unit FPGAs to an OPC UA
server on the host-side [23] [24], where a low-level interface and a software applica-
tion collects register values and stores them in a buffer. The OPC UA server (or
any other consumer) can then collect the values at their own pace. This allows for
the protocol providing direct access to memory mapped FPGA modules to be used
by itself, without other higher-level software. It also allows for such a lower level
protocol to be used in any future projects where interfacing to an FPGA is neces-
sary, but monitoring is not. On the other hand, the OPC UA server will provide
good integration with commercial and open source SCADA solutions, and no OPC
on the PRU side keeps memory usage low.

Open source servers/clients for both FreeRTOS, Linux and Windows exist; see for in-
stance open625415. The standard is complex and hence implementations of OPC UA
are larger than MQTT. Speed is also likely to be lower, but for remote-monitoring,
real-time is not required as stated in section 4.1.4. Additionally, the robust security
features might be unnecessary for this project. A build of open62541 for FreeRTOS
was however still less than 1 MB in size.

5https://open62541.org/

https://open62541.org/

62 7.7. FUTURE DEVELOPMENT

In industrial SCADA systems, often several OPC servers will exist. In the case of
the much smaller pCT, a single server that serves the PRUs and a client imple-
mented host side will suffice. In the future, the pCT might include other external
modules such as motors, sensors, power supplies, etc. These might be serviced by
other OPC UA servers that interface to the same client. As illustrated, the OPC
server interfaces to the greater SCADA software. This will have to be chosen also.
In doing so, the scale of the project should be kept in mind, i.e many of these sys-
tems are designed for use in large factories and facilities. Software such as UaExpert
by Unified Automation can be used to provide a client that interfaces to the server.

HOST

OPC UA
server

Arbitrary
host-FPGA

protocol

(Ethernet-
based)

PRU

PRU

PRU

Client

Other
device

Other protocol

Driver

Figure 7.5: A possible control system for the pCT.

Chapter 8

System Testing

Testing of the implemented firmware and software was performed on the test-setup
at UiB, consisting of the VCU118 development board and the ALPIDE carrier,
interfaced to the Virtex platform by an FMC with FireFly cabling.

Figure 8.1: Testing setup showing VCU118 board, FMC, and ALPIDE carrier.

63

64 8.1. HOST-SIDE SOFTWARE

8.1 Host-Side Software
Software was developed for use on the host-side in order to enable communication
with the embedded processor. This was written in Python1 and provides an API
that allows a host to communicate with any device that implements the protocol
developed in chapter 6. In addition it defines some functionality specific to the
VCU118 board that was used during testing. A base object defining a board or
device implements base read-, write- and similar methods, from which objects that
require special functionality can inherit.

Board

Stave

ALPALPALPALPALPALPALPALPALP

Stave

ALPALPALPALPALPALPALPALPALP

Stave

ALPALPALPALPALPALPALPALPALP
Interface

(UART / Socket)

Utilities
(CRC, COBS,
packetizer...)

ReadoutReceiver

Interface
Socket

Board_VCU118
inherits from Board

Figure 8.2: Core host-side software elements. Blocks are implemented as objects
with the exception of the Utilities-block.

The use of inheritance was intended to simplify transitions to other boards or devices.
The BoardVcu118 that was used for testing is an object with zero or more Stave
objects which in turn consist of zero up to nine ALPIDE objects. The board also
has an Interface-object, allowing for serial- or Ethernet communication.

Utilities for COBS encoding and -decoding, CRC calculation and packeting of data
were also implemented, as well as a separate readout-data receiver that allows for
testing of the offload solution from chapter 5. This is spawned as a separate thread
by the board so that control can be performed while data is being read out.

1A few reasons led to the choice of language: 1) it was requested by members of the pCT-team
at UiB due to familiarity. 2) Python provides platform independence 3) Developing a working
product is often faster in Python than other languages: often fewer lines of code are needed, when
compared to similar languages such as Java.

CHAPTER 8. SYSTEM TESTING 65

8.1.1 API
All board objects are provided with an Interface-parameter which can be of either
serial- or socket type. A BoardVcu118 also accepts an additional parameter "staves",
that can be present if one or more staves are to be added to the board at instantia-
tion. This can either be a single stave or a list of such objects. An ACM is sufficient
and a physical stave must not necessarily be present.

Listing 8.1 shows a procedure that instantiates a BoardVcu118 object with a single
stave with ID 0x00 and a single ALPIDE on the stave with chip- and PRU ID 0x00,
as well as a socket interface on port 49153, the given IP, and of the SOCK_STREAM
i.e TCP type. Communication is then possible, as demonstrated in listing 8.2.

Listing 8.1: Instantiation of a BoardVcu118 object.
my_board = BoardVcu118 (Stave (0 x00 , [Alpide (0 x00 , 0x00 , 0 x00)]) ,

MainSocket (49153 , " 192 . 168 . 1 . 1 95 " , "SOCK_STREAM))

Listing 8.2: Writing to- or reading from objects on a board.
#Writes to- and reads from a register on the board
my_board . write_reg (reg , va l)
read_value = my_board . read_reg (reg)

#Writes a special command to the CPU
my_board . wr i t e_spec i a l (cmd)

#Performs a multicast write on a stave with ID s_ID
my_board . get_stave (s_ID) . mult i cas t_wr i te (reg , addr)

#Writes to- and reads from an ALPIDE with the chip ID chip_ID ,
#on a stave with ID s_ID
my_board . get_alp ide (s_ID , chip_ID) . write_reg (addr , va l)
read_value = my_board . get_alp ide (s_ID , chip_ID) . read_reg (addr)

Multiple reads and writes can also be included in a single packet by using the
read_multiple_regs(list_of_regs) and write_multiple_regs(list_of_reg_val_tuples)
methods2. The status of the VCU118 application can also be viewed via the serial
interface, if enabled, as shown in figure 8.3. DHCP can be enabled/disabled in the
BSP.

Figure 8.3: Print-out of the serial output as the PRU is assigned an address via
DHCP, and as it receives a connection.

2Ideally these methods should post to a separate thread that handles the interface and out-
going/incoming packets. This allows the interface thread accumulates data to send and receive,
improving efficiency. As the software was eventually to be ported to C++, this change was not
considered worthwhile.

66 8.2. TESTING

8.2 Testing
Testing of the firmware, protocol, and software developed in chapters 5, 6, and 7
was done using the Python framework. As all testing was achieved by first commu-
nicating with the embedded processor, every aspect of the chapter 6 protocol had
to first be verified as functioning correctly. In addition, the long-term stability of
the embedded software had to be ensured.

The DMA-based data-readout solution discussed in chapter 5 and 7 was tested ex-
tensively. This was first done by providing the embedded software with data from
the AXI stream counter. Tests were also done to find the maximum throughput that
the system was capable of. UDP is unreliable and this was also demonstrated; the
findings here prompting the alteration of the software so as to also support readout
via TCP.

The developed communication framework allowed the data module to be further
tested on the VCU118 board. Eventually this module was at a state were it was
also possible to test the full readout chain.

8.2.1 Testing of Communication
The reliability of the protocol developed in chapter 6 had to be verified. This
included asserting that oversized packets, those containing erroneous CRCs or COBS
encoding, lacking- or having an incorrectly placed delimiter or similar were detected
and recovered from. That payload was handled correctly also had to be ensured.
Using the python framework, a test bench was set up where the results of each test
was logged together with timestamps for any events that occurred. Testing was
performed using both the serial and Ethernet interfaces, with the UART operated
at baud rates between 9600 baud and 921600 baud. Not all tests are applicable for
both interfaces, as data sent over TCP is not COBS encoded or appended a CRC.

The interval at which errors were injected, their placement in a packet and how a
value was altered was chosen at random in order to increase coverage.

Listing 8.3: Typical text written at the end of a test. Example showing results of
a test where misplaced delimiters were injected into messages sent via the serial
interface.
10/05 09 : 33 : 57 INFO
COBS−DELIM TEST
Sent 166755 corrupted packets out o f a t o t a l 1000000
Errors detec ted 166755
Errors missed : 0
Abnormal r e sponse s (not COBSERR or READACK) : 0

Millions of read- and write operations were performed. In all cases, injected errors
were detected with the receiver able to recover on the next packet due to the COBS
encoding, requiring only to receive- or collect existing data from the FIFO until a
delimiter is found, signifying the end of one packet and the beginning of another.

With TCP the approach differs in regards to recovery, as the reliability mechanisms

CHAPTER 8. SYSTEM TESTING 67

ensures that if any malformed data arrives to the application-layer then it is the
sender who is choosing to send bad data, and this warrants closing the connection.
This is only for framing, and invalid payload instead generates an error reply. The
two communication channels are verified to work also when used simultaneously.

Testing of the ACM Driver and ALPIDE Communication

Chapter 5 mentioned that a driver was written for the ACM. This had to be verified
as working correctly as correct ALPIDE communication was essential for the later
tests. This was done through directed tests and also verified through the various
test benches that were later ran and described in following sections.

