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Abstract

This thesis covers the topic in atomic physics: Interaction of a strong external field with
Rydberg hydrogen atom. In three scientific publications, we have targeted physical processes
such as the field ionization in the strong terahertz field, back-scattering in the Coulomb field
and spatial transport of electrons.
First two of them deal with the study of the ionization of the Rydberg atoms in the terahertz
field. Rydberg atoms are highly excited stabilized states with very big dipole moments which
makes them very sensitive to the external field. As external field we use THz radiation, submil-
limeter radiation in the range of 100 µm - 1 mm, which generators are in the state-of-the-art
development. Specifically, we treat with linearly polarized single-cycle pulses with high inten-
sity and picosecond duration. High intensity and low frequency brings us to the strong field,
where the field is so strong, that Coulomb potential may be deformed and field ionization is
possible.

Driving linearly polarized single-cycle pulse is only bidirectional, indeed the electron is
driven mostly to the one direction by the field in the first half of the cycle and to the opposite
direction in the second half. Affirmation is given by the observing of the probability density
during the field propagation.
When some pulse asymmetry is included, then it involves new phenomena, which we have
observed at different energy level of initial Rydberg states. While 15-d state may be ionized
already in the first half of the pulse, where the sinus pulse has the opposite direction to the
second half, lower energy states (6-d and 9-d) are ionized at the second half of the pulse with
a higher peak intensity, at the opposite direction. Therefore, 15d electron has lower emission
energy compare to lower lying Rydberg states.

We have numerically simulated the experiment published in April 2014 by Li and Sha (Uni-
versity of Virginia), where sodium d−Rydberg atoms have been ionized by single-cycle pulse
with the duration 10-100 longer than electron Rydberg period and the ionization probability
with increasing field strength has been measured. Curves in our simulation grow sigmoidally
with the ionization scaling law n−3 for the field strength. This field strength scaling is inversely
proportional to the binding energy of electrons in an atom and is valid for all of the probabilities,
since all scaled probability curves meet at the same place on a plot. Explanation of this scaling
law and mechanism behind is the main target of this thesis.
Ionization of bounded electrons by strong laser pulses occurs most frequently as over the barrier
ionization, tunneling or multiphoton ionization.
By 3D analysis we concluded that the ionization takes the place mostly during the period around
the field maxima. We suppose that the ionization is caused partly by the tunneling ionization
for the field strength scaled as n−3 and partly as the over the barrier ionization scaled with the
field strength as n−4.
Angular distribution confirms that the electron density is located mostly in the direction of the
field polarization. Backscattering shows that the part of the wavefunction is scattered back to
the nucleus. The third paper comes with the spatial transport of an electron, when an electron
is driven by the short strong external pulse(s). To observe this phenomena, the laser pulse fre-
quency and the field intensity must be high enough, so that we can neglect the effect of the



Coulomb potential. Then wavefunction is translated almost without any distortion to a well
defined distance from the origin. This distance depends just on the set up laser intensity and the
frequency.

In quantum mechanics, wavefunction is propagated on the grid by the split-step operator
and two-step Euler method. Classical simulations are calculated by the classical Monte Carlo
method (CTMC). In this case, the initial state is modelled as the statistical microcanonical en-
semble with set up boundary conditions . The classical differential equations are numerically
solved by Euler method and Runge-Kutta method.

4



Acknowledgement

I want to thank to the whole department for giving me the opportunity to study this doctoral
programme. I have been the part of the Optic and Atomic Physics group, where the atmosphere
is friendly and supportive.
First of all, I want to thank my supervisor Prof. Jan Petter Hansen for all his work, friendly
support and patience with me. I want to also thank to my co-supervisor Prof. Em. Ladislav
Kocbach for discussions and suggestions to my work, to Dr. Hicham Agueny, the postdoc. in
the Atomic Physics group at UiB, who has been developing code for the paper II. He is also
the corresponding author of the paper II. I thank also to Jørgen Rørstad for his valuable master
thesis and for all his help with CTMC computations.
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Chapter 1

Introduction

A discrete world consisting of the smallest indivisible particles called atoms was first proposed
by Democritus in the ancient Greece. After a long period, in the end of the 19th century, sir
Joseph Thompson discovered the first subatomic particle, the electron, in a beam of cathode
rays in vacuum tube [1]. By electron deflection in electric and magnetic fields he was able to
measure the ratio of the charge to the mass of the electron. He found that electrons are order of
thousand times lighter than hydrogen atoms [2]. Soon after, in 1911, Rutherford discovered a
localised positive field in the middle of an atom by scattering of alpha particles on the golden
foil [3]. These two experiments established an atom, neutral as a whole, consisting of a small
dense positively charged nucleus with negatively charged electrons around.

The theoretical basis for quantum mechanics is commonly seen to have started with the
explanation of the emission spectrum of a black body at fixed temperature, T 1. According
to the classical theory, we cannot describe the black body radiation energy density function
ρ(T,ν)dν in the short-wavelength limit, because it produces infinite radiation intensity. The
German physicist Max Planck was able to fit experimental data of the black body radiation
curve with a new distribution function. The function, now called the Planck curve, depended on
a new constant h∼ 6.6310−34 Js [4], later called Planck’s constant. Using this, Einstein was in
1905 able to explain the photoelectric effect [5]. He assumed that light is a stream of particles,
light quanta, each with energy E = hν . The word photon for a quantum of light was for the 1’st
time used by Gilbert N. Lewis 21 years after Einstein’s explanation.

In 1913 Niels Bohr explained the emission spectra of hydrogen given by a completely new
model. [6]. He assumed that angular momentum ,l, in certain stable states are quantised in
integer numbers of h̄ = h/2π , ie. l = nh̄. When using classical mechanics and this assumption,
the energy levels of discrete states appear as

E =−Ry
n2 , (1.1)

where the Rydberg constant is Ry ∼ 13.6 eV. The notion of stable trajectories remained a con-
tradiction to classical electromagnetic theory, where all accelerating particles radiates energy.

A wave-particle duality valid for any particle on the small scale were proposed by Louis
de Broglie in 1924 in his dissertation, where he quantifies the (non-relativistic) particle wave-
length as λ = h/p, where p is the particle momentum [7]. To defend the equation in his thesis,

1A black body is an idealized body definied by its capability to emit and absorb electromagnetic radiation at
any wavelength
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Chapter 1. Introduction

de Broglie suggested electron scattering and diffraction experiments as an experimental test.
This experiment was carried out in 1927 by Davisson and Germer [8]. The same year, G.
P. Thompson and A. Reid observed interference pattern of electrons, by passing a beam of
electrons through a thin metal film [9]. Interference pattern from a single-electron double slit
experiment was obtained by Merli, Missiroli and Pozzi as late as in 1976 [10].

A grand challenge of physics became the quest for an equation valid on the atomic and
subatomic level and being an equivalent to Newton’s equation on the macroscopic scale. The
problem was solved by Erwin Schrödinger in 1926 as he has assigned to a particle a complex
wave function, ψ(r, t) which satisfy a second-order time dependent or time independent linear
partial differential equation [11]. The equations, today known as the Schrödinger Equation and
the time-dependent Schrödinger Equation, became a cornerstone of modern physics. The time
dependent equation is written on his gravestone in Alpbach, Austria. The interpretation of the
wavefunction has been an ongoing branch of quantum physics and philosophy ever since its
invention. The most accepted one originates from Max Born [12, 13]. His statistical interpreta-
tion defines |ψ(r, t)|2d3r as the the probability that a particle is located around a region d3r at a
time t.

We can experience application of quantum physics, quantum technologies, everywhere
around us today. Atomic clocks define a second very accurately in terms of two energy states
in the caesium atom. Coherent light from lasers is possible due to the population inversion of
quantum states by stimulated emission. Transistors, semi-conductors and diodes in electronic
devices are designed with the knowledge of quantum energy states and quantum phenomena
such as tunnelling and the quantum Hall effect [14]. Based on the quantum tunneling we can
detect magnetic and electric field very accurately, up to 10−18 scale in respective SI units. In
fact, material science, chemistry, medicine and industry have all been developed based on the
development of quantum physics. Nowadays, experiments shedding light on the fundamen-
tals of quantum mechanics continue. For example, less than two decades ago, attosecond pulses
opened the way for researchers to follow electronic motion inside atoms and molecules [15, 16].
As it has become possible to make one layer diffraction slits atomic size, we can catch high-
resolution images of complex organic molecules [17, 18]. Research on control of coherent
quantum state [19] is very promising for applications in spintronics and quantum information
[20, 21]. These are only few examples from a jungle of ongoing current research. The present
thesis, and the results, connects to all of the examples above. We study electron propagation
inside a single atom and discuss conditions for quantum control and potential applications for
imaging.

This thesis consists of a general introduction to methods and theories of which the scientific
results in the form of three published papers and developed programs have been based. It
follows this introduction as four chapters ending with conclusion and outlook. For generality
we use SI units with a few exceptions in this first section of Chapter 2. In the remaining part of
the thesis and in the scientific papers we apply more conveniently atomic units. The connection
between the two sets of units is defined in appendix. A second appendix details the development
of a scattering formula applied in paper II.
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Chapter 2

Atoms and their interaction with
electromagnetic fields: Semiclassical
theory

At the most fundamental level, charged particles and their time dependent interaction with
strong electromagnetic fields would be described by quantum field theory. We are not aware
of any such schemes being formulated and it would indeed in the end require a prohibitive
amount computational resources. A less unrealistic treatment would be to consider atoms as
composed non-relativistic particles interacting with a quantized photon field. This is a standard
approach for atoms interacting with few photon fields. However, strong fields imply extremely
large photon numbers, which without simplifications would fill the memory of any computer
several times. And on the other hand, from the perspective of the field, the physical properties
are hardly altered by a tiny interaction with a single atom. This suggests a semiclassical approx-
imation where the atom is treated in quantum mechanical terms and interacts with a classical
time dependent electromagnetic field. This approach has a long standing history in collision
physics [22]. For electromagnetic fields it was formally derived by Briggs and Rost as late as in
2001 [23]. Thus, the photon field is described by Maxwell’s equations and the interaction with
matter takes place through the interaction part of the Hamiltonian. In the following sub-chapters
this approach is described in detail.

2.1 Classical electromagnetic field
As early as in 1865 Maxwell had managed to unified general laws of the electromagnetic radi-
ation into four equations [24]. In atomic physics it is particularly useful to introduce Maxwell
equations in terms of the two mathematical quantities, a scalar potential (φ ) and a vector poten-
tial (A),

−∇2
φ +(

1
c2

∂ 2φ

∂ t2 ) =
ρ

ε0
(2.1)

−∇2A+
1
c2

∂ 2A
∂ t2 = µ0J, (2.2)

Here the speed of light is c = 1/
√

(ε0µ0) is ∼ 137 a.u., the permeability of vacuum is ε0
and the magnetic permitivity of vacuum is µ0. The equations here are presented in the Lorenz
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Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

gauge, where ∇ ·A = −∂φ/(c∂ t). The electric and magnetic fields can be expressed by the
potentials as

B(r, t) =∇×A(r, t) (2.3)

E(r, t) =−∇φ(r, t)− 1
c

dA(r, t)
dt

(2.4)

The potential representation has four variables φ , Ax, Ay and Az in contrast to 6 given by
the electric and magnetic fields. This open for certain freedoms (gauge choices) in choosing the
potentials to work with. In strong field physics, we can take φ = 0, ie. no point charges, and
∇ ·A = 0. The latter condition is called the "Coulomb gauge" but can be seen as a special case
of the Lorenz gauge. The solution of Maxwell’s equations in free space is then a set of plane
waves of the form

A(r, t) = A0ε̂cos(k · r−ωt) (2.5)

where ω is the frequency of the oscillation, k is the wave vector with the magnitude k =
ω/c, A0 is the wave amplitude directed along the polarization unitary vector ε̂. From Eq. (2.4)
we obtain the electric field,

E(r, t) = E0ε̂sin(k · r−ωt) (2.6)

with E0 = ωA0. The magnetic field becomes perpendicular to the electric field,

B = (k× ε̂)A0 cos(k · r−ωt) (2.7)

Comparing amplitudes of electric and magnetic field E0/B0 =
ω

|k| = c, we observe that the
magnetic field strength is 1/c smaller than the electric field strength. Considering further, the
wavelength of the external fields λ = 2πc/ω , we realize that it is, for field frequencies normally
well below unity, orders of magnitude larger than the size of atoms. This verifies the widely
used dipole approximation where the spatial dependence of the vector field is ignored across
the atom,

A(r, t)∼ A0ε̂cos(ωt). (2.8)

This result in a corresponding simplified approximate electromagnetic field as well

E(r, t)∼ ωE0ε̂sin(ωt) (2.9)

and a vanishing magnetic field. Any constant phase shift may be added to this expression.
This approximation is applied throughout the present work. Even if Rydberg atoms are large
and extend up to hundreds of a.u., the angular frequencies are in the range from 10−5− 10−3

a.u., giving 137/ω is in the range 103−106.

2.2 Schrödinger Equations of the Atom
In 1926 Schrödinger published wave-equations of a bound particle based on Hamiltonian Ĥ, the
operator of the system energy [11], acting on a new object, the wave-function. He introduced
first the time-independent equation (TISE), which solutions are stationary states with discrete or
a continuous set energy values. Later the same year, a time dependent equation were put forward

12



Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

(TDSE) to describe quantum dynamics. These equations substitute Newton’s mechanics on
the sub-micrometer scale. For his discovery of "new productive forms of atomic theory" he
received the Nobel Prize in Physics 1933 together with Paul Adrien Maurice Dirac. The same
year Heisenberg received the Nobel Prize for 1932 for having, one year before Schrödinger,
developed a separate operator based approach to quantum mechanics. In one of the six famous
papers of Schrödinger in 1926 he demonstrates that Heisenbergs and his own formalism leads
to completely identical results. The time-independent Schrödinger equation is an eigenvalue
equation

ĤΨ(r) = EΨ(r) (2.10)

where Ĥ = p̂2/2+V (r̂) is the quantized form of the classical Hamiltonian of the particle and
E is the energy. The quantization rule is p̂i = − ∂

∂xi
and x̂i = xi, and leads to the following

three-dimensional Hamiltonian operator for a single electron

Ĥ =−1
2
∇2 +V (r) (2.11)

Here the first term represents the kinetic energy and the second term is the potential energy.
There are a number of potential energy cases for which the TISE can be solved analytically,
e.g., V = 0 (free particle), V = 1/2ω2r2 (harmonic oscillator) and V =−1/r (hydrogen atom).
For arbitrary potentials, analytical solutions are not known. But the equation may in this case
always be solved numerically. In case of atoms with many interacting electrons, there are no
analytical solutions at all and even numerical solutions can become difficult to achieve.

