
Personalized Content Creation using

Recommendation Systems

Einar Søreide Johansen

Master’s Thesis in Information Science

Supervisor: Marjia Slavkovik

Department of Information Science and Media Studies

University of Bergen

31.05.2018

2

TABLE OF CONTENTS

Abstract ... 4

Acknowledgements ... 5

1 Introduction .. 6

1.1 Motivation ... 6

1.2 Objectives.. 7

1.3 Contributions .. 7

1.4 Thesis Structure .. 8

2 Preliminaries ... 9

2.1 Recommendation Systems and Related Terms .. 9

2.1.1 Different Types of Recommendation Systems.. 10

2.1.2 Hybrid Recommendation Systems .. 13

2.1.3 Feedback ... 14

2.1.4 The Cold-Start Problem ... 15

2.1.5 Active Learning .. 16

2.1.6 Long-Tail Effect .. 16

2.1.7 Over-Specialization ... 17

2.2 Music Terms .. 18

2.3 Content Creation ... 19

3 Related Work .. 21

3.1 Recommendation systems .. 21

3.2 Music Generating .. 22

3.3 Music and Recommendation systems .. 24

4 Music Generation With Recommendation Systems ... 26

4.1 Prototype Description ... 26

4.2 The Song Generating Process ... 29

4.3 The Feedback Process ... 33

4.4 The Recommendation System .. 36

4.4.1 Hybrid switching.. 40

4.4.2 The Primary Algorithm .. 41

4.4.3 The Secondary Algorithm .. 42

5 RecOrder – The Implementation .. 43

5.1 Programming language and Platform ... 43

5.2 The Implementation of the Song Creation Process .. 44

5.3 The Implementation of the Recommendation algorithms ... 45

3

6 Evaluation Method.. 51

6.1 Set-up Description .. 51

6.2 Survey run-through ... 53

7 Results and Discussion .. 58

7.1 Results ... 58

7.2 Discussion .. 69

7.2.1 Personalized Computer-Generated Music (RQ 1) ... 69

7.2.2 Using Recommendation Systems to Create New Content (RQ 2) 69

8 Conclusion ... 73

8.1 Summary ... 73

8.2 Future work ... 74

References .. 76

Appendix A: Table of Figures .. 79

Appendix B: Git Repository ... 80

4

ABSTRACT

This thesis explores whether recommender systems can be used to create personalized content. To

this end a prototype was created that generates music based on a user’s preferences. The prototype,

named RecOrder, is therefore a song composer. The song creation process of RecOrder combines

small audio clips into a song. 37 audio clips were created specifically for the prototype to use. These

clips are short recordings of a singular instrument and are designed to be modular and fit together in

any order.

The selecting of what audio clips to combine, is based on the preference of the users interacting with

the prototype. This is done by the implemented recommendation system, which is a weighted hybrid

system. Hybrid recommendation systems consist of more than one recommendation algorithm. For

the prototype, a collaborative item-based recommendation algorithm called Slope One was selected.

Additionally, a custom knowledge-based algorithm was created as the secondary recommendation

algorithm. Once the song has been created, the prototype moves on to a feedback phase. With the

feedback phase, the user rates different sections of the generated song. This feedback, which is given

on a scale from one to five, will help guide the recommendation system to more accurate recommen-

dations.

An empirical evaluation was conducted, which aimed to establish whether the generated songs were

successfully tailored to the tests subjects’ personal preferences. 15 test subjects partook in the exper-

iment, selected without any preference to musical background. In the experiment, the test subjects

used the prototype to create multiple songs. They also answered questions in a survey, regarding the

prototype and the song creation process. The results from the empirical evaluation show a positive

trend in terms of user satisfaction. As the prototype creates more songs, the user felt that the songs

were becoming gradually more personalized. Using recommendation systems for personalized con-

tent creation is also possible. However, there are some limitations that recommendation systems pose

towards what domains are suitable. The limitations are related to the cold-start problem. If the rec-

ommendation system cannot learn the preferences of the user, it will not be able to yield

recommendations. Similarly, the number of available items is also a critical factor for a suitable do-

main. Too few available items, and the domain is not fitting for a recommendation system approach.

5

ACKNOWLEDGEMENTS

I want to thank everyone who has supported me through the writing of this thesis; friends and family

alike. Especially thanks to the great people I shared room 644, and later room 634 with. You all have

provided me with many great laughs and have pushed me to do my best.

A huge thank you to Marjia, my supervisor. You have steered me in the right direction from the start.

Your great humour, comfortable chair and unrelenting honesty has been a great motivator.

Additionally, thank you to the people who participated as test subjects for this thesis.

6

1 INTRODUCTION

1.1 MOTIVATION
Today’s digital environment is a crowded place. The internet and its users create and upload more

data, video and text than any one person can consume in a lifetime. Video libraries like YouTube1 have

several hundreds of hours of uploaded content each minute (Statistic Brain, 2016). Navigating such

vast amounts of information and content is next to impossible if there was no way of filtering the

displayed content. There are many ways to filter content. A common method is through personaliza-

tion. Typically, websites select content that they estimate the user is interested in.

Large websites like YouTube, Amazon2 and Facebook3 often tailor the information found on their sites

towards each user’s individual taste. The sites try to predict the user’s taste by finding similarities

between content that the user previously has interacted with. For example, in terms of YouTube, if a

user likes a series of videos that all are in a certain topic, YouTube will recommend more videos on

that topic.

YouTube and Amazon find specific content that their recommendation algorithms predict the user will

like. This predicted content is then prioritized over other content when displaying the website to the

user. Facebook will offer advertisement based on the users likes and activity. Facebook also creates

special posts thanking the user for their continued use of their services and videos celebrating a friend-

ship or an anniversary. These examples are how sites like Facebook try to create a personal

relationship between the user and the site. Spotify4 have another approach to personalization of their

content. In the Spotify app the user can find generated playlists, called Your Daily Mix5. The Spotify

app registers what songs the user has listened to lately. Then it generates a series of playlists based

on the collected user data. Since the actual creation of the playlist is automated, the user does not

have to make any decisions during the process. However, the user can still influence what songs ap-

pear in the playlist, by voting “like” or “dislike” on the songs in the playlist. Then Spotify will adjust the

playlist according to the votes. In 2009 Google6 introduced Personal Search for everyone that use their

site7. Google rearranges the results on the result page according to what they perceive to be the pref-

erences of the user.

These examples highlight a trend towards a personalized internet. The sites create personalized prod-

ucts and services to make people feel welcome at their sites and express themselves in ways they

cannot elsewhere. As a result, the user might use the site for a longer time.

With the rise of personalization, the technology to facilitate user generated content also became evi-

dent. Content creation is one of the venues of personalization. Content creation is the act of creating

something new for a specific individual. What categorises as content is different from what domain

the creation is in. For example, in terms of music, content might be a song, lyrics or just a section of a

song. It is often domain experts that create content; such as musicians, directors, etc. The content

1 https://www.youtube.com
2 https://www.amazon.com
3 https://www.facebook.com
4 https://www.spotify.com
5 https://support.spotify.com/us/using_spotify/features/daily-mix/
6 https://www.google.com
7 https://googleblog.blogspot.no/2009/12/personalized-search-for-everyone.html

https://www.youtube.com/
https://www.amazon.com/
https://www.facebook.com/
https://www.spotify.com/
https://support.spotify.com/us/using_spotify/features/daily-mix/
https://www.google.com/
https://googleblog.blogspot.no/2009/12/personalized-search-for-everyone.html

7

creators sell the content from time to time, for example music or films. It is possible to combine per-

sonalization and content creation in many domains, given that the content creation process includes

the user’s preferences.

1.2 OBJECTIVES
This thesis explores the area of computer assisted content creation, with a special focus on personal-

ization. The thesis uses music to this end. The content creation process uses recommendation system

algorithms to personalize the generated content. The recommendation algorithms leverage the pref-

erences of users, and therefore serve as an interesting solution to personalization in content creation.

Two research questions are posed:

• RQ 1: How can computer generated music be personalized?

• RQ 2: How can a recommendation system be used to create new content?

1.3 CONTRIBUTIONS
A prototype was created for this thesis to explore the two research questions. The prototype is a

song creation system, that creates songs by combining a series of smaller audio clips. A recommen-

dation system selects which items (audio clips) to include in the song, and therefore acts as the main

decision-agent in the prototype. Figure 1 is an overview of the steps the prototype takes in order to

create a song. Recommendation systems find content the user might like and help in providing a

user-preference oriented approach to content creation. By including a recommendation engine into

the song creation process, the user can influence the generated songs by providing feedback (rat-

ings) on the generated song. Although the prototype created for this thesis is in an artistic domain,

this content creation approach is certainly applicable in other fields.

Figure 1 - Schematic overview of the song creation process

8

The main reason for choosing music is that music is both formulaic and modular in structure. There-

fore, music is easy to split into smaller segments. This modular structure lends itself to combining

small pieces of music into a song. Rearranging and shuffling around well-constructed sections of music

will still make sense when combined into a song. A series of short audio clips was created for this

prototype. These clips contain the recordings of a single instrument. By using audio tracks with pre-

defined melodies and rhythms, it is easier to create a more controlled and listenable result. Therefore,

most of the audio clips are created to fit together. However, some clips are created to be distinct from

the rest of the clips, to check if the user and the algorithm can filter those out.

To validate the quality of the generated songs, and whether the prototype managed to include the

user’s preferences, we ran a series of tests with multiple test subjects. The testing consists of interac-

tions with the prototype which creates multiple songs, in addition to answering a survey. The survey

contains questions that ask the tester to compare several generated songs, and questions where the

user will elaborate on their thoughts about the song creation process. We evaluate the success of the

prototype based on whether the test subjects that participated in the experiment felt that their pref-

erences were affecting the generated songs. The included discussion will illuminate the degree of

success of the prototype.

The use of recommendation systems for personalized content creation, like done in this thesis, is new.

We have not been able to find previous work that used recommendation systems to this end. It is

therefore interesting to see if recommendation systems are viable as an aid in content creation, and

if the recommendations truly make the generated content personalized.

1.4 THESIS STRUCTURE
The rest of the thesis is structured as follows. The Preliminaries define and describe terminology that

is central to the thesis. The definitions cover recommendation systems, music theory and content

creation. Additionally, this section includes needed knowledge to understand recommendation sys-

tems. Next, the Related Work section highlights studies previously done. The selected studies are on

recommendation systems, music generating and the combination of music and recommendation sys-

tems.

Two sections describe the prototype and its functions. The first highlights how the prototype creates

music, and how the song creation process includes the recommendation system. The second section

consist of the technical details of the prototype, including a detailed description of the various sub-

processes of the prototype. The sections are called Music Generating with Recommendation Systems

and RecOrder – The Implementation respectively.

The Evaluation Method section describes the experiment conducted for the thesis. The section in-

cludes a detailed description of all the questions asked during the experiment. In addition, the section

includes an explanation of the details of the experiment and why there was a need for empirical eval-

uation.

The second to last section, Results and Discussion describe the results of the empirical evaluation. It

also includes a discussion of the findings from the evaluation. Lastly, the Conclusion section summa-

rizes the thesis and outlines directions for future work.

9

2 PRELIMINARIES

The following section contains an overview of theory and concept related to the research questions.

It contains a description of recommendation systems, various musical terms and content creation. In

addition, the recommendation system section describes five related topics, three of which is the most

common sources to error found in recommendation systems. These five topics are: feedback, the cold-

start problem, active learning, the long-tail effect and over-specialization.

2.1 RECOMMENDATION SYSTEMS AND RELATED TERMS
Many of today’s computer systems and websites provide the user with a vast library of content. Most

of those systems contain a recommendation system component. Recommendation systems (RS) are

a type of information retrieval algorithm, designed to find and highlight content to the user. The goal

of RS systems is to provide the user with a relevant and desirable recommendations, based on their

preferences. To achieve this, the recommendation engine will analyse user and item data, looking for

patterns and correlations between the data. The recommendation engine then uses these patterns to

predict what the user will like (Aggarwal, 2016, p. 2). The result is a personalized set of recommenda-

tions, that are unique to each person.

Examples of recommendation systems are not hard to find. Both YouTube and Netflix8 suggest content

to their users by utilizing recommendation systems. These recommendation systems scan the user’s

activity, and recommend content based on patterns they find in the user data. With those two men-

tioned examples in mind, it is not hard to visualize the sites without their suggestions. It would be hard

to find new content and much of their catalogue would go un-discovered. In fact, most websites that

utilize recommendation systems are sites that find it preferable that the user explores as much of their

catalogue as possible and that often have large catalogues which makes this hard. Amazon was one

of the early adopters that utilized this technology to recommend content to the users (Aggarwal, 2016,

p. 5).

By recommending content that the user potentially would not find on their own, the sites try to coun-

ter a common problem within any website with a large catalogue: how to make sure that the user

sees as much of the content as possible. By exposing the user to a larger set of content, the user is

much more likely to purchase items from the site (in the case of mercantile sites), or simply stay longer

on the site (in the case of entertainment sites). Because of this, recommendation systems are benefi-

cial for both the user and the system-owner.

Aggarwal, McNee, et al. highlights four important goals that maximise the potential of a successful

recommendation: relevance, novelty, serendipity and increasing diversity (2016, pp. 3-4; 2006). A def-

inition of Relevance is how fitting the recommendation is to what the user is currently looking for.

Aggarwal argues that having relevant recommendations is the most important part of a recommen-

dation system (2016). However, relevance is no good on its own. The recommendation at hand can

be relevant, but the user might have seen it before. This highlights the importance of novelty; whether

a user has seen an item before. If the user only gets recommendations for items they already have

seen, the recommendations will be of a lesser quality. In parallel to novelty, Aggarwal explains that

the users surprise of seeing a new item is also important. This is called serendipity. The main difference

8 www.netflix.com

http://www.netflix.com/

10

from novelty is that serendipity it not only a new item, it can also be an item from a different (but

similar) category (Aggarwal, 2016). If the user expects the recommendation, the serendipity is low.

Thus, considering serendipity as one of the important goals is valid. These three goals should ensure

good recommendations; however, they can result in a recommendation that the user does not like.

Aggarwal explains that an increasing diversity in the recommended items is also necessary, in order to

maximise the probability that the user likes one of the suggested items. A varied, side by side presen-

tation of items from different categories is something to strive for (Aggarwal, 2016).

2.1.1 Different Types of Recommendation Systems

There are several different types of recommendation systems. The main difference between these

types are on what they base their recommendation. These are the three broad categories of recom-

mendation system: content-based, collaborative and knowledge-based filtering. In addition to these

three main categories, there are several minor sub-categories of recommendation types (Aggarwal,

2016).

As the name suggest content-based recommendation are basing the decisions on the properties of

the content. These properties are also called item-descriptors or attributes. To find similar content to

what the user already like the recommendation system search for similar content using these attrib-

utes. Collaborative filtering on the other hand, uses the actions (ratings) of other users to determine

fitting recommendations. This type of filtering relies on an assumption that there is a connection be-

tween users that rate items similarly (O’Donovan & Smyth, 2005). The assumption is that if person A

and person B both like item 1 and person A likes item 2, person B would also probably like item 2. The

third type, knowledge-based filtering, use specific knowledge found in each domain to make predic-

tions. Expressing the domain knowledge is done through formalized rules, which in some cases are

rules that narrow the results.

Content-based filtering

Content-based filtering use the content of the items to determine what is a fitting recommendation.

As a result, it is dependent on well described items. In this context, a well described item is an item

that has attributes that describe the item fully. One should be able to examine the attributes and

conclude both what the item is and how it differs from other items. Attributes can be a description

text, tags, metadata, etc. It is not feasible to create well described items in all systems that require

recommendation systems. In the cases where the attributes cannot describe the content fully, con-

tent-based filtering is the wrong type of filtering. An example of a good use case for content-based

algorithms is recommending news articles similar to the one viewed. The algorithm scan for words

that appear in both articles, for shared authors or descriptor tags (Aggarwal, 2016, p. 140).

A content-based system normally consists of two data sources. The first source is a description of the

items in the database, as described above. The second data source is the generated feedback from

the user. A user profile stores this feedback, creating an overview of the user’s preferences. When a

user makes a choice related to an item, the user profile saves the rating. Each user profile is kept

separate, and the ratings of other users does not affect the recommendations of the current user. This

in turn means that there is no need for large comparisons between users (Aggarwal, 2016, p. 140).

This type of recommendation algorithm is good at recommending items, despite the addition of new

items. However, when adding a new user to the system, content-based filtering struggles (Aggarwal,

2016, p. 15). In that case, the system has no notion of what the user prefers, and therefore cannot

11

make a prediction. Since the comparison is between the similarity of items, rather than user’s activity,

recommendations for content-based systems might appear obvious or not surprising. In other words,

content-based filtering often lacks in serendipity. The system will only recommend the most similar

items, and not something completely “new”. This might not be preferable to what the system at hand

needs. To keep a product from becoming monotonous and too repetitive there needs to be a certain

amount of surprise (McNee, et al., 2006).

Collaborative filtering

As the name suggests collaborative filtering bases its recommendations on the similarity of a group of

users. By leveraging the combination of the user’s ratings, the system predicts a new rating or recom-

mends an item to the user (Herlocker, et al., 2000). There are two approaches to collaborative filtering:

memory-based (also called neighbourhood-based) approach and model-based approach (Lemire &

Maclachlan, 2005; Aggarwal, 2016). This text will be primarily referring to the memory-based ap-

proach. The other approach is model-based collaborative filtering, which is closer to machine learning

techniques (Aggarwal, 2016, pp. 8-9). This text will not feature the model-based approach. Therefore,

in the rest of the thesis we refer to memory-based (neighbourhood-based) approach as collaborative

filtering.

Within memory-based collaborative filtering, there are two main groups: item-based and user-based.

Their difference is in what aspect of the dataset they compare. When determining how well a user

(user A) will like an item (item 1), item-based filtering will find items with similar ratings to item 1. The

similarity of ratings is based on a comparison between user A and other users. By similar it is meant

similar in terms of user A’s preferences. For example, if several other users have rated an item with a

similar score to user A’s rating of said item, they are considered similar. Then, by comparing what

other users have rated item 1, with items that both user A and the other users have rated, one could

predict how well user A will like item 1. User-based filtering compares what other users with a similar

rating profile as the current user have rated the item at hand. The average of those ratings will deter-

mine if the user will like the item (Aggarwal, 2016, p. 9).

Since the comparisons are between user to user or item to item, most collaborative filtering methods

are resilient to adding new items. Meaning, the addition of new items does not impact other ratings

or items directly. Adding more items does not affect the score of previous items. There are, naturally,

some exceptions. For example, item-based filtering cannot provide a user with a recommendation for

an item that no-one has rated. This touches on the cold-start problem (defined in Section 2.1.4). Like-

wise, the user-based approach cannot recommend content to a completely new user, but neither can

item-based.

Item-based RS also differentiate itself from user-based RS in accuracy versus serendipity. Item-based

systems tend to be more accurate than user-based systems (Aggarwal, 2016). This is because the item-

based recommendation bases the prediction on the user’s own ratings, contrary to user-based RS

which primarily bases the recommendation on the similarity of other user’s ratings. This weight on

the user’s own preferences has a negative aspect: it might lead to the recommendations being boring

or obvious. When the only input the system gets is the user’s own preferences, the system will rec-

ommend no new types of content (Aggarwal, 2016). This is because the item-based approach will

recommend similar items, while the user-based approach will recommend items that similar users

also liked.

12

It is the difference between the items (or the users) that determine the recommendation. To find that

recommendation the system must make a series of calculation. For example, computing the rating-

difference between each item to item (Aggarwal, 2016, pp. 41-42). In systems with a large set of items,

this will demand both a lot of processing power and quite a long time. In addition, this process must

run regularly, since a user’s ratings might change with the addition or removal of new users or items.

As a result, running these calculations prior to giving new recommendations is advantageous, or else

the system risks being inaccurate. Aggarwal calls these series of calculations the offline phase. As he

highlights, there is a tendency to make the offline phase more demanding than the online phase9

(Aggarwal, 2016, p. 41). This is helpful, since it leverages the larger available timespan of an offline

phase, in contrast to the online phase. This in turn, diminish the online recommendation task, resulting

in a more efficient recommendation. However, since the offline phase potentially must compute the

difference between every item, it can be very demanding in terms of processing power. In fact, with

the addition of more items and users the offline phase gets increasingly more demanding.

Collaborative filtering is often easy to implement, due to the relative simple math behind them

(Aggarwal, 2016, p. 44; Lemire & Maclachlan, 2005). Most systems that need a recommendation sys-

tem already have a catalogue of items and a set of user profiles. Very little alterations to those existing

systems are necessary. It is only necessary to add a system for rating items, along with an offline phase.

Of course, this will be slightly different from system to system, but it is a smaller change compared to

for example content-based filtering. Since content-based filtering depends on well described items,

adding it to an existing system could potentially lead to a change in every item in the content library.

On the other hand, implementing a collaborative filtering system only adds to an existing system. The

addition of collaborative filtering to an existing system does not need the developers to change the

user-profiles nor the items.