8.2.2 Test Bench for the Updated ALPIDE Data Module
Previous work on the pCT project done by Ola Slettevoll Grøttvik3 involved the
design of the ALPIDE data module, which processes and packets ALPIDE events
according to a specified format. This had been tested on the CERN-developed
readout board, but had since been modified. A test bench previously written for
this purpose was rewritten and expanded. Built-in testing functionality of the pixel
detectors are used, where equal pseudo-randomly generated test vectors are loaded
into the ALPIDE and data module, which configures it to expect these on its inputs.
The number of runs to be performed, length of cabling, current driver- and various
other settings can be specified. All settings, vectors, counter values and words are
logged to a file on completion. Errors are logged whenever a decoded word does not
match any of the test vectors. If errors occur, the first occurrence is logged in a
specific column.

Readout-data is transmitted to the VCU118 board via FireFly-cabling. On the
previous board using the Kintex 7 FPGA it had been observed that increasing the
length of this cable resulted in the phase-aligner4 in the ALPIDE data module being
occasionally unable to locate valid delay-taps. Testing was repeated on the Virtex
Ultrascale+ platform in part to see whether this was still the case.

Table 8.1: Test results with the updated data module.

Parameter Test 1 Test 2 Test 3
Runs [N] 1800 1800 1800
Test Length [s] 54000 54000 54000
Cable length [m] 0.3 1.0 2
Correct words [N] 6.53 × 1012 6.53 × 1012 6.53 × 1012

Incorrect words [N] 3.48 × 108 5.16 × 109 8.75 × 109

Runs with errors [N] 1 7 4
BER 5.32 × 10−5 7.90 × 10−4 1.34 × 10−3

The large number of incorrect words detected when testing with the 0.3 m is due to
a chain of errors detected during a a single run, which was not seen at any other

3ola.grottvik@uib.no
4A data module block that by iterating over available delay-tap settings searches for the amount

of input delay to apply to an input data-stream in order to provide the best sampling point.

68 8.2. TESTING

time. It is seen that increasing the cable length introduces errors. However, it was
also noted by observing the log that errors occurred only in two forms: as part of a
larger event where millions of errors were detected during the same run as described
above, and in groups of 10-100. For instance, 3.48×108 errors are detected during a
single run during the test with the 0.3 m cable. This is perhaps indicative of power
supply fluctuations or some form of jitter, and not signal integrity issues introduced
by use of the longer cable. A probable explanation for this is jitter occurring when
an input-word is sampled; this may cause an incorrect sampling point to be selected.
If this this point is not validated any further, it would cause all words that follow
during that run to be sampled incorrectly, which is what is observed.

As this is likely a bug in the logic, and not indicative of the data module or
transceivers not functioning correctly, the BER listed above is not representative
of the errors introduced due to signal integrity issues.

On the 2 m cable, communication with the chip through the ALPIDE control mod-
ule also becomes problematic. One of the sub-components of the module is an input
serializer, which features a register to adjust the phase at which the received data is
sampled. Setting this to a value of one is found to resolve the communication issues.

8.2.3 Test of Data-Readout Solution
The DMA based data-readout solution was tested. Initially, the ALPIDE data mod-
ule had not been fully developed and so an actual ALPIDE could not be used as
a data source. An AXI Stream counter was instead written and used as a replace-
ment. Verifying the functionality of the solution and measurement of the average
throughput was done by sending a set amount of counter data from the PRU to
the host. Upon completion, it was verified that in any packet a previous value was
always smaller than the next. Compilation was done with the -O3 optimization-flag
set.

Listing 8.4: Python receive-function used to test throughput.
de f measure_throughput (s e l f , packet_size_to_get , bytes_to_get) :

""" Try to receive packet_size_to_get -sized datagrams from the
socket , and continue to do so until a bytes_to_get number of bytes
is received """

r e c e i v ed = 0
bytes_recvd = 0

t_star t = time . time ()
whi l e bytes_recvd < bytes_to_get :

bytes_recvd = bytes_recvd +
len (s e l f . sock . recvfrom (packet_size_to_get) [0])

t_end = time . time ()

p r i n t (" Received {} bytes in { : . 2 f } s . \ nApprox ~{ : . 0 f }b/ s
or ~{ : . 0 f }mb/ s " . format ((bytes_recvd) , t_end−t_start ,
((bytes_recvd)/ (t_end−t_star t))∗8 ,
((bytes_recvd)/ (t_end−t_star t))∗8/ (10∗∗6)))

CHAPTER 8. SYSTEM TESTING 69

First tests were performed on a 100 Mb link. The assumption that sending packets
close in size to the MTU would increase performance was verified, and throughput
was found to vary substantially with PDU size. Approaching the standard Ethernet
MTU of 1500 bytes resulted in saturation of the link, while packets in excess cause
fragmentation and degraded performance.

Figure 8.4: UDP throughput as a function of PDU size on a 100 Mb link.

It is clear that software is the limiting factor until saturation occurs, with the over-
head stemming from assembling the UDP datagram headers and setting up the
DMA transfer. Transmission and data-moving is performed by firmware. Larger
datagrams increase the data/header ratio which increases performance. It should
be noted that the numbers seen in the figures are of delivered payload. In addition
to the user data contained within the datagrams, a sent frame contains 20 bytes of
IPv4 header data, 8 bytes of UDP header data, and 14 bytes of Ethernet framing
data. The full throughput is therefore slightly higher if this is included.

Jumbo Frames

Most commercial ISPs support the standard Ethernet MTU of 1500 bytes, and there-
fore many networks that connect to the Internet are configured to match for com-
patibility reasons. It is however possible to go beyond using Jumbo frames, in which
up to 9000 bytes of data can be sent. From the results on the 100 Mb/s link it was
expected that this would increase performance. First it must be enabled host side:

$ sudo ip l i n k s e t eno0 mtu 9000

Given a Linux system where eno0 is the name of the network interface controller.
Jumbo frames must also be enabled for LwIP; either in the opt.h file or via the BSP.
A gigabit switch was used as a link, jumbo frames were enabled and the throughput
logged. This improved throughput substantially, and although saturation this time
was not reached, a maximum of 625 Mb/s was achieved before the larger MTU is
exceeded and fragmentation again occurs.

During testing, the MicroBlaze was provided with a 150 MHz clock, and so as to
not be limited by the counter was instructed to send random chunks of data at the
tested PDU sizes.

70 8.2. TESTING

Figure 8.5: UDP throughput as a function of PDU size on a 1000 Mb link with
Jumbo frames enabled.

8.2.4 UDP Packet Loss
Measurements of UDP packet loss was performed to see whether there was depen-
dence on the PDU size; the larger jumbo frames can for instance not be used if it
results in unacceptable losses. The processor was set up to offload UDP datagrams
that contained a sequence number that was incremented on each datagram sent.
Since datagrams arrive either completely or not at all, it was sufficient to verify that
on reception of a datagram, its length corresponded to the specified size, and that
the value contained equalled the previous value received incremented by one. A loss
is interpreted as the difference between the expected sequence number and the one
received. Measurements were performed with a 1 m Cat6 cable; results might differ
as the cable lengths increase and this should also be verified. Other aspects of the
setup could alter the results also, for instance NIC drivers and the switch used.

A logger was set up containing first a header displaying the datagram size. A loss
was logged with a timestamp, time elapsed since start of test, and the expected- and
received sequence number from which the number of datagrams lost was derived.

Listing 8.5: An excerpt from a packet-loss log showing two events.
10/05 16 : 59 : 46 INFO Running packet l o s s t e s t with packet

s i z e 8972B. Running time s e t to 21600 s .
. . .
10/05 19 : 50 : 01 INFO 2018−05−10 19 : 5 0 : 0 1 . 3 3 (+10214.93 s) : 90 / 97
10/05 20 : 40 : 01 INFO 2018−05−10 20 : 4 0 : 0 1 . 6 0 (+13215.19 s) : 5 / 6
. . .
10/05 22 : 50 : 26 INFO Received 1633149.603008MB. Lost 63 packets ,

which i s 9 .29 e−08 o f t o t a l

It was assumed that since the server-host link was direct, passing only through the
switch, out-of-order delivery would not occur. This as it turned out was a potential
source of error, although the likelihood of this occurring on a closed network is very
low and was never recorded. Datagrams might also arrive at the receiving NIC, but
fail checksum verification. These packets will never arrive to the application layer
and hence also be reported as lost. To avoid overflow on the receiving side, the
receive-buffer size was set to 10 MB.

CHAPTER 8. SYSTEM TESTING 71

It is not trivial to diagnose where a datagram is lost; no errors were reported in
the PRU software, and it was verified that buffer-overflow at the receiver had not
occurred. This leaves either the switch or a silent error on either the receiving- or
sending end. It was noted that in the majority of cases, multiple datagrams were
dropped any time loss occurred. This could indicate a buffer overflow at the switch
level, and it should be worthwhile to repeat the test with a higher-quality switch.
Alternatively the Ethernet MAC driver could contain defects. It is unlikely that the
firmware is not able to handle the amount of data produced by LwIP. Events were
few enough that it could easily be verified that datagrams were not counted as "lost"
due to out-of-order delivery.

Figure 8.6: Showing loss over UDP with datagrams sized at 8972 B.

The plot shown in figure 8.6 shows the losses that were recorded when 1.63 TB of
data was transmitted from the VCU118 board over the course of approximately
6 hours. Loss was not found to vary with time, and on each event, 3.7 datagrams
were on average lost. In total, the loss represented 9.3×10−8 of the transmitted data.
Mean throughput was 621 Mb/s with jumbo frames enabled and the datagrams sized
at 8972 B5.

