
 
 

 

Mudstone-rich fluvial systems as reservoirs: The Brushy 

Basin Member of the Morrison Formation, Eastern 

Utah 

 

Master in Petroleum Geology 

Aasmund Olav Løvestad 

 

 

 
Department of Earth Science 

University of Bergen 
September 2018



I 
 

 

Abstract 

Mudstone-rich fluvial systems are common in the sedimentary record, such as the Triassic of 

the Barents Sea, but have received little scientific attention compared to their sandstone-

rich counterparts. However, mudstone-rich fluvial systems often have large river channels 

which are easily imaged on seismic data, and thus make good exploration targets. The late 

stages of the Jurassic sedimentary succession of Utah, USA, comprise of a collection of low-

gradient, mudstone-rich fluvial continental deposits known as the Brushy Basin Member of 

the Morrison Formation. This thesis investigates the Jurassic Brushy Basin Member as an 

analogue to mudstone-rich fluvial reservoirs and offers new insight into distributary fluvial 

systems.  

Fieldwork was done on a 2x2 km, v-shaped outcrop which offers a high degree of three-

dimensionality. Data acquisition was done through combining traditional fieldwork 

techniques with modern digital acquisition techniques and a virtual model of the outcrop 

was constructed. Through interpreting and correlating logs with the virtual-outcrop, facies 

associations and their spatial organization was identified and understood. A conceptual 

geological model was constructed which schematically captures the upwards changes in the 

fluvial system. A reservoir model based on the geological model was then built with the goal 

of flow-simulating oil production from the reservoir model.  

The results from studying the Brushy Basin Member implies a retrograding distributary 

fluvial system, with an upwards decrease in channel-belt width, thickness, amalgamation 

and interconnection. This interpretation has not been described in previous work.  

Production results from flow simulating the reservoir model shows that a mudstone-rich 

fluvial system highly depend on channel-to-channel connection which can be established 

through crevasse-splays. In exploration of new and poorly understood mudstone-rich fluvial 

systems, sub-seismic channels and crevasse-splays should be considered an upside in terms 

of connectivity and reservoir volumes. 

 

Keywords: Mudstone-rich fluvial systems, Distributary fluvial systems, Brushy Basin Member, 

Morrison Formation, Virtual outcrop, Crevasse-splays, Colorado Plateau. 
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1.0 Introduction  
The late stages of the Jurassic sedimentary succession of Utah, USA, comprise of a collection 

of low-gradient, mudstone-rich fluvial continental deposits known as the Brushy Basin 

Member of the Morrison Formation (e.g. Demko et al., 2004; Hasiotis, 2004; Turner & 

Peterson, 2004; Galli, 2014; Owen et al., 2015). The Morrison Formation is a well-known 

geological formation that has been thoroughly studied due to the abundance of dinosaur 

fossil, but a study aimed at the Brushy Basin fluvial systems as a hydrocarbon reservoir 

analogue has never before been attempted. The Brushy Basin Member mudstone-rich fluvial 

system display channel architecture much like the potential fluvial reservoirs in the Triassic 

of the Barents Sea currently being explored by major oil companies (Klausen et al., 2015; 

Eide et al., 2017). 

The Norwegian Petroleum Directorate estimates that a large proportion of the undiscovered 

hydrocarbon reserves left on the Norwegian Continental Shelf are situated in fluvial channels 

in Snadd and Kobbe formations of the Barents Sea (NPD, 2018). As many of the large oil-

fields are entering tail-off stage of production, new and substantial discoveries are important 

to maintain production levels. Consequently, numerous studies and considerable interest 

has been given to the Triassic channel sandstones as potential reservoirs (e.g. Klausen et al, 

2014; Klausen and Mørk, 2014; Lundschien 2014; Martinius et al., 2014).  

This project sets out to increase the understanding of mudstone-rich fluvial systems through 

investigating the Brushy Basin Member as an analogue to mudstone-rich fluvial reservoirs. 

Specifically, this thesis aims to (1) describe and understand the Brushy Basin Member fluvial 

system, (2) to construct and flow-simulate a reservoir model of the Brushy Basin Member, 

and (3) to discuss the findings in terms of the evolution of the fluvial system, and important 

factors for connectivity and production in the reservoir model. An essential part of this 

discussion will be to compare the findings with similar mud-rich fluvial systems like the 

Snadd Formation and Kobbe Formation of the Barents Sea. 

The results of this study are significant for two reasons. Firstly, exploration in the Barents 

Sea has been largely based on data from seismic which gives information about large scale 

channel-belts, many kilometres wide and tens of meters thick (Klausen et al., 2014; Klausen  



Chapter 1  Introduction 

2 
 

and Mørk, 2014). However, the width and spatial distribution of sub-seismic scale channel-

belts could represent an upside in terms of reservoir volume and connectivity and can 

therefore be very valuable to investigate in a hydrocarbon exploration context. Secondly, 

mudstone-rich fluvial systems are common in the sedimentary record, such as the Triassic of 

the Barents Sea, but have received little scientific attention compared to their sandstone-

rich counterparts. For that reason, investigating the Brushy Basin member could improve the 

understanding of low gradient, mudstone-rich fluvial systems. 

 

1.1 Study Area 
The outcrop investigated in this thesis is located in the southeaster part of Utah, USA, 

(Figure. 1.1.A) in the San Rafael Swell area of the Colorado Plateau in close proximity to the 

town Caineville (Figure. 1.1.B). The outcrop consists of Late Jurassic rocks of the Brushy Basin 

Member capped by the Lower Cretaceous Buckhorn Conglomerate (Galli, 2014), exposed in 

95- 110-meter-tall v-shaped cliff as seen in Figure. 1.1.C. The outcrop was chosen because of 

the spectacular fluvial channel-sandstones (Figure. 1.2) that are exposed in the cliffs and 

offers a high degree of three-dimensionality within a well-documented stratigraphic 

framework. Alternating mudstones and sandstones from channel and overbank origin form 

recognisable bands of alternating light gray, green gray and red colours typical for the 

continental deposits of the Upper Morrison Formation.  
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Figure 1.1: Location of the Study Area. A) Mini-map of USA and a map of Utah with key cities, towns and 
approximate outreach of the Colorado Plateau in Utah. B) Map of the San Rafael Swell within the Colorado 
Plateau with the Wasatch Line and the Wasatch plateau on the western margin and the Book cliffs on the 
northeaster margin. Study area right north of Caineville in the southern part of the figure. C) The V-shaped 
outcrop that was studied on this thesis. (Photos Google Earth)
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Figure 1.2: Picture-mosaic of a spectacular meandering channel in the Upper Brushy Basin Member. Person for scale. Lateral accretion surfaces indicated by red line, and channel base by 
dotted black line. Note that the channel belt has lateral accretion surfaces dipping in opposite directions which could indicate that the channel belt visible at the picture is a cross-section of 
a meander bend (Ghinassi et al., 2016). Channel belts like this is just an example of the beautiful exposure of fluvial sandstones that are visible at the studied outcrop and a clear indication 
of the sinuosity of the rivers in the system.  
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2.0 Geological Background 
The purpose of this chapter is twofold: 1) to give the reader an introduction to the geological 

tectonic and sedimentological setting the Brushy Basin Member was deposited in, and 2) to 

introduce crucial terms and concepts in fluvial sedimentology that are used frequently in this 

thesis. This chapter is dived into three sub chapters: 1. Tectonic setting, 2. Stratigraphic 

background, and 3. Theoretical Background.   

2.1 Overall Setting 

2.2.1 Tectonic setting 

Deposition of the late Jurassic Morrison Formation and the Brushy Basin Member is 

considered to have occurred within a back-bulge basin of a retroarc foreland basin system 

evident by westward onlapping onto middle Jurassic strata along large parts of central Utah, 

interpreted as the coeval forebulge at the time (DeCelles and Currie, 1996; DeCelles, 2004; 

Miall et al.,2008). 

This Morrison foreland system formed as a consequence of westward continental drift of the 

North American continental plate subducting the pacific Farellon plate and accreting Pacific 

island arc systems onto the continent in a fold-and-thrust-belt (e.g. Howell and Flint, 2003; 

DeCelles, 2004). This fold-and-thrust-belt accumulated toward a large retroarc mountain 

chain known as the North American Cordillera; a series of partly overlapping orogenies that 

formed during the Mesozoic Era initiated by tectonic events following the breakup of 

Pangaea (Saleeby and Busby-Spera, 1992; DeCelles, 2004; Hintze and Kowallis, 2009). During 

the Jurassic this mountain chain stretched for more than 6000 km from Canada to Southern 

Mexico (Ingersoll and Schweickert, 1986).  

The active phase of the Cordilleran Arc during the deposition of the Brushy Basin member is 

called the Nevadan Orogeny, and its eastern margin is marked by the Wasatch Line; the 

western edge of the Colorado Plateau, in which some of North America’s longest faults have 

been mapped (Stokes, 1986; Miall et al., 2008; Blakey and Ranney, 2018). The Nevada 

orogeny is evidenced by several late Jurassic granite batholiths in the Sierra Nevada and 

ophiolites in California (Ingersoll and Schweickert, 1986), indicating the magmatic arc was 

located several 100s of kilometres from the Morrison back- bulge basin. 
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In the Late Jurassic the area that is now the Colorado Plateau (Figure 1.1 A) lay east of the 

Nevadan Orogeny and subsequently was covered by the Morrison Depositional Basin (Figure 

2.1). During the Nevadan phase significant uplift of the south-western margin of the 

Colorado Plateau, and subduction to the west and southwest, led to creation of a magmatic 

arc and several rift shoulders elevated by thermotectonic processes that surrounded the 

Plateau and the Morrison depositional basin to the west (California Nevada, area) and south 

(Arizona New Mexico area) (Figure 2.1) (Dickinson, 1981; Bilodeau, 1986; Lawton, 1994; 

Nourse, 1995; Lucas et al., 2001; Turner & Peterson, 2004). In addition, topographic highs 

from the ancestral Rockies to the east confined the basin and led to a drainage pattern 

towards the north (Tuner & Peterson, 2004). This led to the formation of the succession of 

continental deposits known today as the Morrison Formation; Tidwell Member, Salt Wash 

Member, Brushy Basin Member (see Chapter 2.2).  
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Figure 2.1: A) Tectonic setting during deposition of the Late Jurassic Brushy Basin Member. The basin is confined 
in a compressional regime by mountain-ranges to the west, south and elevated topography to the east. Rivers 
are sourced from the surrounding highlands and rift shoulders, especially from the south-west where and 
massive calderas are perceived to have existed.  B) Cross-sectional diagram across the basin showing the 
forebulge and the position of the preserved Brushy Basin depozone in the backbulge. Approximate location of 
the Study Area drawn on the cross section and the map. (modified map from Blakey (2011) and cross-section 
diagram modified from Demko et al., (2004).) 

The prevailing winds during the Late Jurassic blew from the southwest bringing in large 

volumes if silicic volcanic ash and tuff layers found in the Brushy Basin Member today 

(Demko et at., 2004). The ash stem from the calderas in the Volcanic Arc partly surrounding 

the basin to the west (Demko et al., 2004). Huge eruptions from these calderas blanketed 

the basin on several occasions resulting in thick volcanic layers being visible in the rock 

record today, a testimony to the eruptiveness of the Arc (Turner & Peterson, 2004). Most of 



Chapter 2  Geological Background 

8 
 

the clastics in the depositional basin were mainly derived from the rift shoulders to the 

southwest called the Mogollon Highlands, although minor amount of clastic may have 

derived from topographic highs to the east (Ancestral Rockies) (Turner & Peterson, 2004).  

The thickness of the Morrison formation, typically between 152-183 m, compared to the 

thousands of meters of Cretaceous strata above have led to the suggestion that plate-margin 

activity during deposition prevented the foredeep from subsiding (Miall et al., 2008). The 

main contribution to the generation for accommodation in the back-bulge depozone is 

assigned to dynamic subsidence on the basis of the exceedingly large geographical extent 

and tabular geometry of the formation (Lawton 1994; DeCelles 2004). This leads to the 

interpretation that the Morrison formation where it is preserved today was deposited in a 

back-bulge basin onlapping onto the a flexural forebulge in the central Utah (Demko et al., 

2004; Galli 2014). This naturally implies the existence of a flexural foredeep in the western 

Utah during the Late Jurassic (Demko et al., 2004; Miall et al., 2008). However, no Upper 

Jurassic foredeep deposits is preserved in western Utah, structural reconstruction of the 

orogenic belt indicates that more than 4 km of Upper Jurassic- Lower Cretaceous sediments 

have been eroded away (Royse, 1993; Currie, 1997). 

The deposition in the Morrison halted after 10 million years as a cessation of dynamic 

subsidence tied to a change in the angle of subduction along the western margin took place 

(Currie,1997). This probably resulted in a decrease in accommodation in the back-bulge and 

the formation of an unconformity boundary between the Jurassic and Cretaceous (Currie, 

1997). 