Knowledge-based filtering

Not all systems have the luxury of having a steady stream of user activity. Domains such as finance or

vehicle-purchases do not have particularly active users. Users interact with the system rarely, and they

are very specific on what they want. The typical use is an item that costs a lot, and the user rarely

needs to buy. For example, a house or a car. Since there is little information on the user’s preferences,

predictions can be hard to make. Some of these domains do not have a uniform set of properties for

items, and some items might contain certain properties, while others might not. Housing is a good

example: some houses have an included garage, while other houses do not. There might be multiple

floors in some houses, while other houses only have one. In addition, the recommendation of certain

items might be sensitive to time. For example, it is preferable to recommend a new computer model

instead of an old one, even though the old one might be more in line with user’s specifications. In

these situations, a knowledge-based filtering (KBF) algorithm is the preferred choice. Knowledge-

based systems take the domains specifics into account when constructing a recommendation.

KBF-systems are heavily dependent on the data being structured using relational attributes, rather

than in text (keywords, text-parsing, etc). KBF-systems are highly customized systems, specifically tai-

lored to both their domain and to their specific implementation. It is therefore hard to use them across

different use-cases (Aggarwal, 2016).

9 The online phase is where the actual predictions are made. The offline phase therefore prepares the data for

the online phase to use (Aggarwal, 2016, p. 41).

13

There is a unique challenge with knowledge-based systems: they are often case based. This means

that they do not have access to a user library, or that using the system will create a new “user”. As a

result, the knowledge-based filtering does not learn from previous iterations (Burke, 2007). KBF-sys-

tems are basing their predictions on the “now”, instead of historical data. As a result, there must be a

way for the system to circumvent the learning and arrive at a recommendation (Aggarwal, 2016).

There are two main types of KBF-systems: Constraint-based and Case-based.

Constraint-based systems is, as the name suggests, when the user defines constraints (or require-

ments) to the recommendation. These constraints are typically upper or lower limits on certain item

properties, for example price or number of bedrooms when buying houses. In addition, it is possible

to make constraints between user properties (like age or sex) and item properties (number of bed-

rooms or price). That way, one can make recommendations that reflect the nature of the domain. For

example, people that are looking to buy a house when they are between 30 and 40 years old, might

want more bedrooms (since they might have or want kids), than both older and younger buyers. This

can be summarised into a rule (Aggarwal, 2016, pp. 172-174). Case-based systems is when you use

the result of the previous query as a basis for the next one. The user guides the query by specifying

alterations to different parameters. Aggarwal highlights an example: “Give me more items like X, but

they are different in attribute(s) Y according to guidance Z.” (Aggarwal, 2016). The possible results of

the search are narrowed for each iteration.

Constraint-based systems are the most relevant for the prototype created for this thesis. One of the

known downsides to constraint-based systems is that if you repeat the same steps you would end up

with the same result. The repeat of the same results is normally not the case in recommendation

systems, as the system would register that the user has seen the results. However, in terms of KBF-

systems, it is mostly due to the session-by-session nature, but the domain features implemented in

the constraints is also a factor (Aggarwal, 2016). In a normal use-case the repeated results could be

considered a negative aspect, since you want to have the user see new content. However, in the case

of music, repetition is not necessarily a bad thing. Most songs have repetitious elements, for example

in the chorus.

2.1.2 Hybrid Recommendation Systems

All recommendation techniques have situations where providing a recommendation is impossible or

where the recommendations are too uncertain to be valid (Burke, 2007). The most known of these

situations, is the cold-start issue (Section 2.1.4 defines the cold-start issue). There are several ways to

address this issue. One of the most common ways of guaranteeing valid recommendations is to create

a hybrid recommendation system. As the name suggests, a hybrid system is the combination of several

recommendation algorithms into one system. Hybrid systems are designed to counter the shortcom-

ings of the selected recommendation algorithms with the strengths of the other(s) algorithms. Thus,

a selection of algorithms with different strengths and weaknesses is necessary. Burke highlights one

such combination:

[…] a collaborative system and a knowledge-based system might be combined so that

the knowledge-based component can compensate for the cold-start problem, provid-

ing recommendations to new users whose profiles are too small to give the

collaborative technique any traction, and the collaborative component can work its

statistical magic by finding peer users who share unexpected niches in the preference

space that no knowledge engineer could have predicted. (Burke, 2007)

14

The prototype created for this thesis use the two recommendation system types that Burke mention

in the citation above. However, there are different approaches to the combination of algorithms. Four

of the most common approaches are: Weighted, Mixed, Switching and Cascade (Burke, 2007;

Aggarwal, 2016).

A weighted hybrid system combines the results of two recommendation algorithms, then sorts the

result by the highest scored items. There are several ways to combine the result set from the two

algorithms. The way that the two result sets are combined will affect the end-result. In some settings,

it is preferable to use an intersection of the two sets. The intersection will result in a smaller number

of items, since the intersection only includes the items from both result-sets. The other option is to

merge the two result-sets. Then the result might be a larger set, but in turn more generous with its

recommendations. The algorithm uses the combination of the scores from the two lists to sort the

resulting list (Burke, 2007).

A mixed hybrid system is similar to the weighted hybrid approach, in that it also has two recommen-

dation systems producing lists of recommended items. The lists of recommendations are then

combined (i.e. mixed) into one list of recommendations. The combination of the lists can be based on

different criteria, often dependent on the setting of the recommendation. In some settings, it is pref-

erable to use one of the recommendations engines over other, thus giving that engine’s results a

priority in the merging of the lists (Burke, 2007).

Switching hybrid is a system that chooses the most fitting algorithm based on which recommendation

algorithm will give the best recommendation at the time. It is possible for a switching hybrid system

to have more than two recommendation algorithms, where most of the algorithms work as a fail-safe

or backup from the primary algorithm (Burke, 2007). In other words, in the cases where the primary

recommendation algorithm cannot give a good recommendation, one of the other algorithms will take

over. Using the two algorithm-types from the quote above as an example, we can highlight how a

switching system operates. The primary engine will be the collaborative filtering approach, and this

algorithm will therefore do most of the recommendations. However, in the cases where making a

recommendation is impossible (for example with the addition of a new user), the system switches to

the knowledge-based algorithm.

A cascade hybrid system on the other hand, runs several recommendation algorithms in a sequence.

Each of the algorithms in the sequence refines the results of the previous one. As highlighted by Burke,

in a cascade hybrid system the secondary recommendation algorithm is often used to break ties in the

ratings from the previous algorithm(s) (2007).

2.1.3 Feedback

Feedback is essential to recommendation systems. It the way the user can express if they like or dislike

the recommended content, and it is through feedback that the recommendation systems learn and

improves. Feedback can be express in many ways, but one of the most common ways is a scale of

number, for example the five-star rating scale (Aggarwal, 2016, p. 10). When a recommendation sys-

tem gets the ratings for an item from the user, it will use the rating to predict if the user will like similar

items.

There are two types of feedback: explicit and implicit (Herlocker, et al., 2000; Herlocker, 2000, p. 27;

Aggarwal, 2016, pp. 10-11). A rating given by explicit feedback can for example be that the user rates

an item with a thumbs-up or down. It is explicit because the user is knowingly and intentionally rating

the item. An implicit rating, on the other hand, is when the user is showing preferences in the form of

15

their actions. For example, the user is going to buy some new item, and the store presents her with

two recommendations of relevant items. Both items are recommended based on her preferences. If

the user clicks on one of the items, a system that listens for implicit feedback will store that click and

interpret it as a sign of interest for that item. Explicit ratings are often more accurate than implicit

ratings, since the system needs to infer the user’s preferences from implicit ratings. However, implicit

ratings are easier to collect (Schafer, et al., 2007). All recommendation systems can use both explicit

and implicit ratings.

2.1.4 The Cold-Start Problem

The cold-start problem is a well-known problem in the field of recommendation systems. The problem

occurs in systems where there is a user-base, a library of items and where the users can rate the items.

As the name suggests, it is related to starting a new process, when there are not enough ratings avail-

able to the recommendation algorithm (Bobadilla, et al., 2012). The cold-start problem is most

apparent in collaborative filtering methods, where there is a larger reliance on historical data

(Aggarwal, 2016). There are three main causes to the cold-start problem, all related to the lack of

ratings (Lika, et al., 2014; Bobadilla, et al., 2012).

The first cause is with the addition of a new user to the system. The recommendation engine has no

knowledge of the new user’s preferences. Therefore, the system has no historical data to base the

recommendations on. For example, if a new user joins Netflix, the system has no knowledge of what

movies the user likes and dislikes. As a result, it is impossible for the system to give a personalized

recommendation. Both collaborative filtering and content-based algorithms are particularly bad at

handling the addition of new users, since they both leverage the user’s preferences (Aggarwal, 2016).

The addition of a new item highlights the second cause. When there is a new item added to the con-

tent-library, there is no ratings to connect the item to an existing set of user preferences. Since no

users have rated the item, collaborative filtering algorithms cannot compare the item to other items.

Content-based algorithms however, do not encounter this problem, since they use the item descrip-

tion as a basis for the recommendation (Aggarwal, 2016).

The third cause of the cold-start problem is the combination of both the previous causes. There are

no historical data to base decisions on with both new items and users. Bobadilla, et al. define this as

the new community problem (2012). The new community problem can occur with the first implemen-

tation of a recommendation algorithm in a system. Since no user data exists, neither collaborative or

content-based filtering can make valid recommendations. This cause of the cold-start problem is the

rarest of the three. Two ways to counter this problem is to have the users answer queries about their

preferences, or to wait until there are enough users and ratings (Bobadilla, et al., 2012).

Systems that do not rely on user ratings typically do not encounter the cold-start issue. An example of

such systems are the knowledge-based filtering algorithms. It is possible to use such algorithms in

unison with systems that are weak to the cold-start problem. By combining the strengths of two sys-

tems, one can try to negate the individual systems’ weaknesses. This union of recommendation

algorithms is referred to as hybrid recommendation systems (Lam, et al., 2008). Other systems have

been proposed to counteract the cold-start problem (Feil, et al., 2016; Lika, et al., 2014; Bobadilla, et

al., 2012).

16

2.1.5 Active Learning

The process of mapping a user’s preferences can be demanding, both in terms of time and in re-

sources. This is tied to the cold-start problem. Active learning is a way of quickening the process of

finding the user’s preferences in areas of the item-catalogue that the user has not seen. Aggarwal

(2016, pp. 25, 430) explains that active learning methods attempt to give the recommendation system

better accuracy in their predictions by asking the user to rate specific user-item combinations. By ask-

ing the user to rate specific items, a broader model of the user’s preferences can be made.

“The simplest approach to active learning is to query for items that have been rated

sparsely by the users. This can naturally help in the cold-start setting. However, such

an approach is useful only in the initial stages of the recommender system setup.”

(Aggarwal, 2016, p. 431)

The challenge with active learning arise if a user has no relation to the item that they are asked to

rate. Therefore, a smart selection of item is necessary. In addition, the active learning process gets

more complicated once the initial stages of the recommender system setup, as mentioned by Ag-

garwal in the quote above. The selection of these user-item combinations should be constructed to

map a sufficiently large model of the user’s preferences, while still keeping the selection limited. If the

selecting is too broad, the user might get tired of rating items before getting to the “point”, and there

will be a smaller selection of items for the recommendation system to recommend from (Rubens, et

al., 2011, p. 736).

2.1.6 Long-Tail Effect

The long-tail effect appears when there is a skewed distribution of rated data. The data is skewed

towards a small subset of items. Few of the items get most of the votes and most of the items have

few ratings (Schafer, et al., 2007). The name is derived from the look of a sorted graph containing data

with this kind of distribution. Figure 2 is an example that illustrates the distribution of artist by popu-

larity. The figure is from Òscar Celma’s PHD paper, which is about music recommendation and

discovering items in the long tail. The figure is numbered 4.2 in the paper (Celma, 2008).

17

Figure 2 – Example of the long-tail effect: Artist popularity rank (Celma, 2008, p. 98)

The long tail effect is especially prevalent in recommendation algorithms that use a weighted result.

The most popular items tend to be the most obvious recommendations, and often relevant recom-

mendations for new users. But as Aggarwal highlights, there is value in recommending the less popular

items (Aggarwal, 2016). For long term users, the less rated items become more relevant. For example,

in a bookstore where the user can filter by categories, the most popular books in the Fantasy category

might be Lord of the Rings and Harry Potter. These are good recommendations for people who do not

regularly read fantasy books. However, people familiar with the genre might already have read those

books, thus finding lesser known books, is more relevant for them.

2.1.7 Over-Specialization

When a recommendation system only recommends items with low novelty, the recommendation sys-

tem is regarded as over-specializing. In other words, if the recommended items are too similar to what

the user has already seen, then the algorithm has become too specialized (Aggarwal, 2016).

A way of describing the issue of over-specialization is to categorize the items and users into groups.

Each group of items have items that are somehow related to each other. For example, one group could

consist of items that people who bought a car often also buy. When a user rates an item, the system

creates a connection from the user to that item. The recommendation system can then find items

within each group that are similar to the rated item. In the car example, when the user rates a car, the

system will want to recommend items from the mentioned group (for example car washing products)

to the user. When a recommendation algorithm becomes overspecialized, it only recommends con-

tent from item-groups that the user has seen before. This might seem positive at first, since the user

gets recommendations related to items they have rated. However, the user will also want to see new

items. Since there are no connections to the items within the other groups, it will not recommend

items from the other groups. A user with no experience in a group of the available items will not get

recommendations items from said group. For example, if the user who bought and rated a car only

gets recommendations for car-related products, it might be obstructive when the user is looking for a

18

new dishwasher. Then, the car product recommendations are irrelevant. This is the core of the over-

specialization issue.

There are several possible solutions to the over-specialization problem. Randomization is a common

way of dealing with the issue. By including random elements from groups that the user has not seen,

new content can enter the user’s list of recommendations. Both over-specialization and the long-tail

effect can be encountered in the prototype created for this thesis. Any recommendation system that

base its predictions on the preferences of others (a collaborative filtering system), will potentially en-

counter both of these issues. In the prototype over-specialization is countered by selecting between

the three most recommended items. By selecting a random of the top three items, the prototype will

make sure that the selected is relevant, but still lowering the probability of over-specialization. Addi-

tionally, the prototype features a knowledge-based filtering algorithm that selects tracks (items) based

on their intensity. Different sections of the song will get different levels of intense tracks. The selection

of tracks by intensity is ignorant to the popularity of the tracks, thus making sure that there is a more

even spread of tracks. Both the knowledge-based filtering algorithm and the random selection of the

top three recommended tracks are detailed further in Section 4.

2.2 MUSIC TERMS
Throughout this thesis, we use a handful of terms from music theory. These terms describe how fast

the music is going, what the primary set of notes are, and the structure of a song.

Beats per minute (bpm) is a measurement in music that defines how fast or slow the music is. The

number is based on a steady pulse, divided into a minute. The number of pulses, or beats, that fits

within a minute is the bpm value. For example, a clock is running at 60 bpm because there are 60

seconds, or beats, in a minute. Naturally, 120 bpm is twice as fast as 60 bpm.

When describing or trying to play a song, it is important for musicians to know what collection of notes

the song uses. This collection of notes is called the key. Many songs have one key, but there are ex-

ceptions where the key changes during the song. Longer compositions, such as symphonies or

progressive rock songs often change keys during the song. For example, Bohemian Rhapsody by

Queen10 changes keys through the song.

There are two major categories of music keys: major and minor. These two categories are tied to what

feelings the keys in them produce. Major keys tend to create happy or majestic sounding music, while

minor keys create music that is sad or dark. During this thesis, when referring to key it is generally

meant the core note found in the key. A common phrase to describe the key of a song is “this song is

in E minor”. This tells a musician that all the notes that are found in the E minor scale (series of notes)

will fit with the song.

When notating music, it is common to split parts of the music into small sections. These sections are

called bars. It is easier to read the music when divided up into segments. In sheet music, the separation

between bars is noted as a vertical line. The current time signature of the song determines the length

of a bar. Normally, the length of the bar corresponds to how many quarter-notes fit within the time

10 The Official video of Bohemian Rhapsody by Queen: https://www.youtube.com/watch?v=fJ9rUzIMcZQ.

The Wikipedia page for the song contains detailed information about the composition of the song:

https://en.wikipedia.org/wiki/Bohemian_Rhapsody#Composition_and_analysis

https://www.youtube.com/watch?v=fJ9rUzIMcZQ
https://en.wikipedia.org/wiki/Bohemian_Rhapsody#Composition_and_analysis

19

signature. Most songs are in the time signature of 4 4⁄ , meaning a bar will stop once four quarter notes

have been counted. If a song is in the time signature 3 4⁄ , there will be three quarter notes before a

new bar is drawn.

There are a handful of common terms that are used to describe different sections of a song. They are:

verse, chorus and bridge. There are certainly more terms, however it is these three that are most used.

The verse is often the section where most of the lyrics are sung. This is where most of the progression

of the song is, and therefore it is the section that is used to build up to the chorus and move the song

forward.

The chorus is the main part of the song. This is the section of the song where the main melody is

repeated. The chorus is often independent from the verse and serves as the highlight of the song. The

lyrics in the chorus are often repeated and sometimes contains the title of the song (Appen & Frei-

Hauenschild, 2015).

A bridge is a section of a song that introduce either a new concept of the song, or that introduces a

new variation of existing melodies. The bridge is used as a way of breaking up the rest of the song, in

order to keep the listener interested. The terms interlude and bridge are used interchangeably to de-

scribe the same part of the song.

2.3 CONTENT CREATION
Content creation is a process when an agent or artefact creates new content. For example, a musician

is a content creator. There is a vast selection of content creators in the digital landscape, some auto-

mated, others done by humans. The Deep Dream Generator11 is an example of a partially automated

digital content creator. The Deep Dream Generator is a set of tools that use an artificial intelligence

(AI) to combine images. The visual style of one of the images is imprinted on the other image.

Automated content creation is very common in video games. Content creation in games is often in

unison with the game and therefore often labelled as procedural content creation. For example, a

video game where the game generates the world as the player explores has a procedural world. Mine-

craft12, Spelunky13 and No Man’s Sky14 are examples of games with this kind of world creation. These

three games have procedurally generated worlds or levels. For example, in Minecraft when the player

starts to get near the edge of the generated landscape, the game will begin to generate more terrain.

To create meaningful worlds (content), the generators in computer games follow rules. The complex-

ity of these rules will vary with each game. For example, the universe-generating algorithms behind

No Man’s Sky are a lot more complex than the algorithms that create the levels in Spelunky. The scope

of the world is not the only differentiating factor between the algorithms of these games. While No

Man’s Sky (and Minecraft) are games where the player can move the character in three dimensions,

the player can only move the character in two dimensions in Spelunky. This makes the needed

11 https://deepdreamgenerator.com/
12 https://minecraft.net/
13 http://spelunkyworld.com/
14 https://www.nomanssky.com/

https://deepdreamgenerator.com/
https://minecraft.net/
http://spelunkyworld.com/
https://www.nomanssky.com/

20

computation and generating a lot smaller. It will therefore be easier to highlight and compare the

content creation algorithms from Spelunky.

Derek Yu, the creator behind Spelunky describes the rules he based the level generation on in his book

about the game (Yu, 2016). The first rule is that there should be an entrance at the top of the level,

and an exit at the bottom. Since the theme of the game is exploring old ruins (inspired by Indiana

Jones and similar tropes), this is fitting as the exploration would lead into deeper depths. The second

rule is that there should be a way for the player to get from the entrance to the exit without using any

of the tools in the game, since the player might not have these at the time. The third rule is that the

algorithm should not create any areas where the player can get stuck. They achieve this by making

sure that there is stairs or similar ways of escaping pits. The final rule is that the edges of the level

should be hard to notice. This rule will not get prioritized, since it is primarily aesthetic (Yu, 2016).

Continuing from these rules, the level creation algorithm will put rooms together from different types

of templates. Differentiating the different template types (of themes) are based on what piece in the

level they need to fill. Yu highlights “basic room”, “ladders” and “upper platforms” as some examples

of template types/themes. The game selects randomly from the list of templates. In addition to the

selected pattern from the template, including some additional smaller room-parts enhance the ran-

domness. This makes it seem like there is a larger set of rooms, despite the small number of templates.

The game then adds game-objects, like enemies and traps, to the room.

The game has a series of rules that determine what the needed content is to create a valid game

board. These rules tell the level generator what category of content to use. Then, the level generator

selects randomly from the given categories. The selected content is small pre-generated content, in

the case of the game this is tiles. This randomized rule-based selection of pre-generated pieces, high-

lights one of the common ways of generating content in games.

The prototype created for this thesis uses a similar type of content creation algorithm. We have cre-

ated several small pieces of content (audio tracks), that an algorithm selects. The selection is based

on several criteria or rules. Similar to Spelunky, the prototype features content with different catego-

ries. Where Spelunky had items where the biome was different (ice, jungle, etc), the prototype

features items with different instruments. The other criteria are based on the preferences of the users.

Spelunky does not include this type of criteria for its algorithms.

We have found few research projects that combine content creation and recommendation systems.