Although it is likely that datagrams are lost in the switch, and that results could
improve with a higher-quality equipment in general, these results demonstrate the
unreliability of UDP. Furthermore it is impossible for a receiver to know whether or
not a frame has been lost, thus even on a high-quality system it cannot be determined
whether a connection is loss free unless sequence numbers are used.

528 bytes are needed for headers.

72 8.2. TESTING

8.2.5 TCP
The embedded software was extended so as to also support detector-readout via
TCP, which can be selected via a toggle-macro in the software options. It is cur-
rently planned that a Zynq platform will at some point during development be used
for the readout process; it was not known whether the MicroBlaze could achieve
performance using TCP comparable to that achieved with UDP, but in any event
the code should be a drop-in for use with these devices.

Tuning for TCP

Several aspects of TCP make the protocol resource-intensive on the software side.
Among these the TCP window, flow- and congestion control, and sequencing of seg-
ments to ensure data is reassembled in-order on the receiving side. The majority
of these can be configured, and some were found to have significant impacts on
throughput; in particular the window size. TCP ensures reliability partly by enforc-
ing acknowledgment of data sent. The receive-window keeps track of the sent but
unacknowledged data, and its current size is continuously tracked by a sender. If
the window size reaches 0, a sender will stop transmission and wait for the receiver
to acknowledge reception of data. Increasing the window size thus allows for fewer
ACKs to be sent as more data can be sent until this is required. On the FPGA side,
this was increased to its maximum (LwIP) size of 65 535 bytes.

Furthermore, the TCP send-buffer was set identical to the increased window-size,
and the maximum TCP segment size was set to 9000 bytes to match the higher
jumbo frame limitation. Even with these changes, it is not possible to approach
the bandwidth possible with UDP, and a throughput of approximately 190 Mb/s is
achieved with the soft core processor.

8.2.6 Testing of the Full Readout Chain
In May 2018, the ALPIDE data module had reached a state where testing of the
full readout chain was possible. The stream counter used with the DMA engine was
removed and replaced with the ADM, which included an intermediate FIFO buffer-
stage. The intention here was not to extensively test the chip, but to verify that the
readout chain was functional. Figure 8.7 shows a transfer being performed by the
DMA module. In this case the ALPIDE had been configured with its ITHR current
source set to a high value. This increases the pixel threshold, which decreases the
number of hits6 that are recorded, resulting in the staggered tvalid signal.

Figure 8.7: A DMA transfer of ALPIDE data, as recorded by the internal logic
analyzer.

6In this case the hits are only noise.

CHAPTER 8. SYSTEM TESTING 73

It is seen that as tlast rises, tready remains high for four counts of tvalid; this is due
to the filling of the four pipeline registers, as mentioned in section 5.3.1.

The data that is read out is captured by the ReadoutReceiver module described
in section 8.1, and stored in a text file. A PRU word is as mentioned always
128 bits/16 bytes in size, and is either of the data-, tag-header-, or tag-trailer type. A
data-word is always framed by a header and a trailer, and any number of data-words
may be found between the two. A snippet of a print-out is seen in figure 8.8.

Figure 8.8: A print-out of an ALPIDE data-stream, formatted as PRU words by
the ADM.

In the print-out, three word-types can be identified by their initial content7. The
two data-words are part of a larger event that is not shown.

Table 8.2: PRU Headers.

Header name WORD_TYPE[127:126] RU[125:120] STAVE[119:116] CHIPID[115:112]
DATA_WORD 0x00 0x0A 0x00 0x00
TAG_HEADER_WORD 0x01 0x0A 0x00 0x00
TAG_TRAILER_WORD 0x02 0x0A 0x00 0x00

It is seen that the words stem from a readout unit with ID 0x0A8, and an ALPIDE
with chip ID 0x00 on stave 0x00. The large number of hexadecimal 255 seen in the
data words are padding for unused ALPIDE data fields.

As data is read out, the number of triggers sent in addition to some status infor-
mation is periodically read out over the control interface, as shown in figure 8.9.

Figure 8.9: Showing a snippet of control-data read out while transfers are ongoing.

7The PRU word-specification can be found in the pCT WP3 repository.
8This was set as such in order to locate it easily in the print-out.

74 8.2. TESTING

DMA issues

Some unexpected behavior was occasionally seen on transfers, although most could
be explained or solved. One initial issue that was encountered was incorrect gener-
ation of tlast, where this was fixed at a high level on the receive-side of the DMA
engine. This caused transfers to finish immediately, which limited throughput. This
was fixed by generating tlast at the correct intervals. The DMA pipeline-registers
initially also caused some confusion, as they are not mentioned in Xilinx documen-
tation. These cause for instance tready to stay high indefinitely if connected to an
empty FIFO9.

Another situation that was observed was intermittent assertion of tready. Although
this was not verified, this could be due to arbitration on the AXI bus; some of
the registers of the data module are periodically read out to check for transmission
errors, and this could for instance be one source of conflict.

Figure 8.10: Showing a gap of eight cycles between assertion of tready on the DMA
receive-side.

This is even clearer in figure 8.11, showing several smaller gaps in addition to a
larger eight-cycle gap.

Figure 8.11: Intermittent assertion of tready on the DMA engine.

8.2.7 Testing of Self-Contained PRU Monitoring
Chapter 7 described the integration of an automatic monitoring task that can be
enabled in the PRU software to monitor given addresses and chips without the need
for user input. Testing the solution involved adding items to monitor and verifying
that if their thresholds were exceeded, action was taken. Behavior in boundary cases
also had to be controlled, such as that occurring when there is nothing to monitor,
an attempt is made to add items beyond the pre-defined maximum capacity, and
similar situations.

Although there are no temperature sensors or voltage regulators directly accessible
from the FPGA fabric on the current VCU118 design, arbitrary items can be added

9Due to the registers in this case never filling

CHAPTER 8. SYSTEM TESTING 75

to the list of monitored items. Functionality could thus be verified by adding mon-
itored registers and forcing the associated callback by writing to them a value that
exceeded the set threshold.

A writable dummy-register was added, and a threshold for it set to 0x0A. The mon-
itoring task was set to wake every 50ms to perform its readings. A callback was
defined that simply printed the address and value found over the serial interface,
and wrote the value of 0x00 back to the register. The value could then be asserted
by a read operation.

Reading out the debug interface showed that the task was performing as it should:

Figure 8.12: Debug-interface print-out of the embedded software reporting exceeded
thresholds.

Chapter 9

Conclusion and Future Work

9.1 Performance Evaluation

The results of chapter 8 show that the remote-control system is working as intended.
The extensions done to the protocol developed in chapter 6 in order to ensure oper-
ation when used over unreliable interfaces are also demonstrated to be functioning,
with all injected errors detected by the embedded processor software. The system is
also shown to work reliably during extended uptime, with multiple tests being run
over the course of multiple days.

The ALPIDE data module is tested on the new Ultrascale+ platform. Using it-
and the ALPIDE’s testing features, it is shown to be mostly functioning, although
some errors are introduced both wih the 1 m and 2 m cable. In addition, the ADM
was seen to on some occasions select an incorrect sampling point which causes all
further words to be incorrectly sampled until a reset is performed. The cause of this
behavior should be investigated.

The DMA-based readout solution developed in chapters 5 and 7 was tested with the
MicroBlaze, both using UDP and TCP. Readout speeds of approximately 622 Mb/s
were attained using UDP with jumbo frames, with the processor provided with a
150 MHz clock; this is less than half of the stated maximum, and thus higher data
rates should be possible. The unreliability of UDP was demonstrated, and low but
non-zero loss in the range of 10−8 was recorded. UDP will therefore be acceptable
for testing the chips, but when the prototype reaches a stage where data is used to
reconstruct proton tracks, TCP must be used. Readout using TCP is tested also
with the MicroBlaze, where a throughput of approximately 190 Mb/s is measured;
the reduction in bandwidth most likely due to the increased software overhead. The
read-out data is received and stored on a Linux machine, and is confirmed to follow
the format of the specified PRU words; hence this part of the readout chain is also
verified.

77

78 9.2. DESIGN EVALUATION

9.2 Design Evaluation
Chapter 4 described the system control unit to have been originally intended to be
a separate board that would interface to the PRUs through a separate control link.
It was argued that the readout boards may interface directly to a host, and that
monitoring of all units on the PRU might be performed by the readout units them-
selves. This allows the SCU to be replaced with a unit responsible solely for clock
(and possibly trigger-) distribution, which should allow for this to be a commer-
cially available part, needing no custom design. It was also stated that due to the
wide strobe-windows and long peak-time of the ALPIDE analog output signal, some
skew between boards can likely be tolerated. It was also concluded that due to the
effective pixel-addressing scheme on the ALPIDE, no local storage of configurations
on the PRUs should be necessary, and that the required bandwidth for the control
system was low in general.

Chapter 4 further described the requirements of the PRU soft-core processor, and
the software that it should run. It was argued that what was primarily needed at
the current stage of the project was a way to directly access the address space of
the device, and as such a protocol that could be used both with the Ethernet- as
well as the serial interface that would allow this was necessary.

The implementation of the firmware described in chapter 5 should, with the excep-
tion of the DMA-subsystem, need little to no alteration during the lifespan of the
pCT project. The DMA-based solution for data-readout is shown to be working,
and the performance results from chapter 8 implies that it should function well on
the Zynq platform; few alterations should be required for this transition.

