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Abstract	  
The discovery of the exchange proteins directly activated by cAMP (Epac) has renewed our 

knowledge of intracellular cAMP signaling. The Epac1 isoform (RapGef3) shows high 

expression level in the kidney. In vitro studies have suggested multiple roles for Epac in the 

renal function. The development of an animal model were Epac1 is knocked out (Epac1-/- 

mice), however, allows for in vivo studies on Epac1 possible renal functions. In the present 

study Epac1-/- mice were compared to their reference wild type (WT) littermates, during 

baseline conditions as well as after per oral water load with and without presence of the 

antidiuretic vasopressin analog desmopressin. Under these conditions we measured renal 

excretion and/or clearance of creatinine, osmolytes, electrolytes, urea, cAMP and albumin. It 

turned out that Epac1-/- mice showed a normal ability to dilute their urine; Urine osmolality 

after water load combined with intra-peritoneal saline injection was 232 ± 14.90 in WT and 

249 ± 7.377 in Epac1-/- mice. However, the effect of desmopressin on urine osmolality was 

significantly attenuated in Epac1-/- mice; Urine osmolality after water load and desmopressin 

was 598 ± 88.37 in WT and 443 ± 33.52 in Epac1-/- animals, with the increase (desmopressin 

relative to saline) being 163 % in WT and 77 % in Epac1-/- mice. The present study showed 

that a reduced response to desmopressin could not be explained by under-expression of either 

the AVP-stimulated urea transporter UT-A1 or the water channel AQP-2. A possibility is that 

Epac1 is required for optimal trafficking of AQP-2 to the apical membrane. Moreover, 

creatinine clearance, used as an estimate of glomerular filtration rate, was significantly 

increased in Epac1-/- mice following water loading (WT; 397 ± 44.98 µl/min vs. Epac1-/- 550 

± 19.52 µl/min). This difference in was not seen after treatment with furosemide (WT; 553 ± 

121.9 µl/min vs. Epac1-/- 606 ± 64.01 µl/min), which blocks the Na+-K+-2Cl- co-transporter, 

and thus the tubulo-glomerular feedback response on vascular tone in the afferent arteriole. 

Urine and plasma analysis demonstrated no difference in the fractional clearance of 

osmolytes, creatinine, Na+, K+, and urea between WT and Epac1-/- animals. Epac1-/- mice did 

not demonstrate any sign of proteinuria, suggesting an intact glomerular filtration barrier. We 

conclude that renal functions are generally well preserved in Epac1-/- mice. These mice do, 

however, exhibit a moderate polydipsia and polyuria due to a perturbation of the effect of 

vasopressin on tubular water reabsorption. A role of Epac in the regulation of GFR at the 

level of macula densa is also suggested. 
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Abbreviations	  
AC Adenylyl cyclese 
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AQP-2 Aquaporin-2 
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PKA Protein kinase A 
Pkg1 cGMP-dependent protein kinase 1 
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1	  Introduction	  
1.1	  General	  aspects	  of	  Cyclic	  AMP	  signaling	  

The 3´5´cyclic adenosine monophosphate (cAMP) is the archetype of a second messengers, 

mediating a multitude of important cellular processes (reviewed in (1)). The local 

concentration and distribution of cAMP is mainly determined by members of the enzyme 

families adenylyl cyclases (AC’s) and cyclic nucleotide phosphodiesterases (PDE’s). 
	  
Binding of a number of hormones to specific G-protein coupled receptors leads to 

dissociation and activation of the heterotrimeric G protein, consisting of three subunits, α, β 

and γ. Multiple classes of α-subunits regulate ACs, and are primarily stimulatory (Gαs 

family), but can also be inhibitory (Gαi family). The Gαs protein activates AC to catalyze 

cleavage and cyclisation of ATP to produce cAMP (and PPi). Nine mammalian genes have 

been identified to encode membrane-bound AC’s, whereas only one gene has shown to 

encode a soluble isoform (reviewed in (2)).  
	  
PDE’s hydrolyzes cAMP to 5´AMP. There exist 25 mammalian genes encoding PDE’s, some 

with several isoforms and splice variants. They are all divided in 11 PDE families (PDE1–

11). PDE4, 7, and 8 selectively recognize cAMP, PDE5, 6, and 9 recognize 3´5´ cyclic 

guanoside monophosphate (cGMP), while PDE1, 2, 3, 10 and 11 recognize either substrates. 

PDE’s are active enzymes, regulating cAMP signaling. The anchoring of PDE’s close to AC 

is thought to keep the locally produced cAMP confined in local compartments ((3) reviewed 

in (4)). Another example is through cGMP binding to PDE2 and PDE3. The binding of 

cGMP to an allosteric site of PDE2 enhances its degradation of cAMP at the active site, while 

allosteric binding of cGMP inhibits the cAMP degradation by PDE3 ((5, 6) reviewed in (7)).  

 

When intracellular cAMP levels are elevated it can bind to and activate its intracellular 

receptors (Figure 1). Most central effects of cAMP are mediated by serine/threonine protein 

kinase A (PKA), ubiquitously expressed in eukaryote cells (8). PKA is a heterotetramer 

composed of two regulatory (R) and two catalytic (C) subunits.  Upon binding of two 

molecules of cAMP to each R subunit its associated C-subunit dissociates, and becomes free 

to catalyze phosphorylation of downstream target proteins. It can phosphorylate cytoplasmic 

polypeptides or translocate into the nucleus to phosphorylate nuclear proteins such as the 

cAMP response element binding (CREB) protein, which enhances transcription from CRE 
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element containing promotors. An important action of the R subunit is to anchor PKA to 

scaffold proteins (AKAP’s). The AKAP’s serve to confine a proportion of cellular PKA to 

discrete signaling compartments (reviewed in (9)). 

 

The second family of mammalian cAMP receptors identified is cyclic nucleotide regulated 

ion channels, first found in photoreceptor cells and olfactory sensory neurons, where they 

produce membrane depolarization in response to sensory stimuli and cyclic nucleotide 

binding. They have since been detected also in other cells like cardiomyocytes (reviewed in 

(10)). The third family identified was the exchange proteins directly activated by cAMP 

(Epac), described in more detail in section 1.2. 

 

 
Figure	   1:	   Cyclic	   AMP	   signaling	   pathway.	  Upon	   ligand	   binding	   to	   a	   G-‐protein	   coupled	   receptor,	   AC	   will	   be	  
activated	  and	  generate	   cAMP.	  An	   increase	   in	   intracellular	   cAMP	  acts	   through	   three	  different	   systems.	  Most	  
cAMP	   effects	   have	   been	   attributed	   to	   PKA.	   Binding	   of	   cAMP	   to	   each	   R-‐subunits	   causes	   its	   C	   subunit	   to	  
dissociate	  from	  the	  holoenzyme,	  and	  is	  then	  free	  to	  catalyze	  phosphorylation	  of	  downstream	  proteins.	  Cyclic	  
nucleotide	  gated	   ion	  channels	  opens	   in	  response	  to	  binding	  of	  cAMP.	  Exchange	  protein	  directly	  activated	  by	  
cAMP	  (Epac)	  exchange	  GDP	  with	  GTP	  on	  the	  small	  GTPases	  Rap1	  and	  2.	  Figure	  adapted	  fro	  Schmidt	  et	  al.	  (11).	  
	  

	  
1.2	  Epac	  Proteins	  

Until 1998 the consensus was that cAMP mostly acted via PKA. The finding of the two GDP 

exchange protein directly activated by cAMP (Epac1, Epac2; RapGef3, 4) opened up a new 

dimension of cAMP signaling (12, 13). Epac1 was revealed by an in silico screen for proteins 

with cyclic nucleotide binding domains by de Rooji and colleagues (12). Simultaneously, 

independently of this, Kawasaki et al. discovered Epac2 as a PKA independent activator of 



 6 

Rap1 (13). Rap1 and Rap2 functions as molecular switches, cycling between an inactive 

guanosine diphosphate (GDP) bound state and an active guanosine triphosphate (GTP) bound 

state. Epac promotes the dissociation of bound GDP, and thereby exchanging it with the more 

abundant GTP (Figure 1). The GTP-bound forms of the Rap proteins can interact specifically 

with their effector proteins and activate downstream targets (12, 13). The Epac1 and Epac2 

proteins exhibit a different expression profile. Epac1 is ubiquitously expressed, albeit with 

distinct expression level. It is mostly expressed in the kidneys, the hart, blood vessels adipose 

tissue, ovaries, uterus and the central nervous system. Epac2 splice variants are more tissue 

specific, mostly abundant in central nervous system, pancreas and adrenal gland (12, 13). 
	  
1.2.1	  The	  architecture	  of	  Epac	  

Epac1 and Epac2 are multi domain proteins encoded by two different genes (12), and share 

extensive sequence homology. As displayed in Figure 2, they both contain an N-terminal 

regulatory region and a C-terminal catalytic region ((14, 15) reviewed in (11)). The 

regulatory region contains a high-affinity cAMP-binding domain (cAMP-B) and a 

membrane-anchoring disheveled-Egl-10-pleckstrin (DEP) domain (14, 16). The DEP-domain 

is in Epac1 required for its retribution to the plasma membrane (17). Epac2 has an additional 

low-affinity cAMP-binding domain (cAMP-A) at the N-terminus, found to target one of the 

Epac2 isoforms to the plasma membrane (14). In the catalytic region the CDC25-homology 

domain (CDC25HD) with the exchange activity of Epac is located. This in addition to a Ras 

exchange motif (REM) domain responsible for the GDP-GTP exchange. A Ras-association 

(RA) domain separates the CDC25HD and the REM domain (14). The N-terminal regulatory 

region is autoinhibitory and interacts directly with a catalytic region. The theory is that the 

cAMP binding induces a conformational change that opens the CDC25HD domain from auto 

inhibitory restrains, and permits GDP-GTP exchange of Rap ((14-16, 18) reviewed in (11)). 

 
Figure	  2:	  Schematic	  representation	  of	  Epac	  functional	  domains.	  Both	  Epac	  1	  and	  Epac2	  contain	  a	  N-‐terminal	  
regulatory	   region	   with	   cAMP-‐B	   in	   Epac	   1	   and	   2	   and	   an	   additional	   cAMP-‐A	   in	   Epcac	   2.	   Additionally	   a	   DEP	  
domain	   is	   located	  here.	   The	  C-‐terminal	   catalytic	   region	   containing	   the	  CDC25-‐homology	  domain	   (CDC25HD)	  
where	   the	   exchange	   activity	   is	   located,	   a	   REM	   domain,	   responsible	   for	   the	   GDP-‐GTP	   exchange,	   and	   a	   RA-‐
domain	  that	  separates	  the	  two.	  The	  figure	  is	  modified	  from	  Gloerich	  et	  al.	  (19).	  
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1.2.2	  Methods	  used	  to	  reveal	  possible	  biological	  roles	  of	  the	  Epac	  proteins	  

Different tools have been developed to discriminate between PKA and Epac mediated effects 

of cAMP. Epac and PKA selective cAMP analogs have been developed. Most studies of 

Epac are based on the use of the Epac activating cAMP analog 8-pCPT-2’-O-methyl-cAMP, 

which does not activate PKA (20). This analog has however, at high concentrations, several 

off target effects. One is to inhibit cAMP PDE’s and thereby increase cAMP leading to 

indirect PKA activation (21). Additional off-targets effects are interference with transport 

proteins (22) and purine receptors (23). Supporting evidence of Epac mediated effects can be 

obtained if the effect of cAMP cannot be mediated by specific PKA-directed cAMP analogs 

like N6-monobutyryl-cAMP or N6-benzoyl-cAMP (20). Similarly PKA-specific inhibitors 

can be introduced, to blunt the effect of PKA. A new Epac inhibitor has recently become 

available, that selectively inhibit the catalytic function of Epac (24). Unfortunately, most 

studies rely mainly on the one Epac specific cAMP analog 8-pCPT-2’-O-methyl-cAMP. 

Some of the in vitro actions of the Epac analog have been validated by knock down of Epac1 

(25, 26). Animal knock out models of the Epac proteins have been developed. The use of 

these animals is however still in its infancy.  

 

1.2.3	  Major	  (extra-‐renal)	  biological	  roles	  of	  Epac	  

The overall result of cAMP stimulation at the cell or organism level represents the integrated 

actions of Epac- and PKA-dependent pathways (as well as of cyclic nucleotide regulated ion 

channels). Several biological roles are implicated for the Epac proteins, either acting alone or 

synergistically or antagonistically with PKA (reviewed in (27)). An Example of integrated 

cAMP-PKA-Epac signaling is the formation of a cAMP-responsive signaling complex 

maintained by AKAP, and includes PKA, a PDE4 and Epac1. These intermolecular 

interactions facilitate the dissemination of distinct cAMP signals through each effector 

protein (28). Based mainly on in vitro studies, Epac is implicated as cAMP mediator for 

several renal cell functions including secretion, intracellular Ca2+ mobilization, cell adhesion, 

proliferation, and apoptosis (reviewed in (11)).  

 

In the vasculature there is experimental evidence of Epac having a role in vascular smooth 

muscle contraction, in addition to being involved in control of the endothelial barrier 

function. Through signaling via Rap on the actin tubuli network, Epac is thought to enhance 

cell junction to reduce leakage. Roles of Epac are proposed in the heart, in potentiating 
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contraction of cardiomyocytes by regulate calcium homeostasis and cardiac hypertrophy 

(reviewed in (29)). In the lungs Epac may be involved in regulation of airway smooth muscle 

tone and secretory processes (reviewed in (11)). In pancreas Epac2 is found to be important 

for regulation of insulin secretion from beta cells. In alpha cells Epac2 mediates induction of 

glucagon secretion in a PKA-independent manner. Additionally Epac is considered to be a 

target of cAMP-regulated synaptic potentiation (30). 

 

There are several lines of evidence, both on intact animals and organ and cell culture, that 

Epac is involved in regulation of neuronal signaling. A role in neuronal differentiation (20) 

and regeneration has been suggested (reviewed in (31)). Furthermore brain specific Epac1/2 

double knock out mice has shown to have learning and memory retrieval and tendencies to 

autism (32). Epac1 knockout (Epac1-/-) mice have altered trans-endothelial uptake of a 

parasite (33) and possibly altered lipid metabolism (34), although members of our group find 

no such phenotype in our Epac1-/- mice (S. Døskeland personal communication). The 

postulated role of Epac in the kidney will be described in section 1.4, after a general 

introduction to kidney function (1.3). 