Age  

The age of the Morrison Formation is fairly well understood (Turner & Peterson 2004). 

Abundant ash layers and ashy beds in the Morrison have resulted in accurate and systematic 

consistent isotopic ages (Kowallis et al., 1998). They conclude that the formation was 

deposited from about 155 to 148 Ma, a period of 7 million years, within the late Jurassic 

(163-141 Ma) (Bralower et al., 1990; Kowallis et al., 1998). The Brushy Basin Member, which 

this thesis focuses on, was deposited within Kimmeridgian to possibly Tithonian age from 

150.33 Ma to 148.1 Ma, meaning that the whole member was deposited within 2 million 

years (Kowallis et al., 1998). A 20 Ma hiatus at the top of Brushy Basin member makes up the 
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boundary between the upper Jurassic and the unconformable lower Cretaceous strata above 

(Kowallis et al., 1998).  

2.1.2 Paleogeography and climate 

During the Early and Middle Jurassic, the continent had been situated in the dry latitudes 

comparable to modern day Sahara and some of the largest and thickest successions of eolian 

sand deserts that exists in the geological record was deposited (Wingate Sandstone, Navajo 

Sandstone, Entrada Sandstone) (Blakey and Ranney, 2018). However, in the late Jurassic the 

continent moved out of the super-arid latitudes and into the subtropics leading to the 

climate becoming slightly more humid (Hinzte and Kowallis, 2009).  

 

Figure 2.2: Paleogeographic reconstruction of the US during the Triassic, Jurassic and Creaceous. Utah, and 
Morrison depositional basin marked on the time of deposition. Permission from Arve Sleveland, Modified from 
Hinzte and Kowallis (2009). 

Deposition of the Brushy Basin Member at the end of the Jurassic happened when the north 

American continent was at a paleolatitude between 30 and 45oN (FIG 2.2), slightly south of 

its current position but still dryer and warmer then today (Peterson, 1994; Currie, 1998). A 

subtropical high-pressure cell positioned over the eastern Paleo-Pacific Ocean dominated 

atmospheric circulation in the whole western American continent producing warm westerly 

winds that carried Pacific moisture eastward toward the Cordilleran Arc and the Nevada 

Orogeny (Parrish and Curtis, 1982). The moisture “rained out” as it moved inland up and 

above the mountain chain depleting the air mass of moisture leaving the Brushy basin 
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depozone seasonally dry, only the very larges storms in the Paleo-Pacific led to direct 

meteoric precipitation (Turner & Peterson, 2004) Consequently, most of the moisture that 

reached the basin did so largely through ground water and surface streams from the upland 

surrounding the basin to the west and south (Turner & Peterson, 2004).  

The degree of seasonality within the basin is fairly well documented (e.g. Demko et al., 2004; 

Good, 2004; Hasiotis, 2004; Turner & Peterson, 2004). In the overbank deposits the presence 

of carbonate horizons; indicative of drier conditions, and clay- and iron-rich horizons; 

indicative of wetter conditions, paired with vertic features formed by repeated swelling and 

wetting of mud occurs frequently and is typical for seasonality of precipitation (Retallack, 

1997; Demko et al., 2004). However, especially annual growth bands in freshwater bivalves 

and the presence of crayfish burrows in the Brushy Basin Member are brought forward as 

the most conclusive evidence (Good, 2004; Hasiotis, 2004; Turner & Peterson, 2004).  

The climate probably resembled todays Serangeti in Afrika; with river, lakes, strong 

seasonality and seasonal drought (Blakey and Ranney, 2018), with an ecosystem vulnerable 

to extended periods of drought which account for some of the largest death assemblages of 

dinosaurs and other vertebrates found in the rock record (Turner & Peterson, 2004) 

 

2.2. Stratigraphic background 
The Morrison formation is described by Turner and Peterson (2004) as a complex mosaic of 

environments ranging from streams, riparian environments, distal floodplains, lakes and 

ponds. However, eolian dunes, alkaline, saline and carbonate wetlands, coal swamps and 

marine evaporites also existed in the basal and northernmost parts of the formation (Demko 

et al., 2004; Turner & Peterson, 2004). The overwhelming proportion of sediments was 

deposited in a fully terrestrial setting; in streams, lakes and the environments marginal to 

these setting which cover an area of more than 1.5 million km2 of the Rocky mountain, 

Western Interior and the Colorado Plateau regions, all the way to Canada in the north from 

New Mexico in the south (Figure 2.1) (Demko et al., 2004). The stratigraphy of the formation 

is relatively complex due to spatial and temporal changes of facies across and because of the 

nomenclature changes from north to south and east to west across the massive basin 

(Hasiotis, 2004). This thesis therefore only focuses on the Colorado Plateau region where the 
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study was conducted and the depositional environment was completely terrestrial, far away 

from the sea.  

The Morrison formation can be divided into three members; Tidwell Member, Salt Wash 

Member and the Brushy Basin Member, and two major depositional sequences; Lower 

Morrison Depositional Sequence and the upper Morrison Depositional Sequence (Figure 2.3) 

(Demko et al., 2004). Three reginal unconformities are found in relation to the Morrison; at 

the base-Basal Morrison Unconformity, between the Salt Wash Member and the Brushy 

Basin Member-Mid Morrison Unconformity, and at the top of the Brushy Basin Member- 

Uppermost Morrison Unconformity (represent the end of Jurassic deposition) (Figure 2.3) 

(Demko et al.,2014). These unconformities consist of especially mature reddened paleosol 

horizons (Demko et al., 2014).  

The Tidwell Member was probably deposited in a dry period of the Morrison formation and 

the paleosols in the member display several gypsum horizons, playa deposits and minor 

fluvial channels that represent the distal deposition during the northward marine regression 

Figure 2.3: Stratigraphic column of the Colorado Plateau, the Upper Jurassic Morrison formation & 
depositional reach of the formation within the US. Colorado Plateau and the Study Area is marked on the US 
map. Two depositional sequences are identified within the succession. The Clay change visible within the 
Brushy Basin Member. (Modified from Demko et al., 2004 and Utah Geological Association) 
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of the Sundance Sea which occupied parts of the Colorado Plateau during the Middle 

Jurassic (Turner & Peterson, 2004; Owen et al., 2015). 

The Salt Wash Member contains fluvial channel belt deposits that become increasingly 

separated by floodplain deposits downstream in a dispersive paleocurrent pattern of a 

typical distributary fluvial system (DFS) (Craig et al., 1995; Owen et al., 2015, 2015). The 

Tidwell and the Salt Wash Member, though lithostratigraphically divided, are a single 

depositional system where the Salt Wash Member comprises the more proximal sand 

dominated facies of the fluvial system that prograded over the more distal facies of the 

Tidwell Member (Turner & Peterson, 2004; Kjemperud et al., 2008; Weissmann et al., 2013; 

Owen et al., 2015). Within the sand-rich distributary fluvial system large scale amalgamated 

sandstone belts form sheet-like, up to 26 m thick and 10 km wide, multilateral and 

multistorey channel deposits. The apex of the distributary fluvial system of the Lower 

Morrison Depositional system was located close to the Utah-Arizona border, sourced from 

the southwest (Owen et al., 2015).  

The Brushy Basin Member depositional sequence constitutes a much more mudstone-

dominated fluvial system than that of the Salt Wash Member Depositional Sequence and is 

the most widespread member of the Morrison Formation (Demko et al., 2004; Galli, 2014). It 

is thickest close to the perceived source areas in the west, southwest and thins northward 

and north-eastward from 157 m to 79-138 meters (Lohman, 1965; Galli, 2014). In the study 

area, close to Caineville, the Brushy Basin Member is typically around 100-120 meters thick. 

Basin-wide the member has a lower division (Lower Brush Basin Member); containing 

mudstones mostly red-brown in colour, and an upper division (Upper Brushy Basin 

Member); characterized by variegated puffy-weathered grey ash rich mudstones (Galli, 

2014). This colour change is the sole basis of the division of the two Brushy Basin lithosomes 

(Galli, 2014). The colour transition from Lower-to-Upper Brushy Basin Member is called the 

Clay change (Figure 2.3) which records the beginning of major eruptive events in the 

calderas in the Cordilleran Arc to the west and massive input of air-blown ash in the 

depozone (Turner & Peterson, 2004).  

The Brushy Basin is interpreted as the deposits of fluvial systems of varying sinuosity formed 

under conditions of very low gradient and accommodation (Newell, 1997; Demko et al., 

2004; Galli, 2014). Rivers in the system carried mud in suspension and sandy sediments as 
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bedload and deposited abundant and extensive overbank deposits during floods, leaving the 

channel sandstones commonly intercalated with stacked floodplain paleosols and crevasse-

splay sandstones (Demko et al., 2004).  The streams which originated from the southwest 

are believed to have drained out into a distal low-laying wetland area with perennial lakes 

located in the northern and eastern part of the basin, and in the sea at the very northern 

parts of the basin (Turner & Peterson, 2004). Stacked channel sandstones, especially in the 

upper part of the succession is believed to be limited to the southwestern parts of the basin, 

river deposits far into the basin are typically single-story ribbon-type fluvial channel 

sandstone beds (Turner & Peterson, 2004). Generally, it is believed that the lower part of the 

Brushy Basin Member is dominated by meandering channels, and that the streams becomes 

laterally stable, low sinuosity channels dominated by avulsion during the late stages (e.g. 

Currie 1997; Currie 1998; Galli, 2004, Turner & Peterson, 2004).  Owen et al., (2015) 

speculate that the Brushy Basin Member as the Salt Wash Member possibly also was a 

distributary fluvial system, although much more mud-dominated, but states that a regional 

study is needed to test that hypothesis.  

 

 

2.3 Theoretical background 
In this subchapter terms that are used frequently in the thesis are explained. Underlying 

these important terms are concepts typical for meandering fluvial systems like the Brushy 

Basin Member, and therefore important to clarify before the results in Chapter 4.  

Point bars, lateral accretion surfaces and channel-belts 

Fluvial deposits, which is the focus of this thesis, encompass sediments generated by the 

actions of streams and rivers (Boggs, 2014). Sediments are generally deposited in channels 

as lateral accreting bars and as vertical accreting beds in levees, abandoned channels and 

crevasse-splays on the floodplain (Bridge, 2003). In meandering systems, helicoidal-spiralling 

flow are produced by water flowing around channel bends leading to a downward motion of 

water at the outer bend and upward motion of water paired with decreasing flow velocity 

towards the inner bend (e.g. Thomson, 1876; Einstein, 1954; Bridge, 2003; Boggs, 2014). This 

flow dynamic results in hydraulic action and erosion in the outer bend, and transport and 
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deposition by lateral accretion of upwards-fining sediments on the point bars in the inner 

bend (Figure 2.4) (Boggs 2014). This leads to a typical upwards fining of sediments within 

channel fill, often simplified to conceptual sedimentary logs of fluvial deposits; erosive gravel 

base fining upwards into mud (Figure. 2.4).  In the field, point bars are often recognized in 

outcrops sections as lateral accretion surfaces; inclined sigmoidal bounding surfaces that 

record the progressive migration of point bars (Figure. 1.2 & 2.4) (Ghinassi, 2014). Lateral 

migration of point bars on the inner bank as the channel migrates towards the outer bank 

lead to the formation of a sand-body known as a channel belt (Figure 2.4). In the Brushy 

Basin Member lateral accretion surfaces in the channel belts are generally mud-draped and 

therefore easy to identify (Galli, 2014).   

Crevasse-splays  

On the floodplain, the strip of land surrounding a river channel, deposition mainly happens 

when the river breaches its banks and natural levees during overbank floods (Bridge, 2003; 

Boggs 2014). Floodplain deposits that settle out of floodwater occurs as fine-grained and 

laminated muds, prone to soil-forming processes (Retallack, 2001, Turner & Peterson 2004). 

Sediment may also be deposited as crevasse-splays; fan- or lobe-shaped mounds of sand 

Figure 2.4: Illustration of terminology in relation to meandering channel-belt morphology. 1) Arial view of a meandering 
channel with point visible in the inner bends. Channel belt represent the full width of the channel-point bars and channel-fill 
deposits, the channel is the active area of the channel belt where the stream is flowing. 2) Cross-section of channel belt, with 
the lateral accreting inclined packages building out as the stream erodes the outer bank. The lateral accreting beds have a 
typical sigmoidal shape building out from the river bank down-lapping onto the channel base. 3) A single lateral accreting 
point bar. Point-bar accretion involves plane-bed transport formation of 3D and 2D dunes (cross-stratification), and deposition 
of sand as ripples and small dunes in the uppermost part. where mud-drapes can occur. Typical sedimentary log of a 
meandering channel and its point bar. Modified from Ghinassi et al., (2014) 
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and mud that can display a wide range of geometry, commonly hundreds of meters to 

kilometres long and wide in large rivers (Bridge, 2003).  