In chapter 6, a simple protocol for transferring arbitrary data over streaming inter-
faces was developed, which was used to provide access to the address space of the
FPGA. Some time was spent on the details of this protocol, especially in regards to
the implementation of the reliability-features for its use over unreliable interfaces.
In the end, it is found to be working reliably, and when implemented produces no
errors even after several days of uptime. At a later stage, MQTT or OPC UA
might replace the use of this protocol over the Ethernet link, or it could be used in
conjunction with an OPC UA server implemented on the host side as described in
section 7.7. Over the serial interface, this type of access will remain useful.

Embedded software for the MicroBlaze CPU was developed, and was described in
chapter 7. The software provides serial- and Ethernet communication links, controls
the DMA-readout process, and enables the CPU to automatically monitor on-board
devices. Two alternatives for higher-level software that could at a later stage be
used with the system was detailed: MQTT and OPC UA. Both was stated as hav-
ing their advantages, and although the publish/subscribe architecture of MQTT will
likely offer higher performance than the client/server architecture of OPC UA, this
should not be a concern as there should be no need for real-time monitoring from
the host-side as explained in section 4.1.4.

CHAPTER 9. CONCLUSION AND FUTURE WORK 79

9.3 Future Work
Much work remains before the complete pCT can be realized, but this section will
focus primarily on those relevant to its control system.

9.3.1 Porting of the Python Software
The Python framework described in chapter 8 has already proven useful and can be
reused for future projects. However, extensive developments were made to existing
(host-side) ALPIDE testing software, developed by CERN and written in C++,
over the course of this year. This has made modifying this software so as to be
compatible with the system developed in this thesis, desirable. This should not be
too difficult, as it is primarily the lower-level write- and read methods that needs
to be modified. The C++ software is written in a similar fashion as the Python
framework in the sense that specific functionality is restricted to individual board-
types. Porting therefore means defining a VCU118 -board and implementing its
specific methods.

9.3.2 Porting of the Embedded Software
The embedded software should require little porting in order to be used on the Zynq
platform, except from part of the functionality that relates to the specific UART
used with the MicroBlaze.

9.3.3 Extension of the Readout-System
The DMA-based readout solution is tested, and found to be working. If this is to be
used also for the testing of staves, it requires the extension described in section 5.3.1.
Some work will be required to port this to the Zynq device, but this should be
minimal.

9.3.4 Implementation of Higher-Level Control Software
MQTT and OPC UA was described as possible candidates for a higher-level pCT
control- and monitoring system, and both where listed as having their advantages.
Two concrete options were also mentioned, and these should be investigated further.

80 9.4. CONCLUSION

9.4 Conclusion
This thesis has detailed the requirements and full implementation of an embedded
system that can be used to control, automatically configure- as well as monitor mod-
ules on- or external to an FPGA. To this end, a small-footprint soft-core processor
system has been implemented that allows for remote access to such a device’s mem-
ory space through serial- and Ethernet interfaces via a simple platform independent
API. The use of a compact OS ensures modularity and therefore the scalability of
the system, and depending on platform and configuration, no external memory is
required as the small kernel-size and lightweight networking stack allows the soft-
ware to fit entirely within approximately 1 MB of RAM. A DMA-based solution for
data readout was specified, implemented and tested. The extension of both this
system as well as the control-system in general as the pCT project progresses has
been detailed.

Appendix A

Coding Style

The work discussed in the preceding chapters often consist of code written in various
languages; primarily Python and C. Striving for consistency, some guidelines were
followed:

Python
Any code written in Python adheres to PEP8 - Style guide to Python [41]. Some
central elements include:

• Spaces are the preferred indentation method

• Python 3 disallows mixing the use of tabs and spaces for indentation.

• Line-width is 79 characters.

• PEP8 is flexible in terms of naming conventions, but:

– Constants are ALL_CAPS_WITH_UNDERSCORES.
– Variables are all_lowercase_with_underscores.
– Class-methods and -functions are all_lowercase_with_underscores.
– Classes are CamelCase with the first character also capitalized.

C
All code written in C follows the Linux kernel coding style1 with the notable excep-
tions that indentation consists of four spaces instead of eight, and that line width
is 100 characters. To keep memory consumption transparent, no dynamic memory
allocation is used2. To this end all queues and tasks are allocated at compile-time,
and larger local variables such as receive-buffers are declared static.

1Available at https://www.kernel.org/doc/html/v4.10/process/coding-style.html
2LwIP implements a malloc() that allocates chunks of memory from a statically allocated pool.

81

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

Appendix B

Resource Usage

Although it is unlikely that the complete pCT design will be size constrained if
implemented on the current Virtex Ultrascale+ chip, an estimate of the resource-
usage that the central cores used in the control subsystem mandate is given here
should it become a concern. This is based on Xilinx’ numbers, found in the product
guides cited in the bibliography.

The subsystem, including processor, DMAmodules, Ethernet cores etc in addition to
an ALPIDE control- and data module consumed less than 2% of the chips resources.

Core/component LUTs FF
MicroBlaze (max. performance) 4124 226

AXI DMA 20201 35252
1G/2.5G Ethernet Subsystem 32003 53004

AXI UART 16550 308 345

Table B.1: Resource usage of components included in the MicroBlaze subsystem

B.1 RAM
FreeRTOS and LwIP keeps memory usage down; built with the -O3 flag5, the em-
bedded software consumes approximately 1 MB.

5See https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

83

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Appendix C

SPAD

The Serial Protocol for Arbitrary Data (SPAD) is used to transfer information in any
form between two hosts, by providing a frame into which this information can be
placed. It is suitable for data-transfer over streaming interfaces, and provides spe-
cial reliability-measures when the transfer is performed over one that is unreliable.
The actual data is prepended by a two-byte long length indicator, and a byte-long
command-type field used to indicate the type of data that follows. This type in
addition to the structure of the following data is up to the user to implement. For
reliable interfaces, a frame begins with the length- and command-type field, and ends
with a sequence number that is zero on the first packet sent, and incremented by
the sender on each packet until rolling over after 255; a receiver verifies the sequence
number. Buffer sizes typically place a limit on this size lower than the maximum
possible length, and a receiver silently drops any oversized packets. On unreliable
interfaces, packets are in addition first appended a CRC and then COBS-encoded
to ensure re-synchronization is possible if erroneous data is received.

On reception of a packet and execution of its contents, a reply is always returned
containing either one or several ACK-type messages, or error-indicators - each one
byte long. A message can contain several sub-messages and each will cause a ACK or
NACK to be added to the reply. Packets that contain a number of correctly format-
ted sub-messages but some that are malformed will cause any good sub-messages to
generate ACKs, and a final NACK for the first malformed sub-message after which
the remainder is dropped. A collection of ACKs or NACKs generated by one request
is sent as one reply.

85

86 C.1. REQUESTS AND COMMAND TYPES

C.1 Requests and Command Types
Three CMDTYPS were implemented and used; each of which correspond to a type
of payload:

CMDTYP Description
0x01 ALPIDE-destined request
0x02 Peripheral-destined request
0x03 Special command request
0x04 Reply

Table C.1: Application level protocol - CMDTYPes

WRCODE(1B) REGVAL(4B) REGADDR(4B)

RDCODE(1B) REGADDR(4B)

WR-/RDCODE Description
0xAA read
0xFF write

Table C.2: Payload - format for register writes- and reads respectively, and values
of the WR/RD-field.

The number of these and hence length of the payload matches the value found in
the beginning length field. For instance, a packet containing two write-commands
would have a payload 18 bytes long, which would also be the value of the length
field.

ALPIDE-payload:

OPCODE(1B) CHIPID(1B) STAVE(5b) NSNGL(3b) REGADDR(2B)
REGVAL(2B)

OPCODE(1B) CHIPID(1B) STAVE(5b) NSNGL(3b) REGADDR(2B)

OPCODE(1B)

Table C.3: Payload - ALPIDE register writes, -reads, and opcodes, respectively.

Again, any number of these sub-messages can be contained in the payload section
so long as it is shorter in total than the buffer size set by the receiver.

APPENDIX C. SPAD 87

Special command types.

Special cmd val Description
0x01 Spawns the data-readout thread
0x02 Deletes the data-readout thread

Table C.4: Payload - The special command type

The special command is intended to instruct the processor to perform longer proce-
dures.

C.2 Replies
Replies are formatted like requests, have the CMDTYP reply (0x04), and have
in their payload either data if this was requested, one or several ACK-type bytes
to indicate successful execution of a sub-message, one or more ACKs with a final
descriptive error byte if an error was encountered, or a single error.

Data in payload Description
0x01 Sub-message successfully executed
0x02 Peripheral read code
0x03 ALPIDE read code

0x04-0x1F reserved
0x20 CRC check failed
0x21 A COBS-delimiter was not found
0x22 Erroneous COBS-encoding detected
0x23 Timeout following partial packet-reception
0x24 Invalid WR/RD code in peripheral packet
0x25 Unrecognized CMDTYP-field
0x26 Invalid ALPIDE opcode
0x27 Invalid special command

Table C.5: Reply-data ACKs/NACKs

C.3 Examples
The following packet instructs a board to write the value 0x45 to address 0x40000000,
and shows the reply that is returned.

len(2B) CMDTYP(1B) Payload(9B/1B) Seqnum(1B)
Request 0x0009 0x02 0xFF4000000000000045 0
Response 0x0001 0x04 0x01 0

Table C.6: Example write-request and response

88 C.3. EXAMPLES

The following is a read request and the generated response for the value stored at
address 0x40000000, following the write-operation.

len(2B) CMDTYP(1B) Payload(5B/5B) Seqnum(1B)
Request 0x0005 0x02 0xAA40000000 1
Response 0x0005 0x04 0x0200000045 1

Table C.7: Example read-request and response.

