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Abstract

Due to rapid transitioning towards digitalized society and extended reliance on in-
terconnected digital systems, computer security is a field of growing importance.
Software that we build should be secure, resilient and reliable both against accidents
and targeted attacks.

Themicroservice architecture, or conciselymicroservices, is a recent trend in soft-
ware engineering and system design. Microservices are a way to build scalable and
flexible distributed applications as a collection of loosely coupled services commu-
nicating over a network.

In this thesis, we study the microservice architectural style from a security per-
spective. The contributions are as follows. We show that microservice architecture
has inherent security benefits in terms of isolation and diversity. We explore how
these inherent security benefits of microservices can be improved even further by
maximizing interface security, avoiding unnecessary node relationships, introduc-
ing asymmetric node strength, and using N-version programming.

Wedesign a taxonomyofmicroservice security giving an overviewof the existing
security threats and mitigations. In this thesis, we argue that the defense in depth
principle should be adopted for microservices. We discuss several prominent mi-
croservice security trends in industry. Furthermore, we present an open source pro-
totype security framework for microservices.

We take the defense in depth principle even further by focusing our attention on
the self-protection and adaptive security properties. Also, we propose an architec-
ture of an automated intrusion response system for microservices that uses game-
theoretic approach. Finally, we analyze the security properties of the REST style,
the most typical microservice integration solution.
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1
Introduction

1.1 Motivation

Computerization undeniably impacts our lives and shapes society. Personal com-
puters areubiquitous: desktops, laptops, tablets, smart-phones, smart-watches, and
various smart-home items. Implantable and wearable medical devices such as heart
pacemakers and insulin pumps are increasingly commonplace. Autonomous cars
promise to make the roads safer and more efficiently utilized. DNA sequencing is
broadening the biological and medical knowledge. Artificial intelligence promises
to supply us with the most relevant targeted advertisement and friendly chat-bots,
among other things. All these advances and many more to come are possible be-
cause of the vast affordable computational resources.

The transitioning towards a digitalized society brings great benefits and great
challenges. Digitalizationofpublic services, such as electronic voting, taxation,med-
ical records, population census, andmanymore, aims to make public services more
efficient, transparent, and accessible. Cashless society and growing digital economy
are global trends supported by the rise of mobile payments and digital currencies.
Similarly to how computers are pervasively interconnected via World Wide Web,
people are now connected through various digital social networks. The importance
of digital life and digital presence will only increase.

Due to extended reliance on interconnected digital systems, digital crime is a se-
rious problem that threatens financial, medical and government systems, industrial
equipment, automobile, and aviation industries, as well as private individuals. The
impact of digital crime can be enormous, ranging from privacy violation and sensi-
tive data taken for ransom (WannaCry attack) to threats on national nuclear power
programs (Stuxnet attack). Cyberwarfare can be viewed as a modern form of war-
fare as more and more countries establish national cybersecurity forces.

In the age of digital crime, computer security (cybersecurity) is of critical impor-
tance. The way we build software has serious security implications because most of
the cyber attacks exploit existing vulnerabilities in software. Therefore, it is essential
to understand how the common software architectural styles address security and
how they can be improved.

Microservice architecture, or concisely microservices, is a recent trend in soft-
ware engineering and systemdesign. Microservices are away to build an application
as a collection of loosely coupled services communicating over a network boundary.
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Figure 1.1: Transitioning to microservices. The granularity of components increases from left to right.

The microservice architecture enforces modular structure and strict separation of
concerns that allows creating highly scalable and flexible distributed systems. The
process of gradually transitioning from a modular non-distributed system towards
microservices is shown in Figure 1.1.

A survey conducted by NGINX [86] in November 2015 showed that 33% of IT
companies had microservices in production, and even more were planning to start
using microservices. In April 2018, a global survey [65] of IT specialists within a di-
verse set of industries including technology, finance, healthcare, and others, found
that 60% of respondents had microservices in pilot or production. Moreover, 86%
of respondents [65] believed microservices to be the default architecture by 2023.
The microservice architecture market is proliferating and expected to reach 32 bil-
lion US dollars by 2023 [52].

1.2 Research Questions
This thesis analyses microservice architecture from a security perspective. Since mi-
croservice security is an emerging research area, there is a lack of dedicated scientific
literature to be surveyed. Microservice security is mostly discussed by practitioners
in blogs, online articles, and development conference talks. However, such sources
take a practical engineering perspective on the subject and are limited in detail and
scope. The holistic view onmicroservice security ismissing. Therefore, the research
questions formulated for this thesis are broad in scope.

The following three research questions about the important aspects ofmicroser-
vice security were chosen.

• RQ1 a) Do microservices have security concerns distinct from those of SOA
and distributed systems? b) If so, what is the overlap between microservices
and SOA/distributed systems security? What can be reused?

• RQ2 What are the security challenges on the path to microservice adoption?
How can these challenges be addressed?

• RQ3 Can the microservice architectural style lead to better security? If so,
what are the opportunities enabled by it?

This study was exploratory and interpretative in nature. The methodological
approach taken in this study is a mixedmethodology based on designing, prototyp-
ing, and evaluating the applicable security solutions. Primarily qualitative methods
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were used in this investigation since no standard quantifiable security metrics exist:
security is difficult to measure.

1.3 Outline
Chapter 2 provides the relevant background information and is organized as follows.
Section 2.1 introducesmicroservice architecture, explains the coremicroservice prin-
ciples, discusses the transition from SOA to microservices, future of microservices,
and current challenges in microservice adoption. Section 2.2 gives an overview of
the important security primitives, principles, and standards that are relevant for mi-
croservices. Section 2.3 examines the popular microservice integration styles and
inter-service communication options, including the REST architectural style.

Chapter 3 summarizes the contributions of the four research papers that com-
prise this thesis. The four research papers are presented in Chapters 4, 5, 6, and 7.
Chapter 8 concludes the thesis by reflecting on the aforementioned research ques-
tions and providing directions for future research.
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2Background

2.1 Microservices and Evolution of Distributed Systems
This section explains microservice architecture through the underlying principles
of separation of concerns, continuous delivery, and virtualization. We discuss the
advantages and disadvantages of the architecture. Improved scalability, reduced de-
velopment time, and technology heterogeneity are identified as themain benefits of
microservices. The drawbacks are similar to those of distributed systems and lie in
the areas of fault tolerance, software testing, distributed transactions and data con-
sistency, and infrastructure complexity. This section explains the transition from
Service-Oriented Architecture (SOA) to microservices and concludes by discussing
the future of microservices.

2.1.1 Definition of Microservices
The term “microservices” is not strictly defined, although a variety of definitions
exist. All these definitions involve a notion of a service, which we define as follows
in this thesis:
Definition 1. A service is a self-contained unit of business functionality that can be
accessed remotely and may consist of other underlying services. Communication be-
tween services occurs through network calls rather than system calls.

The two often cited definitions of microservices are listed below. Newman [85]
definesmicroservices as small autonomous services built around the following seven
principles: model [services] around business concepts, adopt a culture of automa-
tion, hide internal implementation details, decentralize all things, isolate failure,
and make services independently deployable and highly observable.

Lewis and Fowler [38] viewmicroservices as “an approach to developing a single
application as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms, often an HTTP resource API. These ser-
vices are built around business capabilities and are independently deployable by
fully automated deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different programming lan-
guages and use different data storage technologies.”
Definition 2. In this thesis, we define microservice architecture as a specialized variant
of service-oriented architecture that emphasizes fine-grained separation of concerns,
continuous delivery, and virtualization.
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The reasoning behind choosing this definition is given below.

2.1.2 The Underlying Principles of Microservices
There are several pillars thatmicroservice architectures build upon. These technolo-
gies and principles enable microservice architectures; without them, microservices
would not come into existence.
Separation of Concerns

Often, an effective way to solve a complex problem is to decompose it into smaller
and more manageable parts. Separation of concerns is a basic software engineer-
ing principle [62, p.85] that enforces such an approach. Separation of concerns is
achieved through encapsulation (information hiding) such that logically related ele-
ments of the system are grouped together and their implementation details are hid-
den behind a well-defined interface.

A program built after the strict separation-of-concerns principle is a modular
program. The notion of software modularity dates back to 1969 [72]. The Unix
operating system is a prominent example of modular design. When concerns are
separated into layers, the term layered architecture is used. In object-oriented pro-
gramming, concerns are separated into objects. In Service-Oriented Architecture
(SOA), concerns are separated into services.

Benefits of separation of concerns (and modularity) are many: decreased com-
plexity, improved comprehension, simplified development and maintenance pro-
cess. Individual concerns (or modules) can be developed in parallel and modified
independently because a change in one component should have no or minimal ef-
fect on the others. Furthermore, no knowledge of internal implementation details
of other components except the one to be modified is needed.

The primary objectives of modularity, low coupling and high cohesion, are dis-
cussed in Section 2.3.2. Low coupling and high cohesion seek to fulfill the goals of
flexibility, scalability, and fault tolerance in software.
Continuous Delivery and DevOps

Continuous delivery and DevOps lie at the core of microservices. The IT industry
is a dynamic environment where responsiveness to change is of critical importance.
An ability to release code changes fast can be a deciding factor for business success.
Methods and tools that accelerate the delivery of changes are desired.

A survey of deployment practices in the industry by Leppänen et al. [64]
showed that the time tomarket could be as low as 20minutes (a speed with which a
development team can push a change to production using its normal development
workflow). Time to market in order of minutes is a significant speedup compared
to the still existing practice of having software releases as infrequently as a few times
per year.

DevOps is a software engineering practice that emphasizes the importance of col-
laboration between development (Dev) and IT operation (Ops) teams to shorten
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development cycles and increase the frequency and dependability of software re-
leases. While DevOps focuses on the organizational side of the problem, contin-
uous integration and continuous delivery approaches are concerned with the tech-
nical aspects of automation.

Continuous integration is the process of automated software building and testing
whenever changes are detected in a shared version control repository. Continuous
deployment takes this process even further by automatically deploying any new suc-
cessful build to a production environment. Infrastructure automation is an impor-
tant component of continuous deployment that allows applying the same configu-
ration to any number of nodes. Chef1 and Puppet2 are examples of popular open
source tools for infrastructure automation. Complete transitioning to continuous
deployment and full automation is nontrivial.
Cloud, Virtualization and Containerization

The last but not least group of technologies that enable microservices is a combina-
tion of cloud, virtualization, and containerization. The cost of computer hardware,
such as CPU, memory, and storage, has been steadily decreasing, while the perfor-
mance has been improving. Together with the availability of high-throughput net-
works, these factors made the idea of utility computing (a type of on-demand com-
puting) a reality again.