 
	  

1.3	  Kidney	  anatomy	  and	  function 

The kidneys are intricate and highly specialized organs, vital in maintenance of body 

homeostasis, blood pressure control and in removal of waste products from the body. They 

are bean shaped organs, lying behind the peritoneum, on each side of the vertebrae. When 

bisecting a kidney two distinct regions appear, the outer region called the cortex, and the 

inner region called the medulla (Figure 3A). The functional unit of the kidney is the nephron, 

and consists of two major components, the renal corpsule and the renal tubules together with 

the collecting duct (Figure 3B). 
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Figure	  3:	  The	  kidney	  and	  its	  functional	  unit,	  the	  nephron.	  (A)	  A	  bisected	  kidney	  revealing	  two	  distinct	  regions,	  
cortex	  and	  medulla.	  Urine	  is	  collected	  in	  renal	  pelvis,	  and	  further	  transported	  to	  the	  urine	  bladder	  through	  the	  
ureter.	   (B)	   In	   the	  nephron,	  plasma	   is	   filtered	   from	  the	  glomerulus	   into	  Bowman’s	  capsule	  at	  a	   rate	  of	  about	  
125	  ml/min	  in	  humans	  (glomerular	  filtration	  rate,	  GFR).	  The	  filtrate	  then	  continuous	  into	  the	  proximal	  tubule,	  
were	  70%	  of	   the	  fluid	   is	   reabsorbed.	  From	  there	  the	  filter	  enters	  the	   loop	  of	  Henle,	  surrounded	  by	  the	  vasa	  
recta.	  Macula	  densa	  is	  responsible	  for	  the	  tubulo-‐glomerular	  feedback	  control	  of	  vascular	  tone	  in	  the	  afferent	  
arterioles	   prerequisite	   for	   auto	   regulation	   of	   GFR.	   The	   filtrate	   next	   enters	   the	   distal	   tubule.	   Several	   distal	  
tubules	   join	   together	   to	   form	   the	   collecting	   duct	  were	   regulation	  of	  water	   excretion	   and	   fine-‐tuning	  of	   salt	  
excretion	  takes	  place.	  Figure	  adapted	  from	  (35).	  
	  
	  

1.3.1	  The	  renal	  corpsule	  

The renal corpsule is located in cortex, and consist of the glomerulus, a tuft of glomerular 

capillaries, enveloped by the glomerular filtration barrier (GFB), that forms Bowman’s 

capsule. The renal blood supply is from the renal artery that progressively branches to form 

afferent arterioles and the glomerular capillaries. The distal ends of the glomerular capillaries 

coalesce to form efferent arterioles (Figure 4). This will lead to a secondary capillary 

network; the peritubular capillaries in the cortex and vasa recta in the medulla, surrounding 

the renal tubules, which in turn will empty into vessels forming the renal venous system (36).  
	  
Plasma is filtrated through the GFB from the capillaries in glomerulus into Bowman’s 

capsule. The GFB is a biological membrane that includes a unique type of the fenestrated 

endothelium, the basement membrane, and the epithelial cell layer (podocytes). The 

podocytes together with the mesangial cells mainly provides structural support to the GFB. 

The GFB has a unique ability to filter great amount of water, while still having selectivity for 

filtration of proteins. The selectivity is based on size and charge, and is virtually impermeable 

to large plasma proteins (36). Albumin is the most abundant plasma protein, and although it 
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is small in size, its negative charge decreases its filterability. A change in the composition of 

the GFB can cause the smaller proteins, such as albumin, to be filtered. This can be detected 

in the urine (proteinuria) (reviewed in (37)). 
	  
The glomerular filtration is the first step in urine formation. Large amount of fluid is filtrated 

across the GFB. The glomerular filtration rate (GFR) across the GFB is determined by the 

formula GFR = Kf * net filtration pressure. The filtration coefficient, Kf, is made up by the 

hydraulic conductivity and the filtering surface of the capillaries. The net filtration pressure is 

determined by balance between the hydrostatic pressure and the colloid osmotic pressure, 

acting across the capillary membrane. GFR is kept relatively constant byautoregulatory 

mechanisms such as tumoglomerular feedback (TGF). The TGF depends on an anatomical 

arrangement called the juxtaglomerular complex (Figure 4). The complex includes 

juxtaglomerular cells in the walls of the afferent and efferent arterioles, and specialized 

epithelial cells from the initial portion of the distal tubule, called macula densa (MD) (36). 

MD cells can sense the concentration of Na+, (and presumably Cl-) in the tubular fluid, via 

the Na+-K+-2Cl co-transporter (NKCC2). A decrease or increase in Na+ uptake initiates a 

signal from MD that elicits inverse changes in GRF, by controlling the renal arteriolar 

resistance (reviewed in (38)). The importance of NKCC2 found in MD, as well as in thick 

ascending limb of the loop of Henle, is illustrated by the strong diuresis elicited by NKCC2 

inhibiting loop diuretics like furosemide (39). 

 
Figure	   4:	   The	   structure	   of	   the	   renal	   corpsule.	   A	   schematic	   diagram	   showing	   the	   organization	   of	   the	   renal	  
corpsule.	  The	  juxtaglomerular	  complex	  consists	  of	  mesangila	  cells	  associated	  with	  macula	  densa	  cells,	  and	  the	  
capillary	  endothelium	  of	  the	  junxtaglomerular	  cells	  of	  the	  afferent	  and	  efferent	  arterioles.	  Figure	  adapted	  from	  
Ros,	  M.	  H.	  et	  al.	  (40).	  
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1.3.2	  The	  renal	  tubules	  and	  collecting	  ducts	  

The filtrate flows from Bowman’s capsule into the proximal tubules, where a substantial 

amount of the filtrate (water, electrolytes, sugars, amino acids, and proteins) is reabsorbed.  

The filtrate next enters the loop of Henle, protruding into the medulla of the kidney. In the 

descending loop of Henle water is lost from the filtrate through osmotic movement. In the 

ascending limb electrolytes are reabsorbed by active transport across the tubular epithelium 

(36). The loop of Henle and vasa recta are arranged in a counter current multiplication 

system, establishing a cortico-medullary osmotic gradient, neccesarry to concentrate the urine 

(reviewed in (41)). The following nephron segment is the distal tubule, located in the cortex. 

The initial portion of the distal tubule contains the short macula densa segment. Several distal 

tubules drain into each cortical collecting duct, which subsequently enters the medulla as 

medullary collecting duct. In the collecting duct the final water- salt- and urea reabsorption 

occurs. Finally, the collecting ducts merge to form the renal pelvis, which joins the ureter 

leading to the urinary bladder (36). 

 

1.3.3	  The	  regulation	  of	  diuresis	  by	  vasopressin	  

A key regulator of diuresis is the anti-diuretic hormone vasopressin (AVP). AVP was first 

discovered as a vasopressor (42). Later it was identified as an anti-diuretic hormone (43), and 

established as the primary regulator of water balance and maintenance of plasma osmolality 

(44). AVP is released into the blood stream in response to increased plasma osmolality or 

decreased circulating plasma volume. In response to a large water intake, plasma will be 

diluted, endogenous AVP will be suppressed, and urine produced will be more hypo-osmotic 

relative to blood plasma. Changes in the excretion rate of urinary solutes, such as salt and 

urea are, however, modest (reviewed in (41)). 

 

Two AVP receptors isoforms exists, V1a,b mainly exerting the vasopressor effects, and V2 

primarily exerting the anti-diuretic effects (reviewed in (45)). The V2 receptor (46) is 

predominantly located in the kidney, most abundantly in the apical membrane of collecting 

duct cells (47). Desmopressin (dDAVP) is a synthetic AVP analogue for the V2 receptor, and 

has enhanced anti-diuretic potency, and a markedly diminished vasopressor activity (48). 

Binding to the V2 receptor activates Gαs coupled to AC, that when activated generates cAMP 

(48). The main function of AVP through cAMP is to increase the water permeability along 

the entire collecting duct via regulation of the water channel Aquaporine-2 (AQP-2), 
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additionally it increase urea permeability in the inner medullary collecting duct via regulation 

of the urea transporter UT-A1 (49, 50).  

 

The predominant AVP-regulated water channel AQP-2 (49) is essential for regulation of 

water balance, and is abundant in the apical membrane of the final part of the distal tubules 

and in the collecting duct (51, 52). AVP regulates AQP-2 mainly by enhancing its movement 

from intracellular vesicles to the luminal membrane of the duct cells (53). AQP-2 contains 

several consensus sites for PKA phosphorylation, some of which have been shown to be 

critical for AVP-induced trafficking and subsequent apical membrane accumulation (54, 55). 

In perfused inner medullary collecting ducts, pre-incubation with a substance that buffers 

intracellular Ca2+, blocked the osmotic water permeability, indicating that intracellular Ca2+ is 

required for AQP2 membrane insertion (56). Additionally AVP leads to increased AQP-2 

transcription (57). This involves the cAMP responsive element (CRE) pathway, where PKA 

induces phosphorylation of the cAMP response element (CRE) binding protein (CREB), 

which stimulates transcription via CRE in the AQP-2 promotor (58). 

 

Urea is the predominant end product of nitrogen metabolism in mammals, and is freely 

filtrated in the kidney glomerulus. Urea is transported through urea transporters (UT-A,B). 

Reabsorption of urea in kidney inner medullary collecting duct (IMCD) by UT-A1 and UT-

A3 and by UT-B1 in the vasa recta are predominantly responsible for urea accumulation in 

medullary in the urinary concentration process. This accumulation of urea in the medulla is 

important to generate the osmotic driving force for maximal water reabsorption and 

additionally permit large amounts of urea to be excreted without obligating excessive water 

loss. This process is independent of electrolyte transport. UT-A1 in the IMCD (50) is 

regulated by AVP (59). During anti-diuresis the AVP induced generation of cAMP increases 

the abundance of UT-A1 in the apical membrane (60, 61), in part mediated by 

phosphorylation of UT-A1 (59, 62). AVP has additionally been shown to increase the 

expression of UT-A1 (63, 64). 

 

1.4	  The	  proposed	  roles	  of	  Epac	  in	  kidney	  function	  

The kidney is one of the organs showing the highest Epac1 mRNA expression (12, 13), 

exhibiting different expression patterns in the various parts of the nephron (65, 66). 

Immunoblots from Epac1-/-, Epac1+/- and WT mice show particularly high Epac1 abundance 
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in kidney relative to tissue from other organs (67). Epac2 expression in the kidney has been 

reported (66), but at very low level compared to Epac1. Members of our research group (R. 

Kopperud and C. Krakstad) failed to detect any Epac2, under conditions when Epac2 was 

detected in liver (S. Døskeland, personal communication). In vitro experiments have 

suggested a role of Epac in mediating some of the many cAMP dependent renal processes 

previously attributed to PKA (65, 68-74). 

 

The possible function of Epac in the control of glomerular barrier and GFR is not understood. 

A study suggests that ANG II induces collagen synthesis in mesangial cells via cAMP-Epac 

but not PKA. The Epac specific analog 8-pCPT-2’-O-methyl-cAMP significantly increased 

activity of mediators in the signaling pathway, while a PKA inhibitor, did not abolish the 

activity (75). 

 

In proximal tubule cells cAMP is involved in increasing the efficiency of glucose transport 

(76). Lee and colleagues have suggested a role of Epac and PKA in cAMP-induced increase 

of sodium-glucose cotransporters (SGLT) expression via extracellular-signal-regulated kinase 

(ERK), Ras–mitogen-activated protein kinase, using the Epac selective cAMP analog 8-

pCPT-2’-O-methyl-cAMPin addition to a PKA directed analog. Additionally Both PKA and 

Epac also stimulated SGLT trafficking to plasma membranes via lipid rafts (77) 

 

In the proximal tubule and thick ascending limb of Henle, elevated intracellular cAMP levels 

down regulate the Na+/H+ exchanger 3 (NHE3), responsible for reabsorption of Na+ 

(reviewed in (78)). Studies done by Honegger et al. on opossum kidney cells and murine 

kidney slices demonstrated that Epac selective cAMP analog (8-pCPT-2’-O-methyl-cAMP), 

led to inhibition of NHE3 activity, as did a specific PKA analog (68). Similar results were 

shown by another in vitro study on a LLC-PK kidney cell line, using the same cAMP analogs 

in addition to inhibitors of PKA and Epac. It was demonstrated that exendin-4 modulation of 

the NHE3 activity required activation of both cAMP receptors. This was based on the 

observation that PKA inhibitor blocked the effect of the PKA analog, but only partially 

blocked the NHE3 inhibition. The same was true for the Epac inhibitor when used in 

combination with the analog (69).  

 

In the collecting tubule and collecting duct the H+-K+-ATPase is an ion pump using energy 

from ATP hydrolysis to transport H+ out of the tubules in exchange for K+, central in the 
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acid-base balance. The activation of the H+-K+-ATPase is not fully understood, but it is likely 

to involve cAMP through PKA (reviewed in (79)). A PKA independent pathway has however 

been suggested by Laroche-Joubert el al. Stimulation of K+-H+-ATPase by calcitonin, 

increases phosphorylation of extra cellular signal regulated kinase (ERK) in a PKA 

independent manner. By using antibodies directed against Epac1, the stimulation of K+-H+-

ATPase curtailed, indicating that calcitonin stimulates K+-H+-ATPase through cAMP 

activation of Epac1 and subsequent phosphorylation of ERK (65).  