Writing the value 0x1FC to the command register (0x01) of the ALPIDE on stave
0x01 and with chip ID 0x01:

len(2B) CMDTYP(1B) Payload(8B/1B) Seqnum(1B)
Request 0x0007 0x01 0x9C0109000101FC 2
Response 0x0001 0x04 0x01 2

(WR)OPCODE CHIPID STAVE/NSNGL ADDR VAL
0x9C 0x01 0x09 (0b00001001) 0x0001 0x01FC

Table C.8: Example ALPIDE write-request and response, and contents of payload.

To read the value that was written:

len(2B) CMDTYP(1B) Payload(5B/3B) Seqnum(1B)
Request 0x0005 0x01 0x4E01090001 3
Response 0x0003 0x04 0x0301FC 3

Table C.9: Example ALPIDE read-request and response.

Appendix D

Python Framework

This section provides an overview of the Python framework and its API used in
chapter 8. Some methods/functions and classes are left out for brevity.

board.py

c l a s s Board (ob j e c t) :
de f __init__(s e l f , i n t e r f a c e) :

"""Initialize a board with a given (MainSerial or MainSocket) interface. """
de f write_reg (s e l f , addr , value , get_ack=True) :

""" Write a 32 bit value to a 32 bit address. """
de f wr i t e_spec i a l (s e l f , data) :

""" Writes a special command to the CPU. """
de f wr i te_mult ip le_regs (s e l f , reg_val_pairs) :

""" Packets multiple address -value pairs in a packet writes the result. """
de f read_reg (s e l f , addr) :

""" Returns the value stored at the 32 bit address. """
de f read_mult iple_regs (s e l f , addr) :

""" Packets multiple addresses in a packet and returns the values. """
de f wr i te_and_assert_per iphera l (s e l f , reg , val , bit_mask=0xFFFF, msg=None) :

"""Write a 32 bit value to a 32 bit address and assert the value.
read-only-bits can be masked with bit_mask.
"""

board_vcu118.py.py

c l a s s BoardVcu118 (Board) :
de f __init__(s e l f , s t ave s=None , i n t e r f a c e=None) :

"""Initialize a board with a given (MainSerial or MainSocket) interface
and optional stave.
"""

de f get_stave (s e l f , stave_id) :
""" Returns the stave with the corresponding stave_id if it exists. """

de f get_alp ide (s e l f , stave_id , chip_id) :
""" Returns the Alpide with given IDs if it exists. """

de f add_alpide (s e l f , a lp ide , stave_to_add_to) :
""" Adds an Alpide to a stave on the board. """

de f s t a r t_o f f l o ad (s e l f , board_ip=None , port=None , send_cmd_only=True ,
use_tcp=False) :

""" Starts offloading of Alpide data from the PRU. """

89

90

de f end_of f load (s e l f) :
""" Ends offloading of Alpide data from the PRU. """

de f setup_test_vector (s e l f , a lp ide , tv0 , tv1 , tv2) :
""" Loads matching set of test-vectors into ALPIDE and ADM. """

de f reset_data_module (s e l f , data_module_number) :
""" Resets the given ALPIDE data-module."""

de f reset_bank (s e l f , bank_num=None , g l oba l_r s t=False) :
""" Resets the bank with ID bank_num. """

. . . va r i ous other methods f o r s p e c i f i c VCU118 f u n c t i o n a l i t y . . .

alpide.py

c l a s s Alpide (ob j e c t) :
de f __init__(s e l f , chip_id , stave_id , pru_id , conf=None ,

half_b_val=None , d i s c r i_s i gn_va l=None) :
de f read_reg (s e l f , reg) :

""" Read an Alpide register. """
de f write_reg (s e l f , reg , va l) :

""" Write to an Alpide register. """
de f send_opcode (s e l f , opcode) :

""" Send an opcode to the ALPIDE via its command register. """
de f i n i t_a l p i d e (s e l f , read_back=False) :

""" init. chip according to operations manual (defaults) """
de f r e s e t_a lp id e (s e l f , read_back=True) :

""" Manually reset all chip registers. """
de f write_and_assert_alpide (s e l f , reg , val , bit_mask=0xFFFF) :

""" Writes value val to register reg of an ALPIDE and
asserts the written value.
Read-only-bits can be masked with bit_mask.
"""

. . . va r i ous other methods f o r p i x e l masking , per iphery con t r o l r e g i s t e r
c on f i gu ra t i on s , ADC, readout , e t c . . .

readoutdata_recvr.py

c l a s s ReadoutDataReceiver (ob j e c t) :
de f __init__(s e l f , port , addr , use_tcp=False , i s_thread=False ,

queue_to_sel f=None , queue_to_board=None) :
de f receive_data_udp (s e l f , receive_num_packets=None) :

""" Receives data from a board via UDP """
de f receive_data_tcp (s e l f , receive_num_packets=None) :

""" Receives data from a board via TCP. Also handles
the listen + connect procedure.
"""

de f bytes_to_int (s e l f , to_convert) :
"""Helper function to turn bytes received into integers. """

de f measure_throughput (s e l f , packet_size , bytes_to_get) :
"""Measure the TX throughput of the sender. Log results to file. """

de f measure_packet_loss (s e l f , packet_size , secs_to_recv =10∗∗6):
""" Receive sequenced datagrams from a sender. Log mismatches
between expected and received datagrams. """

APPENDIX D. PYTHON FRAMEWORK 91

utility.py

de f get_alpide_packet (i n t e r f a c e , opcode=None , ch ip id=None , s tave_of s t=None ,
reg_val_pairs=None , skip_packaging=False) :

""" Returns a packet intended for an ALPIDE with given features """
de f get_per iphera l_packet (i n t e r f a c e , reg_val_pairs=None) :

""" Returns a packet intended for a PRU peripheral. """
""" Receives data from a board via UDP """

de f get_spec ia l_packet (i n t e r f a c e , data) :
""" Returns a packet containing one of the special commands """

Appendix E

Various

E.1 ALPIDE Mask-Application
Application of the ALPIDE pixel masks is a large part of the chip-configuration
process, and the procedure of masking one or more pixels is briefly described here.

Configuration address bus

Region Selector Field < 4:0> 3’b100
Region
Broad-
cast

Not Used Not Used
Toggle

Bit

Pulse
<15:0>
Select

Row
<15:0>
Select

Column
<31:15>
Select

Column
<15:0>
Select

Bit < 15:11> Bit < 10:8> Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Figure E.1: The pixel-matrix addressing scheme [10].

The pixel matrix is divided into 32 regions of size 32 × 16. When configuring a pixel
for masking, the (global) pixel configuration register is first set; this is buffered and
applied to all mask- and pulse registers, but not yet applied if the row- and column
selection bits in figure E.1 are not set. A sub-section in a given region is then selected
by first setting the region selector- and column selection fields to their desired values
in the address field above, and writing to that address a value that selects one or
several of these columns. To select a row, the same region selection field is applied
with the row-bit set and the column-fields cleared, and a value corresponding to
the desired row written to that address. The value that was written to the pixel
configuration register is now latched to the selected pixels. The column- and row
bits should then cleared. Masking a single pixel hence requires four writes to the
ACM:

• One write to the pixel configuration register.

• One write to select a column.

• One write to select a row.

– Whatever was written to the pixel configuration register is now applied.

• One write to clear the column- and row select bits.

When applying a mask to the entire chip during configuration, the first write-
operation that sets the pixel configuration register is only performed once. Fur-
thermore, looping over all pixels is achieved by selecting first a selection of columns

93

94 E.1. ALPIDE MASK-APPLICATION

corresponding to the bits to be masked in a given row, and then selecting that row.
In this manner, 16 pixels are set at a time if the entire matrix is iterated over.
If configuring all pixels of the matrix, then, the number of write-operations to be
performed is:

• Five initial writes to first unmask all pixels, followed by setting the PIXC-
NFG_DATA bit.

• For all rows in each of the 32 regions:

– One write to select a group of columns.

– One write to select a row - this masks the pixels that are selected by the
columns/row combination.

– One write to clear the selection bits.

– Repeat.

Multiple rows, regions or even the entire matrix can be configured simultaneously
in this way.