Platform virtualization is a technology that allows one physical server to run
multiple virtual machines, i.e., emulations of a computer system. The software
that creates a virtual machine on the actual hardware and abstracts the machine’s
resources is called a hypervisor. The main benefits of virtualization are improved
hardware-resource utilization, live migration, snapshots, and failover. The perfor-
mance overhead limits the use of virtualization in certain cases, such as time-critical
applications with constant loads.

Virtualization enables cloud computing. Cloud computing is a paradigm that
allows different parties to access a shared pool of automatically provisioned and
usually virtualized system resources. The term was popularized in 2006 with the
launch of Amazon Elastic Compute Cloud (EC2). The three standard models of
cloud computing (in order of increasing abstraction) are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The primary
deployment methods are a private, public, and hybrid cloud.

Containerization is another trending technology. Containerization is a way to
encapsulate an application and its dependencies into a self-contained portable unit
called a container. While a virtual machine emulates a whole environment with
its own operating system, the containers all use the same host operating system, as
shown in Figure 2.1, and, therefore, are more lightweight. Containerization can be
viewed as virtualization on the level of operating system. Both virtual machines
and containers share the same goal of portability: the software delivered in a virtual

1https://www.chef.io/chef/
2https://puppet.com/



“thesis” — 2018/7/4 — 15:56 — page 22 — #22

22 Background

Hardware

Host Operating System

Hypervisor

App1

Guest OS

VM1

App2

Guest OS

VM2

App3

Guest OS

VM3

(a) Applications hosted in virtual machines

Hardware

Host Operating System

Container Engine

A
p
p
1

A
p
p
6

A
p
p
2

A
p
p
5

A
p
p
3

A
p
p
4

(b) Applications hosted in containers

Figure 2.1: Virtual machines versus containers.

machine or a container will execute identically on any supported platform without
additional configuration or installation effort.

Although containers are an old concept dating back to 1998 (the jail utility in
FreeBSD), the release ofDocker, an open source containerization tool, in 2013made
them mainstream. Containers and microservices fit well together. Docker contain-
ers are the default choice for microservice deployment nowadays [81].

2.1.3 The Promise and Limitation of Microservices

Advantages

The main benefits of microservices can be grouped into the following categories:

• Scalability. There are three main techniques for scaling [125, p.12]: hiding
communication latencies (i.e., using asynchronous communication and data
cashing), distribution, and replication. Microservices utilize distribution and
replication fully. Furthermore, the microservice architecture allows for op-
timized selective scaling such that only the types of microservices that are in
demand at themoment are scaled upwhereas the ones that are underused can
be scaled down. The fact that system load is non-uniform is at the heart of
microservice architectures.
In a modular architecture, different modules are likely to have different sys-
tem resource requirements: while some modules are CPU-intensive, others
can be memory-intensive. A collective deployment of such modules requires
overall more powerful hardware than if deployed separately in specialized in-
stances in a cloud environment. Microservice architectures facilitate the lat-
ter. Microservices can be scaled independently, which leads to better system
resource utilization.

• Development time. Despite the need for a supporting infrastructure, individ-
ual microservices are easy to develop. Microservice design improves compre-
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hension by decreasing individual service complexity. Microservices can be
developed and deployed independently which reduces the coordination over-
head between different developers or teams.
In general, computational resources become cheaper while developers’ time
does not. This makes the trade-off between time to market and performance
optimization more prominent. In the microservice architectures, develop-
ers’ time is a priority while the performance tends to be lower than in non-
distributed applications. Microservices emphasize automation to optimize
development, deployment, and maintenance efforts.

• Technology heterogeneity. The technological landscape changes rapidly: con-
cepts, tools, frameworks, and programming languages are abandoned, while
new ones appear and gain popularity fast. Although homogeneous solutions
were a common goal in the past, homogeneity does not scale well. For sys-
tems beyond a certain size, even if maintaining homogeneity is possible, the
price of it increases dramatically.
Microservice architecture promotes technology heterogeneity and diversity.
Individual microservices can be implemented in different programming lan-
guages and use different frameworks. Various versions of the same microser-
vice can co-exist given that the interfaces stay unchanged.

Microservice benefits are explicitly derived from the benefits of the underlying
principles and technologies discussed earlier. Many of the microservice benefits are
the same as the benefits of distributed computing.
Disadvantages

“ A distributed system is one in which the failure of a computer you
didn’t even know existed can render your own computer unusable. ”Leslie Lamport, 1987

Distributed systems are inherentlymore complex than non-distributed systems.
All the drawbacks of distributed systems follow microservices. However, tech-
niques and solutions to counteract these drawbacks are emerging.

• Fault tolerance. Software fault tolerance is an ability of a computer system to
continue to operate acceptably despite the presence of partial failures. Soft-
ware fault tolerance is a valuable property and a design goal of distributed
systems [125, p.321]. A process where a failure of one component triggers the
failure in other components is called a cascading failure. Cascading failures in
distributed systems can have catastrophic consequences bymaking the entire
system non-functional.
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Toprevent cascading failures in themicroserviceworld, a designpattern called
circuit breaker [80, 85] is often employed. Similarly to an electrical circuit
breaker, a software circuit breaker limits the impact of individual service fail-
ures from cascading to other services. A circuit breaker can be seen as a wrap-
per or proxy around a service that adjusts the service network behavior. If
there are too many unsuccessful connections made to a particular service, a
circuit breaker temporarily throttles attempts at further connections. To han-
dle unresponsive services, a circuit breaker will enforce connection timeouts.
Hystrix latency and fault tolerance library by Netflix3 is a popular implemen-
tation of the circuit breaker pattern for the Java programming language.

• Software testing. Testing large-scale distributed systems is nontrivial. The
knowncases of prolongeddowntimedue to cascading failures inmicroservice-
based systems show the importance of systematic resilience testing [46]. Tra-
ditionally, tests are run in a test environment before releasing software into
production. Chaos engineering [7] is an emerging discipline concerned with
systematic resilience testing of software systems in production environments.
The idea of artificially injecting failures into the production environment and
continuously stress-testing the system is at the core of chaos engineering. The
scale of such intentional failures may vary significantly. Examples of such fail-
ures [7] are the termination of virtual-machine instances, latency injection
into requests between services, failing requests between services, failing an in-
ternal service, and making a big part of the service infrastructure unavailable.

• Distributed transactions and data consistency. It can be challenging to per-
form changes that affect multiple services, such as interface changes and dis-
tributed transactions. In the microservice architecture, each microservice
own its data. There is no complex database shared between all of the ser-
vices. Instead, the data is partitioned into smaller databases that are owned
by relevant microservices. A need to update multiple databases that belong
to different services is likely to arise, leading to data consistency issues.
ACID (Atomicity, Consistency, Isolation, Durability) properties in a dis-
tributed transaction are difficult to achieve. Solutions such as compensation
over two-step-commit [125, p.355] allow to apply several distinct changes as
a single operation (atomic operation) and rollback if any of the changes are
unsuccessful. Eventual consistency is a consistency model with weaker con-
straints than continuous consistency. Eventual consistency implies that over
time all the replicas converge toward identical copies of each other via updates
that are guaranteed to propagate [125, p.289].

• Infrastructure complexity. Microservice architecture depends heavily on in-
frastructure automation. Service discovery and service management func-

3https://github.com/Netflix/Hystrix
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tionality are necessary infrastructure components. Furthermore, monitoring
tools are a required when operating a large microservice system.

The fact that microservices gained wide adoption despite the aforementioned
drawbacks implies that the benefits of microservices outweigh the disadvantages in
practice. Some of themicroservice advantages and disadvantages are also applicable
to SOA.

2.1.4 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a close relative of microservices. The first
report about SOA [114] was published in 1998. In his book [57], Josuttis defines
SOA as “an architectural paradigm for dealing with business processes distributed
over a large landscape of existing and new heterogeneous systems that are under the
control of different owners.” However, similarly to microservices, no consensus
exists on the precise definition of SOA.

The core technical concepts of SOA [57] are services, interoperability, and loose
coupling. The notions of services and loose coupling were introduced earlier in the
microservice context. Interoperability, as the ability of computer systems or soft-
ware to interact and exchange information, can be achieved in different ways. A
typical implementation pattern for SOA is Enterprise Service Bus (ESB) [57] which
enables service consumers to call the service providers via an intermediary.

SOA is commonly implemented using web services specifications collectively
referred to as WS-* stack. Basic standards, such as Simple Object Access Protocol
(SOAP) [42] intended for exchanging structured information in a distributed envi-
ronment, lie at the core of SOA.Multiple additional standards, such asWS-Security
andWS-Notification, extend the basic framework by addressing non-functional re-
quirements, e.g. security. Yet, there is no single set of web services specifications.
Many different specifications were developed by various entities over the years re-
sulting in practitioners’ confusion, misunderstanding, and a loss of trust.

It should be mentioned that web services are only one possible way of imple-
menting SOA. Other technologies such as message queues and remote procedure
calls (RPC) can be used.

SOA evolved as a solution to the desire for flexibility, scalability, and fault toler-
ance in large distributed systems. Such systems are usually complex, heterogeneous,
and contain legacy components as a consequence of a long lifetime. However, tran-
sitioning to SOA is nontrivial. For Credit Suisse, a global financial institution with
thousands of in-house developers, it took around ten years to adopt the service ar-
chitecture and split the legacy system into more than 1000 services [82].

Despite its popularity, the understanding of how to do SOA right is still lacking.
Many problems faced by SOApractitioners rest with underlying technologies, such
as theWS-* stack and vendor middleware (ESB), or design misconceptions due to a
lack of guidelines and best practices for implementing SOA in the real world.
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From SOA to Microservices

The distinction between SOA and microservices is a debated question [138]. On
a conceptual level, SOA and microservices are identical: they try to solve the same
problems of system flexibility and scalability by using similar principles of modular-
ity and distribution. However, when looking closer, differences start to appear.