 

An essential role of cAMP in the collecting duct is to increase apical membrane abundance of 

AQP-2, and UT-A1. This has long been ascribed to PKA, but several in vitro studies have 

indicated Epac to be involved. Yip and colleagues have demonstrated that studies on perfused 

IMCD cells treated with a PKA inhibitor did not prevent the AVP-induced Ca2+ 

mobilization, involved in AQP-2 trafficking. Furthermore the Epac selective agonist 8-pCPT-

2’-O-methyl-cAMP mimicked the effect of AVP in trigging Ca2+ oscillations. Together this 

indicates that Epac is involved in the AQP-2 exocytosis (70). Additionally Epac has been 

implicated in long-term regulation of AQP-2. In murine immortalized cortical collecting duct 

cells treated with AVP. The use of two separate PKA inhibitors did not block the up 

regulation of AQP-2 expression, indicating a PKA independent pathway for AQP2 mRNA 

expression up regulation, mediated through a cAMP-responsive element in the AQP2 

promoter (71). Another study conducted by Kortenoeven et al., on murine immortalized 

cortical collecting duct cells showed that after dDAVP incubation AQP-2 transcription were 

blocked by a PKA inhibitor. Following a longer dDAVP incubation AQP2 transcription 

remained elevated, not blocked by a PKA inhibitor. Incubation with a specific Epac activator 

(8-pCPT-2’-O-methyl-cAMP) increased both AQP2 abundance and transcription compared 

with cells that were un-stimulated. Together this suggested that PKA is involved in the initial 

rise in AQP2 levels after dDAVP stimulation, but not in the long-term effect of dDAVP, 

which may involve Epac (72). 

 

PKA activation has demonstrated to increase phosphorylation and subsequent exocytosis of 

UT-A1. Frolich and colleagues has however been demonstrated that a PKA inhibitor only 

partially blocked the activation of urea flux induced by AVP and forskolin in Madin-Darby 

canine kidney cells, indicating that this activation involves a signaling pathway beside from 

PKA pathway (74). A second study by Wang et al. demonstrated that an Epac activator (8-

pCPT-2’-O-methyl-cAMP) significantly increased urea permeability in isolated, perfused rat 
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IMCD cells, and significantly increased UT-A1 phosphorylation and its accumulation in the 

plasma membrane, via MEK (mitogen-activated growth factor)/ERK signaling pathways. 

Further, stimulation of Epac by adding forskolin and inhibit PKA, significantly increased 

urea permeability (73). 

 

1.5	  Aim	  of	  the	  study	  

The kidney show high Epac1 expression levels, and a number of in vitro studies have 

implicated Epac1 in regulation of several renal transporters and channels, and in maintaining 

the GFB. An animal model has been developed, were Epac1 is knocked out, allowing for in 

vivo studies. Preliminary studies conducted in the group have revealed an increased diuresis 

in the Epac1-/- mice. The present study was therefor undertaken to investigate the renal 

function of Epac1 by comparing Epac1-/- mice to their reference WT littermates during 

baseline conditions as well as after a per oral water load and when water loaded and dDAVP 

treated. This will allow for evaluation of Epac1-/- mice capability to dilute and concentrate 

urine. Under the mentioned conditions we will measure renal excretion and/or clearance of 

osmolytes, electrolytes, creatinine, urea, cAMP, and albumin. This will indicate the renal 

consequences of deletion of Epac1. Furthermore will the expression level of AQP-2 and UT-

A1 be evaluated, using quantitative Reel time-PCR (qRT-PCR) and immunoblotting. Finally 

Epac1 possible role in GFR will be assessed by using furosemide to block the NKCC2 co-

transporters in macula densa, and hence the vaso-regulatory feedback to afferent arteriole. 
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2	  Materials	  and	  Methods	  
2.1.	  Chemicals	  

Unless otherwise stated, the chemicals used were obtained from Sigma-Aldrich (St. Louis, 

MO, USA) and at least of analytical grade. Special reagents or drugs are mentioned in 

connection with the description of the methods/experiments where they were used. 

 

2.2	  Mouse	  strains	  and	  handling	  

The mice used were kindly provided by Dr. Stein Ove Døskeland (University of Bergen, 

Norway). The Epac1 knockout mouse model (referred to as Epac1-/- mice) included in this 

study was bred against a C57BL/6J-BomTac genetic background. The targeted disruption of 

the Epac1 gene had been generated by recombinant deletion of the cAMP-binding domain. 

The deletions were confirmed by genotyping and immunoblotting, all done by out group (67). 

Epac1-/- mice and littermate wild-type (WT) mice were bred in the local animal facility. 

 

The mice used in the present study were females, 3-5 months of age, weighing 20-25 g. They 

were housed at constant temperature (23°C) with 12-h artificial light-dark cycle. The mice 

were routinely caged in groups of two to four in cages with individually ventilated cage 

systems, and were provided with standard rodent chow (Special Diet Services RM1, 801151, 

Scanbur BK, Oslo Norway) and water ad libitium. The animal protocols were approved by 

The Norwegian Animal Research Authority and performed according to the European 

Convention of the Protection of Vertebrates Used for Scientific Purposes. Details of animal 

handling are described together with the relevant experiments. 

 

2.3	  Description	  of	  the	  animal	  studies	  related	  to	  diuresis	  control	  

2.3.1.	  Overview	  

The animal experiments were designed to investigate the possible role of Epac1 in the 

diuresis. Two experimental groups of mice were included, series 1 (7 Epac1-/- and 6 WT 

mice), and series 2 (8 Epac1-/- and 8 WT mice). All experiments were conducted in individual 

MMC10 metabolic cages, specifically designed for use with mice (Hatteras Instruments, Inc, 

NC, USA; Figure 5A). 
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Figure	  5:	  The	  individual	  metabolic	  cage.	  (A)	  The	  mice	  have	  free	  access	  to	  food	  from	  the	  tube	  on	  the	  left	  side	  
of	  the	  cage,	  and	  water,	  from	  the	  water	  bottle	  on	  the	  right	  side.	  They	  stayed	  on	  top	  of	  the	  grid,	  with	  a	  funnel	  
separating	  feces	   from	  the	  urine.	  Urine	  was	  collected	   in	  the	  tube	  underneath.	  (B)	  To	  conduct	  the	  continuous	  
urine	  measurements	  the	  cages	  were	  slightly	  modified.	  The	  bottom	  cylinders	  were	  situated	  on	  top	  of	  the	  cage,	  
with	  the	  grid	  in	  between,	  a	  siliconized	  petri	  dish	  were	  placed	  underneath	  enabling	  pipetting	  of	  urine	  as	  it	  was	  
excreted.	  
 

Series 1 and 2 of WT (n = 14) and Epac1-/- mice (n = 15) were kept in the individual 

metabolic cages for two constitutive 24-h periods (with free access to water and food). In the 

first 24 h animals were adapted to the metabolic cages. In the second 24-h period diuresis and 

urine production were determined. They stayed in ordinary cages for one week before being 

used for further experiments. Following all experiment urine samples were collected, and 

after the latter experiment plasma samples and kidneys were collected, for further analysis. 

The experiments for series 1 and 2 of animals are overviewed in Figure 6 (the first 24-h 

period adapting the mice to the individual metabolic cages is not included). 
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Figure	   6:	   Overview	   of	   the	   animal	   experiments.	   (A)	   Series	   1	   of	  WT	   (n	   =	   6)	   and	   Epac1-‐/-‐	  mice	   (n	   =	   7)	   were	  
included	  in	  24-‐h	  baseline	  experiment.	  After	  7	  days	  in	  the	  ordinary	  cages	  the	  animals	  were	  anesthetized,	  water	  
loaded	  (by	   intragastric	   infusion	  of	  1.5	  ml	  water),	  and	   injected	   intra-‐peritoneal	   (i.p.)	  with	  vehicle	  (0.9%	  NaCl),	  
urine	  were	   collected	   in	   6	  h.	  After	   additional	   7	  days	  mice	   received	  water	   load	   combined	  with	   an	   i.p.	   dDAVP	  
injection,	  urine	  were	  collected	  in	  6	  h.	  A	  part	  of	  the	  mice	  (n	  =	  4	  WT,	  n	  =	  5	  Epac1-‐/-‐)	  were	  euthanized	  6	  h	  after	  
dDAVP	  injection,	  the	  rest	  (n	  =	  2	  WT,	  n	  =	  2	  Epac1-‐/-‐)	  were	  euthanized	  24	  h	  after	  dDAVP	  injection.	  Plasma	  and	  
kidneys	  were	  collected.	  Urine,	  plasma	  and	  kidney	  tissue	  were	  analyzed.	  (B)	  Series	  2	  of	  WT	  (n	  =	  8)	  and	  Epac1-‐/-‐	  
mice	  (n	  =	  8)	  were	  included	  in	  24-‐h	  baseline	  experiment.	  After	  7	  days	   in	  the	  ordinary	  cages	  the	  animals	  were	  
anesthetized,	  water	   loaded.	   Additionally	   half	   of	   the	  mice	   (n	   =	   4	  WT,	   n	   =	   4	   Epac1-‐/-‐)	  were	   injected	   i.p.	  with	  
vehicle,	  and	  the	  remaining	  half	  received	  an	  i.p.	  injection	  of	  furosemide.	  Urine	  was	  collected	  in	  3	  h,	  and	  plasma	  
and	  kidneys	  were	  collected.	  Urine,	  plasma	  and	  kidney	  tissue	  were	  analyzed.	  
  

2.3.2	  Determination	  of	  water	  consumption	  and	  urine	  output	  

After mice were adapted to the individual metabolic cages, the urine collecting tubes and 

water bottles were weighed. This was done immediately before placing the animals back in 

the individual metabolic cages, and after the animals had been in the cages for 24 h (Figure 

5A). Urine output and water consumption was estimated as the difference in weight of the 

urine collecting tubes and the water bottles, respectively. The urine samples were frozen on 

-20°C for further analysis, and the animals were returned to the original cages.  

 

2.3.3	  Water	  loading,	  injection	  of	  dDAVP,	  furosemide,	  and	  continuous	  urine	  collection	  

In order to minimize the bladder urine content the animals were deprived of water 1 h prior to 

each experiment, and their urine bladders were emptied by bladder massage. The animals 
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then were anesthetized with Isoba® vet isoflurane (Schering-Plough Animal Health, Elkhorn, 

NE), followed by intra-peritoneal (i.p.) injection of 0.1 ml of either vehicle (0.9% NaCl), the 

AVP analog dDAVP (1 ng/g body weight), or furosemide (40 µg/g body weight), all in 0.9% 

NaCl. A few seconds after the i.p. injection each animal received 1.5 ml water by intragastric 

intubation through a 38 mm metal feeding needle with a silicon tip (AgnTho's AB, Sweden). 

Immediately thereafter the mice were placed in the individual metabolic cages, slightly 

modified with a siliconized inset (Figure 5B) to facilitate the quantitative recovery of the 

spontaneously voided urine. The time point of each excretion was noted, and its volume 

determined by pipetting urine from the siliconized petri dish placed underneath the cage into 

a pre-weighed tube. These data were used to construct the urinary output as a function of time 

after the onset of the experiment (defined as the time point when the bladder was emptied 

after massage). The urine samples from individual animals were frozen on -20°C for further 

analysis. In the experiment conducted to series 1 of mice (receiving vehicle, or dDAVP 

injection) urine were collected for 6 h (Figure 6A). The experiment conducted to series 2 of 

mice (receiving vehicle, or furosemide injection), urine was collected for 3 h (Figure 6B). A 

shorter time for collection were performed in this experiment to minimize possible secondary 

effects of furosemide. 

 

2.3.4.	  Sampling	  and	  preparation	  of	  blood	  and	  kidney	  tissue	  for	  subsequent	  analyses	  

The animals were euthanized with CO2 gas, 0.4 ml blood was rapidly aspirated by cardiac 

puncture into a 0.5 ml syringe with 0.1 ml Anticoagulant Citrate-dextrose solution, and 

centrifuged for 3 minutes at 500 rpm in an Eppendorf mini-centrifuge to yield plasma. 

Plasma samples was stored at –20°C together with urine samples until assayed. The kidneys 

were quickly removed, sliced horizontally and each half quickly cut into smaller pieces 

before being flash-frozen in liquid nitrogen and stored at -80°C.   

 

Total RNA was isolated using the TRIzol reagent according to the manufacturer`s protocol. 

Briefly, 100 mg frozen kidney tissue was homogenized as described for protein extraction, 

except that the extraction medium was TRIzol. After washing and drying, the pellet 

containing total RNA was dissolved in 0.1 ml of 0.2 % diethyl pyrocarbonate-treated water. 

The RNA concentration was estimated using the Nano-Drop Spectrophometer ND-1000, 

(Saveen Werner, Limhamn, Sweden). All samples were run on a 1 % agarose gel and 18S 

and 28S ribosomal RNAs visualized by standard ethidium bromide staining. Visual 
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inspection of the staining patterns revealed a close correlation between the intensity of the 

28S and 18S bands and the spectrophotometrically determined concentrations in each sample.  

 

For protein extraction for subsequent western blot analysis tissue from one kidney half (about 

0.1 g) was homogenized, while still frozen, in ice-cold 50 mM Tris (pH 7.4) buffer with 150 

mM NaCl, 0.5 % Sodium deoxy-cholate, 1 % tergitol-type nonyl phenoxypolyethoxyl-

ethanol-40 (NP-40), 0.1 % Sodium dodecyl-sulfate (SDS), with Protease Inhibitor Complete 

(Roche Diagnostics GmbH, Germany) added according to the manufacturers’ protocol, using 

two cycles of 20 seconds at maximum speed of a Heidolph DIAX 900 homogenizer. The 

samples were incubated at room temperature for 30 min, before centrifuged at 2900 X g for 

20 min at 4°C (Biofuge Stratos, Heraeus, Thermo Electron Corporation, Germany). The 

amount of protein in each sample was measured using the Bradford method (Bio-Rad Protein 

assay Kit II, Bio-Rad Laboratories, Hercules, CA, USA) with bovine serum albumin (BSA) 

as standard. The absorbance was measured at 575 nm using an ASYS UMV340 plate reader 

(Biochrom, Cambridge, UK). 