Distributary fluvial systems (DFS) 

A distributary fluvial system (DFS) (Figure 2.5) is a fluvial system which in planform display a 

radial fan distributive channel pattern (e.g. Friend, 1978; Hartley et al., 2010). This radial 

pattern spreads out from an apex were the originally confined stream enters a sedimentary 

basin and becomes unconfined (Weissmann et al., 2010). The active part of the distributary 

fluvial system, where the river channel is flowing at any given time, is called a river tract. A 

river tract displays all the characteristics of a distributary fluvial system: 1) a change from 

amalgamated channel deposits in proximal areas to smaller fixed channels in distal areas; 2) 

a decrease in grain size downstream; 3) an increase in preservation of floodplain deposits 

relative to channel deposits downstream; and 4) a decrease in channel size and abundance 

downstream (Friend 1978; Nichols 1987; Hirst 1991; Stanistreet and McCarthy 1993; Nichols 

and Fisher 2007; Cain and Mountney 2009; Hartley et al. 2010; Weissmann et al. 2010; 2013; 

Owen et al., 2015). The radial fan-shape of the fluvial system builds up by repeated avulsion 

of river tracts due to compensational stacking (Nichols and Fisher, 2007). The areas that 

does not contain an active river tract are termed abandoned river tracts (Figure 2.5). 

Depending on the criteria above the distributary fan is divided into a proximal, medial and 

distal zone as shown in Figure. 2.5. Interestingly, distributary systems can have more than 

one entry point which can be active at different stages in the evolution of the system, or 

have several coeval entry points (Williams, 2000; Arenas et al., 2001). 

Fluvial channels and overbank deposits in aggradational settings are dominated by 

distributary fluvial systems. Degradational tributary fluvial systems have a very limited 

preservation potential, hence distributary fluvial systems are expected to constitute a 

substantial part of the continental geologic record (Bristow et al., 1999; Weissman et al., 

2010; Owen et al., 2015). The length of individual distributary fluvial systems varies between 

<1 km and >700 km, depending on size of the basin and the river flowing into the basin 

(Weissman et al., 2010).  

A conceptual model of a fluvial distributary system is shown in Figure 2.5.  



Chapter 2  Geological Background 

16 
 

 

Figure 2.5: Conceptual model of a fluvial distributary system. The fan-shaped body radiating from and apex is constructed by 
repeated avulsions of the river channel (river tract). Note the architectural characteristics of the proximal, medial and distal 

zones of the fluvial distributary system. From Nichols and Fisher (2007) 

While distributary fluvial systems radiate out prom an apex, axial tributary fluvial systems 

have the opposite characteristic with an increase in discharge and channel size downstream 

which are fed by tributaries (Weissmann et al., 2010). The axial tributary systems are 

degradational and not aggregational as the distributary fluvial systems (Weissmann et al., 

2010). Figure 2.6 show a typical axial system fed by tributary rivers.  

 

Figure 2.6: Schematic summary of key characteristics and differences between distributive fluvial systems and tributary 
fluvial systems (Weismann et al., 2010)
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3.0 Methodology 

3.1 Data acquisition  

The findings of this thesis are based on data collected during two field seasons in Utah, USA, 

in May 2017 and May 2018. Data was collected through the means of traditional 

sedimentological field work and by an Unmanned Aerial Vehicle (UAV) photographing a large 

part of the outcrop. Correlating the UAV photos and the logs, both during the fieldwork and 

after, was a crucial part of getting an understanding of the succession that was studied.   

3.1.1 Fieldwork 

The sedimentological fieldwork includes logging and photographing channel bodies and 

sedimentary structures. Particular emphasis was placed on lithologies, boundaries, 

architectural elements and recognizing channel geometries. Most of the outcrop was partly 

or fully covered by scree and substantial amounts of digging was required in order to achieve 

this. Standard field equipment such as compass, measuring tape, binoculars, geological 

hammer, camera and grain size chart were used. The logs were recorded on millimetre 

paper at 1:50 scale and later merged into continuous logs covering the units as seen in 

Chapter 4. Paleocurrent measurement were collected at all logged channels and crevasse-

splays that had good sedimentary structures preserved. The outcrop was accessible by a 

short walk from the car. Digitalizing the logs was done in Adobe Illustrator. 

3.1.2 UAV and the virtual outcrop 

UAV photographing of the outcrop was performed by drone (model Phantom Dji 4) during 

the first field season. A GoPro camera was mounted underneath the drone and 

photographing was done through remote controlling the drone and camera with an iPad. A 

total of 800 photos was taken. The photos were georeferenced and stitched together into a 

3D-model with Agisoft Photoscan 1.3.2. The workflow that was used to make the virtual 

outcrop is shown in Figure 3.1.  
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Figure 3.1: Simple workflow of how the virtual outcrop model was generated in AgiSoft. 

  

after importing the model to LIME interpretation was done by outlining channels and sand-

sheets and correlating with the logs. During the second field season, an understanding of the 

succession had been established by interpreting the model, logs and photos. An example of 

this is shown in Figure. 3.2. The model served as an excellent tool to locate channels in an 

otherwise difficult terrain, highly improving the efficiency of the fieldwork.  After outlining 

sandstone channel bodies and sheet sandstones, a screenshot was taken of the 
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interpretation, uploaded to ImageJ which calculated the outlined areas relative to the rest of 

the photo giving a rough sand percentage in each unit.  

 

Figure 3.2: Example of interpretation of the virtual outcrop and correlation with logs. Letters (A,B,C) are different facies 
associations that are covered in chapter 4. This picture was uploaded to ImageJ and the percentage of sand was estimated 
based on the coloration of the areas. Vertical exaggeration x2. 

3.1.3 Reservoir model and flow simulation 

The following steps were performed to create a gridded geological reservoir model of the 

scanned Brushy Basin Member outcrop: 

• Exported Unit boundaries interpreted in LIME and imported these lines as point to 

Petrel. 

• Create surfaces of these points using a convergent interpolation algorithm. 

• Copied the surfaces and added point in order to have several datum surfaces in order 

to extend interpretations into areas without data and make a bigger reservoir model. 

• Added point, make/edit polygon, add point in right toolbar) to add 3d variability to 

the surfaces away from the interpreted lines. This was done by recreating the 

observed variability from the field and with the help of Google Earth. The whole 

outcrop is folding.  

• Created surfaces of all the edited point with 2x2m grid increment. 

• Created confining surfaces above and below the model- 

• Created a grid using the Make Simple grid process. Insert surfaces in input data.  

• Selected the 3d model and used Corner point gridding/Layering process. Follow base 

for all zone, with cell thickness 0.2m. 
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• Facies modelling was then performed by zone, adding channels, crevasse splays, and 

mudstone as facies. Used property modelling, facies modelling. Porosity and 

permeability values were assigned to the grid model. For the setting used in each 

zone, see table 4.3.1 and 4.4.1. 

• Cell based flow simulation of the model was performed in RMS, this was done due to 

license issues. The model was exported from Petrel in Rescue format, and imported 

into RMS. 

• The parameters used in the simulation is visible in Table 4.4.2. Two experiment were 

simulated, S1 and S2. In scenario S2 the crevasse splay facies were then removed.  

• The results from the simulations was plotted using the Excel software.  

 

4.0 Results 
The purpose of the chapter is to give the reader an understanding of the fluvial system at the 

outcrop location, from small scale to large scale.  

Chapter 4.1 starts by giving the reader a thorough presentation of the facies associations 

and depositional environments. Detailed observation about the different facies associations 

are accompanied by pictures and some of the logs from the fieldwork. 

In Chapter 4.2 the outcrop as a whole is presented together with the large-scale architecture 

of the channels and the lateral and vertical variation of facies associations in the outcrop 
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that eventually led to the figure below (Figure. 4.0.1). 

 

Figure. 4.2.12: Conceptualized model that summarize the upwards change in channel architecture presented in 
chapter 4.2. Channels become smaller, finer grained and, mudstone fraction increases upwards.  

In chapter 4.3. the observation illustrated in the conceptual model is made into a reservoir 

model using the Petrel software package.  This chapter presents the results as well as the 

parameters that went into creating the model. 

Chapter 4.4 presents flow simulation results from two different simulations (scenario S1 & 

S2) done of the reservoir model made in chapter 4.3. 

 

4.1 Facies and Facies association 
Twenty sedimentary facies and five facies association have been recognised in the studied 

succession based on the fieldwork logging. The facies are listed in table 4.1 and the facies 

associations are described and interpreted in detail in this chapter.   
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Table 4.1. Facies discovered in the field at the study location. The facies are divided into Mudstones and 
Sandstones and a brief description is assigned to each facies. The facies have been put into the different facies 
associations that are described in the section below.   

Facies Description  
                  Mudstones  
M1 Green featureless mudstone. (Slikenside/slikenlines visible sporadically) 

M2 Red featureless mudstone. (Slikenside/slikenlines visible sporadically) 

M3  Green mudstone with varying degree of red and brown mottles, root traces and 
burrows. Oxidation also visible in some layers. Small millimeter sized black ships in 
some layers 

M4 Red to dark purple mudstone with varying degree of green mottling, root traces and 
burrows 

M5 
 

White to porcelain like featureless mudstone, conchoidal fractures 

M6 Black to gray mudstone with millimeter sized white spots 

M7 Green to white cm thin discontinuous layers of silt, occasionally mottled red and 
brown. 

M8 Green to white siltstones with horizontal to low-angle bedding. Often weakly 
cemented. 

M9 
 
M10 

Laminated green silt. 

Carbonate rock 

                  Sandstones  
S1 Planar parallel medium coarse sandstone (PPS), extraformational clasts 1-5mm in 

diameter 

S2 Very fine-to- medium-grained sandstone with current ripples. 

S3  Very fine-to-fine and medium-grained sandstone with tangential ripples. Occurs as 
climbing ripples 

S4 Very fine to coarse grained cross-bedded sandstones. Both angular and tangential, 
with extraformational clast and mudchips 0.5-2.0 cm in the foresets. (Planar and 
trough cross-beds). 

S5 
 

Bioturbated/rooted very fine-fine grained sandstone 

S6 Pebbly sandstone 

S7 Conglomerate, matrix supported  

S8 
 
 
S9 
 
 
S10 

Medium-to- coarse grained sandstones, intraformational clasts, mudclasts, and 
erosional features 
 
Homogenous fine-to-medium coarse sandstones with little to no visible sedimentary 
structures 
 
Centimeter-scale layers of sandstone ranging from very fine to fine grained surrounded 
by dark red mudstone, often bioturbated and rooted.  
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4.1.1 Facies Association A- Channel belt 

This facies association consist predominantly of very fine- to medium grained sandstone. 

However, coarse to very coarse-grained sandstones and conglomerates with sharp erosive 

base Figure. 4.1.1.F exists in a few places. Examples of conglomeratic sandstones occurs mail 

the lowermost and uppermost part of the outcrop. 

The sandstones in Facies Association A form discontinuous lens-shaped bodies, <100 meters 

to >500 meters wide and 1-12-meter-thick, with relatively flat bases that show little 

erosional relief into the strata below (Figure. 4.1.1.A, B&C). The sandstone bodies generally 

have a fining upwards trend and lateral accretion surfaces (laterally down-lapping beds) 

(Figure. 4.1.1.B&C) are visible in almost all well-preserved sand bodies regardless of size. 

They commonly contain increasing amounts of mud and mud-drapes towards the top of the 

sandstone bodies. 

Internally the sandstone bodies are highly complex and range from layers of massive 

homogenous structureless beds of fine-to-medium grained sandstone to layers with clear 

sedimentary structures and a fining upwards trend. Sedimentary structures observed within 

the sandstone bodies range from planar parallel stratification (PPS) Figure. 4.1.1.E, trough 

cross-stratification (TCS) Figure.4.1.1.E tangential & tabular cross-bedding to low-angle 

cross-bedding, and current ripples. Paleocurrent measurements of the current ripples and 

cross-bedding show a large variety of directions, mostly towards the north and east. Mud 

chips and extraformational clasts are presents throughout, and often occur in larger quantity 

in the foresets of cross-beds, in the planar parallel stratified layers or at the base of the 

sandstone bodies (Figure 4.1.1.G).  

The discontinuous lens-shaped sandstone bodies with a generally fining upwards trend and 

multiple indicators of unidirectional current observed in this facies association are 

interpreted as the deposits of fluvial channel belts and will be referred to as channel 

sandstones or channel belts for the rest of the thesis (Miall, 2013; Bridge 2003). The 

channels range from being stacked fluvial channels that are difficult to map out completely 

(Figure. 4.1.1.C), to more isolated channels as shown in Figure. 4.1.1.A. The fluvial 

architecture of the succession is addressed in Chapter 4.2.  
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The channel belts show clear indication of sinuosity. Lateral accretion surfaces are observed 

in almost all the larger channels, and some of the smaller ones. These lateral accretion 

surfaces are interpreted to be fining-upward point-bar sequences deposited in the meander 

bend as the channels were expanding, translating or rotating laterally (Ghinassi et al., 2014).  