Liebman and others present one of the most relevant projects (2017). Their project is a playlist gener-

ator. In other words, a system that generates playlists based on what songs user has previously

listened to. The method of playlist generating highlighted in the paper consists of two main compo-

nents. The task of the first component is to map out the user’s preferences. This is a typical system

found in normal recommendation systems. The second component creates the playlist, basing its se-

lection of songs on the collected preferences. The focus of the paper is on the second component,

since there has been a lot of research done on preference mapping (Liebman, et al., 2017). The re-

search done for the paper continued to build on a prototype from a previous study. The prototype,

named DJ-MC, use techniques from Reinforced Learning to generate playlists. In this paper, the au-

thors improve the performance by using Upper Confidence Bound in Trees (UCT). The project

described in (Liebman, et al., 2017) is similar to the prototype created for this thesis, in that both

contain two primary components. Both systems aim to create a sequence of music that fit together,

which is based on the preferences of the users. However, both the generated content and the imple-

mented decision-agent is different.

21

3 RELATED WORK

3.1 RECOMMENDATION SYSTEMS
Ever since their introduction, recommendation systems have been changing. Alternative algorithms

with better accuracy, relevance and novelty have been suggested. In the paper Toward the next gen-

eration of recommend systems, the authors present an overview of several potential areas of

expansion for recommendation systems (Adomavicius & Tuzhilin, 2005). This is an overview paper and

contains several sections. The last section of the paper is called “extending capabilities of recom-

mender systems”, and highlights seven different areas in which recommendation systems can be

improved. Four of the seven areas are particularly relevant for this thesis. These are: multidimension-

ality of recommendations, multicriteria ratings, nonintrusiveness and flexibility.

Adomavicius and Tuzhilin (2005) first highlight the need for multidimensionality in recommendation

systems. They explain that by including for example the time of year into the recommendation, the

system might yield better predictions. They further argue that the normal two-dimensional

(User × Item) search space might not be sufficient. Others have argued the same. O’Donovan and

Smyth (2005) explore if building computational models of trust can help in improving the users per-

ceived quality (and therefore trust) in the recommendation algorithm. By adding a dimension of trust

to the recommendation system, they intend to increase the quality of the recommendations. The trust

should be measured and changed as the user interacts with the system. McNee, Riedl and Konstan

(2006) also mention the importance of building the users trust toward the recommendation algorithm,

however they do not directly tie it to the dimensionality of the recommendation engine. The trust of

the user is important, since the user must feel that the recommendation engine “knows” them. This

is relevant for the thesis in that the user should feel like the prototype creates a song based on their

preferences. The user should trust the prototype to recognize their preferences. We argue that this is

particularly important since the song creation process is automatic and contains several predictions.

As explained in section describing the empirical evaluation, the user will run through multiple itera-

tions of creating a song. This will build trust in the recommendation engine, since the user will directly

hear how their preferences take effect.

In the multicriteria ratings section of the paper Adomavicius and Tuzhilin (2005) explain that basing

the recommended ratings only on one score, might not reflect the complex nature of most types of

content. By adding several criteria into the recommendation process (where one is the primary criteria

and the others are secondary) recommendations might prove more insight for the user. The prototype

created for this thesis is a suitable area for this kind of ratings, but an implementation of multicriteria

ratings is not in the prototype.

Nonintrusiveness is also concept we consider relevant for this thesis. The same paper (Toward the

next generation of recommend systems) ties nonintrusiveness into recommendation systems by pitch-

ing the idea of limiting the number of requests for explicit feedback by the user (Adomavicius &

Tuzhilin, 2005). By requiring the user to rate items, the user is interrupted from the reason they visit

the page. As a result, some recommendation systems leverage implicit feedback, and therefore a more

non-intrusive approach. A recommendation system that is removed from its “normal” setting might

need a different type of feedback. For example, in the case of the prototype, a new user must rate at

least one iteration of clips before the recommendations are based on the collaborative filtering en-

gine.

22

Toward the next generation of recommend systems (Adomavicius & Tuzhilin, 2005) briefly explains

Flexibility, in terms of recommendation systems. The authors mention the creation of an SQL-like lan-

guage (RQL). The goals of RQL is to add flexibility to recommendation engines. This is particularly

interesting for the thesis. Although the prototype does not use RQL, it proves that flexibility and re-

use of recommendation systems is an area that others have considered.

3.2 MUSIC GENERATING
Music generation has been an appealing project for musicians and mathematicians for centuries. In

fact, ancient philosophers have pointed out the similarities between music and math (Purwins, 2005,

pp. 22-24). Since sound is waves, it is possible to use math to describe and change sounds. However,

music generation is not only limited to creating and manipulating individual sound waves, but also the

entire art of assembling sounds into songs. As a result, we categorize music generation into two

groups. The main difference between these two groups is a matter of scope. The first group is con-

cerned with the composition (or the structure) of the music, instead of on the notes, melodies and

chords. Composition-generators pay close attention to the progression and the structure of the song.

The second group is more concerned with the notes themselves, and therefore pay little attention to

the structure of the song. The aim of the second type of song generator is to maximise the quality of

the generated chain of notes, i.e. the melody.

The prototype made in the context of this thesis belongs to the first group, since it does not concern

itself with generating notes. In fact, it is more closely related to dice music machine. Dice music gen-

erators were an invention that arose in the eighteenth century (Hedges, 1978). The generators consist

of a series of tables with sheet music in the cells. The tables have numbered rows and columns, cre-

ating a basic coordinates system. An artist writes the content of the table in advance. For each column,

the user rolls the dice. When the user rolls some dice (introducing the randomness), they pick the

corresponding row to the number they rolled. They repeated this for each column, until they reach

the end of the table. Naturally there is some variation in the generating process between the different

versions of the game. However, the core principles of dice and pre-created content stay the same.

Using the dice music generator system, there is potentially quite a large set of possible variations of

generated music. In the first recorded game, by Kirnberger, Hedges claims that there were 118 possible

combinations (Hedges, 1978). Meaning there where 11 rows, since two six-sided dice will result in a

range of 2-12 (11 numbers), and there was a total of 8 steps (dice rolls).

These dice machines have a major problem. If the dice rolls are added together the results will be

weighted towards a specific number. This is always the case when you roll more than one dice and the

results are added together. For example, the most common result of two six-sided dice (2d6) is 7.

There are more results on the two dice that produce 7 than any other combination. For 3d6 it is 10.5,

which results in either 10 or 11. The 2d6 annotation is a common way of describing multiple dice,

often used in table-top roleplaying games. The formula is xdy, where x and y are numbers. The x an-

notates how many dice are used, and the y annotates what type of die to use (how many sides the

dice has). In many table-top roleplaying games polyhedral are common. They typical ones are dice

with 4, 6, 8, 10, 12 or 20 sides. See Figure 3 for an example of the dice. Each of the different dice types

has a different most likely number. Using different types of dice in combination with each other can

create a large variation of scales.

23

Due to the addition of two dice results, some results on the tables will occur more often than others.

In the example of Kirnberger, the most likely result in his generator is the seventh row of each column,

since they used two six-sided dice. However, if the game only rolls one die, or dice results are not

added together, the problem disappears since the results are not dependent on each other.

Figure 3 – Polyhedral dice. From left to right, number of sides in parenthesis: icosahedron (20), dodecahedron (12), pentag-

onal trapezohedron (10), octahedron (8), cube (6) and tetrahedron (4)

The dice machine approach to generating music is close to the approach used in the prototype created

for this thesis. A musician creates a series of premade segments of music in advance. The pieces are

designed to fit together no matter what order they are arranged in. In the dice music-machines, the

segments are presented as sheet music, while in this prototype it is sound files. The difference lies in

the selection of the sound clips. The music machines of old use dice, while this prototype test whether

recommendation systems can be used for such a purpose. The main difference between these two

approaches is in the noting of user preference; the randomness of the dice is replaced by user prefer-

ences. The recommendation system approach will consider the preference of similar users, while the

dice do not. We pose that consistency is key. A song generated only by randomness will naturally have

a weaker consistency than something made from the preferences of users.

There have been other approaches to non-conventional music creation. A collaboration between a

series of artists and a collection Artificial Intelligence (AI) systems, has yielded an album aptly named

“Hello World” (Casey, 2018). The artists used the Flow Machines15 project (FMp), which is a library of

tools. The tools in the FMp are based on research combining creativity and machine learning, special-

ized in literature and music generating. The focus of the project is on imitating the style of the creators.

The authors define style as “an individual’s uniqueness; style makes an artist's work recognised and

recognisable” (Ghedini, et al., 2015). In the case of the Hello World album, the collaborating artists

gave the AI a series of songs which they want it to draw inspiration from. Then the system mimics the

style and content of the songs. This is achieved through a neural network, which is created to find

patterns in songs. There are different tools in the systems library, created for different tasks of music

creation. For example, one of the tools is called FlowComposer, and it is designed to be an assistant

tool for composing songs.

15 http://www.flow-machines.com/

http://www.flow-machines.com/

24

The development team behind FMp has published a series of papers in conjunction with the project.

We highlight one of the papers, which we find relevant for this thesis16. Assisted Lead Sheet Composi-

tion using FlowComposer (Papadopoulos, et al., 2016) highlights a tool (FlowComposer) within the

FMp toolset. This tool creates lead sheets (musical notation) that imitate a given musical style. The

sheets are created using constraint-based Markov sequences. The constraints will ensure that the

generated sheets imitate the style of the given music. The lead sheets consist of a melody section and

chords that the melody fit within. Two Markov sequences are used to generate the sheets, one for the

melody and one for the chords.

As reflected in the Assisted Lead Sheet Composition using FlowComposer (Papadopoulos, et al., 2016)

paper, the project covers similar topics as this thesis. Both cover music generating, and to a certain

extend allowing the user to influence the result. The main differences in generating technique, is that

the FMp leverage machine learning techniques, whereas this thesis uses recommendation systems.

FMp is designed to facilitate the composer to alter the music during the generating of the music. The

project aims to create tools for artists and composers to use while creating music. FMp, and especially

FlowComposer, are created to be an interactive composition tool (Papadopoulos, et al., 2016). The

prototype for this thesis is more static, in that it generates a song and asks the user to rate it once the

song has been generated. Both FMp and this thesis feature automatic content creation. Given that

FlowComposer mimics the given reference songs and that the artist/user can change the suggested

music, it is evident that the generated songs from FMp are intended to be used as inspiration or as a

foundation for a new song. We therefore argue that the FMp project does not focus on generating

personalized content but facilitate the personalization with the alteration tools. This is a key difference

between FMp and the prototype for this thesis.

3.3 MUSIC AND RECOMMENDATION SYSTEMS
Music and recommendation systems is a natural combination. As music libraries get bigger and bigger,

the need for better recommendation systems also increase. Some of the recent studies into the com-

bination of music and recommendation systems have focused on leveraging personality traits of users

to enhance the recommendations (Ferwerda, et al., 2015; Ferwerda, et al., 2017). In Personality Traits

Predict Music Taxonomy Preferences Ferwerda and others (2015) find correlations between the per-

sonality traits of the user and what type of taxonomy the user is most likely to search for music in. In

this case, taxonomy refers to categories of music, for example music categorized by their mood (sad

music, happy music, etc.). Another example, which is a more traditional taxonomy, is to categorize

music by its genre. They argue that by understanding the personality traits of the user, a more directed

recommendation, within a specific taxonomy, can be made. In Personality Traits and Music Genres:

What Do People Prefer to Listen to, Ferwerda and others (2017) compares different personality traits

and listening habits for a series of Last.fm17 users. Some of the personality traits they highlight were

Openness to Experience, Conscientiousness and Agreeableness. They found several correlations to pre-

vious work, but a direct comparison was difficult to make due to different clustering of results and

data. As a conclusion they argue that it would be beneficial to include the user’s music genre prefer-

ences in a personalized system (Ferwerda, et al., 2017).

16 For a full list of papers visit: http://www.csl.sony.fr/publications.php?username=&keyword=flow+ma-

chines&pub_type=&year=
17 https://www.last.fm/

http://www.csl.sony.fr/publications.php?username=&keyword=flow+machines&pub_type=&year
http://www.csl.sony.fr/publications.php?username=&keyword=flow+machines&pub_type=&year
https://www.last.fm/

25

There have also been studies into different aspects of popularity and music. More specifically, the

“long-tail of music”. The long-tail of music refers to the uneven distribution of popularity of artists or

how few songs get most of the attention from the users. Celma (2008) aimed to further enhance music

recommendations by leveraging the rarely recommended items (found in the long-tail). Celma ex-

plains that by shifting the focus from the recommendations systems predictive accuracy to the users

perceived quality, better recommendations can be made. The predictive accuracy here refers to the

best recommended item, and the users perceived quality is how well the user will like the recom-

mended item. Celma argued that the focus of music recommendations should be on the novelty and

relevance, thus circumventing the most popular items to get better recommendations (Celma, 2008).

Another approach to studying the correlation between popularity of music and music recommenda-

tions, is presented by Schedl and Bauer (2017). Their study compares different levels of demographics

of music (culture, country, etc), and if recommendations based on these categorizations will improve

the recommendation accuracy. Additionally, they try to leverage the most popular items (they define

it as mainstreaminess) to enhance the recommendations. Schedl and Bauer find that their best result

is achieved by both using a demographic filtering, based on the user’s country, in addition to a filtering

based on mainstreaminess (Schedl & Bauer, 2017).

Although these studies combine music and recommendation systems, the way they use the recom-

mendation systems are quite different from the way proposed in this study. The presented studies

suggest ways of improving the accuracy of recommendation systems by including new criteria, while

the prototype created for this thesis use recommendation systems as a means of creating new con-

tent.

26

4 MUSIC GENERATION WITH RECOMMENDATION SYSTEMS

This section of the thesis elaborates on how we aim to answer the research questions: Can a music-

generator create personalized music, and can new content be created by a recommendation system?

In order to test these two questions, a prototype was created. The main purpose of the prototype is

to generate content using recommendation algorithms as the primary decision-agent. In this case, the

decision-agent is the process that selects what items to include in the generated content. By basing

the selection of items on the predictions and recommendations from recommender systems, we at-

tempt to make the generated content more personalized.

The motivation for the thesis is to facilitate the automation of creation of personalized content. Our

goal is to create a system that read the user’s preferences and then use them to create new content

that is meaningful to the user. As highlighted in Section 2.3, one of the common ways of creating new

content is to have a library of pre-created content, and then merge a selection of the content together.

We therefore sought a medium in which this was possible; music.

Choosing music as the preferred medium to create the content in, is based on two main factors. The

first factor is that music is a flexible medium. Flexible in that it can be split up into small chunks and

put together in different patterns. Therefore, it is possible to create a library of music segments that

can be arranged into songs by a smart selection. The second factor is that music is a medium most

people know and can relate deeply to. Choosing it for content creation is therefore a safe choice.

People will be able to recognize music patterns and will have opinions on what they like and do not

like. In domains that the users are not familiar with, some training or explanation as to what to look

for is needed. This is not the case with music. Therefore, the target audience of the prototype was

anybody that is interested in creating music. This does not mean they have to be musicians.

The following sections further elaborate the song creating process used in the prototype. In section

4.2 the process of generating songs is explained (in addition to the feedback process), while section

4.3 explains the implemented feedback process. Section 4.4 consist of a more detailed description of

the recommendation engine. This includes how and why the engine switches between the two rec-

ommendation algorithms, in addition to a detailed description of the implemented algorithms

themselves.

4.1 PROTOTYPE DESCRIPTION
The primary functionality of the prototype, named RecOrder, is to generate songs. RecOrder is there-

fore a song creation application, that combine smaller clips of music into a song. There are three major

components in RecOrder: the song generator, the recommendation engine and the feedback collector.

Figure 4 illustrates these three components. The song generator initiates the song creation process,

and it is this component that will output the finished song. The song generating is done through se-

quential iterations. Each iteration creates an audio track that is a subsection of the finished song. This

subsection consists of three of the mentioned audio clips: clips with guitar, bass and drums respec-

tively. Once the last iteration has been completed, these subsections are combined into the finished

song. This is followed by a feedback process, where the user rates different parts of the generated

song.

27

Figure 4 – Simple overview of RecOrder’s structure

The recommendation engine selects which audio clips are to be used in each of the subsections of the

song. As illustrated in Figure 4, there are two recommendation algorithms implemented in RecOrder:

an item-based collaborative filtering algorithm and a knowledge-based filtering algorithm. RecOrder

switches between these two algorithms once one of them fails to provide a recommendation. This

makes RecOrder a hybrid switching recommendation system. The item-based collaborative filtering

algorithm is the primary algorithm, and knowledge-based is the secondary. RecOrder defaults to the

collaborative filtering algorithm, but if a recommendation cannot be made using that algorithm, the

engine will switch to the knowledge-based filtering algorithm.

Figure 5 displays a detailed overview of the class-structure of RecOrder. In addition to the noted clas-

ses, RecOrder includes some minor classes. The tasks of these minor classes are mostly of the utility

nature, such as cleaning output from queries, etc. The structure diagram below, does not include these

classes, for the sake of visibility.

28

Figure 5 – More advanced overview of the structure of RecOrder.

29

RecOrder has two primary inputs and one output. Since the purpose of RecOrder is to generate songs,

it then follows that the output will be the created song. The songs will vary in length. The length is

based on how many sections it includes, and how long each of the included audio tracks are. The songs

always contain three instruments: guitar, bass and drums.

RecOrder’s primary input is a series of audio clips. These clips are short in length, typically the length

of 4 or 8 bars18 of music. In terms of seconds this usually translates into a couple of seconds. However,

the exact amount of time is dependant of the bpm (the tempo). Each audio clip contains the recordings

of a single instrument. The clips are recorded in advance and are used as components in the generated

songs. There is a total of 37 audio tracks that the prototype can select from. 19 of the tracks are guitar

tracks, 9 is bass tracks and the rest (9) are drum tracks. Since the guitar is a lead instrument, there is

a larger amount of guitar tracks than the other two instruments. Most of the listeners attention will

go to the guitar, thus a greater amount of variation is needed.

The second input of RecOrder is the user input. This input is used to guide the prototype in creating a

song. There are three main properties the user needs to include: the bpm, the key and the intended

length of the song. The first two describe actual musical properties, while the third is an abstraction.

Bpm and key could be picked at random by the system, but they are included in order to facilitate a

higher degree of user choice. However, in the prototype we only include audio tracks with the bpm of

105 and in the key of D. This was done to reduce the needed time to create audio tracks during the

development phase. The input of the song length is limited to three choices: short, medium and long.

Although these are abstractions they are intuitive enough to understand. In addition to the bpm, key

and the length of the song, the system is also dependant on a profile ID. This dependency is in place

mainly to differentiate among different user’s ratings. Person A’s ratings should not mix with Person

B’s. As a result, RecOrder has a basic user profile system. RecOrder does not store any information

that can identify the user; it only stores the user’s preferences and the profile ID. Implementing a

larger form of profile structure is outside of the scope of this thesis’ timeframe.

The main way for a user to interact with RecOrder is through a terminal window. A user interface was

not prioritized during development. The priority was solely on the song creation process, thus keeping

the interaction to a terminal window was the simplest option. However, a small webpage was created

to start the song generation process, but none of the responses from RecOrder are displayed on that

webpage. This was done to minimize the chance of accidentally starting the song creation process,

and to make it easier for test subjects to start the process. The alternative to not having this webpage

was to type a command in the terminal window, which unnecessarily complicates the process of cre-

ating a new song.

4.2 THE SONG GENERATING PROCESS
The first step in generating a song is selecting an overall structure for the song. There are several

available song structures, ranging from simple arrangements to more complex ones. The different

song structures are split into three categories, which match with the three options the user had for

song length (“short”, “medium” and “long”). Naturally, the categories describe the intended length of

the song, and then in turn how many sections the structure of the song should contain. The shorter

song structures have few sections, while the complex ones have many sections. The song structures

18 See Section 2.2 for a definition of bar

30

are stored in a database table as strings, and are represented as a series of letters, where each letter

designates a different section of a song. The series of letters is a way of describing song structures.

Examples of its use in literature are (Covach, 2005) and (Appen & Frei-Hauenschild, 2015). For exam-

ple, many pop songs follow this structure: ABABCB. In that song structure A, B and C are different

sections of the song. Most commonly A in that case is a verse, B a chorus and C a bridge.

When generating songs, it is preferable to generate smaller sections of the song at the time, and then

combine these sections later. By dividing up the generated content, it is possible to reuse parts of the

generated content (for example is there is multiple verses in a song). Additionally, generating a smaller

piece of music is less demanding in terms of processing power, and it is easier to ensure a greater level

of quality of content for the smaller piece. There are two options for dividing up the song. The first

option is to divide the song into sections, where each section is a complete part of the song. Each

section should then be listenable by itself. The other option is to generate the song each instrument

track at the time, and then join the tracks together. For example, the guitar track can be generated

first, then the bass track and finally the drums. The three tracks are then merged together. However,

this approach to song generating can result in songs where the instrument tracks drift out of synch

with each other. Because each instrument-track will consist of several smaller audio tracks, and since

the smaller audio tracks might differ in length, the time when transitioning between the smaller tracks

might not line up with the other instrument tracks. This difference in length between the smaller

tracks causes the shortest track to continue into the next short track of the instrument track, before

the short tracks of the other instrument tracks do. Figure 6 illustrates this. As seen, the first verse-

guitar track is twice as long as the verse tracks for the other instruments. Therefore, the guitar-verse

track continues into the chorus, which is the next section of the song. To avoid the described problem,

the prototype generates songs in steps, where each step creates a section of the finished song, as

described in the first option.

