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Abstract

This thesis presents the work done on making a prototype tool for journalists more useful
and easier to use through continuous improvements and evaluations. The work builds on
the thesis News Hunter: a semantic news aggregator written by Ole Andreas Christensen
and Kjetil Jacobsen Villanger (2017). This thesis focuses on the further development and
addition of new functionality through iterative processes during development. As well
as new functionality, the thesis focuses on making the project more sustainable for future
use, with better documentation and refactoring of code. News Hunter is a collaborative
project between the University of Bergen and Wolftech Broadcast Solutions. The goal of
this thesis is to add new functionality to News Hunter and better document the project.
This has been achieved by continuing working on Christensens and Villangers source
code, and by adding new functionality in iterative agile steps throughout the develop-
ment. The new functionality has then been evaluated by journalists and graphic reporters
from TV 2 Norway, as well as journalism students from the University of Bergen.
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1 Introduction

1.1 Introduction

As more and more people are online, and with a vast majority of people in the developed
world owning a smart phone, the easy access of news, and the ease of reporting on news
have created a whole new daily life of media. News agencies and news desks around
the world have access to a tremendous load of new information hour by hour, minute by
minute, but it can be hard to distinguish between what is important and what is noise.
With such amounts of data being generated everyday, there is a need for better solutions
to navigate in the stream of information. Journalists that does not have technological
tools to help them may fall behind and not keep up with how fast information changes.
Tools that aid the journalist does already exists, such as Hermes: a semantic web-based news
decision support system (2008), but continuing to improve the tools and explore what can
be done is nevertheless still important. News Hunter is also one of such tools, utilizing
the semantic web to support the journalists in their work.

This project carries on the work done by Kjetil Villanger Jacobsen and Ole Andreas Chris-
tensen in their master thesis News Hunter: a semantic news aggregator (2017). Their work
has implemented clustering, event detection and entity- and keyword extraction from
different news sources. Letting the journalists at work retrieve up to date, relevant infor-
mation in the sea of both valuable and non-valuable data.

The goal and motivation of this enhanced version of News Hunter is to improve on the
overall experience of the application, as well as introduce new functionality that is miss-
ing from the previous version. The overall experience should be visible, from both an
end user perspective, as well as a developer perspective. The thesis is a cooperation be-
tween the author, the University of Bergen and Wolftech Broadcast Solutions AS1 to help
Wolftech explore what is possible with semantic technologies and to accommodate any
new features they require. The thesis does not include any user experience aspects, and
during development UX regards has not been considered more than absolutely necessary.

1http://wolftech.no/news.php
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This improvement of News Hunter will introduce new features, such as automatic analy-
sis of stories written, overview over politicians, overview over last news written by other
news outlets and visualization of who knows who. This enhanced version will aim at
becoming more useful and with better ease of use than its predecessor, both in terms of
day to day use, but also for the developers working on future requests from users and
Wolftech. The application will continue to use semantic technologies at its core to make
reasoning about the data easy, while still maintaining the flexibility to add new incoming
data sources in the future. The boundaries of the research will be limited to developing a
minimum viable product each iteration, while always focusing on making News Hunter
more useful and easier to use.
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1.2 Research Questions

Research Question 1 - How to improve usefulness and ease of use in tools for journalists?

The research question is motivated by how software can be made more useful and easier
to use for journalists, by enhancing an existing prototype tool for journalists. The tools in
question is the second version of News Hunter, a semantic web application developed by
Christensen and Villanger (2017).

Research Question 2 - How to organize projects so that ease of use and usability can be
maintained?

This research question acts as a subquestion of the main research question in RQ 1. The
motivation for this research question is to think about how projects of a certain length and
size can be maintained when there are different roles present. For this project, the collab-
oration goes between the university of Bergen which is in the scientific and social science
domain, Wolftech, which is in the business domain and students. Keeping the project
organized so that new actors can contribute in the future is therefore very important.

3



2 Theory and Technologies

This section gives a brief overview of the different technologies that are used to create a
more useful and usable version of News Hunter, as well as technologies and implemen-
tations that has been developed during the previous iteration of News Hunter done by
Christensen and Villanger.

2.1 Programming Languages

This project uses an array of different programming languages to accomplish its task.
There are two separate backend modules at work, one written in Python and one written
in C#. The frontend is based on AngularJS, the first version of Angular.

2.1.1 Python

There are three main reasons for using Python in this project. One is ease of use in regards
to downloading and parsing news sources from the web, the second is the vast majority
of different text analysis tools used for entity extraction, sentiment analysis, keyword ex-
traction, classification and connecting to other API’s, and the third is as an easy way to
run a backend server. The first use of Python is based on scripts that downloads articles
from all the major news outlets in Norway, Great Britain and USA. It parses the articles
and stores them as JSON. Another script can then push the JSON files to the C# back-
end which in turn adds them to a background processing job ran by Hangfire.io2. The
background processing processes each JSON and send them along the pipeline for se-
mantic annotation and processing. A third script sends the JSON files to the Elasticsearch
database which is used in conjunction with text analysis.

The second use of Python is as a text analysis tool. The tools chosen do their job well and
makes development easy.

2https://www.hangfire.io/
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The third use of Python is to run a Flask App3 which acts as a REST endpoint for connect-
ing C# code with the analysis tools of Python and returning the results after analysis.

2.1.2 C#

C# is used as the main language for the semantic annotation and lifting pipeline. This
is where the data is semantically annotated using the BrightstarDB4 framework. C# was
chosen because it is what Wolftech uses in their daily development and therefore the
project originated from C#.

2.1.3 AngularJS

AngularJS5 is used as the Javascript framework for the frontend of the application. This
version of Angular is about to be deprecated, but because of lack of time, I chose not to
rewrite the application to a newer version of Angular.

2.2 Databases

The project uses two different databases. A semantic graph which stores the various
triples generated via the C# code, and a text database used for text analysis.

2.2.1 BrightstarDB

BrightstarDB has been used as the graph store of choice since the beginning of this project.
I did not want to mess with the database, so I too have used BrighstarDB when enhancing
and extending the usefulness of News Hunter. BrightstarDB works very well with C#
and the .NET platform, so there is no need to change to something else. BrightstarDB
is a an RDF triple store. The positive sides of such database is that it does not require

3http://flask.pocoo.org/
4http://brightstardb.com/
5https://angularjs.org/
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any database schema definition, and therefore it supports data of different shapes. If
specifications changes during development or after the system has been set to production,
it is rather easy for developers to add new data to the database, without the need to
remodel the database schema. BrighstarDB is also licensed with the MIT license, which
means that it can be used in both commercial and non-commercial applications. This is
important if Wolftech is to use Newshunter in the future, for their clients meaning it will
be commercialized.

2.2.2 Elasticsearch

Elasticsearch6 is a RESTful and distributed search and analytics engine, mainly used for
digesting and searching through text. It is very versatile and can be used in many different
scenarios. For this project it is used to retrieve all news articles stored in the Elasticsearch
instance, which mentions a person either in the title or in the body of the article. The data
is stored in Elasticsearch, after it is downloaded from RSS feeds, using Python.

2.2.3 DBpedia Spotlight

DBpedia Spotlight7 is a tool used to automatically annotate entities in a text document.
It provides an API endpoint which lets you pass it some text data and retrieve a JSON
object containing the entities and DBpedia URL’s for said entity. It has four main features;
spotting, candidate selection, disambiguation and filtering. This project uses spotting to
retrieve entities when a user writes an article in the editor. DBpedia Spotlight allows the
user to configure the annotations specified for their needs, through the use of the DBpedia
Ontology (Mendes et al., 2011).

6https://www.elastic.co/
7http://www.dbpedia-spotlight.org/
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2.3 Semantic Technologies

2.3.1 RDF

This project is using Resource Description Framework (RDF)8 as a means to semanti-
cally annotate the news articles into a standard format that can later be queried with the
SPARQL Query Language. RDF is a standard model for data interchange on the Web.
RDF has features that facilitate data merging even if the underlying schemas differ, and
it specifically supports the evolution of schemas over time without requiring all the data
consumers to be changed (Group, 2014).

2.3.2 OWL - Web Ontology Language

OWL9 is a semantic web language used to describe a domain of knowledge. It can de-
scribe things, people, relationships and so on, in a machine processable manner that can
later be verified. By using OWL, the system can derive either implicit or explicit knowl-
edge (W3C, 2012)

2.3.3 SPARQL

SPARQL10 is a query language for RDF. It has since the first working draft in 2004 been
widely adopted, and in January 2008 it became a W3C Recommendation (Pérez et al.,
2009). SPARQL provides tools for accessing information in an RDF graph through the use
of a structured query language. This project uses SPARQL for retrieval of the semantic
data stored in BrightstarDB.

8https://www.w3.org/RDF/
9https://www.w3.org/OWL/

10https://www.w3.org/TR/rdf-sparql-query/
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2.4 Systems for News Desks

A news desk is a busy place, with tight deadlines and an ever increasing demand to
publish the story first online. Journalists wants to write informative and good articles,
backed by facts, and News Hunters aim is to help journalists achieve this. For a lot of
news desks around the world, a good portion of how ratings are measured is trough
clicks online. The more clicks a story gets, the better. Making sure that journalists have
the best tools available for their tasks are important. Wolftech, which was founded in 2011
in cooperation with the news and TV broadcaster TV 2 Norway, creates software aimed
at aiding the journalists and editors in their daily workflow.

2.4.1 Wolftech and Wolftech News

Wolftech has since the start in 2011 worked on developing tools for the modern jour-
nalist. Wolftech News is one of those products. News aims to stimulate creativity and
collaboration. It provides journalists and editorial executives good solutions for working
efficiently and to create, manage and publish media to a variety of publishing platforms
(Wolftech, 2016). The features of Wolftech News are visually summed up in figure 1.

Figure 1: Main features of Wolftech news (Wolftech, 2016)
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2.5 News Hunter

News Hunter started as a collaboration between the University of Bergen (UiB) and
Wolftech. The main goal was to use semantic technologies and natural language pro-
cessing to dissect and analyze a stream of news articles written by in-house journalists,
as well as news articles from other sources. The system was then to semantically anno-
tate the various entities and extract keywords for the story. After the system dissects the
messages and categorizes them, it can then be able to deliver up to date and relevant in-
formation from a variety of sources to the journalists in real time, providing them with a
better tool for writing their own stories (Christensen and Villanger, 2017).

2.5.1 Previous Work

System - 1. generation

As Christensen and Villanger writes in their thesis, Wolftech had previously made some
efforts to semantically annotate content. The first prototype of News Hunter focused on
gathering and marking up posts from Facebook. The prototype was called WT Semantic
Prototype and it gathered Facebook Posts, sent them to Google’s API for language trans-
lation of posts not already in english. The translated text was than parsed through an
online analyzer for additional metadata extraction. The data was stored as triples in a
semantic graph database, with all the entities, keywords and sentiment score connected
to the original post. This first prototype was written in C# with the .NET framework, and
the semantic graph database used was BrightstarDB (2017).

System - 2. generation

The second generation of News Hunter, developed by Christensen and Villanger featured
a fully working web application. The application lets the user browse through different
news stories and get information about which entities and keywords the articles contain.
The user can also write their story and get additional information about their entities
returned. This version however does not support an automatic analysis while writing.
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That is one of the main contributions done in this more useful and enhanced version of
News Hunter.