The alternation between upper flow regime to lower flow regime sedimentary structures 

within the channel sandstones implies a “flashy” fluvial system that probably reached 

maximum discharge several times during the wet season (Bridge 2003; Galli, 2014). The 

abundant rip-up clasts/mud-chips and mud-clasts implies that the channel was eroding the 

banks as it moved laterally (Galli, 2014). Which also indicate some seasonal variation in 

stream power and instability of the banks (Demko et al., 2004; Galli, 2014,). Mud-draped 

lateral accretion surfaces, passive infill of channels, ripples and cross-beds indicates a mixed 

load fluvial system where the rivers where transporting both sand and mud (Miall, 2014). In 

addition, the flat bases of the channels and lack of major erosional relief at channel bases 

suggests that the channels were low-gradient, sinuous and meandering. The complex 

sandstone layers within the sandstone belts are interpreted as fluvial channel bars that were 

deposited in the channel (Ghinassi et al., 2014). These bars probably migrated downstream 

and varies somewhat in grainsize and sedimentary structure depending on stream-power, 

sediment supply and the curvature of the river at the time of deposition (Bridge, 2003; 

Ghinassi et al., 2004).  
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Figure 4.1. 1: A) White coloured channel sandstone surrounded by red and brown mudstone. B) Channel-belt 
from upper parts of Brushy Basin Member with muddy lateral accretion surfaces. C) Thick channel-belt from the 
lower parts of the Brushy Basin Member with lateral accretion surfaces. D) Cross-bedded sandstone with 
courser grains in the foresets found in the channel-belts. E) Planar parallel stratification overlain by trough 
cross-beds within the channel-belts. F) Low angled cross-beds interpreted as dunes within the fluvial channel 
eroded down into finer grained sandstone below. G) Small and large mud-clasts within the channel-belts.  
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4.1.2 Facies Association B - Abandoned Channel 

This facies association consists mostly of red to green mudstone. Interbedded within the 

mudstone are thin lateral continuous layers of very fine-grained sandstone Figure. 4.1.2.E.  

The large-scale geometry of the mudstone is lenticular with a flat top and curved base 

Figure. 4.1.2.A. In addition, the facie is surrounded by sandstones on all sides but the top. 

The mudstone shows little or no internal lamination and the sandstone layers are typically 

structureless Figure 4.1.2.B. The thicker sandstone layers show sharp base and a top grading 

into red mudstone Figure 4.1.2.B. Varying degree of mottling, root traces and bioturbation 

are common throughout Figure 4.1.2.C-D.  

This facies association is interpreted as deposits accumulated in an abandoned, or cut of, 

channel, forming a mud-plug. The thin sand layers within the mudstone is interpreted to be 

spill-over deposits from the avulsed channel during floods (Bridge, 2003). The sand layers 

possibly originally had sedimentary structures. However, bioturbation, burrowing and 

pedogenesis has reworked the deposits and rendered them structureless (Retallack 2001, 

Boggs, 2014).  
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Figure 4.1. 2: A) White channel sandstone from upper Brush Basin Member with channel base (dashed black 
line), lateral accretion surfaces (indicated by black lines), and a mud-plug (dashed black lines) from passive infill 
when the channel was abandoned.  B) Structureless red-brown mudstone. C) Root-traces in silty mudstone. D) 
Heavily mottled mudstone. E) Red-brown mudstone with thin white green silt laminae. 

4.1.3 Facies Association C- Crevasse splay deposits 

This facies association consist of resistant 2-50 cm thick sandstone beds within mudstone 

that forms layers of sandstone adjacent and below facies Association A and B, channel-belts 

and mud-plugs (Figure 4.1.3.A). The sandstones vary from very fine- to medium grain size 

and display mud-chips and quartz-clasts. The sandstone beds often thicken towards the 

channels-belts and gradually thins away from the channel-belts. They also have uniform 

consistent paleo-flow direction and commonly a fining-upwards trend. Tangential cross-

bedding (Figure 4.1.3.C) and climbing ripples (Figure 4.1.3.B) often occurs at the top of the 

layers. Some places the sandstone layers are amalgamated forming thick sand layers within 

the mudstone. Thickness of the sandstone layers vary from a couple of centimetres to tens 
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of cm where the benches are isolated to, meter thick packages where the layers are 

stacking. Bioturbation and root traces are visible at the top of some of the layers.  

The prominent ledge sandstone layers of limited extent, unidirectional current ripples and 

uniform paleo-flow direction are interpreted to be crevasse splays deposited from when the 

stream broke through its levees and deposited sediments on the floodplain (Bridge, 2003; 

Boggs, 2014). Rocks of this type will be referred to as crevasse splays for the rest of the 

thesis.   

 

Figure 4.1. 3: Typical examples of facies association C – Crevasse splay deposits. A) 3 sandstone benches above 
a channel belt. B) Climbing ripples in the top of one of the benches. C) Small tangential cross-bedding at the top 
of a sandstone bench. 

4.1.4 Facies Association D- Overbank deposits 

This facies association consists mostly of light green and dark red mudstone and is the most 

frequent facies association in the study area. The colour-heterogeneity of the mudstones 

form the distinct colour banding of the Brushy Basin Member, which is shown in Figure. 

4.2.2. Two types of coloured mudstone dominate the succession; Green-gray mudstone with 

black, white or red-brown mottles and red-brown mudstone with white or grey mottles. 

Root traces, bioturbation, horizon with white cm sized white carbonate nodules (Figure. 

4.1.4.A) and slickensides (Figure. 4.1.4.B) are visible occasionally. Thickness of the mudstone 
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layers varies from 10-centimetre thin layers in between sandstone bodies to more than 6-

meter-thick packages. Both the green-gray and red-brown mudstones are almost completely 

void of sedimentary structures, faint lamination can occur close to large sandstone bodies, 

has conchoidal fractures and weather to a characteristic popcorn texture (Demko et al., 

2004). The mudstone shows different degree of mottling ranging from a few small millimetre 

sized (Figure 4.1.4.D) to centimetre sized mottles (Figure. 4.1.2.D & FIG 4.1.4.C). The 

mudstone layers are associated with undulating boundaries, often sharp erosive features as 

shown in Figure 4.1.4.A where a sandstone body has eroded down into the mudstone.   

The mudstones observed in Facies Association D are interpreted as weakly to well-developed 

paleosols formed on the floodplain associated with the meandering streams of the Brushy 

Basin fluvial system (e.g., Demko et al., 2004; Turner & Peterson, 2004; Galli, 2014). 

Postepositional modification of the mudstone formed these paleosols and the degree of 

pedogenesis within the horizons dependent on a myriad of different controls like; magnitude 

and frequency of depositional events, distance from sediment source, parent material, 

inherent local topography,  position and fluctuation of groundwater profile, composition of 

biotic communities, and the climatic setting with regard to temperature and precipitation 

resulting in a high degree of spatial heterogeneity (Bown and Kraus, 1987; Kraus, 1987; 

Hasiotis and Bown, 1996; Hasiotis, 2004). This makes studying the overbank deposits 

complex.  

In general, the most mature paleosols are found in the lower Brushy Basin member where 

the soils typically have a deep red colour with carbonate nodule horizon, mottles, reddened 

clay accumulations, root traces and termite-nests traces (Demko et al., 2004; Galli, 2014). 

The mudstones in the Upper Brushy Basin are characterized by a distinct colour change into 

grayish, popcorn-weathered, ash-rich mudstones with volcanic ash layers and weakly to 

moderately developed paleosols (Galli, 2014).  Slickensides and subparallel fractures exist in 

both the red and grey layers and was formed by expansion and contraction of ash-rich 

smectitic mudstone do to wetting and drying, indicating alternating wet and dry conditions 

(Hasiotis, 2004).  

Based on the pedogenic features, colour, trace fossils caliche horizons and indication of dry 

and wet conditions the paleosols of the Brushy Basin member are typically classified as 

vertisols, and the more carbonate nodule rich horizons are also referred to as calcisols, 
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which form in subhumid to semiarid climates with a pronounced dry season (Retallack 2001; 

Hasiotis,2004; Turner & Peterson 2004; Demko et al., 2004; Galli, 2014).  

The mudstone described and shown here will be referred to as paleosol horizons, overbank 

mudstones or mudstones for the rest of the thesis. 

 

Figure 4.1. 4: A) White channel sandstone eroding down into red-brown mudstone. White caliche nodules visible 
in the green-grey mudstone below B) Slikensides in mudstone. C) Heavily mottled mudstone. D) Lightly mottled 
mudstone 

4.1.5 Facies Association E- Vulcanic ash-layers 

This facies association consist of dark grey or white porcelain-like rock layers with no internal 

structuring and thicknesses between 10-50 centimetres that make up extensive continuous 

layers that can be followed laterally in the upper part of the outcrop throughout the study 

area. The rocks have conchoidal fractures and occasional black or green millimetres-sized 

patches.  The frequency of these layers increases in the upper part of the Brushy Basin 

member.  

Dark layers and white mudstone have been identified by others (e.g. Turner & Peterson, 

2004; Demko et al., 2004; Galli, 2014) as silica-replaced volcanic ash layers rich in bentonite 

from volcanic ash. A proof of the volcanic activity in the calderas to the west and south-west 

of the Morrison basin. The frequency of these layers increases in the upper Brushy Basin 
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member indication voluminous outpourings of volcanic ash and a possible increase in 

eruptions in the last stages of the Brushy Basin member time interval (Turner & Peterson, 

2004). The ash layers are missing where the channels belts are located. This could be 

explained by the rivers having eroded the layers away or hindered the settling and 

preservation of the ash.  

4.2 Virtual outcrop 
Chapter 4.2 starts by presenting an overview figure of the virtual outcrop in Figure 4.2.1 & 

Figure. 4.2.2 the outcrop is visible on these figures prior to interpretation. Blue lines that 

show how the thesis divides the outcrop into units has been added.  

Every unit is presented with observation and interpretations from the virtual outcrop and 

total outcrop. The aim of the chapter is to build an understanding of fluvial architecture of 

the succession, and how the units relate to the large-scale distributary fluvial system in 

terms of proximal, medial and distal zones. This is done through outlining channel features in 

the virtual outcrop and correlate with the lithological data acquired in the field. Every unit 

will therefore consist of several photos taken in the field accompanied by field logs and 

screenshots from the virtual outcrop.  

The outcrop is divided into 4 units, 1 through 4 from the bottom and up. The division is 

based on the vertical colour change, the change in mud-to-sand ratio and the abundance of 

channels. Sandstone percentages in the units have been estimated using ImageJ on the 

virtual outcrop interpretations (se Chapter 3 Methods).  In other literature the norm is a 

twofold division between the upper and lower Brushy Basin member (e.g. Demko et al., 

2004; Galli, 2014; Turner & Peterson, 2004), but in this thesis a fourfold division that best 

represent the data is used to systematically asses the succession of rocks that exist in the 

outcrop. In the context of Upper and Lower Brushy Basin Member; Unit 1 correspond to the 

Lower Brushy Basin, and Unit 2-4 corresponds to the Upper Brushy Basin Member. The 

division between lower-and upper Brushy Basin member is shown in Figure. 4.2.2.  
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Figure 4.2. 1: V-shaped outcrop of The Brushy Basin Member where fieldwork was conducted, Western and 
Eastern limb converging towards the north. The Virtual outcrop was constructed from data gathered at the 
lower most part of the eastern limb. Fieldwork was conducted on the whole outcrop, but time restrictions and 
equipment-limitations did not allow for the construction of a virtual outcrop covering the whole outcrop.  
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Figure 4.2. 2: Virtual outcrop presented from birds view (top) and from east (1), south(2) & west(3).Blue lines 
represent the different Unit boundaries and Units that will be presented from Unit 1-4 in this chapter. Figures 
that are presented later in the chapter have been indicated for reference purposes.  
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Unit 1A 

Unit 1A is the lowermost 30 meters of rock poorly exposed in large parts of the virtual 

outcrop, but visible in certain areas outside the virtual outcrop where it forms steep cliffs 

near gullies or creeks. It consists of several laterally extensive 8-12-meter-thick channel-belts 

stacked on top of each other, separated by laterally discontinuous weakly developed 

paleosol layers (Figure. 4.2.3). The cliffs can be s een in Figure. 4.2.2 picture 1 & 2 beneath 

the first thick red paleosol layers, and close-up in Figure. 4.2.3. The sandstone percentage 

relative to mudstone in Unit 1A is estimated to be between 60-80 %. 