Richardson [107, p.8] views microservices as SOA without the commercializa-
tion, WS-* stack, and ESB. Newmann [85, p.8] views microservices as a specific ap-
proach to SOA. This view is further supported by Zimmerman [138], who defines
microservices as a particular implementation and deployment variant of SOA.

The pillars that microservice architecture relies on, fine-grained separation of
concerns, continuous delivery, and virtualization, as well as all its supporting tech-
nologies, have seen rapid development in the recent years. Continuous delivery and
virtualization solutions were not readily available for a mass-scale use when SOA
emerged. Microservices are reaching a height of adoption unseen by SOA. Both
SOA and microservices constitute sequential steps in a gradual development and
evolution of distributed systems.

2.1.5 Future of Microservices

Big Picture

Not every system needs to be distributed. Moreover, not all distributed systems
should be microservice-based. Neither SOA nor microservices are a free lunch or
a silver bullet [57, 85]. Both advantages and disadvantages of microservices should
be acknowledged and weighted against one another when deciding on an architec-
tural style for a system. In some cases, such as when performing time-critical oper-
ations, the performance overhead introduced bymicroservices can be unacceptable
and pointlessly expensive.

Microservices are often contrasted with monolithic applications. Such compar-
isons are often oversimplified and overlook the fact that monolithic systems, i.e.,
non-distributed systems, can have a modular design and focus on frequent releases
and automation. While microservice architecture naturally enforces these proper-
ties, it is not the only way to achieve them.
Challenges

Since microservices are still a quite new architecture, there are many challenges on
the path tomicroservice adoption. For example, it is unclear what is the best way to
decompose existing systems into microservices and how to choose an appropriate
service granularity level. Research on the tools that facilitate decomposition, e.g.
Service cutter [43], started to appear. Moreover, the topic of microservice security
received undeservedly little attention both in industry and academia.

Despite active development, there is no theoretical framework to follow when
buildingmicroservice applications. Similarly to the SOAcase, the lack of clear guide-
lines may complicate migration to microservices. Microservice architecture leaves
many decisions to the discretion of the developers. Moreover, a definition of an ar-
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chitectural style usually involves a set of constraints. Absence of such constraints
for microservices makes the whole concept less precise.
Trends

Change is the only certainty for any area of software engineering. Currently, mi-
croservices are trending. Similarly to howSOApopularity is declining, in the future
microservices are also likely to be replacedwith a different technology that will solve
the existing and new problems even better. The timeframe for the change, however,
is difficult to predict.

Automation is a driving force of microservices and a critical factor for microser-
vice adoption. More tools, frameworks, and platforms are likely to appear to sup-
port even higher degrees of automation in all aspects of the microservices lifecycle.
It is also likely that we will see an active development in the areas of microservice
security, decomposition, monitoring, testing, and orchestration in the future.

Serverless computing and the function-as-a-service model are the latest develop-
ments in cloud computing that go hand in handwithmicroservices. Serverless com-
puting is a type of utility computingwhere infrastructure provisioning is fully auto-
mated and the resources consumed by functions execution are measured with high
precision. AWS Lambda, the first serverless computing platform that was launched
byAmazon in 2014, charges clients based on the number of function invocations or
the duration of function execution in 100ms intervals [3].

2.2 Security Primer
Microservice security is not a well-studied topic. Currently, the research dedicated
explicitly to microservice security is very scarce. However, the core security princi-
ples hold formicroservices as well as for any other architecture. A variety ofmodern
security protocols and security best practices can be used when building microser-
vice architecture.

This section starts with explaining the basic security concepts of identifica-
tion, authentication, authorization, access control, and threat modeling. Next, an
overview of the security standards related to public key infrastructure and delegated
authorization and authentication is provided. This information is necessary for un-
derstanding the research papers inChapters 4 and 7. The section continueswith the
brief explanation of SOA security standards that are relevant for Chapter 4. The sec-
tion ends with a short overview of the preventive, detective, and corrective security
measures that used throughout Chapters 4, 5, 6, and 7.

2.2.1 The Core Security Concepts

Identification, Authentication, and Authorization

Identification is a process of claiming an identity of a particular entity without a
proof, e.g., providing a username. Authentication is a process of confirming the
claimed identity. To be authenticated, an entity provides a proof of identity to the
authenticating party for verification. Theproofs of identity, also knownas authenti-
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cation factors, are based onknowledge, ownership or inherent properties. Examples
of authentication factors are 1) passwords, PIN-codes, answers to security questions;
2) ID card, hardware and software security tokens; 3) biometric identifiers such as
signatures, handwriting, fingerprints, face, voice, or typing patterns. Authentica-
tion that involves more than one factor is called a multi-factor authentication.

Authorization is a process of granting rights to an authenticated entity and speci-
fyingwhat a subject cando. For example, administrativeusers havemore rights avail-
able to them than regular users. When a regular user logs in into a system, he/she
will not be able to perform administrative tasks such as removing other users from a
system. Authorization can also be viewed as the specification of access policies [56].
Access Control

Identification, authentication, and authorization are used to provide access control
in computer systems. Multiple ways of imposing access control exist. In an Ac-
cess Control List (ACL) model, a list of permissions attached to a system object is
used to grant access to this object for a specific entity. In Role-Based Access Con-
trol (RBAC), in contrast to assigning permissions directly to entities, the entities are
assigned particular roles based on the functions they perform. Attribute-Based Ac-
cess Control (ABAC) extends the RBAC model by allowing additional attributes
for higher control granularity. Other access control models exist.
Confidentiality

Confidentiality is a property that information is not disclosed to unauthorized enti-
ties during the information lifecycle. Informationmay need to be kept confidential
in transit and storage, as well as destroyed securely. While encryption is used to pro-
tect confidentiality of data, other techniques such as message authentication codes
(MAC) or digital signatures are needed to ensure data integrity and authenticity.
Threat Model

A vulnerability is a weakness in a system that can be exploited by a malicious party.
Security threats are usually caused by an exploit of a vulnerability, although other
causes such as social engineering and natural disasters are possible. Since it is impos-
sible to be protected from all known andunknown threats, it is necessary to identify
possible attack vectors, prioritize the security threats, and plan preemptive actions
to avoid the most likely ones. This process is called threat modeling.

An attack vector is a component of a system that an attacker can tamper with,
such as input fields and interfaces, to gain further strategic or financial advantage.
An attack surface of a system is the sum of all the existing attack vectors. Attack
surface reduction is a known security measure.

2.2.2 Public Key Infrastructure

Public Key Cryptography

In symmetric cryptography, the same secret key is used for both encryption and de-
cryption, and the encryption and decryption functions are similar. AES and 3DES
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are the examples of commonly usedmodern symmetric algorithms that are fast and
secure. The shortcomings of the symmetric-key schemes include the difficulty of
secure key distribution, large number of keys (n · (n − 1)/2 for a network with n
users), and no protection against cheating by the involved parties [95, p.150].

Public key cryptography, or asymmetric cryptography, that addresses the short-
comings of the symmetric cryptography was introduced by W. Diffie, M. Hellman
and R. Merkle in 1976 [23]. Following the established convention, let us consider
the two parties, Alice and Bob, trying to exchange secure messages using a public-
key cryptosystem. To encrypt a message for Bob, Alice should use Bob’s public key.
To decrypt the message sent by Alice to Bob, Bob should use his private key. Each
party maintains a pair of keys, instead of a single key. In addition to the keys used
for encryption and decryption being different, the encryption and decryption func-
tions are also different.

The public-key algorithms are based on the notion of a one-way function such
that encryption is computationally easy, but decryption is computationally hard.
The main one-way functions are based either on the integer factorization problem
(RSA) or discrete logarithm problem (DSA, ECDH).

Symmetric encryption is much faster than asymmetric one, but it fails to pro-
vide non-repudiation and secure key establishment. Therefore, most practical cryp-
tographic protocols are hybrid protocols that rely on both symmetric and asymmet-
ric algorithms. SSL/TLS protocols, the cornerstones of secure Internet communi-
cation, belong to this category.
Transport Layer Security

Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) are
a family of cryptographic protocols designed to provide communication security
(prevent eavesdropping, tampering, andmessage forgery) over a computer network.
TLS incorporates many different algorithms with configurable parameters for se-
cure key exchange, encryption, message authentication and integrity.

The plurality of available options and presence of unsafe legacy components
often lead to insecure configurations. Multiple open source TLS programming li-
braries such as OpenSSL and GnuTLS exist. Neither the protocol nor its imple-
mentations are perfect. A list of known attacks against TLS/SSL up to 2015 can be
found in RFC 7457 [117].

The newest version of TLS, version 1.3 [105], has been under active develop-
ment since 2014. It removes obsolete and insecure ciphers and hash-functions from
TLS 1.2 while, among other things, introducing new security features and improv-
ing performance (1-RTT and 0-RTT handshakes).
Digital Certificates and Public Key Infrastructure

While public-key schemes do not require a secure channel, they do require an au-
thenticated channel for the public keys distribution [95, p.344]. An authenticated
channel is needed to preventman-in-the-middle (MITM) attacks where an attacker
pretends to be a legitimate communicating party to each of the sides by tampering
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with the communication channel.
Digital certificates are a solution to the problemof public keys authenticity. Cer-

tificates bind a public key to a specific identity by applying digital signatures. Certifi-
cates have a complex structure and include various fields such as a period of validity,
issuer, and purpose. X.509 [16] is a cryptographic standard that defines the format
of public key certificates that is widely used, also for TLS.

To verify a signature of the givenmessage, a receiver of themessagemust use the
public key of the sender. An entity called Certification Authority (CA) is a mutu-
ally trusted third party that issues certificates to the communicating parties. CAs
form a chain of trust. Together, CAs and supporting mechanisms create a Public-
Key Infrastructure (PKI). Running a real-world PKI is nontrivial. One of the most
challenging tasks of PKIs is certificate revocation. The shortcomings of PKI are dis-
cussed in various sources [28] and should be acknowledged by the system architects.

We will look at TLS and self-hosted PKI for microservices in Chapter 4.

2.2.3 Delegated Authorization and Authentication

Delegated authorization and shared authentication are an essential part of mod-
ern web security. The most tangible and visible mechanism is social login, which
is supported by many web services today. However, delegated authorization and
shared authentication protocols have many interesting applications for securing
inter-service communication in microservice architectures. The following discus-
sion summarizes the security challenges of the popular security protocols underly-
ing delegated authorization and shared authentication. The OAuth and JWT secu-
rity standards discussed here are important for understanding Chapter 4.