Christensen and Villanger had most of their focus on working on the backend in the
2. generation of News Hunter. A lot of the more computational and backend heavy
programming had therefore already been implemented by them.

For analysis of categorizations, sentiments and entities, a variety of machine learning
algorithms were implemented by Christensen and Villanger. They worked with machine
learning libraries written for Python, such as:

• AFINN11

• Spacy12

• Textacy13

• Scikit-learn14

AFINN (2011) was implemented for sentiment analysis, and has been used further on
when displaying sentiment of news articles written in the editor. Spacy is a natural lan-
guage processing library for Python and it has been and is still being used to extract
entities from the editor. Textacy is a wrapper library for Spacy, and it has been used by
Christensen and Villanger to extract keywords and key phrases from content gathered
through the RSS feeds. Scikit-learn was chosen as the preferred machine learning library
for Python. It is used in News Hunter to classify the news articles, as well as automatic
classifications when a user writes a new story in the editor.

2.5.2 Related Work

UiB and Wolftech developing News Hunter is not the only work that have been done on
semantic news aggregation. There has also been other projects worth mentioning to get

11https://github.com/fnielsen/afinn
12https://spacy.io/
13https://pypi.python.org/pypi/textacy
14http://scikit-learn.org/
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an idea of the related work in the field.

BBC

BBC was one of the adopters of linked data. Already since 2010 have the sports pages of
BBC.com used semantically linked data. BBC also provides their up to date-ontology to
the public, which lets anyone else describe their data with the same ontology as BBC uses
(Angeletou, 2014).

Kobilarov et al. (2009) has also researched how the BBC has been actively working on
integrating their different categorization systems by integrating their data with links to
DBpedia (Auer et al. (2007), as cited in Kobilarov et al. 2009) and Musicbrainz (Swartz
(2002), as cited in Kobilarov et al. 2009).

NRK

NRK (Norwegian National Broadcaster / Norsk rikskringkasting AS) is also one of the
contributors to the field. They use semantically linked data stored in a graph database
to keep track of every program produced for both radio and TV. They use OpenLink
Virtuoso, which contains over 2.8 petabyte with sound files. By semantically linking the
metadata of each production, they are able to create tools for finding and gathering old
productions easily. This has opened up a lot of new possibilities for the journalists in their
daily work (Børdalen, 2017).

NASS - News Annotation Semantic System

Garrido et al. (2011) has developed a system called NASS, seen in figure 2, which attempts
to classify news documents faster and more reliable, than their human counterpart. They
have worked with real world news paper agencies in Spain to train a model which can
than classify a number of news documents automatically, obtaining really promising re-
sults.
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Figure 2: Overview of NASS

Aggregation of news

Since more and more news articles are published online, the border between each new
publication vanishes. News readers are now able to get a constant feed of news delivered
to their phone, desktop or tablet. With such an ever increasing degree of news it becomes
impossible to filter through it all. Semantic news aggregation tries to cope with that prob-
lem, by aggregating news based on keywords, categorization and entity extraction.
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Krstajic et al. uses in their research, data from the Europe Media Monitor (EMM) to
analyze and visualize news from 2500 sources in 42 languages (Krstajić et al., 2010). The
data is fetched at the instant it is available on EMM’s servers due to their architecture,
which lets their tools analyze the data in near real time.

Bergamaschi et al. has extended the tool RELEVANT to automatically group news related
to the same topic, but from different sources into a web feed reader. RELEVANT is a tool
that computes the relevant values based on strings. RELEVANT is then used to cluster
and group news articles based on their title, both syntactically and by lexical similarity
(Bergamaschi et al., 2007).
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3 Research Methods

For this project, I have chosen to use qualitative methods and design science research. I
have chosen these two research methods, as a means to get valuable feedback from users
of News Hunter. The data gathered from this type of research can be seen as connected
to ideas and concepts developed in News Hunter, as stated by Lawrence Neuman (2013).
I chose qualitative methods because the main goal is to make News Hunter more useful
and easier to use, and I think that by doing focus groups, listening to what the users
are saying about the new features of News Hunter is a very valuable asset for further
development. Since this thesis does not cover the user experience aspect, quantiative and
measurable methods has been omitted.

3.1 Qualitative methods

Qualitative methods lets us reflect about the data before and after the data collection
process. Qualitative data are often obtained through interviews, and the method will
produce more complementary data than just quantitative data. This complementary data
will let us reflect on it simultaneously and generate new ideas for News Hunter at the
same time (Neuman, 2013). Ideas build upon existing ideas, and qualitative methods will
be a well suited choice for the type of evaluation planned at the end of development.

3.2 Design Science Research

This project has used the design science research approach. Information systems (IS) is
an interdisciplinary field, where a lot of different processes intertwines. IS is therefore
composed of a mix of both hardware, software, different design processes and humans
all trying to make a viable product that can help solve real world problems (Hevner and
Chatterjee, 2010).

Hevner and Chatterjee says that the design science research paradigm is highly relevant
to information systems because it directly addresses two of the key challenges of the dis-
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cipline: the central, but somewhat controversial role of the IT artifact itself in IS research,
and the lack of professional relevance of research (Hevner and Chatterjee, 2010).

Herbert Simon has in his book The Sciences of the Artificial conceptualized design science,
and he supports a pragmatic research paradigm that calls for creating innovative artifacts
that solves real-world problems (Simon, 1996). Design science research is therefore a pro-
cess that combines a focus on what is being made, with a high relevance of the application
domain and why it should be made (Hevner and Chatterjee, 2010). It is important to note
that in design science research in the information systems field, there is a loop going on,
depicted in figure 3, between design science research and behavioral science research. If
we do not understand how our artifacts are being utilized we are in a weak spot to make
any assumptions about what systems or artifacts we should create.

Figure 3: The interconnected loop between design science research and behavioral science
(Hevner and Chatterjee, 2010)

Hevner et al. (2004) provides a table of guidelines for how to conduct, evaluate and
present design science research to information systems researchers and business man-
agers. The table can be seen in table 1.
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Table 1: Guidelines for Design Science Research (Hevner et al., 2004)
Guideline Description
Guideline 1: Design as an Arti-
fact

Design science research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation

Guideline 2: Problem relevance The objective of design science research is to develop
technology-based solutions to important and relevant busi-
ness problems

Guideline 3: Design evaluation The utility, quality, and efficacy of a design artifact must
be rigorously demonstrated via well-executed evaluation
methods

Guideline 4: Research contribu-
tions

Effective design science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies

Guideline 5: Research rigor Design science research relies upon the application of rigor-
ous methods in both the construction and evaluation of the
design artifact

Guideline 6: Design as a search
process

The search for an effective artifact requires utilizing avail-
able means to reach desired ends while satisfying laws in
the problem environment

Guideline 7: Communication of
research

Design science research must be presented effectively to
both technology-oriented and management-oriented audi-
ences

3.2.1 Guideline 1: Design as an artifact

As the table states, the first guideline is to produce a viable artifact. In this case, it is the
web application which lets users interact with the data analyzed and gathered from News
Hunter. It is important to note that an viable artifact does not have to be a fully operating
and working system. A viable artifact is something that can be tried out and is something
that lets users interact with it in some way. This project already had a bigger surrounding
system built around it, but for this third iteration of News Hunter, the viable artifact is
new functionality the user can try out and test.

3.2.2 Guideline 2: Problem relevance

The second guideline tells us to focus on solutions that are based on relevant and impor-
tant business problems. News Hunter focuses on the problem of time and information
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gathering when journalists and graphic reporters need to get a hold of different sources
of information instantaneously. Instead of going to lots of different websites for informa-
tion, News Hunter’s relevance is that it tries to combine various information sources into
one.

3.2.3 Guideline 3: Design evaluation

Hevner et al. writes that the utility, quality and efficacy of a design artifact must be rig-
orously demonstrated via well executed evaluation methods (2004). In this thesis, the
design evaluation has been done with end users of the finished product and the product
owners represented by management for Wolftech Broadcast Solutions.

The evaluation was conducted in smaller focus groups, where the participants got an in-
depth demonstration of all the features of News Hunter, with the opportunity to come
with their honest feedback throughout the session.

3.2.4 Guideline 4: Research contributions

The fourth guidelines says that we must provide clear and verifiable contributions. These
contributions are done by making this thesis public and letting other researchers know
what technologies and systems have been developed to get News Hunter up and running.
This project also has documentation in regards to how to run the system locally and what
prerequisites needs to be in place for successfully further enhance the system.

3.2.5 Guideline 5: Research rigor

This guideline talks about how we need to be working in a strict and consistent manner
to perform the best possible design science research. In this case, the construction of the
artifact has been done using a lean and agile method and the evaluation of the artifact has
been conducted with qualitative research methods. With only one person developing, it
is hard to be rigorous about the lean methodologies.
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3.2.6 Guideline 6: Design as a search process

The sixth guideline is all about how we gather information during development within
the bounds of the laws of the environment. For this project, Wolftech has been a valuable
source of information. They have provided a lot of constructive feedback about what
their customers want and ideas on how they can achieve the desired outcome.

Both journalist- and graphic reporter colleagues at TV 2 Norway provided a lot of good
ideas before development. They have also been the main source of motivation for this
work, by supplying the thesis with observations through their daily use of their current
tools at work. I did also gather empirical data from an earlier survey for the potential end
users/colleagues before development started. I will talk more about this survey later on.

My fellow students have been part of the process by giving positive feedback in the pro-
cess of formulating what the thesis is trying to achieve. The students has also been a good
arena for discussion without limitations, to spark the creative process before and during
the software development.

During the work on the thesis, my thesis advisor, Andreas Lothe Opdal have provided
both good ideas and constructive criticism during development. Being able to discuss
with Andreas during development has been an invaluable source of new input and feed-
back on the current state of development.

The whole search process has not only been a process to find out what features should
be included in this enhanced version of News Hunter, but it has also served as a purpose
to test and prototype with new technologies. Wolftech wanted to test a new WYSIWYG-
editor, Froala, which got implemented. Another new introduction of technology to News
Hunter was the addition of Elasticsearch, which has a good API for searching through a
corpora of text.

3.2.7 Guideline 7: Communication of research

Lastly, the project must communicate both to technology-oriented and management-
oriented individuals. This is achieved by both explaining what has been used of tech-
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nologies and how they have been used, as well as writing more descriptive about why
it has been done the way it has been done. We can separate the two distinctions into a
white-box tech view, focusing on the system internals, and a black-box view, focusing on
the usage context. The white-box view lets technically skilled users with a technology
and programmer background understand the internals of News Hunter and how it all
connects together. The black-box view lets management and organizational subjects fo-
cus on how News Hunter may aid their news journalism development in the context of a
news desk.
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3.3 The Technology Acceptance Model

This sections talks about the different technology acceptance models used in the research.
This project follows the same path as the previous iteration of News Hunter, mainly by
focusing on TAM and TAM2. By using the same models it will be easier to to compare
our results with earlier results.

3.3.1 Technology Acceptance Model - TAM "1"

Fred Davis introduced TAM (Technology Acceptance Model) for the first time in 1989.
TAM is a theory covering information systems. TAM models how users use and accept a
new technology. Davis and the model suggests that when users are presented with a new
technology, a number of factors influence their decision about how and when they will
use it, notably:

Perceived usefulness (PU) - "The degree to which a person believes that using a particular
system would enhance his or her job performance" (Davis, 1989).