The details of the solution for bound states of the hydrogen atom are now outlined as a
short example of a solvable system. The Coulomb potential then suggest the use of spherical
coordinates, where the position of an electron is given by the radius r, azimuthal angle φ and
zenith angle θ . The scalar operator ∇2 (2.11) takes the form

∇2 =
1
r2

∂

∂ r
(r2 ∂

∂ r
)+

1
r2 sinθ

∂

∂θ
(sinθ

∂

∂θ
)+

1
r2 sin2

θ

∂ 2

∂φ 2 (2.12)

which can be shortened as

∇2 =
1
r2

∂

∂ r
(r2 ∂

∂ r
)− L̂2

r2 (2.13)

with L̂ being the angular momentum operator. The TISE for a hydrogen like atom now takes
the form [

−1
2
(

∂ 2

∂ r2 +
2
r

∂

∂ r
− 1

r2 L̂2)− Z
r

]
Ψ(r,θ ,φ) = EΨ(r,θ ,φ) (2.14)

The solution Ψ(r,θ ,φ) can be separated in a radial part Rn,l(r) and spherical harmonics eigen-
functions Y ml

l (θ ,φ). Three quantum numbers appear, n is principal quantum number, l is an-
gular quantum number, ml is the projection of angular quantum number on the arbitrary chosen
z-axis,

n ∈ 1,2...
l ∈ 0,1...n−1

ml ∈ −l...l
(2.15)

13
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Each set (n, l,m) defines a possible eigenstate with energy 1.1.

En =−
1

2n2 (2.16)

The eigenstate takes the form

Ψn,l,ml(r,θ ,φ) = Rn,l(r)Y
ml
l (θ ,φ) = Rn,l(r)Y

ml
l (θ)e(imlφ) (2.17)

The radial solution of the Schrödinger equation has a general form of a product of the normal-
ized condition, power function, polynomial and exponential part,

Rn,l(r) = Nn,lrlP̃n,l(r)e(−Zr/n) (2.18)

where Nn,l is the normalization constant and Pn,l(r) is a polynomial in r. We note the exponential
damping which sets the scale of the state n. The angular part has a general form

Y ml
l = Al,ml P

ml
l (cos(θ))eimlφ (2.19)

where Al,ml is the norm of spherical harmonics functions, Pml
l are associated Legendre polyno-

mials. To each state at the hydrogen energy level with number n are assigned n−1 states with
different angular momentum l. This is due the fact, that angular momentum lz is quantized.
Similarly, for given values of n and l, there are (2l + 1) states with ml = −l..,0, ..l, which are
degenerated. The degree of degeneracy of the energy level En is therefore ∑

n−1
l=0 (2l + 1) = n2,

and this degeneracy is a trademark of the Coulomb potential only.

A common numerical approach for obtaining approximate solutions to the eigenstates is to
take advantage of the expansion of the wavefunction in a known analytical basis of N eigenstates
[φi(r)] which forms an orthonormal basis. Explicitly inserted in the TISE,

N

∑
i=0

[
−1

2
∇2 +V (r)

]
ciφi(r) = E

N

∑
i=0

ciφi(r) (2.20)

To obtain the solution we multiply eq. (2.20) sequentially by all basis functions φ j from the left
and obtain an eigenvalue problem for the vector of expansion coefficients, c = (c0,c1...cN)

Hc = Ec (2.21)

Now H becomes a matrix with elements,

Hi, j =
∫

d3rφ
∗
i (r)

[
−1

2
∇2 +V (r)

]
φ j(r) (2.22)

The integrals needs to be calculated in advance, and this particular operation depends heavily
on the choice of basis functions. The number of basis functions necessary for convergence is
also strongly sensitive to the type of basis functions. A vast number of algorithms and packages
are available for diagonalization.

The time-dependent Schrödinger equation, TDSE, has the form

i
∂ψ(r, t)

∂ t
= Ĥψ(r, t) (2.23)

14



Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

When the Hamiltonian is independent of time, the solution of the TDSE is separable and reduces
to the TISE for a time independent wavefunction ψ(r). The time dependent solution becomes

ψ(r, t) = ψ(r)e−iEt (2.24)

where E is the separation constant which is associated with the energy. A time-dependent
Hamiltonian often has a well known spectrum of states at the initial time, t = 0, ψn(r, t = 0),
where n can take a finite of infinite values. A common ansatz is then to express the time
dependent wavefunction in terms of a linear time-dependent sum of the spectrum of states,

ψ(r, t) =
N

∑
n=0

cn(t)ψn(r) (2.25)

If the system initially is in the first state we have cn(t = 0) = δn,0. Further more, the amplitudes
can be interpreted as the probability of the system to be in the state n at given time t. More
formally, the solution of the TDSE can be written as

ψn(r, t) = Û(t0, t)ψn(r, t0) (2.26)

where Û is a unitary time-evolution operator and takes a form

Û(t0, t) = e−i
∫ t

t0
Ĥ(t−t0)dt (2.27)

We can derive the unitary operator from the TDSE

i
∂Û
∂ t

= ĤÛ (2.28)

The unitary operator is transitive

Û(t1, t2)Û(t2, t3) = Û(t1, t3) (2.29)

Û(t2, t1) = Û−1(t1, t2) =U†(t1, t2) (2.30)

This implies that the norm of the state ψ(r, t1) is not changed during the time-propagation,

d
dt

∫
R3

ψ
∗(r, t1)ψ(r, t1)dr = 0, ∀t (2.31)

If the Hamiltonian commute with itself at different times [Ĥ(t0), Ĥ(t)] = 0 and we consider a
small timestep t− t0 << 1 an approximate expression of the time-evolution operator becomes,

Û(t0, t) = e−iĤ(t−t0) (2.32)

This approximation is a useful starting point for numerical algorithms, as will be discussed in
Chapter 4. In theory, space and basis are infinite, but in practice we need to work in the finite
space and time. Thus, any numerical discretization involves at least some level of approximation
(truncation error). In our case space grid is very large (105 a.u.) with the smooth absorbator
on both edges, so that a wavefunction was kept mostly on the grid during the propagation. We
assume the absorbed part of the wavefunction to be in continuum.

15



Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

2.3 Interaction between atoms and electromagnetic fields
The interaction between the quantum mechanical atom and the predefined, time-dependent elec-
tromagnetic free (φ = 0) field is now described in the dipole approximation through the Hamil-
tonian

ĤV G =
1
2
[p̂−A]2 +V ((r̂) = Ĥ0 +A · p̂+

A2

2︸ ︷︷ ︸
Ĥi

(2.33)

The first term Ĥ0 describes the Hamiltonian of the atom while the second term describes the
interaction of atom with the field. Within the dipole approximation, the last term with A2 is just
a time-dependent phase, which can be removed from the numerical scheme by multiplying with
a global phase factor

ψ
V G(r, t)→ ψ

V G(r, t)e(
−i
2

∫ t

t0
A2(t ′)dt ′) (2.34)

We arrive at the following expression for the TDSE[
p̂2

2
+V (r)−A · p̂− i

∂

∂ t

]
ψ

V G(r, t) = 0 (2.35)

with the interaction term now reduced to Ĥi = A · p̂. An alternative expression in terms of the
electric field E is [

p̂2

2
+V (r̂)− r ·E− i

∂

∂ t

]
ψ
′LG(r, t) = 0 (2.36)

where the term in the parenthesis represents the Hamiltonian in the length gauge. We can
transform the wavefunction from the velocity gauge to length gauge via

ψ
LG(r, t) = e−ir·A(t)

ψ
V G(r, t) (2.37)

which can be shown by inserting the latter expression in Eq. (2.33). An alternative expression
in terms of the electromagnetic field itself is the moving Kramers-Henneberger frame (KH). We
can transform the Hamiltonian as ĤKH = T̂−1ĤT̂ to a moving frame centered at α(t) by

T̂ = e−iα(t)·p̂) (2.38)

where the translation (or displacement) vector α(t) =−
∫ t

t0 A(t ′)dt ′. Thus, any eigenstate of the
Hamiltonian, where α(t) = 0 transforms to frame with origin at α(t) as,

Ψ
KH
n (r−α(t), t) = eiα(t)·p̂)

Ψ
V G
n (r, t) (2.39)

The time-dependent Schrödinger equation in the KH frame then becomes[
p̂2

2
+V [r−α(t)]− i

∂

∂ t

]
ψ

KH(r−α(t), t) = 0 (2.40)

The displacement vector α(t) describes the rest frame of a free classical particle in the os-
cillating field. In this frame the particle is exposed to the time-dependent nuclear potential
V (r−α(t)) which can cause transitions among states described in a a stationary frame.
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Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

In principle the number of alternative transformations of the Hamiltonian is infinite. The
three representations here derived do however dominate applications for which the dipole ap-
proximations hold. None of them are supperior to other in the general case. The VG, in com-
bination with expansions in terms of spherical harmonics, has shown to be most effective for
strong pulse physics [28]. In certain cases, in particular when intra shell dynamics in Rydberg
atoms are considered, the length gauge has certain advantages. The LG additionally has the
convenient property that the kinetic and canonical momentum are equal while in VG the canon-
ical momentum is p−A(t) = p− α̇(t). Finally, in situations where the field is so strong that
the entire wavefunction remains localized around the displacement paramter, the KH frame is
advantageous.

We end this chapter with a short discussion of an applied single cycle pulse in the present
work. It is inspired by an experiment published in 2014 by Li and Jones [26]. The electric
z-polarized field E(t) = E(t)ez, is given as,

E(t) =


−E0 sin(ωt), if −T < t < 0
−E0β sin(βωt), if T/β > t > 0
0 otherwise

(2.41)

where for the experimental pulse in [26] β = 1.5 fits reasonable well the experimental features.
The analytical form of the vector field is then

A(t) =


−E0

ω
cos(ωt +1), if −T < t < 0

−E0
ω

β cos(βωt +1), if T/β > t > 0
0 otherwise

(2.42)
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Figure 2.1: Time dependence of the the electric field strength E(t) (lef) along the z-direction and the
vector potential A(t) (middle) for a single-cycle pulse. The black line represents the model
pulse and the blue dots are experimental data [26]. The right panel shows the displacement
α(t) eq. (2.43).

Finally the displacement becomes

α(t) =


−E0

ω
(t +T )− E0

ω2 sin(ωt), if −T < t < 0
−E0

ω
(t +T )− E0

βω2 sin(βωt), if T/β > t > 0

0 otherwise

.
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Chapter 2. Atoms and their interaction with electromagnetic fields: Semiclassical theory

The electric pulse is characterized by a positive first half cycle and a slightly shorter and
more intense negative half cycle. When exposing this pulse shape to excited atoms it will,
for sufficiently strong peak field parameter E0, ionize a part or the entire atom. The elec-
tron is brought to the continuum and accelerated in along the negative z-direction. At some
point the field turns and the positive acceleration brings the electron to a standstill or to a
back-propagation towards the nucleus. Thus, the main part of the electron spectrum in this
case is expected to scatter in the positive direction. Note the order of magnitude difference in
pulse strength between the vector potential and the electric field. Correspondingly, the value of
α(T/β ) becomes very large. This poses a particular challenge for numerical simulations, to be
described in Chapter 4.
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Chapter 3

Atoms and their interaction with
electromagnetic fields: CTMC

Even though the behaviour of electrons in atoms is governed by quantum mechanics, it can be
useful to have a classical model to help understanding of ongoing processes. However, quantum
mechanics is probabilistic in the nature. Therefore, by classical physics we cannot describe pure
quantum phenomena like for example tunnelling or interference. Nevertheless we may set up
a completely classical model where the electrons are propagated according to Newton’s laws
and investigate to which extent it reproduces the quantum calculations. This requires, of course,
that the atom interact with the electromagnetic field solely through the Lorentz force.

A classical method used here is called the classical trajectory monte carlo (CTMC). This
method uses a large ensemble of identical particles, a microcanonical distribution, which identi-
fies possible states of a studied system by allowed number of particles N, volume ν and energy
E0. In fact, these three values N,ν ,E0 are initial conditions to the equations given by the clas-
sical mechanics. To simulate atomic states, the notion of electronic trajectories around nucleus
with fixed energy E0 =−0.5/n2 is deployed. First we define a set of all possible positions and
momenta pictured as radial microcanonical distributions, all these possible states are developed
in time by the deterministic Newton’s differential equations, which gives us initial trajectories
around the nucleus and set of final positions and momenta for analysis after interacting with the
electromagnetic field.

Monte Carlo methods were invented by Stanislaw Ulam, Nicholas Metropolis and von Neu-
mann in the 1940’s [29, 30]. Abrines and Percival described the CTMC method in the original
article [31] with initial states based on microcanonical ensembles. The method was demon-
strated in collisions between the ground state hydrogen and proton and the ionization and
charge-transfer cross sections have been computed. As the method resulted in cross sections
and electron spectra in relatively good agreement with experiments [31, 32], it became popular
and further developed and extended. Reinhold and Falcón [33] simplified the microcanonical
distribution to the form as described in this chapter.

Adding the quantum phases of the electron along a classical electron trajectory makes pos-
sible to even reconstruct the interference pattern of photoelectron emission spectra [35, 36] or
diffraction patterns [37]. This approach is based on Feynman path integrals [38] and defines so
called quantum-trajectory methods. The classical action,

S(r1, t1;r0, t0) =
∫ t1

t0
L(x(t),v(t), t)dt, (3.1)
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Chapter 3. Atoms and their interaction with electromagnetic fields: CTMC

where L(x(t),v(t), t) is the Lagrangian of an electron, is recorded and used for weighting of the
final states.