OAuth 1.0

Identity and access delegation, as an act of empowering to act for another, is an
important aspect of computer security. OAuth is a delegated authorizationprotocol
providing third-party applications with delegated access to protected resources on
behalf of a resource owner.

OAuth 1.0 and OAuth 1.0a [44] include two sets of credentials with each client
request: one set to identify the resource owner and another to identify the client
(third-party application) itself. Before a client can make authenticated requests on
behalf of the resource owner, it has to obtain permission from the resource owner.
After the permission is obtained, the authorization server issues a security token
called the access token to the client. The access token and a related token secret rep-
resent the resource owner approval and are used to associate clients’ requests with
the resource owner.

The client credentials consist of a unique identifier and an associated shared-
secret or RSA key pair used for signing. While signing in OAuth 1.0 enables client
authentication andmessage integrity on the application level independently ofTLS,
confidentiality matters must still be accounted for.
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OAuth 2.0

OAuth 2.0 [45] only utilizes access tokens to identify a resource owner; therefore
tokens are no longer bound to any particular client. Since OAuth 2.0 does not sign
requests, it is notably simpler than OAuth 1.0, but it is completely dependent on
TLS. Multiple optional components in OAuth 2.0 have led to interoperability is-
sues between different providers. For example, no specific access token types are
required: developers can choose between two incompatible token formats, namely
Bearer (or JWT bearer tokens) and MAC tokens.

OAuth 2.0 defines four authorization flows for different use-cases. The two
most commonly used flows are Implicit Flow andAuthorization Code Flow shown
in Figures 2.2 and 2.3. The Implicit Flow ismainly designed for public clients which
cannot securely maintain confidential data, whereas the Authorization Code Flow
targets trusted clients.

The Authorization Code Flow is more secure than Implicit Flow because the
access token is not exposed to a native application, but only to a web application
running on a web server. As shown in Figure 2.3, the use of client ID and client
secret to authenticate the web application to the authorization server is required
before exchanging the authorization code for an access token.

In the context of native clients, the choice between the flows depends on the sys-
tem architecture. The Implicit Flow suits browser-based applications (JavaScript
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applications running in a browser) and native standalone applications that interact
with an OAuth provider directly. The Authorization Code Flow targets web appli-
cations running on a trusted web server, as well as distributed applications where a
backend server proxies requests of native applications and attaches the correspond-
ing access token.
Common Security Pitfalls in OAuth

Developers often fail to implement OAuth correctly due to its ambiguity and com-
plexity. An extensive study of OAuth usage in mobile applications performed by
Chen et al. [13] in 2014 shows that 24% of analyzedmobile applications usedOAuth
and almost 60% of them contained security critical mistakes in design and imple-
mentation. Confusing authentication and authorization, and preferring less secure
option are among the leading causes of vulnerabilities in OAuth.
Confusingauthenticationandauthorization. OAuth 2.0 is not an au-
thentication protocol for clients but is often incorrectly treated as such. Although
user authentication is a necessary step when granting permissions to the client, no
continuous client authentication is provided. Wang et al. [131] first identified a
dangerous misuse of the access token as proof of client authentication to backend
servers in distributed environments. On the other hand, some of the developers
who realize the problem try to bridge the authentication gap themselves, which
leads to insecure home-brewed OAuth-based authentication protocols, especially
in mobile applications [13].
Preferring less secure options. With MAC tokens, each request from the
client to the resource server is authenticated based on a symmetric key shared be-
tween the parties. Although MAC tokens provide better security than Bearer to-
kens,MACtokens are rarely used. As of 2014, only three out of twelvemajorOAuth
providers supported MAC tokens [50].

Developers often ignore the fact that Authorization Code Flow is more secure
than Implicit Flow. Using the Implicit Flow for distributed applications with a
backend server is quite common. Whether it is a conscious decision to avoid addi-
tional work or decision out of ignorance is often unclear.

Common implementation mistakes [13, 122] are the reuse of the authorization
code, not asking for the user’s consent explicitly, absence of TLS, bundling client
secrets withmobile applications, and insecure redirection handling inmobile appli-
cations. Interestingly, OAuth security issues arise not only from ambiguities in the
standard but also from SDKs promoting insecure choices [131].
OAuth-based Single-sign-on

OAuth 2.0 is used as an underlying layer for shared authentication protocols and
Single-Sign-On (SSO) systems. Prominent examples are OpenID Connect, Face-
book Login, and Sign In With Twitter. In such schemes, the user authenticates
into a third party service (a Relying Party or RP) using a digital identity at an Iden-
tity Provider (IdP) of the user’s choice. However, additional steps must be taken to
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use OAuth 2.0 for authentication. Modern OAuth-based SSO systems mainly uti-
lize token-based authentication, which is inherently vulnerable to token hijacking
if the channel is compromised.
OpenID Connect [112] is a widely deployed shared authentication protocol
that currently powers log-in systems at PayPal, Google, Yahoo, Stack Exchange and
others. OpenID Connect implements authentication on top of the OAuth 2.0 au-
thorization process with minimal changes required. When OpenID Connect is
used, each request includes an OAuth 2.0 access token and an OpenID Connect
token, called an ID token. The ID token has a standardized format based on JWT
and contains information regarding the authenticated user signed by the identity
provider.

To support higher security requirements the OpenIDConnect specification de-
fines several optional security enhancing properties, among them:

• TheRP can request specific information, such as an email, phonenumber, ad-
dress, and authentication time, to be returned from the IdP and/or included
into the ID token [112, Sect.5.5].

• Signing and encryption of ID tokens sent by IdP, RP authentication, and
RP’s OAuth authorization requests [112, Sect.6,10].

• More advancedmethods of RP authentication to IdP: digital signatures with
pre-registered public key or HMAC with a client secret as a shared key. The
default method is the HTTP Basic authentication scheme with a client se-
cret [112, Sect.9].

There are no studies of these advanced security options in real world OpenID
Connect providers. Serious security flaws were discovered in the design of OpenID
Connect extensions for dynamic server discovery and client registration [77].

2.2.4 SOA Security
Over the past two decades, the topic of SOA security has been extensively discussed
in literature [41, 87, 119]. SOA security comprises of general security standards and
Web Services security standards, including XML security standards.
WS-Security

The WS-Security specification [84], released by OASIS in 2004, offers a common
format for security in a SOAP message by utilizing the header part of the XML
message to pass along security information. WS-Security incorporates XML Sig-
nature [6] and XML Encryption [51] to enforce integrity and confidentiality pro-
viding so-called end-to-end security, as well as use of security tokens to establish the
sender’s identity. WS-Security can optionally be used on top of TLS.

TheWS-Security specification describes the framework for securing SOAPmes-
sages, leaving the additional functionality to a broad set of specifications, includ-
ingWS-Trust,WS-Federation,WS-Authorization,WS-Privacy,WS-SecurityPolicy,
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WS-SecureConversation, jointly called WS-* stack. Each of this WS-Security exten-
sions is a topic of its own.

The WS-* stack has undeniable benefits in terms of modularity and available
features, and it provides security in a comprehensive and expandable manner. If
implemented correctly, WS-Security successfully eliminates many security threats
such as network eavesdropping, message tampering, and message routing [49].

Complexity is an enemy of security. Ironically, the most criticism of WS-* stack
relates to its complexity. It is challenging for developers to manage the stack prop-
erly, even with the existing tools aimed at hiding its complexity. Multiple imple-
mentation vulnerabilities [8] and attacks, such asXML-encryption attacks [61] and
XMLsignaturewrapping attacks [73], has been found. Tools likeWS-Attacker4 can
assist in Web services penetration testing.

Several studies have confirmed that TLS outperformsWS-Security. The perfor-
mance of three different security approaches, (1) X509Token Profile, (2)WS-Secure
Conversation, and (3) vanilla TLS, has been compared with (4) the absence of any
security mechanisms (message routing only) in [63]. The found ratio in the num-
ber of messages processed per second was approximately 1 : 2 : 8 : 14, which clearly
shows the advantage of TLS. These results were later confirmed in [29], where the
authors showed that TLS remains an order of magnitude more efficient compared
to the best WS-Security optimization.

2.2.5 Security Measures
Security of distributed systems, as well as computer security in general, has many
dimensions. It matters how the system is built and how it is maintained.
Preventive measures

The long history of security breaches, small and big, shows the importance of ad-
dressing the security concerns on early stages of system design and development.
Such an approach is called security by design and incorporates various basic security
principles discussed below.

• Minimizing attack surface area, as in reducing the number and scope of com-
ponents an attacker can interact with, such as system inputs and interfaces,
makes a given system harder to exploit.

• Security by default embraces the fact that the default system configurations
and settings are often used and rarely changed because of convenience, lack
of awareness or competence, or other factors. Therefore, the default options
should be the secure ones. For example, denying all incoming traffic unless
otherwise specified for a given IP-address is safer than allowing all traffic ex-
cept from explicitly blacklisted IP-addresses. Another example is to require a
new user to create a password of at least the specified length.

4http://sourceforge.net/projects/ws-attacker/
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• Defense in depth implies that no component can be trusted and as much as
possible should be verified. Similarly to how inputs should be validated in
methods, components should not blindly trust each other in a distributed
system. Defense in depth is closely related to another principle called layering
of security mechanisms.

• Least privilege principle is concerned with limiting the abilities of an entity
to the bare minimum required for performing the relevant tasks. While the
principle is often associated with limiting file system permissions, the prin-
ciple expands further to system resource permissions such as network access
and CPU and memory allowance. As we will see in Chapter 4, microservice
architecture facilitates the adoption of the defense in depth and least privilege
principles.

Detective measures

In order to fix a security issue, it first needs to be detected. Detection of security
accidents is a vital system functionality. System and network monitoring, includ-
ing firewalls, intrusion detection (IDS) and intrusion prevention (IPS) systems, are
typical examples of detective measures.

Honeypots are a deceptionmechanism to detect and deflect unauthorized access
to the systemby exposingdecoy systemcomponents and resources in a carefully con-
trolled environment. Honeypots can distract attackers from valuable components
and assist in worm detection, worm countermeasures, and spam prevention [102].
Honeypots can be used as research tools and to facilitate understanding of the pos-
sible attack landscape [11]. Security testing, including penetration testing, can be
considered to be a detective measure.
Corrective measures

The goal of corrective measures is to limit the damage from a security incident. Ex-
amples of corrective measures are a software update released to fix a newly discov-
ered security bug or restoring the system from a backup. The forensics process is
simplified by having proper logging and system monitoring in place.