 

Figure 4.2. 3: Stacked channel-belts in Unit 1A. Pictures on the right side are without interpretations. Left-hand 
pictures have mud-layers in green. White-yellow channel sandstones are visible between the mud-layers. The 
channels fine upwards internally, this is represented by yellow triangles. 
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The bank/pinchouts of the belts are not preserved or exposed which makes them difficult to 

map out completely. The channel-belts are however visible in the same stratigraphic height 

on both the southern and eastern side of the virtual outcrop as well as on the western limb 

of the total outcrop (Figure 4.2.1). It is not possible to locate an end to the channel belts 

which therefore covers the whole study area where Unit1A is exposed. This means that the 

belts are at least 300 meters to over 1000 meters wide. A possible explanation for this 

extensive width could be that the channel belts, showing that they consist of multiple 

channel belts vertically (Figure 4.2.3), also stem from several channels migrating laterally 

forming a network of multilateral channels as illustrated in Figure 4.2.4 (Miall, 2014). The 

size and extent of the channel-belts resulting from this lateral migration does not imply that 

the size of the original channels was equally large (Bridge,2004), but is rather a testimony to 

the low rate of accommodation that forced the channels to deposit laterally at meander-

bends and point bars (Bridge, 2004; Miall, 2014). 

 

 

Figure 4.2. 4: Multilateral channels interpreted to have deposited the sandstone succession in Unit 1A. The 
down-lapping black lines within the channels represent lateral accretion surfaces. After Miall, 2014. 

These multilateral channels reworked and cannibalised already deposited point-bars and 

channel-deposits, leading to a succession of sandstone belts that stack on top of each other 

and makes the lower most part of Unit 1 especially complex. The system both horizontally 

and vertically is conceptualized in Figure 4.2.4, where the yellow bodies represent the 

channels, the green bodies mudstone that are discontinuous and has varying thickness, and 

connection in certain places between the sandstone belts.  A large quantity of mud-clasts 

ranging in size between 1cm to 40 cm are found throughout large parts of the belts which 

support the interpretation of laterally erosive channels. The mud-clasts are shown in the 
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Facies Association A Figure 4.1.1.  

 

Figure 4.2. 5: Schematic illustration of stacked multilateral channels in Unit 1A. Note discontinuous mud-layers 
and vertical connection between channel-belts in a few places. The opposite of this would be singlestory and 
unilateral, one channel with no amalgamation vertically or horizontally (Miall, 20014). 

Due to the complex nature of the channel-belts in the lower part, clear lateral accretion 

surfaces were not identified, although several dunes, erosive features and faint fining 

upwards sequences typical for channels deposits were found within the belts and could 

potentially have been deposited as part of the point bars. The lack of apparent lateral 

accretion surfaces could be that they are not easily visible due to the relative homogeneous 

grainsize composition at the top of the belts (mostly fine-medium, with pebbly sandstones at 

base)(log 1, Figure. 4.2.3) within the lower most channel belts (apart from large mud-clasts). 

Mud-drapes or muddy dipping layers near the top of the channels is often needed to spot 

the lateral accretion surfaces in the Brushy Basin Member.  

Unit 1B 

The upper part of Unit 1 is better exposed then the lower part. The unit is about 15 meters 

thick and form step cliffs near the bottom of the virtual outcrop. Unit 1B start at the first 

thick red paleosol horizon, 2-5-meter-thick with several interbedded crevasse splay 

sandstones, that can be traced all along the study area. Unit 1B in the virtual outcrop 

consists of one channel belt that can be traced both at the west side and east side of the 

exposure as shown in the yellow areas in Figure. 4.2.6. The sandstone percentage in Unit 1B 

is estimated to be between 40-60 %. 
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Figure 4.2. 6: Virtual outcrop with channel belts in Unit 1B marked yellow. The channel belts have been 
correlated in field on all sides of the outcrop and an approximate channel-belt width and mudstone/sandstone 
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ratio is inferred from that. Crevasse splays and overbank mudstones can be seen on the flanks of the channel 
belt. 

The belt in Figure 4.2 is between 8-12 meters thick, and more than 400-500 meters wide. 

Lateral accretion surfaces are faintly visible at the very top along parts of the channel belts 

(Figure 4.2.7). The lack of clearly defined lateral accretion surfaces in much of Unit 1B can be 

explained in the same way as in Unit 1A; relative homogenous composition of grainsize at 

the top of the channel belts. However, mud-draped and muddy lateral accretion surfaces in 

Unit 1B occurs and are especially visible when viewed from some distance (Figure 4.2.7). 

Several smaller channel belts are present in the same interval next to the large channel belt, 

together with abundant overbank fines. These channels could be chute channels or splay 

channels, an important part of the overbank drainage during floods (Miall, 2014). 

 

Figure. 4.2. 7: Lateral accretion surfaces (LAS) visible at the top of the channel-belt in Unit 1B at the virtual 
outcrop.  

The channel belt depicted in Figure 4.2.6 and Figure 4.2.7 are in places thicker than the 

channel belts in Unit 1A below. Figure 4.2.8 show a close-up picture of the belt taken at the 

location where the sandstone erodes the most down into the dividing paleosol horizon 

between Unit 1A and Unit 1B. The red-brown coloured mudstone, although being at its 

thinnest here, is clearly visible at the base of the channel. Grain size decreases towards the 

top of the channel and the sandstone-belt have less pebbly content and are generally finer 

grained, but the difference is minor. The largest change in channel grain-size composition is 

an increased fraction of fines within the channel belts, especially towards the top.  
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Figure 4.2. 8: Channel-belts from Unit 1A and B divided by red-coloured paleosol. The base of the uppermost 
channel erodes slightly down into the paleosol which is at its thinnest at this location. Crevasse splays and 
paleosol/overbank mudstone can be seen above the sandstones. 

There are thicker more extensive mudstone layers in Unit 1B then in Unit 1A. Several meter-

thick red mudstones and 50-100 cm thick hundreds of meter extensive crevasse splays form 

a complex stacking of alternating mudstone, paleosols and crevasse-splays that close-up 

resembles a layer-cake that does not occur, or is not preserved, in Unit 1A. This red-brown 

layer-cake is visible above the channel in Figure 4.2.8 and above and at the sides of the 

yellow coloured channel belt in Figure 4.2.6. 

The stacking of channels and vertical and lateral change from Unit 1A to Unit 1B is illustrated 

in Figure 4.2.9.  

 

Figure 4.2. 9: Complete conceptualized model of Unit A & B. The channels retain much of the same thickness but 
the lateral extent decreases. Mud-fraction within the channel-belts as well as the amount of overbank 
mudstone increases upwards. 



Chapter 4  Results 

40 
 

In terms of proximal, medial and distal zones (Figure. 2.5) in a distributary fluvial system, 

Unit 1A is interpreted to resemble the proximal zone; stacked channel deposits, 

amalgamated and interconnected. Whereas Unit 1B resemble the medial zone; channel 

deposits with floodplain mudstones and sheet sandstones.  

Reservoir aspect Unit 1 

The channel sandstones in Unit 1 could make up substantial reservoir volumes, and in the 

outcrop itself the channels belts amount to a total of around 30-40-meter thickness. 

Especially the amalgamated, multistore channels in Unit1A makes up a large connected sand 

volume (Donselaar and Overeem, 2008).  A potential problem for fluid flow in Unit 1 is 

however the mudstone layers between the channel belts, aswell as mud-chip lag within the 

channel bodies themselves which may impede connectivity (Chapin and Mayer, 1991). The 

continuous red-brown paleosoil will probably be a barrier for vertical fluid flow. The paleosol 

horizon is therefore added to the conceptual model (Figure. 4.2.9).  

 

Unit 2 

Unit 2 shows a distinct change in colour from Unit 1 and can be traced as a 10-15-meter-

thick grey-green band above the red-brown Unit 1 (Figure 4.2.2). The Unit form less ledges 

and cliffs than Unit 1, which is possibly an indication of lower competence rocks and 

increasing mud-content. The colour change has been attributed to the increased smectitic 

content of the mudstones that originate from abundance of silicic ash blown eastward from 

the volcanic arc to the west (Cordilleran Arc, Nevada orogeny) (Galli et al., 2014). Extensive 

porcelain-white ash layers can be found at several intervals in this Unit.  

The white-green Unit 2 consist primarily of mudstones that, apart from the colour change, 

display similar paedogenic features as the mudstones in Unit 1. The sandstone percentage in 

Unit 2 is estimated to be between 15-30 %. Continuous sheet like sandstone layers form 

ledges within the mudstone (Figure 4.2.10). These layers are interpreted as crevasse splays 

and display varying thickness and extent. Most are between 5-110 cm thick, but some are 

thicker than 1 meter and can be traced all over the virtual outcrop. Only two clear channel 

sandstones are visible in the virtual outcrop. These channel sandstones are embedded in the 

mudstone package and are small compared to the previous channels, between 3-6 meters 
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thick and 50-100 m wide, as shown in Figure. 4.2.10. They are associated with crevasse 

splays, marked C, and overbank mudstones on all sides.  

 

Figure 4.2. 10: 1) Lateral extensive sandstone benches in the red coloured overbank mudstones and paleosols of 
Unit 2. The sandstones are Interpreted as crevasse splays and marked as Facies association C. 2) Sandstone 
bodies of different thickness and lateral extent. Some have been interpreted as smaller fluvial channels (marked 
with A), possibly seasonally active, and the thinner more extensive have been interpreted as crevasse splays 
(marked C). 3) Wide channel belts with muddy lateral accretion surface and mud plugs from the western limb 
outside the virtual outcrop. 

Several large channel belts outside the virtual outcrop also exists in this unit and can explain 

the origin of the thick splays deposits. The channel belts are singlestorey and they appear 

isolated, a clear change from the multilateral multistorey channels of Unit 1. In addition, the 

channels are smaller and finer grained than the channel belts in Unit 1. They range between 

6-9 meters thick and between 100-400 meters wide. Muddy lateral accretion surfaces are 

visible in all channels (Figure 4.2.10). The content of fines within the medium to fine 

sandstone in the channels are even more apparent here than in Unit 1B. Unidirectional 

paleocurrent indicators from ripples in the channel belts give an eastward trend. 

Brown lateral accretion surfaces consisting of mud and silt suggests a fluctuating water level 

(Bridge, 2003).  Some channel also shows mud draped lateral accretion surfaces extending 



Chapter 4  Results 

42 
 

far into the sandstones belts. Example of this is shown in two separate channels in the figure 

below (Figure 4.2.11). Mud draped surfaces that extends far into the sandstone belts could 

point towards a fluvial environment with highly fluctuating water level where the energy 

within the channels at times are weak enough to deposit mud in the channel itself. A 

possible explanation for this is seasonal drought which fit well with the interpretation of a 

semi-arid environment made by Demko et al., (2004) and Turner & Peterson (2004) who 

both have interpreted the channels in the upper brushy basin to be channel that at times 

were completely dried out.

 

Figure 4.2. 11: Close-up of two 6-10m thick channel-sandstones in Unit 2. The channel has muddy lateral 
accretion surfaces, in the lowermost channel one of the mud-surfaces stretches all the way across the belt. This 
is interpreted to stem from extremely variable water level in the channel. The mud is coloured brown. 

The fluvial system in Unit 2 has been conceptualized in the same style as Unit 1 (Figure 

4.2.12). The channel belts observed in Part 2 are interpreted to be the deposits of sinuous 

meandering rivers. The channels display typical meandering features like point-bar 

accretion, crevasse-splays and mud-plugs from when the channels where abandoned due to 

avulsion and transported sediments both as bedload and in suspension. The paleosoil 

horizon is well developed, preserved and thicker which indicate a change in sediment influx, 

water discharge and bank stability from Unit 1 (Bridge 2004; Miall, 2014)  

 

Figure 4.2. 12: Yellow channel belts embedded in overbank mudstone and splays. The channels still have a 
lateral reach of several 100 meters. Muddy lateral accretion surfaces represent the varying water level and 
abundance of fines in the fluvial system.    
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In terms of proximal, medial and distal zones (Figure 2.5) in a distributary fluvial system, Unit 

2 is interpreted to resemble the medial zone; channel deposits with floodplain mudstones 

and sheet sandstones.  

Reservoir aspect Unit 2 

The channels in this unit make up around 6-9-meter-thick reservoir bodies. They are 

however spaced out and not connected as the multilaterally connected channels of Unit 1. 

Fines within the channel sandstones could impact fluid flow negatively. The relative thick 

crevasse splays add to the total volume of sand in the unit. Mudstone layers within the 

channel belts and between the channel belts, will work as non-reservoirs and fluid barriers.  

 

Unit 3 

Unit 3 is the dark red -brown 10-15-meter-thick band above the white-green Unit 2 visible in 

Figure 4.2.2. The unit consists for the most part of scree covered slopes of mudstones. The 

sandstone percentage in Unit 3 is estimated to be between 10-20%. A few channel belts 

exist embedded within the paleosol mudstones, all identified channels in this unit are single-

story and unilateral. The width of these channels varies from around 100 meters to over 200 

meters. In the virtual outcrop three 4-7-meter-thick channel-sandstones have been 

identified as shown in Figure 4.2.13 bellow.  
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Figure. 4.2.12: Virtual outcrop with channel belts (yellow) in the red-brown mud dominated Unit 3. Crevasse 
splays and overbank mudstones can be seen on the flanks of the channel belt. Note that the channels are 
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connected and runs through the outcrop, inn on the western side and out on the eastern side. Unidirectional 
paleocurrent indicators from ripples in the channel sandstones give a north-eastward trend. 