In general this method requires much larger sets of initial states and have not been explored
in the present work. In the next sections we will describe the Reihold-Falcón method step-by-
step in the context of how it has been applied in this work. The section ends with a review of
related, and more advanced, applications.

3.1 Initial states
Initial atomic states for electron in a static nucleus potential are represented by the microcanical
distribution in an available specific volume ν(r). Possible spatial coordinates are determined
by the conservation law for energy and the assumption, that kinetic energy Ek = p2/2µ cannot
be negative,

Ek = E0−V (r)≥ 0 (3.2)

Here µ ≈ 1 a.u. is the reduced mass of the two-body system, p is the magnitude of momentum
and V (r) is the Coulomb potential. Further more, E0 is the initial energy determined by the
Bohr condition 1.1. Therefore the maximal value for the position of an electron rmax is given
by the condition

E0−V (r) = 0 (3.3)

Assuming that the above equation has only one root confines the size of the allowed radii in-
terval to 0 < r < rmax. The distribution of initial states are selected from the microcanonical
distribution

ρ(r,p,E) = D d3r d3 p δ (E0−E) (3.4)

where the system energy E = Ek+V (r), D is a constant depending only on the available volume
ν(r). This function has 6N dimensional support and the delta function peaks when E = E0.
Therefore we obtain restrictions on the available volume enclosed by the energy hyperspace E0.
The transformation to spherical coordinates reads

d3rd3 p→ r2dr d(cos(θr)) dφr p2 d p d cos(θp) dφp (3.5)

While momentum p and radius r are non-uniformly distributed, angles θr, θp are spread over
half-sphere θ ∈< 0,π >. The azimuthal angles φr, φp are uniformly distributed in whole sphere
φ ∈< 0,2π >. What remains is the distribution of (r, p) described by the integral,

δ (E−E0) p2d p r2dr (3.6)

By using the substitution p2d p = p µ dE, since E = p2/(2µ)+V (r) we require,∫ E

0
pµδ (E−E0)dE = µ p(E0,r) (3.7)

where E0 ∈ (0,E) and p(E0) =
√

p(E0)2µ(E−V (r). Finally, we rewrite ω(r) in terms of only
r-coordinate and initial condition E0,

ω(r,E0) =
∫ rmax

0
µ p(E0,r′) r′2dr′ =

∫ rmax

0
ρ(E0,r′)dr′ (3.8)
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Chapter 3. Atoms and their interaction with electromagnetic fields: CTMC

Fixing the momentum as p(E0,r), secure radii within the interval 〈0,rmax〉. Therefore ω(r,E0)
is uniformly distributed on the interval 〈0,ωrmax〉. A random selection then allows for the com-
putation of spatial coordinates

x = r(ω)
√

1− tr cos(φr)

y = r(ω)
√

1− tr sin(φr) (3.9)
z = r(ω) tr

and momentum coordinates as

px = p(r(ω))
√

1− tp cos(φp)

py = p(r(ω))
√

1− tp sin(φp) (3.10)
pz = p(r(ω)) tp

Thus we have reduced the 6N− 6 dimensional phase-space to the space defined only by ω(r)
and random angle φ(r) on r-sphere and p-sphere respectively. The orbital momentum is a
pseudovector defined by l = r×p =−r×−p, which is symmetric to the inverse operation. The
components are

lx = y · pz− z · py

ly = z · px− x · pz (3.11)
lz = x · py− y · px

The magnitude of the angular momentum is l2 = lx2 + ly2 + lz2. In our calculations, the micro-
canonical distribution of position is confined by setting the angular momentum in z.direction
from lz−0.5 to lz +0.5, which reflects a quantum uncertainty in lz vs. l.

As an example, we compare in Fig. (3.1) the radial distribution of initial states for a 1s and
a 9d state of hydrogen. We observe that the classical distributions vanish at the classical turning
point 2n2 as expexted, while the quantum mechanical densities does not. Apart from that, the
two distributions are on an order of magnitude view in agreement. It is in general seen to be
quite different from the quantum mechanical probability distribution. Nevertheless we have a
distribution of stable initial states of the same order of magnitude as the quantum distribution
and from that starting point the outcome of classical calculations may be invoked and compared
to quantum calculations.

In the first scientific work of this thesis we consider a one-dimensional (1D) model problem.
This require a slight modification of the 3D procedure above. Consider now a single spatial
variable (z) and the momentum (p). The microcanonical distribution becomes,

D dz d p δ (E(z, p)−E0) (3.12)

Compared to the 3D-case, the terms r2 dr and p2 d p become simply dz and d p and therefore
1D microcanonical distribution w is computed from the form

w(z) =
∫ z

0

µ

p(z′)
dz′ =

∫ z

0

µ√
2µ(E0−V (z′))

dz′ (3.13)
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Figure 3.1: Comparison of the 3D-CTMC microcanonical distribution and quantum (black solid line in
a.u.) probability density |Ψ(r)|2 for initial states 1s (left) and 9d (right). The vertical red
asymptote shows the classical turning point 2n2.

Figure 3.2: 1D-CTMC electron microcanonical distribution for initial states 9d in the positive-half of
x-coordinate showing as dotted blue line. The solid black line shows quantum mechanical
electron probability density |Ψr|2 spreads over positive-half x-coordinate in set-up potential
described in [34]. Red vertical asymptote shows classical turning point.

In Fig. (3.2) the classical 1D distribution is compared with a quantum distribution of the
9th excited states. Due to the 1D space the classical distribution diverges at the turning point.
Apart from that and again as in 3D, it compares relatively well with the quantum state.

3.2 Dynamics and Final State Analysis

With a set of initial conditions at hand we can propagate each set of electron coordinates under
influence of the Coulomb force from the nucleus and the Lorentz force from the electromagnetic
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Chapter 3. Atoms and their interaction with electromagnetic fields: CTMC

field, in this case,

dr
dt

=
p
µ

dp
dt

=− 1
r2 er +E (3.14)

We observe that these equations takes the form of a coupled first order differential equations,
which can be expressed in vector form

d
dt

a = b(t,a) (3.15)

The 6 (3D) or 2 (1D) equations are solved numerically for arbitrary number of initial states
using numerical methods described in the next chapter. In the end of the propagation we obtain
a series of positions and momenta at every time-step of the propagation.

For illustration we select two single initial states of 9d and plot the trajectory of electron
under the driving field. In the Fig. 3.3 the field is 1 kV/cm and and the electron is seen to
remain around the nucleus for all times, only being slightly perturbed by the electromagnetic
field. In Fig. 3.4 the pulse strenght is much stronger, 360 kV/cm, and the electron is seen to
be ionized after just a few trajectories around the nucleus. When ionized it propagates along
the negative z-direction before it turns and is accelerated in the positive direction in accordance
with the given pulse shape, cf. Eq. (2.41)
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Figure 3.3: The calculated CTMC trajectory (left) as it developed in time for the initial state 9d under
a single cycle THz field with strength E0 = 1 kV/cm. The nucleus is shown as the green
augmented point at [0,0] and the starting point at t0 as the red point.

The disitribution of final state position for a large number of initial states in terms of the
final (z,r) coordinates are should in Fig. (3.4). The blue dots correspond to initial states which
remains bounded after the pulse, the black dots are ionized ones with final energy E ≥ 0. Note
the tendency of ionized electrons to end up with positive z-values. The electrons with largest z-
values comes from ionization in the second half cycle. The lowest z-values of ionized electrons
originate from situations where the elecron is ionized in the first half cycle.
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Figure 3.4: The calculated CTMC trajectory (left) as it develope in time for the initial state 9d under
single cycle THz field with strength E0 = 360 kV/cm. The nucleus is shown as the green
augmented point at [0,0] and the starting point at t0 as the red point.

Figure 3.5: Map in (r,z) of final states for initial n=5000 states and 50% of ionization probability. Black
dots shows ionized states.
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Chapter 4

Numerical methods

In this chapter we will review numerical methods for time propagation which has been applied
at various stages during the course of this work. It includes numerical schemes for 1D and
3D quantum and classical dynamics. The first three sections describe algorithms to propagate
the TDSE only. The final section describes methods to solve coupled first order differential
equations on the form of Eq. (3.15). As described in Chapter 1, an approximate solution of the
TDSE at small time-step ∆t after the time t0 can be approximated as

ψ(r, t = t0 +∆t)' ψ(r, t0)e−iĤ∆t (4.1)

Here the wave function (vector) ψ(r, t0) describes the state at t = t0. When this state is known,
the challenge is to apply the best possible approximation for the exponential operator in front.
What is “best“ may depend on the structure of the Hamiltonian, the initial state and the problem
parameters (integration time, field strength etc.).

4.1 Three-point finite difference method
The discretization of the space-time allow us to compute the wavefunction on a grid. A fam-
ily of methods called the finite-difference method (FDM) take advantage of this procedure. A
derivative at one point is approximated by the differentiate operator computed from the neigh-
bourhood grid-points. The time is dicretized in the interval 〈t0, ..., tend〉 and we approximate the
first-order derivative in time as the differentiation

∂ψ(x, t)
∂ t

= lim
∆t→0

ψ(t +∆t,x)−ψ(t,x)
∆t

(4.2)

We then obtain the solution in the next time-step ψ(t +∆t,x) from the previous step ψ(t,x).
First we expand a function as the Taylor series

ψ(t +∆t,x) = ψ(t,x)+∆t(
∂ψ(t,x)

∂ t
)+O(∆t) (4.3)

The forward scheme in combination with the backward scheme

ψ(t−∆t,x) = ψ(t,x)−∆t(
∂ψ(t,x)

∂ t
)+O(∆t) (4.4)

results in the more accurate central difference method based on one forward and one backward
step, also called the two-step Euler method

∂ψ(t,x)
∂ t

=
ψ(t +∆t,x)−ψ(t−∆t,x)

2∆t
+O(∆t2) (4.5)
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Adding the two equations together results in the three-point method as

ψ(t +∆t,x) = ψ(t−∆t,x)−2iĤ∆tψ(t,x) (4.6)

This 1D-scheme can be extended for y and z coordinates and a similar procedure can be applied
to discretize the space variable. This approximation is stable and of second order accuracy in
∆t. However, it requires generally very small time steps to remain stable [40]. In addition it is
extremely well conditioned for parallelization.

4.2 Crank-Nicolson method
A stabilized FDM is the implicit Cranck-Nicolson method (CN) [41], which combines Euler’s
forward time-step with the backward time-step method. The CN time-evolution operator is
derived from the 1st order expansion of the exponential series of the evolutionary operator

Û(tk+1, tk)' Î− i∆tĤ (4.7)

for small ∆t. The inverse operator correspondingly becomes,

Û−1(tk+1, tk)' Î + i∆tĤ (4.8)

Then, the forward time step is given explicitly as

ψ(tk+1/2,x) = [Î− i
∆t
2

Ĥ(tk+1/2)]ψ(tk,x) (4.9)

Since we want to reverse the time-evolution operator, the full step

ψ(tk+1,x) = Û(tk+1, tk+1/2)Û(tk+1/2, tk)ψ(tk,x) (4.10)

can be rewritten,
Û−1(tk+1, tk+1/2)ψ(tk+1,x) = Û(tk+1/2, tk)ψ(tk,x) (4.11)

Using the first order approximation for the time development operators we obtain the numerical
scheme called the Cranck-Nicolson method or sometimes the Cayley-propagator,[

1+ i
∆t
2

Ĥ(tk+1/2)

]
ψ(tk+1,x) =

[
1− i

∆t
2

Ĥ(tk+1/2)

]
ψ(t,x) (4.12)

Representing ψ on as a vector with reference to a basis we obtain Ĥ as a matrix. The first step
on the right side becomes a matrix-vector multiplication and the final step requires a matrix in-
version. The implicit CN method is unconditionally stable and accurate up to O(∆t3). However,
the matrix inversion is generally time consuming unless the matrix is sparse.

4.3 Split-operator operator Fourier method
While the previous methods are well suited for 1D problems, they fast become intractable to 3D
models. The reason is the replacement by the second derivative with the full Laplacian operator.
An alternative is then to take advantage of basis expansions in terms of spherical harmonics and
combine that with a representation of the radial expansion coefficients in the momentum space
and the Fast Fourier Transform (FFT) algorithm. In 1D the expansion in spherical harmonics
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can be omitted and we discretize space in x ∈ 〈x0..xN〉 uniformly with N = 2n points. In the
momentum space we correspondingly obtain, p ∈ 〈k0..kN〉. The discrete points in p-space are
related to the x-discretization as

kn =
2π

n∆x
,n =−N/2,−N/2+1, ...,N/2 (4.13)

The wave function in the momentum space can now be computed as the FFT of the wavefunc-
tion in the coordinate space and vice versa,

ψ̃(kn) = F̂ψ(x) = ∆x
1√
2π

N

∑
m=0

e−iknxm ψ(xm) (4.14)

Here F denotes the Fourier transformation. The inverse Fourier transformation gives back the
wave function in the coordinate space

ψ(xm) = F̂−1
ψ̃(kn) = ∆p

1√
2π

N

∑
n=0

eiknxmψ̃(kn) (4.15)

Note that the Fourier transformation is unitary, ie. ψ(x), since Fourier transformation is the
unitary transformation F̂ × F̂† = 1. The time evolution operator contains kinetic and potential
energy operators is now split into two terms

Û(t +∆t, t)' exp(−iT̂ ∆t)exp(−iV̂ ∆t) (4.16)

which introduce a splitting error of second order, O(∆t2). A more accurate expression is a
separation of one of the operator, here kinetic operator, in two half steps

Û(t +∆t/2, t) ' exp(−iT̂ ∆t/2)exp(−iV̂ ∆t/2)
Û(t +∆t, t +∆t/2) ' exp(−iV̂ ∆t/2)exp(−iT̂ ∆t/2)

The product of these two expressions gives for a full step

Û(t +∆t, t)' exp(−iT̂ ∆t/2)exp(−iV̂ ∆t)exp(−iT̂ ∆t/2) (4.17)

which has an error of order O(∆t3). The trick is now to let each exponential operator work
separately and perform FFT of the wavefunction before each operation with the kinetic term.