The time between a security incident being detected and correcting actions im-
plemented is of critical importance. The longer the response takes, themoredamage
an attack is likely to create. More information about Intrusion Response Systems
(IRS) can be found in a survey by Stakhanova et al.[121].
Need for Security Automation and Self-Protection

While sophistication of attacks is continuously increasing, the required technical
knowledge to perform an attack does not follow the same trend. This is mostly
because of automation of the attack process and availability of attack tools, also for
sale.

Figure 2.4 outlines the relationship between attack sophistication and the re-
quired knowledge from 1980 to 2018. We extended the original version [71] that
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stops at the year 2000. The figure depicts a small subset of a vast development in
the area of computer security from an attacker perspective.

Detective and corrective measures as well as the basics of security automation in
context of microservices are the central topics of Chapter 6.

Figure 2.4: The sophistication of attack tools versus required attack knowledge.

2.3 On Microservice Integration Styles
The integral part of all distributed systems is interprocess communication. In con-
trast to processeswithin the same environment that canutilize sharedmemory, com-
ponents of a distributed system communicate over a network by sending and receiv-
ing messages. A great variety of communication protocols exist.

There are no clear guidelines for how to do service integration, i.e., how services
should communicate. As an architectural style, microservices do not limit the pos-
sible communication models and integration options. However, the choice of inte-
gration solution has an impact on microservice principles and may undermine the
benefits of using microservices in the first place.

For example, centralized databases, one of the main application integration
styles [48], do not align well with the microservice principles of loose coupling,
decentralization and state ownership. Microservice integration through shared
databases is likely to negatively impact the system ability to scale and make it more
fragile, and should, therefore, be avoided. A recommended database design for mi-
croservices [107, p.7] is that each service has a separate database.

The standard choice for microservice integration [85, p.55] is the REpresenta-
tional State Transfer (REST) APIs [33]. The goal of this section is to evaluate how
the REST style fits with the microservice principles and compare it with other inte-
gration solutions. Our main evaluation criteria are the core microservice principles
of loose coupling and “smart endpoints and dumb pipes” because the integration
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choices affect them the most. We are particularly interested in internal service-to-
service communication.

2.3.1 What is REST
REST is an architectural style that defines the behavior ofweb agents and allows the
web to scale. Since its introduction by Fielding & Taylor [33] in 2000, the REST
style gained broad adoption. It became a competitor to SOAP and related set of
Web Services standards [100].

The REST style is usually defined through the set of constraints, specifically
client-server, stateless, cache, uniform interface, layered system, and code on de-
mand. The six coredesignprinciples ofRESTas formulatedbyErenkrantz et al. [30]
are:

• The key abstraction of information is a resource, named by an URL.

• The representation of a resource is a sequence of bytes, plus representation
metadata to describe those bytes.

• All interactions are context-free.

• Only a few primitive operations are available.

• Idempotent operations and representation metadata are encouraged in sup-
port of caching.

• The presence of intermediaries is promoted.

However, a lack of detailed design guidance led to a dissonance between the style
and implementations [20, 30, 34]. An absence of dynamic representations of the
original message, no definition of a consistent namespace, and misunderstanding
of “pipelining” are among known practical problems [30]. Session management
and use of cookies are an integral part of the modern web that violates the stateless
constraint of the REST style [53]. Consequently, the label “RESTful API” is often
put on APIs that are not RESTful [104]. Security has not been addressed by the
REST style, which results in much confusion still. The topic of RESTful security
is discussed in detail in Chapter 7.

Khare & Taylor [58] identified three limitations of REST in decentralized en-
vironments; first, one-shot requests and no recovery mechanisms; second, the only
possible communication pattern is one to one, not one to many; third, the absence
of bidirectional communication, a client initiates communication. To address the
limitations, the authors proposed an extension of the REST style for decentralized
systems called the ARRESTED style. However, the style is not widely adopted.

Despite multiple shortcomings of the REST style and future developments in
academia, the REST style became dominant for web APIs.
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2.3.2 Loose Coupling
Coupling can be defined as “a measure of interdependencies between modules,
which should be minimized” [129]. Decomposition of software into modules with
high cohesion and low degree of coupling is likely to improve reliability by limit-
ing failure propagation as well as allow systems to scale easier. Loose coupling is
one of the core principles of high-quality software design. The importance of low
coupling has been recognized in the context of structured development techniques,
as well as in object-oriented design [10]. Loose coupling is an essential property of
microservices [85, p.30]. Hence, the chosen integration style should contribute to
loose coupling.
Coupling Metrics

Although many attempts have been made, there is no standard quantifiable met-
ric for coupling of software components. In the context of service communication,
tight coupling is often contrasted to loose coupling, but it is not a binary property.
Eugster et al. [31] differentiates between the following three dimensions in the con-
text of distributed interaction and publish-subscribe systems:

• Space decoupling. The interacting parties are not connected directly and do
not hold a reference to each other, but use an intermediary instead.

• Time decoupling. The interacting parties do not need to be available at the
same time.

• Synchronization decoupling. The interacting parties do not get blocked for
the interaction duration.

Pautasso&Wilde [97] proposed a set of qualitative couplingmetrics for service
design. Their paper compares RESTful HTTP, Remote Procedure Calls (RPC)
over HTTP, and WS-*/ESB technologies based on twelve facets of loose coupling:
discovery, identification, binding, platform, interaction style, interface orientation,
model, granularity, state, evolution, generated code, and conversation. The authors
conclude that no technology satisfies all loose coupling criteria.
(De)coupling Properties of the Main Integration Styles

Although the REST APIs are the default choice for microservice integration [85,
p.55], it is an open question if the REST style is actually required and even suffi-
cient [138]. In practice, a variety of technologies and protocols are used formicroser-
vice communication [99].

REST APIs, like any other HTTP-based APIs, can be accessed asynchronously
via resource polling or webhooks. WebSockets is another way of achieving full-
duplex communication over HTTP. RPC solutions, such as gRPC5, are also used
formicroservices. gRPCprovidesbidirectional streamingwhile relyingonHTTP/2

5https://grpc.io
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for transport and using Protocol Buffers as a binary serialization toolset and inter-
face description language. On the other side of the complexity spectrum lie messag-
ing systems such as Apache Kafka6 and RabbitMQ7 that became widespread in the
microservice world.

Table 2.1 compares the popular integration alternatives based on coupling facets
from Eugster et al. [31] and selected complexity properties. Asynchronous interac-
tion is one of the intuitive ways of achieving loose coupling. A strong need for asyn-
chronicity arises when the operation requested takes a considerable amount of time.
However, asynchronous interaction is more difficult to implement and debug than
synchronous communication which results in more complex services. Some of the
challenges include a need to correlate requests and responses and deal with time-
outs.

The REST style can be used for both blocking and non-blocking synchronous
interaction. The latter is possible through long polling. A temporary resource can
be created instead of an actual one. A 202 (Accepted) response code can be returned
to inform a client that the request is received, but the response is not available yet.
The client’s responsibility is to check on the temporary resource until a URI to the
actual resource is given.

While the publish-subscribe systems offer the most in terms of loose cou-
pling [31], they promote centralization and can potentially become a single point of
failure. Decentralization is a fundamental characteristic ofmicroservices. As shown
in Table 2.1, asynchronous communication comes at the cost of increased complex-
ity of clients and/or infrastructure.
Interface Coupling

An important coupling metric that does not naturally fit the above-listed classifica-
tions is interface coupling. It is a design-specific property that includes:

• Number of interfaces. One aspect of service complexity is its surface area that
can be defined by the number of external service dependencies. Themore de-
pendencies the given service has, the more tightly coupled it is. It is common

6https://kafka.apache.org
7https://www.rabbitmq.com

Table 2.1: Decoupling facets and related complexity of the main integration styles.

Interaction
paradigm

Decoupling Complexity
Space Time Async Infrastruct. Service

REST/RPC No No Producer Low Low
REST w

polling / Async
RPC

No No Yes Low High

Messaging Yes Yes Yes High High



“thesis” — 2018/7/4 — 15:56 — page 40 — #40

40 Background

tohave composedmicroservices (mashup services) that aggregate information
from other services. The disadvantage ofmultiple interfaces is increased com-
plexity andhigher risk of circular dependencies. The “do one thing” principle
of microservice design implicitly encourages a low number of dependencies.

• Frequency of interface use. If microservices are strongly dependent on each
other and do network calls for each operation, such services can be said to
be tightly coupled due to a suboptimal service composition. Merging such
services into one can be a viable option.

• Interface evolution. The “evolutionary design” principle of microservices im-
plies a frequent modification of interfaces, both semantical and syntactical.
In such a dynamic environment, breaking changes and backward compatibil-
ity becomes a serious concern. GraphQL8, a query language for APIs, can be
leveraged in API Gateway implementations to solve the problems of version-
ing and over- and under-fetching.

2.3.3 How Dumb Are the Pipes?
The previous subsection has demonstrated that loose coupling of services in time,
space and synchronizationdomainsmay lead to tighter couplingwith specific infras-
tructure components such as messaging systems and make the services more com-
plex. It is now necessary to explain how the complexity is distributed between the
services and the mechanisms connecting them.

“Smart endpoints and dumb pipes” is one of the microservice characteristics.
According toLewis&Fowler [38], all the communication logic shouldbe contained
inside the services and the communication itself should be done via lightweight
mechanisms. Moving the complexity into the services can also be seen in the popu-
lar Circuit Breaker pattern that prevents cascading failures by adjusting the service
behavior.
Complexity Scale

The REST style assumes no logic in the network. Synchronous request-response
communication pattern makes REST APIs the most unadorned “pipe”. Specifi-
cally, HTTP requests with parameters, no or a minimal state, certainly no memory
across transactions (apart from a database) and no delivery guarantees contribute
to the overall simplicity of the REST style.