0 1 2 3 4 5 6 7 1023102210211020

0

1

2

3

4

5

509

510

511

508

ROWREGP_SEL[0]
ROWREGM_SEL[0]

ROWREGP_SEL[1]
ROWREGM_SEL[1]

ROWREGP_SEL[2]
ROWREGM_SEL[2]

ROWREGP_SEL[3]
ROWREGM_SEL[3]

ROWREGP_SEL[4]
ROWREGM_SEL[4]

ROWREGP_SEL[5]
ROWREGM_SEL[5]

ROWREGP_SEL[508]
ROWREGM_SEL[508]

ROWREGP_SEL[509]
ROWREGM_SEL[509]

ROWREGP_SEL[510]
ROWREGM_SEL[510]

ROWREGP_SEL[511]
ROWREGM_SEL[511]

C
O
LS
E
L
[0
]

C
O
LS
E
L
[1
]

C
O
LS
E
L
[2
]

C
O
LS
E
L
[3
]

C
O
LS
E
L
[4
]

C
O
LS
E
L
[5
]

C
O
LS
E
L
[6
]

C
O
LS
E
L
[7
]

C
O
LS
E
L
[1
0
2
0
]

C
O
LS
E
L
[1
0
2
1
]

C
O
LS
E
L
[1
0
2
2
]

C
O
LS
E
L
[1
0
2
3
]

R
O
W
R
E
G
P
_
S
E
L
[0
]

R
O
W
R
E
G
M
_
S
E
L
[0
]

R
O
W
R
E
G
P
_
S
E
L
[1
]

R
O
W
R
E
G
M
_
S
E
L
[1
]

R
O
W
R
E
G
P
_
S
E
L
[2
]

R
O
W
R
E
G
M
_
S
E
L
[2
]

R
O
W
R
E
G
P
_
S
E
L
[3
]

R
O
W
R
E
G
M
_
S
E
L
[3
]

R
O
W
R
E
G
M
_
S
E
L
[5
1
1
]

R
O
W
R
E
G
P
_
S
E
L
[5
1
1
]

R
O
W
R
E
G
M
_
S
E
L
[5
1
0
]

R
O
W
R
E
G
P
_
S
E
L
[5
1
0
]

Figure E.2: The pixel-matrix [10].

APPENDIX E. VARIOUS 95

E.2 Documentation and Commenting

C
As the code is part of the pCT work package 3 repository, emphasis was placed on
proper documentation. In-code documentation follows the typical Javadoc syntax:

/**
* @brief Read an ALPIDE register.
*
* @param ctrl_base_addr the base-address of the ALPIDE control module.
* @param chip_id ID of the chip.
* @param reg_addr address of register to read.
*
* @return the value stored in the register.
*/
u16 read_alp_reg (u32 ctrl_base_addr , u8 chip_id , u16 reg_addr) ;

Doxygen-generated documentation is also produced for all code, and is available
on the official pCT work package 3 Gitlab repository1. A document describing the
embedded software in general is also found here.

Documentation in general follows a "header files are for the user, source files for the
developer"-mantra; source files are commented thoroughly, while the header files are
commented more simply, with little details of e.g actual implementation.

1https://git.app.uib.no/pct/wp3

https://git.app.uib.no/pct/wp3

Appendix F

Repository Structure

Version control with Git was used continuously in order to integrate the firmware
and software developed as part of the work done in this thesis in to the pre-existing
pCT Work-Package 3 repository. The structure of this repository is shown below.

https://git.app.uib.no/pct/wp3

pct/wp3
boards
design_def (docs, PRU-word spec)

design_req (currently blank)
firmware

bitstreams (new and previous bitstreams)
docs
scripts (scripts to generate Vivado project(s))
sim (contains a simulatable model of the ALPIDE; not currently used)
source

blocks (block diagrams for Vivado)
constraints (board constraints)
ip
modules (contains board modules; ADM, ACM, etc)
top-level (top-level descriptions of boards)

software
embedded

embedded_sw_bsp (board support files for embedded software)
embedded_sw

docs (embedded sw docs)
src (embedded sw source)

host (host-side sw)
dep (Python dependencies)
docs (host-side sw docs)
src (host-side sw source)

97

https://git.app.uib.no/pct/wp3

al
pi

de
_c

on
tr

ol
_0

al
pi

de
_d

at
a_

0

ax
i_

br
am

_c
tr

l_
0

A
X

I B
R

A
M

 C
on

tr
ol

le
r

S
_A

X
I

B
R

A
M

_P
O

R
T

A

B
R

A
M

_P
O

R
T

B
s_

ax
i_

ac
lk

s_
ax

i_
ar

es
et

n

ax
i_

br
am

_c
tr

l_
0_

br
am

B
lo

ck
 M

em
or

y
G

en
er

at
or

B
R

A
M

_P
O

R
T

A

B
R

A
M

_P
O

R
T

B

rs
ta

_b
us

y

rs
tb

_b
us

y

ax
i_

et
he

rn
et

_0

A
X

I 1
G

/2
.5

G
 E

th
er

ne
t S

ub
sy

st
em

s_
ax

i

s_
ax

is
_t

xd

s_
ax

is
_t

xc

m
_a

xi
s_

rx
d

m
_a

xi
s_

rx
s

m
di

o

sg
m

ii

lv
ds

_c
lk

s_
ax

i_
lit

e_
re

se
tn

s_
ax

i_
lit

e_
cl

k

m
ac

_i
rq

ax
is

_c
lk

ax
i_

tx
d_

ar
st

n

ax
i_

tx
c_

ar
st

n

ax
i_

rx
d_

ar
st

n

ax
i_

rx
s_

ar
st

n

in
te

rr
up

t

si
gn

al
_d

et
ec

t

cl
k1

25
_o

ut

cl
k3

12
_o

ut

rs
t_

12
5_

ou
t

riu
_v

al
id

_3

riu
_v

al
id

_2

riu
_v

al
id

_1

riu
_p

rs
nt

_3

riu
_p

rs
nt

_2

riu
_p

rs
nt

_1

riu
_r

dd
at

a_
3[

15
:0

]

riu
_r

dd
at

a_
2[

15
:0

]

riu
_r

dd
at

a_
1[

15
:0

]

tx
_d

ly
_r

dy
_1

rx
_d

ly
_r

dy
_1

tx
_v

tc
_r

dy
_1

rx
_v

tc
_r

dy
_1

tx
_d

ly
_r

dy
_2

rx
_d

ly
_r

dy
_2

tx
_v

tc
_r

dy
_2

rx
_v

tc
_r

dy
_2

tx
_d

ly
_r

dy
_3

rx
_d

ly
_r

dy
_3

tx
_v

tc
_r

dy
_3

rx
_v

tc
_r

dy
_3

tx
_l

og
ic

_r
es

et

rx
_l

og
ic

_r
es

et

rx
_l

oc
ke

d

tx
_l

oc
ke

d

tx
_b

sc
_r

st
_o

ut

rx
_b

sc
_r

st
_o

ut

tx
_b

s_
rs

t_
ou

t

rx
_b

s_
rs

t_
ou

t

tx
_r

st
_d

ly
_o

ut

rx
_r

st
_d

ly
_o

ut

tx
_b

sc
_e

n_
vt

c_
ou

t

tx
_b

s_
en

_v
tc

_o
ut

rx
_b

sc
_e

n_
vt

c_
ou

t

rx
_b

s_
en

_v
tc

_o
ut

riu
_c

lk
_o

ut

riu
_w

r_
en

_o
ut

tx
_p

ll_
cl

k_
ou

t

rx
_p

ll_
cl

k_
ou

t

tx
_r

dc
lk

_o
ut

riu
_a

dd
r_

ou
t[5

:0
]

riu
_w

r_
da

ta
_o

ut
[1

5:
0]

riu
_n

ib
bl

e_
se

l_
ou

t[1
:0

]

rx
_b

tv
al

_1
[8

:0
]

rx
_b

tv
al

_2
[8

:0
]

rx
_b

tv
al

_3
[8

:0
]

ph
y_

rs
t_

n[
0:

0]

ax
i_

et
he

rn
et

_0
_d

m
a

A
X

I D
ire

ct
 M

em
or

y
A

cc
es

s

S
_A

X
I_

LI
T

E

M
_A

X
I_

S
G

M
_A

X
I_

M
M

2S

M
_A

X
I_

S
2M

M

M
_A

X
IS

_M
M

2S
S

_A
X

IS
_S

2M
M

M
_A

X
IS

_C
N

T
R

L
S

_A
X

IS
_S

T
S

s_
ax

i_
lit

e_
ac

lk

m
_a

xi
_s

g_
ac

lk

m
_a

xi
_m

m
2s

_a
cl

k

m
_a

xi
_s

2m
m

_a
cl

k

ax
i_

re
se

tn

m
m

2s
_p

rm
ry

_r
es

et
_o

ut
_n

m
m

2s
_c

nt
rl_

re
se

t_
ou

t_
n

s2
m

m
_p

rm
ry

_r
es

et
_o

ut
_n

s2
m

m
_s

ts
_r

es
et

_o
ut

_n

m
m

2s
_i

nt
ro

ut

s2
m

m
_i

nt
ro

ut

ax
i_

in
te

rc
on

ne
ct

_c
on

tr
ol

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

ax
i_

in
te

rc
on

ne
ct

_d
at

a

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

Nax
i_

tim
er

_0

A
X

I T
im

er

S
_A

X
I

ca
pt

ur
et

rig
0

ca
pt

ur
et

rig
1

ge
ne

ra
te

ou
t0

ge
ne

ra
te

ou
t1

pw
m

0

in
te

rr
up

t

fr
ee

ze

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

ax
i_

ua
rt

16
55

0_
0

A
X

I U
A

R
T

16
55

0

S
_A

X
I

U
A

R
T

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n
ip

2i
nt

c_
irp

t

fr
ee

ze

cl
k_

40

cl
k_

10
0

cl
k_

12
0

fif
o_

st
re

am
_d

m
a

A
X

I D
ire

ct
 M

em
or

y
A

cc
es

s

S
_A

X
I_

LI
T

E

M
_A

X
I_

S
2M

M
S

_A
X

IS
_S

2M
M

s_
ax

i_
lit

e_
ac

lk

m
_a

xi
_s

2m
m

_a
cl

k

ax
i_

re
se

tn

s2
m

m
_p

rm
ry

_r
es

et
_o

ut
_n

s2
m

m
_i

nt
ro

ut

gl
ob

al
_r

eg
s

lo
ck

ed
_c

lk

m
di

o_
m

dc

m
dm

_1

M
ic

ro
B

la
ze

 D
eb

ug
 M

od
ul

e
(M

D
M

)