ψ(t +∆t,x) = F̂−1
[
e−iT̂ ∆t/2F̂

[
e−iV (t)∆t F̂−1

[
e−iT̂ ∆t/2F̂ψ(t,x)

]]]
(4.18)

The main advantage of the split-operator technique is that, in momentum space, the kinetic
part of the evolution operator is diagonal. Thus, having performed the FFT the operator is
directly computed as exp(−iT̂ ∆t/2)ψ̃(kn). The method of computing FFT is well known and
grows quasilinearly O(N logN). In 1D, the propagation of the potential operator is diagonal
in position space so the operation is linear in N. In 3D, this step often imply a matrix - vector
multiplication, O(N2), and thus becomes the most time-consuming.

4.4 Split-operator operator Fourier method in spherical co-
ordinates

A split-step method in spherical coordinates for central symmetric problems was developed by
Herrmann and Fleck [42] and extended to general 3D problems in [43]. The idea is to expand the
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wavefunction in radial grid functions augmented by spherical harmonics and take the advantage
of the spherical Hamiltonian for the reduced wavefunction

Ĥ =

1
2

∂ 2

∂ r2 +
L̂2

2r2 +V (r)+E(t) · r︸ ︷︷ ︸
Ṽ (r,Ω,t)

 (4.19)

where L̂ is the angular momentum operator, V (r) is a spherical symmetric potential and E(t) is
a time-dependent external field.

The grid expansion of the reduced function then reads, with ml conserved for z-polarised
pulses,

ψ(r,Ω, t) =
lmax

∑
l=0

f ml
l (r, t)Y ml

l (Ω) (4.20)

The split step scheme takes the form

ψ(r,Ω, tn+1) = F̂−1
[

e−i ∂2

∂ r2
∆t
4 F̂e−iṼ (r,Ω,t)∆te−i L̂2

2r2 ∆t F̂−1
[

ei ∂2

∂ r2
∆t
4 F̂ψ(r,Ω, tn)

]]
(4.21)

The FFT step now acts only on the basis in momentum space as in 1D. After transforming back
to r-space the second operator applies,

e
−iL̂2

2r2 ∆t
lmax

∑
l=0

f ml
l (ri)Y

ml
l (Ω j)−→

lmax

∑
l=0

f ml
l (ri)e

−i∆tl(l+1)
2r2 Y ml

l (Ω j) (4.22)

and from this expression the full wavefunction ψ(ri,Ω j, tk) is constructed on a grid. Then, any
spatial dependent potential may be multiplied directly,

e−iṼ (ri,Ω j,t)∆t)
ψ(ri,Ω j, t)−→ ψ(ri,Ω j, t +∆t) (4.23)

From this new wavefunction we can obtain the iterated radial basis functions by projection,

fl(ri, t +∆t) =
∫

dΩ Y ∗ml
l (Ω)ψ(ri,Ω, t +∆t) (4.24)

The projection is accurately performed with Gauss-Legendre sum of of lmax points. Now, the
final FFT transformation and kinetic evolution operator is carried out on these iterated basis
functions and one step has been completed.

4.5 Split-operator operator Fourier method in cylindrical co-
ordinates

The set of cylinder coordinates is far from an obvious choice for Coulomb problems alone,
since this set of coordinates does not offer separability and analytical basis states. However, for
cases where a linear z-polarised field drives the dynamics essentially along this axis, this set of
coordinates can be effective. As another advantage, it offers the possibility to switch between
length and velocity gauge with minumum amount of programming work. A complication is the
need to transform initial and final states to and from cylindrical coordinates before and after
computations. The method to be presented was formulated by Chelkowski et. all [44]. We here
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follow their description and additionally show how it can be formulated in both gauges. The
implementation of this work was performed towards the end of the PhD project, so it has not
yet been directly applied in calculations leading to new scientific results. However, the present
section ends with first 3D results of the 1D calculations published in paper III.

In cylindrical coordinates (z,ρ,φ) the Coulombic potential for hydrogen is given as

V (ρ,z) =− 1√
ρ2 + z2

(4.25)

The Laplacian operator contains the partial derivation of both, ρ and z coordinates and the
TDSE takes the form[

−1
2

∂ 2

∂ z2 +Dρ +V (ρ,z)+ zE(t)− i
∂

∂ t

]
ψ(z,ρ, t) = 0 (4.26)

where the the interaction term is written in the length gauge and the term with Dρ is the part of
the kinetic operator in the ρ coordinate,

Dρ =−1
2

∂ 2

∂ρ2 −
1

2ρ

∂

∂ρ
(4.27)

The starting point is an expansion in basis functions related to the Dρ operator,

νn(ρ) =
21/2

LJ1(xn)
J0(xnρ/L) (4.28)

where J0 and J1 are Bessel functions, xn are zero points of J0 and L is the size of the box in the
ρ-direction. The basis has the property,

Dρνρ = (xn/L)2
νn(ρ) (4.29)

and form an orthonormal set of states. Performing the expansion

ψ(z,ρ, t) =
N

∑
n=0

fn(z, t)νn(ρ) (4.30)

and projecting out on each basis state result in a coupled set of differential equations (in time
and z),

i
∂ fn(z, t)

∂ t
=

[
−1

2
∂ 2

∂ z2 +V (z)+E(t)z
]

fn(z, t) (4.31)

where V(z) is a square non-singular matrix with elements

Vn,m(z) = (xn/L)2
δn,m +

∫ L

0
νnVc(ρ,z)νmρdρ (4.32)

which has to be precalculated and stored. Note that this is a time independent operator so the
calculation is only performed once. The split step procedure takes the form, with Dz = ∂ 2/∂ z2,

ψ(z,ρ, t +∆t) = F̂−1e−iDz∆t/4F̂
[
e−iE(t)z∆t/2e−iV(z)∆t/2F̂−1

[
e−iDz∆t/4F̂φ(z,ρ, t)

]]
(4.33)

The coupling between different fn functions takes place in the second operator. Note that it only
requires a matrix-vector operation of an (N,N) sized matrix and a vector of length N. This is a
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large advantage as compared to the spherical scheme. In velocity gauge we simply put the field
interaction into momentum space and obtain, with pz =−iS∂/∂ z,

ψ(z,ρ, t +∆t) = F̂−1e−iDz∆t/4e−iA(t)pz∆t/2F̂
[
e−iV(z)∆t/2F̂−1

[
e−iA(t)pz∆t/2e−iDz∆t/4F̂φ(z,ρ, t)

]]
(4.34)

We have applied this method to reconsider the possibility to translate wavefunctions in
single cycle pulses, cf. Paper III. In the figure below we reproduce initial and final states for
the two cases of Fig. 4 in that paper. Indeed the wavefunction is seen to be translated without
distortion for initial 10s, while the 1s state is "destroyed". It is also noteworthy to observe how
similar in shape the distorted final 1s state in 3D compares with the 1D result.

Figure 4.1: Probability density of the intial state (left) and the state after time propagation (right), plotted
on logarithmic scale. The full scale is 3 decades, grey color scale with five shades per decade.
The upper version are 3D surface plots in the ρ-z plane, the lower is a plane projection. The
pulse is coming from the right in the upper part. (This picture was provided by prof. L.
Kocbach, IFT, UiB).

4.6 Propagation of Classical Dynamics
In propagating the classical dynamics we have applied both high order and low order numerical
schemes. The lowest order schemes can be directly implemented with small time steps. The
first order derivative for the position updates to

r(ti+1)− r(ti) =
∫ ti+1

ti
v(t ′) dt ′ ≈ v(ti) ∆t (4.35)

The Euler’s method is computed with linearly distributed time steps over all intervals and es-
timated error is roughly the size of the time step interval ∆t. We can include the second order
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derivatives in Taylor’s expansion of a searched function, which gives a smaller error of the order
∆t2, if ∆t << 1. The velocity may be updated at intermediate half time steps,

v(ti+1/2) = v(ti−1/2)+
F(ti)

µ
∆t (4.36)

This substitution leads to the three-step Euler method also called the midpoint method. The
midpoint method gives better approximation of solution with the complexity O(∆t3). Another
method for integrating differential equations is Verlet’s algorithm developed by Loup Verlet in
the 1960s [45]. We start with the Newton’s equation of motion for electron

d2r
dt2 =

F
µ

(4.37)

which we can replace by the three-point formula 4.36 of second order derivative

d2r
dt2

∣∣∣∣
t=ti

=
1

∆t2 (rk+1−2rk + rk−1) (4.38)

Putting above equations together we get

rk+1 = 2rk− rk−1 +∆t2Fk (4.39)

In practice we know initial position r0 and velocity v0 , so the first step is to find r1 to start the
recursion.

r1 ' r0 +∆tv0 +
∆t2

2
F0 (4.40)

where the force is calculated as F = −∇V (r)−E(r). Since Verlet’s integration technique use
several past steps to estimate a current value, it is a sort of the multi-step method. Verlet’s
algorithm, as well as Newton’s equations, is numerically stable and reversible in time.

Runge-Kutta’s solvers (RK) use only one previous step to calculate the current value of a
searched function. Furthermore the time interval is non-uniformly divided into smaller parts,
according to the order of RK, to minimize the approximation error. As the time step are divided
by halving the original time interval, a slope of a searched function are divided into nodes with
different weights in each node to better approximate it. Coefficients for nodes are documented
in a relevant literature [46]. Let us assign time-step as h = ∆t, RK of the 4-th order (RK4)
estimates solution in radial coordinate as

v(h+1) = r(h)+
h
6
(k1,2k2,2k3,k4) (4.41)

with slopes in each node k1− k4 given as

k1 = v(r(h),h)

k2 = v(r(h)+
h
2

k1,h+h/2) (4.42)

k3 = v(r(h)+
h
2

k2,h+h/2)

k4 = v(r(h)+h k3,h)

The low order methods was applied for test calculations of 1D CTMC. The simple programming
makes it possible to take advantage of the spike in the potential at r = 0, cf. paper I. In 3D we
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have applied the Runge-Kutta-Fehlberg of 4/order 5 embedded pair method (RKF45) [46]. The
error estimation is most often estimated by running the ODE solver of higher order in parallel
with the lower order of RK. For RKF45, the solution of the 4th-order is compared with the
5th order solution. By substracting these two solutions at each time step, one can get a local
truncation error estimation e(i). Advanced implicit methods as RKF45 check the step size based
on the truncation error during the propagation in order to get converged results.
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Scope of the work

Electromagnetic pulses can be produced with a broad range of frequencies, intensities and pulse
lengths. The strongest pulses produced so far have intensities many orders of magnitude above
the intensity defined by the field strength of the ground state hydrogen atom 1, ∼ 1021 W/cm2

in Rutherford Appleton Laboratory [47].
The shortest pulse lengths are attosecond pulses, high frequency pulses of duration 43 at-

toseconds [48]. The ”standard” pulses of strong field physics are 400-1600 nm wavelengths
reaching peak intensities around 1014 W/cm2 and having a pulse length of the order 10 fs. Such
pulses contains a number, typical 2-10 optical cycles. This implies that for linear polarized
fields the atom is exposed to a time dependent oscillating field with a corresponding lowering
of the potential barrier, cf. Fig. 5.1.

Several competing processes can lead to ionization. First of all the electron may instanta-
neously or sequentially absorb a number of photons which cause multiphoton ionization. With
a central pulse frequency ω0, a binding energy ε0 the electron will appear in the continuum with
the energy ε = Nω0− ε0, illustrated as process III in Fig. 5.1. Another process is tunneling
ionization. Here electron tunnel through the barrier and propagate in the continuum as illus-
trated by process I. As the field changes direction, electron may be accellerated back towards
the nucleus, collide with the remaining part of the wavefunction and ionize. Alternatively it may
be recaptured by the nucleus and release a high frequency photon containing the energy gained
in the continuum. This is the origin of High Harmonic Generation. Finally, it may happen
that the electron after tunneling populate a combination of states, which ionize directly without
recombination. For tunnelling ionization to be effective, the frequency needs to be small, in
contrast to multiphoton ionization which is most effective for high frequency photons. The pro-
cess was first analyzed by Keldysh in 1965 [49]. He introduced a parameter γk which classify
the dominant ionization mechanism

γk =

√
Ip

2Up
=

√
2Ipω2

E2
0

, (5.1)

where Ip is the atom ionization energy, Up = E2
0/(4ω2) is the ponderomotive energy of the

electromagnetic field with amplitude E0 and frequency ω . It is the energy gained by an free
electron in a harmonically oscillating field. As we consider the field strength of 10−4− 10−5

a.u. and ω = 2.3510−5 a.u., in our case γk << 1. Tunneling ionization generally dominates
over multiphoton ionization when γ � 1. A final process, marked as II in Fig. 5.1 is ”over the

1E = 5.1×109 V/cm at r = a0
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Figure 5.1: Processes in strong field ionization. I. Tunneling ionization with possible driving of electron
back to the nucleus. II. Over the barrier ionization and III. Multiphoton ionization

barrier” ionization. It follows as a natural extension of tunneling, which is ’under the barrier’
ionization, for sufficiently strong fields. At that point, the barrier has been lowered below the
energy level of the particle in question and it may be directly accelerated along the negative
field direction. For a slowly increasing field strength, the ionization process may well first start
out as process I and terminate as process II.

Ionization by strong single cycle pulses needs some modifications of the standard process
map above. Indeed, all three processes may take place. However, the single cycle nature of
the mechanism may prohibit the recollision process. First of all, an initially free electron at the
rest will first be accelerated opposite the field direction and then decelerated and brought to the
rest a final distance given by the displacement parameter α(T ), cf. Chapter 2. The reason is
caused by the fact that laser pulses carries zero DC component,

∫
E(t)dt = 0, when integration

is taken over the entire pulse. Unlike multicycle pulses single cycle pulses imply a nonzero
displacement,

∫
A(t)dt 6= 0. This imply that the electron tends to be translated by the pulse.

Consider for example the pulse shape 2.41. If the electron is ionized in the first half cycle the
field will accelerate the particle in the negative z-direction until the electric field has turned and
accelerate the particle back towards the nucleus and a recollision modified ionization process
may occur. On the other side, the first cycle may simply be too week to cause any significant
ionization. The particle remains bound and dressed by the field until the strongest field strengths
occur. The electron may here be released and directly accelerated towards positive z-direction.
If both processes occur simultaneously, the two processes interfere and the final result needs a
careful quantum mechanical treatment.