Figure 6 – Illustration of clips drifting out of sync

The song generating process therefore create smaller sections of the finished song and then combine

these sections into the full piece. These sections contain the combined result of several audio tracks,

each track containing the recordings of different instruments. The term slice is used to describe these

sections. Slice is chosen because each generated section is a slice of the finished song. As a result, a

slice is created for each unique letter from the selected structure of the song. A slice therefore

31

describe which instruments are playing in the given part of the song, and what these instruments are

playing. To create further variation, each slice in a song has its own structure picked at random. Figure

7 illustrates the structure of a series of slices. The slice includes a row for each instrument, and each

cell contains a binary range (i.e.: 1 or 0). The binary range defines whether an instrument is playing in

that slice or not: 1 for playing, 0 for not playing. As shown in Figure 7, the drums and the bass are

playing in every section of the song except section C. The selection of these slice-structures is weighted

towards having all instruments playing at the same time.

Song structure A B A B C B

Has drums 1 1 1 1 0 1

Has guitar 0 1 0 1 1 1

Has bass 1 1 1 1 0 1
Figure 7 – Active instruments in multiple slices

Once RecOrder has chosen the structure for the slice at hand, it starts the process of creating the slice.

For each instrument that is playing in the slice (based on the slice-structure), the active recommenda-

tion system attempts to give a recommendation. The recommendation engine first tries to get a

recommendation from the collaborative-filtering engine. Failing that it, the active recommendation

engine is switched to a knowledge-based recommendation engine. There are several reasons that it

might not be able to provide a recommendation using the collaborative-filtering algorithm. The two

most common ones are that the current user has seen every item that the other users have also rated,

or that the user has not rated enough items (the cold-start problem). The recommendation engine is

further defined in Section 4.4.

To create a song RecOrder combines audio clips recommended by the recommendation algorithm

into a song. This process contains two axes. The first axis is the progression throughout the song and

is shown on a horizontal line, thus referred to as the horizontal axis. This is a common way of displaying

song progression and is used by for example Spotify. A bar fills up as the song progresses, following

the horizontal line from left to right. This type of display is also used for general progression bars, for

example when installing new software. Figure 8 shows how Spotify displays this horizontal line, and

thus the song progression. The second axis is an expansion of the concept of the song progression. At

any point in the song, typically there are multiple instruments playing. The instruments are layered on

top of each other to create a blend of audio. For example, a very common blend of instruments in rock

are two guitars, a bass and drums. The vertical axis is the view of these instruments and what they are

playing, at any given time during the song. Slices describe this part of the axis. For example, looking

only at the verse of a song, what instruments are playing as well as what they are playing, is the vertical

axis.

Figure 8 – Screenshot of how Spotify displays song progression

In addition to the two axes, the following sections use two terms to describe the process of combining

the audio clips within the axes. These terms are merging and appending. Figure 9 illustrates the two

axes and the difference between merging and appending. In short merging describes the vertical

32

addition of sound clips, while appending describes the horizontal action. Chain is also used to describe

the horizontal sequences of appended audio tracks.

Figure 9 – Vertical merging and horizontal appending explained

The combining of audio tracks presents several challenges, most of which are related to making sure

the tracks start and stop at the same time. In other words, it is important to ensure consistency in the

horizontal axis. However, this could be challenging, since the clips might vary in length. When design-

ing the merging process this challenge was taken into careful consideration. One of the precautions

that will ensure that the tracks are merged in a sensible manner, is that it is easier to merge two tracks

at a time. Once the two tracks have been merged the other tracks are added to the mix. In other

words, when combining clips in the vertical layer, it is less complicated to merge pairs in contrast to

merging an entire slice at a time. By gradually merging more tracks into the first track in the pair, the

merging of a slice can be done iteratively. Using Figure 9 as an example to illustrate this, DrumTrack1

and GuitarTrack1 would merge first. Then, BassTrack1 would merge with the result of the merging of

the drum and guitar track. If the prototype were to merge the entire slice at once, it is difficult to

handle the difference in track lengths.

RecOrder takes some precautions to ensure that the lengths of the tracks within a slice align. For ex-

ample, the shortest track can be looped in order to fit within the time of the longer track. This is useful

for cases where the length of one of the tracks is twice the length of the other track. If the difference

in length of tracks is not checked for, the longer track would be cut off while the shorter track is still

playing. This is not a desired effect, and to prevent this from happening the lengths of the two tracks

are measured. If the length differs by a factor of two, RecOrder loops the shortest of the two tracks

until it fits within the length of the longer track. In order words, if the longest track is 8 bars long and

the shorter one is 4 bars, the shorter track plays twice and the longer plays once. This will ensure that

the tracks are either of equal length or last for the same amount of time.

The song creation process is as follows: first select an appropriate song structure based on the user

input (length of the song). Then, for each unique section of the song structure, find a structure for that

33

section. Each of the section structures determine what instruments are playing. These sections are

called slices. For all the instruments that are playing in the slice, get a recommended track from the

recommendation system. Once every active instrument track in the slice has a recommended track,

the recommended tracks are merged to a single audio file. When the merging is done, the system has

finished the slice. The created slice is then appended to the previous slice, unless is the first one gen-

erated. The order that the slices are appended to each other, are determined by the song structure

that the system chose in the beginning of the generating process. For example, given the song struc-

ture ABABCAB, the system generates three slices (A, B and C). The appending order then follows the

song structure, starting with A followed by B. As a result, a slice can be inserted in multiple spots in

the song. Figure 10 illustrates how slices are created and how they relate to each other. The slices are

appended after each other, until each slice has been inserted at their appropriate spot(s). The end of

this step finishes the song.

Figure 10 – The creation and appending of slices

4.3 THE FEEDBACK PROCESS
Once the song has been generated, the feedback process begins. As mentioned in Preliminaries, rec-

ommendation systems are heavily dependent on feedback from the users. It is through feedback that

the recommendation system finds out what the user likes, and as a result if the recommendation were

accurate. Without sufficient feedback, there is no way for the recommendation algorithm to adjust its

recommendations. Then the recommendation algorithms will recommend the same items multiple

times. Therefore, the next steps of the song generating process is to get feedback from the user, on

the generated song. In RecOrder, the feedback is collected through explicit feedback at the end of the

song creation process. The user rates sections of the generated song, on a scale of 1 to 5, where 1 is

the lowest score. By limiting the scale to five numbers the user has a smaller selection of score to

34

choose from, thus making the process easier. In addition, by having an odd number of choices, the

user can choose a neutral option (3) or have a more nuanced opinion (2 or 4). Continuing with the two

axes mentioned previously, the user will be asked to give ratings to clips both in the vertical axis and

in the horizontal axis. The rating in the vertical axis will focus on the relation between the audio tracks

within a slice, and the horizontal axis will focus on the same instrument track across the song. A ran-

dom selection determines which parts of the song that is going to be evaluated. There are two stages

in the rating process. First, the user rates the relation of items on the horizontal axis. The horizontal

axis focusses on the relation between clips of the same instrument, from all the slices. The relation is

highlighted as a in Figure 11. The user rates the quality of each individual instrument track in the song.

In the second stage, the user is asked to rate how well the items within up to three different slices fit

together. This are items on the vertical axis, highlighted by the arrows annotated by b in the same

figure. By giving ratings on both axis, a larger portion of the song receives feedback. This also makes

sure that the given feedback is more accurate, since the user rates a smaller selection, compared to

rating the entire song with one score. By having both vertical and horizontal feedback the feedback

process allows for a greater coverage of the user’s preferences. A separate audio track is created for

each of the relations the user rates. This makes the rating process easier, since the user can listen to

the specific part that they are rating.

Figure 11 – Feedback evaluation axis

In terms of the feedback process, the RecOrder differentiates itself from regular use-cases of recom-

mendation systems in two main ways. Firstly, RecOrder selects what content the user shall give

feedback to. This is opposed to a regular recommendation system where the user either actively rates

an item (explicit feedback) or gives ratings through their interactions with the system (implicit feed-

back). In RecOrder, the user gives feedback only at the end of the song creation process, as opposed

to during the process. This makes the prototype solely reliant on the explicit feedback given by the

user. Traditional recommendation systems often use a mix of explicit and implicit feedback to create

a broader aspect of what a user likes and do not like. For example, if two items are recommended to

a user and the user only clicks on the first item, one can assume that the user prefers the first item

over the second. RecOrder loses this nuance, since the implemented song creation system selects the

recommendations.

35

During development of the prototype, a different approach to the feedback system were imple-

mented. Earlier prototype iterations had a more traditional version of a feedback system. They

featured an active user choice between three recommended items. Figure 12 shows the input of this

choice. The numbers within the brackets corresponds to the ID of a track. The tracks in the brackets

are the top three recommended tracks, given by the recommendation algorithm. This results in the

user taking an active part in the selecting of what tracks to include in the song. Additionally, the system

could then interpret that the user thought the two other songs where be less fitting. In this version of

RecOrder, this was the primary input of feedback. The selection between the three tracks had to be

made for each of the clips that was going to be in the song. Naturally, this approach to feedback be-

came tiresome when repeat multiple times and therefore this approach was abandoned.

Figure 12 – User selection process in the early iterations of the prototype

There is a challenge between getting the most accurate feedback and exhausting the user with

choices, as highlighted by the example in the previous paragraph. These two aspects (accuracy versus

exhausting the user) can be posed as two opposites, both being potentially problematic. Their differ-

ence is in how many recommended items the user should rate. The first aspect is that the user rates

every recommendation. This would become tiresome and boring, but it would be the most accurate

way of gathering feedback. The other aspect is a fully automatic feedback system, where the user has

no input in the feedback process. The technical details of such a system are not defined in this thesis,

but its primary advantages and disadvantages are as follows: The main advantage of a fully automatic

feedback system is that it would help reveal whether recommendation systems are truly fitting in

content creation. If the system can learn from itself, it would (at least partially) prove that recommen-

dation systems are in fact versatile enough to be applied for other uses. However, an automatic

feedback system could easily fall into a self-reinforcing loop. Unwanted patterns could easily appear

and detecting them in advance would be difficult. This is the primary disadvantage of a system that

iterates over and learns from its own results. Due to the complex nature of a fully automatic feedback

system, and the highlighted disadvantages, the prototype does not include an automated evaluation

process. Therefore, the prototype has an automatic selection of tracks with a manual feedback sys-

tem: The system randomly selects one of the top three recommended items. Then, after the song is

created, the user rates multiple sections of the song. The randomness of the selection lowers the

probability of selecting the same items multiple times.

The second way that the prototype differentiates itself from a regular recommendation system imple-

mentation, is that the prototype asks the user to rate the connection between two items (audio clips).

36

In a regular recommendation system, the rating defines how much the user liked the recommended

item itself. Here the rating describes how well the user liked the relation between two items. This

relation is referred to as the clip-clip relation, since the items at hand are audio clips. There are two

main reasons for placing the ratings on the clip-clip relation rather than the items themselves. The

first reason is to make the feedback process more focused on what part of the song is important: how

recommended parts work together. When the user rates the relation between items, the focus of the

rating is not on the quality of the items, but rather how the items work together. The sum of the parts

is prioritized over the parts themselves. The purpose of the feedback section was to measure how well

the recommendations fit together in a larger picture. The items themselves are not that relevant, but

how they work together is the focus. The second reason for abstracting where the ratings are placed,

is to further remove the recommendation algorithm from the items. By abstracting the layer between

the items and the algorithm, the prototype is a larger step towards a more generalized system. Given

that RecOrder generates songs that the users like, a generalized system will in turn prove the viability

of recommendation systems being used in personalized content creation. A crucial step in the feed-

back process is therefore to find all the relevant connections between items in the generated song. In

other words, the system must find all the clip-clip relations. This is done by registering every tracks

relation to its neighbouring tracks, both in the vertical and horizontal direction. For each track that is

in the song, each of the tracks that the track is merged with and appended to, is registered. For exam-

ple, in Figure 10 the connection between DrumTrack1 and GuitarTrack1 is stored as a relation. In

addition, the connection between DrumTrack1 and DrumTrack2 is also stored. When the user then

rates, the rating is placed on that relation, instead of the items. Then, the rating is stored in the data-

base, along with am identifier for the clip-clip relation the rating is placed on. The ratings are later

used by the recommendation system to recommend similar tracks.

Since RecOrder is explicitly asking the user to rate specific sections of the song, it can be considered

as an active learning system. The selection of which items to rate is slightly different from a typical

active learning system. In RecOrder the selection of items is based on a clip-clip relation that the user

has not rated before, while in a typical active learning system the selection is based on areas of the

item catalogue where there is a greater amount of uncertainty of the user’s preferences.

4.4 THE RECOMMENDATION SYSTEM
The song generating process is designed to be independent of the recommendation system part of

the system. In other words, the song creation process is designed to work with any system that selects

tracks, as long as the decision system returns song IDs. To achieve this independence, the recommen-

dation engine returns the unique identifying signature of the recommended audio track. This

signature is a database index, which the prototype (eventually) uses to build the songs actual audio-

file.

To guide the recommendation engine in giving a relevant recommendation, certain parameters are

included in the query for a recommendation. The parameters describe the wanted track’s bpm, key

and instrument. The recommendation engine will then limit the audio tracks it considers to only those

who match all three of the parameters. This is a way of pre-filtering the available items. The reduction

of the items from which the recommendation engine bases its selection, ensures that the recommen-

dation is relevant. This hearkens back to the goals set by Aggarwal, McNee and others to maximise

the quality of recommendations (2016, pp. 3-4; 2006). They highlighted that relevant recommenda-

tions were important, as mentioned in Section 2.1. The pre-filtering ensures this. If the pre-filtering

was not in place, the system could recommend a track with a different tempo or with the wrong

37

instrument playing, which can result in unwanted outcomes and confusion. For example, if the gener-

ated song has two drum tracks where one is replacing the guitar, it quickly becomes tiresome and

noisy for the listener. In terms of the other three goals that Aggarwal, McNee and others (2016, pp.

3-4; 2006) highlighted, both novelty and increasing diversity is less important in a content creation

setting. Reuse and categorization of items can certainly help in creating better content. This is espe-

cially true in music creation. For example, a song often has repeating melodies. However, the reuse of

items should not be overdone, meaning that the serendipity must still be high. Depending on the cat-

egorization, recommending items within a category is beneficial, for example if the recommended

tracks are sorted by instrument. On the other hand, recommending tracks from different genres can

create pleasant surprises and interesting combinations of music. Thus, the increasing diversity of rec-

ommendations is still relevant as a goal, although less important.

Several factors had to be considered in terms of what recommendation system RecOrder should im-

plement. From a study of recommendation systems done prior to the development, it was apparent

that a hybrid system was the most preferred approach. Due to the limited development time, there

was not time to develop an advanced user-profile system, complete with log-in functionality. There-

fore, RecOrder is aimed at a session to session basis, where a new user profile is created with each

session. By session it is meant each time a new user interacts with RecOrder19. Since a new user has

to be created frequently, RecOrder will often have little information of the user’s preferences. This in

turn means that the system has no ground truth20 to base its predictions on. Thus, the recommenda-

tion system will have no data on the preference of the user when a new user is created, and a good

way of dealing with the cold-start problem was therefore necessary. Additionally, the implemented

recommendation system needs to be able to give recommendations when there are few items. This

is necessary, since the prototype has a small content library. Creating an exhaustive library is time

consuming and distracts from the goal of the thesis.

There are three primary requirements that determine what recommendation algorithm is fitting for

the prototype. The requirements are derived from the limited timeframe for development of Re-

cOrder. The first requirement is that the algorithm cannot depend on a large number of users. Creating

a large user-base is well out of the scope for a master thesis. The same argument can be held towards

items, which is the second requirement: the algorithm should not depend on a large item library.

However, it is easier to generate items than users, so the emphasis on the number of items was slightly

lower than the user centred one. The third requirement is that the algorithm should not depend on

item-information, but on the ratings given on the items. We include this requirement to prioritize the

personalization aspect of the research questions21.

Three categories of recommendation systems were considered for the prototype; item-based filtering,

user-based filtering and content-based filtering. Item- and user-based are both types of collaborative

filtering. Item-based filtering was chosen as the most relevant algorithm type. The reasons and com-

parisons with the other algorithm-types are given below.

Since the prototype recommends audio clips based on what is needed in the song, content-based

filtering seems fitting at first. However, not when compared to the goal of the thesis. As described in

19 This also includes any recurring users, as long as there is a different user interacting with RecOrder in between.
20 In this case, ground truth is a user-item combination that we know the rating for. This is used as a basis for

comparison with other recommendations (Aggarwal, 2016).
21 Although content-based filtering is certainly capable of providing personalized recommendations, we wanted

to focus on the user opinion aspect of the algorithms.

38

Section 2.1.1, content-based algorithms are reliant on well described items. It was not within the

scope of the thesis to create this type of item library. As mentioned, there is a pre-filtering of items

that the recommendation algorithm can select from, ensuring that the recommended tracks are rele-

vant. As a result, the recommended clip can be considered relevant without scanning the content of

the individual clip, as one would have to in content-based filtering. It follows then that content-based

filtering does not satisfy the requirements.

The two remaining algorithms (user-based and item-based) are both collaborative filtering algorithms.

By examining the entire collaborative filtering category, we attempt to find the requirements and

challenges implementations that collaborative filtering algorithms face. We use these challenges as a

basis for discussing if collaborative filtering systems is suitable for the prototype.

There are certain domains in which collaborative filtering provides the best result. These domains

have a set of properties that deem them suitable for implementing collaborative filtering (Schafer, et

al., 2007). It is certainly possible to introduce collaborative filtering systems into domains that do not

have these features. Schafer, et al. (2007) explain that the implementation of collaborative filtering

algorithms into such domains will be challenging and might need additional adjustments to the algo-

rithm and possibly the data. Using collaborative filtering algorithm in new domains is central to the

thesis at hand, since the prototype aim to illuminate the challenges with using collaborative filtering

to create new content. Content creation is certainly outside the normal domain of recommendation

algorithms and a domain that does not fit with suggested characteristics. Therefore, what follows is

an overview of the necessary properties of the data for an easy implementation of a collaborative

algorithm. Schafer, et al. (2007) categorize the properties into three categories. These categories con-

tain a different amount of properties and describe different elements of the data found in most

suitable domains. Figure 13 displays these categories and the properties within.

Figure 13 – Schafer, et al. (2007) collaborative-filtering domain properties

The first category is properties that describe the distribution of data, and therefore describe the size

and shape of the data. There are four properties in this category, the first property being “There are

many items”. If a domain has few items, there is no need for a collaborative filtering system, since the

user probably will have a good overview of the data set. “There are many ratings per item” is the

second property in the category and means that each item should receive multiple ratings. If each

item only has one rating, the system will not have enough information to differentiate the items.

Without sufficient information, the recommendation algorithm has nothing base its predictions on.

The third property of the data is: “There are more users rating than items to be recommended”. In

39

other words, there should be more users giving ratings than there are items to be rated. Schafer et al.

(2007) explains that a rating distribution is often not balanced, a small portion of items will get a larger

amount of ratings. Thus, a lot of ratings are needed. Following this, the last property in this category

is “Users rate multiple items”. If the users only rate one or two items, there will not be enough user

data for the recommendation system to create a prediction. Two of these properties are relevant for

the domain the thesis: there will be multiple ratings per item and each user will rate multiple items.

Both properties are true for each iteration of the song generating process. For each generated song,

the user will rate more than one item. Additionally, the user will create more songs (when testing the

prototype), meaning that the user will create even more ratings. It is only the time of the thesis that

limits the first and third data properties. There is no limitation to the software to how many items the

prototype can keep in its content library. When testing, the prototype had 37 tracks to select from.

This number includes all the track with different instrument types. Adding more audio tracks does not

require any changes in the code. This means that the first property also holds for the system, since

the system does not need to change in order to accept more items. Additionally, 15 people partook in

the testing. Neither the data, nor the system has a limit as to how many people can partake in the

prototype, but there is a limit to how many items each user can rate. In other words, it is possible for

a user to rate every item in the content library. If a user has given a rating to every item, it only stops

the collaborative filtering from recommending new tracks. The knowledge-based algorithm will still

be able to recommend items. We therefore argue that the third property also hold for the prototype.

The second category Schafer, et al. (2007) use to describe the suggested properties, they have named

“Underlying Meaning”. The first property of this category is “For each user of the community, there

are other users with common needs or tastes”. This property highlights one of the strengths of collab-

orative filtering. It will leverage the common taste that people share. However, the algorithm cannot

make a recommend content to someone who does not have anything in common with others. The

next property is “Item evaluation requires personal taste”. In short, the users should rate items based

on their preferences, not a uniform standard. This property argues that the data in the domain can

neither be objectively good, nor objectively bad. Data in which there are some subjectivity and pref-

erences are ideal for content-based algorithms. The last property in the category further clarifies the

notion from the previous property: “Items are homogenous”. This highlights that every item should

be similar in nature and worth from an objective point of view. The differences in quality should only

be derived from the user’s subjective meanings (Schafer, et al., 2007). In terms of the prototype, the

items in the content library are objectively equal. They are all short audio clips, and the prototype

places no special emphasis on any subset of the clips. When creating the audio clip, special attention

was made to making the audio tracks as equal as possible. However, some of the clips are objectively

different from the others. Although different, we made sure that they were of equal quality as the rest

of the tracks. For example, some of the tracks were given a slight shift in rhythm, making them less

compatible with the other tracks. Even though these tracks are different, they are created with the

same attention to quality as the other tracks. We therefore argue that the final property in the second

category holds for our prototype. Additionally, when rating music the user is required to have personal

taste. No standard is given to which the users should follow. Users are free to dislike or like the tracks,

which is partially derived from the subjectivity of music itself. We therefore also argue that the second

property (of the second category) holds, and then in turn the first property.