The channel sandstones display fining upwards trends with grain sizes ranging from a 40-50 

cm thick conglomerate bed at the base, to very-fine sandstone at the top of the channel 

(Figure 4.1.2.A). Mud-clasts like in the units below are not common, but several 

extraformational quarts clasts occurs in the foresets of cross-beds.  The most common 

grainsize in the channels are very fine and fine sand. Mud draped low angled fining upwards 

lateral accretion surfaces and passively infilled channels occurs in all observed channels in 

the unit.  

The decrease in channel size, lateral accretion surfaces and mud-plugs (Figure 4.1.2 & 4.2.13) 

from channel abandonment, paired with the variable grainsize composition and increase of 

overbank mudstone, has been interpreted to mean that the channel-belts were deposited by 

a sinuous meandering river system in a low gradient setting typical for the medial-to-distal 

zone of the distributary fluvial system (Nichols and Fisher 2007). The decrease in mud-clasts 

within the channels and the limited lateral reach of the channel-sandstones could point 

towards an increase in bank stability and a wetter more vegetated system that confined the 

channels for the most part (Bridge 2004; Galli, 2014). Laterally extensive sand-layers that 

thins out into mudstone interpreted as crevasse splays are common, but they are thinner 

than in the units below.  Root traces in the mudstone and in the tops of crevasse splays are 

common in this unit.  

A picture of a typical fine-grained channel-sandstone associated overbank fines and passive 

infilled mud-plug as described above is shown in Figure 4.2.13. 

 

FIG. 4.2.13:  White clear channel sandstones embedded in dark-red paleosol and crevasse splays. Note the 
muddy low angled lateral accretion surfaces that stretches far into the sand body. This channel has a 
conglomeratic base, but most of the channel fill is fine-to-very fine-grained sandstone. Vertical exaggeration x2 

The fluvial system in Unit 3 has been conceptualized in the same style as before (Figure 

4.2.14). 
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Figure. 4.2.14: Small yellow channels embedded in a package dominated by mudstone. Thin crevasse splays 
within the mudstone are at the side of the channels are visible as black lines. Muddy low angled lateral 
accretion surfaces and brown mud-plugs are visible in the channels. 

Reservoir aspect Unit 3 

Direct sandstone-body connectivity is clearly very poor and a major risk in Unit 3. The sand 

bodies appear isolated and surrounded by non-reservoir mudstone. No stacked channel-

belts was observed in the study location in this unit. The crevasse-splays are extensive and 

adds to the total volume of sandstone in the system, but they are thin and often thinning out 

into mudstone.  

 

Unit 4:  

Unit 4 is the uppermost 10-25-meter grey succession of weathered and eroded rocks on the 

top the Virtual outcrop visible on Figure 4.2.2. It is the least studied unit at the study location 

due to the lack of cliffs and requiring digging to get sections of rock suited for logging. Unit 4 

consists predominantly of mudstone and extensive thin layers of very-fine sand interpreted 

as paleosols, overbank fines and splays. Most of the channels in this unit is between 1-4 

meters thick and less than 50 meters wide and appears as smaller ribbon shaped channels. 

However, two largest channels exist in this unit. They are about 100 meters wide and 4 

meters thick and have a conglomeratic base as the channels in Unit 3. 

Relative to the other units the amount of channel sand-bodies is very low. The sandstone 

percentage in this unit is estimated to be between 5-15%. The smaller channels are very fine 

grained with high mud content but no mud- or extraformational clasts from erosion and 

bank collapse occurs as in the other units. Few bedforms are visible in the channel-

sandstone deposits, but measurements of 3 current ripples indicate an eastward 
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paleocurrent direction. No lateral accretion surfaces were identified in the channels hence 

the degree of sinuosity of the channels are unknown.  

At two levels in the unit 20-40-centimetre-thick carbonate layers form benches that are 

easily mistaken for crevasse splays in the virtual outcrop. These beds have been identified as 

lacustrine micrite limestones deposited in conjunction with several major zones of altered 

silicic ash falls (Galli, 2014; Parrish et al., 2004). The fluvial system at the time is thought to 

have been low gradient, decreasing accommodation setting with a relatively high-water 

table (Demko et al., 2004; Turner & Peterson 2004; Galli, 2014).   

In terms of proximal, medial and distal zones in a distributary fluvial system Unit 4 is 

interpreted to resemble the distal zone with thin isolated small channels and a high 

mudstone percentage.  

 

Figure 4.2.15: Conceptual model of Unit 4. Small isolated ribbon channels. Thin crevasse-splays and abundant mudstone. 
Occasional lacustrine limestones.  

4.2.5 The conceptual model put together, summary of results.  

The lithologies, facies associations and the vertical changes described in Chapter 4.1 & 4.2 

have been put into one complete conceptual model of the Brushy Basin member (Figure 

4.2.16). This model summarizes the major vertical changes that is of interest when building 

the reservoir model of the Brushy Basin Member mud-rich fluvial system.  



Chapter 4  Results 

48 
 

 

Figure 4.2.16: Conceptual model of the Brushy Basin Member. The figure summarizes the lateral and vertical 
changes presented in Chapter 4.2. Note the DFS zones, channel width and thickness trend and mudstone 
fraction trend. The reservoir model in Chapter 4.3 is based on the conceptual model. The important changes 
illustrated in the figure are listed below.  

Vertical changes upward in the conceptual model: 

• Less sand-more mud, less channels more floodplain (Table 4.3.1) 

• Channel-belts get thinner and smaller (Table 4.3.2) 

• Internal channel-fill heterogeneity increases (mud-draped LAS and conglomeratic 

sandstones) 

• Small channels generally finer grained then the larger, exception conglomeratic small 

channel in Unit 4. 

• Less vertical and horizontal direct communication between channel belts 

• Lacustrine deposits towards the top. (probably also in unit 3 and possibly unit 2 but 

this was not identified in the field (Galli,2014). 

• Thickness and frequency of crevasse-splays decrease from Unit 1B-Unit 4. Mapping of 

crevasse-splays in Unit 1A was not possible. 
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• Palosols generally less developed. (Generally, well developed in Unit 1, poor to 

moderately developed in Unit 2-4 (Demko et al., 2004; Galli, 2014). 

 

4.3 Reservoir model, Brushy Basin Member 
Chapter 4.3 will present the gridded geological reservoir model of the scanned and studied 

outcrop.  

The model has been constructed in Petrel by importing interpreted lines from the virtual 

outcrop in Lime and incorporate the observation and vertical changes presented in the 

conceptual mode in Chapter 4.2.5. This results in a model which represent an actual 

mudstone-rich fluvial system found in the geological record. For a detailed explanation of 

the steps performed to create the model see Chapter 3.0 Methods where this is covered.  

The facies associations described in Chapter 4.1 have been simplified into three facies 

association in the reservoir model: 1. Channel-sandstone 2. Crevasse-splays. 3. Shale 

mudstone(overbank/non-reservoir). Numerical data used in order to construct the model 

and a short description of the units will be presented in Table 4.3.1 below. The amount of 

sandstone in each unit have been calculated using ImageJ on the virtual outcrop photos. 

Above Unit 4 and below Unit 1A confining zones of shale have been added to represent 

homogeneous layers that will not influence the flow simulation. The boundaries between 

units are conformable, but channels are allowed to erode downwards. The length (Y-axis) of 

the model is 1500 meters while the width (X-axis) is 1000 meter. Hight (Z-axis) is 142 meters. 

Total number of grid cells in the model is 1 841 250. No faults exist in the model, but a slight 

N-S trending folding is added from the virtual-outcrop. 
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Table 4.3.1 Reservoir modelling properties 

 

 

Screenshots of the model in X, Y and Z direction is shown in Figure 4.3.1 below. Two wells 

have been added in the model for flow simulation purposes. 

Uni
t 

Channel 
thickness  

Channel belt 
width 

Orientati
on 

Sandstone 
(%)  

Description 

1A 8-12 >500 0-30 60-80 Stochastic object modelling. Shale 
background with amalgamating 
fluvial channel bodies, isolated 
areas of mud exists in the Unit. 
They represent channel 
abandonment fills and overbank 
muds.  Crevasse-splays extend 
from channel-bodies with a 
thickness similar to that observed 
in the field: between 0.1 cm and 1 
m. 

1B 8-12 400-500 0-30 40-60 As Unit 1A 

2 6-9 100-400 70-90 15-30 Stochastic object modelling. Shale 
background with large fluvial 
channel bodies encased in 
mudstone and crevasse-splays 
inserted. Some amalgamation 
occurs. 

3 4-7 100-200 80-90 10-20 Stochastic object modelling. 
Isolated smaller channels with 
few instances of channel to 
channel connectivity. Crevasse-
splays primary connection 
between sand-bodies. 

4 1-4 <100 90 5-10 Stochastic object modelling. 
Completely isolated channels, no 
amalgamation, little connectivity 
between channel-bodes through 
crevasse-splays. 
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Figure 4.3.1: Reservoir model of the Brushy Basin Member built in Petrel. A) Three-dimensional view of the 
model with annotations showing the Units presented in chapter 4.2. Channel sandstone in yellow, crevasse-
splay sandstone in orange and mudstone in grey. The decrease in the amount of sandstone upwards are clearly 
visible. In Unit 1 and 2 discontinuous mudstone layers are common, while in Unit 3 and 4 the thickness and 
continuity of the mudstone layers increases, while the thickness and width of the channels decrease upwards B) 
Westward cross-section of the model. C) Southward cross-section of the model. D) Northward cross-section of 
the model. E) Horizontal cross-section of Unit 2 showing eastbound channels with associated crevasse splays, 
smaller channels and mud-filled channels. F,H) Horizontal cross-section of Unit 1B and 1A with northeast 
trending amalgamating channels with discontinues bodies of mudstone. G) Horizontal cross-section of Unit 4 
showing an east-trending isolated channel. 

 4.4 Flow simulation 
The reservoir model presented in Chapter 4.3 was exported from Petrel, imported to the 

RMS software and run through a cell-based flow simulation. Chapter 4.4 contains the results 

from this simulation.  

Cell-based flow simulation gives detailed information about production results like 

hydrocarbon production rate, water production rate, water cut, total fluids produces and 

how this change over time (RMS manual). Conducting a flow simulation on the Brushy Basin 

Member reservoir model created in this thesis will give interesting results as the model is 

constructed with empirical basis in an actual observable reservoir package where the 

channel-reservoir are typically separated from each other. The reservoir model, as 

previously shown, contains several units with varying sandstone mudstone percentages, 

channel-to-channel interconnectivity and a channel-belt architecture that changes 

dramatically from base to top. This mean that flow simulating the model will gives us an idea 

of how fluid flow changes depending on channel-belt connectivity in a mudstone-rich system 

like the Brushy Basin Member. 

Petrophysical properties like porosity and permeability used in the model is real data from 

Barents Sea core plugs.  Which were taken from Line et al., (2018) study of reservoir quality 

of fluvial channels in the Snadd formation. The data is sampled from wells located on the 

Loppa High, Bjarmeland Platform, Fingerdjupet Sub-Basin and the Nordkapp Basin giving a 

good representation of the petrophysical properties that can be expected in a mudstone-rich 

fluvial system.  

The petrophysical properties that are used in the reservoir modelling is shown in Table 4.4.1. 

 



Chapter 4  Results 

53 
 

Table 4.4.1 Facies and petrophysical properties 

Facies Porosity Horizontal perm. 
(mD) 

Vertical perm. (mD) 

Channels (vf-c sand) 32 1100 900 

Crevasse-splays (vf-m 
sand) 

15 250 10 

Overbank 
(Paleosol/mud)  

0.1 0.1 0.01 

 

A selection of the channel data taken from Lina et al., 2018 gives a Kv/kh: 0.8, close to 

Deveugle et al., (2011) who found a Kv/kh: 0.9 in distributary fluvial channels. For the 

purpose of this study a kv/kh: 0.8 is within the margin of reasonable relationship between 

horizontal and vertical permeability.  