In the following we will discuss scaling phenomena in the ionization process.
A scaling law is here defined in the following way: Consider a process P = P(x,y) which

depends on two parameters x,y. The process displays a surface in terms of x and y, but may also
be represented as a number of curves for certain values of y = yn. P(x) = P(x;yn). The scaling
hypothesis predicts that all curves of this family will collapse onto a single curve provided we
consider a scaled P as a function of a scaled x. This means a P divided by some functional
relation of x, yn and a scaled x as function of yn. In the present work we consider only scaling
of the independent variable x, where x is pulse strength or momentum.
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In 2014 Li and Jones reported single cycle ionization by excited Na(n,d) atoms in THz
fields up to 400 kV/cm pulse strengths [26]. They found a surprising n−3 scaling law for the
total ionization probability and reproduced the scaling behaviour by CTMC calculations. Thus,
plotting the ionization probability against a scaled pulse strength it appears as a universal curve.
The surprise comes from the fact that CTMC calculations starting from a bound-state distribu-
tion necessary takes place through over-the-barrier processes which would be expected to scale
as n−4. In Paper 1 we set out to try to model the process quantum mechanically. A 1D model
was chosen to cope with the extremely long integration times of a THz pulse. The results of this
model gave an approximate n−3 power law dependence. Considering the range pulse strength
region where the ionization probability switches from zero to unity and comparing this with the
height of the potential barrier we concluded that the dominant mechanism could be ascribed
to tunneling. However, the conclusion limited itself to 1D calculations, where the ionization
probability as the function of pulse strength itself did not match the experiment very well: Our
computed ionization probabilities were rising much more rapidly than the experiments.

This motivated studies of the very same process in 3D. We performed length-gauge cal-
culations based on the split step method described in Chapter 2. Here we could compare our
results with calculations performed, mainly at shorter pulse lengths [51, 52]. This group also
obtained an almost magical agreement between CTMC and TDSE calculations. Our TDSE cal-
culations agreed very well with their for initial n = 15,d states of hydrogen. We then extended
their calculations towards the experimental pulse lengths and computed ionization probabilities
both with the CTMC and the TDSE methods.

Our results can be summarized as follow:

• The quantum mechanical ionization probabilities fall on a universal curve for a mixed
scaling parameter containing elements of n3 and n4.

Es f
0 (n) = αn−4 +(1−α)n−3 (5.2)

In addition, the much steeper response to the pulse strength than observed in experiments
remains. Applying this scaling function to the emitted electron momenta of ionized elec-
trons, we find that all initial states gives characteristic scaled electron momenta.

• The CTMC calculations does not follow the same scaling law, and in the long pulse limit
there are significant differences between the final state momentum distributions between
the two methods.

• Coulomb phases are important to compute the differential cross section, in particular the
low energy tail. Electrons which appear to be propagating in the positive z-direction are
affected by the Coulomb phases and appear on the negative side, cf. Fig 7 of Paper II 7.2.
A detailed derivation of the differential cross section based on the output of the applied
grid method is given in Appendix 2.

Several factors may explain the differences between experiment and theory: Our representation
of the experimental pulse shapes and the experimental pulse shape in itself, may not be accu-
rately enough. There may be other experimental factors as well as limits and errors occurring
in the numerical results. Therefore we have reported all details of our approach with the hope
that future approaches and new experiments can create a complete understanding of this issue.

35



Chapter 5. Scope of the work

The final paper III cf. 7.3 of this work was initiated by the research process of testing the
spherical code. By accident we discovered that a strong, short single cycle pulse could remove
the entire wavefunction from the atom. It turned out that this discovery was done about 13 years
ago by Dimitrovsky and coworkers, cf. [50]. We were however able to extend their analysis and
point out a few new results:

• The wavefunction is translated completely along the displacement vector.

• Excited atoms are translated almost without dispersion, implying that the removal of the
nucleus can offer direct imaging of doubly excited states and dynamical features.

A natural extension of this work would be to confirm the 1D results here obtained with full 3D
calculations. In the final stage of the PhD work we developed a split-step method in cylindrical
coordinates for this purpose. Test calculations with the same pulses as in paper III agree with
the main conclusions from 1D cf. 7.1.
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Conclusion and outlook

In the present thesis we have studied aspects of one-electron dynamics in atoms exposed to a
single cycle electromagnetic pulse. The work has implied theoretical analysis, programming,
parallel computing on supercomputers and analysis. The focus have been to initially excited
atoms and we have considered pulse lengths from significantly longer than the corresponding
classical orbital time of the initial state in question to significantly shorter. The focus has been to
explore the ionization dynamics in detail, the characteristics of the wavefunction after the pulse
including the angular distribution of the emitted electrons. The results are in partial agreement
with experiments and independent theoretical works. The agreement amounts to identical quan-
tum mechanical computed results for ionization. Our CTMC results, however, differ from the
computed results of [51] and [52]. Neither did we obtain the same scaling law as obtained in the
experimental work [26]. One origin of the disagreement may be a different selection procedure
for initial states. Regarding experiments we find relatively similar response to the electric pulse
with increasing strength. However, the response in our calculations are stronger, or more sen-
sitive to increasing strength. A possible origin of this discrepancy may lie in the experimental
knowledge of the pulse. Another origin may be that we use hydrogen d-states, while in exper-
iment was measured with alkali Rydberg-atoms. Only new experiments in combination with
independent calculations can settle this issue.

Following the introduction in Chapter 1, Chapter 2 describes the main features of non-
relativistic quantum mechanics applied in this thesis. Chapter 3 correspondingly describes the
CTMC method we applied. In Chapter 4 we have described numerical methods, which have
been tested and applied at various stages in this work. Chapter 5 describes the scope of the
scientific work and can be viewed as an introduction to the scientific results in the form of three
published papers 7.

Highlighting the results, we mention that a 1D model grasps the main feature of the ion-
ization dynamics. An extension of the work to 3D involved both a new implementation of the
spherical split-step method, a new implementation of the split-step method based on cylindrical
coordinates and use of an often applied CTMC method. Scaling laws for both, quantum and
CTMC calculations of ionization probability and momenta have been found in the long pulse
limit. The angular distribution with quantum phases shows possible backward scattering in
contrast to the scattering predicted directly from classical calculations. Regarding short intense
pulses we showed that the dynamics of a wavefunction is fully described with the translation
vector in Kramer-Henneberger frame: This imply that an intense field may “grab“ the entire
wavefunction and transfer it far away from its nucleus. We noted that this may be the origin of
a potential new imaging technique.
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In closing, we mention several routes of extensions of this work. First of all, the response
of nano-structures to single cycle pulses is both interesting from the fundamental point and may
lead to a new technology. Fundamentally, the ionization dynamics of metallic states contains
new aspects. From an applied point of view, scaling laws may be applied to characterize nano-
tip fabrications [53]. For atoms, it would be interesting to consider scattering from a series of
l states and to investigate the sensitivity to quantum defects in alkali atoms. Exploring pulse
shapes which could actually reproduce the experiments in detail would be interesting as well.
Finally, a more in-depth study of wavefunction translation would also be very interesting. One
may speculate that doubly excited atoms or dynamical processes inside single electron atoms
may be explored by wavefunction translative pulses in combination with recording the trans-
lated electron spectrum of the atom without nucleus.

38



Bibliography

[1] J. J. Thomson, Philos. Mag. 44, 293 (1897). 9

[2] J. J. Thomson Philos. Mag. 40, 512 (1895). 9

[3] E. Rutherford, Philos. Mag. 21, 669 (1911). 9

[4] M.Planck, Ann. Phys. 309, 553 (1901). 9

[5] A. Einstein, Ann.Phys. 17, 132 (1905). 9

[6] N. Bohr, Philos. Mag. 26(6), 1-25 (1913). 9

[7] L - V. de Broglie, Recherches sur la Theorie des Quanta, Ann. de Phys. 10e serie, t.III
(1925). Translated by A.F. Kracklauer, AFK (2004). 9

[8] C. Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927). 10

[9] G. P. Thompson, A. Reid, Nature 119, 890 (1927). 10

[10] P.G. Merli, G.F. Missiroli, G. Pozzi, Am. J. Phys. 44, 306 (1976). 10

[11] E. Schrödinger, Ann. Physik, 79, 745 (1926). 10, 12

[12] M. Born, Die Naturwissenschaften 15, 238 (1927). 10

[13] M. Born, Nature 119, 354 (1927). 10

[14] K. yon Klitzing, G. Ebert, N. Kleinmichel, H. Obloh, G. Dorda, and G. Weimann, Proc.
ICPS 17, Edited by J. D. Chadi and W. A. Harrison, (Springer, NY, 1985). 10

[15] K. Varju, Y. Mairesse, B. Carre, M. Gaarde, P. Johnsson, S. Kazamias, P. Salieres, J. Mod.
Opt. 52, 379-394 (2005). 10

[16] J. Mauritsson, M. Gaarde, K. J. Schafer, Phys. Rev. A 72, 013401 (2005). 10

[17] Ch. Brand et al., Nature Nanotechnology 10, 845 (2015). 10

[18] J. P. Cotter et all, Science Advances 3, 12017 (2017). 10

[19] I. Lekavicius, D. A. Golter, Thein Oo, Hailin Wang, Phys. Rev. Lett. 119, 63601 (2017).
10

[20] J. J. Donatelli, J. A. Sethian, P. H. Zwart, PNAS 114, 7222 (2017). 10

[21] M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R.
Hemmer, M. D. Lukin, Science 316, 1312 (2007). 10

39



Bibliography

[22] J.M. Hansteen, O.P. Mosebekk, Nuclear Physics A 201(3), 541-560 (1973). 11

[23] J. S. Briggs, J. M. Rost, EPJ D 10, 311-318 (2000). 11

[24] D. Griffiths, Introduction to Electrodynamics (Prentice Hall, 1999), ISBN
9780138053260. 11

[25] D. J. Griffiths Introduction to Quantum Mechanics (2nd ed.), 247, (Prentice Hall,2004),
ISBN 0-13-111892-7.

[26] S. Li, R. R. Jones, Phys. Rev. Lett. 112, 143006 (2014). 17, 35, 37

[27] T. Birkeland, M. Førre, J. P. Hansen and S Selstø, J. Phys. B: At. Mol. Opt. Phys. 37,
4205-4219 (2004).

[28] G. Lagmago Kamta, A. D. Bandrauk, Phys. Rev. A 71, 053407 (2005). 17

[29] N. Metropolis, S. Ulam. J. of the Am. stat. assoc. 44(247), 335-341 (1949). 19

[30] J. von Neumann, Monte Carlo Method 12, 36-38, Ed. by A.S. Householder, G.E. Forsythe,
and H.H. Germond,(Washington, D.C.: U.S. Government Printing Office, 1951). 19

[31] R. A. Abrines, I. C. Percival, Phys. Lett. 13(3), 216-217 (1964).
R. A. Abrines, I. C. Percival. Proc. Phys. Soc. 88(4), 861-873 (1966). 19

[32] I. C. Percival, D. Richards, Adv. At. Mol. Phys. 11 (1975). 19

[33] C. O. Reinhold and C. A. Falcón. Phys. Rev. A, 33(6), 3859-3866 (1986). 19

[34] H. Agueny, M. Chovancová, J. P. Hansen, L. Kocbach, J. Phys. B At. Mol. Opt. Phys. 49,
245002 (2016). 22

[35] X. Y. Lai, C. Qing-Yu and M. S. Zhan, New J. Phys. 11, 113035 (2009). 19

[36] Z. Ruan, R. G. Zeng, Y. Ming, M. Zhang, B. Da, S. F. Maod, Z. J. Ding*a, Phys. Chem.
Chem. Phys. 17, 17628-17637 (2015). 19

[37] E. J. Kirkland. Advanced Computing in Electron Microscopy, (Plenum, New York, 1998).
19

[38] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 19

[39] Min Li, Ji-Wei Geng, H. Liu, Y. Deng, Chengyin Wu, Liang-You Peng, Qihuang Gong,and
Yunquan Liu, Phys. Rev. Lett. 112, 113002 (2014).

[40] C. Leforestier et al., J. Comput. Phys. 94, 59 (1991). 26

[41] J. Cranck and J. Nicholson, Mathematical Proceesings of Cambridge Philosophical Soci-
ety 43, 50-67 (1947). 26

[42] Mark R. Hermann and J. A. Fleck, Jr., Phys. Rev. A 38, 6000 (1988). 27

[43] J. P. Hansen, T. Sørevik, and L. B. Madsen Phys. Rev. A 68, 031401(R) (2003). 27

[44] S. Chelkowski, T. Zuo, A. Bandrauk, Phys.RevA 46(9) (2002). 28

40



Bibliography

[45] L. Verlet, Phys. Rev 159, 98 (1967). 31

[46] T. Sauer, Numerical analysis, 2nd edition, (Pearson Education Limited, 2013). 31, 32

[47] C. Hernandez-Gomez et al, J. Phys.: Conf. Ser. 244, 032006 (2010). 33

[48] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner HJ. Optics
Express 25(22), 27506-27518 (2017). 33

[49] V. Keldysh, Sov. Phys. JETP 20, 1307 (1965). 33

[50] D. Dimitrovski, E. A. Solov’ev and J S Briggs, Phys. Rev. Lett. 93, 083003 (2004). 36

[51] B. C. Yang and F. Robicheaux, Phys. Rev. A 90,063413 (2014). 35, 37

[52] B. C. Yang and F. Robicheaux, Phys. Rev. A 91, 043407 (2015). 35, 37

[53] L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Erchternkamp and C. Ropers, Nat.
Phys. 10, 432-436 (2014). 38

[54] J. P. Hansen, J. Lu, L. B. Madsen, and H. M. Nilsen, Phys. Rev. A 64, 033418 (2001). 83

41



Bibliography

42



Chapter 7

Scientific Results

43





List of Papers

I) H Agueny, M Chovancova, J P Hansen and L Kocbach. Scaling prop-
erties of field ionization of Rydberg atoms in single-cycle THz pulses:
1D considerations. J. Phys. B: At. Mol. Opt. Phys. 49 (2016), 245002
(7pp).