Third of Schafer, et al.’s (2007) categories are Data Persistence, and as the name suggests, it describes

the longevity of the relevance of the data. There are two properties in this category: Item persistence

and taste persistence. For how long the recommended items are relevant is critical to the accuracy of

the collaborative filtering algorithm. Given a domain where the relevance half-life is short, it is harder

to recommend new content, contrary to a domain where the items are always relevant. A similar

40

property can be raised regarding the user’s taste. In domains where a person’s taste might change

rapidly it is harder to implement a collaborative filtering agent (Schafer, et al., 2007). Music clips will

be relevant for as long as the prototype exists. Therefore, relevancy of the items in the content library

does not really expire. On the other hand, the users’ preference towards the sound clips might change.

However, we argue that due to the session-based nature of the prototype, this issue is not that critical.

The arguments presented lead to the conclusion that collaborative filtering algorithms are suitable for

RecOrder. The next step is therefore to find out whether user-based or item-based collaborative fil-

tering is the most suitable for the project.

User-based filtering compares the ratings of the user (u1) with ratings of other users (u2). It then tries

to find users with similar interests to u1. By comparing the u2 ratings on items u1 has not rated, to

items both u1 and u2 have rated, the system can attempt to give a recommendation. This inherit focus

on the similarity of users weakens user-based filtering in terms of both the first and the third of the

requirement we posed. As a reminder, the first is that is does not depend on a large user-base, and

the third is that the algorithm should not depend on item-information. A bigger emphasis is placed on

the number of users. Without a sufficiently big user-base, user-based recommendations will be weak.

In the case of the prototype, it is likely that there are more items than users. Therefore, the user-based

filtering algorithms is less fitting for RecOrder.

Item-based filtering provides a solution to two of the requirements: Firstly, item-based filtering does

not need a large group of users. The filtering algorithm serves valid recommendations for the user

given that the engine has some access to previous recommendation (Lemire & Maclachlan, 2005).

Second, the content itself is not considered in item-based filtering. Since the item-based filtering

works on the predicted rating of the user based on previous ratings, the recommended item is still

relevant. However, the algorithm does not assess the content of the items themselves.

The issue of a smaller number of items available is still present with an item-based algorithm, but it is

less important, since the algorithm can still make valid recommendations. In contrast to user-based

filtering, item-based filtering puts a greater weight on the user’s own ratings, instead of how similar

the users rating is to other user’s ratings. Therefore, it is more critical to the recommendations that

the user rates multiple items rather than that other users rate multiple items. As a result, the proto-

type uses an instance of an item-based algorithm.

4.4.1 Hybrid switching

The implemented recommendation system is a hybrid switching recommendation system. As de-

scribed in Section 2.1.2, a hybrid switching system consists of more than one recommendation

algorithm. There are several types of hybrid recommendation system architectures. The four that was

considered for the prototype corresponds to the four that were described in Section 2.1.2: Weighted,

Mixed, Switching and Cascade.

Each song needs multiple recommendations, requiring that the implemented configuration of recom-

mendation systems must be a light-weight approach and be able to give recommendations quickly.

Cascade, Mixed and Weighted all run multiple recommendation engines simultaneously (or after each

other) for each needed recommendation. This could cause unnecessary long runtimes. For this reason,

the Switching approach was chosen, both for its (relative) simplicity to implement and for its effi-

ciency.

41

There are two main reasons for the recommendation selector to switch from one algorithm to the

other. The first reason is triggered when a new user is created. This reason relates to the cold-start

problem. If a newly created user tries to create a song, the recommendation algorithm will have no

data on the users’ preferences. As a result, the recommendation system cannot give a recommenda-

tion using the item-based collaborative filtering algorithm. The second reason that the

recommendation selector will switch algorithms is if the user has rated too few items. This is the case

if the system tries to recommend content using the item-based collaborative filtering algorithm. If

there is not enough user data to compare the user to other users, the system cannot recommend an

item.

When creating a new song, some parameters are included. One of these parameters is a user profile

identifier. This identifier is tied to the ratings the user gives during the feedback process. In order to

determine whether a recommendation can be made, the recommender selector queries a database

table containing the preferences of all the users. From the table, every unique user-ID is selected. This

selection will therefore result in a list of every user that has given feedback to a recommendation. The

next step is to look for the ID of the user (one of the parameters needed to create a song) that re-

quested the new song within the returned list. If the ID is found in the list, meaning the user has rated

items before, the recommendation selector returns an instance of the collaborative filtering engine.

However, if the user-ID is not found in the list, an instance of the knowledge-based engine is returned.

The selected recommendation engine is returned, and the recommendations are retrieved from that

engine. To better highlight the process, an example follows.

When a new user is created, the recommendation engine has no data on which to base a recommen-

dation and recommendation cannot be made using the collaborative engine. The prototype tries to

find the newly created user-ID within the list of users, but since it is looking for a new user it will not

find her. Then, Recommender Selector switches the recommendation engine with the knowledge-

based engine. Once a song has been generated, either the user profiles preferences are updated, or a

new profile is created. The feedback the user gave to the song is then added to the user profile. A

saturated user-profile is necessary for the item-based algorithm to make a recommendation. Only

generating one song with the knowledge-based engine might not generate enough user data to satu-

rate the user-preferences. Several iterations of knowledge-based recommendation generating might

be needed. The number of iterations depends on how many other users have rated the same items.

If few users have rated the items used in the song, the collaborative filtering makes weaker recom-

mendations. As soon as there is a broad enough dataset for the item-based engine to make

recommendations, the Recommender Selector returns to the collaborative item-based engine. The

prototype continues to use the item-based engine until the user has rated every item. At that point

the item-based engine cannot return any further recommendations, until new items are added. As a

response to this, the system then switches back to the knowledge-based engine. The item-based en-

gine is therefore most used and functions as the main recommendation system, while the knowledge-

based engine serves as the backup engine.

4.4.2 The Primary Algorithm

The implemented item-based algorithm is Weighted Slope One. Slope One is an algorithm that lever-

ages the ratings of other users (thus making it a collaborative filtering algorithm) to determine the

current users predicted rating of the current item (Lemire & Maclachlan, 2005). By factoring in the

number of ratings for each rated item, the algorithm becomes a weighted algorithm. The primary

reason for selecting Slope One is that the algorithm can yield valid recommendation despite a small

42

data set. This is one of the strengths that Lemire and Maclachlan (2005) highlight as their goal with

Slope One. Other strengths they highlight is effectivity at runtime, reasonable accuracy, ease of im-

plementation and robustness with the addition of new ratings (Lemire & Maclachlan, 2005). Since this

thesis has a small scope, these strengths are essential to the success of the prototype.

In the prototype, the slope one recommendation procedure returns several recommendations. The

results are sorted by their predicted score, the highest recommended first. This score is an estimation

of how well the user will like the item. The prototype then selects one of the top three results at

random, to decrease predictability. These recommended items will only be items that the user has

not rated and that other users have rated. Thus, one of the weaknesses with the weighted slope one

algorithm is that if no users has rated an item, it will not appear in other recommendations. In other

words, the cold-start problem for items is highly relevant for slope one. To counter this, we imple-

mented a knowledge-based approach.

4.4.3 The Secondary Algorithm

The main reason for implementing a second algorithm where to counter the weaknesses of the pri-

mary algorithm. The primary algorithm, an item-based collaborative filtering algorithm, struggles with

giving recommendations when no user data exists; the cold-start problem. The secondary algorithm

therefore needs to be able to provide recommendations despite the lack of user data, and when new

items is added. Of the highlighted algorithm types (content-based, collaborative and knowledge-

based), only knowledge-based filtering is an option. The reasons given for why content-based filtering

is not valid as a primary choice are still relevant for the secondary algorithm. Knowledge-based filter-

ing (KBF) algorithms are good at mapping the needs of the user into suggestions of items (Burke, 2002).

The user, in this case, would be the song creation algorithm. This is ideal for the needed algorithm.

When creating a new song, the prototype has clear instructions of what type of recommended track

it needs. In KBF algorithms, it is typical for the user to express their needs or what type of items they

desire. The previously mentioned pre-filtering of items (based on bpm, key and type of instrument)

serves as the user’s need and will help guide the KBF algorithm to a recommendation. However, the

instrument, bpm and key alone are not sufficient to differentiate the tracks from each other. Many

tracks can share the same values in all three properties, and still be very different. An additional item

descriptor was therefore introduced: intensity. The intensity of an item describes how energetic the

instruments in the track are playing. For example, if a drum track has a high intensity score, the drums

might be playing a lot of rapid beats. The intensity does not affect the tempo of the track.

One of the weaknesses of knowledge-based filtering algorithms is that they do not learn from previous

recommendations. This is partially due to not using a user profile. As a result, it is likely that they

recommend the same content multiple times to the same user. To counter this, the prototype intro-

duces some randomization to the knowledge-based algorithm. When the knowledge-based algorithm

suggests items, it will return a selection of fitting items, and the prototype choses a random item from

that selection. This randomization will help minimize the static recommendations often found in KBF

algorithms. Using the intensity scores, some differentiation can be made between the tracks, and

sense of progression can be emulated during the song. The secondary algorithm was therefore created

to change the intensity of the recommended tracks based on what section of the song was being gen-

erated.

43

5 RECORDER – THE IMPLEMENTATION

This section contains the details of the implementation of RecOrder. This includes description of the

programming language used, the details of the recommendation algorithms as well as pseudocode for

the different steps in the song creation process of RecOrder.

5.1 PROGRAMMING LANGUAGE AND PLATFORM
We wanted to dedicate as much time as possible to implementing the song generator and the recom-

mendation system, and as little as possible to creating the surrounding system. Thus, a programming

language that was easy to write, flexible and modular was preferable. Additionally, we looked for a

programming language where there were existing libraries of recommendation systems. By either di-

rectly using the existing libraries, or by using them as a basis for further development, we hope to cut

down development time further. For these reasons, Python (The Python Software Foundation, 2018)

was chosen as the programming language used to develop RecOrder. Python is an open source lan-

guage (Open Source Initiative, 2007) with a focus on flexibility and modularity. It has several libraries

dedicated to recommendation systems.

Alongside Python, HTML (HyperText Markup Language) and CSS (Cascading Style Sheets) were also

used. These two languages were primarily used to facilitate the implemented web-framework and

provide a basic user interface for starting the song creation process. HTML is used for creating the

foundations and structure of websites, and CSS adds styling (colours, borders, etc) to the web pages

(W3C, 2016).

MySQL was used as a database (Oracle Corporation, 2018). It is an open source database solution.

MySQL was chosen for RecOrder because of the ease of creating tables and queries. The database

system created for RecOrder contains several tables, primarily storing the user preferences and data

about the audio tracks. In addition, the queries were saved as Stored Procedures22, allowing for further

reuse.

Three Python libraries were used: Flask, Surprise and Pydub. Flask (Ronacher, 2018) is a framework

that facilitates the creation of webpages. The user can create modular webpages that are combined

into the resulting webpage using the integrated templating language. Flask also provides the user with

extensive debugging tools and unit testing support. The Flask framework integrates seamlessly into

any Python script, making it an ideal way of creating a web user-interface. The second Python library

used is Surprise. Surprise (Hug, 2017) is a library designed to build and analyse recommendation algo-

rithms. There are several algorithms included in the library, and good documentation. The final

iteration of the prototype did not end up using the library, but it was used extensively during the

development as a basis for development of the implemented recommendation system. Pydub

(Robert, 2017), the third library used, is a Python library created to manipulate audio. The library can

for example split, merge, fade between and create audio tracks.

22 https://dev.mysql.com/doc/connector-net/en/connector-net-tutorials-stored-procedures.html

https://dev.mysql.com/doc/connector-net/en/connector-net-tutorials-stored-procedures.html

44

5.2 THE IMPLEMENTATION OF THE SONG CREATION PROCESS
The user starts the song creating process. The system is designed for the user to enter their preferred

song length, bpm and key. The preferred length of the song is limited to three options: “short”, “me-

dium” and “long”. Once the system receives this input, the system initiates generating of the song. For

this prototype we have limited the possible selection to short songs, in the key of D and at 105 bpm.

Pseudocode for Song creation process

Input: bpm, key, songLength and profileKey

Output: Generated song

1: Get song structure based on songLength

2: FOR EACH unique section of the song structure:

3: | Create a Slice:

4: | | Get a random slice structure

5: |

|

|

|

FOR EACH active instrument track in slice
structure:

6: |

|

|

|

|

|

Get a recommended track from the
recommendation engine

7: | Save the slice

8: Move away old audio files

9: Put the song together:

10: | Merge audio tracks in each slice

11: | Append each slice based on song structure

12: | Save finished song as audio file

13: Register all clip-clip relations in the generated song

14: Get feedback on the instrument tracks

15: Get feedback on k number if slices

Figure 14 – Pseudocode for the song creation process

Figure 14 displays the steps of the song creation process as pseudocode. The following paragraphs

refer to the noted step numbers in Figure 14. The database is queried for song structures, based on

the input from the user as shown as step 1. The query retrieves all structures that have the correct

length property (for example “short”), and the system picks one of the results at random. This results

in the prototype having a partially randomized song structure selection. The song structures consist

of a series of letters, as highlighted in Section 4.2 (for example: ABABC). The prototype then parses

the selected song structure. The parsing consists of splitting the structure up by each letter and fining

every unique letter. A section of music is generated by the prototype for each unique letter found.

These sections are also referred to as slices in Section 4. The steps for creating each slice is shown

through step 2-7 in Figure 14. Each slice also has a structure selected partially randomly (step 4 in

Figure 14). These structured determine which instruments are playing, and which are silent. The se-

lection is partially random, because it is weighted towards having all the instruments playing at the

same time.

45

The prototype implements the slices as a list of integers. The lists are filled by the recommended track

identifiers from the recommendation engine. Each type of instrument has a defined position in the

slice list. The guitar track identifier is placed in the first position of the list, then the drum track iden-

tifier follows, and finally the bass track identifier. These identifiers correspond to the name of an audio

track. Therefore, each slice contains the “keys” needed to create that section of the song. For each

instrument track that is active in the slice-list, a request for a track recommendation is sent to the

recommendation system. When every slice has been completed, the song generating process contin-

ues. Steps 5-7 in Figure 14 highlight the slice creation stage of the song creation process.

Step 8 (in Figure 14) highlight a small process that moves any audio files from previous song generation

processes into a separate folder. This is to ensure that there is no confusion when the user is going to

listen to the generated song.

As noted in step 9 to 12, the next step of the song creation process is to put the song together. The

system starts merging the tracks within each slice. This produces a complete audio file for each of the

sections of the finished song. Once the song creation process has generated the audio track for each

slice, the slice audio tracks are appended to each other. The order of which the slices are appended

are based on the song structure, determined at the start of the process.

Step 13 to 15 in Figure 14 pertain to the feedback procedure in RecOrder. First all the clip-clip relation

within the generated song is stored. This is stored both in a table in the database, and as list of tuples.

The tuples contain the track identifiers of the two clips in the clip-clip relation. Following this, the

feedback for each instrument track is collected from the user. Finally (as noted in step 15), feedback

for k number of different slices is collected. The k defaults to 3, but it is possible to override this num-

ber. K number of slices is selected randomly from the generated song. An audio file is generated for

each slice that is going to be rated. This is to make it easier for the user to find the relevant part of the

song. The feedback (from both the instrument track and the slices) are stored in the database in a

table containing user preferences.

5.3 THE IMPLEMENTATION OF THE RECOMMENDATION ALGORITHMS
The prototype uses a hybrid switching recommendation system23. The class called Recommender Se-

lector ensures that a recommendation always can be made. This is achieved by switching the

recommendation engine when one fails to provide a recommendation. The Recommender Selector

class does not return the actual recommendations but returns an instance of one of the recommen-

dation engines. The song creation process system then queries the selected engine-instance for a

recommendation. The process of switching between recommendation engines makes the prototype

a hybrid switching system.

The two recommendation engines (item-based and knowledge-based) are implemented as subclasses

of a superclass: RecSysEngine. The superclass is empty, except for a method called GetRecommenda-

tion. This method is also empty, except that it raises an exception when called from the superclass.

Both the subclasses inherit this method since they extend the superclass. The inheritance from the

superclass is displayed in Figure 15. Thus, the GetRecommendation method within both recommen-

dation-classes have the same name and parameter structure. This ensures that the system can switch

23 A definition of hybrid switching recommendation systems is found in Section 2.1.2

46

between the classes using the same method signature. In addition, if the need to change one of the

recommendation algorithms arises, it is easier to implement a new engine.

Figure 15 – Recommendation engine inheritance structure

As explained in Section 4, weighted slope one was chosen as the primary recommendation algorithm.

The implementation of Slope One is based on instructions found in a tutorial (Zacharski, 2015). The

tutorial is in the form of an online book, and it is an introductory guide to datamining techniques. It

covers topics regarding recommendation systems, classification, Naïve Bayes and clustering.

Some modifications were made to the code. The tutorial used a different dataset from ours, and it is

often necessary to do some adjustments when switching datasets. Most of these changes are prepar-

ing and formatting the data to fit the algorithms needed format. The Slope One implementation needs

to receive a dictionary24 for each user, containing what items the user has rated and the ratings them-

selves. The data is not stored in this way in the database, and therefore needs to be collected and put

into a dictionary.

The prototype needs to have a pre-filtering of the available tracks in order to ensure that the recom-

mended tracks will be compatible. This prefiltering is done in three stages. Figure 16 shows the

pseudocode for these three stages. First, the prototype collects all tracks with the requested bpm, key

and instrument into a list. These values are the values inserted at the start of the song creation pro-

cess. The IDs of these tracks are stored in a list. This stage is shown in step 1 in Figure 16. Once the

tracks are collected, all user’s preferences are also gathered. In other words, every user’s item-rating

pair. This is the second stage in the pre-filtering, and in Figure 16 it is shown in step 2. The next stage

is a for-loop that iterates through each of the user-preferences. The structure of the user’s preference

is noted in brackets behind the for-loop in line 4 in Figure 16. As seen, there are two items stored in

the user’ preference. These items are the two items are stored as a clip-clip relation, and the rating is

placed on the relation between two items. Within the loop, the system checks if both the rated items

exist in the list of tracks with the right bpm, key and instrument. If that is the case, the tracks and the

24 Python dictionaries are very similar to hashmaps from other programming languages. The dictionary consists

of several items, each with a unique key that retrieves the item.

47

rating for the track, are added to a dictionary. The key in the dictionary is the item-ID, and the value

is the rating. Steps 4 to 11 in Figure 16 display these steps.

Pseudocode for Pre-filtering of Available Tracks

Input: bpm, key and instrument

Output: Dictionary of the user’s preferences

1: Get clips with relevant bpm, key and instrument

2: Get the preferences of all the users

3: Create an empty Preference Dictionary

4: FOR EACH user’s preferences [userID, item1, item2, rating]

5: | Create a Result Dictionary, and leave it empty

6: | Get the two items (item1 and item2) from the

| current user’s preference.

7: | IF item1 is in the list of relevant clips

8: | | Add item1’s rating to Result Dictionary

9: | IF item2 is in the list of relevant clips

10: | | Add item2’s rating to Result Dictionary

11: | Save the store user preferences in Preference Dictionary

12: RETURN Preference Dictionary

Figure 16 – Pseudocode for prefiltering of available tracks

Once the loop has iterated over every user-preference, the dictionary with the relevant items and

ratings, are added to another dictionary, with the user-ID as each key. The structure of the returned

dictionary is displayed in Figure 17. This is the least generalizable part of the item-based recommen-

dation system, since it needs to access data properties.

{

 “User-ID 1” :

{

 “Item-ID 1” : rating,

 “Item-ID 2” : rating

},

“User-ID 2” :

{

[…]

}

}

Figure 17 – Prefiltering dictionary format

Since the selected version of Slope One is weighted, the number of times each item has been rated

needs to be counted. In addition, the deviation between each pair of items needs to be calculated.

The next steps contain a series of for-loops that iterate over the pre-filtered list of ratings and then

the items within. For each user in the list, find every item the user has rated, plus the rating. This is

temporary stored as a pair. Then, for each item and rating that is not equal to the first pair, increase

48

the frequency by one and save the difference between the two ratings. Finally, divide each deviation-

pair by its frequency to get the weighted result. Figure 18 shows the pseudocode for these steps.

Pseudocode for Deviation Calculation Method

Input: A dictionary all the users and their ratings
Output: A dictionary of the deviation between each item

1: FOR EACH users’ ratings:
2: | FOR EACH item1 and rating1 pair:
3: | | Create empty frequency and deviation dictionaries for

| | the item and rating pair
4: | | FOR EACH item2 and rating2 pair that is not the first pair:
5: | | | Calculate the difference between the two ratings
6: | | | Store the difference in the deviation dictionary
7: | | | Increase the frequency of the item-item (item1 and item2) pair.
8: | | | Store the new frequency in the frequency dictionary
9: FOR EACH item (item1) and ratings in the deviations
10: | FOR EACH item (item2) in ratings
11: | | Divide the ratings of item2 with the frequency of item1 and item2
12: | | Update the ratings for item2 with the result of line 11
13: RETURN the deviation dictionary

Figure 18 – Pseudocode for the deviation calculation method

The calculation of deviation between each item would normally be done in an offline phase, in order

to make runtime-recommendation quicker. Calculating the deviation between every combination of

items each time the system needs a recommendation, will slow down the system quite a lot. This is

especially true when more items and ratings are added. However, these calculations were not moved

into an offline phase in the prototype, mainly because of the limited development time. Given more

development time, a separate offline phase would be added to the prototype. At present, the number

of items in the prototype is small enough not to significantly impact the speed of the needed calcula-

tions.