 

2.4	  Methods	  used	  to	  analyze	  urine,	  plasma,	  and	  kidney	  tissue	  

2.4.2	  Quantitative	  Real	  time	  PCR	  

To determine relative AQP-2 and UT-A1 mRNA levels by quantitative real time- PCR (qRT-

PCR) 1.5 µg total kidney RNA was first reverse transcribed to cDNA by PCR in a mixture 

with 0.75 µM random hexamer and 1.5 µM Oligo-dT primer, 1 mM dNTP-mix and 50 U 

RevertAid Reverse Transcriptase (Thermo Scientific, USA). The PCR was preformed for 

four cycles with following conditions: 25°C for 10 min, 42°C for 60 min, 70°C for 10 min 

and 4°C forever (MJ Research PTC-200 Peltier Thermal Cycler, Bio-Rad Laboratories, 

Hercules, CA, USA). The qRT-PCR was carried out using cDNA corresponding to 5.5 ng 

RNA. Two repeated qRT-PCR runs, using the same cDNA were conducted. cDNA was 

added to a master mix, containing 1x iQ TM SYBR® Green Supermix (Bio-Rad 

Laboratories, Hercules, CA, USA) and 0.2 µM of each of the primers. The primer sequences 

used were: AQP2, sense 5`-GCCCTGCTCTCTCCATTG-3` and antisense 5`-

TCAAACTTGCCAGTGACAAC-3`; UT-A1, sense 5`-CTGCCACCTGGGCTTCTTTTG-3` 

and antisense 5`-GGGTAACGCCTGAGAGACAAG-3`. The amplification signals were 

normalized to tree unrelated reference genes: succinate dehydrogenase complex subunit alpha 

(SDHA) mRNA levels, sense 5`-CATGCCAGGGAAGATTACAA-3` and antisense 5`-
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GCACAGTCAGCCTCATTCAA-3`, Ppia mRNA level, sense 5`-TGAGCACTGG-

AGAGAAAGGA-3`, and anti sense, 5`-CCATTATGGCGTGTAAAGTCA-3` and cGMP-

dependent protein kinase (Pkg1) mRNA level, sense 5`- TGGATGACGTTTCCAACAAA-

3`, and anti sense, 5`-CACTATGTGGCGCTTCTTGA-3`. Total volume was adjusted with 

MQ. PCR amplification was carried out on a 384 well PCR plate, in the LightCycler 480 II 

(Roche, Basel, Switzerland). The following set of cycles were performed; 1 cycle for 300 sec 

at 95°C (pre- incubation), and 40 cycles for 10 sec at 95°C, 10 sec at 60°C and 20 sec at 72°C 

(amplification).  

 

2.4.1	  SDS-‐PAGE	  and	  Western	  Blot	  analysis	  

AQP-2 and UT-A1 protein level were determined by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) and western blot. SDS-PAGE was employed to separate 

denatured proteins by size. Kidney extract aliquots (see section 2.3.4) containing 0.2 mg 

protein was mixed with equal volumes of sample buffer (0.25 M Tris-HCl, pH 6.8, 2 % SDS, 

20 % glycerol 5 % mercaptoethanol), heated at 60°C for 10 min, and thereafter at 95°C for 5 

min. After cooling, the samples were separated on a 4 % to a 12.5% linear gradient reducing 

SDS-polyacrylamide gel. The gels were run at 120 volts. The running buffer was 0.25 M 

Tris, 1.92 M glycine, 0.5 % SDS (pH 7,5). The polypeptides separated by the SDS-PAGE, 

including the pre labeled “Precision Plus Protein Standard All Blue” (BioRad Laboratories, 

Hercules, CA, USA) proteins were transferred from the gel to a polyvinylidene difluoride 

membrane (GE Health- care Life Sciences, Buckinghamshire, UK) electrophoretically, in 

blotting buffer (25 mM Tris, 190 mM glycine, 20 % methanol, pH 8.3), in a Transphor 

Electrophoresis unit (Hoefer Scientific instruments, San Francisco, CA, USA). The transfer 

was run at 200 mA for about 16 h, while kept cool by a Pharmacia LKB Multi Temp cooling 

loop (Pharmacia LKB Biotechnology, Sweden) with constant running buffer agitation (by a 

magnetic stirrer). 

 

After blotting, the membranes were washed in a PBS-Tween solution (PBS containing 5 mM 

MgCl2 and 0.04 % (v/v) Tween20), and nonspecific antibody binding sites blocked in 

blocking buffer (0.05 M TBS containing 0.16 % (v/v) I- BlockTM (TROPIX, Applied 

Biosystems, MA, USA), 0.02 % (v/v) Na N3, 4 mM MgCl2 and 0.02 % (v/v) Tween20) for 1 

h. The blots were next probed with primary antibody diluted in blocking buffer for 18 h at 

4°C with gentle agitation. The primary rabbit anti-AQP2 antibody, kindly provided by Prof. 
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Robert A. Fenton, University of Aarhus, Denmark, was used in a 1:3000 dilution. The probed 

membranes were washed thoroughly in PBS-Tween solution, and incubated with secondary 

goat anti-rabbit IgG antibody, coupled to alkaline phosphatase, at 1:10 000 dilution. 

 

The membranes were next washed to remove any unbound secondary antibody and incubated 

in 100 mM diethanolamine with 100 mM MgCl2 pH 9.5 for 2 x 2 min before adding the 

alkaline phosphatase substrate; CDP-star (Tropix; Bedford, MA, USA) according to the 

manufacturers’ protocol. The immunoblots were visualized with a Fujifilm LAS-3000 

chemiluminescence detection system (Fujifilm, Tokyo, Japan) and the intensity of the blotted 

bands quantified by densitometry using the software Multi Gauge volume 2.3. Endogenous β-

actin served as loading control, membranes stripped in 0.5M Tris-HCl pH 6.7 with 10 % 

(v/v) SDS and 0.1 % (v/v) mercaptoethanol for 10 min, and washed in blocking buffer. The 

membranes were then incubated in anti-β actin antibody (1:10 000) (Abcam, UK) for 16 

hours and the remaining protocol was performed as described. 
 

2.4.3	  Urine	  and	  plasma	  osmolality	  and	  electrolyte	  analysis	  

The osmolality in individual urinary and plasma samples was measured using a Wescor 5500 

vapor pressure osmometer (Wescor Inc., Logan, Utah, USA) according to manufacturer’s 

protocol. Briefly, filter paper discs (SS-033 Wescor Inc., Logan, Utah, USA) were placed on 

the sample holder, and 10 µl urine sample added. Urine at base line was diluted two fold 

before applied, while urine samples from the other experiments were applied undiluted. 

Three reference solutions (50, 290 and 580 mOsm; Wescor Inc., Utah, USA) were used for 

calibration. Additionally the urine electrolytes (Na+ and K+) were determined by routine ion-

selective electrode techniques in 0.5 ml urine sample (Analyzed by the Laboratory for 

Clinical Biochemistry at Haukeland Hospital in Bergen, Norway).  

 

2.4.4	  Urine	  and	  plasma	  urea	  and	  Creatinine	  determination	  

The urea concentration was determined in urine and plasma using the QuantiChrom™ Urea 

Assay Kit (DIUR-500; BioAssay systems, Hayward, CA, USA). The assay was conducted 

using a 96-well plate procedure, and the absorbance was measured at 520 nm using the 

ASYS UMV340 plate reader. The kit was used according to the manufactures protocol, with 

some alterations. The volume standard and sample were increased from 5 to 25 µl for a more 

precise determination. A highly reproducible standard curve was made. The urine samples 
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were diluted according to their concentration, ranging from 100- to 50-fold. The plasma 

samples had to be partially deproteinized to obtain reliable estimates. For this the plasma 

samples were diluted 5-fold in MQ water and filtered through centrifugal filter units with 

Ultracel-30 membrane with a nomical cut-off of MW 30,000 (Millipore, Billerica, MA, 

USA) by centrifugation (Biofuge Stratos, Heraeus, Thermo Electron Corporation, Germany) 

at 5000 rpm for 10 min at 4oC. Importantly, the unfiltered plasma quenched the color reaction 

from added urea (not shown). 

 

Urine creatinene was analyzed by the Laboratory for Clinical Biochemistry at Haukeland 

Hospital in Bergen, Norway. It was determined in a 0.5 ml sample, by an enzymatic 

creatinase assay (CREA Plus kit; Boehringer Mannheim, Indianapolis, IN), using a Roche 

Cobas Bioanalyser (Roche, Nutley, NJ). Due to a limited amount of plasma available for 

analysis, the concentration of creatinine in plasma was determined separately. T The method 

was based on a method described by Haselene-Hox et al. (80), but with some modifications. 

Plasma samples (10 µl) were deproteinized by adding 10 µl 10 % trichloracetic acid, before 

centrifuging at 20 000 X g for 10 min to remove precipitated proteins. Supernatant (15 µl) 

was injected onto a 2D-HPLC system equilibrated with 20 mM sodium acetate buffer (pH 

4.68). Creatinine, which is positively charged at pH 4.68, was separated from trichloracetic 

acid and other interferents in the first dimension column (1 ml Resource S, GE Healthcare, 

UK). By switching to 10 mM Potassium buffer (pH 7.10) in the second dimension column 

(Proswift SCX-1S, 4.6x50 mm, Dionex, Sunnyvale, CA) the creatinine molecule was 

neutralized, resulting in a reduced retention and a sharp, well-defined peak detected at its 

absorption maximum of 234. The specificity of the method was validated by analysis of urine 

and plasma samples before and after treatment with creatininase (EC 3.5.2.10, 1000 U) and 

by creatinase (EC 3.5.3.3, 500U) at 25°C overnight with 13 U/ml and 30 U/ml of creatininase 

and creatinase, respectively.  
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2.4.5	  Calculations	  of	  clearance	  and	  fractional	  clearance,	  and	  free	  water	  clearance	  

By definition plasma to urine clearance (C) of a given substance x is the volume of plasma 

completely cleared of this substance per unit of time, and is resolved by determining the 

substance concentration in urine and plasma, and relating it to the diuresis (V; µl excreted per 

min), using the formula: 

Cx =    
Urinex
Plasmax

  ×  V 

Accordingly, the clearance of creatinine, urea, Na+, K+ as well as for osmolytes was 

calculated. A feasible parameter for evaluating urinary diluting and concentrating activity is 

to calculate the “solute-free water clearance” or “free water clearance”, and it was calculated 

using the following formula: 

Free water clearance =   V−   COsmo 

The creatinine clearance was assumed to be equal to the glomerular filtration rate (GFR), as 

the amount filtered is almost equal to the amount excreted. By relating the clearances of the 

substance x to the creatinine clearance, it gives an impression of the renal handling of the 

substance x. It will provide the percent of the filtered substance that is excreted in the urine. 

The fractional clearance of osmolytes, Na+, K+ and urea was calculated according to the 

formula: 

Fractional clearance= 100% × ( Cx
CCreatinine

) 

2.4.6	  Determination	  of	  proteinuria	  

Accumulation of proteins in the urine is a key feature of renal disease, and a consequence of 

an impaired glomerular filtration barrier. Some degree of proteinuria in the Epac1-/- mice 

could indicate that Epac1 is involved in maintaining the selectivity of the GFB. Albumin in 

urine and in plasma was determined by 2D-HPLC using a size-exclusion chromatography in 

the first dimension and reversed phase chromatography in the second dimension. This was 

performed in collaboration with Prof. Olav Tenstad (Dept. Biomedicine, Med. Faculty, Univ. 

of Bergen). Undiluted urine (10 µl) or Plasma diluted 1:100 in phosphate buffer (0.1 M 

Na2SO4, 0.05 M HNa2PO4, 0.05 M H2NaPO4, pH 6.8) was injected onto the first dimension 

column (Super SW2000, 4.6 x 300 mm, Tosoh Bioscience, Tokyo, Japan) and separated from 

IgG and other larger plasma proteins. The albumin fraction was automatically loaded onto the 

second dimension column (Proswift Rp4H 1 x 50 mm, Dionex, Sunnyvale, CA) at a flow rate 

of 0.35 ml/min by an inline switch. Albumin was then separated from proteins with similar 
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molecular weight by an eight-minute acetonitrile gradient (5–60 %). The albumin 

concentration was determined based on the area under the curve for standards and samples 

(81). 

 

2.4.7	  Determination	  of	  urinary	  cAMP	  	  

The urinary samples were diluted according to their concentration in 0.1 M HCl and 0.1 M 

CH3COOH, neutralized with 0.5 M Tris base containing 0.5 M NaOH, 0.1M Na3PO4, and 40 

mM EDTA to pH 7.2. 

 

The cAMP concentration of the urinary samples was determined by an assay based on 

competitive displacement of [3H]cAMP by cAMP from binding to site B of the RIα subunit 

of PKA type I.  The assay is an improved version of one using salt-dissociated PKA type I 

(82). Instead of dissociating the PKA holoenzyme into free cAMP binding R subunit and 

catalytic C subunit to improve the cAMP affinity of the R subunit we used here the free RIα 

subunit alone, produced from recombinant cDNA and expressed in E. coli. Since each RIα 

subunit has two cAMP binding sites (low affinity site A and high affinity site B) we used a 

RIα subunit whose A site had been inactivated by mutation (RIα G201E) so that only the B 

site can bind cAMP. This method gave a highly sensitive detection of cAMP, allowing the 

cAMP level to be reliably detected even at the low concentrations in the highly diluted urine 

samples from water-loaded furosemide treated animals (82, 83). 

 

 Details of the assay are as follows: the [3H] labeled cAMP ([2,8-3H]Adenosine3′5′cyclic 

phosphate, Amersham Biosciences, UK; 27 Ci/mmol) was diluted in 40 mM Hepes, 40 mM 

TrisHCl, 20 mM EDTA, 2 mM EDTA, pH 7.4 to 4.8 nM [3H]cAMP. An aliquot (60 µl) of 

this solution was mixed with the sample (120 µl) and next with 60 µl of 2 nM RIαG201E in a 

pH 7.4 buffer containing 40 mM Hepes, 40 mM TrisHCL, 20 mM EDTA, 2 mM EGTA, 1 

mM TCEP, 0.1 mM IBMX, 2 mg/ml of BSA and 1 mg/ ml of soybean trypsin inhibitor. After 

thorough, but careful mixing of their contents the reaction vials were incubated on ice in a 

cold-room for 16 h.  

 

At the end of incubation duplicates of 100 µl were removed and mixed with 3 ml ice-cold 

aqueous 3.8 M ammonium sulfate. The precipitate is collected on Millipore cellulose ester 

filters (0.3 µm pore size) (Microcon YM-10, Amicon, Beverly, MA, USA) by vacuum 



 26 

filtration (Model 1225 Sampling Manifold, Millipore Corp., Bedford, MA, USA). The filters 

were washed twice with 65 % saturated ammonium sulfate solution, transferred to counting 

vials containing 3 ml of aqueous SDS (2 % W/v), mixed vigorously on a vortex mixer, added 

10 ml of water-compatible scintillation liquid  (Emulsifier-safe ™, Perkin-Elmer, Inc., 

Waltham, MA, USA), before vortexed again. The amount of added isotope was determined 

by adding 60 µl of 4.8 nM [3H]cAMP directly to scintillation vials. In order to ensure similar 

quenching of radioactivity as for the assay samples these vials contained 2.94 ml of the 2 % 

SDS solution and a “mock” filter treated like the others. The vials were left for a couple of 

hours in the dark before being transferred to a scintillation counter and counted for 10 

minutes. The radioactivity was determined by scintillation counting in a Tri-Carb 2900TR 

Liquid Scintillation Analyzer (Perkin-Elmer, Inc., Waltham, MA). The amount of cAMP in 

each sample was determined based on the amount of [3H]cAMP displaced from RIα as 

compared to standards with known cAMP concentration.  