Perceived ease-of-use (PEOU) - "The degree to which a person believes that using a par-
ticular system would be free from effort" (Davis, 1989).

TAM is an extension of theory of reasoned actions (TRA) developed by Icek Ajzen and
Martin Fishbein in 1967. It is the most widely adopted and used models of users’ ac-
ceptance for new technology usage of said technology (Venkatesh, 2000). TAM is more
directed towards technology and replaced a lot of TRA’s attitude measures with more
technology related measures such as ease of use and usefulness. Where TRA is very general
and was designed to explain virtually any human behavior (Ajzen and Fishbein, 1977),
TAM is specifically designed to apply to computer usage behavior (Davis et al., 1989).
TAM is a good tool to use when we want to predict future user behavior when the user
has only tried the system for a small amount of time, such as with a trial of the program
or a prototype still in development (Davis et al., 1989).
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Figure 4: Technology Acceptance Model (Davis, 1989)

As figure 4 shows, TAM starts off with some external variables, which in turn are in-
terpreted in the main features of the model, perceived ease of use (PEOU) and perceived
usefulness (U). Perceived usefulness is also influenced by perceived ease of use. If a user
thinks that some program or feature will increase his or hers performance at work then
perceived usefulness will be high. If the user thinks that the program or feature will work
with little to no hassle and effort, then perceived ease of use will be high (Davis et al.,
1989).

3.3.2 TAM2

TAM2 was developed by Venkatesh and Davis as an extension to TAM. TAM2 tries to ex-
plain perceived usefulness and usage intentions in terms of social influence and cognitive
instrumental processes (Venkatesh and Davis, 2000).
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Figure 5: TAM2 - Overview of the extension of the Technology Acceptance Model
(Venkatesh and Davis, 2000)

As figure 5 depicts, there are more external variables influencing the perceived usefulness
of a system in TAM2. TAM2 categorizes between social influence processes such as

• Subjective norm

• Voluntariness

• Image

and cognitive instrumental processes such as

• Job relevance

• Output quality

• Result demonstrability

• Perceived ease of use
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Subjective norm

Subjective norms says something about the intentions of the user, based on the users
perception that those people that are important to him think he should or should not
perform an action (Venkatesh and Davis, 2000).

Voluntariness

Venkatesh and Davis argues that there is a distinction between when a system is made
mandatory by someone who can either reward or punish, versus when the system is made
available at your own will and the user can use it voluntarily (Venkatesh and Davis, 2000).
An example would be the workplace, where users must use a certain software or else they
might get fired, or when a user chooses by their own free will to use a system at their own
expense in their free time.

Image

When users adopt the same system, they form a group of end users, using the same
system. This in turn, creates an image of each users, which is how the other users and
adopters see and interpret each other. By using the system, the user is able to "achieve"
membership with other colleagues in a positive way. This will in turn make every user
more confident in their jobs, by being in the same group and being affiliated with the
same use of the system.

Job relevance

Job relevance in TAM2 covers how well a system is at supporting the tasks a user have to
do for a specific job. The more relevant a system will be for the tasks at hand, the more
relevant will the user feel that the system is (Venkatesh and Davis, 2000).

23



Output quality

Output quality is a measure of how well a number of tasks are performed using a system.
The user knows what tasks he or she needs to do, but if the system performs the tasks
poorly, then the system will have low output quality for the user (Venkatesh and Davis,
2000).

Result demonstrability

If the user can see results immediately when using a new system, then the user is more
likely to accept the system. This means that if a new system is being set into production,
and the user can easily see how the system helps them get things done in an effective
and safe way, then the users perceived usefulness will also be influenced (Venkatesh and
Davis, 2000).

Perceive ease of use

Perceived ease of use is transferred into TAM2 as a direct criteria from TAM. The more
easy and effortable it is to use a system, the more the system is being used will have an
outcome of greater productivity (Venkatesh and Davis, 2000).

In 2003, Venkatesh et al. reviewed a set of different information technology acceptance re-
search models. They analysed eight different models, compared them and then proposed
a unified model based on the eight models studied. This new unified model was called
UTAUT and is an acronym for Unified theory of acceptance and use of technology (2003). This
thesis only focuses on TAM and TAM2, which are the same models used in the previ-
ous iteration of News Hunter. However, the reader should be aware that there is newer
models also used in the research community.
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4 Software Development

The development process of this project followed a lean and agile approach. It followed
an iterative development cycle where features were developed throughout the process.
This lead to better feedback from Wolftech early on, and a healthier discussion about the
upcoming features all the way to the end of the development life cycle.

4.1 Project Inheritance

This project is the third edition of News Hunter. It was started by Wolftech in collabora-
tion with the UiB as a means to discover how to use semantics technologies to provide
better working tools for news journalists. It was picked up as a master thesis in 2016/2017
and then continued on in august 2017 to June 2018. As Christensen and Villanger says, the
prototype they implemented was influenced by previous work done at Wolftech (2017).
Even so, Wolftech as a company needs to renew its products to keep following the trends
in the digital transformation. It has therefore been a process to develop News Hunter
even further to accommodate the rising needs of digital journalists. The motivation and
goal through this third iteration has therefore been to make News Hunter even more use-
ful and easier to use.

When the project was continued, it lacked some documentation which made it more chal-
lenging to get started. I had some very constructive and informative discussions with
both Christensen and Villanger after starting the project to get their feedback on what
problems they knew they had when finishing up and handing over their work of the
project. They were a great resource in the start to get the project working on my devel-
opment machine, and to offer tips and tricks on how to get started. When development
eventually started, I tried to have in mind the following quote:

"Always leave the code you’re editing a little better than you found it"
- Robert C. Martin (2009)

When a project of this size is passed along to a new developer, it often takes some time
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for the developer to get comfortable with the code written by others. This task was made
especially hard because of the lack of documentation. No documentation meant that a
lot of time was spend reading through all the files to get a grasp of the whole system
and how each piece connects to create the application. There has been a great effort put
into documenting and refactoring the existing codebase for further development in the
future. The project and code repositories have far more documentation on how to get
things started, which hopefully will make the next developer more productive earlier on.

4.2 Prerequisites

When starting this project Wolftech and I had a meeting where we discussed what I had
in mind for this project, as well as what they were thinking. For Wolftech, this project
is more an exploration of what is possible with semantic technologies, and therefore I
as a developer stood somewhat freely to choose what features I wanted to work on and
at what pace. However, that does not mean that Wolftech will just abandon the project
after the project has ended. It is rather the contrary, where Wolftech hopes to be able to
extract the features they seem most fitting to their own codebase in the future. So even
thought I could choose the features I wanted to work on in my own pace, they still had
some guidelines that I should follow. Those guidelines were to use the previous project
delivered by Christensen and Villanger (2017) and to keep using C# as programming
language.

As I wrote in the research methods chapter, I conducted a survey as a step in the design
as a search process-phase. The survey helped to get an overview of how the end users felt
about certain aspects of their daily tasks at work. I showed Wolftech the results from this
survey and together we came to a conclusion about what features they thought would be
good to work on first, before meeting again later during the development.

The survey among potential end users were a means as how I could get their opinion on
what they felt about the current system and how things were being done. I asked them
five questions:

1. How often do you feel that you are doing repetitive tasks at work?
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2. Du you often feel that the tasks you do are without meaning? E.g create graphics
which will never be used

3. Do you think it is hard to reuse data from previous productions?

4. Du you feel that the way you as a graphic reporter works leads to errors on air? E.g
reuse of data you thought was updated, but was not?

5. Have you ever wanted a better and more separate system for reuse and update of
system? E.g a database independently of what you use on air?

The questions were formulated to get an initial feeling about how colleagues and poten-
tial end users experienced their workflow at the moment in TV 2. They were conducted
at a preliminary stage of this research and were used as a main selling point for what
direction this thesis should continue on, and what features we wanted to explore and de-
velop. From figure 6, the questions are positioned from left to right, top left being the first
question in the survey.
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Figure 6: The five preliminary questions to colleagues and end users

The questions were asked in Norwegian, and they translate to the following:
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How often do you feel that you are doing repetitive tasks at work?

For this question, 3 out of 4 answered that they often felt they did repetitive tasks that they
thought could be automated while one felt he did repetitive work every day at work.

Du you often feel that the tasks you do are without meaning? E.g create graphics

which will never be used

3/4 felt that they sometimes felt that what they did at work was without meaning.

Do you think it is hard to reuse data from previous productions?

3/4 felt that it sometimes was hard to reuse data from previous productions.

Du you feel that the way you as a graphic reporter works leads to errors on air? E.g

reuse of data you thought was updated, but was not?

This question lead to more diversity in the answers, which I think is related to how long
my colleagues have been working as graphics operators. One person answered that he
often felt that the way he worked lead to errors, while another answered on the opposite
side of the scale, answering that the way he worked would not lead to any errors.

Have you ever wanted a better and more separate system for reuse and update of

system? E.g a database independently of what you use on air?

3/4 answered that they have often wanted a more robust and better system for storing
data which is used during the productions.

The survey helped both Wolftech and I to get a grasp for what needed to be done first in
the development phase.
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4.3 Handover

Starting fresh on a project someone else has worked on can be a daunting task. With
tight deadlines and by not always following best practices, it can be cumbersome for new
contributors to add any value right away. Handover of this project consisted on getting
access to all of the source code, a quick demo of the second generation of News Hunter
and getting answers to some technical questions over chat. The remainder of the time was
then used to figure out how everything connected and worked together. In the previous
developers defence, there was no indication given that a new student would inherit the
system, but in hindsight the project will always be rewarded if contributors can assume
that someone else will one day take over development.

4.4 Technical Debt

When this project was continued in August, it started with some technical debt. the lack
of documentation and tests made it harder to start development right away. This meant
that everything done in August and the start of September was exploratory and any code
written would potentially introduce even more technical debt. As it was developed on
further, technical debt did keep accumulating in the project. Because this project has not
been shipped to any end users during development, the technical debt was kept at a low
volume, but it is still important to think about during the development phases.

Ward Cunningham, the coiner of the term technical debt has this to say about the topic

“With borrowed money you can do something sooner than you might other-
wise, but until you pay back that money you will pay interest.

I thought borrowing money was a good idea. I thought that rushing software
out the door to get some experience with it was a good idea. But that of course
you would eventually go back and as you learned things about that software
you would repay that loan by refactoring the program to reflect your experi-
ence as you acquired it.”

and it can be summed up by the words of Letouzey and Whelan (2016):
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When taking short cuts and delivering code that is not quite right for the pro-
gramming task of the moment, a development team incurs Technical Debt.
This debt decreases productivity. This loss of productivity is the interest of the
Technical Debt.

Technical debt can drastically reduce the development speed if it is not being considered
and taken care of. If it is not acknowledged as a problem before it is too late, it may take
much longer when refactoring the code when implementing new features.

4.5 Refactoring

Refactoring is the process of changing a software system in such a way that it does not al-
ter the external behavior of the code yet improves its internal structure (Fowler and Beck,
1999). When this projected was continued in August, it would have been a nightmare to
refactor. No documentation or tests, and little-to-no understanding of the internal system
worked meant it would be nearly impossible to add new functionality without breaking
the code. This meant that I had to dive straight into the code and it was just a matter
of time before the code would break. The positive side of doing it this way was that I
eventually understood all of the program and was then able to implement new features
in the code.