II) M. Chovancova,1 H. Agueny,1 J. J. Rørstad,2 and J. P. Hansen. Classi-
cal and quantum mechanical scaling of ionization from excited hydro-
gen atoms in single-cycle THz pulses. Phys. Rev, A 96 (2017), 023423
(10pp).

III) M Chovancova, H Agueny, M Førre, L Kocbach and J P Hansen. Spatial
transport of electron quantum states with strong attosecond pulses. J.
Opt. 19 (2017), 114008 (6pp).

The scientific work displayed in this thesis has been group teamwork all the way. While
problem formulation mainly was provided by my supervisor I took part in discussions, pro-
gramming, analysis and writing





PAPER I

47



PAPER II

57





PHYSICAL REVIEW A 96, 023423 (2017)

Classical and quantum-mechanical scaling of ionization from excited
hydrogen atoms in single-cycle THz pulses
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Excited atoms, or nanotip surfaces, exposed to strong single-cycle terahertz radiation emit electrons with
energies strongly dependent on the characteristics of the initial state. Here we consider scaling properties of the
ionization probability and electron momenta of H(nd) atoms exposed to a single-cycle pulse of duration 0.5–5 ps,
with n = 9,12,15. Results from three-dimensional quantum and classical calculations are in good agreement for
long pulse lengths, independent of pulse strength. However, differences appear when the two approaches are
compared at the most detailed level of density distributions. For the longest pulse lengths a mixed power law,
n-scaling relation, αn−4 + (1 − α)n−3 is shown to hold. Our quantum calculations show that the scaling relation
puts its imprint on the momentum distribution of the ionized electrons as well: By multiplying the emitted electron
momenta of varying initial n level with the appropriate scaling factor the spectra fall onto a common momentum
range. Furthermore, the characteristic momenta of emitted electrons from a fixed n level are proportional to the
pulse strength of the driving field.

DOI: 10.1103/PhysRevA.96.023423

I. INTRODUCTION

Terahertz (THz) radiation technologies are at present
advancing with promising perspectives in a wide range of
scientific fields, from fundamental science to real-world
applications [1]. Owing to the properties of THz radiation
based on low photon energies, the emerging technology has
been suggested as a useful source for medical imaging and
security [2,3]. In recent years, investigation of single- and
half-cycle THz pulses for driving nonlinear phenomena has
become possible [4,5], which has exposed new phenomena.
For instance, recently, it has been demonstrated experimentally
that a strong single-cycle THz pulse applied to excited
atoms [6] has led to electron emission with higher energies
from tightly bound Rydberg states and with increasing pulse
strength. Furthermore, a novel n−3 (where n is the quantum
number) scaling has been found for the field strength required
to attain 10% ionization probability, which later was shown to
be valid for arbitrary ionization probability [7]. A similar phe-
nomenon has been discovered for nanosized solid tips exposed
to THz pulses: Increasingly narrow tips result in a spectrum
of increasingly fast electrons [8]. Studies of the response of
solid-state systems to THz radiation is in its infancy. In this
context it is relevant to understand the detailed nature of the
single atom response to THz radiation in order to separate
potential collective phenomena from single atom effects.

On the theoretical side, for single-atom interactions, an
empirical scaling relation for 10% ionization probability was
put forward by Yang and Robichaux [9], which was shown to
be valid for a wide pulse strength and duration range. It gives
n−4 scaling for pulse durations larger than the classical orbit
period of the Rydberg atom (Tn) and a n2 scaling behavior
for short pulses. In that work the quantum calculations are
restricted to the initial n = 15, l = 2 states only while classical
trajectory Monte Carlo (CTMC) calculations are the basis of
the majority of their work. The dynamics of electron ionization
from n = 15 levels was further considered in great detail
based on time-dependent Schrödinger equation (TDSE) and

CTMC calculations in parallel [10]. Here they found excellent
agreement between the two approaches and showed that
electron emission is strongly favoured along an axis pointing in
the opposite direction of the electric polarization vector in the
second half-cycle of the pulse. None of these calculations were
compared directly with the experimental results of Ref. [6].

In this work we therefore analyze the degree of scaling of
the ionization of hydrogen for arbitrary ionization probability
from the initial n = 9,12,15 d states based on a full three-
dimensional (3D) solution of the TDSE and CTMC method.
We compare the results for pulses with various strengths
and durations. In particular, we compare our results directly
with the calculations in [10] and to the experiment in [6].
Furthermore, we explore the characteristics of the emitted
electrons for different field ionization. We arrive at three main
conclusions and results: First, the 3D quantum calculations,
which are in agreement with Ref. [10], support a different
scaling than the experimental results of Ref. [6]. Second, even
though our CTMC and TDSE results in general agree well
at the total probability level, clear discrepancies appear when
the two methods are compared at the differential level. In
Ref. [10] almost perfect agreement was reported for kinetic
emission in the forward or backward direction. Third, we
show that application of scaling to the momenta of the emitted
electrons puts the spectra on almost the same momentum
range. In the next section we describe the applied numerical
procedures. Then we present and discuss the main results.
Finally, concluding remarks are provided in the last section.
Atomic units are used throughout unless otherwise stated.

II. THEORETICAL MODEL

A. TDSE

Within the semiclassical (strong-field) approximation we
solve the TDSE,[

He(�r,t) − i
∂

∂t

]
ψ(�r,t) = 0, (1)

2469-9926/2017/96(2)/023423(10) 023423-1 ©2017 American Physical Society
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where the electronic Hamiltonian contains the field-free
Hamiltonian and the time-dependent interaction part given
in the length gauge with electric field along the z direction,
�E(t) = E(t)�ez. To validate the results we first compare with
the results in [10] where an exponential expression was used
for the electric field,

E(t) = −E0C0t

tw
exp

[
−

(
t

tw

)2

− 0.1

(
t

tw

)4]
. (2)

Here E0 is the maximum pulse strength, and C0,tw are
constants given in [10]. The remaining calculations are
performed with a much simpler expression for the electric
field,

E(t) =
⎧⎨
⎩

−E0 sin(ωt) if − T < t < 0
−E0β sin(βωt) if T/β > t > 0
0 otherwise,

(3)

with β ∼ 1.5. This equation grasps the main feature of a
single-cycle THz pulse related to the experiments [6,8]; a first
positive half-cycle of duration T and a shorter negative and
more intense half-cycle of duration T/β. The pulse strength
refers to the maximum value of the electric field, i.e., E0(n) =
E0β, where n refers to the initial principal quantum number.
There are two additional technical advantages of the field
expressed by Eq. (3) as well: It can be integrated giving simple
analytical expressions for the vector field A = − ∫

E(t ′)dt ′
and the free-field displacement α = − ∫

A(t ′)dt ′. Secondly,
the pulse has a well defined start (−T ) and end time (T/β).
We obtain very similar results for the fields of Eqs. (3) and (2)
for β = 1, but with a factor of 2 shorter simulation time.

Two major numerical challenges with strong THz pulses
are related to the long integration times in addition to the
required sizes of the numerical grids. Even if techniques
have been developed to calculate differential quantities in
special situations [11], the full wave function in general
needs to be kept on the grid to allow for extraction of
all measurable quantities accurately. In the present case at
the strongest pulse strength, for example, the wave function
initially propagates along the negative z axis and opposite in
the final half-cycle. If the grid size is too small, a part of
the wave function is absorbed in the first half-cycle and by
that the dynamics in the second phase of the field becomes
restricted.

The TDSE is integrated using the split-step Fleck-Hermann
method [12]. The initial (hydrogen) Rydberg states considered
throughout the investigation are analytically known. When
put on the grid they are completely stable in absence of
electric fields. Here, we need only to consider states with
the m = 0 component of the magnetic quantum number due
to the field polarization. The time-dependent wave function
is then expanded in spherical harmonics in the θ and r

coordinates as

�(ri,θj ,t) =
Lmax∑
l=0

fl(ri,t)Yl,0(r̂j ), (4)

where r̂j = θj . For general polarizations the sum runs over
m-quantum numbers as well and the present formalism is
perfectly valid in that case [13]. Then r̂ describes the two
spherical angles, dr̂ describes integration over both and we

keep this more general notation in the following. We track
the wave function up to radii up to rmax from where an
absorbing mask prohibits reflections. Numerical parameters
applied (rmax,	r,Lmax,	t) are given in the figure captions.
Once the time-dependent wave function is determined, on a
sufficiently large grid containing the entire density, the wave
function in momentum space is calculated using the same basis
of spherical harmonics as in Eq. (4). We define the Fourier
transform

〈p|�〉 = �̃( �p,t) =
∫

d3r e−i �p·�r�(�r,t) (5)

and the plane wave expansion

ei �p·�r = 4π

∞∑
L,M=0

iLjL(pr)Y ∗
L,M (r̂)YL,M (p̂). (6)

Here r̂ ,p̂ denotes the spherical angles and jL(x) is defined
by the spherical Bessel function, Jn(x), jl(x) = 1√

x
Jl+0.5(x).

Inserting this expansion into the Fourier transform we find that
the radial expansion of Eq. (4) can be expressed in momentum
space as

�̃( �p,t) =
Lmax∑
l=0

f̃l(p,t)Yl,0(p̂). (7)

After the pulse, the continuum part of �̃ spans the basis
describing ionization, �̃c(�r,t) = �̃ − �̃bound,

�̃c( �p,t) =
Lmax∑
l=0

f̃ c
l (p,tf )Yl,0(p̂). (8)

The momentum functions f̃ c
l become the Fourier transform

of the continuum part of the radial functions. These are ob-
tained by projecting and subtracting all populated hydrogenic
bound states at tf . The differential scattering cross section for
emission of an electron with momentum |pn|, integrated over
angles, can now be calculated from �̃c,

dσ

dpn

=
∫

dp̂ p2|〈p|�(�r,tf )〉|2 =
Lmax∑
l=0

∣∣pnf̃
c
l (pn,tf )

∣∣2
. (9)

The angular resolved cross section requires additional
multiplication of phases connected to the long-range property
of the Coulomb potential. To achieve the correct expression it
is convenient to start from a conventional basis state expansion
of the time-dependent wave function,

�(�r,tf ) =
∑
m

am(tf )�m(�r) +
∑

n

bn(tf )�c
n(�r). (10)

Here, the sum over m(n) runs over all bound (discretized
continuum) states inside a sphere with radius rmax. The basis
functions are the product of radial and angular states, �k(�r) =
φk(r)Yl,0(r̂), and the grid is assumed to span the entire wave
function after the pulse, 1 = ∑

m |am(tf )|2 + ∑
n |bn(tf )|2.

The connection between the set �n and the correct outgoing
scattering states of the Coulomb problem is obtained when
expressing the latter in terms of the discretized basis defined
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FIG. 1. Ionization probabilities as a function of pulse strength
for the symmetric pulse, Eq. (2), sketched in the inset and applied
in [10]. The black dashed line is the TDSE results and the dots
are the CTMC results from [10]. The red (dark-gray) bulleted curve
displays the present TDSE results and the red (dark-gray) dashed line
the CTMC results. Parameters for the TDSE computations: rmax =
4000, 	r = 0.2441, Lmax = 128, 	t = 0.05 and pulse parameters:
tw = 2.067 069 × 104, C0 = 2.385 525 5.

above,

�C(�r) = 1

p

∞∑
l=0

∑
n

ileiδl φc
n,l(r; pn)Y ∗

l,0(p̂)Yl,0(r̂), (11)

where the Coulomb phase shift is δl = arg[�(l + 1 + i/p)]
[14]. The projection of the numerical basis of Eq. (10) then
becomes

〈�C |�〉 = 1

p

Lmax∑
l=0

∑
n

(−i)le−iδl bn(tf )Yl,0(p̂). (12)

The differential angular cross section for emission of an
electron with any energy in the direction dp̂ then becomes

dσ

dp̂
=

∫
dp p2|〈�C |�〉|2

=
∑

n

∣∣∣∣∣
Lmax∑
l=0

(−i)le−iδl bn(tf )Yl,0(p̂)

∣∣∣∣∣
2

. (13)

Note that amplitudes of the numerical simulation have to be
augmented by the Coulombic phase factors before integration.
The same procedure must be carried through for the grid
expansion of Eq. (4). Starting again with the projection on
the Coulomb functions,

〈�C |�〉 =
∫

d3r〈�̃C |�r〉〈�r|�〉 =
Lmax∑
l=0

(−i)le−iδl f̃ C
l (p)Yl,0(p̂).

(14)

By comparing this expression with Eq. (8) we identify
f̃ C

l (p) = f̃ c
l (p) and we note that Coulomb phase shifts need to

be augmented precisely as in the case of eigenstate expansions,
Eqs. (13) and (12). The differential cross sections for emission
of an electron with momentum pn along the direction dp̂ then
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FIG. 2. Ionization probabilities as a function of scaled pulse
strength for a pulse shape comparable to the experiment of [6]
(cf. inset in the lower panel). Pulse parameters from Eq. (3) are
T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. Probabilities
are shown as a function of scaled pulse strength. The upper (middle)
panel shows the experimental and computational results based on a
n−3 (n−4) scaling. The lower panel shows the results for the mixed
scaling Eq. (20), with α = 0.2. Color coding is according to the initial
n state with n = 15 as red (dark-gray) lines, n = 12 as green (gray)
lines, and n = 9 as blue (light-gray) lines. Full curves are TDSE
results, broken curves are CTMC results, and bullets are experimental
data from [6] with the same color coding. Parameters of the TDSE
computations: rmax = 4000, 	r = 0.2441, Lmax = 128, 	t = 0.05.
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FIG. 3. Ionization probabilities as a function of scaled pulse
strength for a pulse shape of Eq. (3), comparable in length to the
pulse in Fig. 1. Results are plotted in terms of the mixed scaling
Eq. (20), with α = 0.2. Pulse parameters are T = 33 073.0 a.u.
(ω = 9.498 96 × 10−5 a.u.), β = 1.5. Color coding is according to
the initial n state with n = 15 as red (dark-gray) lines, n = 12 as
green (gray) lines, and n = 9 as blue (light-gray) lines and full
curves are TDSE results. Parameters of the TDSE computations:
rmax = 4000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

becomes
dσ

dpndp̂
= p2

n|〈�C |�〉|2

=
∣∣∣∣∣
Lmax∑
l=0

(−i)le−iδl pnf̃
c
l (pn,tf )Yl,0(p̂)

∣∣∣∣∣
2

. (15)

Thus, the differential cross sections can be computed
directly based on the available radial (momentum) basis f c

l (r)
[f̃ c

l (p)] without explicit knowledge of the continuum basis
function φn of Eq. (12). For ionization from the n = 15 initial
state the final lowest electron momenta are relatively small, in
fact of similar magnitude as the strength of the potential energy.
Therefore the quantum angular scattering can be affected by
the Coulomb phase shifts as well. The differential cross section
for electron emission in the forward direction is obtained
by integrating over angles corresponding to a positive [θ ∈
(0,π/2)] or negative [θ ∈ (π/2,π ] pz momentum component,

dP forward

dpn

=
∫ π/2

0

∫ 2π

0
dp̂

dσ

dpndp̂
,

dP backward

dpn

=
∫ π

π/2

∫ 2π

0
dp̂

dσ

dpndp̂
. (16)

These quantities will be discussed at the end of the next
section and compared with (phase-free) classical scattering.