Once the deviation between each track has been computed, the recommendation process continues

to the Slope One algorithm. Lemire and Maclachlan (2005) write the following formula to how

Weighted Slope One returns a prediction for a user:

𝑝𝑤𝑆1(𝑢)𝑗 =
∑  (𝑑𝑒𝑣𝑖 𝑗+𝑢𝑖)𝑐𝑗, 𝑖𝑖 ∈ 𝑆(𝑢) − {𝑗}

∑ 𝑐𝑗,  𝑖𝑖 ∈ 𝑆(𝑢) − {𝑗}
 (1)

Thus, p is short for prediction, wS1 is weighted slope one and (𝑢)𝑗 is the predicted item (j) for the

user (u). S(𝑢) in the formula is every item that the user(𝑢) has rated. S(𝑢) − {𝑗} then becomes every

item the user has rated, except the item we want a recommendation for (the item = {𝑗}). 𝑑𝑒𝑣𝑖,i is the

deviation score between item i and j. 𝑢𝑖 are the users rating for item i. Finally, the frequency of the

item j − i pair (i.e. cardinality) is noted as 𝐶𝑗,  𝑖. The numerator of (1) then becomes: for every item (𝑖)

49

that user (𝑢) has rated, except for item j, add the deviation between item i and item j with the users

rating for item i. Then multiply the sum with the cardinality of items j and 𝑖. In other words, the num-

ber of times both item j and item 𝑖 have been rated by the same user. The denominator of (1) can be

summed up as: for every item (𝑖) that user u has rated, sum the cardinality of j and 𝑖. The result of

numerator over denominator then becomes the prediction. Figure 19 displays the pseudocode for

weighted slope one, which is based on Zacharski’s (2015) implementation.

Pseudocode for Weighted Slope One

Input: userRatings, deviation (dictionary), frequencies (dictionary)
Output: recommendation (dictionary)

1: create two empty dictionaries: recommendation and frequency
2: FOR EACH item and rating in userRatings:
3: | FOR EACH diff-Item and diff-Rating in deviation:
4: | | IF diff-item is not in userRatings and item is in deviation:
5: | | | get the frequency of diff-item and item from frequencies
6: | | | add diff-Rating and rating and multiply the result by the

| | | frequency of diff-item and item
7: | | | save the result from line 6 in recommendation with
 | | | diff-Item as key
8: | | | save the frequency of diff-item and item in frequency

| | | with diff-Item as key
9: FOR EACH recItem in recommendation:
10: | divide recItem by its corresponding item from frequency
11: sort recommendation in descending order
12: RETURN recommendation

Figure 19 – Pseudocode for Weighted Slope One

The prototype uses a basic implementation of a knowledge-based filtering (KBF) system as the sec-

ondary algorithm. The KBF system implemented is a constraint-based system, that narrow down the

available items until there is only a handful of items left. Then, the KBF system selects a random item

of the remaining items. As mentioned, there is a pre-filtering of items prior to the recommendation

part. This pre-filtering is also done prior to the KBF recommendation. In addition to the pre-filtering,

a new constraint is added: the intensity of the tracks. This constraint is in place to ensure that more

relevant items are being recommended. The KBF-algorithm categorises three stages of intensities:

low, medium and high. For each track there is a database table with the track-ID and an intensity score.

The score describes how intense the track feels, and it ranges from one to five, where five is the most

intense tracks. The low category describes tracks with intensity score 1 and 2, the medium intensity

describes tracks with score 3 and 4, and high intensity cover tracks with score 4 and 5. It is important

to note that the intensity score does not affect the tempo of the track: some tracks are “busier” than

others, thus making them more intense.

The KBF-algorithm recommends different tracks based on what part of the song are being generated.

Recall that each song is split into slices, each one given a letter. The recommendation request includes

one of these section-letters, based on what section the generator is at. The KBF-algorithm then finds

tracks with different intensity scores based on the section of the song. By including this score into the

KBF-algorithm, it is possible to simulate a song progression, since the song will vary in intensity. The

low intensity tracks are fetched at the start of the song (section-letter A). This creates a build-up and

50

later a break if the A-section is reused in the song. The medium intensity tracks are used when section

B is created. This contrasts the low intensity of the first section. Finally, when section C is created a

high intensity track is recommended. For all other sections, the prototype selects a random track, from

all intensity levels. Once the available tracks are filtered based on intensity, the tracks are put into a

list. The algorithm then picks a random track-ID from the filtered list. The selected track identifier is

then returned to the song creation process. The steps for the KBF-algorithm is illustrated in Figure 20.

In Figure 20, when talking about “all tracks” it is meant all the available tracks from the pre-filtered

list of tracks.

Pseudocode for KBF algorithm

Input: pre-filtered track list, input-section

Output: track-ID

1: create empty list: recList

2: IF input-section IS “A”:

3: | get all tracks with intensity 1 or 2, and add them to recList

4: ELSE IF input-section IS “B”:

5: | get all tracks with intensity 3 or 4, and add them to recList

6: ELSE IF input-section IS “C”:

7: | get all tracks with intensity 4 or 5, and add them to recList

8: ELSE:

9: | get all tracks add them to recList

10: select a random track from recList

11: RETURN the ID of the selected track

Figure 20 – Pseudocode for the implemented knowledge-based filtering algorithm

51

6 EVALUATION METHOD

There are three primary categories of evaluating the effectiveness of Recommendation Systems: user

studies, online methods and offline methods (Aggarwal, 2016, p. 227). In user studies the participants

are actively recruited to test the implementation of the recommendation system. Feedback from the

users (either during or after the testing) are used to determine the success of the recommendation

system, and the accuracy of the recommendations. The online methods measure the direct impact

that the recommendation system had on the users and the choices they took and is often done with

real users in real use-cases. A comparison is made between the users that get recommendation from

the recommendation system, and the users that do not (A/B testing). Therefore, the online methods

of evaluation require a more complete system with the recommendation system implemented. The

offline methods leverage data generated from user-interactions with the recommendation system.

The data is analysed for patterns using different types of evaluation metrics/formulas (Aggarwal, 2016,

pp. 227-229).

User studies was selected as the most suitable category of evaluation for RecOrder, due to the limited

timeframe of the thesis. The online methods require more development time than user studies. Like-

wise, the offline methods require more in-depth study and implementation of evaluation metrics.

Therefore, a user study was created. The user study consists of series of questions that aim to establish

whether the prototype is successful in creating personalized content. In other words, if the prototype

is able to utilize the users preferences when creating a song. The anticipated trend, prior to running

the experiments, is that the songs should get closer to the preferences of the user with each iteration.

However, this might not be the case. The following section describes the user study.

6.1 SET-UP DESCRIPTION
The testing done for this thesis is a combination of a survey and interaction with the created proto-

type. Interacting with the prototype is crucial in order to give feedback on the created songs. The

participant needs to establish their preferences, and have multiple songs generated based on them.

This will give them a good basis for comparison between different songs. Preferably, the songs should

be generated in the same test-session. As explained in the prototype description section, the proto-

type will first use the knowledge-based approach, in order to map the user’s preferences. Then, it will

switch to the item-based approach. As a result, the user must generate at least one song before their

preferences take effect. A total of four songs will be generated by the user during the testing. By lim-

iting the number of generated tracks to four, the risk of the system getting over-specialized is lowered.

We found that during the development of RecOrder, when generating more than four songs for each

user, the item-based algorithm had a tendency to not be able to recommend new content. This was

because every discovered item had gotten a rating, and thus there was nothing left for the item-based

algorithm to recommend. This is most likely due to the low number of items. Therefore, the users will

not create more than four songs when testing the prototype.

In addition to interacting with the prototype, it was necessary for the user to express thoughts about

the process. A systematic comparison between each generated song was needed. Thus, we introduced

a survey to use in union with the interaction with the prototype. The survey contains questions that

ask the participant to compare the resulting songs from multiple song-iterations.

52

The survey is created in Google Forms, Google’s survey tools 25. This tool allows for quick and flexible

survey creation, and the results can be exported to spreadsheets. There is also pre-calculated visual

aid for the answered questions. For example, if the participants answer a multiple-choice question, a

pie chart will be created, displaying the percentage of answers for each answer. An example is shown

in Figure 21. Although the graphs used in the paper itself are created in Excel, the graphs created in

Google Forms served as an inspiration for what types of graphs to use.

Figure 21 – Example of the generated graphs

Since the tester must listen carefully to tracks, often many times, the testing was held in silent rooms,

with as few distractions as possible. The testing was done in study-rooms at the university campus

(UiB). The participants are seated at a desk, with a laptop and a headset. The prototype is running on

the laptop. The only persons in the room are the participant and the test supervisor. The test supervi-

sor describes the procedure of the test and aids in any technical questions the participant might have.

The supervisor does not see what the participant writes in the survey, what they rate the different

sections of music, nor can he or she hear the generated music. This was intentional, as the supervisor

should not be able to affect the results of the participant.

No particular skills are required of the participants in order to participate in the testing. They do not

require any musical background, nor any programming skills. This disregard to musical experience was

to get a broader group of people to test the general use of the prototype. Although the participants

were asked briefly about their musical background, what they answer is not used in further analysis.

The general quality of the generated songs was prioritized over more specialized analysis from, for

example, people with musical education. The scope of the thesis did not lend enough time towards

running detailed testing, thus, anyone could join in the testing.

The participants are not told specifically how the prototype generates music. Some of them are intro-

duced to the concept of using recommendation systems to generate music, from prior conversations,

however, none of the participants was told the steps in which the songs are created. This was delib-

erate in order to minimize bias towards the generated songs. The intention is that the participants

25 https://www.google.com/forms/about/

https://www.google.com/forms/about/

53

must rate every song equally, even though some of the songs are not created by the primary recom-

mendation engine.

Some circumstantial variables are expected to affect the generated result. For example, the recom-

mended tracks will be different from person to person. Each person will also have different

preferences to what kinds of tracks they like. If a track they really do not like is recommended, it might

affect their perception of the entire song. They will rate the song with a lower score as a result. The

question then becomes if the prototype can properly respond to that change. Will the user be able to

affect the generated content enough to remove the tracks that they do not like? The user is asked to

generate several songs and compare them in retrospect. This will reveal if this question is correct.

Since feedback is a vital aspect of recommendation systems it was also necessary to find out if the

implemented way of giving feedback truly allowed the user to reflect their opinions. Therefore, the

survey includes a series of questions regarding the feedback process. These questions will illuminate

some of the challenges with implementing recommendation systems in other settings. As mentioned

in Section 4.3, feedback was one of the challenges when creating the prototype. By including these

questions about the feedback process, some indication to the success of the feedback-implementa-

tion might be gained, in addition to how giving feedback in this manner is perceived.

6.2 SURVEY RUN-THROUGH
The first part of the survey contains a slide with information on what the survey will contain. Addition-

ally, the slide states that the survey does not collect any identifying information, and that the

information collected will only be used in conjunction with the thesis. The user is then asked if they

play any instruments. This question is not directly connected to the rest of the survey. However, the

question was included since it might show interesting trends amongst users with and without a musi-

cal background. This marks the end of the introduction part of the survey. Figure 22 displays the

different stages of the survey.

54

Figure 22 – Procedure overview of the experimentation

Following the introduction part, the prototype requires the user to generate three songs. This stage is

named Prototype Testing (3 iterations) in Figure 22. The users receive a brief explanation of what the

next steps will entail. The instructions are related to how the prototype will display its progress, where

the feedback should be entered, and where the songs and clips they should listen to appears. Figure

23 shows the layout of the screen the user. The left part of the screen is a web browser. Within the

browser, the user starts the song creation process (by clicking on the blue button). Additionally, the

user can answer the survey in another tab in the browser window. The top right of the screen displays

the folder where the generated songs and clips appear. The prototype terminal window fills the bot-

tom right of the screen. This window displays the instructions from the prototype and this is also

where the user inputs their ratings.

Introduction to
Evaluation

Survey
Introduction

Prototype
Testing

(3 iterations)
Survey Part 1

Prototype
Testing

(1 iteration)
Survey Part 2

Debrief

55

Figure 23 – Screenshot of the testing setup

For each generated song, the user listens to the song, rates the consistency of the guitar track, the

bass track and the drum track. The feedback is limited to a score from 1 to 5. Once each of the tracks

in the song have been rated, the prototype presents the user with up to three slices, which they should

rate in a similar manner. When the three songs have been created and rated, the prototype have

enough information on the user’s preferences. The next generated song is expected to mostly contain

well recommended tracks. In addition, the user has been exposed to the song creating process and

are ready to answer questions about the experience. Thus, the user returns to the survey.

The following stage of the evaluation is named Survey Part 1 in Figure 22, and consists of multiple

questions regarding the song creation process. The user is asked to compare the results of the differ-

ent iterations of the song creation process. There is no restriction to whether the user can listen to

the previously generated tracks. In fact, they are encouraged to listen to the songs again, if they wish.

The first question pertains to how well the different instrument tracks fit together. This is supposed

to test whether the generated songs managed to have a consistency across slices26. The specific ques-

tion is:

“There are three instrument tracks in these songs: the guitar track, the bass track and

the drum track. From the first to the last song, was there a change in how well the

different instrument tracks fit together?”

This is a multiple-choice question, with five answers: “They became worse towards the last song”,

“They became slightly worse towards the last song”, “There was no notable change”,” They became

slightly better towards the last song” and “They became much better towards the last song”. The avail-

able answers are written in this manner to reflect the scoring system in the prototype. In addition, this

allows for nuance in the answers. Several other questions follow this structure in the available an-

swers.

26 For a definition of Slice, see Section 4.2

56

The next question is similar in nature to the previous one, but the participant compares the parts of

the song instead of each instrument track. This question aims to detail the progression of the slices

themselves, from song to song.

“All songs can be split up into different parts. We split the song into parts where there

is a different melody, or the song somehow changes (in many songs this is the verse,

the chorus, etc). From the first to the last song, was there a notable change in how

well the parts of the songs fit together?”

This question is also a multiple-choice question, and the available answers are the same as the previ-

ous question.

The third question is a much simpler one: “Was there a song that was better than the others?” The

question has two available answers: “Yes” and “They were all equal / heard no difference”. If the par-

ticipant answers yes, they are asked follow-up questions. There are two follow-up questions. The first

one is “What song did you like the most?”. This is a multiple-choice question with three answers, one

for each of the songs they generated prior to part 1 of the survey. The second question is “What about

that song was better than the others”. Here the participant is prompted to write as detailed as they

would like, and there is no limit to the amount of words they can write.

If the participant answers “They were all equal / heard no difference”, they continue to the next series

of questions, which queries the participant about their feelings regarding giving feedback in the song

generating process. Prior to the questions a short text explains what the questions in this section per-

tain to. The text reminds the participant that they rated songs on a scale from 1 to 5 (when giving

feedback to the prototype), and that the following questions are about this process. There are four

questions regarding this topic, three of which are mandatory. The first question in the section is “Was

it difficult to give feedback on pieces of music in this way?” There are three answers for this question.

The first two are “No, it was easy” and “Neither difficult, nor easy”. The last answer is “Yes, it was

difficult”. If the participant selects this answer, they are asked to briefly write about what they thought

was difficult. This question is not mandatory. The next question is a multiple-choice question, asking

the participants of their impression of giving ratings like they did in the song creation process. The

answers are ranged similarly as some of the multiple-choice questions previously in the survey. There

are five alternatives, ranging from “it was boring” to “it was very fun!”. Then, the participant is ex-

pected to write a short paragraph about their impression of giving feedback in this manner.

Similar to part 1, prior to part 2 the participant interacts with the prototype. This time however, the

participant should generate only one song. Giving the prompted feedback to the song is not necessary,

as only the resulting song is needed. At this point the prototype should know what the user likes and

dislikes well enough to produce a song that is in accordance with their preferences. Part 2 is split into

two sections. In the first section the participant will compare the newly generated song to the last

song of the three previously generated. Two questions are then asked regarding this comparison. In

the second section, four questions regarding only the newest generated song is asked. The participant

is encouraged to listen to the two songs again, if necessary.

The first question, in the first section of part 2, asks the participant which of the two songs was the

better one. There are four possible answers: “the song generated now”, “the last song from part 1”,

“they are of equal quality” and “I cannot really tell any difference”. In the second question, the partic-

ipant is asked to elaborate of their perception of the difference between the two tracks. They will

compare both the songs at a general level, with a focus on the flow of the song and how well each

part fit together.

57

The second section of part 2 starts with a multiple-choice question. The question is: “How well did the

different instrument parts fit together?”, and there are five available answers. The answers follow the

same structure as the other questions with five answers. The options range from “Not well at all” to

“very well”. If the participant answers one of the negative options (i.e. “not very well” or “For the most

part not very well”), they are asked to elaborate on their feelings. The next question also has a follow-

up question. The original question is: “Did the song have a general consistency from start to end?”,

and the follow-up question is “if you answered no, please elaborate”. Once the participant has an-

swered this question, the survey is completed. The participant is then debriefed and thanked for their

help by the test-supervisor. The debriefing consists of a casual conversation of their feelings about the

testing process. This part is not recorded, in order to make the test subjects feel more at ease. This

concludes the description of the survey.

58

7 RESULTS AND DISCUSSION

The following section of the thesis consists of two parts, beginning with an analysis of the results from

the survey, and ending with a discussion of said results. The discussion section is split into two section,

one for each research question.

7.1 RESULTS
The following sections detail an analysis of the results gathered from the user testing. There are two

primary parts of the survey. The first part contains the analysis of the song generating and whether

the prototype manages to produce songs in line with the user’s preferences. The focus of the second

part is at the feedback system of the prototype and the survey questions regarding that system.

The very first questions of the survey are whether the test subjects play any instruments. As seen in

Figure 24. 66% of the test subjects did not play any instruments. Although the answers to this question

is not factored into the analysis of the results, it is an interesting observation to keep in mind. Although

some of the participants had previous experience with playing or creating music, most of them did

not.

Figure 24 – Distribution of how many test subjects that play any instruments

The first stage of the survey will help to answer whether the songs will get more accurate with each

iteration. By comparing what the test subjects answered on the first set of questions, we expect to

determine if there is indeed an increase in accuracy across iterations. The first questions are asked

right after the user has generated three songs using the prototype. When referring to “the last song”

in these first questions, it is meant the last of the three songs.

No
67%

Yes
33%

Do you play any instruments

59

Figure 25 – The test subjects opinions of how well the instrument tracks of the songs fit together.

Figure 26 – The test subjects opinions of how well the parts of the songs fit together.

Figure 25 presents an overview of what each test subject thought of the development of how well the

instrument tracks fit together in the three tracks they generated. In other words, based on the three

tracks, did the instrument tracks become better or worse from the first to the last song.

The horizontal axis of Figure 25 consists of each of the test subject’s (TS) answers. The vertical axis in

the table is based on the available answers in the query and the answers are represented with num-

bers instead of text. 1 translates to “They became worse towards the last song”, 2 to “the became

slightly worse towards the last song”, 3 to “there was no notable change”, 4 to “They became slightly

better towards the last song” and 5 to “they became much better towards the last song”.

The answers from the second question are collected in Figure 26. The question asks the user to com-

pare the different slices from the three generated songs to each other. Similar to the previous

4 4

1

4 4

3

1

2

4

1

4

5

4 4 4

y = 0.0643x + 2.7524
R² = 0.0464

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Te
st

 S
u

b
je

ct
 S

co
re

Test Subject

From the first to the last song, was there a change in how well
the different instrument tracks fit together?

Score Linear (Score)

4

2 2

4 4

3

2

4 4

2

4 4

5

4 4

y = 0.0964x + 2.6952
R² = 0.1896

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Te
st

 S
u

b
je

ct
 S

co
re

Test Subject

From the first to the last song, was there a notable change in
how well the parts (slices) of the songs fit together?

Score Linear (Score)

60

question, this is a multiple-choice question. The vertical numbers have the same meaning as in Figure

25, as described in the previous paragraph.

We expected to see the quality of the songs to get better with each iteration. Therefore, the two

graphs include trendlines. They illustrate the progression of the average TS opinion.

As seen in Figure 25, 9 of 15 results answer that the instrument tracks in the songs became slightly

better towards the last song. This shows that a little over half (60%) of the participants found that the

instruments in the generated songs were getting better. Include the one “they became much better

towards the last song “(5 in the vertical axis) in that, and the amount goes up to 67% percent of the

TS that are happy with the instruments tracks development. Only 4 answers were in the slightly worse

(2) or worse (1) category, which is 26.7% of the answers.