4.6 Development Process

The development process of this application has been an agile one with hints of Lean
and Kanban development. With only one developer on the team, a few of the key char-
acteristic for these approaches have been undermined or left out, such as a daily stand
up meeting and continuous integration with the customer. There has not been a cus-
tomer present at all times, but the process has still tried to deliver new functionality as
the customer demands it, without a long and tiresome process before writing code and
delivering it.

For keeping track of the whole project as it went forward, a Kanban board has been used
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in Trello. Tasks have been registered in the backlog, and moved between the backlog, to
the doing tab, to the finished and testing tabs. This has been of great value when developing
and enhancing News Hunter, as it meant the project could focus on only the tasks at hand.

4.7 Functionality

The functionality of this development phase of News Hunter has been a collaborative
process between Wolftech and I. The features here are all new implementations, except for
the editor which was also present in the second generation of News Hunter, but has been
remarkably upgraded in this development phase. Wolftech and I have discussed different
opportunities in regards to my own skill levels, as well as their wishes and tried to come
to agreements between their and my wishes throughout the period of development. This
section will briefly describe the dynamic functionality that might not come across clear
enough through screenshots of the application.

Live Editor

The live editor lets the user write a story, while simultaneously feeding the user with new
information about the entities and keywords written in the story. Behind the hood, the
editor waits for the user to take a natural pause in the writing. This ensures that the user
does not hit the server with a request on every letter typed, as this might make the UI
slow, and put unnecessary load on the servers. On the right hand side of the editor, there
is a column showing the data fetched from the servers as the system has been able to
figure out what entities and keywords the text is about. The user is able to change the
confidence value for what entities should be displayed. The greater the confidence, the
more confident the system must be in serving entities to the user.

There is also an update-button for the user to click if they change the confidence, but does
not want to write any more in the story to trigger a new analysis.

The entities listed after analysis are also color coded, where a typical blue link color is
displayed if there is additional data for the entity present, while a standard black color is
chosen if there is no additional data. If the user clicks on a blue link, the application will
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show an iframe from DBpedia with additional data about the entity clicked on.

Lastly there is a button for saving an article to an imaginary backend system, but as of
writing this thesis there is no backend connected for saving these stories. This is a po-
tential feature for future work, either by connecting to the semantic graph and saving the
stories semantically there, or as plain JSON in Elasticsearch. I see this as an opportunity
for discussion based on a number of factors, such as what backend system News Hunter
would benefit most from, versus what backend system the company using News Hunter
is using at this time of writing.

Underneath the editor, there is a drop-down component where the users can see the latest
news from other news outlets. When the user clicks on a choice in the drop-down, the
system requests the 30 latest news from the Elasticsearch database and displays them to
the user, with links to the story on the domain of the news outlet.

Politician Overview

The politician overview page starts with a listing of all the countries where data about
politicians are present. The names of the countries are presented as links, where clicking
the link takes the user to a detailed view of the country chosen. The user is then pre-
sented with some graphs on the left, showing the distribution between men and women
governing the politics in the chosen country. On the right, the user sees a map of where
the country is located.

Underneath the graphs and map, the user is displayed with a table of the most recent
government. The user can then filter on previous years if they want. In the table, the user
is able to see a picture (if such is present in the data), the name of the politician, birth date,
what party they are representing and links to Wikipedia if present. The links are filtered
by the English, Norwegian (bokmål) and Norwegian (nynorsk) Wikipedia sites.
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Invitation Builder

The invitation builder lets the user create an invitation that can be sent to a person before
an interview is taking place. The send functionality is not implemented in this version
of News Hunter, but based on current technology and state of development, that would
be a trivial feature to implement. On the left hand side there is a form where the user
can enter information about the interview object. On the right hand side there is a panel
showing the latest news mentioning the interview object, which is meant to be a guide to
what has been written about the interview object in the news lately. The user can filter
on all sources, international sources or Norwegian sources. Underneath the latest news,
the user is able to input the person’s Twitter username to see the latest news from the
interview object.

When the user "sends" the invitation, the invitation is saved to the semantic graph and
the data is then available for other parts of the application.

Register New Person

The register new person feature lets the user add a new person to the semantic graph.
When the data has been entered and the person has been saved, the data is saved to the
semantic graph. As of this feature of News Hunter, person knows-relation between the
person entered and the persons chosen by the user does not work properly, but that is
definitely something that should be worked on as future work for News Hunter.

Graph

The graph visualization between people is meant as a way to let the user get a better
visualization between who knows who before doing an interview. This way, if say a
journalist does not have too much background information before taking an interview,
they can take a look at the graph to get an overview before they might say something
stupid to the interview object.

This is possibly the feature as of right now which should not be part of a production build,
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but it is there as a prototype and to get feedback from user testing.
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5 Iterations

Since this project has followed as a design science reserach method, and has been devel-
oped using an agile development method, the development process has been a series of
iterations. Each iteration has been building on the previous one, each with a set of goals
needed to be accomplished.

5.1 Iteration 1 - Overview and setup

The project I inherited was not very well documented. It lacked any sort of comments in
the code, there was little to no readme documentation and the two persons last working
on the project were no longer available for questions during development. This lead to
the first iteration being a slow and cumbersome affair. The lessons learned from this first
iteration is that it is nice when some documentation has been provided. It provides a
more clear roadmap of what to expect of the code and what the code should do. Without
this sort of documentation, it becomes a tedious task to figure out what the code does and
how each component in the source code fits together.

5.1.1 Goals

The goals for this first iteration was to properly understand how to configure and setup
the system, as well as get a understanding of the underlying code. The goals can be listed
as following:

1. Get the system up and running

2. Develop an understanding for how the system works

3. Starting getting my feet wet by touching the code
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5.1.2 Setup of Development Tools

The first thing needed to get this project started was to acquire a machine with Windows
installed. Wolftech uses mainly C# in their day to day development, and therefore this
project was also started as a C# project, which meant I would need a Windows machine
to do the development. After notifying Wolftech about this, they want ahead and bought
a Windows license for me, so I could use Windows on my Macbook Air.

Integrated Development Environment - IDE

The previous prototype for this project was developed using Microsoft Visual Studio
IDE15. I decided to also use this IDE, as it would be the easiest solution to get everything
working. For the Python development of this project I used a combination of PyCharm16

and Visual Studio Code17.

Semantic Graph Database - BrightstarDB

The project I inherited was already using BrightstarDB as their semantic graph database
of choice, and I had no problem to continue using it. BrighstarDB is a native RDF database
for the .NET platform. BrightstarDB has an extensive API for working with the database
and because it is based on a semantic RDF graph it does not require any sort of database
schema to get started. Adding and integrating data in various forms is an easy task, and
one of the real strong benefits of using a semantic graph in this sort of project.

Programming languages

The programming languages used in this project is C# with the .NET framework, Angu-
larJS and Python with the Flask framework. It should be noted that AngularJS is becom-

15https://www.visualstudio.com/vs/
16https://www.jetbrains.com/pycharm/
17https://code.visualstudio.com/?wt.mc_id=DX_841432
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ing a deprecated framework and should in the future be upgraded to a newer version of
Angular or another more modern framework such as Vue.JS og React.JS.

GIT - Version Control

For such a large project it is vital to have good versioning and code control management.
This project uses Git as version control system, with Bitbucket18 as the backend repository.

Trello - Kanban board and project management

The project has used Trello as its project management tool of choice. Trello is nice for
keeping track of deadlines, user stories and to see what needs to be done at every stage
of development.

Validation

The first iteration had the following goals:

1. Get the system up and running

2. Develop an understanding for how the system works

3. Starting getting my feet wet by touching the code

The first goal of this iteration, to get the system up and running turned out to take much
longer than expected. This was mainly due to poor documentation and handover, but
also as a direct result of not having hardware which the system could run on. The first
step was therefore to install Windows on my machine, so that the system could be started
via Visual Studio IDE. I then had to make sure that I was able to pull down news articles
and semantically annotate them. I did this by starting in the Python code to see how it

18https://bitbucket.com
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parsed the articles and how it eventually pushed it to other parts of the application to
annotate them. It turned out that the Python scripts only retrieved and stored the news
articles as JSON formatted data. It then took another Python script to send them to the C#
application which would annotate them semantically. Because there was no flow diagram
of the application, it turned out to take much longer than needed to figure this out.

After this the next step was to go through the code and visually and mentally create a
picture of how data flowed through the system. This was also a task that took time, again
because of bad documentation. After a few days of diving through the code, I found
that a lot of the code was no longer in use and could therefore be deleted. After some
refactoring of the system I was ready to start writing some code to understand that my
beliefs and hypothesis about the system were correct.

The third step was to start getting my feet wet by touching and writing my own code. It
started out as a painful experience, where code I wrote would not be registered at save,
and so I often had to rebuild the whole project for every minor change I made. This made
it a tedious and painfully slow experience. I eventually discovered how to enable auto-
refresh and after some time the experience of developing on the application became a
little less painful.

Results

The results of the first iteration of the project was both encouraging and frightening. En-
couraging because I got to refactor a lot and make the code more "mine", frightening
because the slow development experience and complete lack of documentation made the
next iterations seem like a very daunting task. I eventually understood more of how the
code was connected and what each component did. This made it easier to point out a
course of action for the next iterations.

The goals for the iteration was to get the system up and running, developing an under-
standing for how the system worked and to start getting my feet wet by writing some
code.

The results from the first goal were positive at last. After a somewhat troubling start, the
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application and source code were eventually ready to be worked on and run on my own
machine.

The second goal was also to a large extent done after the first goal was finished. Even
though if was not clear what all the code was doing, the more time I spent with the code,
the more obvious it became what each component did.

The third goal was a success when I was able to implement a filtering feature on the front
page, where the user could then get to see a view of articles connected to a specific type
of genre.

5.2 Iteration 2 - User Stories from Wolftech

The second iteration of this project started by meeting up with Wolftech to get their views
on what to do next. Since they were the stakeholders of this whole project, it is viable that
they provide their ideas, input and feedback. We had a good discussion about what my
ideas were, what they wanted and we evaluated my skill set so to not bite over too much
at once.

We got to an agreement where I would start this iteration by improving the previously
developed editor. Wolftech had a vision where the user would get automatic feedback
as they were writing their stories. The previous version of News Hunter would provide
some feedback, but only after the user pressed a button. This is a disruptive move when
the user is typing away a new news article, so this was the first step of this iteration.

We also discussed a bit about the research part of this thesis. We discussed machine
learning, and made an agreement that I would look into it, but I told them that it might
be changed later on in one of the next iterations.

5.2.1 Goals

The goals for this iteration was as follows:
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1. Improve the editor functionality

2. Provide feedback as sentiment, keywords, entities and categorization

5.2.2 What have you done?

The editor functionality as it was before this iteration was just a simple text area where
a user could enter text. In the meeting with Wolftech before this iteration started, they
informed me that they had bought a license to use Froala19 as their WYSIWYG20-editor.