More complicated options, such as various message-oriented middleware and
Enterprise Service Bus (ESB), are located on the opposite side of the spectrum. ES-
Bes can provide support for naming, location, service discovery, replication, pro-
tocol handling, communication faults, synchronization, concurrency, transactions,
storage, access control, and authentication. However, messaging systems do not
need to provide all above-listed features. The existing service integration options

8http://graphql.org
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Figure 2.5: A relative complexity scale of the existing service integration solutions.

can be placed on a complexity scale [24] based on the number of features and func-
tionalities provided. An example of such a scale is given in Figure 2.5.
Complexity in Messaging Systems

To get a more robust understanding of the complexity scale, we look at the dif-
ferences between the two most widely adopted open-source messaging systems,
namely Apache Kafka and RabbitMQ. Dobbelaere & Esmaili [24] performed an
extensive comparison of the functionality of these two systems as of 2017. Their
work creates a basis for Table 2.2 that summarizes the core properties. As shown
in Table 2.2, RabbitMQ offers a much more comprehensive set of functionalities
when compared to Apache Kafka, and, therefore, is more complex. In themicroser-
vice world, highly intelligent “pipes” are unwanted: microservices favor simplicity
over complexity.

2.3.4 Security, Performance and Engineering Cost
Despite the conceptual fitting of the given integration style with microservice prin-
ciples, there are several practical considerations to address when choosing a specific
integration solution.

Security. Different solutions have different embedded security features. The
REST style does not provide any guidance on the security mechanisms and leaves
the security matters entirely at the discretion of developers. In contrast to REST,
solutions such as gRPC, Kafka, and RabbitMQ support some security features out
of the box, includingmutual TLS for entities authentication and traffic encryption.
As for early 2018, Kafka and RabbitMQ support various pluggable SASL mecha-
nisms and authorization options.

Performance. The distributed nature of microservices is the cause of its low
performance when compared to non-distributed systems. Interoperability and
decentralization come at the cost of reduced performance since it is suboptimal
compared to homogeneous and monolithic environment. In many cases, high-
performance computing implies tight coupling: network calls are slower than sys-
tem calls, communication protocols with binary formats (Protobuf) are faster com-
pared to XML- or JSON-based ones. The latter implies, for example, that for time-
sensitive tasks gRPC is a better fit than the REST APIs.

Engineering cost. Availability of tools to simplify the development process,
rapid prototyping, testing, and maintenance are important factors. Amount and
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Table 2.2: Comparison of the features of Apache Kafka and RabbitMQ
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quality of the documentation and conciseness of the code are essential. Existing
infrastructure compatibility and vendor lock-in are relevant concerns.

2.3.5 Discussion
Are Decentralized Protocols a Better Fit? As shown earlier, publish-
subscribe solutions promote loose coupling but lead to more centralization by in-
troducing an additional infrastructure component. One potential way to facilitate
decentralization is to use gossiping protocols for network self-management. How-
ever, the small message sizes and relatively slowmessage propagation [9]make such
solutions inappropriate formicroserviceswheremessage exchange rates are high and
non-uniform.

The Relationship between REST and Microservices. REST APIs, as
well as any HTTP-based APIs, are easy to implement due to the prevalence of the
HTTPprotocol and supporting libraries that are readily available for almost all pro-
gramming languages andplatforms. RESTAPIs are easy to debug and comprehend
for humans due to the synchronous nature of HTTP. However, REST APIs are
only one ofmany valid ways to integrate microservices. Moreover, it is not necessar-
ily the one providing highest decoupling: messaging systems are scoring higher on
all the decoupling metrics, as shown in Table 2.2.

However, there are cases when synchronous communication in general, and
REST APIs in particular, are a better option. Such cases include user authentica-
tion and other critical information requests where there is a need to wait for a reply.
For interoperability reasons, it makes sense to have RESTAPIs on the edge services
designated for consumption by users and third parties.

CombiningApproaches. Whatmicroservice integration style shouldbe adopted
is dictated by multiple factors and is often system specific. Preferring REST APIs
over ESB will not bring all the microservice benefits by itself; it is still possible to
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Figure 2.6: A microservice-based bank built using multiple inter-service communication styles.

unintentionally build a tightly coupled system using REST. Having the right mi-
croservice composition and deployment practices may be more important than in-
tegration style in some cases.

It is likely that a reasonably sized system will employ several different integra-
tion styles. Figure 2.6 depicts the use of synchronous REST API calls alongside
eventmessaging through amessage broker when processing a user request for a new
credit card. A customer orders a new credit card (1). Upon successful user authenti-
cation (2), the customer receives a preliminary order confirmation (3). A new card
request event is put into a queue (4). A card management service picks up the rel-
evant event (5) and starts processing it. If an external credit check is successful (6),
the card service fires an event requesting an email to be sent to the user and an event
initiating a card manufacturing process (7). The corresponding events are received
by the email notification center and card production line (8). The system structure
is greatly simplified.

2.3.6 Conclusion

Microservice architectural style does not enforce strict rules on the integration pat-
terns and inter-service communication options. However, the core principles that
guard the scalability and flexibility properties ofmicroservices, mainly the notion of
loosely coupled services and “smart endpoints and dumb pipes” principle, should
be accounted for when choosing an integration style.

While the REST architectural style is still a prevalent choice for microservice
communication, it is by far not the only one. Multiple technologies exist and fa-
voring one over the other depends on many factors including alignment with the
microservice principles as well as practical considerations such as security and per-
formance. The choice ofmicroservice integration style is system specific and should
be approached with deliberation since many factors are involved. A combination
of different integration technologies is a viable option.

Loose coupling brings high agility to the system. Asynchronous communica-
tion is the starting point of decoupling. Althoughmessaging solutions allow build-
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ing highly decoupled systems, they may make the infrastructure more centralized.
At the same time, the range of publish-subscribe solutions is wide and exhibit dif-
ferent levels of complexity. This evaluation suggests that simpler message queues
are a better fit for microservices.
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Summary of Papers

This thesis is based on four research papers published in various peer-reviewed con-
ference proceedings. A synopsis of each paper is given below.

Paper I: Overcoming Security Challenges in Microservice Architectures

Microservice security is amultifaceted problem. This paper provides a taxonomy of
microservice security by grouping the applicable security threats andmitigation into
six layers: orchestration, service/application, communication, cloud, virtualization,
and hardware. We also survey the available literature.

Since security is a trade-off between minimizing the budget and covering more
attack vectors, addressing all possible threats is infeasible in practice. We believe it
will bemost fruitful for the real-world developers to concentrate on the application
and communication layers because the other concerns are likely to be outside their
control or would require specialized technical training.

The paper identifies five microservice design principles that affect security: do
one thing and do it well; automated, immutable deployment; isolation through
loose coupling; diversity through system heterogeneity; and fail fast. We argue
strongly for the defense in depth approach to microservice design that is facilitated
by microservice architecture.

We also survey several prominent microservice security trends in the industry,
namely mutual authentication of services using MTLS and principal propagation
via security tokens. Both mechanisms belong to the communication layer in our
taxonomy. Since no clear trends formicroservice authorization exist in the industry,
we sketch two possible solutions for fine-grained authorization.

Furthermore, we developed an open source prototype framework (MiSSFire)
for establishing trust and securing microservice communication with MTLS, self-
hosted PKI, and security tokens. The performance of the framework is evaluated
against a toy microservice-based bank system of our design (MicroBank). The per-
formed experiments show that the average performance overhead of all the security
mechanisms combined accounts for around 11%. Both MiSSFire and MicroBank
are open source projects that are available on GitHub.
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Paper II: Low-Level Exploitation Mitigation by Diverse Microservices

In this paper, we argue that microservice architecture has inherent security bene-
fits in terms of isolation and diversity. These benefits are a consequence of the dis-
tributednature ofmicroservices combinedwith theubiquitoususe of virtualization
and the practice of frequent redeployment. The paper explains how a low-level at-
tack progression in a virtualized homogeneous environment differs from an attack
in a virtualized heterogeneous environment, and how service isolation and software
diversity improve security given other conditions unchanged.

We demonstrate the benefits of using a microservice architecture to defend
against remote low-level exploitation. To emphasize the added security benefit of
the increased control flow isolation, we developed a simple implementation of a
microservice network and its monolithic counterpart and performed exploitation
attempts against both of them. Our trivial experiment shows that a microservice
solution is less vulnerable to low-level attacks than a deployment monolith.

The paper elaborates on how the inherent security benefits of microservices
can be improved even further. Maximizing interface security, avoiding unnecessary
node relationships, and introducing asymmetric node strength are briefly discussed
as themost straightforward security measures. The paper proposes a security moni-
tor, a hybrid of IDS and IPS that is basedonN-versionprogramming, for protecting
security-critical microservice applications.

Paper III: A Game of Microservices: Automated Intrusion Response

There is a growingneed for self-protection and adaptive securitymechanisms in soft-
ware systems. Since many attacks are now automated/scripted, manual responses
are insufficient, mainly when there are critical resources that can be permanently
lost or stolen.

In this paper, we propose an architecture for a cost-sensitive adaptable intru-
sion response system formicroservices calledµGE. The system collects information
about amicroservice network and then plans an appropriate response. µGEutilizes
a game theoretic approach to respond to network attacks in real-time automatically.

This paper models the strategic interaction between an attacker and a defender
as a finite dynamic two-player zero-sum game. Game theory is a useful foundation
for planning responses, since each response may in itself constitute a small loss even
though itmitigates a later, larger loss. The number of lookahead steps (depth of the
game) can be adjusted based on the available computational resources and security
requirements.

We discuss the appropriate defense responses specific to microservices. The de-
fender’s actions include but are not limited to service rollback/restart, diversifica-
tion through recompilation or binary rewriting, diversification through a cloud
provider, split or merge services, and isolation/shutdown. This paper builds on
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the idea of a security monitor from Paper II.
We have a prototype implementation available with a simulated network (as yet

unpublished). Preliminary results indicate the following: the system can plan and
execute a response, stopping or slowing down the attacker; planning is computa-
tionally very intensive for highly connected graphs; it is likely that some or much of
the planning can be done in advance; a promising possibility is to use the system to
plan or evaluate the defensibility of a microservice network.

Paper IV: RESTful Is Not Secure

REST is the default choice for microservice integration. This paper analyzes the
REST paradigm from a security perspective and identifies the significant incom-
patibilities between the style constraints and typical web security mechanisms such
as token-based authentication, client-side request signing, and delegated authoriza-
tion and shared authentication.