 

2.10	  Graphic	  illustration	  and	  statistical	  analysis	  

Excel 2014 (Microsoft Corporation, Seattle, WA, USA) was used for graphic illustrations and 

statistical calculations (SEM, Student T-test). Data sets are generally presented as means ± 

SEM. For comparison of variables in Littermate animals relative to the Epac1-/- animals, 

statistical significance was assessed by a two-tailed unpaired Student t-test. P values ≤ 0.05 

were the criterion for statistical significance. 
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3	  Results	  
3.1	  The	  diuresis	  in	  Epac1-‐/-‐	  mice	  

Epac1-/- animals were subjected to baseline experiments, to investigate the possibility of a 

role of Epac1 in diuresis control. For this, the first series of WT (n = 6) and Epac1-/- mice (n = 

7) were hosted for 24 h in individual metabolic cages with free access to water and food (see 

Figure 6A in methods section fro work flow). The urine produced during this period was 

collected quantitatively and analyzed. The consumption of drinking water was also 

determined. The findings are presented in Table 1A together with the body weight of the 

animals. A significant increase in diuresis was observed in the Epac1-/- relative to WT 

animals. In accordance with the higher diuresis, Epac1-/- animals had increased water 

consumption and decreased urine osmolality, although not statistically significant. No 

differences were observed between WT and Epac1-/- mice in Na+ and K+ excretion, nor in 

urea- and creatinine excretion. 
	  
Table	   1:	   Weight,	   water	   consumption,	   urine	   output,	   urine	   osmolality,	   and	   Na+,	   K+	   urea	   and	   creatinine	  
excreted	  by	  Epac1-‐/-‐	  mice.	  	  
Variable	  determined	   WT	  mice	  (n	  =	  6)	   Epac1-‐/-‐	  mice	  (n	  =	  7)	   P-‐value	  

Body	  weight	  (g)	  

Water	  consumption	  (ml)	  

Urine	  output	  (ml)	  

Urine	  osmolality	  (mOsmol/kgH20)	  

20.3	  ±	  0.70	  

2.72	  ±	  0.662	  

1.52	  ±	  0.296	  

1773	  ±	  285	  

20.7	  ±	  0.78	  

6.03	  ±	  1.527	  

3.72	  ±	  0.905	  

1215	  ±	  223	  

0.71	  

0.11	  

0.04	  

0.17	  

Urine	  Na+	  (µmol/min)	   0.16	  ±	  0.041	   0.14	  ±	  0.042	   0.76	  

Urine	  K+	  (µmol/min)	   0.17	  ±	  0.022	   0.19	  ±	  0.062	   0.73	  

Urine	  urea	  (mmol/min)	  

Urine	  creatinine	  (nmol/min)	  

1.27	  ±	  0.104	  

1.49	  ±	  0.232	  

1.30	  ±	  0.163	  

2.25	  ±	  0.671	  

0.92	  

0.31	  

WT	   (n	  =	  6)	  and	  Epac1-‐/-‐	  mice	   (n	  =	  7)	  were	  weighed	  and	   transferred	   to	  metabolic	   cages	   for	  24	  h.	  During	   this	  
period	  water	  consumption	  and	  urine	  output	  were	  determined.	  The	  urine	  was	  analyzed	  for	  content	  of	  Na+,	  K+,	  
urea,	  and	  creatinine.	  Based	  on	  these	  parameters	  their	  average	  excretion	  rate	  (per	  min)	  during	  24	  hours	  was	  
determined.	  Values	  are	  presented	  as	  means	  ±	  SEM.	  

 
When 8 additional WT and Epac1-/- mice were studied under identical conditions (the series 2 

of mice, see Figure 6B in methods section fro work flow), to those included in Table 1A the 

same trend was found. The mean values of all WT (n = 14) and Epac1-/- mice (n = 15) 

showed that the weight still was the same (WT; 21.2 ± 0.63 g vs. Epac1-/-; 21.0 ± 0.82 g). The 

difference in urine output became more significant (WT; 1.35 ± 0.136 vs. Epac1-/-; 3.37 ± 
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0.427, P < 0.01), and the difference in water consumption became statistically significant 

(WT; 3.66 ± 0.662 vs. Epac1-/-; 5.90 ± 0.780, P = 0.03). Urine from this experiment was not 

analyzed. 

 

To further evaluate the urine concentrating capacity, the first series of WT (n = 6) and Epac1-

/- mice (n = 7) were used, 7 days after the 24-h baseline experiment. The mice were water 

deprived for 1 h, and urinary bladders were emptied, by bladder massage. This was done to 

minimize any variations in water-intake among the animals. Subsequently the mice were 

subjected to a 1.5 ml oral water load. In addition to the water load the mice also received an 

i.p. injection of 0.1 ml of 0.9 % NaCl (because the same series of mice, after another 7 days 

of acclimatization, were subjected to a second water loading experiment where they received 

a dDAVP injection in 0.9 % NaCl, as described in section 3.2, see Figure 6 for work flow). 

During the following 6 h stay in the individual metabolic cages, urine was collected as it was 

voided. Already after about 1.5 h the injected water load was excreted (Figure 7). Only from 

this time point did a difference in total excreted volume between WT and Epac1-/- mice 

appear, a difference that was statistically significant 5 h after water loading. The total volume 

excreted was 2.16 ± 0.071 ml in WT against 2.54 ± 0.111 ml in Epac1-/- animals (P = 0.02). 

 

	  
	  

Figure	  7:	  The	  diuretic	  response	  of	  Epac1-‐/-‐	  mice	  to	  water	  loading.	  The	  WT	  (n	  =	  6)	  and	  Epac1-‐/-‐	  animals	  (n	  =	  7)	  
used	   in	   the	   baseline	   experiment	   (see	   Table	   1A)	   were	   7	   days	   later	   subjected	   to	   water	   loading	   and	   vehicle	  
injection,	   followed	  by	  a	  6	  h	  continuous	  urine	  collection	   in	   individual	  metabolic	  cages.	  Data	  are	  expressed	  as	  
cumulative	  urine	  excretion,	  as	  percentage	  of	  the	  loaded	  water	  volume	  (1.6	  ml).	  Values	  are	  means	  ±	  SEM,	  *P	  <	  
0.05	  vs.	  WT	  
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3.2	  Vasopressin	  induced	  anti-‐diuresis	  in	  Epac1-‐/-‐	  mice	  

The increased diuresis of the Epac1-/- animals prompted a study of their response to the V2 

receptor selective vasopressin (AVP) analog desmopressin (dDAVP). The water loading 

experiment was therefore repeated on the same first series of WT (n = 6) and Epac1-/- animals 

(n = 7) after another 7 days of acclimatization, but now adding dDAVP to the i.p. injection (1 

ng/g body weight). In this way each mouse was used as its own control, regarding the effect 

of dDAVP. One of the Epac1-/- mice did not excrete measurable quantities of urine. This was 

due to technical problems, and consequently, this animal was excluded from the analysis. For 

the remaining animals the following 6 h, continuous urine collection revealed a strong anti-

diuretic effect of dDAVP, overpowering the effect of the acute water load in both WT and 

Epac1-/- animals (Figure 8). The results from the previous water loading experiment are also 

included in the figure to visualize the relative dDAVP effect. The dDAVP-induced reduction 

in 6 h urine output after water loading was 49.42% in WT (2.16 ± 0.07 vs. 1.09 ± 0.13 ml, P 

< 0.01) and 47.51% in Epac1-/- mice (2.54 ± 0.113 vs. 1.33 ± 0.133 ml, P < 0.01). The 

difference in total diuresis between the WT and the Epac1-/- mice was not statistically 

significant (P = 0.126). 

 

 

 
Figure	  8:	  Epac1-‐/-‐	  mice	  diuretic	  response	  to	  water	  loading	  ± 	  dDAVP	  treatment.	  The	  same	  series	  of	  WT	  (n	  =	  6)	  
and	  Epac1-‐/-‐	  animals	  (n	  =	  6)	  as	  in	  Figure	  7	  were,	  after	  7	  days,	  subjected	  to	  water	  loading	  and	  a	  dDAVP	  injection.	  
This	  was	  followed	  by	  a	  6	  h	  continuous	  urine	  collection	  while	  mice	  were	  kept	   individual	  metabolic	  cages.	  The	  
results	   from	   the	   water	   loading	   experiment	   were	   included	   in	   the	   figure	   to	   illustrate	   the	   relative	   effect	   of	  
dDAVP.	  Data	  are	  expressed	  as	  cumulative	  urine	  excretion	  as	  percentage	  of	  the	  loaded	  water	  volume	  (1.6	  ml).	  
Values	  are	  presented	  as	  means	  ±	  SEM,	  *P	  <	  0.05	  vs.	  WT	  
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Urine samples from WT (n = 6) and Epac1-/- mice (n = 6) included the two water loading 

experiments, and plasma samples collected following the latter experiment, were further 

analyzes. 

 

Urine osmolality is in addition to urine flow, the most immediate parameter for evaluating the 

response to AVP. The anti-diuretic effect of dDAVP treatment was accompanied by a highly 

significant increase in urine osmolality relative to urine collected after water loading (P < 

0.01) in both WT and Epac1-/- mice (Figure 9A). While no difference in osmolality could be 

detected after water loading (WT; 249 ± 7.4 mOsmol/kgH2O vs. Epac1-/-; 233 ± 14.9 

mOsmol/kgH2O, P = 0.3), osmolality was significantly lower in Epac1-/- mice relative to their 

WT littermates, following dDAVP injection (WT; 589 ± 58.4 mOsmol/kgH2O vs. Epac1-/-; 

443 ± 33.5 mOsmol/kgH2O, P = 0.05). Figure 9B displays the increase in osmolality in 

response to dDAVP treatment in individual animals. Epac1-/- mice revealed a significantly 

smaller increase in osmolality in response to the dDAVP treatment (WT; 163 ± 35 % vs. 

Epac1-/-; 77 ± 11 % P = 0.02).  

 

The osmolar clearance, the fraction of osmolytes filtered from plasma that is excreted in the 

urine, was not significantly different in WT and the Epac1-/- mice under any of the 

experimental conditions (Figure 9C). Free water clearances were as expected positive for 

water-loaded animals, as urine excreted was hypo-osmotic to plasma (Figure 9D). When 

treated with dDAVP along with the water load the induced anti-diuresis caused the urine 

excreted to be hyperosmotic to plasma, and free water clearance became negative. Hence, a 

significant decrease in free water clearance (P < 0.01) was observed both in WT and Epac1-/- 

animals. Additionally the results demonstrated that Epac1-/- mice had a significantly higher 

(less negative) free water clearance in response to dDAVP (WT; -2.00 ± 0.213 vs. Epac1-/-; 

1.06 ± 0.251, P < 0.02). Thus Epac1-/- mice excreted less concentrated urine, relative to their 

WT littermates following the dDAVP treatment. 
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Figure	   9:	   Osmolality	   of	   Epac1-‐/-‐	   mice	   urine	   and	   plasma	   samples,	   the	   effect	   of	   dDAVP.	   Urine	   osmolality	  
determined	  in	  individual	  urine	  samples	  from	  WT	  (n	  =	  6)	  and	  Epac1-‐/-‐	  mice	  (n	  =	  6)	  collected	  in	  6	  h	  after	  water	  
loading,	   and	   next	   after	  mice	  was	   treated	  with	   dDAVP	   in	   combination	  with	   the	  water	   load.	   Plasma	   samples	  
were	  collected	  following	  the	  last	  experiment.	  (A)	  Osmolality	  (mOsm/kgH20).	  (B)	  The	  increase	  in	  osmolality	   in	  
response	   to	   dDAVP	   treatment	   in	   individual	   animals.	   (C)	   Osmolar	   clearance	   (μmol/min).	   (D)	   Free	   water	  
clearance	  (μmol/min).	  Values	  are	  presented	  as	  means	  ±	  SEM,	  *P	  <	  0.05,	  ***	  P	  <	  0.001,	  	  ****P	  <	  0.0001.	  
	  
 

3.2.1	  Solute	  excretion,	  and	  fractional	  clearance	  in	  Epac1-‐/-‐	  mice,	  the	  effect	  of	  dDAVP	  

The moderately reduced ability of the Epac1-/- mice to conserve water in response to dDAVP 

might be explained by perturbed medullary vasopressin-induced urea reabsorption. This 

could be reflected by altered fractional urea clearance, determined by relating the clearance 

of urea to the creatinine clearance (see Methods, section 2.4.5 for calculations). The 

fractional clearance was additionally evaluated for osmolytes, Na+ and K+. 

 

To test this hypothesis, urine samples were analyzed for content of creatinine, urea, Na+ and 

K+, in addition to the osmolality analyses done. The plasma was analyzed for osmolality and 

content of creatinine and urea, to estimate the urinary clearance. The plasma values for Na+ 

and K+ are according to the literature considered to be quite stable at 140 mM, and 5 mM, 

respectively. Plasma values used to determine creatinine clearance values are mean values for 

WT and Epac1-/- mice (WT; 4.9 mM vs. Epac1-/-; 4.3 mM). 
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The urinary secretion of creatinine (Figure 10A), osmolytes (Figure 10C), Na+ (Figure 10E), 

K+ (Figure 10G), and urea (Figure 10I) revealed to be higher in water-loaded Epac1-/- than 

WT mice. The increase was statistically significant (P = 0.03) for osmolytes, Na+, and K+. 