Froala Editor

I had previously been working with Froala, so it did not take too much time to switch out
the text area with the new editor. After making the switch I started to look into how to
send the text for analysis automatically. Froala already provides methods for capturing
data with ease, and one of those methods was to capture data when the user had a natural
pause, e.g punctuation, thinking about what to write, etc. This made it easy to only send
the text to analysis when the user naturally paused. It was typically quick enough to
analyze it so that it did not feel as something the user had to wait for.

Analysis of Content

The analysis part of this iteration used a lot of the previous work done in News Hunter.
The Python Flask API was straightforward to understand, so it did not take too much
trial and error before I had a working analysis of the content being written in the editor.
Since there was already code that did the analysis of text, I simply had to send the content
as JSON to the API, and wait for it to being finished and analyzed. After that it was just a
matter of making the result available to the user as can be seen in figure 7

19https://www.froala.com/wysiwyg-editor
20what you see is what you get
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Figure 7: Editor view

Improving the User Experience

So now that the user is able to get information about categorization proposals, sentiment
analysis on the text as well as a listing of keywords and entities, the next step was to
improve the user experience. It would be nice if the data from the entities could be dis-
played inside the editor windows, instead of going back and forth between browsers. I
therefore added an iframe to the editor view, so that the user could then easily click on
any entity with a URL, and get their DBpedia page at an instant. This greatly improves
the user experience, as the user is now able to write their whole story in the view, adding
information as needed from DBpedia.

Validation

For this iteration to be successful, there was a few key steps that needed to be done. Firstly
to switch out the text area with the Froala editor. Second to find out how to automatically
analyze the text as the user writes their articles, and third to display the data to the user
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in a nice and user friendly way.

Because I had used Froala before, it only took about an hour with some trial and error to
switch out the text area and include the Froala editor, with a variety of formatting tools.

Since Froala already came packed with event listeners to automatically capture data when
there was a pause in the writing, it made sending the content to analysis really easy.

When the data was analyzed, it was displayed to the user in a user friendly way by
displaying the data on a panel to the right of the editor.

Results

The goals for this iteration were to change the text area from the previous version of News
Hunter to a new and more user friendly WYSIWYG-editor, as well as further develop the
user experience of using the editor.

Changing the text editor worked very well and improved the user experience to the better.
It is now possible to add images with drag and drop functionality, format text and lists,
as well as adding links directly in the editor. This would be seen as a minimum viable
product for any user that wants to write their news articles on a daily basis.

Under the hood of this feature was also the ability to automatically analyze the text as it
it being written. It does no longer require the user to press a button to analyze the text,
but it is instead being analyzed as the user is working on their story.

As the user needs more information from their stories, it is now also possible to click on
any of the entities being extracted from the analysis to display information from DBpedia
automatically, while still working on the article.

The user is also able to get instant feedback on the sentiment of their writing, as well as
under which category they should publish and save their article.
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5.3 Iteration 3

The previous iteration ended with a new and more functional editor. It went from being a
simple text area to a WYSIWYG-editor with automatic analysis of the content as it is being
written in the editor. Before the start of the previous iteration, we started to talk about
machine learning and automatic news categorization based on learning data. I did some
investigation, but it quickly became clear that it would take too much time to potentially
end up with a poorly implemented solution.

This iteration therefore started with a new meeting with Wolftech where we had a good
discussion about what I wanted to do, and what Wolftech was looking for. We ended up
with a few bullet points as can be seen below

• Twitter feed for sports athletes

• Show last news where the sport athlete has been mentioned

• A feature for building automatic invitation for interview objects

• Represent relations in a graph

This list included features that all would be feasible with semantic technologies, but be-
cause of uncertainty as how fast each feature would be developed, we decided to start
working on two features first, then add the two features I would not finish to the backlog
and the next iteration.

5.3.1 Goals

For this iteration, I decided to primarily focus on

1. Implement a Twitter feed for sports athletes

2. Represent relations between people in a graph
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5.3.2 What have you done?

After the meeting and having the features written down, I started the development cycle
for this iteration with having a look at the Twitter API and registering for API keys to
fetch data. I had a look at some Python tutorials describing how to get data from the
API, and went on with coding up the backend. I also had a look at D3.js21 to see how I
could build a graph for displaying the relationships between people. D3.js is a Javascript
library for visualizing data. There is a great community using D3.js and a lot of tutorials
and examples on how to model and display the data.

Twitter feed

The Twitter API has very good documentation, and it was easy to get it up and running. I
implemented the fetching of tweets using an endpoint created in the Python flask code. I
could then write the connection to the Twitter API in Python and send the tweets as JSON
to the frontend. The tweets can be seen on the left in figure 8.

21https://d3js.org/
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Figure 8: Twitter feed on the left for easy access to tweets

When the user has found the Twitter username for a user, the username is at this point in
the development only being saved as a browser cookie. This is not a viable solution for a
production environment, but it has been added to the backlog as something that can be
improved in the future.
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Relations in a Graph

The second feature in this iteration which was requested from Wolftech was the ability to
display a graph of who knows who. This would be useful if a journalist which does not
typically cover a certain topic (e.g. politics), needs to get out in the field to cover politics,
but are not sure what to talk to a politician about. It would be useful for the journalist
to take a look at who the politician knows, so they do not say something wrong to the
politician. The prototype graph visualization can be seen in figure 9

Figure 9: Graph visualization using D3.js
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This feature, after this iteration, is the one that lacks the most features. It is possible to see
the graph, but this iteration is only a proof of concept for the feature, and the graph only
uses hard coded data. This is because I encountered some problems with how the data
was semantically annotated. I followed a guide from the Semiodesk Trinity22 website,
which in theory should be able to properly annotate and infer a one-to-many relationship,
but without luck it was hard to get it working, and because of a tight deadline I chose to
just hard code the data for a proof of concept at this point in the development cycle.

Validation

The goals for this iteration were as follows:

1. Implement a Twitter feed for sports athletes

2. Represent relations between people in a graph

For validation of this iteration, I tested that each feature performed as expected without
any visible bugs. For the Twitter feed, I ensured that tweets were being fetched when
the user requested them. I tested that it worked to tell the system how many tweets they
wanted, as well as setting a default of the 30 last tweets. Since the second feature became
a proof of concept, I only tested that the graph was displayed properly using the D3.js
library.

Results

As a result of this iteration, News Hunter now has two new features which will aid the
user in the planning phase of creating a news story. By checking the last tweets from a
sports profile, when doing a check on their data provides more up to date data about
what the player have been concerned with in recent time.

22http://www.semiodesk.com/products/trinity/
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For the proof of concept graph representation, the user/journalist can now do a quick
check on what he should or should not mention when doing an interview, making sure
he or she does not make a fool of himself in an interview setting.

5.4 Iteration 4

The last iteration started with a meeting with Wolftech, where we discussed the next
features for News Hunter. We ended up with focusing on two features then, and then I
would do the remaining two features this iteration.

The two features for this iterations were

• Implement a feature for displaying the last news where a person has been men-
tioned

• Implement a feature for automatic invitation building for interview subjects

5.4.1 Goals

The goals for this iterations were as follows

1. Implement a feature for displaying the last news where a person has been men-
tioned

2. Implement a feature for automatic invitation building for interview subjects

Last News

After implementing the Twitter feed, I started to map out what I would have to do to
fulfill the next feature. The next feature would be an overview over last news where
a person was mentioned. The feature implemented can be seen in figure 10. For the
feature, I started to have a look at Elasticsearch, which I had heard from peers would be
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a very good match for searching in large corpora of text. Elasticsearch has also very good
documentation and it was easy to incorporate it in to the existing Python code.

Figure 10: View of last news in connection with the invitation builder

This feature followed the same pattern as the Twitter feed. I implemented the backend
code in the Python scripts where I also fetch news. I then wrote a separate function that
would read all the JSON data and populate the database.

When populating the database, Elasticsearch can take an ID per JSON document, and
then warns you if you try to populate the database with the same news article. This is
nice if you want to have an automatic script running each day, but do not want to populate
the database with duplicates.

Elasticsearch provides a very nice API for populating the data in the database, as well as
querying the data. Elasticsearch provides a lot of query possibilities, and this feature in
News Hunter only uses a very simple search. When the user requests the profile page for
a profile, News Hunter requests the last 30 news where the name of the profile is either
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mentioned in the title or in the body of the news article.

Invitation Builder

One of the more interesting features that Wolftech wanted to test out was an "automatic"
invitation builder, which can be seen in figure 11. The idea is that when a journalist or
other editorial worker needs to plan for either a TV interview or other form of interview,
they can have a standardized form for creating this invitation. When the user types in the
name of the interview subject, they get the latest news and can also type in the subjects
Twitter name to get their last tweets. This would then enable the journalist to prepare
some questions or write some notes that the interview subject can prepare.

Figure 11: Form for creating invitations

This feature saves the invitation to the semantic graph, which means it can be queried
later and used in other parts of News Hunter in the future. The Twitter username is not
saved, and as for the profile page, this has been added to the backlog for a future iteration.
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Validation

For validation of this iteration and the two new features I tested that the news being
parsed from the Python script reflected the real world and I compared it with sport pro-
files I knew there had been stories about lately.

For the automatic invitation builder I made sure that the news fetcher and Twitter feed
still worked when the user wanted to invite a interview subject.

Results

The results from this iteration showed that keeping a modular workflow when develop-
ing is key, as it makes it easy to integrate modules into new components. For this instance
it meant it was easy to include the Twitter feed to the invitation builder.

The results also showed how powerful and easy to use Elasticsearch is. It can search
through and fetch the last news for a given person very quickly, and it is easy to extend
the filtering and querying of the underlying data at a later stage.

5.5 Iteration 5

The last development iteration was used to refactor, clean up and document the code
better. Some of the implementations done in the previous iterations were not as good as I
wanted them to be, or they had some minor bugs. I therefore took the time to finalize the
development process by documenting and rewriting some of the components.

5.5.1 Goals

The goals for this iteration was to refactor the code to a quality level I was happy with.

1. Refactor code to be better and more readable.
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Refactoring the Codebase

I started this iteration by going through each file in the project and read through every
line of code. I would document where I needed to refactor the code, before mapping
out which files would be touched by a refactoring. For example changing the way the
backend sent some JSON data might mean I had to parse that data on the client side
somewhat different. Knowing how all the code worked together helped me to not make
too many mistakes while working.

Some parts of the code would only need to rename some variable names, while other parts
was in need of me extracting a module to its own separate entity, typically a service which
connected to some external data source. This would aid the next developer(s) working
on the project to hook up new functionality, but still using the same data sources.

I used Standard.js23 to help me refactor the frontend code for this project. Standard is a
set of standard rules for formatting and code conventions. The tool can be run from the
command line and parses each Javascript file and tells the developer what is wrong. It
has a fixing feature which can take care of most of what is wrong with your code, but it
also outputs on what line something is wrong, and why it is wrong.

Validation

For validation of this iteration I wanted to be certain that I had done a best possible job
on refactoring. I had to make sure that the naming conventions were fulfilled throughout
all of the code and that the code adhered to the same standard all over.

Results

The results before running the standard-command in the terminal window showed that
it was hard to be sure I had adhered to the same standard all over the codebase. After
running standard.js in the terminal window, the code became much more adherent to the

23https://standardjs.com/index.html
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same standard of quality and it fixed a lot of small inconsistencies in the codebase.
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6 Overview of each Component of News Hunter

This section takes a look at each component of News Hunter. It gives a thorough explana-
tion of each component without going into too many technical details. The components
listed are both new components developed during this development phase, as well as pre-
vious implementations. The previous components may have seen changes in the source
code, but the main functionality still remains the same. Figure 12 shows an overview over
the whole system.