M
B

D
E

B
U

G
_0

D
eb

ug
_S

Y
S

_R
st

m
ic

ro
bl

az
e_

0

M
ic

ro
B

la
ze

IN
T

E
R

R
U

P
T

D
LM

B

IL
M

B

M
_A

X
I_

D
P

D
E

B
U

G

C
lk

R
es

et

m
ic

ro
bl

az
e_

0_
ax

i_
in

tc

A
X

I I
nt

er
ru

pt
 C

on
tr

ol
le

r

s_
ax

i

in
te

rr
up

t

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

in
tr

[5
:0

]

pr
oc

es
so

r_
cl

k

pr
oc

es
so

r_
rs

t

m
ic

ro
bl

az
e_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

M
04

_A
X

I

M
05

_A
X

I

M
06

_A
X

I

M
07

_A
X

I

M
08

_A
X

I

S
01

_A
X

I

S
02

_A
X

I

S
03

_A
X

I

M
09

_A
X

I

S
04

_A
X

I

S
05

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N

M
03

_A
C

LK

M
03

_A
R

E
S

E
T

N

M
04

_A
C

LK

M
04

_A
R

E
S

E
T

N

M
05

_A
C

LK

M
05

_A
R

E
S

E
T

N

M
06

_A
C

LK

M
06

_A
R

E
S

E
T

N

M
07

_A
C

LK

M
07

_A
R

E
S

E
T

N

M
08

_A
C

LK

M
08

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

S
02

_A
C

LK

S
02

_A
R

E
S

E
T

N

S
03

_A
C

LK

S
03

_A
R

E
S

E
T

N

M
09

_A
C

LK

M
09

_A
R

E
S

E
T

N

S
04

_A
C

LK

S
04

_A
R

E
S

E
T

N

S
05

_A
C

LK

S
05

_A
R

E
S

E
T

N

m
ic

ro
bl

az
e_

0_
lo

ca
l_

m
em

or
y

D
LM

B

IL
M

B

cl
k_

10
0_

cp
u

S
Y

S
_R

st

m
ic

ro
bl

az
e_

0_
xl

co
nc

at

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

In
4[

0:
0]

In
5[

0:
0]

do
ut

[5
:0

]

of
flo

ad
_s

tr
ea

m

ph
y_

re
se

t_
ou

t[0
:0

]

re
se

t_
n_

pi
f_

40
[0

:0
]

re
se

t_
n_

pi
f_

12
0[

0:
0]

re
se

t_
sy

s

sg
m

ii_
lv

ds

sg
m

ii_
ph

yc
lk

sy
s_

re
se

t_
40

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sy
s_

re
se

t_
10

0

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sy
s_

re
se

t_
12

0

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

ua
rt

Figure F.1: The MicroBlaze subsystem as it was implemented on the VCU118 plat-
form.

Bibliography

[1] Particle Therapy Co-Operative Group "Particle Therapy Patient Statis-
tics (per end of 2016)". Particle Therapy Co-Operative Group, 2017.
[Online]. Available: https://www.ptcog.ch/archive/patient_statistics/
Patientstatistics-updateDec2016.pdf

[2] D. J. Brenner, E. J. Hall "Computed Tomography — An Increasing Source
of Radiation Exposure". New England Journal of Medicine 357.22: 2277-
2284, 2007. [Online]. Available: https://www.nejm.org/doi/full/10.1056/
NEJMra072149

[3] J. D. Mathews, et al. "Cancer risk in 680 000 people exposed to computed to-
mography scans in childhood or adolescence: data linkage study of 11 million
Australians". Bmj 346: f2360, 2013. [Online]. Available: https://www.bmj.
com/content/bmj/346/bmj.f2360.full.pdf

[4] D. L. Miglioretti., et al. "The Use of Computed Tomography in Pediatrics and
the Associated Radiation Exposure and Estimated Cancer Risk". JAMA pedi-
atrics 167.8: 700-707, 2013

[5] K. Yamoah, P. A. S. Johnstone "Proton beam therapy: clinical utility and cur-
rent status in prostate cancer". OncoTargets and therapy 9: 5721, 2016

[6] H. E. S. Pettersen, et al. "Proton tracking in a high-granularity Digital Track-
ing Calorimeter for proton CT purposes". Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 860: 51-61, 2017. [Online]. Available: https:
//arxiv.org/ftp/arxiv/papers/1611/1611.02031.pdf

[7] R. P. Johnson, et al. "Results from a Prototype Proton-CT Head Scanner". Con-
ference on the Application of Accelerators in Research and Industry, CAARI
2016, 30 October – 4 November 2016, Ft. Worth, TX, USA. [Online]. Available:
https://arxiv.org/pdf/1707.01580.pdf

[8] P. C. Shrimpton, M. C.Hillier, M. A. Lewis, M. Dunn "Doses from computed
tomography (CT) examinations in the UK-2003 review (Vol. 67)". National
Radiological Protection Board, March 2005

[9] G. A. Rinella "The ALPIDE pixel sensor chip for the upgrade of the AL-
ICE Inner Tracking System". Nuclear Instruments and Methods in Physics

99

https://www.ptcog.ch/archive/patient_statistics/Patientstatistics-updateDec2016.pdf
https://www.ptcog.ch/archive/patient_statistics/Patientstatistics-updateDec2016.pdf
https://www.nejm.org/doi/full/10.1056/NEJMra072149
https://www.nejm.org/doi/full/10.1056/NEJMra072149
https://www.bmj.com/content/bmj/346/bmj.f2360.full.pdf
https://www.bmj.com/content/bmj/346/bmj.f2360.full.pdf
https://arxiv.org/ftp/arxiv/papers/1611/1611.02031.pdf
https://arxiv.org/ftp/arxiv/papers/1611/1611.02031.pdf
https://arxiv.org/pdf/1707.01580.pdf

100 BIBLIOGRAPHY

Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 824, pp. 434-438, 7. May 2016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0168900216303825

[10] ALICE ITS ALPIDE development team ALPIDE Operations Manual version
0.3. CERN, 2016

[11] H. Shafiee Prototyping of a Tracking Calorimeter for Computed Tomography in
Proton Therapy [Presentation]. UiB pCT workshop, 07 March 2018

[12] H. F. -W. Sadrozinski, et al. "Operation of the Preclinical Head Scanner for Pro-
ton CT". Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment, 831, pp. 394-
399, 21. September 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0168900216001455

[13] G. Poludniowski, N. M. Allinson, P. M. Evans "Proton radiography and to-
mography with application to proton therapy". The British journal of radiology,
88(1053), 20150134, 2015

[14] Texas Instruments "Interface Circuits for TIA/EIA-232-F" Texas Instruments,
September 2002. [Online]. Available: http://www.ti.com/lit/an/slla037a/
slla037a.pdf

[15] Samtec "PCIe Optical Half Cables Application Note". Samtec, Jan-
uary 2016. [Online]. Available: http://suddendocs.samtec.com/
notesandwhitepapers/pcie_half_cable_app_note.pdf

[16] E. Haseloff "Latch-Up, ESD, and Other Phenomena". Texas Instruments, Ap-
plication Report, SLYA014A - May 2000. [Online]. Available: http://www.ti.
com/lit/an/slya014a/slya014a.pdf

[17] J. Szornel "Radiation Effect Studies on ALPIDE at 88” Cyclotron" [Pre-
sentation]. US LHC User’s Meeting, November 2016. [Online]. Avail-
able: https://indico.cern.ch/event/561618/contributions/2354431/
attachments/1365249/2067938/jms_alpide_rad.pdf

[18] Xilinx "UltraScale+ FPGAs - Product Tables and Product Se-
lection Guide". Xilinx, 2018. [Online]. Available: https://
www.xilinx.com/support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.pdf

[19] Xilinx "MicroBlaze Processor Reference Guide (UG984)". Xil-
inx, October 5, 2016 [Online]. Available: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2016_3/
ug984-vivado-microblaze-ref.pdf

[20] A. Hanafi, M. Karim "Embedded Web Server for Real-time Remote Control and
Monitoring of an FPGA-based On-Board Computer System". LISTA Labora-
tory – Faculty of Sciences Dhar el Mahraz University Sidi Mohammed Ben
Abdellah, 2015. [Online]. Available: https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=7106185

https://www.sciencedirect.com/science/article/pii/S0168900216303825
https://www.sciencedirect.com/science/article/pii/S0168900216303825
https://www.sciencedirect.com/science/article/pii/S0168900216001455
https://www.sciencedirect.com/science/article/pii/S0168900216001455
http://www.ti.com/lit/an/slla037a/slla037a.pdf
http://www.ti.com/lit/an/slla037a/slla037a.pdf
http://suddendocs.samtec.com/notesandwhitepapers/pcie_half_cable_app_note.pdf
http://suddendocs.samtec.com/notesandwhitepapers/pcie_half_cable_app_note.pdf
http://www.ti.com/lit/an/slya014a/slya014a.pdf
http://www.ti.com/lit/an/slya014a/slya014a.pdf
https://indico.cern.ch/event/561618/contributions/2354431/attachments/1365249/2067938/jms_alpide_rad.pdf
https://indico.cern.ch/event/561618/contributions/2354431/attachments/1365249/2067938/jms_alpide_rad.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug984-vivado-microblaze-ref.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106185
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7106185