RESThas not been developedwith security inmind. In fact, several core aspects
of REST are in direct conflict with security: stateless resources, cacheability, and
code-on-demand. In practice, this is often mitigated by not following the style to
the letter. We discuss alternative microservice integration approaches in Section 2.3.
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Paper I

Overcoming Security Challenges
in Microservice Architectures

Tetiana Yarygina, Anya Helene Bagge

© 2018 IEEE.
Reprinted, with permission, from: T. Yarygina and A. H. Bagge. “Overcoming Se-
curityChallenges inMicroserviceArchitectures”. In: 12th IEEE International Sym-
posium on Service-Oriented System Engineering (SOSE’18). Bamberg, Germany:
IEEE, Mar. 2018, pp. 11–20. doi: 10.1109/SOSE.2018.00011
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Overcoming Security Challenges
in Microservice Architectures

Tetiana Yarygina, Anya Helene Bagge

Department of Informatics, University of Bergen, Norway

Abstract The microservice architectural style is an emerging trend in software
engineering that allows building highly scalable and flexible systems. However, cur-
rent state of the art provides only limited insight into the particular security con-
cerns of microservice system.

With this paper, we seek to unravel some of themysteries surroundingmicroser-
vice security by: providing a taxonomy of microservices security; assessing the secu-
rity implications of the microservice architecture; and surveying related contempo-
rary solutions, among othersDocker SwarmandNetflix security decisions. Weoffer
two important insights. On one hand, microservice security is amulti-faceted prob-
lem that requires a layered security solution that is not available out of the box at
the moment. On the other hand, if these security challenges are solved, microser-
vice architectures can improve security; their inherent properties of loose coupling,
isolation, diversity, and fail fast all contribute to the increased robustness of a sys-
tem.

To address the lack of security guidelines this paper describes the design and im-
plementation of a simple security framework formicroservices that can be leveraged
by practitioners. Proof-of-concept evaluation results show that the performance
overhead of the security mechanisms is around 11%.
Keywords Microservices, defense-in-depth, SOA, distributed systems, cloud,
PKI, authentication, MTLS, REST, JWT

4.1 Introduction
Microservices is an architectural style inspired by Service-Oriented Architecture in
combinationwith the oldUnix principle of “do one thing and do itwell”. Microser-
vices are intended to be lightweight, flexible and easy to get started with, fitting
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in with modern software engineering trends such as Agile development, Domain
Driven Design (DDD), cloud, containerization, and virtualization. The most fre-
quently listed benefits of microservice architecture [85, 98] are organizational align-
ment, faster andmore frequent releases of software, independent scaling of compo-
nents, and overall faster technology adoption. The disadvantages include the need
for making multiple design choices, the difficulty of testing and monitoring, and
operational overhead when compared to typical non-distributed solutions.

The modern use of the term microservice dates back to 2011 [38], but the com-
munity has so far not reached a full consensus on a formal definition of the style.
The fundamental basis of microservices brings together design principles from
distributed systems and services, and from classic programming principles of ab-
straction, modularity, separation of concerns and component-oriented design. Al-
though the underlying principles are widely explored in the academic literature, re-
search on microservices themselves is lagging behind the rapid adoption and devel-
opment in the software industry.

Understanding the distinctiveness of microservices is crucial. In particular, mi-
croservices bring new security challenges, and opportunities, that were not present
in traditional monolithic applications. These challenges include establishing trust
between individualmicroservices anddistributed secretmanagement; concerns that
are of much less interest in traditional web services, or in highly modular software
that only runs locally. Effective microservice security solutions need to be scalable,
lightweight and easy to automate, in order to fit in with the overall approach and be
adopted by industry users. For instance, manual security provisioning of hundreds
or thousands of service instances is infeasible. As services are migrated from offline
applications and monolithic web services to a microservice-style architecture, code
that was never designed to be accessible from outside is now exposed through Web
APIs, raising multiple major security concerns.

The past years have seen rapid adoption of microservices in the industry, and
yet there has been surprisingly little focus on security. There is a growing body of
literature [1, 26] that recognizes the need for microservice security evaluation. Secu-
rity is one of the greatest challenges when building real-world systems, hence there
is an urgent need to address the security concerns in microservice architecture.

Researchers have not treated microservice security in much detail; Fetzer [32]
discusses how microservices can be used to build critical systems if the execution is
warranted by secure containers and compiler extensions. Otterstad&Yarygina [93]
suggests a combination of isolatablemicroservices and software diversity as amitiga-
tion technique against low-level exploitation. Sun [123] explored the use of an Intru-
sionDetection System (IDS) for fine-grained virtual networkmonitoring of a cloud
infrastructure based on Software Defined Network (SDN). While being presented
as a solution formicroservices, in reality it does not exploit anymicroservice-specific
features.

Although the studies by Fetzer [32] andOtterstad&Yarygina [93] highlight the
isolation benefits of microservice design, a systematic understanding of how the ar-
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chitecture affects security is still lacking. Moreover, microservice security is an over-
loaded term that requires proper clarification, and there is no overview of emerging
industry security practices either.

This paper identifies and unravels some of the mysteries surrounding microser-
vice security, and is the first study to undertake a holistic approach to microservice
security. In summary, wemake five contributions to the understanding ofmicroser-
vice security:

• putting microservices and their security in the bigger context of SOA and dis-
tributed systems (Section 4.2);

• decomposing the notion ofmicroservice security into smaller andmore famil-
iar components, with a formalized attack model (Section 4.3);

• analyzing the security implications of microservice design (Section 4.4);

• identifying several prominent microservice security trends in industry (Sec-
tion 4.5);

• presenting an open source prototype security framework for microservices
(Section 4.6).

4.2 What Microservices Really Are
Before we proceed with the security challenges for microservices, it is important to
understand howmicroservices relate to other software architectural styles as well as
to agree on the definitions.

4.2.1 Defining Microservices
Numerous terms are used to describemicroservices, themost commonmicroservice
definitions are presented below:

• Newman[85]definesmicroservices as small autonomous services build around
the following principles: model [services] around business concepts, adopt a
culture of automation, hide internal implementation details, decentralize all
things, isolate failure, and make services independently deployable and highly
observable.

• Lewis and Fowler [38] view microservices as “an approach to developing a sin-
gle application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API.
These services are built around business capabilities and are independently de-
ployable by fully automated deployment machinery. There is a bare minimum
of centralized management of these services, which may be written in different
programming languages and use different data storage technologies.”
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Figure 4.1: Microservice architecture in perspective. Microservices are an implementation approach
to SOA. SOA is a subclass of distributed systems.

The term has also been used in unrelated ways; for example, Kim [59] uses the
term “microservice” when referring to the basic security primitives in context of
formalmethods: authenticationmicroservice, integritymicroservice, among others.
This definition should not be confused with themodern definition of microservice
architecture.

4.2.2 Defining Service-Oriented Architecture (SOA)

SOA can be seen as a predecessor to microservices; Josuttis [57] gives the following
definition: “SOA is an architectural paradigm for dealing with business processes
distributed over a large landscape of existing and new heterogeneous systems that
are under the control of different owners”.

The core technical concepts of SOA are:

• Services. Service in the context of SOA is “an IT realization of some self-
contained business functionality” [57]. Based on multiple existing defini-
tions of a service, additional situation-dependent attributes that services may
have are: self-contained, coarse-grained, visible/discoverable, stateless, idem-
potent, reusable, composable, vendor-diverse.

• Interoperability. SOA interoperability inmost cases is achieved via the Enter-
prise Service Bus that enables service consumers to call the service providers.

• Loose coupling. Loose coupling is needed to fulfill the goals of flexibility,
scalability, and fault tolerance. Loose coupling is a principle that aims tomin-
imize dependencies so the change in one service does not require a change of
another service.

An important aspect of SOA, as stated in the SOA Manifesto, is that “SOA can
be realized through a variety of technologies and standards”.
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4.2.3 Déjà Vu
Majority of opinions on microservices fall into one of the two following categories:
(1) microservices are a separate architectural style [38, 106]; (2) microservices are
SOA [85, 138]. Some sources [26, 99] take a middle ground by viewing microser-
vices as a refined SOA. The frequently mentioned differences are the degree of cen-
tralization, size of services, decomposition based on bounded context, and level of
independence. However, these criteria are too vague to be used in a rigorous scien-
tific comparison. They are neither easily quantifiable—it is unclear how the service
size should be measured, nor sufficient to serve as style constraints.

Based on the above-listed definitions of SOA and microservices it is clear that
these two approaches are similar. The definitions of SOA services and microser-
vices are almost identical. This conclusion is important because it means that the
security issues faced by practitioners who were migrating to SOA are now relevant
for practitioners migrating to microservices. Figure 4.1 depicts this relation.

Zimmermann [138] is the first to systematically comparemicroservices and SOA,
by surveying the authoritative technical blog posts and online articles on microser-
vice principles. After contrasting the distilledmicroservice principles and SOA char-
acteristics, he concludes that “the differences betweenmicroservices and previous at-
tempts to service-oriented computing do not concern the architectural style as such
(i.e., its design intent/constraints and its platform-independent principles and pat-
terns), but its concrete realization (e.g., development/deployment paradigms and
technologies)” [138].

Hence, we may expect many of the concerns and solutions that apply to SOA
to also be applicable to microservices.

4.2.4 Distributed Systems
When talking about microservices many sources repeat the same fallacy of contrast-
ing microservices to monolithic applications. The real situation is not as binary.
In practice, a “monolithic” application may be highly modular internally, being
built from a large number of components and libraries that may have been sup-
plied by different vendors, and some components (such as a database) may be also
distributed across the network. The issues of decomposition, concerns separation,
and designing and specifyingAPIswill be similar regardless of whetherAPI calls are
made locally or across the network.

The essence of microservices is that they are (or compose to form) highly modu-
lar, distributed systems, reusable through a network-exposedAPI. This implies that
microservices inherit advantages and disadvantages of both distributed systems and
web services.

While distributed systems bring multiple highly desirable benefits such as scala-
bility on demand and embrace of heterogeneity, these systems also comewith draw-
backs. Distributed systems are more challenging to develop in the first place. More-
over, monitoring, testing, and debugging such systems is more difficult than for
non-distributed systems. Other well-known problems include maintaining data
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consistency and replication among nodes, node naming and discovery due to con-
stantly changing network topology, and dealing with unreliable networks.