Figure 12: Overview of News Hunter

6.1 Newsgetter

The first steps of gathering data into News Hunter is the use of a Python script to fetch
news from over 80 different categorizes from a variety of news sources, as well as all the
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biggest news providers in Norway. The script downloads and parses RSS feeds which are
in turn converted to JSON files and stored in their respective folder (e.g politics, sports,
food, movies). The overview of the Newsgetter can be seen in figure 13.

Figure 13: System overview of the Newsgetter component

This script takes about 40 minutes to run. This script should in the future run as a parallel
task where different workers could go and fetch the news at the same time. Now the
script gets articles from URL 1, before moving on to URL 2 and so forth.

6.2 Send to semantic annotation

After the news articles has been downloaded, we can send them to a C# .NET application
for analysis and semantic annotations, which can be visualized in figure 14. This is done
through the use of a REST API. The Python script goes through each of the folders con-
taining JSON files and sends them as a JSON object to a handler in the C# code, where the
data is semantically annotated with the use of a queue.
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Figure 14: Data being sent to semantic annotation via a queue database

This component is the most brittle in the sense that it breaks at random times, by returning
a outOfMemory-exception from the C# code. This should be one of the components that
would benefit most from a rewrite in a future version of News Hunter.

6.3 Push to Elasticsearch

Meanwhile, when the newsgetter component has downloaded all files, another Python
script can be used to send the data to the Elasticsearch database. This process is shown in
figure 15. This step can be included as a standalone component that the developer/user
will have to manually start, or it can be called after the newsgetter script has downloaded
all files. Either way, in the future it should all be an automatic process running perhaps
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every other to retrieve the most up to date news articles.

Figure 15: The Newsgetter component pushes JSON to Elasticsearch

This script also takes care of duplicate data in the Elasticsearch database, so if you run it
twice with the same data, it will output errors in the log telling the user that the data is
already present in the database.

6.4 Analyzer components

When the data has been semantically lifted and annotated through the C# pipeline, it
can be sent back to Python as seen in figure 16, for analysis of sentiment, categorization,
entity extraction and keyword extraction. The analyzer components use different text
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and machine learning libraries for Python such as Scikit-learn24, AFINN25 and Textacy26,
among others.

Figure 16: Data sent to Python API for analysis

24http://scikit-learn.org/stable/
25https://github.com/fnielsen/afinn
26https://github.com/chartbeat-labs/textacy
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6.5 Twitter feed

The Twitter-feed component is a simple API endpoint that connects the Python code to
the official Twitter API, and lets the frontend code request the N most recent tweets from
a Twitter user. This component can be seen in figure 17. An improvement here would
be to store the tweets in a database or semantically lift them and connect the data to new
entities, much in the same way as the editor works. The difficulties with such approach is
that tweets often use slang or abbreviations, and it may not be as trustworthy as the user
would like.

Figure 17: User requests tweets

6.6 Web API

All the underlying data stored in the BrighstarDB semantic graph is accessible via a REST
API endpoint. It can be extended by developers to add access to more data in whatever
way suits the needs of the next development phase of News Hunter. The web API serves
responses in JSON format.
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6.7 Frontend

The frontend of the system, shown in figure 18, is used to display data to the user, and
let the user interact with and discover the possibilities of semantic technologies in a news
desk workflow environment. During this development phase, most of the views in the
frontend have been refactored into a more flexible design, meaning it can be viewed on
different screen sizes. This was a choice done because users expects the application to
work on both mobile and desktop environments.

Figure 18: Front page view developed by Christensen and Villanger (2017)

6.8 Future Improvements

No system is without any bugs, and News Hunter is no exception. The most vital bug
is an outOfMemory-error which occurs when trying to feed the system too many JSON
documents at the same time for semantic lifting and annotation. This slows down devel-
opment speed and is fairly crucial if you want a system that has up-to-date news from all
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sources. So the first step the next developers should do is to take a closer look at what
is causing the error and hopefully fix it. There are also some minor tasks that should be
done, such as making sure the application scales well across all views in the frontend,
while using the tool on both mobile or desktop.

62



7 Evaluation

One of the key processes in Design Science Research is to use rigorous evaluation meth-
ods. This section talks about what evaluation was conducted, how it was conducted and
the results form the evaluation.

7.1 Evaluation Objectives

The objectives for the evaluations were to get an overview of what the end users thought
about the system and to get feedback on future improvements. The results are presented
qualitatively by having discussions in focus groups. The evaluation has been done in
two different settings. One for already working journalists and graphic reporters from
TV 2 Norway, while the other focus groups consisted of journalism students from the
University of Bergen.

7.2 Evaluations from users

The users evaluating this iteration of News Hunter were graphic reporters working with
live graphics on TV productions, journalists working for TV 2 Norway and journalism
students from the University of Bergen. One of the participants in the evaluation session
was also a participant in the survey conducted before development started. There were
two evaluation sessions. One with employees of TV 2 and one for the journalism students.
The students were a mix of those studying regular journalism, as well as those studying
investigating journalism.

The evaluations were conducted by demonstration, discussion, hands-on reviews, ques-
tions and observations.

63



7.2.1 Focus Group for TV 2 Norway

In this focus group, there was a total of five participants evaluating this new and en-
hanced version of News Hunter, three graphic reporters and two journalists from TV 2
Norway. The graphic reporters has worked for TV 2 Norway for at least 2 years and can
be seen as experts in their field and day to day tasks.

Introduction to users
For the evaluation session, users were first given a quick demonstration of the whole
system. Because there were new users evaluating and testing the system as opposed to
when Christensen and Villanger did their evaluation in 2017, the users were briefed about
what the evaluation session was about, the expectations to each evaluator and why this
evaluation was important for the end product.

After the demonstration, each user was given a set of tasks, where each task had a list of
steps to follow. After following the steps and completing the tasks, the users were asked
a set of questions. The questions had the same structure as the questions found in TAM
and TAM2. This is also the same type of questions used in Christensen and Villanger’s
evaluation (2017).

7.2.2 Questions

The questions were presented to the focus group as a whole, and for each question fol-
lowed feedback and discussion about what they felt about the feature, if it was useful, if
they felt something was missing and what features the users would see implemented in
their current workflow. All questions from the survey can also be found in Appendix A.

7.3 Results from Focus Group

Since both focus groups was asked more or less the same questions, I have only added the
thoughts of the journalism students where the discussion differed from the focus group
consisting of employees of TV 2.
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7.3.1 TV 2

Questions

Overview of Politicians
The overview of politicians gives the graphic reporters and journalists an easy way to
discover and find out who is who in politics. This is often done when broadcasting live
sessions from the Parliament, or interviewing a number of politicians at the same time.

The feedback from the users were positive. Participant 1 said that this feature would be
useful for researching what title to give to an interview subject during a live interview
session. Participant 2 thought it was useful to have pictures for each politicians.

Participant 3 responded that it was missing what role or title the politicians had. E.g, Erna
Solberg, the Norwegian prime minister was only listed as an representative for Høyre
(Norwegian right wing). Participant 1 also noted that it should be more sources than just
Wikipedia links for the politicians. It was requested that a more credible source was also
listed.

All participants responded that the feature was useful, but would like to see it more elab-
orated in the future.

Search for athletes
The search for athletes lets a user search for a sports athlete in DBpedia27, as well as
viewing the latest news articles where the athlete has been mentioned.

Participant 1 thought it was useful to see what news articles the athlete had been men-
tioned in lately. Participants 2 and 3 liked the fact that you got an overview of different
types of information instead of having to do multiple searches on the web for the same
athlete. Participant 4 responded that the featured lacked functionality for him to able to
use it.

Participants 2, 4 and 5 agreed that if this feature were to be specifically useful for them,
then the system had to be more integrated to their graphics tools for broadcasting. Par-

27http://wiki.dbpedia.org/
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ticipant 1 and 3 would like to have more sources present, e.g Premier League statistics28,
Opta Sports data29. They all wanted more flexibility on how to generate graphics, and
they would like to be able to choose what data was exported to the tools they use for the
live graphics during broadcasting.

It was consensus among the participants that the idea of the feature was useful, but that
it lacked too much data to be very useful for their daily operations.

Writing in the Editor
The editor view lets the user write up their story for publishing, while having automatic
analysis of entities and keywords, sentiment and categorization. The editor view also lets
you browse the latest stories from other news outlets while writing your story.

The participants thought this feature would make their day writing articles easier. Partic-
ipant 3 found the automatic extraction of keywords and categorizations to be extra useful,
as she often found herself writing down keywords after the text had been written, and
she mentioned that it felt like doing a job twice.

ticipant 2 and 5 gave feedback that they missed dates for when the articles were published
from the other news outlets. They would also, in agreement with participant 1 like to also
see what other stories their colleagues were working on. They thought that it would make
their jobs easier by knowing who to collaborate with when working on the same stories.

All participants found this feature useful, but would see more functionality in the future.

Get latest news about a person/Interview booking form
The feature for getting the latest news about a person and book them for an interview is a
tool for interview booking and to get a quick overview over what the other news outlets
have been writing about the interview subject before an interview takes place.

Participants 4 and 5 thought this feature was useful when they needed to do an interview,
but weren’t fully up to date on what the other news outlets had written. Participant 2
thought it was useful as an easy way to make a booking in the system.

28https://www.premierleague.com/
29https://www.optasports.com/
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Participant 1 and 3 liked the idea, but they would also like to see when the person was last
booked and to see if anyone else had already made a booking for the interview subject.
They would also like to see if there would be any comments for an interview subject, such
as questions the interviewer should not be asking.

The participants found the feature to be useful, but some of the participants thought
it would be better suited for booking management employees and planners, than for
graphic reporters and journalists

Graph of who knows who
The graph of who knows who is meant to be a tool for visualizing a person’s connected
network. It is meant as an assisting tool for journalists that need to do an interview, but
want to make sure they are not talking badly about someone close to the interview subject.

The participants all agreed that this feature was a good idea, and that it was useful to
easily see who knew who in the graph. They liked the visualization, but thought it could
need some more refinements before being really useful in their workflow.

Participant 1 stated that she would like to also have access to the employees of TV 2, not
just interview objects. Participant 3 added that this would be really useful to see what
type of contact network a journalist had, if you needed a phone number or information
about certain people. A lot of journalists working in a specialized field of expertise creates
a wide network that they use when investigating and writing about a case.

Participant 2 would also like to see more information about each person, than just who
knows who. It was requested that information such as emails and phone numbers should
also be present. As of writing this, the journalists would often send out emails in form
of does anyone have the phone number to xxx, but they thought they could get rid of those
annoying emails if this feature had the phone numbers present.

The participants found this feature useful, but not finished.
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7.3.2 Focus Group of Journalism Students

The evaluation for the journalism students were very similar to the one done with em-
ployees of TV 2. The difference was that we focused more on what features they would
like to see in a future version, than on just evaluating the features that had been imple-
mented. I found during this evaluation that a lot of the feedback on the current features
as very similar to the one from TV 2, and I will therefore focus on the differences between
the two groups.