Table 4.4.2 Reservoir modelling parameters for fluid flow simulation 

Modelling parameters Value 

Rock compressibility 10*10-7 /bar 

Fluid compressibility  10*10-4/bar 

Temperature 121 oC 

Oil saturation ratio 0.8 

OWC -1545 m 

Min. depth -1660 m 

Max depth -1545 m 

Simulation time 50 years 

Injection rate 1000 m3/d 

Model size 1.5 km2 

Reference pressure 150 bar 

Injector pressure 175 bar 

 Producer pressure 130 bar 

Viscosity 5 cP 

 

The parameters used for the cell-based flow simulation are presented in Table 4.4.2. Two 

scenarios were simulated, S1 and S2. In scenario S1 the three facies shown in Table 4.4.1 

were all present, while in scenario S2 the crevasse-splays was removed and replaced by non-

reservoir rock. In terms of total reservoir pore volume, removing the crevasse splays 
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decrease the total pore volume in the reservoir model by 17%, meaning that 83% of the pore 

volume can be found in the channel sandstones. Both scenario S1 and S2 had the same 

production strategy. Two wells are drilled in the model, well South and well North. Both 

wells penetrate major channel bodies in the reservoir model and have been placed in the 

south western and north-eastern corners respectively.  Well South reached the OWC at 

1536m downdip from well North. Well South is the designated injector, while well North is 

the producer. Both wells are perforated in the 142-meter reservoir interval, meaning that 

production and injection happens in all Units in the reservoir model.  A cross-section from 

well-to-well which display the facies distribution in the model that are simulated is visible in 

Figure 4.4.1. 

 

 

Figure 4.4.1: Well-to-well cross-section of the flow simulation model in RMS. The same features as the  

 

The cell-based flow simulation in S1 and S2 simulates 50 years of production. Both 

simulation-runs took over 90 hours to complete. Screenshots from the runs are presented in 

Figure 4.4.2, where oil is represented by black colour, and increasing water percentages in 

each cell is represented by a progressively white colour. The pore volumes in the model is 

filled with oil down to the OWC prior to production start (Figure 4.4.2.A & F). Screenshots 

from S1 production after 10 years (Figure 4.4.2.B), water breakthrough (Figure 4.4.2.C), 
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water cut 50% (Figure 4.4.2.D), and water cut > 90 (Figure 4.4.2.E) are shown in the figure 

below. The production in S2 declines faster and water breakthrough is reached at an earlier 

stage (Figure 4.4.2.G). Consequently, production with a water cut of 50% (Figure4.4.2.H) and 

water cut > 90 % (Figure 4.4.2.I) also happens at an earlier stage then in S1. 

The flow simulation results from scenario S1 show that the lower units with amalgamated 

channels are swept relatively evenly and earlier then the upper units. The discontinuous 

overbank mudstone-layers (Figure 4.4.1) that exists in this part of the model, act as vertical 

barriers for the most part. But, where the mudstone is particularly thin communication 

between the channels occur (Figure 4.2.2.B). As time passes, breakthrough of injection-

water happens within the lower parts of the model long before water is produced in the 

upper part of the model. In the upper part of the model, oil in the channels have to migrate 

through the low permeability crevasse splays in order to reach the production well. The 

simulation show that this is often the case and that the injected water follows the crevasse-

splays and sweeps the non-amalgamated otherwise isolated channels. Where the crevasse-

splays are not in connection and the channels are completely isolated and surrounded by 

overbank mudstone, the oil is bypassed (Figure. 4.4.2.E).  

The results from scenario S2 show that breakthrough of water in the lower part of the model 

happens 4 years earlier (Figure 4.4.2.G). Production in the lower units are seemingly 

otherwise not affected by the lack of splays. This is not the case in the upper part of the 

model. The channel sandstones that was accessible through crevasse-splays in scenario S1 

are not swept in scenario S2 (Figure 4.2.2 H-I), subsequently less oil is produced (Figure 

4.2.3).  
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Figure 4.4.2: Results of flow simulations. A, F) The reservoir filled with oil prior to production. The Oil-water 
contact is visible at the lower left side. B) Oil saturation distribution after 10 years of production. Note the 
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efficient sweep of the amalgamated channels in the lower part of the model (Unit 1). Injected water is also 
sweeping crevasse splays in the upper part of the model (Unit 2-4). C) Oil saturation distribution after 14 years. 
At this time water from the injection well are produced at the production well resulting in decreasing oil 
production rate. D) Oil saturation distribution after 20 years. Most of the oil in the lower unit are already 
produced. The production water-cut is now 50%. Crevasse-splays and isolated channels in the upper part of the 
reservoir are still being produced. E) Oil saturation distribution after 40 years. Most of the channels and 
crevasse-splays have been swept, however the cells still have substantial amounts of oil in them (40-50%). Note 
bypassed oil in certain channels. G) Oil saturation distribution of scenario S2 after 10 years. Water breakthrough 
happens 4 years earlier then scenario S1. Seemingly no production from upper parts of the reservoir. H) Oil 
saturation distribution of scenario S2 after 14 years. Still no flow in the upper part of the reservoir. Production 
mainly from amalgamated now waterfilled channels. Water production hits 50%. I) Oil saturation distribution of 
scenario S2 after 30 years. Some water is injected into the mudstone near the injector. Most of the channels in 
the upper part of the model is not swept. 

 

Production results (rate and total) from both simulations are plotted in Figure 4.2.3 and 

summarised below.  

The total volume of oil in scenario S1 is 13 250 200 rm3. After 50 years 7 871 575,5 rm3 is 

produced, meaning that 59% of the oil originally in place is recovered. In scenario S2 

11 016 200 rm3 was originally in place in the reservoir. After 50 years of production 

5 980 065 rm3 of oil is produced, resulting in 54% of the originally in place oil being 

recovered.  

The total volume of oil originally in place in the crevasse-splays in scenario S1 is 2 234 000 

rm3. Splays therefore make up 17% of the oil originally in place while 83% of the oil is 

situated in channels. In scenario S1 a total of 31.6% more oil is produced, clearly indicating 

sweep of channels that depend on crevasse-splays to get produced. When adjusted for the 

decrease in total oil volume originally in place when removing the crevasse splays in scenario 

S2, scenario S1 result in a 5% increase in recovered resources.  
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Figure 4.2.3: Production rate and total volume of oil produced plotted against time (years).  

Given the production number visible and the graph above it is reasonable to suggest that the 

crevasse splays contributes to keeping oil production levels high in scenario S1 compared to 

scenario S2 (Figure 4.2.3).
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5.0 Discussion 
The purpose of this chapter is to discuss the results presented in Chapter 4. This is mainly 

done by: 1) Addressing how the upwards variability of facies at the study area relates to the 

regional fluvial system, 2) Consider the importance of crevasse-splays in the reservoir model 

revealed during the simulation runs, and 3) how sub-seismic smaller channels could 

represent a possible upside for exploration in similar mudstone-rich systems (low net-gross 

systems) such as those in the Triassic of the Barents Sea.  

5.1 The Brushy Basin Member distributary fluvial system 
A review of more than 700 continental sedimentary basin conclude that fluvial depositional 

landscapes are dominated by distributary systems, with tributary axial and incised river 

deposits composing a relatively minor proportion of the continental rock record (Weissmann 

et al., 2010). The Salt Wash Member, stratigraphically below the Brushy Basin Member, 

consist if a distributary fluvial system representing deposition from a single fluvial system 

(Owen et al., 2015,2015). The Salt Wash Member and the Brushy Basin Member was 

deposited in the same paleogeographic setting, with relatively similar basin-conditions and 

tectonic framework. It is therefore reasonable to suggest that the Brushy Basin fluvial 

system also is a distributary fluvial system.    

Evident from the conceptual model and summary of vertical changes in Chapter 4, the 

overall sandstone ratio, channel width and channel thickness decrease upwards in the 

succession (Figure 4.4). The change is pretty dramatic from Unit 1 to Unit 4, going from 

sandstone ratios above 50% with amalgamating-multistorey channel-sandstones, to 

sandstone percentage less than 15% with isolated channel fill deposits encased in stacked 

paleosols and floodplain deposits. Channel-belt-thickness decreases from 14 m to around 1 

m.  

This trend is completely opposite of what have been found in the upwards increase in 

sandstone percentage (from 70% in the proximal facies to 8% in the distal facies) and 

channel-belt-width in the Salt Wash Member distributary fluvial system (Owen et al., 2015). 

This system has been interpreted as a prograding system with stacked distal-to-medial-to-
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proximal facies (Figure 5.1.1) (e.g. Peterson, 1980,1984; Currie 1998; Kjemperud et al., 2008; 

Weissmann et al., 2014; Owen et al., 2015,2017).  

 

Figure 5.1.1: Location maps of the Salt Wash Member DFS uncovered by Owen et al., (2015). (a) Tectonic 
framework of the Late Jurassic during the deposition of the Morrison. Modified from Turner & Peterson (2004) 
and Blakey (2014). (b) Location map of the study area. Blue arrows indicate mean palaeocurrent direction at 
localities studied by Owen et al.,2017. Yellow, green and blue colour correspond to proximal, medial and distal 
facies in the idealized upward changes of facies from a prograding DFS visible below the map (c) Stratigraphic 
framework of the Salt Wash DFS relative to the Brushy Basin DFS. (modified from Owen et al., 2015) 

The Brushy Basin Member itself have been described as both aggregational and 

progradational, with relatively long periods of little or no deposition at all (Currie, 1998, 

Demko et al., 2004). The observations at the study area does not fully comply with a 

progradational description.  

If put into a distributary fluvial system facies model (proximal, medial, distal facies) Unit 1 

and perhaps Unit 2 both resembles proximal to medial facies with interconnected 

amalgamating channels and relatively high sand-percentage, while Unit 3 and 4 can be 

characterized as typical distal facies with low sand-percentage and isolated (ribbon) channels 

(Nichols and Fisher, 2007). The vertical change from high to low sand-ratio and high to low 
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channel connection found at the study location therefore does not imply a typical 

prograding distributary fluvial system (Nichols and Fisher, 2007). Based on the observations 

revealed in the results chapter the succession at the study location could however indicate a 

retrograding distributary fluvial system.   

An interesting question that follows from this is whether the observed trends in the study 

area is a local feature, or expresses the actual regional fluvial system. The combination of 

allocyclic and autocyclic controlling factors in a basin system can be responsible for any 

observed sedimentary succession variations, which makes this a very complex question 

(Ethridge et al., 1998, Miall, 2000; Owen et al., 2015). The intricated relationship between 

the controlling mechanisms that affect a fluvial system dictates sedimentary succession both 

locally and basin wide (Owen et al., 2015). Allocyclic controls work on the system as well as 

outside the system, controls like eustasy, tectonics and climate are termed allocyclic. 

Whereas controls which work within the system on a smaller scale like avulsion of streams, 

migration of bars and local changes in topography are termed autocyclic (Allen, 1971; 

Ethridge et al., 1998; Miall, 2000; Cecil, 2003).  

The deposition of the Brushy Basin Member, like in the Salt Wash distributary fluvial system, 

probably was driven by upstream controls in the catchment (Owen et al., 2015). Eustasy, due 

to the distance from sea, is in this particular case disregarded as a major control, leaving 

climate, source area and basin subsidence as the dominant external controls (Shanley & 

McCabe, 1994). Overall accommodation in the basin is believed to have been increasing 

upwards in the Brushy Basin Member until the very end of the Member where the rate of 

accommodation declined until sedimentation stopped (Demko et al., 2004). It is reasonable 

so suggest that accumulation of large shallow lakes and wetlands in the Upper and eastern 

part of the Brushy Basin Member had a significant impact on the distributary fluvial system 

prograding, retrograding or aggrading (Demko et al., 2004, Turner & Peterson 2004). 

Expansion of a lacustrine wetland and accumulation of sediment and water in the basin 

could have forced the Brushy Basin distributary fluvial system to retrograde, either by 

movement of apex away from the lakes or simply by a shortening of the rivers leading out to 

the lakes.  

The upwards trend observed at the study area could also just be a local feature and does not 

need to indicate whether the system as a whole is retrograding or aggrading. Instead, 1) The 
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succession could represent channel-deposits from two or more distributary fluvial fans partly 

or completely overlapping. The upper and lower parts of the model show differences in 

paleocurrent measurements orientation from ripples and cross-beds, and difference in 

channel-belt orientation visible from interpreting the virtual outcrop. The lower unit have 

measurements trending towards the north, while the measurements of the upper units are 

trending towards the east. A change in fluvial regime by paleocurrent measurements 

upwards in the Brushy Basin Member have also been identified by Galli et al., (2014) in 

different location of the basin, and could indicate that the basin was populated by multiple 

distributary fluvial systems (Figure 5.1.2).   