B. CTMC

In the CTMC method, Newton’s equations are propagated
for a large number of the initial conditions describing some
main characteristics of an initial quantum probability density.
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FIG. 4. Ionization probabilities as a function of scaled pulse
strength, Eq. (20), for a pulse shape of Eq. (3), with duration only 10%
of the pulse in Fig. 2, T = 12 402.0 a.u. (ω = 2.533 13 × 10−4 a.u.),
β = 1.5. Color coding is according to the initial n state with
n = 15 as red (dark-gray) lines, n = 12 as green (gray) lines,
and n = 9 as blue (light-gray) lines and full curves are TDSE
results. Parameters of the TDSE computations: rmax = 4000, 	r =
0.2441, Lmax = 128, 	t = 0.05.

This approach has been applied for decades within heavy
particle collisions [15,16] before it was adopted in the study of
atoms interacting with strong laser fields [17,18]. A variety of
possibilities exist to select the initial distributions [19]. When
ionization via tunneling is important an initial distribution
of the initial electron position and momenta after tunneling
is useful [20]. After propagating the electron positions and
momenta according to a given time-dependent interaction,
quantum phases may even be added in the final statistics [21].

The basic (standard) CTMC method which we will apply
here is based on the selection of initial states which have a
fixed energy identical to the initial quantum state in question.
The simplest assumption that otherwise the probability density
is a constant D is then in N -dimensional space,

DdNrdNpδ[E(�r, �p) − E0]. (17)

This is referred to as the microcanonical distribution [22],
which is based on the formal similarity with the concept of
the microcanonical ensemble in statistical physics. There is
no proof that this method should model well the quantum
probability densities and the field-induced dynamics other
than the results. And indeed, fine details related to differential
quantities often display discrepancies with full quantum
treatments [17,23].

In this approach the energy delta function limits the 2N -
dimensional space to 2N − 1 dimensions, with the necessity to
find the 2N − 1 uniformly distributed variables. In 3D (N = 3)
space with two sets of spherical coordinates, the four angles
are treated in the standard way of covering uniformly the two
spheres in r and p. The remaining radial r and p must be
described by only one uniformly distributed variable usually
denoted w. This is obtained by transforming p2dpr2dr −→
dEdw and pdp → μdE so that the energy delta function can
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FIG. 5. Probability density distributions at the end of the pulse of the continuum part of the quantum wave function in position space,
|�c[r, cos(θ ),tf ]|2 (upper left) and momentum space |�̃c[p, cos(θp),tf ]|2 (upper right) for an initial 15d state with a pulse strength corresponding
to 20% ionization probability (E0 = 18 kV/cm) in Fig. 3. The lower panels show the corresponding densities from CTMC calculations. Pulse
parameters from Eq. (3) are as in Fig. 2: T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. Parameters of the TDSE computations:
rmax = 16 000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

be integrated over dE. The variable w can then be found from
these requirements.

w(r) = μ

∫ r

0
p(r ′) ′2dr ′ = μ

∫ r

0

√
2μ[E0 − V (r ′)] r ′2dr ′.

(18)

In this equation E0 is the fixed initial energy and μ is the
reduced mass. For more details, see Ref. [22].

In addition, to mimicking the initial Yl=2,m=0 character
of the quantum initial state, we select only classical initial
conditions with angular momentum l, 1.5 < l < 2.5, and
|lz| < 0.5. No sensitivity on the results to other limits for
l ∼ 2, lz ∼ 0 is found. Newton’s equations are then propagated
with up to 500 000 initial states using the adaptive integration
method of Shampine and Gordon [24] and carefully checked
by the ODE45 routine in MATLAB. In both cases an absolute
(relative) error tolerance below 10−7 (10−9) has been applied.

III. RESULTS AND DISCUSSION

In the remainder of this paper, scaling laws will be discussed
in connection with the ionization probabilities and their
momentum distributions from TDSE and CTMC calculations.
The angular distributions, which show distinct differences, will
be additionally discussed at the end.

We start out by comparing the results of our methods
with the results of Ref. [10]. Here, we restrict ourselves to
the ionization probabilities as a function of the peak field
for the hydrogen 15d state, but test calculations with the
initial 15s show the same degree of agreement. The quantum
probabilities are computed by subtracting from unity all
bound-state probabilities pertaining to a sphere of a given
radius (see Fig. 1 caption). The classical probabilities are
obtained by the fraction of final states with positive energy
after the pulse and the results from both approaches are
plotted in Fig. 1. In the same figure the quantum and classical
probabilities of [10] are shown. Results are shown for a
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FIG. 6. Momentum distributions of the ionized electron based on the TDSE approach (upper) Eq. (9) and CTMC (lower), for initial states nd

with n = 15 as red curves (dark-gray), n = 12 as green curves (gray), and n = 9 as blue (light-gray) curves and for pulse strengths leading to 20%
ionization probability from each initial n state (E0 = 18 kV/cm for initial n = 15, E0 = 36 kV/cm for initial n = 12, E0 = 104 kV/cm for initial
n = 9). The right column shows the same distributions except that the n = 12 and n = 9 momentum distributions have been scaled according to
the mixed scaling relation, Eq. (20), with α = 0.2. Pulse parameters from Eq. (3) are as in Fig. 2: T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.),
β = 1.5. Parameters of the TDSE computations: rmax = 16 000 (rmax = 32 000 for n = 9), 	r = 0.2441, Lmax = 128, 	t = 0.05. The CTMC
results are based on 500 000 initial states.

symmetric pulse with a duration of ∼2 ps, and its form is
illustrated in the inset of the Fig. 1. One can see that the
present computed TDSEs are in excellent agreement with those
reported in Ref. [10]. Our classical calculations (red dashed
lines) very slightly overestimate the ones obtained in [10],
possibly a result of different strategies to sample the initial
conditions.

In [9] an empirical scaling law was shown to be valid for
total ionization (at 10% ionization probability) for a large
parameter range of initial states, pulse lengths, and strengths.
This was based predominantly on classical calculations but
included also results from a few quantum calculations. This
scaling law implies a n2 scaling behavior for pulse durations
shorter than the classical orbit period of the Rydberg atom
(Tn ∼ n3). At long pulse lengths, their scaling law reproduces
the results of the classical over the barrier model, i.e., a n−4

scaling. In the transition region between these two extrema
any kind of power/nonpower laws may occur, including the
measured and reported n−3 scaling in [6].

Instead of testing scaling law in [9] for computations
with different initial levels and probabilities, we here aim
to investigate the possible degree of scaling at all ionization
probabilities for selected single-cycle pulses. We will consider
pulse lengths comparable to the n = 15 orbit time of ∼0.5 fs,
and upward to ∼5 fs, the experimental pulse length in [6]. In
Fig. 2 we compare our calculated results with the experimental
results directly and for various forms of scaling. In the upper
panel the experimental ionization probabilities of the initial
n = 9,12,15 states are shown on a common scaled axis defined
by (n/15)3 [7]. We observe that this scaling is excellent for
the experimental results but rather poor for the calculations.
On the other hand, TDSE and CTMC probabilities are in
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FIG. 7. Forward and backward quantum differential momentum
emission probability (black curve) for the initial state n = 15d , E0 =
18 kV/cm, Eq. (16), and compared to the momentum distribution
of Eq. (9), the red (dark-gray) curve shown in Fig. 6. Parameters
of the TDSE computations: rmax = 16 000, 	r = 0.2441, Lmax =
128, 	t = 0.05.

good agreement. The situation switches by applying over the
barrier scaling, (n/15)4 in the middle panel of Fig. 2. Now the
calculations shows a higher degree of scaling while the scaling
of the experimental results are poor.

A dynamical classical mechanism behind the observed
n−3 scaling was put forward in Ref. [6]. Interestingly, a
one-dimensional quantum tunneling mechanism provides the
same power-law dependence independent of field strength
[25]. In 3D, the weak-field adiabatic tunneling theory provides
a leading exponential term which partly scales as n−3 as well
[26]. Thus, tunneling offers a quantum-mechanical mechanism
leading to the observed scaling. The strong external field does,
however, open for over the barrier ionization as well. When
the two processes takes place at the same time a combination
of n−3 and n−4 scaling may show up in the results. A mixed
power-law scaling factor would then emerge on the form

E
sf

0 (n) = αn−4 + (1 − α)n−3, (19)

where the parameter 0 � α � 1. Given an ionization probabil-
ity for a reference n level, say n = 15, the scaled pulse strength
of ionization from other n levels at a given real pulse strength
E0(n) becomes

Escaled
0 (n) = E

sf

0 (n)

E
sf

0 (n = 15)
E0(n). (20)

If the present scaling is universally valid the ionization
probability for varying initial n levels falls on the same curve
for a fixed value of the parameter α. In the lower panel of
Fig. 2 it is interesting to observe that the computed quantum
ionization probabilities exhibit this property for α = 0.2. Even
the CTMC calculations display the same scaling property
for ionization probabilities below 50%. However, putting
the experimental results through this scaling procedure only

slightly improves the situation from the middle panel of Fig. 2.
A potential origin of the discrepancy might be related to the
fact that the experiment is performed with Na atoms and
the calculations are with H atom(s). However, the quantum
defects of the initial nd states in Na are very small and a
complete change of scaling is hardly expected between the
two atomic systems [9]. Given the agreement with independent
calculations we can only conclude that we here document an
unresolved discrepancy between theory and experiment which
calls for an iteration or independent work on the experimental
and possibly also on the computational side.

In Fig. 3 we show our results for a shorter pulse length than
the one in Fig. 2, and comparable to the one in Fig. 1. In relation
to Fig. 2 the time-dependent field now has a stronger (negative)
pulse strength in the second half-cycle as compared to the first.
We again note a sharp rise in the ionization probability at the
same pulse strength range as in Figs. 1 and 2 and that the
scaling procedure as outlined above works very well up to an
ionization probability around 70%. At that point the n = 15
ionization probability flattens out and oscillates, a mechanism
discussed in [6]. It occurs when the pulse length becomes
comparable to the classical orbit time, Tn ∝ n3. The results of
a much shorter pulse duration (∼0.5 ps) are shown in Fig. 4.
At this point the scaling procedure is only valid at smallest
ionization probabilities. At ionization probabilities exceeding
10% the results of classical and quantum calculations disagree.
This indicates that the empirical scaling relation put forward
in [9] is limited to small ionization probabilities only.

In the remaining part of this section we will study the
momentum distributions in more detail. It generally requires
much more computationally expensive calculations as the
entire wave function needs to be kept on the grid until
the electric field vanishes. The momentum and angular
distributions indeed provide a deeper understanding of the
ionization dynamics. In this context, it was found in the recent
experiment [6], by measuring the electron energy distributions
for different n states, that lower initial n gives generally higher
energies of the emitted electrons. We address here two main
questions: First, to which degree does the mixed scaling law
of Eq. (19) imprint itself on the spectrum of emitted electrons?
Second, to which extent do the CTMC and TDSE calculations
agree when the differential distribution is studied in detail?

The starting point amounts to examining the ionization
dynamics in the two-dimensional position and momentum
spaces at the end of the laser pulse. Figure 5 shows the spatial
distribution of the continuum part of the electron-probability
density (left panels) and the corresponding momentum distri-
bution (right panels) for the initial 15d state at 20% ionization
probability (see caption for further details). The distributions
are quantum (upper panels) and classical (lower panels) and
they are seen to display great differences. The spreading, the
mean position, and momentum of the outgoing distribution
differ. With a less detailed focus there are also common
features: It is seen that the electron density which is nonzero
along a limited range of (r, cos θ ) values corresponds to
ionized electrons propagating along the positive z axis and
are centered at positive z values immediately after the pulse.
This is consistent with the ionization dynamics taking part
predominantly in the final half-cycle of the pulse. In the
quantum results, we also observe the emergence of oscillatory
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FIG. 8. Upper panels: Momentum distributions from the initial n = 15d state for for three different pulse strengths E0 = 15.8 kV/cm
(full line), E0 = 18.5 kV/cm (dashed line), and E0 = 21.6 kV/cm (dashed-dotted line). Pulse parameters from Eq. (3) are as in Fig. 2:
T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. The pulse strengths give ionization probabilities of 20%, 50%, and 73% for the TDSE
calculations. The upper right panel shows the distribution with a linearly scaled momenta [cf. Eq. (22)] and normalized to an ionization
probability of 20%. Lower panels: Corresponding spectra based on CTMC calculations with 500 000 initial states. Parameters of the TDSE
computations: rmax = 16 000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

wavelike structures which do not appear in classical results.
A related phenomenon has been discussed previously in
Refs. [27] in a multicycle extreme-ultraviolet pulse, and in
studies of strong-field few-cycle ionization of the ground state
about 20 years ago [17,28].