 

Epac1-/- mice showed a significant increase in creatinine excretion in response to dDAVP 

administration (Fig 10A). Surprisingly, the creatinine clearance was significantly higher in 

Epac1-/- mice during water loading (WT; 396 ± 45.0 µmol/min vs. Epac1-/-; 549 ± 18.1 

µmol/min, P < 0.01) as showed in Figure 10B. This trend was also apparent, but not 

statistically significant when mice were water loaded in combination with dDAVP (WT; 499 

± 20.0 µmol/min vs. Epac1-/-; 651 ± 73.3 µmol/min, P = 0.10). 

 

When the urea, osmolytes and electrolyte clearances was related to creatinine clearance, 

estimating the fractional clearance, no significant difference was apparent between water-

loaded, nor between water loaded and dDAVP treated WT and Epac1-/- mice (Figure 10D, F, 

H and J). The same were true when assessing the response to dDAVP in individual animals, 

by evaluating the altered levels of the substances measured (results not shown). This 

indicates a normal medullary urea and overall osmolyte reabsorption in Epac1-/- mice. 

 

The fractional Na+ clearance was significantly reduced by dDAVP in both WT (P < 0.05) and 

Epac1-/- (P < 0.01), the reduction being most prominent in Epac1-/- mice (Figure 10F). Also 

the fractional clearance of K+ was reduced by dDAVP treatment in the Epac1-/- animals 

(Figure 10H). A minor reduction in fractional urea reabsorption in response to dDAVP could 

be indicated.  
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Figure	  10:	  Solute	  excretion,	  and	  fractional	  clearance,	  the	  effect	  of	  dDAVP.	  Urine	  was	  collected	  from	  individual	  
WT	   (n	   =	   6)	   and	   Epac1-‐/-‐	   mice	   (n	   =	   6),	   first	   receiving	   water	   load,	   and	   thereafter	   treated	   with	   dDAVP	   in	  
combination	  with	  the	  water	  load	  (collected	  in	  6	  h).	  Plasma	  samples	  were	  collected	  at	  termination	  of	  the	  latter	  
experiment.	  (A)	  and	  (B)	  Creatinine	  excretion	  and	  clearance	  of	  creatinine,	  both	  in	  μmol/min.	  (C)	  -‐	  (J)	  Excretion	  
and	  fractional	  clearance	  of	  analyzed	  substances.	  Values	  are	  presented	  as	  means	  ±	  SEM,	  *P	  <	  0.05,	  **P	  <	  0.01,	  
***	  P	  <	  0.001,	  ****P	  <	  0.0001.	  
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3.2.2	  Urinary	  cAMP	  in	  Epac1-‐/-‐	  and	  WT	  mice,	  the	  effect	  of	  dADVP 

The differential dDAVP response of the Epac1-/- relative to WT mice raises the question that 

Epac1-/- mice may have altered AVP signaling. The first step of the renal anti-diuretic effect 

of AVP is through binding to its V2 receptor, which then stimulates cAMP synthesis. Hence, 

it was of interest to determine the cAMP level in the urine of Epac1-/- mice. This could give 

an indication of whether the V2 receptor – cAMP pathway is effective in the Epac1-/- mice. 

For this the cAMP concentration of individual urine samples was determined by an assay 

based on competitive displacement of [3H]cAMP by cAMP from binding to site B of the RIα 

subunit of PKA type I. 

 

The results are displayed in Figure 11, and show a significantly higher cAMP excretion in 

Epac1-/- mice, relative to urine samples of WT animals. This was true both after water 

loading (WT; 4.50 ± 0.596 pmol/min vs. Epac1-/-; 6.29 ± 0.309 pmol/min, P = 0.02) and 

following water loading combined with the dDAVP treatment (WT; 8.16 ± 0.481 pmol/min 

vs. Epac1-/-; 11.9 ± 1.26 pmol/min, P = 0.04). Thus the altered Epac1-/- mouse diuresis is 

unlikely to be due to ineffective V2 receptors, ineffective coupling of V2 to AC, or excessive 

cAMP degradation. The urine cAMP was significantly increased (P < 0.01) in response to the 

dDAVP treatment for both Epac1-/- and WT animals. 

 
Figure	  11:	  Urine	  cAMP	  in	  Epac1-‐/-‐	  mice.	  Urine	  cAMP	  was	  determined	  in	  samples	  from	  WT	  (n	  =	  6)	  and	  Epac1-‐/-‐	  
mice	  (n	  =	  6),	  collected	  from	  the	  same	  group	  of	  animals,	  first	  receiving	  water	  load,	  and	  thereafter	  treated	  with	  
dDAVP	   in	   combination	   with	   the	   water	   load	   (collected	   in	   6	   h).	   Values	   are	   expressed	   as	   pmol/min,	   and	   are	  
presented	  as	  means	  ±	  SEM,	  *P	  <	  0.05,	  **P	  <	  0.01,	  ***P	  <	  0.001.	  
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3.2.3	  Relative	  AQP-‐2	  and	  UT-‐A1	  mRNA	  and	  protein	  expression	  in	  Epac1-‐/-‐	  mice	  

The high cAMP levels in urine from dDAVP treated Epac1-/- mice indicated that they had an 

intact V2 receptor mediated cAMP increase. We therefore studied whether key downstream 

cAMP targets mediating the anti-diuresis of AVP could be under-expressed. The expression 

was investigated both on the gene transcript level, by qRT-PCR, and protein expression level, 

by immunoblotting. For both analyses WT (n = 4) and Epac1-/- animals (n = 4), receiving 

water load and euthanized after 3 h later, served as controls (Mce from the second series of 

mice, see Figure 6B in Methods). They were compared with the WT (n = 6) and Epac1-/- 

mice (n = 7) that had been water loaded and injected with dDAVP. They were euthanized 6 h 

(n = 4 WT and n = 5 Epac1-/- mice) or 24 h (n = 2 WT and n = 2 Epac1-/- mice), after the 

dDAVP administration. The 24 h time point enabled the evaluation of lasting temporal 

changes in AQP-2 and UT-A1 expression following dDAVP stimulation. 
	  
The qRT-PCR analysis, presented in Figure 12A and B, failed to reveal any significant 

differences in AQP-2 or UT-A1 mRNA level, either in response to dDAVP administration, or 

between WT and Epac1-/- mice. 

 
Figure	  12:	  Relative	  AQP-‐2	  and	  UT-‐A1	  mRNA	  levels	  in	  Epac1-‐/-‐	  mice	  total	  kidney	  tissue.	  (A)	  and	  (B)	  AQP-‐2	  and	  
UT-‐A1	  mRNA	  levels	  were	  assessed	  by	  qRT-‐PCR	   in	  total	  kidney	  tissue	  from	  a	  control	  group	  of	  WT	  (n	  =	  4)	  and	  
Epac1-‐/-‐	  mice	  (n	  =	  4),	  receiving	  a	  water	  load,	  euthanized	  after	  3	  h.	  They	  were	  compared	  to	  a	  second	  and	  third	  
group	  with	  mice	  injected	  with	  dDAVP	  before	  water	  loaded	  and	  euthanized	  after	  6	  h	  (n	  =	  4	  WT	  and	  n	  =	  5	  Epac1-‐
/-‐	  mice)	   and	  after	  24	  h	   (n	  =	  2	   for	  both	  WT	  and	  Epac1-‐/-‐	  mice).	  AQP-‐2	  and	  UT-‐A1	  expression	  were	   related	   to	  
expression	   of	   the	   reference	   genes	   SDHA,	   Pkg1,	   and	   Ppia.	   Results	   are	   means	   of	   three	   independent	  
determinations.	  Values	  are	  presented	  as	  the	  relative	  AQP-‐2	  and	  UT-‐A1	  expression	  by	  dividing	  the	  means	  for	  
individual	  animals	  by	  the	  mean	  value	  for	  water	  loaded	  WT	  littermates.	  Values	  are	  presented	  as	  means	  ±	  SEM.	  
 

The immunoblot experiments demonstrated that the AQP-2 protein existed as two size 

variants of 29 and 35-55 kDa, corresponding to non-glycosylated (ng) and glycosylated (g) 

forms (Figure 13A). The densitometric analysis showed no clear difference in AQP-2 protein 

expression between WT and Epac1-/- mice (Figure 13B). This was true when the g and ng 
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AQP2 protein bands were evaluated separately (not shown) or jointly. If anything, the Epac1-

/- mice had slightly higher AQP-2 protein expression level relative to WT mice 6 h after 

dDAVP administration. Furthermore, dDAVP appeared to increase the AQP-2 protein 

expression level in both WT and KO mice. 

  
Figure	   13:	   Immunoblots	   assessing	   AQP-‐2	   protein	   abundances	   in	   Epac1-‐/-‐	   animals	   whole	   kidney	  
homogenates.	   AQP-‐2	   protein	   levels	   determined	   in	   a	   control	   group	  of	  WT	   (n	   =	   4)	   and	   Epac1-‐/-‐	  mice	   (n	   =	   4),	  
water	   loaded	  before	  euthanized	  after	  3	  h.	  They	  were	  compared	   to	  a	   second	  and	   third	  group	  of	  mice	  water	  
loaded	   in	  combination	  with	  dDAVP	  administration,	  before	  euthanized	  after	  6	  h	   (n	  =	  4	  WT	  and	  n	  =	  5	  Epac1-‐/-‐	  
mice)	  and	  after	  24	  h	  (n	  =	  2	  for	  both	  WT	  and	  Epac1-‐/-‐	  mice).	  (A)	  Each	  lane	  were	  loaded	  with	  100	  μg	  sample,	  and	  
probed	  with	  an	  anti	  AQP-‐2	  antibody.	  Two	  bands	  were	  detected,	  a	  glycosylated	  (g)	  and	  a	  non-‐glycosylated	  (ng)	  
form.	   AQP2	   expression	   was	   normalized	   to	   β-‐actin	   as	   a	   loading	   control.	   Results	   from	   two	   representative	  
animals	   from	  each	  group	  are	  shown.	  (B)	  Values	  are	  mean	  band	  densities	   in	  arbitrary	  units	   (AU)	  of	   individual	  
mice,	  normalized	  to	  actin	  as	  loading	  control.	  Values	  are	  presented	  as	  means	  ±	  SEM.	  
 
	  

3.3	  Urine	  albumin	  in	  Epac1-‐/-‐	  mice	  

An increased urine albumin excretion in Epac1-/- mice could reveal if Epac1 is involved in 

maintaining the selectivity of the GFB. Included in this analysis were urine samples of a 

selection of the first series of WT (n = 4) and Epac1-/- mice (n = 4). Samples were collected in 

6 h after water loading, and subsequently after water loading in combination with dDAVP 

administration. Urine albumin excretion was related to creatinine (albumin/creatinine ratio) to 

account for variability in diuresis. No statistical significant difference was observed in 

albumin/creatinine ratio after water loading (WT; 70.0 µg/mg vs. Epac1-/-; 76.4 µg/mg) 

displayed in Figure 14. The difference was numerically lower in WT relative to Epac1-/- 
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animals after water loading in combination with the dDAVP injection, but still far from 

statistically significant (WT; 34.0 µg/mg in vs. Epac1-/-; 64.9 µg/mg, P = 0.28). 

 

 
Figure	   14.	   Albuminuria	   expressed	   as	   urine	   albumin/creatinine	   ratios	   in	   Epac1-‐/-‐	  mice.	  Urine	   samples	  were	  
collected	  for	  WT	  (n	  =	  4)	  and	  Epac1-‐/-‐	  mice	  (n	  =	  4)	  during	  6	  h	  after	  water	  loading	  alone,	  and	  after	  water	  loading	  
in	  combination	  with	  dDAVP	  treatment.	  The	  urine	  level	  of	  albumin	  and	  creatinine	  was	  determined.	  The	  albumin	  
urine	   excretion	   is	   shown	   relative	   to	   that	   of	   creatinine	   (μg	   albumin/mg	   creatinine).	   Values	   are	   presented	   as	  
means	  ±	  SEM.	  
 
	  

3.4	  The	  effect	  of	   tuboglomerular	   feedback	   inhibition	  by	   furosemide	  

in	  Epac1-‐/-‐	  mice	  

Creatinine clearance is a commonly used method to estimate the glomerular filtration rate 

(GFR). We found a significant increase of creatinine clearance in water loaded Epac1-/- mice 

(Figure 10A), indicating GFR to be higher. The loop diuretic furosemide block the TGF 

control of GFR by inhibiting the NKCC2 of thick ascending loop of Henle and macula densa. 

Furosemide thus can give clues as to whether Epac1 may be involved in the TGF.  

 

The background for the following series of experiments is the proposed increase in GFR in 

water loaded mice. Also, we wanted to investigate the possibility of Epac 1 involvement in 

TGF. A second series of mice (See Figure 6B in the method section) were separated in two 

groups: WT (n = 4) and Epac1-/- mice (n = 4) receiving an oral water load and an i.p. vehicle 

injection (0.9 % NaCl) and WT (n = 4) and the Epac1-/- mice (n = 4) receiving oral water load 

and an i.p. furosemide injection (40 µg/g body weight).  The animals were further placed in 

metabolic cages, and urine was continuously collected for 3 h. One of the 4 Epac1-/- mice 

injected with vehicle in addition to the water load, did not excrete measurable quantities of 

urine. This was due to technical problems, and consequently, this animal was excluded from 

the analysis. 
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When receiving water load and vehicle injection, a minor difference in total urine output 

between WT and Epac1-/- animals could be observed (P = 0.12) displayed in Figure 15. This 

was similar to the difference 3 h into the previous water loading experiment from the first 

series of mice (Figure 7). As expected, furosemide significantly augmented the diuresis 

during the 3-h period, relative to the mice that received the vehicle injection. WT animals 

receiving furosemide had a 37.9 % significantly increased total urine output, relative to water 

loaded vehicle treated WT mice (1.58 ± 0.141 vs. 2.55 ± 0.135 ml, P < 0.01). Epac-/- mice 

displayed a similar difference of 21.6 % increase, although it was non-significant (2.02 ± 

0.172 vs. 2.57 ± 0.174 ml, P = 0.0819). The total urine output in the WT compared to the 

Epac1-/- mice receiving furosemide injections in addition to the water load showed no 

difference. 