Similar to Figure 25, Figure 26 shows that most people answered the “They became slightly better

towards the last song” alternative (9 of 15: 60%). No participant answered with the lowest score, but

the number of answers below 3 is the same as in Figure 26. In that sense, the answers in this graph

(Figure 26) are more clustered than in the other graph (Figure 25). To better visualize the similarities

between the answers of the two first questions we have collected the data of both Figure 25 and

Figure 26 into one graph: Figure 27.

Figure 27 – Comparison between answers in Figure 25 and Figure 26

In Figure 27 the orange series is the data from Figure 25, while the blue series is from Figure 26. Where

the two graphs overlap, only one of the series is displayed (for example in the answer of test subject

1). 8 of 15 test subjects gave the same answer on the two questions. This represents 53.3% of the total

answers. Only two answers (Ts2 and Ts8) have a difference in category by more than one. Both ques-

tions have the same number of positive answers, as highlighted in previous paragraphs.

Instrument:
y = 0.0643x + 2.7524

R² = 0.0464

Slice:
y = 0.0964x + 2.6952

R² = 0.1896

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
o

in
ts

Test subjects

Instrument and part comparison

instruments Slices Linear (instruments) Linear (Slices)

61

The test subjects are finding the slices more acceptable than the instrument-tracks, since the instru-

ments have three 1s. Additionally, there are more instances of people liking the slices more than the

instruments. In five instances, the slices get a higher score than the instruments (Ts3, Ts7, Ts8, Ts9,

Ts10 and Ts13). On the other hand, there are only two cases where the instruments get a higher score

than the slices (Ts2 and Ts12). The test subjects might feel that it is easier to evaluate a full range of

instruments, rather than one instrument at the time. It is probable that time is a large factor in this,

since a slice will be shorter than an instrument-track. Evaluating a longer piece of music is harder than

a shorter piece, since the longer track might contain several elements the test subject both like and

dislike.

As mentioned, the graphs include trendlines. We expected that the trendlines were going to reveal

whether the slices and instrument tracks was getting better or worse over the course of multiple iter-

ations. The expectation was that the songs would get better across test subjects, and that the

trendlines could hint at this. Although both trendlines are gradually moving upwards, the scattered

data makes it hard to conclude any real pattern. More test subjects are needed before a clearer and

more visible pattern emerges. It is, however, evident that most of the test subjects thought that the

generated songs were getting better with each iteration, but it is not enough to show that the overall

quality of the generated songs moves in a positive direction.

The test subjects were asked which of the three generated songs they liked the best. Only one an-

swered that they felt there was little difference between the songs. Of the 14 other responses, half

said that the third song they generated was their preferred. Song 2 got in turn 5 votes (35.7%). Figure

28 displays the distribution of answers.

Figure 28 – Overview of what song the user liked the best

The combination of the results presented in Figure 27 and Figure 28 point towards a clear trend that

the test subjects find the songs generated from their preferences to be better than the ones who are

not. Most of the TS think that the songs are improving with each iteration, and song 2 and onward is

considered the better songs. However, it is important to clarify that the songs are not improving by

mere chance. As mentioned in Section 4 and Section 5, the algorithm has some built in randomization

that it will select randomly between the top three recommended tracks. This random part of the song

Song 1
14.29%

Song 2
35.71%

Song 3
50.00%

Which song did you like the most?

Song 1 Song 2 Song 3

62

generation could lead to some false positive results, especially with the relative small dataset we use

here. We therefore asked the users to describe how the best song of the three was better than the

others.

Two aspects were present in the descriptions, both related to the previous questions: transition be-

tween the parts and unison of instruments within the parts. We have tried to analyse the answers as

objectively as possible. However, analysing free-form text is prone to confirmation bias. Therefore,

we have tried to be as open with our interpretations as possible.

Of the 14 answers, 5 mentioned directly that the song they liked the best had better transitions be-

tween the slices. 3 people partially mentioned better transitions, meaning they described the

progression of the song as being better than the other songs. For example: “I liked the guitar much

better in the last song. I [Sic] was a bit heavier in general, and then a little more soft [Sic] in the chorus.”

This mention of the changing guitar is describing the transition between different guitar-parts. The

total number of people mentioning or alluding to the transitions in the songs adds up to a little over

half (57%) of the answers.

A larger portion of the test subjects mentioned how well the instruments played together. 11 of the

answers directly describe how the unison between the different instruments was better than the

other songs. Only two persons eluded to the unison of instrument. One of the eluding answers were:

“It appealed more to my taste, the softer parts also felt more "natural" in a weird way. [...]” The last

part of the quote is describing how the instrument parts in the softer parts work better in unison.

It is a lot easier for the TS to compare how instruments work together, contrary to how the song

transitions to different parts. Additionally, it seems as if people base their preferences on the quality

of how well the instruments play together, over the transitions between the parts. This is an interest-

ing observation and further developments, or similar projects, could leverage this. Based on this

observation, we argue that creating good parts/slices should be prioritized over creating good transi-

tions between the parts. The test subjects notice bad combinations of instrument tracks much more

than bad transitions. However, they certainly notice transitions that are too jarring.

Later in the survey, the test subjects are asked to create another song, and compare that to the last

of the three prior ones. By comparing these two songs, we expected to determine whether the songs

will get better with each iteration. However, during development we found that the fourth song often

suffered from over-specialization or that the recommendation engine could not make a new recom-

mendation. The last part is due to the user having explored every track that other users have rated.

When that happens, the item-based algorithm cannot “find” new tracks, and the system returns to

the knowledge-based approach. Therefore, we wanted to query the test subjects about their opinion

of the difference between the third and fourth tracks. We realized after running the testing that a

better alternative to the mentioned question would have been to have the user compare the song

they liked best (from the first three) to the newly generated one. This would have been a more inter-

esting observation, since the test subject already had selected their favourite.

We have created two graphs from the question about which of the mentioned two songs the user

prefers. The first graph (Figure 29) displays the distribution of answers. As seen in the figure, 60% of

the test subjects favour song 4 (“the song generated now”). We also measured the progression of

votes to this question. This is shown in Figure 30.

63

Figure 29 – User comparison of the two latest generated songs

The horizontal values in Figure 30 are an abbreviation for the answers. It was easier to map the values

into the graph using numbers instead of text. The numbers translate to the following: 1 is “Song gen-

erated now”, 2 is “last from part 1”, 3 is “equal” and 4 is “cannot tell any difference”. We also included

a trendline in this graph. The trendline is more useful in Figure 30 than in the other graphs, since the

points are less scattered. The trendline shows a shift from preferring the last generated song in part 1

towards the latest song. To create a more nuanced dataset of answers, it would be preferable with

more data for this question. However, using the data at hand, this strengthens that the generated

songs will get more accurate, both as a user used it more and as more users interacted with the pro-

totype.

Figure 30 – Trendline of user comparison of the two latest generated songs

We also asked the test subjects if there was anything notably different between the two songs they

compared. The answers are in free form text, meaning that the TS could write as much or as little as

they would like. Most of the answers are regarding the song they did not like. Transition between the

different slices/parts are a common theme for many of the answers. This is an interesting aspect to

Song generated now
60%

last from part 1
40%

equal
0%

cannot tell any difference
0%

Which is the better song of the two?

y = -0.0607x + 1.8857
R² = 0.2867

0

1

2

3

4

Ts1 Ts2 Ts3 Ts4 Ts5 Ts6 Ts7 Ts8 Ts9 Ts10 Ts11 Ts12 Ts13 Ts14 Ts15

Which is the better song of the two? [progression]

Values Linear (Values)

64

compare to the findings earlier. In earlier questions the test subjects seemed to care more about the

individual instruments fitting together rather than the transitions between slices. At the stage of the

fourth generated song, the transitions seem to be more important. This aligns with the arguments we

made earlier, about having good slices prior to having good transitions. The test subjects might feel

that the fourth song (and perhaps even the third song) have good slices, so now the transitions are

the focus. The answers to next two questions shed some light on this hypothesis.

The user is asked to focus solely on the last song they generated (the fourth song). Two questions,

each with a follow-up questions are presented to the test subject. The first question is a multiple an-

swer question, and the question is “How well did the different instruments fit together?”. The five

possible answers and what the test subjects answered is displayed in Figure 31.

As the pie chart in Figure 31 displays, 53% of the TS thought that the different instrument worked “for

the most part well” together. On the other hand, the 27% that though the instruments for the most

part did not fit well together is an interesting observation. Comparing these numbers to the previous

results from Figure 27, we see that the number of negative responses has been stable. Circa 30% of

the answers from both Figure 27 and Figure 31 have been negative. No test subjects answered “not

well at all” about how the instruments fit together in the fourth song. From the first three songs, there

were 3 answers that said that the instrument parts became “worse towards the last song”. We there-

fore argue that the generating process has become slightly more accurate and has eliminated the

worst combinations of audio tracks.

Figure 31 – User feedback to how well the instruments in song 4 fit together

The follow up question is aimed at the TS that answered (in the previous question) that some of the

parts did not fit well together. Most of the answers detail specific sections of the songs they did not

like, which is to be expected.

not well at all
0%

most part not well
27%

neutral
7%

most part well
53%

very well
13%

How well did the different instrument parts fit together?

not well at all most part not well neutral most part well very well

65

The answers often relate that the guitar track is not synchronized with the rest of the instruments in

the mentioned section. This is a problem that other generated songs also have revealed. The issue

with synchronization is not related to the recommendation engine, but to the audio clips and the song

creation process (how the tracks are merged together). Thus, the synchronization problem is not di-

rectly related to the research questions, but they impact the results, which is unfortunate. On the

other hand, the fact that the complaints are on the synchronization could mean that the recom-

mended tracks are all valid recommendations, and that the errors only arise in the merging of the

tracks. However, there is not enough data to sufficiently confirm this hypothesis.

Like in earlier questions, it is necessary to measure the success of the transitions between the different

sections in the fourth song generated. This is done through a question about the general consistency

of the newest song. Figure 32 displays the results. 4 out of 15 TS answered that the song did not have

a general consistency, which makes 27%. The rest, 11 out of 15 TS gave a positive response. The inter-

esting results here is the people that did not think there was a general consistency of the song. These

four TS were asked to elaborate on why they though there was a lack of consistency. The four answers

are regarding jarring transitions due to guitar effects found in the audio tracks. For example, one of

the comments is regarding some reverb27 present in one of the guitar tracks. The following guitar track

does not have reverb, so the effect ends when the new track begins. From this, and the previous

arguments regarding merging of tracks, it is evident that the individual audio tracks have a great

amount of influence to the song in general. The user will notice faulty merging or audio tracks that are

somehow disturbing the flow of the composition.

Figure 32 – User’s opinion of the consistency of song 4

27 Reverb is an effect that makes it sound as if the instrument is playing in a large room.

Yes
73%

No
27%

Did the song have a general consistency from start to end?

Yes No

66

The generated songs are getting increasingly personalized with each iteration. The test subjects report

that they think the songs are getting better, which leads to the conclusion that their preferences are

taken into account when generating the songs.

The survey contained questions regarding the test subject’s opinion on the implemented feedback

system. These questions are asked right after the test subject has answered the questions regarding

the first three generated songs. Including the questions about the feedback process at this point in

the survey, served as a break from the song creation loop. These questions are regarding the 1-to-5

feedback that the prototype asks the user to give, during the song generating process. There are four

questions, where one of the questions is a follow-up question.

The first of the feedback questions simply ask the test subject if they though that giving feedback in

the prototype was difficult. There are three possible answers, which are displayed together with the

distribution of answers in Figure 33. Forty percent of the test subjects though it was difficult to rate

the different sections when interacting with the prototype. Similarly, forty percent also found it nei-

ther difficult nor easy to rate the items in this manner. Only 20% (3 out of 15) of the test subjects

thought it was easy. This highlights the need for change in the feedback system, as the system might

be perceived as too difficult or to abstract to use. A follow-up question was asked in order to find out

what aspect of the feedback process was difficult. Seven people answered the follow-up question.

These seven answers revealed three areas of difficulty.

Figure 33 – User response to the difficulty of giving feedback

The first area was that it was difficult to tell the different sections in the songs apart. One of the an-

swers highlighted that a slice would contain multiple small parts that they liked, but equally many

parts they did not like. For example, if the drums end to intense, it might lessen the quality of the

entire slice. A test subject felt that there was no real way of expressing this, thus making it difficult to

give a rating. Two other subjects also expressed this difficulty, however one of them has bad hearing.

Differentiating the different instruments and sections with minor changes was difficult for him. He

No, it was easy
20.0%

Neither difficult,
nor easy

40.0%

Yes, It was difficult
40.0%

Was it difficult to give feedback on pieces of music in this
way?

No, it was easy Neither difficult, nor easy Yes, It was difficult

67

explains that the instruments blend into each other. Although the design of the prototype did not

prioritize accessibility, it is an interesting point to keep in mind for later work.

The second area of difficulty highlighted by the test subjects is the lack of a graphical user interface

(GUI). As detailed in the prototype description section (Section 4.1), no real development time was

spent on creating a user interface. The test subjects interact with a terminal window. Since sound is

the primary aspect of the prototype, little time was spent on creating a GUI. Two of the test subjects

noted that a GUI with instructions or guidelines would have made the process easier and more intui-

tive.

The last area of difficulty was determining how the feedback was being used. One of the test subjects

noted that without knowing how the feedback was being used, it was difficult to know what aspects

to focus on. The user later told the test supervisor more about this. He said that he was unsure if

elements in the recording should be considered when determining if the clip was fitting. For example,

some of the clips have different left-right panning28, which becomes extra noticeable when they are

appended after each other. The user felt it was unclear what to prioritize during the rating process.

Circumventing this issue with a GUI or with better instructions from the test supervisor is certainly

possible.

The prototype is created as a product for entertainment. Therefore, the song process needs to be

enjoyable. The only part of the process that is not automated is the feedback section. As a result, some

evaluation of the feedback system was necessary. We asked the test subject (TS) to rate how they felt

about the feedback process. There were five answer alternatives to this question, and the answers

are detailed below, in Figure 34. Alongside this question, a freeform question was also included. In

this freeform question the TS could write as detailed they like about the process of rating music in this

manner. With these two questions we expected to uncover whether this feedback process was some-

thing the user liked to do and if it allows the user to express themselves.

28 Panning is best illustrated when listen with a headset. For example, audio that is panned completely to the

left is only audible in the left ear. Panning ranges from full left, through the centre (both ears) and then to the

full right.

68

Figure 34 – User impression of giving 1-5 ratings on pieces of music

As seen in Figure 34, almost half (46.7%) of the answers reported that the process of giving ratings

was fun. This constitutes 7 out of 15 answers. Additionally, two test subjects thought the process was

very fun, making the total positive percent amount to 60%. Most people thought that the feedback

process was fun to do, however we still do not know if the TS felt that it allowed them to express

themselves. This is particularly relevant since one of the previous questions revealed some uncertainty

about how the feedback was being used and what parts of the clips to focus on.

Most of the answers in the freeform question, following the question illustrated in Figure 34, state

that the TS found the feedback process enjoyable and interesting. Four of the answers highlight that

having to rate both slices and instruments tracks was a good thing, since they felt that it would have

been hard to rate an entire song with a single score. One of the four explains that rating the slices was

a lot easier, since it was more contained. However, when asked to rate the instrument tracks, he felt

that it was harder. The main reason was that the instruments tracks demanded the test subject to

listen to “the big picture” of the song. The potential for more things to be of varying quality is greater

when analysing the horizontal axis29 of the song, contrary to the vertical axis. This is due to the number

of items/tracks in each axis. The vertical axis only contains three tracks that are merged together. The

horizontal axis on the other hand can contain a lot more tracks. The number of tracks is dependent on

how many sections the song has, since each section will contain one track.

Two of the TS recommend that the user is given more information about what aspects to focus on

when rating. If the recoding of a track is of poor quality, but the music in the audio track is good, the

entire track might get a bad score because the user does not know what to focus on. Another sugges-

tion from the TS was an alteration to the rating scale. Instead of the one-to-five rating system, the TS

suggested that the ratings should be based on feelings instead. “Maybe a bit hard to give a score to a

piece of music. Maybe each score could relate to a feeling instead. e.g 1 = boring, 2 = meh, 3 = inter-

esting etc.” This is a sign that the user did not really know what to listen for in the song. The

29 The axis is defined in Section 4.2

It was very boring
0.0%

It was boring
6.7%

I did not mind
33.3%

It was fun
46.7%

It was very
fun

13.3%

What is your impression of giving ratings like this?

It was very boring It was boring I did not mind It was fun It was very fun

69

implemented scoring system was too vague in terms of what the numbers symbolize. This highlights

one of the arguments made earlier about a user interface and a clearer set of instructions.

7.2 DISCUSSION
This section contains the discussion of the success of the research questions. Thus, the section is di-

vided into two sub-sections, one for each research question. In the first section, the success of the

first research question is discussed: whether RecOrder is successful in creating personalized content.

The following section discuss the second research question: if RecOrder is a successful approach to

use recommendation systems to create new content.

7.2.1 Personalized Computer-Generated Music (RQ 1)

Over 70% of the users think that the songs have a general consistency, and that the songs were im-

proving. We therefore assume that the users accept the recommendations. By accept we mean that

they feel they are accurate. This is reflected in the answers shown in Figure 27. Although the ac-

ceptance of recommendations is not directly indicative of personalized content, the user’s perceived

accuracy of the recommendation is critical to them feeling that the system “listens” to their feedback.

By getting higher satisfaction scores, the user show that they trust the system, allowing it to further

map their preferences.

The songs generated after the second song are the ones that are the most liked. This shows that the

songs based on the recommendations are more liked. Once the item-based engine starts recommend-

ing tracks, the user feels that the songs get better. Additionally, as more songs are generated, the

users start to favour the last generated songs. This points towards an increase in song-quality over

multiple iterations. This increase in reported quality of songs is also a sign that the recommendations

are getting more accurate, and that the prototype creates better content.

Based on the arguments presented in the two paragraphs above, we argue that the prototype created

for this thesis is successful in generating personalized music. The personalization aspect is true, since

the recommendation system selects the song components, and that the users feel that the prototype

selects audio clips based on their preferences. A clear trend towards positive development in the

songs highlights the improving accuracy of the recommendation engine. As a result, we consider the

prototype a possible solution to generating personalized music.

7.2.2 Using Recommendation Systems to Create New Content (RQ 2)

To answer the second research question, we need to determine if recommendation systems are fitting

for content creation. To this end we must consider the limitations recommendation engines impose.

These limitations stem from the core functionality of recommendation systems, and directly affect the

viability of implementing recommendation systems into content creation systems.

Firstly, the cold-start problem is an important challenge to consider. Recommendation engines cannot

make predictions (recommendations) without user preferences. The prototype created for this thesis,

or any recommendation system, must learn what the user likes and dislikes before it can recommend

content. Therefore, the first content a user creates, in a system using recommendation algorithms as

decision-agents will never be based on their preferences. This is one of the major challenges to imple-

menting recommendation systems as content creation engines. Overcoming the cold-start problem is

70

therefore critical to the success of recommendation algorithms as decision-agents in a content crea-

tion system.

The prototype features a hybrid switching engine, which combines the strengths of knowledge-based

filtering and collaborative item-based filtering. The prototype manages to create content despite the

lack of user preferences, thus successfully circumventing the cold-start problem. As shown by the re-

sponse of the test subjects, the songs based on people’s preferences are superior to the ones that are

not. Implementing a more complex knowledge-based filtering (KBF) method can even out the quality

between the songs generated from the KBF and the item-based algorithm. However, by creating a

more detailed set of rules the system can risk becoming less robust. The stricter rules might impose a

smaller selection of tracks, thus making the results less dynamic. The user might feel that the system

always creates the same set of songs when using the knowledge-based approach. Having the user

answer a small query about their music taste is also a solution to the cold-start problem. The user

could then be asked to select their favourite genre or listen to a series of songs and report to the

system if they like them or not. By having a small query prior to creating the first song, the system can

map out the most foundational of the user’s preferences.

The second limitation is that the recommendation system can only recommend content if there is

content the user has not rated. In other words, if the user has rated every item in the item-library,

RecOrder cannot make any new recommendations using the item-based algorithm. This is less of an

issue in settings with a larger selection of available items, but still an aspect that needs careful consid-

eration. The experiment setup for RecOrder was created with this limitation in mind. The number of

generated tracks was limited to four, to minimize the probability of the user rating every item. During

development of RecOrder, we found that after the fourth generated song the collaborative filtering

algorithm was not able to give any valid recommendations. This is due to the low number of audio

tracks (37 tracks) being split into three categories (one for each instrument). In each slice of the song

there needs to be one track of each category, meaning the possible permutations of tracks is made

smaller. It is a possibility that the low number of tracks put a limit to how close RecOrder was able to

get to the users’ preferences. However, we argue that the system still got close enough for the users

to notice their preferences shaping the songs. The users’ answers from the evaluation support this

claim. We suggest a solution to the problem of rating every item in the library: During the offline phase

(explained in Section 2.1.1), the system can delete ratings based on some parameters. For example,

deleting tracks that are older than a certain number of days. This way, the system minimizes the prob-

ability of a user discovering every item. However, the system will lose the full history of the user-

preference. This can have many disadvantages. Most prominently, this increase the probability of the

system to regenerate content that the user did not like. The user might remember the tracks and get

annoyed that the tracks they know they rated poorly still appear as recommendations. Therefore, it is

necessary to have a more nuanced selection of the tracks will be deleted.