 

Figure 5.1.2: Map illustrating the distributary fluvial system that could have deposited the successions visible at 
the study area. The Okavango delta, Botswana, distributary system has been added to illustrate the 
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depositional setting of the Brushy Basin Member. The location of the DFS are purely illustrative, additional 
research is needed to establish the apex and reach of the system. The upward changes of facies are opposite of 
what is visible in the Salt Wash Member distributary fluvial system. River tracts are drawn on the Okavango 
delta. Apices for multiple eastward going distributary fluvial systems in the late Brushy Basin Member are 
indicated by crosses. (modified from Owen et al., 2015)   

2) Alternatively, the upwards changes are not due to two different distributary fluvial 

systems but rather a consequent of the system avulsing, changing river tracts and moving 

away from the study area (Figure 5.1.2) (Nichols and Fisher, 2007). Distributary fluvial 

systems are constructed through avulsions of channel-belts across the sedimentary basin 

(compensational-stacking) (Nichols & Fisher, 2007; Weissmann et al., 2010; Buehler et al., 

2011), leading avulsion as a key autocyclic process during the formation of distributary 

fluvial systems (Owen et al., 2015). Avulsion upstream may have been facilitated by massive 

increase of volcaniclastic sediment following the volcanic activity in the south-east resulting 

in a change in the amount of sediment entering the basin, changing the channel-pattern and 

geometry (Galli et al., 2014). Numerous studies have suggested that raise in rates of 

sediment supply can increase rates of avulsion frequency in a fluvial basin (e.g., Wright and 

Marriott, 1993; Mackey and Bridge, 1995; Heller and Paola, 1996; Kraus, 2002; Mack and 

Madoff, 2005; Lepre, 2017). More specific, sediment supply caused by explosive vulcanism 

have been linked to increase topographic relief of channels above the floodplain and 

increased avulsion frequency, aggradation and mud (Allen & Fielding, 2007, Lepre 2017). 

Interestingly even though the net to gross ratio and channel-belt size decrease upwards, 

thicker conglomeratic sandstones are present mainly in the upper part of the member, 

proving that despite the increase in volcanic mud, the stream had high competence and 

where able to transport not only fine material but also bigger clasts right before the end of 

Jurassic deposition in the basin (Bridge, 2004; Demko et al.,  2004; Boggs, 2014). This also 

complicates whether the upper Units really represent distal or proximal facies within the 

Brushy Basin Member distributary fluvial system. The upwards changes could be a reaction 

to the sediment input from the source area becoming increasingly mud-dominated.  

If the succession studied in this thesis is from a retrograding distributary system, it will be 

one of the first reported cases of this and a possible interesting analogue to subsurface 

exploration. The changes observed in the study area could be the signature of an aggrading 

and retrograding system or be explained by different autogenic and allogenic controls as 

discussed. To infer locally observed trends and project the findings on a basin wide system 



Chapter 5  Discussion 

64 
 

could lead to a false representation of reality (Kukulski et al., 2013).  A spatial coverage of 

studies is needed to avoid false reconstruction of depositional architecture from local to 

basin scale (Owen et al., 2015, 2015). Therefore, without additional research spatially 

analysing a much larger area, confidently establishing whether the Brushy Basin Member is 

prograding, retrograding or aggrading, or if the observed trend is a local feature, is not 

possible in this thesis. 

 

5.2 The Brushy Basin Reservoir model  

5.2.1 Connectivity within the reservoir model 

As stated in the introduction a key part of this thesis was to make a reservoir model of the 

fluvial system in Brushy Basin Member. The fluvial system investigated in this study has an 

average sandstone content less than 30%. Had it not been for the lowermost unit high 

sandstone content, the percentage would be even lower as other studied have found sand 

percentages between 5-20% (Demko et al., 2004; Galli, 2014). Evidently a system like this 

have a high degree of heterogeneity and a low net/gross ratio which puts the Brushy Basin 

fluvial system firmly into what could be called a mudstone-rich fluvial system. Compared to 

sandstone-rich fluvial systems where sandstone ratio could be above 80% (Galloway and 

Hobday, 1996). The most striking results from the modelling this heterogeneous mudstone 

rich fluvial system is the importance of crevasse-splays for flow especially in the upper 

mudstone-rich part of the model. Crevasse-splays are well documented part of a 

meandering low gradient fluvial system that are genetically related to the channel that 

sourced them (Stouthhamer and Berendsen, 2001; Bridge, 2003; Boggs 2014). Their 

presence is therefore to be expected in most similar fluvial systems. The simulations in this 

thesis show that the most efficient flow happens where point bars are connected and work 

as conduit between channel belt sandstone bodies, this is mainly the case in Unit 1. 

However, the simulation also shows that connectivity between channels with little or no 

direct contact with other channels (Unit 2-4) can be established through crevasse splays. In 

the simulation crevasse splays account for a 5% increase in production from establishing 

connectivity with otherwise isolated channels. Due to time constraints, modelling of mud 

draped lateral accretion surfaces, and mudclast- lags that existed in almost all channels in 

the succession was not considered in this thesis. It could have reduced connectivity and 
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increased compartmentalisation within the reservoir, lowering the production results (Doyle 

and Sweet, 1995; Chapin and Mayer, 1991; Larue and Joseph, 2006; Willis and Tang, 2010). 

Previous research that evaluate the impact of crevasse splays on reservoir connectivity have 

given results that align with the results from our simulation (Pranter., et al 2013; Stuart et., 

al 2014; Toorenenburg., et al 2016). Reservoir modelling from Williams Fork formation, USA, 

have found an 4% increase in connectivity when crevasse splays are included as reservoir-

quality sandstone (Pranter., et al 2013). Crevasse splays in low net-to-gross fluvial deposits in 

the Ebro Basin, Spain, and Altiplano Basin, Bolivia, have been proven to significantly increase 

the connected reservoir volume in fluvial channels previously thought to have been isolated 

by floodplain fines, much in the same way as thin-bedded lobate deposits of deep-marine 

systems also contribute to connect reservoir volumes (de Ruig and Hubbard, 2006; 

Donselaar and Overeem, 2008; Toorenenburg et al., 2016). Ambrose et al., (1991) have 

pointed out the possible increase of resources in undepleted and partially depleted crevasse 

splays in the active La Gloria gas field in Texas, USA, with the overall production potential 

though to be significant. Similarly, exploitation of unconventional hydrocarbon resources in 

thin-bedded crevasse splays in low-net-to gross fluvial intervals have been suggested to 

prolong gas production in the North Sea (Sandén et al., 2016). 

5.2.2 Upside in exploration of new areas 

Crevasse splays have already been discussed (5.2.1) as a potential increase in both reservoir 

connectivity and reservoir volume. Many of the channels constructed in the reservoir model 

could themselves also represent a upside in similar low net-to-gross fluvial systems outside 

the main channel-belts (Klausen et al., 2014).  

In the Triassic of the Barents Sea mud-rich fluvial systems are currently being explored as 

hydrocarbon reservoirs. Both the Snadd formation and the Kobbe formation consists of 

prograding, retrograding systems with proven highly mudstone-rich continental fluvial 

deposits (e.g., Klausen et al., 2014; Klausen and Mørk, 2014). Many of the mapped channel 

sandstones in the Snadd Formation are large and can reach up to 60 meters thick and 20km 

wide and make up exceptional exploration targets as show in Figure 5.2.2 (Klausen et al., 

2014; Klausen and Mørk, 2014). Relative to these channels the channels in the reservoir 

model are very small. In Figure 5.2.2 the 1.5km2 reservoir model have been added for 

comparison between the channels in the model and the channels that make up typical 
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exploration targets that in the Barents Sea (Figure 5.2.2). The simulation performed in this 

thesis offers a possible increase in total reservoir volume. Despite being small compared to 

the large channels, the associated overbank deposits between the channel-sandstone bodies 

contain heterolithic areas outside the easily mapped main-channels that probably contain 

numerous sub-seismic channels. Field observations of correlative units at the Hopen island 

outside Svalbard have found that a significant proportion of sub-seismic sandstones, which 

includes sandstone sheets and channels, must be assumed to exist within the Snadd 

formation (Klausen et al., 2014). Most of the channels (1-14-meter-thick) in the reservoir 

model are all probably of sub-seismic thickness, and correspond in size to the channels 

Klausen et al., (2014) refers to, not visible in the subsurface unless cored (Klausen et al., 

2014). The whole systems of channels and crevasse splays, as shown in the simulations, 

could contain valuable hydrocarbon resources that add to the total volume of recoverables, 

and therefore should be considered as a potential upside when exploring areas with few or 

no cores.  

 

Figure 5.2.3.: RMS attribute map from immediately below the Snadd (intra Carnian flooding surface) 

highlighting different channel-sandstone geometries: 1) large, high-sinuosity, meandering-river sandstone body; 

2) large ribbon-shaped channel sandstone body; 3) smaller, low-sinuosity, meandering channel bodies; and 4) 

thin, ribbon-shaped channel sandstone body. The size of the reservoir model constructed in this thesis have been 
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added for comparison. All but the biggest channels within the reservoir model would probably not be visible on 

this attribute map. (Modified from Klausen et al., 2014) 

5.2.3 The reservoir model compared to the Goliat field 

Every constructed model should be tested against the reality. Comparing the results from 

the flow simulation with production data from the Goliat field can shed some light on the 

credibility of the production results from the reservoir model presented in Chapter 4. Goliat 

is the only active producing field of fluvial sand-bodies in the Barents Sea that share some 

similarities with the heterogenous reservoir modelled from the Brushy Basin Member (NPD, 

2018).  

Production on the Goliat encompasses a substantial larger area (Figure 5.2.2) and has an 

estimated much higher oil originally in place (93.07 mill Sm3) (NPD, 2018) then the reservoir 

model (13.25 mill Sm3). The field is over 10 times larger than the model and subsequently 

have within the first three years of production produced over 9 times more oil than the flow 

simulations in scenario S1 did the first three years. This comparison points out that the 

production results from the model are realistic. 

The Recovery factor on the Goliat is estimated to be around 35% substantially lower than 

the 59% in the model. This can however be linked to economic restrains on Goliat limiting 

the longevity of production which is estimated to end in 13 years, while the reservoir in 

scenario S1 was simulated for 50 years. Additionally, much of the reservoir in the Goliat field 

differ somewhat from the continental sedimentary environment in the reservoir model, 

consisting of tidally influenced deltaic system, but there are also fluvial dominated channels 

in Snadd producing from this field (NPD,2018). It would have been particularly interesting to 

address the impact of flow between these channels on the Goliat field, but this is beyond the 

scope of this work.  
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Figure 5.2.4: Size and production comparison between the Goliat field and the reservoir model from the Brushy Basin 
Member. 

 

6.0 Summary and conclusions 
By investigating the mudstone-rich Brushy Basin Member of the Morrison Formation, this 

thesis has characterised the facies and architectural elements of the fluvial system and built 

a reservoir model based on the observations. This is the first detailed petroleum geological 

study on the Brush Basin Member. It has presented a reservoir model based on field-work 

observations and UAV data gathering and done flow simulation to evaluate the importance 

of the different facies in the model. From the results and discussions presented in the thesis, 

the following conclusions are made:  

• The Brushy Basin Member consists of overbank mudstone and fluvial channels that 

show a high degree of internal variability as well as architectural variability upwards 

in the succession: The fraction of mudstone increases while channel width, thickness 

and amalgamation of the channels decreases.  

• In terms of a distributary fluvial system, the Brushy Basin Member display a change 

from proximal-to-medial-to-distal zones. This infers a retrograding distributary fluvial 

system, the complete opposite of the prograding distributary fluvial system that exist 
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in the lower parts of the Morrison Formation. Few retrograding distributary fluvial 

system have been described to date, hence the Brushy Basin Member might be an 

interesting analogue for similar subsurface mudstone-rich systems.   

• The observed proximal-to-distal trend could be a local feature and not represent the 

whole fluvial system in the basin. In addition, autogenic and allogenic control could 

explain the apparent proximal-to-distal trend observed at the study area.  

• The simulations in this thesis show that the most efficient flow happens in the 

amalgamated, multistorey and multilateral part of the reservoir (Unit 1) where point 

bars from different channels belts are interconnected.  

• Connectivity between singlestorey channels with little or no direct contact with other 

channels (Unit 2-4) can be established through crevasse splays. In the simulation 

crevasse splays account for a 5% increase in production from establishing 

connectivity with otherwise isolated channels. 

• Channel-belts being explored and visible in the subsurface are generally much larger 

than the sand-bodies investigated in this thesis. The channel sandstones and 

associated crevasse splays in similar fluvial systems should be considered a potential 

upside in terms of communication and reservoir volumes when exploring new areas.  

• Comparing the results from the flow simulation with data from the Goliat field show 

that the production results from the model are realistic.  

 

Future work  

After having conducted this study several questions concerning the Brushy Basin Member 

itself, and the impact of the observed facies on hydrocarbon production remains. Some 

ideas for further work that would improve the understanding of mudstone-rich systems like 

this could be: 

• Building a geological model that incorporate the observed internal variability (mud-

chips, mud-lag, mud-drapes, conglomerate etc.) within the channels in the reservoir 

model. Hence, giving much more realistic simulation of production results. 
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• Investigate the Brushy Basin Member distributary fluvial system in other locations to 

establish whether it is actually is a distributary fluvial system and whether it 

retrogrades or not. 

• Investigate the importance of crevasse-splays in the fluvial parts of the Goliat field 

and compare them with the conclusions drawn in this thesis.  

• Do a study that gathers petrophysical values for crevasse splays in similar mudstone-

rich fluvial systems.  
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