 

 
Figure	  15:	  Diuresis	  after	  water	  loading	  ± 	  furosemide	  injection.	  The	  second	  series	  of	  WT	  (n	  =	  4)	  and	  of	  Epac1-‐/-‐	  
mice	   (n	   =	   3)	   received	   water	   load,	   and	  WT	   (n	   =	   4)	   and	   of	   Epac1-‐/-‐	   mice	   (n	   =	   4)	   received	   water	   load	   and	   a	  
furosemide	  injection.	  Urine	  were	  collected	  in	  3	  h.	  Data	  are	  presented	  as	  cumulative	  percentage	  urine	  excreted	  
of	  the	  total	  injected	  volume	  (1.6	  ml).	  Values	  are	  presented	  as	  means	  ±	  SEM.	  
 

3.5.1	  Solute	  excretion	  and	  fractional	  clearance	  in	  Epac1-‐/-‐	  mice,	  the	  effect	  of	  furosemide	  

Urine samples from WT (n = 4) and Epac1-/- mice (n = 3) receiving an oral water load and 

vehicle injection, and WT (n = 4) and the Epac1-/- mice (n = 4) receiving oral water load and 
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furosemide injection, together with plasma samples collected after the experiment, were 

further analyzed. 

 

When evaluating the excretion of creatinine Epac1-/- mice relative to WT animals, no 

significant differences were detected (Figure 18A). A trend was that water loaded Epac1-/- 

mice had a higher creatinine excretion level, relative to WT. In furosemide treated mice the 

trend were opposite. The creatinine clearance, and thus the GFR, were higher in water loaded 

Epac1-/- relative to WT mice, consistent with what was found in the water loading of the first 

series of mice (Figure 16 B and Figure 10B, respectively). In the furosemide treated mice the 

observed increase in GFR of Epac1-/- mice was abolished, with creatinine clearance values 

553 ± 121.9 µl/min in WT and 606 ± 64.01 µl/min in Epac1-/-.  

 

As displayed in Figure 16C and D, the excreted osmolytes, and the fractional osmolyte 

clearance were significantly higher in furosemide treated mice. Accompanying the increase 

in osmolyte excretion, following the furosemide injection was a significantly higher excretion 

and fractional clearance of Na+ and K+ (K+ excretion was only statistically significant in the 

WT mice), displayed in Figure 16E to H. This reflects inhibition of NaCl reabsorption in the 

thick ascending loop of Henle.  

 

Figure 16I and J present the urea excretion. Furosemide caused urea excretion in Epac1-/- 

animals to be significantly decreased (P = 0.01). Furthermore, the fractional urea clearance 

showed a significant decrease in urea excretion in Epac1-/-, relative to WT mice (P = 0.03). 
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Figure	  16:	  Excretion,	  and	  fractional	  solute	  clearance,	  the	  effect	  of	  furosemide.	  Urine	  samples	  were	  collected	  
from	  second	  series	  of	  WT	  (n	  =	  4)	  and	  Epac1-‐/-‐	  mice	  (n	  =	  3)	  receiving	  water	  load	  and	  a	  vehicle	  injection,	  and	  WT	  
(n	  =	  4)	  and	  Epac1-‐/-‐	  mice	  (n	  =	  4)	  receiving	  water	  load	  a	  furosemide	  injection.	  The	  urine	  was	  collected	  for	  3	  h.	  
Plasma	   samples	   were	   collected	   after	   the	   experiment.	   (A)	   and	   (B)	   Creatinine	   excretion	   and	   clearance	   of	  
creatinine,	  both	  in	  μmol/min.	  (C)	  -‐	  (J)	  Excretion	  and	  fractional	  clearance	  of	  analyzed	  urine	  constituents.	  Values	  
are	  presented	  as	  means	  ±	  SEM,	  *P	  <	  0.05,	  **P	  <	  0.01,	  ***	  P	  <	  0.001,	  ****P	  <	  0.0001.	  
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Urine cAMP was determined from individual mice frond second series. No significant 

differences were observed either in response to furosemide, nor between WT and Epac1-/- 

animals, displayed in Figure 17. 

 
Figure	  17:	  Urine	  cAMP	  in	  Epac1-‐/-‐	  mice.	  Urine	  cAMP	  was	  determined	  in	  urine	  samples	  from	  the	  second	  series	  
of	  WT	  (n	  =	  4)	  and	  Epac1-‐/-‐	  mice	  (n	  =	  3)	  received	  water	  load	  and	  vehivle	  treatment,	  and	  WT	  (n	  =	  4)	  and	  Epac1-‐/-‐	  
mice	   (n	   =	   4)	   received	   water	   load	   and	   a	   furosemide	   injection.	   The	   urine	   was	   collected	   for	   3	   h.	   Values	   are	  
expressed	  as	  pmol/min,	  and	  are	  presented	  as	  means	  ±	  SEM.	  
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4	  Discussion	  
The kidney is one of the organs with highest expression levels of Epac1 (12, 13). The present 

study uses an animal model constructed in our research group, where Epac1 has been 

knocked out. This enables us to study the Epac1 function in vivo. Furthermore, such Epac1-/-

animals can tell whether previous in vitro studies implicating Epac1 in regulation of renal 

channels and transporters (65, 68-73), and in regulation of the GFB (75) are relevant under in 

vivo conditions.  

 

We demonstrate here that the Epac1-/- mice have a modest polyuria relative to their WT 

littermates, during baseline conditions. To explore the nature of the polyuria, mice were 

investigated after oral water load, with and without dDAVP administration. Under these 

conditions we measured renal excretion and/or fractional clearance of osmolytes, electrolytes, 

urea, creatinine, cAMP, and albumin. We conclude that Epac1-/- mice have a preserved 

ability dilute and concentrate urine, however a slightly deficient urine concentrating ability in 

response to vasopressin was detected. They have also a heightened glomerular filtration rate, 

presumably due to less efficient tubulo-glomerular feedback. The findings in the current 

study and conclusions are discussed in more detail below. 

 

4.1	  Epac1-‐/-‐	  mice	  have	  increased	  diuresis	  

This study confirmed the notion of a modest polyuria of the Epac1-/- animals observed in 

preliminary experiments in our group (unpublished observations). At baseline Epac1-/- mice 

revealed a 2.4 fold increase in diuresis relative to their WT littermates, whose diuresis agreed 

with that observed in other studies (84). The polyuria of the Epac1-/- mice was accompanied 

by a 2.2 fold increase in water consumption and a 1.5 fold decreased in urinary osmolality, 

although these differences were not statistically significant (Table 1). The excretion of Na+, 

K+, urea and creatinine were not different (Table 1). Collectively, these data suggests that the 

Epac1-/- mice are water diuretic, e.g. consumes and excretes more water than WT mice. 

 

In all previous experiments mice have had free access to water (and food). It can be argued that 

the increased diuresis observed in the Epac1-/- mice has its origin in an altered drinking 

behavior. Additionally it is possible that leakage from the water bottles, and evaporation from 

the urine collection tubes affected the results to some extent. To determine the nature of the 
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increased diuresis, and to strengthen the hypothesis of polyuria, new experiments were 

designed. More comparable states of hydration between the animals was achieved by water 

deprive animals 1 h prior to the experiment, and empty urine bladders by bladder massage, 

before introduce an oral water load. Urine collected in the following 6 h demonstrated that 

Epac1-/- mice excreted a significantly higher total urine volume, relative to WT mice (Figure 

7). These results demonstrate that the polydipsia conceivably is not the primary cause of the 

modest polyuria in the Epac1-/- mice. 

 

Water loading suppresses endogenous vasopressin in the animals (41), and thus enables 

evaluation of their ability to dilute the urine. Epac has been implicated in down-regulation of 

the NHE3 in the proximal tubule and thick ascending limb of Henle (68, 69), and in 

activating the ion-pump H+-K+-ATPase along the collecting duct (65). Along the apical 

membrane of collecting duct elevated cAMP levels promote trafficking and insertion of 

epithelial sodium channels (ENaC), responsible for Na+ reabsorption (85). This stimulation is 

proposed to involve Epac in lung cells (86), but may also apply to collecting duct cells. It 

could be suggested that altered activation of these transporters could cause Epac1-/- mice to 

have a reduced urine diluting capacity, hence, less tubular reabsorption and increased amount 

of electrolytes excreted in the urine. On the contrary, the fractional clearance of total 

osmolytes, Na+ and K+ was similar in Epac1-/- relative to WT mice (Figure 10D, F, and H). 

Moreover the present study demonstrated, that the urinary osmolality during water loading 

was low in both Epac1-/- (233 mOsmol/kgH2O) and WT mice (249 mOsmol/kgH2O) and not 

significantly different (P = 0.3) (Figure 9A). Based on these observations it can be concluded 

that Epac1-/- mice are capable of diluting urine, and to excrete water and salt independently to 

the same extent as their WT littermates. It should be noted that plasma Na+ or K+ used to 

calculate fractional excretion were taken from the literature, as their levels are relatively 

constant (87).  

 

These results do not exclude the possibility of Epac1 being involved in regulation of the 

NHE3 and the H+-K+-ATPase, or possibly ENaC, as the deletion of Epac1 could be 

compensated for. Other renal channels and transporters would possibly increase their activity 

in the Epac1-/- animals. Moreover are the channels postulated to be regulated by Epac, also 

regulated by PKA (65, 68-73), the second major cAMP receptor. Thus, it could be postulated 

that PKA might constitute a compensatory mechanism, enabling Epac1-/- mice to maintain its 
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renal functions. These results can nevertheless propose that Epac role in regulation of NHE3 

and H+-K+-ATPase is not relevant under in vivo conditions. 

 
	  

4.2	  Epac1-‐/-‐	  mice	  have	  subtly	  deficient	  response	  to	  vasopressin	  	  

Having recognized Epac1-/- mice intact urine diluting ability, and a possible water diuresis, the 

effect of the anti-diuretic hormone vasopressin (AVP) was investigated to evaluate the urine 

concentrating capacity. Binding of AVP to its V2 receptor, lead to increase cAMP production 

and subsequent induction of anti-diuresis (45). Epac has been proposed a role in activating the 

AVP regulated water channel AQP-2 in distal tubule and collecting duct, and urea transporter 

UT-A1 regulated by AVP in the inner medullary collecting duct (70-74).  

 

Water loading experiments and a subsequent dDAVP injection resulted in a vast reduction in 

urine flow relative to when mice were water loaded  (Figure 8). This was true for WT and 

Epac1-/- mice, settling that Epac1-/- mice do not have any major perturbations in dDAVP 

response. Urine osmolality is a key parameter in determination of the dDAVP effect. dDAVP 

increased the urine osmolality significantly in Epac1-/- mice, however not to the same extent as 

in the WT littermates. The results revealed that the percentage increased osmolality in 

individual animal urine samples was significantly attenuated in the Epac1-/- mice with a 77 % 

increase, relative to the WT mice presenting a mean increase of 163 % (P = 0.02, see Figure 

9B). The same were illustrated with the renal free water clearance, which was significantly 

higher (less negative) in Epac1-/- mice following the dDAVP administration compared to WT 

mice (Figure 9D). These results propose that deletion of Epac1 causes mice to have 

significantly reduced water-retaining capacity in response to dDAVP.  

 

It is interesting to note that when the mice were only water loaded, a difference between 

Epac1-/- and WT mice were not observed until excretion of 100 % of introduced water was 

completed, i.e. 1 to 1.5 h after oral water load (Figure 7). Thus, the increased water loss in 

Epac1-/- relative to WT mice must have occurred during increasing endogenous AVP levels in 

agreement with the observation of an attenuated response to dDAVP (Figure 9B). 

 

Acute water loading and dDAVP treatment will have opposing effects, as the animals will 

when water loaded try to excrete access water and down regulate endogenous AVP levels, 

while the dDAVP injection will force the animal to retain the water and concentrate the urine. 
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Despite this the dDAVP treatment seemed to have a proper effect. dDAVP tended to decrease 

the fractional Na+ and K+ clearance in both WT and Epac1-/- mice (Figure 12F and H). This is 

in agreement with the effects of AVP along the renal tubule on Na+ (88) and K+ transport 

(89), and what is shown in vivo at the concentrations used in the current study (90, 91). Also 

the fractional urea clearance was somewhat reduced (Figure 12J), corroborating with 

dDAVP-induced urea reabsorption via activation of UT-A1 (59). 

 

The first step of the renal anti-diuretic effect of AVP is through binding to its V2 receptor, 

which subsequently stimulates cAMP synthesis (45). Thus as cAMP is a mediator of AVP 

effects the cAMP level in the urine of Epac1-/- mice could give an indication of whether the 

V2 receptor – cAMP pathway is effective in the Epac1-/- mice. Cyclic AMP is excreted from 

the kidney into the urine (92, 93). The source is partly cAMP filtrated from plasma by 

glomerular filtration, and partly endogenous cAMP derived from renal cells and transported 

across the apical membrane of tubule cells inn to the renal tubules, via an energy dependent 

putative efflux pump (94, 95). There are conflicting results on the relative amounts. It has 

been found that about three quarter of the cAMP excreted arises from filtrated plasma, and 

the remaining quarter is derived from renal cells (95, 96). However others have showed that 

most of the urinary cAMP is derived from renal cells, and that urinary cAMP generally 

reflects proximal tubule parathyroid hormone-mediated AC activity (97). These contradicting 

results are due to the difficulties in determining endogenous cAMP. In the present study the 

blood plasma from each mouse was analyzed for several parameters and the amount left was 

insufficient to determine the low plasma cAMP level. 