We turn now to discuss the scaling properties in connection
with the momentum distributions of the ionized electrons. In
Fig. 6 we have integrated the distributions over all angles and
obtained the differential momentum distribution, dP/dp. In
the left panel of Fig. 6 we show the unscaled quantum (upper
panels) and classical (lower panels) distributions for three
initial n = 9,12,15 states all at ∼20% ionization probability.
The general features of quantum distributions are reflected
in the classical distributions. These are mainly manifested
by a wider distribution describing higher electron momenta
for decreasing n. By applying the mixed scaling relation,
Eq. (19), to the final state momenta, one can now see that

the quantum distributions of all three initial states fall into
a common range. To some extent the classical distributions
also exhibit this property, but here the scaled range is “less
common,” as shown in the right column of Fig. 6. This result
is consistent with the release of the electron at a narrow range
of critical pulse strengths, from which it essentially propagates
with little influence of the binding potential, as discussed in
[7,9].

The instantaneous CTMC distribution of Fig. 6 does not
change at all by letting the particles propagate an additionally
long time in the presence of the Coulumb potential only. For
the quantum distribution it is not so: The low-energy part of
the continuum waves, in particular, may be altered by the
Coulomb potential. Thus Coulomb phases need to to be added
when computing the final differential forward or backward
emission probability [cf. Eq. (15)]. This is displayed in Fig. 7
for the initial n = 15d results in Figs. 5 and 6. We observe
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that indeed the Coulomb potential plays a role and causes
the low-energy part of the emitted spectrum to be rescattered
in the opposite direction from what is seen in Fig. 5. Thus,
the forward-backward scattering asymmetry turns out to be
different for TDSE and CTMC calculations as well, notably in
disagreement with the results in [10] with other pulse shapes,
strengths, and durations.

For completeness, we address in Fig. 8 the nature of the
momentum distributions for an initial fixed n level and for
different ionization probabilities. The left panel of Fig. 8
shows results at three comparable ionization probabilities for
the initial n = 15d. Both the quantum distribution (upper
panels) and the classical one (lower panels) show increasing
momenta with increasing pulse strength. But again, the
detailed distribution differs in shape. A possible scaling in this
case can be argued for by assuming the ratio between the final
momenta and the pulse strength of any ionization probability,
x%, is almost constant,

p(20%)

E0(20%)
= p(x%)

E0(x%)
. (21)

This suggests a scaling relation of the form

pscaled(x%) = γ
E0(20%)

E0(x%)
p(x%) (22)

with γ ∼ 1 as a free fitting parameter may work. The spectra
are additionally normalized to the same total area. We observe
in Fig. 8 (right panel) that the momentum range of emitted
electrons from the quantum results scale reasonably well for
γ = 0.8, while the CTMC results differ much more, both in
shape and final scaled momentum range.

IV. CONCLUDING REMARKS

We have considered the response of H(n = 9d,12d,15d)
atoms to a single-cycle THz pulse with durations from 0.5 to

5 ps in classical and quantum-mechanical time propagation.
A scaling law has been found to be generally valid for
any ionization probability and for initial n = 9,12,15 levels
when the pulse length becomes similar to, or longer than,
the classical period of the n levels under consideration. We
further investigated the scaling behavior in connection with
the ionized momentum distribution in the long-pulse regime.
The same scaling property was here found to be valid in
quantum distributions and to a much lesser degree for the
classical approach. The Coulomb phases have been shown to
be important in the quantum scattering process as well for
the initial n = 15d state. Finally, a near linear response of the
characteristic momentum range has been found for ionization
from a fixed n state with increasing pulse strength.

Interestingly, these phenomena have a counterpart in THz
radiation from nanotips, faster electrons from narrower tips,
and a linear response for a fixed tip with increased pulse
strength [8]. Further investigations in this direction may lead
to new imaging devices where the electron spectrum from a
fixed pulse may provide structural information of the tip region
itself. Before that it seems important to further investigate the
scaling relations validity for single atoms in strong THz fields.
This applies to electron emission probabilities at the total as
well as at the differential level and to converge on parameter
ranges where ionization and scattering from classical and
quantum based approaches agree.
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Atomic Units

Through the thesis Hartree atomic units (a. u.) have been used unless stated otherwise. In
this set of units the electronic mass, the elementary charge, the angular momentum and
the electrostatic constant are all scaled to unity: me = e = h̄ = 4πε0 = 1.

Fundamental and derived Hartree atomic units

Quantity Unit Physical significance Value in SI-units

Mass me Electron mass 9.109 38 × 10−31 kg

Charge e Absolute value of electron charge 1.602 18 × 10−19 C

Angular
momentum h̄ Planck constant divided by 2π 1.054 57 × 10−34 kg

Electrostatic
constant

4πε0
4π times the permitivity of free
space

1.112 65 × 10−10 Fm−1

Length a0 =
h̄

mecα
Bohr radius of atomic hydrogen 5.291 77 × 10−11 m

Velocity ν0 = αc
Magnitude of electron velocity in
first orbit

2.187 69 × 106 ms−1

Energy Eh = α2mec2 Twice of binding energy of
atomic hydrogen

4.35975 × 10−18 J
= 27.2114 eV

Frequency f = ν0
2πa0

Angular frequency of electron in
first Bohr orbit divided by 2π

6.579 69 × 1015 s−1

Electric field
strength

F0 =
e

(4πε0)a2
0

Strength of the Coulomb field ex-
perienced by an electron in the
first Bohr orbit of atomic hydro-
gen

5.142 21 × 1011 Vm−1

Here α = e2/(4πε0h̄c)∼ 1/137 is the fine structure constant.
Hartree atomic units should not be confused with Rydberg atomic units, which are based on slightly
different scaling assumptions: 4πε0 = 1, me = 1/2, h̄ = 1 and e = 1/

√
2. Consequently the unit of

energy in the two systems differs by a factor of two, i.e., EH = 2ERy.
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Derivation of
Quantum Scattering Formulae

A one-electron wavefunction Ψ(r) which has been exposed to a time-dependent from
(ti, t f ) field may be partly of fully excited or ionized. It takes the following form at t f ,

Ψ(r, t f ) = ∑
m

am(t f )Φm(r)+∑
n

fi,n(Ω, t f )
eipnr

r
(1)

The first part is a sum over bound states while the second is an outgoing wave with fi,n
being the scattering amplitude for scattering into a solid angle element Ωn of the outgoing
wave vector when initially the wavefunction is in the state Φi(r). At t > t f |am|, | fi,n| does
not depend on time. The differential cross section is,

dσ

p2d pdΩ
= | fi,n(Ω, t f )|2 (2)

which is the relative (differential) flux of momentum in a direction perpendicular
through the solid angle element Ω. When using the result of a numerical solution of the
TDSE as a starting point for differential fluxes it is implicitly assumed that the wavefunc-
tion exist (unit norm) on a large enough grid and that after a time t > t f (= T/β in our
case), there are no time dependent interactions: H = H0. Our wavefunction is then, at
t = t f

Ψ(ri,θ j, t f ) =
Lmax

∑
l=0

fl(ri, t f )eip·rYl,0(θ j). (3)

Note that this is the ’reduced’ wavefunction, see [?]. All radial functions have been
multiplied with r such that the normalization is simply,

1 =
Lmax

∑
l=0

∫ rmax

0
dr| fl(r)|2 (4)

Division with ’r’ or needs to be taken into account when equating the numerical wave-
function with Eq. (1). To extract differential quantities one need (and we may in fact
always do it like this) to project onto the basis of Coulomb functions existing on the very
same grid. From the solution of the Coulomb problem we extract a discrete set of basis
functions which are zero at the end of the grid.

But let us first see what happens when we project onto a plane wave basis |p〉, with

〈r|p〉= 1
(2π)3/2 eip·r (5)

The calculation will involve using a well known expansion of the plane wave as,

eip·r = 4π

∞

∑
L,M∈(−L,L)

iL jL(pr)Y ∗L,M(p̂)YL,M(r̂) (6)

Here jL is the spherical Bessel function, jl(x) = 1√
xJl+0.5(x).
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Then,

〈p|Ψ〉 =
Lmax

∑
l=0

(−i)l

[√
2
π

∫
∞

0
r fl(r, t) jl(pr)dr

]
Yl,0(p̂) (7)

=
Lmax

∑
l=0

f̃l(p)Yl,0( p̂) (8)

since
∫

dr̂Y ∗L,M(r̂)Yl,m(r̂) = δL,lδM,m. This is the full time-dependent wavefunction
in momentum space. Clearly, according to the interpretation of quantum mechanics,
|∑Lmax

l=0 pi f̃l(pi)Yl,0(p̂i)|2d p is the probability of the total wavefunction to have a momen-
tum component pi.

We shall be interested in momentum components belonging to outgoing waves, not
all momentum components above which also include the contribution from bound states.
By expressing the numerical radial wavefunction as a bound part and a continuum part,
fl(r, t f ) = f b

l (r, t f ) + f c
l (r, t f ) it is straight forward to replace fl(r, t) by f c

l (r, t f ) in the
equation above and we obtain,

〈p|Ψc〉 =
Lmax

∑
l=0

[√
2
π

∫
∞

0
r f c

l (r, t) jl(pr)dr

]
Yl,0(p̂) (9)

=
Lmax

∑
l=0

f̃ c
l (p)Yl,0(p̂) (10)

The differential cross section per (scalar) momentum becomes Eq. (9) of the manuscript.

dσ

d pn
=
∫

d p̂p2|〈p|Ψ(r, t f )〉|2 =
Lmax

∑
l=0
|pn f̃ c

l (pn, t f )|2 (11)

The differential angular resolved cross section can hardly be obtained in this way.
That is because the momentum states are not the correct basis of the Coulomb problem.
One way to understand this is to consider an alternative basis expansion in terms of the
bound states and the discrete continuum states which vanish at r = rmax,

Ψ(r, t f ) = ∑
m

am(t f )Φm(r)+∑
n

bn(t f )Φ
c
n(r) (12)

The second sum is the discretized representation of the continuum, Φc
n(r)= φ c

n,l(r; pn)Yl,0(r̂)
Now, the projection onto momentum states becomes

〈p|Ψ〉=
Lmax

∑
l=0

∑
n
(−i)l

[√
2
π

∫
∞

0
r2 jl(pr)φ c

n(r, pn)dr

]
bn(t f )Yl,0(p̂) (13)

The term in the parenthesis is an overlap, in general nonzero for any p, which makes
it very troublesome to compute. In addition, one needs the set of functions φ c

n(r, pn) on
pre-calculated form. This is the basis defined by being radial solutions of H0 with positive
energy and vanishing at rmax. Therefore, when angular quantities which will be consid-
ered it would be good if we instead could calculate them directly from the numerical basis
at hand, in radial ( f c

l (r)) or momentum space ( f̃ c
l (p)).
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In text books, it is shown that the solution of the Coulomb problem in terms of out-
going regular basis functions (vanishing at r→ 0) can be written in atomic units, p = k,
E = p2/2,

ΨC(r) = 4π

∞

∑
l=0

∑
n
(i)leiδl

Fl(η ;rp)
pr

Y ∗l,0(p̂)Yl,0(r̂) (14)

where η = 1/p for hydrogen, the Coulomb phase shift is δl(pi) =arg[Γ(l+1− i/pi)]
and Fl is the solution to the reduced radial Schrödinger equation with the Coulomb poten-
tial and has the asymptotic behaviour,

Fl ∼︸︷︷︸
r→∞

sin(pr− 1
2

lπ−η ln(2pr)+δl) (15)

By comparing, the relation between the continuum basis functions of Eq. (12) and
Eq. (15), becomes,

φ
c
n,l(r; pn) =

Fl(η ;rpn)

4πr
(16)

The expansion in a basis with the correct asymptotic phases is therefore

ΨC(r) =
∞

∑
l=0

∑
n
(i)leiδl φ

c
n,l(r; pn)Y ∗l,0(p̂)Yl,0(r̂) (17)

This makes projection onto these states particularly simple:

〈ΨC(r)|Ψ(r, t f )〉=
1
p

Lmax

∑
l=0

∑
n
(−i)le−iδl bn(t f )Yl,0(p̂) (18)

The differential cross section per momentum again becomes,

dσ

d pn
=
∫

d p̂p2
n|〈ΨC(r)|Ψ(r, t f )〉|2 =

Lmax

∑
l=0
|bn(t f )|2 (19)

The sum over l for fixed n means to take the sum of probabilities for fixed momentum
(or energy). The differential angular cross section becomes,

dσ

d p̂
=
∫

d pp2|〈ΨC(r)|Ψ(r, t f )〉|2 = ∑
n
|

Lmax

∑
l=0

(−i)le−iδl bn(t f )Yl,0(p̂)|2 (20)

cf. Eq. (9) of [54].
The formulae becomes equally simple for a grid expansion since, bn(t f )= 〈φ c

n,l(r; pn)| f c
l (r, t)〉

〈ΨC(r)|Ψ(r, t f )〉 =
Lmax

∑
l=0

∑
n
(−i)le−iδl〈φn| fl〉Yl,0( p̂) (21)

=
Lmax

∑
l=0

(−i)le−iδl f̃ c
l (p, t f )Yl,0(p̂) (22)

The last equation is valid precisely because the sum of projections is exactly equal to the
Fourier transform of the continuum part of fl(r, t f ):

∑
n
〈φn| fl〉= ∑

n
〈φn| f c

l 〉= ∑
n

∫
d p〈φn|p〉〈p| f c

l 〉= f̃ c
l (p) (23)
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The differential cross sections now becomes,

dσ

d pn
=
∫

d p̂p2
n|〈ΨC(r)|Ψ(r, t f )〉|2 =

Lmax

∑
l=0
|pn f̃ c

l (pn, t f )|2 (24)

and
dσ

d pnd p̂
= p2

n|〈ΨC(r)|Ψ(r, t f )〉|2 = |
Lmax

∑
l=0

(−i)le−iδl pn f̃ c
l (pn, t f )Yl,0(p̂)|2 (25)

Observe that Eq. (11) and Eq. (24) are completely identical. This has to do with the
definition of f c

l : Having subtracted the ”bound part” it is implicitly expressed in a basis of
positive energy scattering states. However, for left-right (or forward-backward) scattering
we have to use Eq. (25) and sum over angles, θ ∈ (0,π/2) for forward scattering, θ ∈
(π/2,π) for backward scattering. The additional phases in the last equation and their
consequences are the origin of the new figure.
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