Due to the collaborative nature of the implemented algorithm, recommendations can only be made

for tracks that other users have rated. This is the third limitation, and it often leads to an uneven

distribution of items. The long-tail effect is a common result often seen in systems with recommenda-

tion systems (Schafer, et al., 2007). The solution we used in the prototype was successful in stopping

the long-tail effect. As explained in Section 4, the algorithm finds the three most recommended tracks,

and selects randomly between them. This creates a slightly more distributed selection of tracks. Figure

35 displays how many times each track in the prototype has been rated. The different instrument

types are colour-coded: green is the guitar tracks, orange is the bass tracks and blue the drum tracks.

Every track in the content-library have received a rating, and the smallest number of ratings for a track

is four. There are more guitar tracks than the other two instrument tracks.

71

Figure 35 – Distribution of rated tracks. Instruments are colour coded: green is guitar, blue is drums and orange are bass

It appears, due to the uneven distribution of tracks per instrument, that the guitar tracks are the least

used tracks. This is because there is a larger set of guitar tracks for the prototype to select from. Adding

the total number of times used for each instrument reveals a more even distribution. The guitar tracks

are used 550 times, the bass tracks are used 521 and the drums 517 times. This distribution almost

equals an even split between the instruments. The guitar track has 35% of the ratings, while the bass

tracks have 33% and the drums have 32%. However, we still see a linear regression of how many times

each instrument has been used. The distribution of tracks is too linear to be indicative of a long tail

effect. It is therefore evident that the prototype prioritizes tracks that are previously rated, but still

manages to vary the selection.

A potential issue that needs to be considered is the case of over-specialization. Over-specialization

can stem from the combination of limited feedback due to uneven distribution of recommended

items. If the system only recommends items from a certain category, the user will only see items from

that category. This is an inherit flaw with content-based systems. Additionally, over-specialization can

appear when collaborative filtering algorithms only recommend content that are similar to the con-

tent the user has already seen. Our prototype has to few items for over-specialization to occur, thus

we cannot determine if it appears in the system.

The forth limitation is that recommendation system is dependent on feedback on their recommenda-

tions. The feedback is used to make predictions. As more feedback is collected from the users, the

accuracy of the recommendations will increase, however, when combining automation and recom-

mendation systems an issue of how to collect feedback arise. Our solution was to slightly compromise

the automation by having the user rate different sections of the song. The generating part is still fully

automated, but the feedback part is not. A possible solution to turning the feedback process into a

fully automatic process is to only use implicit feedback. Several of the test subjects suggested this as

an improvement to the feedback process. They suggested that the preferences should be determined

from the users listening history. By analysing the actions of the user, one could try to imply if they like

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

24 19 18 29 16 20 21 28 26 23 17 22 13 14 15 27 25 12 36 11 2 35 7 33 10 31 4 5 8 30 9 34 37 1 32 6 3

N
u

m
b

er
 o

f
ti

m
es

 u
se

d

Track id's

Distribution of rated tracks

72

or dislike the generated content. When using implicit ratings, the user does not have to rate any tracks.

However, implicit ratings will never be able to discover the nuances of a person’s preferences, and

this would result in lesser accuracy. Generated content like in the case of this prototype is often com-

plex and consist of multiple parts. The distribution of the feedback across the different parts is a

challenge. The user should be able to specify specific parts they did not like. This is hard to achieve

using only implicit feedback. In addition, there is a temporal aspect to the process. Implicit feedback

might not be able to catch the change in a user’s preferences as quick as explicit feedback will. On the

other hand, a combination of both implicit and explicit feedback could yield a more nuanced result.

We suggest an interactive user interface where the user can give feedback to parts of the song. For

example, in the case of generated songs, the user could highlight sections of the song and rate those

sections alone. The system would then get specific feedback for smaller sections of the song.

Based on the highlighted limitations and how the prototype deals with those limitations, in addition

to the results from RecOrder, we conclude that recommendation systems can be used as an auto-

mated content creation engine. Domains (or settings) where the user can give feedback, either

explicitly or implicit is necessary for the accuracy of the prediction from the recommendation algo-

rithm. In settings where the user is not able to return feedback to the recommendation system, the

recommendation engine will provide weak predictions. This is especially true if the content creation

aims to generate personalized content, tailored to the user. In that case, feedback is critical to the

success of recommendation algorithms in the role of decision-agents. That is, if recommendation al-

gorithms are to be the system that selects what content to include in the new generated content,

there is a need for feedback from the user. Additionally, since recommendation systems take feedback

and improve the recommendations based on them, the domain also needs to facilitate an iterative

content creation cycle. Settings where there is a possibility of the user discovering every item in the

content library, weakens the validity of choosing recommendation systems as the decision-agent. Rec-

ommendation systems typically do not recommend the same item more than one time to the same

user (given that the user gave a rating to the item). This is a weakness that the implementation needs

to consider.

In short; using recommendation systems to create new content is possible, if they are implemented

as decision-agents in certain settings. The settings need to facilitate user feedback, have an iterative

content creation process or allow the user to create more than one piece of content. For collaborative

filtering algorithms, the setting also needs to facilitate multiple users. There should also be a low risk

of the user discovering every item in the system.

73

8 CONCLUSION

8.1 SUMMARY
Two research questions were posed for this thesis: how can computer generated music be personal-

ized? and how can a recommendation system be used to create new content? We created a prototype

to explore these research questions. The prototype aimed to see if recommendation algorithms could

be used in unison with content creation, and therefore generate new personalized content. Music was

chosen as domain for the prototype. By merging several small audio clips together, the prototype

creates new songs. The prototype consists of three major components: the song generator, the rec-

ommendation system (containing two recommendation algorithms) and the feedback system.

The song generator creates music consisting of three instrument tracks: drum, bass and guitar. First,

the song generator selects a random song structure. The generator then fills in the different sections

of the song structure with audio clips. The recommendation system selects the audio clips from the

content library. Once the song generator has created every section, the song generator merges the

sections together, creating the song.

The recommendation system selects what audio clips the song shall use. The selection is based on the

preferences of the user. The recommendation system consists of two recommendation system algo-

rithms and is structured as a hybrid switching system. This means that the system will select the most

fitting recommendation algorithm based on what is needed in the song. The primary algorithm is

weighted slope one, an item-based collaborative filtering algorithm. The secondary algorithm is a

knowledge-based algorithm, created specifically for this prototype. The selection of weighted slope

one was based on a paper (Lemire & Maclachlan, 2005), and the implementation was directly based

on the code from a tutorial (Zacharski, 2015). The code for the slope one implementation was slightly

modified to fit the project, however, most of the code remained unchanged.

After creation of the song is done, the prototype starts the feedback process. This process queries the

user for feedback regarding the generated song. The prototype asks the user to rate different sections

of the song, creating a view of the user’s preferences. The ratings are limited to a 1 to 5 score. These

ratings are leveraged in later iteration of the song creation, to make more accurate recommendations

of tracks.

We tested the prototype by running a combination of a survey and prototype interaction. Fifteen test

subjects partook in the testing of the prototype. We selected the test subjects at random, with little

regard to their musical experience. The test subjects were asked about their musical background, but

the selection of test subject was ignorant of their musical background. During the testing the test

subjects created multiple songs using the prototype and the survey asked them to compare the dif-

ferent generated songs. Each test subject created a total of four songs with the prototype.

Our findings indicate that the test subjects were overall happy with the generated content. They re-

port an increase in quality as more songs are generated. The generated songs that was best liked by

the users were the songs generated last. This points toward an increase in the quality of the generated

songs, or at least an increase in recommendation accuracy. Additionally, we saw tendencies towards

an improvement in the recommendations across users, although we do not have enough data to fully

conclude this. When examining which of the songs the test subjects liked best, across multiple users,

we found that the later songs became increasingly more popular as more tested the prototype. We

used these arguments to conclude that the prototype successfully includes the users’ preferences into

the song creation process.

74

Our implemented feedback system received mixed reviews. Although most of the test subjects

thought it was a fun process, some of the users found it challenging. The output and input that the

feedback system used was displayed through a terminal window and not every test subject was com-

fortable interacting with that type of user interface. Some of the test subjects requested the need for

a more complete user interface, to make the feedback process easier. Additionally, some reported

that they found it challenging (but often fun at the same time) to rate sections of music with numbers.

8.2 FUTURE WORK
We include some suggestions to future work on this project. There are four primary areas of improve-

ment for the prototype.

The first area of improvement is a better user interface. As mentioned, some of the test subjects re-

quested a more user-friendly graphical user interface (GUI). Additionally, by adding a GUI the feedback

process could have been made easier, since the user interface might have visualized the rating process

better. We therefore suggest developing a more functional GUI.

The second area of improvement is that more audio clips would have been beneficial to the prototype.

By including audio clips with different beats per minute and in different keys, a more nuanced set of

songs could have been generated. Additionally, adding more genres and clips with different instru-

ments to the selection of clips could have been interesting. A more formalized method of creating the

audio tracks would have been beneficial. When creating the audio tracks to that are used in RecOrder,

there was no defined method of creation. This resulted in variance in left-right panning, volume and

effects (for example reverb for the guitar). This was noted by some of the test subjects. Small differ-

ences in the audio quality might impact the resulting song. As mentioned, several of the test subjects

reported that several songs suffered from bad transitions, where the previous audio track would be

cut off too early or continue too long. Although a better method of merging the tracks together can

solve some of these issues, some of the fault is also in the audio tracks themselves. In fact, this will

always be the case when creating a library of small elements that are merged together: minor incon-

sistencies will impact the generated content.

The third area of improvement is regarding the recommendation system algorithms. Comparing the

result from different recommendation algorithms, could yield interesting results. Especially in regard

to the degree of perceived personalization of the generated music. We suggest not only testing differ-

ent item-based algorithms, but also to use user-based algorithms and content-based filtering

algorithms. Machine learning algorithms could also serve as an alternative to recommendation sys-

tem. It would be interesting to compare the degree of personalization of the generated music between

a system that use machine learning, versus a system that use recommendation system. Additionally,

by creating similar applications within different domains, we can achieve a broader sense of the suc-

cess of the personalization of the generated content. To create a comparable system to the prototype

created for this thesis, the domain should have content that it is possible to split into smaller segments

and to combine them into new content. In other words, the pieces of content need to be modular and

flexible.

Finally, we also suggest creating a more complex song creation process. The process we implemented

into the prototype is specifically created for three instruments. It is possible to create a more dynamic

system. Our suggestion is to abstract the instrument layers, from guitar, bass and drums to a more

general naming convention. For example: rhythm, backing section and lead section. That way, it is

75

possible to place more instruments into each instrument layer. Another aspect of the song creation

process that could have been made better is the selection of clips in the same slice. The users notice

bad combinations of audio clips (in a slice) more often than weak transitions between clips. This as-

sertion is based on the number of responses highlighting bad combinations over good combinations.

We therefore argued that getting good recommendations for each slice is more important than having

good transitions between the slices. We also suggest that additional work into the algorithms that

select the structures of the song section. A more complex system can create more dynamic songs. For

example, in the start of the song it could be fitting to only have the guitar playing and then introduce

the other instruments one by one. This process is also open for a smarter and more flexible decision-

aiding system, that can learn what type of song structure the user likes. Either a recommendation

system or a machine learning system is fitting for this role.

76

REFERENCES

Adomavicius, G. & Tuzhilin, A., 2005. Toward the Next Generation of Recommender Systems: A

Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data

Engineering, pp. 734-749.

Aggarwal, C. C., 2016. Recommender Systems - The Textbook. New York: Springer.

Appen, R. v. & Frei-Hauenschild, M., 2015. AABA, Refrain, Chorus, Bridge, Prechorus - Song Forms

and Their Historical Development. Samples: Online-Publikationen der Gesellschaft für

Popularmusikforschung / German Society for Popular Music Studies e. V., 10 03.

Bobadilla, J., Ortega, F., Hernando, A. & Jesús, B., 2012. A collaborative filtering approach to mitigate

the new user cold start problem. Knowledge-Based Systems, pp. 225-238.

Burke, R., 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-

Adapted Interaction, November, 12(4), pp. 331-370.

Burke, R., 2007. Hybrid Web Recommender Systems. In: The Adaptive Web. Berlin: Springer-Verlag,

pp. 377-408.

Casey, K., 2018. ‘Earworm melodies with strange aspects’ – what happens when AI makes music.

[Online]

Available at: http://robohub.org/earworm-melodies-with-strange-aspects-what-happens-when-ai-

makes-music/

[Accessed 05 April 2018].

Celma, Ò., 2008. Music Recommendation And Discovery In The Long Tail. s.l.:Springer.

Covach, J., 2005. Form in rock music. In: Engaging music: Essays in music analysis. s.l.:Oxford

University Press, pp. 65-76.

Feil, S., Kretzer, M., Werder, K. & Maedche, A., 2016. Using Gamification to Tackle the Cold-Start

Problem in Recommender Systems. San Francisco, ACM, New York, pp. 253-256.

Ferwerda, B., Tkalcic, M. & Schedl, M., 2017. Personality Traits and Music Genres: What Do People

Prefer to Listen to?. Bratislava, ACM.

Ferwerda, B., Yang, E., Schedl, M. & Tkalcic, M., 2015. Personality Traits Predict Music Taxonomy

Preferences. Seoul, ACM.

Ghedini, F., Pachet, F. & Roy, P., 2015. Creating Music and Texts with Flow Machines. In: G. a. A. S.

Corazza, ed. Multidisciplinary Contributions to the Science of Creative Thinking (Creativity in the

Twenty First Century). s.l.:Springer.

Hedges, S. A., 1978. Dice Music in the Eighteenth Century. Music & Letters, Vol 59, No 2, April.

Herlocker, J. L., 2000. Understanding and Improving Automated Collaborative Filtering Systems.

s.l.:ResearchGate - University of Minnesota.

Herlocker, J. L., Konstan, J. A. & Riedl, J., 2000. Explaining Collaborative Filtering Recommendations.

Philadelphia, ACM, pp. 241-250.

Hug, N., 2017. Surprise, a Python library for recommender systems. [Online]

Available at: http://surpriselib.com/

77

Lam, X. N., Vu, T., Le, T. D. & Duong, A. D., 2008. Addressing cold-start problem in recommendation

systems. Suwon, ACM. New York, pp. 208-211.

Lemire, D. & Maclachlan, A., 2005. Slope One Predictors for Online Rating-Based Collaborative

Filtering. SIAM Data Mining, pp. 21-23.

Liebman, E., Khandelwal, P., Saar-Tsechansky, M. & Stone, P., 2017. Designing Better Playlists with

Monte Carlo Tree Search. Texas, s.n.

Lika, B., Kolomvatsos, K. & Hadjiefthymiades, S., 2014. Facing the cold start problem in

recommender systems. Expert Systems with Applications, pp. 2065-2073.

McNee, S. M., Riedl, J. & Konstan, J. A., 2006. Being Accurate is Not Enough: How Accuracy Metrics

have hurt Recommender Systems. CHI 2006.

O’Donovan, J. & Smyth, B., 2005. Trust in Recommender Systems. Adaptive Information Cluster, pp.

167-174.

Open Source Initiative, 2007. The Open Source Definition. [Online]

Available at: https://opensource.org/osd

Oracle Corporation, 2018. MySQL. [Online]

Available at: https://www.mysql.com/

[Accessed 29 03 2018].

Papadopoulos, A., Roy, P. & Pachet, F., 2016. Assisted Lead Sheet Composition using FlowComposer.

Toulouse, Sony CSL Paris.

Purwins, H., 2005. Profiles of Pitch Classes: Circularity of Relative Pitch and Key – Experiments,

Models, Computational Music Analysis, and Perspectives. Berlin: Technische Universitat Berlin.

Robert, J., 2017. Pydub. [Online]

Available at: http://pydub.com/

Ronacher, A., 2018. Flask Overview. [Online]

Available at: http://flask.pocoo.org/

Rubens, N., Kaplan, D. & Sugiyama, M., 2011. Chapter 23 - Active Learning in Recommender Systems.

In: F. Ricci, L. Rokach, B. Shapira & P. B. Kantor, eds. Recommender Systems Handbook. s.l.:Springer

Science, pp. 735-769.

Schafer, J. B., Frankowski, D., Herlocker, J. & Sen, S., 2007. Collaborative Filtering Recommender

Systems. In: The Adaptive Web. Berlin: Springer-Verlag, pp. 291-324.

Schedl, M. & Bauer, C., 2017. Introducing Global and Regional Mainstreaminess for Improving

Personalized Music Recommendation. Salzburg, s.n., p. 8.

Statistic Brain, 2016. Statistic Brain. [Online]

Available at: https://www.statisticbrain.com/youtube-statistics/

[Accessed 12 January 2018].

The Python Software Foundation, 2018. About Python. [Online]

Available at: https://www.python.org/about/

78

W3C, 2016. HTML & CSS. [Online]

Available at: https://www.w3.org/standards/webdesign/htmlcss

Yu, D., 2016. Spelunky. 1st ed. Los Angeles: Boss Fight Books.

Zacharski, R., 2015. A Programmer's Guide to Data Mining. [Online]

Available at: http://guidetodatamining.com/

[Accessed 11 2017].

79

APPENDIX A: TABLE OF FIGURES

Figure 1 - Schematic overview of the song creation process ... 7

Figure 2 – Example of the long-tail effect: Artist popularity rank (Celma, 2008, p. 98) 17

Figure 3 – Polyhedral dice. From left to right, number of sides in parenthesis: icosahedron (20),

dodecahedron (12), pentagonal trapezohedron (10), octahedron (8), cube (6) and tetrahedron (4) . 23

Figure 4 – Simple overview of RecOrder’s structure .. 27

Figure 5 – More advanced overview of the structure of RecOrder. ... 28

Figure 6 – Illustration of clips drifting out of sync .. 30

Figure 7 – Active instruments in multiple slices ... 31

Figure 8 – Screenshot of how Spotify displays song progression ... 31

Figure 9 – Vertical merging and horizontal appending explained .. 32

Figure 10 – The creation and appending of slices... 33

Figure 11 – Feedback evaluation axis ... 34

Figure 12 – User selection process in the early iterations of the prototype .. 35

Figure 13 – Schafer, et al. (2007) collaborative-filtering domain properties 38

Figure 14 – Pseudocode for the song creation process .. 44

Figure 15 – Recommendation engine inheritance structure .. 46

Figure 16 – Pseudocode for prefiltering of available tracks ... 47

Figure 17 – Prefiltering dictionary format .. 47

Figure 18 – Pseudocode for the deviation calculation method .. 48

Figure 19 – Pseudocode for Weighted Slope One .. 49

Figure 20 – Pseudocode for the implemented knowledge-based filtering algorithm 50

Figure 21 – Example of the generated graphs .. 52

Figure 22 – Procedure overview of the experimentation ... 54

Figure 23 – Screenshot of the testing setup ... 55

Figure 24 – Distribution of how many test subjects that play any instruments 58

Figure 25 – The test subjects opinions of how well the instrument tracks of the songs fit together. . 59

Figure 26 – The test subjects opinions of how well the parts of the songs fit together. 59

Figure 27 – Comparison between answers in Figure 24 and Figure 25 .. 60

Figure 28 – Overview of what song the user liked the best ... 61

Figure 29 – User comparison of the two latest generated songs ... 63

Figure 30 – Trendline of user comparison of the two latest generated songs 63

Figure 31 – User feedback to how well the instruments in song 4 fit together 64

Figure 32 – User’s opinion of the consistency of song 4 .. 65

Figure 33 – User response to the difficulty of giving feedback .. 66

Figure 34 – User impression of giving 1-5 ratings on pieces of music .. 68

Figure 35 – Distribution of rated tracks. Instruments are colour coded: green is guitar, blue is drums

and orange are bass .. 71

80

APPENDIX B: GIT REPOSITORY

Link to Github repository for RecOrder: https://github.com/ejo034/RecOrder

https://github.com/ejo034/RecOrder

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Preliminaries
	2.1 Recommendation Systems and Related Terms
	2.1.1 Different Types of Recommendation Systems
	2.1.2 Hybrid Recommendation Systems
	2.1.3 Feedback
	2.1.4 The Cold-Start Problem
	2.1.5 Active Learning
	2.1.6 Long-Tail Effect
	2.1.7 Over-Specialization

	2.2 Music Terms
	2.3 Content Creation

	3 Related Work
	3.1 Recommendation systems
	3.2 Music Generating
	3.3 Music and Recommendation systems

	4 Music Generation With Recommendation Systems
	4.1 Prototype Description
	4.2 The Song Generating Process
	4.3 The Feedback Process
	4.4 The Recommendation System
	4.4.1 Hybrid switching
	4.4.2 The Primary Algorithm
	4.4.3 The Secondary Algorithm

	5 RecOrder – The Implementation
	5.1 Programming language and Platform
	5.2 The Implementation of the Song Creation Process
	5.3 The Implementation of the Recommendation algorithms

	6 Evaluation Method
	6.1 Set-up Description
	6.2 Survey run-through

	7 Results and Discussion
	7.1 Results
	7.2 Discussion
	7.2.1 Personalized Computer-Generated Music (RQ 1)
	7.2.2 Using Recommendation Systems to Create New Content (RQ 2)

	8 Conclusion
	8.1 Summary
	8.2 Future work

	References
	Appendix A: Table of Figures
	Appendix B: Git Repository