 

Urinary cAMP levels however revealed to be significantly increased in response to dDAVP 

treatment. These findings are consistent with the effect of hormones that stimulate renal AC, 

such as AVP and PTH, which have been reported to increase cAMP excretion (95). Water 

loading, which will suppress AVP secretion, has been shown to depress urinary cAMP (98), 

and notably could bias the results. Epac1-/- mice showed, relative to WT animals, a 

significant increase in urinary cAMP (Figure 11). This was true both after water loading and 

following water loading combined with dDAVP administration. Thus the reduced response to 

dDAVP in the Epac1-/- mice is not likely due to a reduced sensitivity of the V2 receptor, or to 

increased cAMP degradation. Rather, the phenotypes observed are more probably due to 

deficient response to cAMP, as expected for deletion of the cAMP effector Epac1. 
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In an anti-diuretic state induced by dDAVP, urea reabsorption in the renal medulla is enhanced 

to prevent an osmotic diuretic effect of urea and thereby achieve the high urine concentration 

capacity (59). Epac has as mentioned, been suggested to be involved in the regulation of UT-

A1 trafficking to the apical membrane of inner medulla collecting duct cells (73, 74). A 

perturbation in medullary vasopressin induced urea reabsorption could explain Epac1-/- mice 

slightly reduced ability to conserve water in response to vasopressin. This is clearly 

demonstrated in UT-A1/3-/- animals showing a urea-induced diuresis (99). Epac1-/- mice did 

however not show an altered fractional urea clearance, relative to WT mice, in response to the 

dDAVP treatment (Figure 10J). The same was true when using each mouse as its own control, 

evaluating the individual mice reduced fractional urea clearance when water loaded relative to 

when dDAVP treated. WT and Epac1-/- mice had a similar reduction of 26 % and 23 %, 

respectively. These results was supported by qRT-PCR analyzes of UT-A1 mRNA expression 

level, which was not altered in the Epac1-/- mice (Figure 12B). Two antibodies tested for UT-

A1 failed to detect the proteins. This proposes that deletion of Epac1 does not affect the urea 

reabsorption relative to WT littermates. Thus in vivo it is evidence for renal urea handling not 

being different when Epac1 is deleted. Epac1 role in UT-A1 trafficking can however not be 

excluded, as PKA possibly could compensate for the deletion of Epac1.  

 

The indications of water diuresis in Epac1-/- mice, together with the attenuated response to 

dDAVP, and no sign of urea-induced diuresis, suggests reduced water reabsorption through the 

AVP regulated AQP-2. A collecting duct AQP-2-/- mice model demonstrated a 10-fold 

increased urine production (100). AQP-2 regulation involving Epac1 is in agreement with 

several in vitro studies (70-72). No gross differences were however observed between WT and 

Epac1-/- mice on AQP-2 mRNA expression level (Figure 12A). The same was true for the 

AQP-2 protein level (Figure 13A and B). It can be proposed that Epac1-/- mice had a slightly 

higher AQP-2 protein level relative to WT animals, most prominent 6 h after water load and 

dDAVP treatment. This proposed trend contradicts with the reduced urine concentrating 

abilities observed in the Epac1-/- mice, and with in vitro studies implicating Epac in the AQP-2 

up-regulation. 

 

It must be noted that it was the total AQP-2 protein abundance that was investigated. No 

conclusion can be made about the localization of the AQP-2 proteins. They could be both 

active localized in the apical membrane, or in intracellular vesicles. As there is indications of 

reduced water reabsorption, and attenuated response to AVP in the Epac1-/- mice it can be 
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speculated that Epac1 most prominent role in regulation of AQP-2 is in vesicle trafficking to 

the apical membrane, together with PKA (Figure 18). Hence, the Epac1-/- mice would have a 

reduced level of apical membrane AQP-2 contributing in water reabsorption, although the total 

level is the same as in the WT littermates. Further analysis should involve analysis of 

subcellular localization, either by using antibodies for the phosphorylation states of AQP-2 or 

by immunohistochemistry. 

 

We hypothesize that the possible minor increase in total AQP-2 protein expression, is due to 

an alternative AQP-2 up-regulation mechanism. It could act to compensate for the decrease in 

water reabsorption in the Epac1-/- animals. This could cause synthesis or reduced proteosomal 

degradation of the water channel. The analyses of both mRNA and protein expression 

showed a weak effect of dDAVP, relative to the water loaded control mice. This was 

coherent with, the modest dose given, and vasopressin’s role in the transcription of these 

proteins (57, 63, 64).  

 

Restricted access to animals and tissue caused lack of measurements of the basal AQP2 and 

UT-A1 mRNA and protein expression level. All mice were water loaded, which conceivably is 

a confounding factor in the analysis. Most studies demonstrate that AQP-2 and UT-A1 mRNA 

in mice kidney, is relatively constant after water loading (84, 101), hence it can be suggested 

that water loading not affected the mRNA analyses to a great extent. Water loading has 

however demonstrated to down regulate AQP-2 protein (51, 84), and it has been implicated 

that regulation of the degradation of renal AQP-2 protein as a urine diluting mechanism during 

acute water loading (84). It thus conceivable that AQP-2 level in this study is down regulated. 

Moreover the down-regulation mechanism could be different in the Epac1-/- mice relative to 

WT animals. For further analyses mice not receiving water loading should thus be included as 

controls. 

 

4.3	  Increased	  glomerular	  filtration	  rate	  in	  Epac1-‐/-‐	  mice	  

Glomerular filtration rate (GFR) is determined by filtration pressure together with the 

hydraulic conductivity and the filtering surface of the capillaries. GFR is kept relatively 

constant despite changes in systemic blood pressure, a phenomenon called auto regulation. An 

important component of this auto regulation is tubulo-glomerular feedback (TGF) involving 

the juxtamedullary apparatus (39).  
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Creatinine clearance studies are frequently used in renal physiology to measure GFR (102). It 

must be considered that, while the majority of creatinine is excreted into the urine by 

glomerular filtration, the renal tubules also secrete a finite amount of creatinine (103). Other 

more accurate markers have been developed, but require intravenous administration (102). 

Such methods were not feasible in the present study, and the measurement of an endogenous 

compound, such as creatinine, was more desirable. The creatinine concentration in plasma 

samples was difficult to determine since the levels in mice were just above the sensitivity of 

the method with the amount plasma available (10 µl). Thus creatinine clearance was 

determined by using the mean values of plasma from the first series of the WT (n = 6) and 

Epac1-/- mice (n = 7) after the experiment with water-loading the dDAVP treatment. The GFR 

estimates hence, should be considered with this in mind. The plasma values are low relative to 

the literature values found in mice (104). It is however interesting to note that the creatinine 

concentration in plasma of Epac1-/- mice were slightly lower, relative to WT animals. This is 

an indirect indication of a higher GFR.  

 

Water loaded Epac1-/- mice, revealed to have significantly increased GFR relative to the WT 

littermates (Figure 10B). The increase was supported by a significantly elevated urine 

excretion of osmolytes, Na+ and K+, and cAMP in the Epac1-/- mice, relative to WT animals 

(Figure 10C, E, G, and Figure 13, respectively). Urea and creatinine showed the same trend 

although not statistically significant (Figure 10A and I, respectively). An increased GFR 

would be a conceivable explanation for the higher excretion of the evaluated substances. 

dDAVP did not increase GFR in the Epac1-/- mice significantly. This corroborates with a 

similar urine excretion of osmolytes, Na+ and K+, urea, and creatinine following water load 

combined with dDAVP administration. 

 

Several possibilities exist to explain the increased GFR in the Epac1-/- mice. The most 

obvious explanation is an elevated filtration pressure rather than an increased hydraulic 

conductivity or filtering surface over the glomerular capillaries (36). Although Epac has been 

reported to strengthen the vascular endothelial barrier function (105, 106), the renal 

glomerular filtration barrier (GFB) is different from the inter-endothelial junction, and the 

outcome of Epac1 deletion is therefore unknown. The explanation that the glomerular 

filtration barrier is more conductive to water and solutes in the Epac1-/- animals is less 
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probable, since the GFB generally has a unique ability to filtrate extremely large amounts of 

solutes, while staying selective to amongst other proteins (36). There is evidence that 

overstimulation of mesangial cells by angiotensin-II can increase collagen synthesis via 

Epac1 (75), possibly linked to sclerotic changes and decreased GFR with albuminuria (75, 

107). The Epac1-/- animals revealed to have an increased GFR (Figure 10B), and lack of 

albuminuria (Figure 12), collectively being indicative of an intact filtration barrier.  

 

Increased GFR in the Epac1-/- animals indicates an elevated filtration pressure, if the 

hydraulic conductivity and the filtering surface of the capillaries are unchanged (36). TGF is 

an important mechanism of filtration pressure control (38). Changes of tubular NaCl are 

sensed at the macula densa, via NKCC2, and are maily linked to the control of arteriolar 

resistance (108). TGF is easily studied in vivo, by administrating the loop diuretic 

furosemide. Furosemide inhibits the NKCC2, and thus blocks the TGF (108). A possible 

defect in the macula densa feedback to control of afferent arteriolar tonus could explain the 

observed increase in GFR during water loading. 
	  
The effect of the furosemide administration was evident in both WT and Epac1-/- mice, judging 

by a highly significant increase of Na+ (Figure 16E), and K+ excretion (Figure 16G) (109, 

110). The magnitude of the observed furosemide effect was consistent with previous studies in 

mice using the same dose and administration route (111). 
	  
Furosemide appeared to obliterate the difference in GFR between WT and Epac1-/- animals, 

observed in the water loaded control animals (Figure 16B). The elevated urine excretion of 

creatinine, osmolytes, Na+, K+ and urea observed in water loaded Epac1-/- mice were not 

apparent for furosemide treated animals, as they were for the water-loaded mice (Figure 16A, 

C, E and G). We therefor hypothesize that a possibly impaired TGF apparent when Epac1 is 

deleted can cause the difference in GFR between the WT and Epac1-/- mice. It must be noted 

that few mice were included in the analysis and we can only speculate. Thus more mice 

should be included in further experiments. 

 

The NKCC2, responsible for the TGF, is regulated by AVP. Binding of AVP to the V2 

receptor, lead to generation of cAMP, which subsequently activates NKCC2 by trafficking to 

the apical membrane of macula dens and thick ascending limb of loop of Henle (112, 113). 

Epac1 could be involved in trafficking of NKCC2 as suggested for other transporters and 
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channels ((65, 68, 70, 73) reviewed in (30)). A study done by Greger et al., of cAMP-induced 

NKCC2 exocytosis implicated PKA rather than Epac as mediator (107). It should be kept in 

mind that it relied on the nonspecific PKA inhibitor H-89 (26), and unusually high 

concentration (1mM) of the PKA activator N6-Bz-cAMP, which can inhibit PDE’s and 

thereby increase cAMP (21) and thereby activate Epac. Besides, the blocking by H-89 was 

incomplete (107). Despite the findings by Greger et al., it can be speculated that Epac1 

collaborates with PKA to achieve optimal NKCC2 exocytosis in cells of the thick ascending 

limb of Henle and macula densa (Figure 18).  
	  
The Epac1-/- mice tended to have lower fractional clearance of osmolytes, Na+, and K+ less 

cAMP excretion than their WT littermates. This could possibly be an indication of that the 

effects of furosemide were attenuated in Epac1-/- animals, consistent with the hypnotized 

diminished TGF in these animals. A statistically significant reduction in fractional urea 

clearance was observed following furosemide treatment. A possible explanation for this has 

not been addressed in the current study. 

 

In conclusion, Epac1-/- animals exhibit a moderate water diuretic phenotype. The increased 

urinary flow rate in Epac1-/- mice was associated with a decreased urine osmolality and an 

increased free water clearance during water conservation, proposing a reduced response 

antidiuretic hormone vasopressin. The present study shows that the subdued response could 

possibly not be explained by under-expression of either the AVP-stimulated urea transporter 

UT-A1 or the water channel AQP-2. A remaining possibility is that Epac1 is required for 

optimal trafficking of AQP-2 to the apical membrane. Despite the deletion of Epac1, mice 

were perfectly able to dilute their urine in response to an oral water load. It can therefor be 

concluded that the cortico-medullary osmotic gradient is intact in the Epac1-/- animals. We 

finally suggest that Epac1 is involved in tubulo-glomerular-feedback signaling resulting in an 

increased GFR in Epac1-/-mice following water loading possibly via regulating the NKCC2. 
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Figure	  18:	  A	  model	  for	  possible	  roles	  of	  Epac1	   in	  vivo.	  Here	  a	  schematic	  nephron	  is	  presented,	  including	  the	  
glomerulus	   (G)	   with	   afferent	   arteriole,	   the	   glomerular	   capillaries,	   and	   efferent	   arteriole.	   The	   glomerulus	   is	  
followed	  by	   proximal	   tubule	   (PT),	   the	   loop	  of	  Henle	   (LH),	  macula	   densa	   (MD),	   distal	   tubule	   (DT)	   and	   finally	  
collecting	  duct	  (CD).	  AVP	  binding	  to	  V2R	  activate	  AC	  and	  generate	  cAMP.	  This	  subsequently	  leads	  to	  activation	  
of	   PKA	   and	   Epac	   (45).	   PKA	   phosphorylation	   induces	   exocytosis	   of	   vesicles,	   containing	   AQP-‐2	   (54,	   55)	   and	  
NKCC2	  (112,	  113).	  Additionally	  Epac	  has	  been	  implicated	  in	  exocytosis	  of	  AQP-‐2	  via	  increase	  cytosolic	  Ca2+	  (56).	  
(LH	   and	  MD	   cell)	  NKCC2	  co	   transporters	   localized	   in	  MD	  (and	  LH)	   is	   involved	   in	   tubulo-‐glomerular	   feedback	  
(TGF),	   mainly	   by	   altering	   resistance	   in	   afferent	   arteriole	   (red	   arrow)	   (39).	   The	   observed	   increase	   in	   GFR	   in	  
Epac1-‐/-‐	  mice	  was	  abolished	  when	  blocking	  NKCC2,	  and	  thus	  TGF	  with	  furosemide.	  It	  can	  be	  hypothesized	  that	  
an	  impaired	  TGF	  were	  the	  origin	  of	  the	  increased	  GFR	  in	  Epac1-‐/-‐,	  and	  that	  the	  cAMP	  induced	  NKCC2	  exocytosis	  
possibly	  involves	  Epac1	  (dashed	  arrow).	  (DT	  and	  CD	  cell)	  AQP-‐2	  in	  localized	  in	  DT	  and	  CD,	  and	  transport	  water	  
out	   (blue	   arrow)	   (39).	   A	   reduced	   response	   to	   dDAVP	   in	   the	   Epac1-‐/-‐	   mice	   was	   observed,	   together	   with	  
indications	  of	  water	  diuresis,	  and	  no	  sign	  of	  urea	  induced	  diuresis.	  Thus,	  a	  reduced	  water	  reabsorption	  via	  AVP	  
regulated	   AQP-‐2	   could	   explain	   this	   reduced	   response,	   and	   increased	   amount	   of	   excreted	   water.	   It	   can	   be	  
hypostasized	  that	  Epac1	  has	  role	  in	  exocytosis	  of	  AQP-‐2	  (dashed	  arrow),	  as	  supported	  by	  in	  vitro	  findings	  (56).	  	  
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