Because the employees of TV 2 has a better understanding of how a journalist works and
what tools they use on a daily basis, the major difference between them and the students
were that while the employees focused on how they could write their stories faster and
more accurately, the students were more concerned by what data News Hunter would be
able to pull down and analyze. The students had a lot of good ideas for further develop-
ment, such as adding dictation to the editor, so that the journalist can speak their story,
instead of typing. They would also like to see a better connection to social media, and
they came up with the idea of monitoring hashtags from Twitter to see what people were
talking about. This feature can already be delivered by ScribbleLive30 and by hooking up
to their API, this functionality could add more information to News Hunter.

7.4 New information regarding TAM2

The thesis has used TAM2 as a guideline throughout development, which can be seen in
subsection 3.3.2. After evaluation with end users, new information has become available
in regards to the perceived usefulness of the application. The noticeable points for TAM2
and perceived usefulness (PU) are; subjective norm, image, job relevance, output quality
and result demonstrability.

After evaluation, the subjective norm shows that the intention of the user is that they
think that the more useful and easy to use News Hunter could be a good addition to their
workflow. The users also agreed that if a few of them would use the system, they antic-
ipated that more users would use News Hunter in the future because they would create

30https://www.scribblelive.com/products/

68

https://www.scribblelive.com/products/
https://www.scribblelive.com/products/


an image that News Hunter is useful for them and users that does not use News Hunter
would see that and start to use it. Because this version of News Hunter does not support
other languages than English, the job relevance for now is not good enough. Since the
evaluation has been conducted on norwegian speaking employees and journalism stu-
dents, they have reported that they liked the features, but they would not be able to use
them as they write in Norwegian. The output quality has not been tested well enough
in this thesis, but feedback from interview subjects suggests that some of the daily tasks
could be done more efficient by using this more useful version of News Hunter. The result
demonstrability has only been demonstrated in a closed focus group setting. Venkatesh
and Davis (2000) says that result demonstrability is seen when users can see that the ap-
plication is set to production and the users sees results immediately. For this evaluation,
the users got a demonstration of what the system could do, but it is not enough to con-
clude that they would use the features in a working environment. Future work should
focus on trying out the system in a more work simulated environment.

7.5 Evaluation Summary

From the first survey conducted before development started, to getting responses from
end users in the focus group, it is noticeable to see how the planned features changed
during the iterations. There are not too many direct responses from the first survey, to the
feedback received in the focus group, but taken together, they given an impression that it
is still possible to see what the end users wants in this type of system.

The most noticeable link between the survey and the focus group is that both groups of
respondents would like a better system for knowledge management. 75% answered in the
first survey that they would like a better system for storage of knowledge, and if we see
that in connection with the graph visualization and the responses from that feature, we
can draw the conclusion that the end users wants a better system. Right now the users has
the ability to save a new person to the graph, but a new phase in the development of News
Hunter might be able to add more data about persons to store and better functionality to
reuse the existing data in the knowledge graph in new and better ways.

Another important aspect is that respondents from the survey sometimes felt that how
they worked now might lead to stupid mistakes being broadcasted. The participants in
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the focus group said they got a better overview over the data they typically worked with
in this version of News Hunter. They also mentioned how they liked that they could see
what other news outlets were working on. This last point was both important when they
were working on a story themselves, but also if they had been on vacation or as some
of the participants who are freelancers noted, it helps to get an overview over what has
happened in regards to for example sports athletes while they had been away.

7.6 Evaluation of Own Work

This sections explains and describes how I have tried to follow best practices when work-
ing on this project. I will talk about how I proceeded at the start of the project, how I fol-
lowed through when refactoring and cleaning up the code and how I have documented
the project in a more suitable way of delivering it over to the next persons maintaining
the code base.

7.6.1 Documenting How Everything Worked

I have previously said that when I took over the project, it was barely documented, and
it clearly showed that time was tight at the end of the deadline for Christensen and Vil-
langer. There were some functionality not being used in the frontend, which led to confu-
sion at the initial start of the project. I therefore started the project by removing some of
the functionality that did not work as expected, to be able to focus on the parts that did
work.

7.6.2 Clean Code

During the iterations of the project, I have tried my best to follow Robert C. Martins
advices in his book Clean Code - A Handbook of Agile Software Craftmanship. In his book, C.
Martin writes very well about how to keep code clean and not make a mess. A mess will
cost in the long term, as every new feature breaks some other parts of the code, meaning
that the developer(s) will be working at a snails pace (2009). For this project, clean code
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meant that I had to refactor and extract bigger functions into their own functions to make
the code more readable. C. Martin says that functions should be small, and then they
should be smaller than that (2009). I think this is a very good point, and I have tried to
follow this practice as best as possible. Small functions makes everything more readable
and easier to comprehend.

7.6.3 Comments

When I went through the code for the first time in this project, I could only find one or
two comments, and those were also outdated and wrong as the code had changed since
the code had been written. Misleading comments happen, but as C. Martin writes, they
might make another programmer working on the project in the future find himself in
a debugging session because he called a function with the best intentions based on the
comments, while the comment was in fact misleading (2009). I have gone through the
code and commented where I have seen it fit. I have not documented every line of code,
as I am a firm believer that the code should speak for itself, however I have commented
those parts of the code that at this point have some behavior that might break a feature if
removed or called wrongly.

7.6.4 Formatting

Robert C. Martin writes in his book that formatting is important for how another pro-
grammer reads someone else’s code. It needs to be properly formatted both vertically
and horizontally (2009). It should also be intended properly, and for that purpose I have
used Standard.js31 for the frontend code to adhere to a standard. I think that this way the
next developer(s) that work on this project can keep adhering to the same standard and
not have to think about how it should be formatted.

31https://standardjs.com/
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7.6.5 Error Handling

The frontend part of the code in this project did not have very much error handling.
I assume this has to do with the tight deadline they had at the end, but I have tried
to incorporate a lot more error handling to keep error messages easier to debug when
something went wrong. This has helped along the way when further development of the
project has lead to unwanted behavior and bugs. Being able to easily identify and solve
bugs are key to better productivity.

7.7 Adherence to Design Guidelines

The adherence to design guidelines has been done with both management and system
developers in mind. The development of this more useful News Hunter should appeal
to both management and system developers. Management because they can see what is
possible in a news environment, and for system developers as they will see that a great
effort has been invested in more readable code and better prerequisites for further devel-
opment.

I will now inform the reader about how I used the design guidelines from section 3.

7.7.1 Guideline 1: Design as an artifact

The first guideline was to design an artifact. This was done by doing the software de-
velopment in iterations. For each iteration, a subset of the features Wolftech wanted was
chosen, and then given a score based on criteria for how hard I assumed it would be to
implement, how useful the feature would be and how long time it would take. I usually
then started with the feature with the lowest score, as I assumed that would be the easiest
to get done. I chose to do it this way as I at least would have some more to add to the
minimum viable product this way. This worked very well for the development iterations.
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7.7.2 Guideline 2: Problem relevance

The problem relevance for News Hunter is that news only travel faster and faster, and
to keep up with writing new stories in an editorial workplace, the user needs to have
tools that can aid in writing of said stories. Therefore this third iteration of News Hunter
focused on adding more useful features to the problems the journalists often has. The new
features includes as said earlier, automatic analysis of text when writing stories, quick
lookup of politicians, and visualization of who knows who, and more.

The new features has not been chosen at random, but they are a selection done by the
author of the thesis, as well as Wolftech. Wolftech, being the main contributor to this
project and where the project originated from, their input in the problem relevance field
is of great value.

7.7.3 Guideline 3: Design evaluation

I held two focus groups for potential end users of News Hunter. In hindsight, these focus
groups could be done better by including a larger set of participants, as well as having
them try out the system in more realistic settings. I was planning on doing a contextual
inquiry, but did not as I thought it might focus too much on the user experience, instead
of the features I had implemented (not focusing too much on UX).

7.7.4 Guideline 4: Research contributions

I have contributed to research by making this thesis public, and written about wether and
why end users found the new features useful. I have also contributed by being able to
implement an automatic analysis tool for writing news stories, giving the users feedback
on sentiment of text, keywords, entities and categorizations.
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7.7.5 Guideline 5: Research rigor

The research has been done by iterative and agile methods. The research has been doc-
umented throughout the process by using a Trello board to keep track of features and
progress, Bitbucket and Git to keep track of code changes, and Deadline, a Trello plugin,
to keep track of deadlines.

7.7.6 Guideline 6: Design as a search process

The design as a search process has been followed by communicating with Wolftech
throughout the development. They have been a very good asset and they know what
their customers want and why they want it.

I have also got feedback from journalists and graphic reporters from TV 2 Norway during
development.

Looking back, I must admit that this guideline could be followed even better if I was
stationed at Wolftech during development. Since Wolftech was in the process of moving
offices during development, I did not sit at their place. This would have provided even
better communication between me and them as stakeholders and I could have asked more
questions during development.

7.7.7 Guideline 7: Communication of research

The communication of research has been followed by keeping the style of writing not
too technical, while still keeping the technical aspects of this project. I have made sure
that both technical people such as developers and non-technical people such as manage-
ment and users can understand the main goal of this new version of News Hunter. The
progress of the research has also been communicated to Wolftech through continuous
communication.
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8 Discussion

8.1 Research Question 1: How to improve usefulness and ease of use

in tools for journalists?

This thesis has shown how we can improve usefulness and ease of use for an existing
prototype tool for journalists. The thesis has also shown how ease of use can be improved
by building upon previous knowledge in the semantic application domain. The findings
in this thesis shows that usefulness is not only what the end users see and how useful they
find the application. Equally important in this thesis is the focus on continuous ease of
use from a developers viewpoint. Cleaner and more comprehensible code will make new
developers working on the project more efficient earlier on, and by providing a better
documentation of the system, both management and developers can understand what
News Hunters goals and motivations are.

Before the work on this thesis was started, News Hunters state of the art was a fully
functioning backend, consisting of two components, one written in C# and one written
in Python. There was also frontend which lets the user navigate and explore the data.
Extending the usefulness for News Hunter, I found during development that the earlier
prototype did not have an automatic analysis of stories written by journalists. This was
also noted by Christensen and Villanger (2017) in their thesis, when they write

News Hunter’s editor should have made more use of semantic web technologies. In
its current state, it sends the written text to an analyzer service. The analyzer service
returns keywords and named entities. These can be used to connect a story to other
stories in the graph, but there are no queries to external resources in the current im-
plementation. Providing the journalist with background information while writing
should be considered in future projects.

I found that a lot of the foundation for their future plans for News Hunter was already
developed, but not implemented. During this development, News Hunter has therefore
seen more use of semantic web technologies and inclusion of third party data. The third
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party data is displayed for the user in the same view as the editor when a user writes
their stories. I found that during evaluation, all the participants in the two focus groups
appreciated the improvement in the editor view. Keeping the information gathered at one
view, some of the evaluators said that it kept clutter at a minimum and it would let them
focus more on writing the stories instead.

Regards to the evaluation using TAM2, the clearest findings were those related to job
relevance, result demonstrability and perceived ease of use. While demonstration was
being held for the two focus groups, most of the evaluators gave positive feedback with
reference to job relevance. The evaluators saw how especially the editor would be useful
for their main jobs, which are to write news stories. The graphic reporters which were
evaluated also commented that having the ability to see which politician were who would
help them during their live coverage of news from politics.