BIBLIOGRAPHY 101

[21] Eclipse "Embedded MQTT-SN C/C++ Client". [Online]. Available: https://
www.eclipse.org/paho/clients/c/embedded-sn/

[22] OPC Foundation "What is OPC?". OPC Foundation. n.d. [Online]. Available:
https://opcfoundation.org/about/what-is-opc/

[23] C. V. Soare "OPC UA IPbus server". Atlas Central DCS,
CERN Summer Student Report, September 2015. [On-
line]. Available: https://cds.cern.ch/record/2055198/files/
OPCUA-IPbus-Server-Cristian-Valeriu-Soare-report.pdf

[24] D. R. Hlaluku "Tests with beam setup of the TileCal phase-II upgrade electron-
ics". High Energy Particle Physics Workshop 2017, 2017 J. Phys.: Conf. Ser.
889 012005

[25] W. Kamp "AXI over Ethernet; A Protocol for the Monitoring and Control of
FPGA Clusters". High Performance Computing Research Lab Auckland Uni-
versity of Technology, New Zealand. [Online]. Available: https://ieeexplore.
ieee.org/document/8280120/

[26] "Etherbone". [Online]. Available: https://www.ohwr.org/projects/
etherbone-core

[27] S. Cheshire, M. Baker "Consistent overhead byte stuffing". IEEE/ACM trans-
actions on networking, vol.7, no. 2, April 1999. [Online]. Available: http:
//www.stuartcheshire.org/papers/COBSforToN.pdf

[28] IEEE Computer Society "IEEE Standard for Ethernet". IEEE Std 802.3TM-2012
(Revision of IEEE Std 802.3-2008)

[29] Xilinx "AXI 1G/2.5G Ethernet Subsystem v7.0 Product Guide (PG138)".
Xilinx, April 5, 2017. [Online]. Available: https://www.xilinx.
com/support/documentation/ip_documentation/axi_ethernet/v7_1/
pg138-axi-ethernet.pdf

[30] Xilinx "AXI UART 16550 v2.0 LogiCORE IP Product Guide (PG143)".
Xilinx, October 5, 2016. [Online]. Available: https://www.xilinx.
com/support/documentation/ip_documentation/axi_uart16550/v2_0/
pg143-axi-uart16550.pdf

[31] Xilinx "AXI UART Lite v2.0 LogiCORE IP Product Guide (PG142)".
Xilinx, April 5, 2017. [Online]. Available: https://www.xilinx.
com/support/documentation/ip_documentation/axi_uartlite/v2_0/
pg142-axi-uartlite.pdf

[32] Xilinx "LightWeight IP Application examples". Xilinx, November 21, 2014.
[Online]. Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1026.pdf

[33] Xilinx "AXI DMA v7.1 LogiCORE IP Product Guide (PG021)". Xilinx,
October 4, 2017. [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

https://www.eclipse.org/paho/clients/c/embedded-sn/
https://www.eclipse.org/paho/clients/c/embedded-sn/
https://opcfoundation.org/about/what-is-opc/
https://cds.cern.ch/record/2055198/files/OPCUA-IPbus-Server-Cristian-Valeriu-Soare-report.pdf
https://cds.cern.ch/record/2055198/files/OPCUA-IPbus-Server-Cristian-Valeriu-Soare-report.pdf
https://ieeexplore.ieee.org/document/8280120/
https://ieeexplore.ieee.org/document/8280120/
https://www.ohwr.org/projects/etherbone-core
https://www.ohwr.org/projects/etherbone-core
http://www.stuartcheshire.org/papers/COBSforToN.pdf
http://www.stuartcheshire.org/papers/COBSforToN.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ethernet/v7_1/pg138-axi-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ethernet/v7_1/pg138-axi-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ethernet/v7_1/pg138-axi-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uartlite/v2_0/pg142-axi-uartlite.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

102 BIBLIOGRAPHY

[34] Missing Link Electronics, Inc. "10G/25G TCP/IP Stack". Missing Link
Electronics, Inc. [Online]. Available: https://www.xilinx.com/products/
intellectual-property/1-4dbvjf.html

[35] Intilop Inc "10G TCP and UDP Offload Engine. Full TCP UDP Offload".
Intilop Inc. https://www.xilinx.com/products/intellectual-property/
1-4dbvjf.html

[36] M. J. Christensen, T. Richter "Achieveing reliable UDP transmission at 10 Gb/s
using BSD socket for data acquisition systems". [Online]. Available: https:
//arxiv.org/pdf/1706.00333.pdf

[37] F. Costa et al. "The new frontier of the DATA acquisition using 1 and 10
Gb/s Ethernet links". TIPP 2011 - Technology and Instrumentation for Particle
Physics 2011

[38] G. Bauer, et al. "10 Gbps TCP/IP streams from the FPGA for HighEnergy
Physics". 20th International Conference on Computing in High Energy and
Nuclear Physics

[39] O. S. Grøttvik "Design of High-Speed Digital Readout System for Use in Pro-
ton Computed Tomography". UiB, Master thesis, June 2017. [Online]. Avail-
able: http://bora.uib.no/bitstream/handle/1956/16041/thesis_final.
pdf?sequence=1&isAllowed=y

[40] Xilinx "AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059)".
Xilinx, December 20, 2017. [Online]. Available: https://www.xilinx.com/
support/documentation/ip_documentation/axi_interconnect/v2_1/
pg059-axi-interconnect.pdf

[41] G. van Rossum, B. Warsaw, N. Coghlan "PEP8 - Style Guide for Python".
Python, August 1, 2013. [Online]. Available: https://www.python.org/dev/
peps/pep-0008/

https://www.xilinx.com/products/intellectual-property/1-4dbvjf.html
https://www.xilinx.com/products/intellectual-property/1-4dbvjf.html
https://www.xilinx.com/products/intellectual-property/1-4dbvjf.html
https://www.xilinx.com/products/intellectual-property/1-4dbvjf.html
https://arxiv.org/pdf/1706.00333.pdf
https://arxiv.org/pdf/1706.00333.pdf
http://bora.uib.no/bitstream/handle/1956/16041/thesis_final.pdf?sequence=1&isAllowed=y
http://bora.uib.no/bitstream/handle/1956/16041/thesis_final.pdf?sequence=1&isAllowed=y
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

	Abstract
	Acknowledgements
	Acronyms
	Glossary
	Introduction
	Project Motivation and Goals
	Thesis Structure

	Computed Tomography
	Ionizing Radiation
	Interactions of Photons and Matter
	Interactions of Particles and Matter
	Particle Therapy and Proton CT Motivation
	Proton CT

	The UiB pCT and the ALPIDE Pixel Sensor
	The ALPIDE Pixel Sensor
	Basic Principles of Operation
	Pixels
	Data Transmission Unit
	ALPIDE - Readout Unit Interface
	Control Interface and Chip Addressing

	The UiB pCT
	Existing pCT Systems
	Readout Electronics
	Current Implementation

	The pCT Control System
	Features of a pCT Control System
	RU - Host Interface
	Board Initialization
	Provision of House-Keeping Data
	ALPIDE Monitoring
	Additional Features and Data Readout
	The AXI Master

	Clock- & Trigger Distribution
	The PRU Processor
	Operating Systems

	PRU Software Applications
	A Summary of the Previous Sections

	Firmware
	Requirements
	Implementation
	Ethernet Subsystem
	MicroBlaze Configuration
	UART
	Monitor Module

	Readout of Detector-Data
	Development-Stage Data Readout
	Data-Readout in a Complete System
	Other Considerations

	Control Message Format and Protocol
	Requirements
	An Application-Level Protocol
	Packet Format
	Considerations for Unreliable Interfaces
	COBS
	Packet Fields
	Message Replies

	Addressing ALPIDEs via a Peripheral Command
	Hardware Offloading of the CRC- and COBS Calculations

	Software
	Requirements
	Overview
	Development Principles

	Software Structure
	Control interface
	Data-Readout
	Monitoring

	ALPIDE Control Module Driver
	Data-Exchange Between Threads
	Software Configuration
	LwIP and FreeRTOS

	Future development

	System Testing
	Host-Side Software
	API

	Testing
	Testing of Communication
	Test Bench for the Updated ALPIDE Data Module
	Test of Data-Readout Solution
	UDP Packet Loss
	TCP
	Testing of the Full Readout Chain
	Testing of Self-Contained PRU Monitoring

	Conclusion and Future Work
	Performance Evaluation
	Design Evaluation
	Future Work
	Porting of the Python Software
	Porting of the Embedded Software
	Extension of the Readout-System
	Implementation of Higher-Level Control Software

	Conclusion

	Coding Style
	Resource Usage
	RAM

	SPAD
	Requests and Command Types
	Replies
	Examples

	Python Framework
	Various
	ALPIDE Mask-Application
	Documentation and Commenting

	Repository Structure
	Bibliography