Even though the system is not yet in production, the evaluators also noted that result
demonstrability were positive for them. The demonstration showed them that they
would see instant results by using this type of tool when working. When the users see
instant results, this also affects their perceived ease of use. I found during evaluation that
the evaluators did not have too many questions in relation to how News Hunter works,
and the project should also in the future have a clear vision of keeping the system as easy
to use as possible.

8.2 Research Question 2: How to organize projects so that ease of use

and usability can be maintained?

During development of this project, there has been used project planning tools, as well
as a code repository for all the code written and refactored. The code repository used in
this project has been Bitbucket, and the tools works very well as self-documentation of
what has been done since the start of development. The commit history from Christensen
and Villanger (2017) was unfortunately not kept, but this thesis will recommend that such
history is kept for future developers and contributors to the project.

Trello has been used for project planning during development. Trello uses the notion of
boards which contains lists, and the board used for this iteration of News Hunter should
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also be passed along the new contributors in the future.

During the development phase, I have seen that it is important to keep the source code
clean and adhere to a standard for code formatting. This will also make the project more
tidy and new developers will see that the previous developers has taken pride in keeping
their code clean and well formatted. Today there is a lot of different code linters, which
can format the code for you. This thesis will therefore argue clearly that not having a
standard for code formatting can only affect the project in a negative way, and that there is
no real excuse for not having well formatted code. Examples of code linters are ESLint, for
Javascript32, Standard.js, also for Javascripthttps://standardjs.com/ or FxCop for C#33.

I have also found throughout this project, that having a distinct goal to work against is
very helpful, and this goal should be very clear during development. Without such a clear
goal, developers can drift of their path and lose sight of the important parts of the project.
This clear goal, along with good communication with stakeholders (Wolftech) and docu-
mentation will help contributors and developers maintain ease of use and usability.

8.3 Critique of Methods

One of the problem with this research is the number of evaluators. Ideally, there should be
even more participants in the two focus groups. Evaluation should also be carried out in
a real work environment, not just as a demo. Evaluators should try to write stories using
the editor, as well as the other new features of News Hunter, while being monitored and
questioned afterwards. I have also found that in the future, the next development phase
of News Hunter should include a "customer" while developing, as this would adhere
more to a lean and agile approach, where instant feedback drives the development cycle
per iteration. It is not good practice to only assume what the customer wants, during a
half year period.

32https://eslint.org/
33https://msdn.microsoft.com/en-us/library/bb429476.aspx
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9 Conclusion and Future Work

9.1 Conclusion

In this thesis, the main goal and motivation was to research how a prototype tool for
journalists can be made more useful and easier to use. The thesis have presented a lot of
new functionality for the News Hunter web application. I have refactored much of the
code and written a more thorough documentation of the whole system. The new func-
tionality includes an updated real time WYSIWYG-editor, an overview over politicians,
an overview over the last news generated by other news agencies, booking of interview
objects and a graph visualization of who knows who. This thesis has been influenced
a lot by the previous work done by Christensen and Villanger (2017). Their thesis was
a collaboration between the University of Bergen and Wolftech. This thesis follows the
same path, and the collaboration has continued throughout this development phase. The
development has followed an iterative approach, focusing on delivering the minimal vi-
able product for each iteration, in this thesis described as one or two new features per
iteration. The goal of the thesis was to continue to add functionality for the News Hunter
application, and to make it more useful and easy to use. This has been done by refactoring
a lot of the code, and written more documentation. The refactoring of the code has made
the code easier to understand and reason about. From a user perspective, more of the
application is now responsive, and can be used on different screen sizes. More features
has also made the application more useful, not only for journalists but also for graphic
reporters working with live television productions in a fast-paced environment.

The technology stack is the same as used in the previous version of News Hunter. The
main backend is written in C# and the ASP.NET framework. For semantic annotation,
BrightstarDB’s C# library has been used. Natural language processing, categorization and
sentiment analysis has been done by different Python libraries developed by Christensen
and Villanger (2017). The data is accessible for the application through different REST
API-endpoints through the framework Flask for Python. Python is also used to fetch
news articles and save them as JSON-documents. An addition to the previous version
of News Hunter is the ability to save the downloaded JSON-documents to a database
instance of Elasticsearch. This gives the application and its developers an easy interface
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for querying a corpus of text with different search criteria in the future. The frontend
of the application has been continued to be written in AngularJS, but with the addition
of the CSS-framework, Bootstrap34 for easier development when making the application
responsive.

The main activities for this thesis has been further development and enhancing of an
already existing prototype of News Hunter. Most of the time has been used to refactor
code, document code and implement new features. The new features has been chosen
by Wolftech and the developer based on what Wolftech wanted to have implemented,
and based on the skill level of the developer. The projects source code now offers code
comment where necessary, rewrites of source code where refactoring were necessary and
readme documentation for each code repository.

Evaluation has been conducted on potential users working for TV 2 Norway as journal-
ists and graphic reporters, as well as journalism students from the University of Bergen.
The evaluation has been in the form of focus groups, where the users has been given a
demonstration of the system, and a discussion has followed for each feature. Most of the
features were appreciated by the participants in the focus groups, but more work could
be done to refine their use cases.

The main findings after evaluation was that News Hunter as a tool was something the
evaluators found interesting. This is backed by findings done by Christensen and Vil-
langer in their thesis as well (2017). The evaluators came with solid feedback on what
features they thought would be of most value to them, and the findings show that what
feature is the most important very much comes down to what responsibility and work
tasks you have in the company. A journalist liked the editor, more than the graphic re-
porters, which liked the automatic aggregation of politician and athlete profile data.

The greatest challenges during development was to be familiar with the previous code-
base. With little to no documentation beforehand, it became challenging to be productive
early in the stage of development. Another challenge was that there were some bugs in
the previous codebase that was not very easy to locate. Some of these bugs are yet to
be found, but they are noted in the readme files of their respective code repositories. It
should also be noted that new developers on this project should be co-located better with

34https://getbootstrap.com/
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Wolftech. It will be easier to have better communication throughout the project when
co-located, and questions can be asked and answered continuously, instead of by email.

During development, the most valuable experiences and insights found in this project
has been that good communication, with both customers and previous developers are
very valuable and makes the development experience more pleasant. Having a good
handover in form of documentation lets the new developer(s) become more productive
earlier in the development phase, and by communicating more often with the customers,
it will be easier to be agile and change direction earlier.

9.2 Future Work

This development phase of News Hunter has seen more documentation, refactoring of
existing codebase and added functionality. Below follows some thoughts about what
future work should be considered done, on a day to day basis, as well as what Wolftech
should think about doing, and lastly what I think are some of the paths this project can
take in the future.

9.2.1 Development

For future work in regards to day to day development, the developers of News Hunter
should refine features such as the graph visualization. This was very much a prototype
and as it is right not, not meant to be used in production.

Another aspect should be to introduce testing in the project. It is hard for new developers
to contribute when every change may be breaking a feature in the code. There are a lot of
different testing frameworks that can be used, such as Jest35 or Mocha.js36. The codebase
and project would benefit greatly if tests would be introduced. As of now, the codebase
has no tests. If automated tests would be introduced, the new developers would be more
confident that the code they write does not break functionality.

35https://facebook.github.io/jest/
36https://mochajs.org/
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Thirdly, the project should focus on implementation of better news harvesting. The
scraper should be able to fetch new and updated news articles as soon as they are avail-
able. As of right now, the script for retrieving news articles has to run manually, and if all
categories should be retrieved the system will take about 40 minutes to finish download-
ing the JSON documents. Since news agencies and news desks needs to be able to quickly
react to events happening in the real world, the system should not be the bottleneck in
keeping up with the latest events. The developers should also look into the bugs that can
arise when semantically annotating large amounts of data. The most noticeable being an
outOfMemory-exception which occurs in the C# code.

Lastly, the frontend code as of right now is written in AngularJS37 which is the first ver-
sion of Angular. Angular has since its start seen a total rewrite and is now more competi-
tive against other frontend frameworks such as Vue.js38 and React.js39. I believe that this
project should in the future strive to be written in a more modern frontend framework.
This will lead to better maintainability as it is better documented online, and it will be
more sought after as new developers would want to work with more up to date tooling.

9.2.2 Wolftech

The next phase of development of News Hunter should also strive to include the users
even more throughout the development process. This could be done in several different
ways, but I propose that Wolftech would notify their users of Wolftech News that they
are searching for users of Wolftech News that may be interested in testing a prototype for
a new application. For this thesis, I conducted a survey before starting development, and
focus groups after development had ended. A better strategy for future work would be
user evaluation after each iteration.

I also think that Wolftech should update new developers on what tools and frameworks
they use at Wolftech at the time of development. If Wolftech has updated to a newer
version of Angular for instance, then new developers should be made aware of that and
possibly be given an introduction to new updated version so that the frontend could be

37https://angularjs.org/
38https://vuejs.org/
39https://reactjs.org/

81

https://angularjs.org/
https://vuejs.org/
https://reactjs.org/
https://angularjs.org/
https://vuejs.org/
https://reactjs.org/


rewritten in the future.

9.2.3 Paths for the Project

When meeting with Wolftech this autumn we discussed the ability for the system to be
able to give advice as to what features of a story that makes it a good story. I believe that
this would be a great step towards aiding the journalists in writing news articles that will
get more clicks online and aid the journalists in writing better stories, based on historical
data. This feature would be subject to train an artificial network with previous data about
what stories that has rated well click-wise based on a number of different features. The
features could be what the title was, what genre the story had, what topics the story
covered, what images were used, when it was published, and then teach the artificial
network what to look for, when a journalist writes their articles. The system should then
be able to give hints as to what needs to be added to make the story stand out.

Another path would be to add let users with administrator rights add new feeds to the
system. Right now, the feeds are hard coded into JSON files. Moving the feeds to a
database and giving users the ability to add or remove feeds would be a nice feature
to have. It would also be nice of those same users could add non-semantic feeds, but
perhaps given the choice to tag them manually, and let the system annotate the system as
new data enters the system.
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A

Interview Questions for Interviews

Overview over Politicians

1. Have you missed a better overview over who is who in politics? E.g when covering
press conferences, question times, interviews etc.

2. What do you think about this feature?

3. What do you like about the feature?

4. What do you not like about the feature?

5. What do you miss about this feature?

6. What improvements do you wish to see for this feature?

Search for Athletes + Twitter

1. Have you missed this feature?

2. What do you think about this feature?

3. What do you like about this feature?

4. What do you not like about this feature?

5. What do you miss about this feature?

6. What improvements do you wish to see for this feature?

Writing Stories in the Editor

1. Have you missed this feature?
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2. What do you think about this feature?

3. What do you like about this feature?

4. What do you not like about this feature?

5. What do you miss about this feature?

6. What improvements do you wish to see for this feature?

Overview of Latest News About a Given Person

1. Have you missed this feature?

2. What do you think about this feature?

3. What do you like about this feature?

4. What do you not like about this feature?

5. What do you miss about this feature?

6. What improvements do you wish to see for this feature?

Visualization of Who Knows Who

1. Have you missed this feature?

2. What do you think about this feature?

3. What do you like about this feature?

4. What do you not like about this feature?

5. What do you miss about this feature?

6. What improvements do you wish to see for this feature?
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