Important distinguishing characteristics of distributed systems overmonolithic
systems can be summarized as follows (adapted from Tanenbaum [125]): 1) The
overall system state is unknown to individual nodes; 2) Individual nodes make deci-
sions based on the locally available information; 3) Failure of one node should not
affect other nodes. The microservice style enforces these requirements.

4.2.5 Microservices in Context of Other Technologies
A technology closely related to microservice philosophy is unikernels [68]. Uniker-
nels are fixed-purpose OS kernels which run directly on a hypervisor. A full sys-
temwould consist ofmultiple unikernels performing different tasks in a distributed
fashion. The microservice design principles of small independent loosely coupled
single-purpose components fit well into the unikernels world. Unikernels promise
to provide high security and strong isolation of virtual machines while still being
lightweight like containers.

Some programming languages, such as Erlang and its successor Elixir, support
the distributed computingmodel by design. Erlang is an actor-based programming
language. In the Erlang world “everything is a process” and the only process in-
teraction method is through message passing. Erlang language features encapsula-
tion/process isolation, concurrency, fault detection, location transparency, and dy-
namic code upgrade [4, p.29]. Erlang has advanced monitoring tools, and it is used
for several high-load systems such as themessaging serviceWhatsApp. Systemsbuilt
with Erlang are inherentlymicroservice-like. As the aforementioned examples show,
the core microservice principles can be rediscovered in many technologies.

4.2.6 Summary: Essence of Microservices
Compared to other software and service architectures, these are the distinctive char-
acteristics of microservices:

• Distributed composition: Microservices build onothermicroservices and com-
municate across the network. (Compared to monolithic services.)

• Modularity: Microservices will tend to offer finer-grained APIs that lend
themselves to flexible reuse. (Compared to big, single-purpose APIs/appli-
cations.)

• Encapsulation: Services are to a large degree encapsulated and isolated from
others, and may even be written in different programming languages. (Com-
pared to libraries and object-oriented encapsulation.)

• Network service: Services are network-accessible, and reuse happens by con-
tacting the service rather than by installing and linking to a library. (Com-
pared to a classic modular design.)
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4.3 Layered Security for Microservices

Building secure systems is hard. The classic security objectives are data confiden-
tiality and integrity, entity and message authentication, authorization, and system
availability. Naturally, these abstract objectives can be realized in many different
ways in practice. How these objectives are met and to what degree are the system-
specific architectural decisions that depend on the particular threat model, budget,
and expertise. An important issue is where in the system to place security mecha-
nisms.

Weargue thatmicroservice security is amultifacetedproblemand it relies heavily
on underlying technologies and the environment. To get to the bottom of it, we
need to decompose microservice security into its components.

4.3.1 Taxonomy of Microservice Security

To illustrate the underlying complexity of the problem, we divided microservice
security concerns into six categories or layers as shown in Table 4.1: hardware, vir-
tualization, cloud, communication, service, and orchestration. We do not claim the
proposed layering is complete, but we do claim that it provides a good overview of
the topic.

This decomposition is based on the basic computer science principles and com-
mon sense. While it is inspired by the OSI model and its seven layers of commu-
nication, the proposed hierarchical decomposition also incorporates new trends in
software engineering such as virtualization and orchestration. This decomposition
is applicable to any modern distributed system and is not specific to microservices
or SOA. However, it is crucial for the discussion of microservice security.

The decomposition shows that multiple security choices should be made on
each level. There are many places where security components reside, and, more im-
portantly, where security can fail. The system should not be treated as a black box.
Some levels bleed into each other, e.g. virtualization is a main enabling technology
for cloud computing. The separation of security concerns is not always strict.

The two bottom-most layers, hardware and virtualization, are at least partially
accessible to an attacker with shell access on the host or virtual machines/containers
correspondingly. Amalicious hardware manufacturer that provides hardware with
backdoors is a threat. On theCloud level, a cloud vendor itself is a threat. Other ten-
ants are also a potential threat in the cloud using various side-channel attacks, such
as the FLUSH+RELOAD technique [133], or Meltdown and Spectre [60]. For
communication and orchestration levels, a network attacker inside the perimeter
who can eavesdrop and manipulate traffic is a major concern. For the service/appli-
cation level, the threat of an external attacker should be considered.

The price of addressing the threats on different levels varies. For example, hard-
ware concerns are extremely difficult to address, if at all practically possible. Most
developerswould be concernedwith service/application and communication layers
because addressing the security concerns on these levels is cost-feasible for them.



“thesis” — 2018/7/4 — 15:56 — page 60 — #60

60 Paper I: Overcoming Security Challenges in Microservice Architectures

Table 4.1: Proposed Hierarchical Decomposition of Microservice Security Issues into Layers

Layers Threat examples Mitigation examples
Hardware Hidden under abstraction, but still a reliability and secu-

rity concern; hardware bugs are extremely dangerous be-
cause they undermine security mechanisms of other lay-
ers [103]; hardware backdoors can be introduced at man-
ufacturing time [70].

Designingownhardware; diversifica-
tion of hardware [70]; use of Hard-
ware Security Modules (HMS).

Virtualization Deployment affects security; OS processes offer little sep-
aration from other services in the same system; containers
and VMs offer more protection against compromised ser-
vices. Attacks include: Sandbox escape, hypervisor com-
promise, and sharedmemory attacks; also, use ofmalicious
and/or vulnerable images is another serious security con-
cern [15].

Preferring deployment options with
stronger isolation; secure configura-
tions such as no shared library access
and no shared hardware cache; verifi-
cation of image origin and integrity;
timely software updates; principle of
least privilege.

Cloud Cloud computing brings a myriad of security con-
cerns [124], including unlimited control of cloud provider
over everything it runs; there are few technical options to
prevent disruption or attacks from a malicious provider.

Reverse sandboxes protects enclaves
of code and data from any remote at-
tack including attacks from OS and
hypervisor. SGX (Intel), SME/SEV.

Communication Classic attacks on the network stack and protocols; attacks
against protocols specific to the service integration style
(SOAP, RESTful Web Services [100, 134]). Attacks in-
clude: eavesdropping (sniffing), identity spoofing, session
hijacking,Denial of Service (DoS), andMan-in-the-Middle
(MITM); also attacks onTLS:Heartbleed [126] and POO-
DLE [78].

Use of standard and verified security
protocols such as TLS or JSON se-
curity standards. Security aspects of
the chosen service integration style
should be considered. Trivial mit-
igation like not re-using credentials
across services.

Service/
Application

Typical and still very common application-level security
problems are SQL injection flaws, broken authentication
and access control, sensitive data exposure, Cross-Site
Scripting (XSS), insecure deserialization, general security
misconfiguration. The ten most critical web application
security risks are published annually by OWASP [94].

Static/dynamic code analysis, man-
ual code review. Basic software
engineering practice: input valida-
tion, error handling, clear and well-
documentedAPIs. Protectionof the
data at rest (encryption). Avoid lan-
guages especially vulnerable to, e.g.,
buffer and integer overflows.

Orchestration Management, coordination, and automation of service re-
lated tasks, including scheduling and clustering of services.
Microservice network structure may change continuously
due to services being stopped, started, and moved around;
service discovery [80, 107] provides a DNS-like central
point for locating services. Attacks include: compromising
discovery service and registering malicious nodes within
the system, redirecting communication to them.

Protection of orchestration plat-
form and its components is critical,
but not well-investigated area. A
secure implementation of service
discovery and registry components
is important.
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Figure 4.2: Microservices redefine the notion of perimeter security and move towards defense in
depth. The figure excludes infrastructure services, such as API Gateway or monitoring service

4.3.2 Attack Model: Redefining Perimeter Security
Until recently perimeter defense was the most common approach to security of
microservice-based systems [85][p.173]. From the modern security perspective,
perimeter security is in general considered insufficient—we should rather assume
that the other services in the system may be compromised and hostile (“trust no
one”). The rise of microservices, as well as advances in security automation, fa-
cilitate placement of additional security mechanisms inside the perimeter (see Fig-
ure 4.2). In other words, defense in depth as a concept of placing multiple and
sometimes overlapping security mechanisms on different levels throughout the sys-
tem becomes more feasible with microservices.

We assume an adversary is able to compromise at least one service inside the
perimeter and wants to move laterally through the system to gain full control. If
internal services blindly trust whoever is calling them, then a single compromised
microservicewill allow an attacker tomanipulate all the other nodes in themicroser-
vice network, for example by issuing arbitrarymalicious requests that the nodeswill
fulfill. The latter is sometimes referred to as a confused deputy problem [85]. The
adversary can attempt to eavesdrop on the inter-service communication, insert and
modify data in transit. We also make a standard cryptographic assumption that the
adversary is computationally bound.

Security is a trade-off between minimizing the budget and covering more at-
tack vectors. For practical reasons, we assume the hardware and cloud providers
are trusted, as well as the way microservices are deployed provides high degree of
isolation. We believe that the givenmodel is themost realistic approximation of the
real world and reaches the limits of what software developers and security engineers
will be willing to accept in practice. The following discussion is centered around
this model.

4.4 Security Implications of Microservice Design
Several important security properties emerge as side effects of microservice design.
Herein, we describe and evaluate the properties distilled from conducting a careful
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literature reviewon the subject [26, 38, 85, 98, 99, 106, 107, 138], aswell as discussions
with practitioners and personal experience. We also provide an interpretation of the
implications.
Do one thing and do it well The properties of context boundary, design
around business concepts, and Domain Driven Design (DDD) usually results in
a smaller codebase per microservice. If we attempt to measure microservices size
in lines of code (LOC), then the more LOC there are, the more bugs the service
has. LOC and bugs are statistically correlated. More bugs in general meansmore ex-
ploitable bugs in particular. Less complex code is easier tomaintain. A smaller code-
base of individual microservices results in a smaller attack surface given the other
conditions, such as the overall code quality, remain the same. This statement can
be further supported by reduced cognitive complexity of the code that facilitates
better code comprehension for individual developers. This is not necessarily true
for system architects who still need to maintain a more global view of the system.
Automated, immutable deployment Services should be immutable: to in-
troduce permanent changes to microservices, services should be rebuilt and rede-
ployed. Microservices immutability improves overall system security since mali-
cious changes introduced by an attacker to a specific microservice instance are un-
likely topersist past redeployment. Automation shouldbe leveraged inmaintaining
the security infrastructure. Immutability aids the security ofmicroservices similarly
to how immutability promotes correctness in programming languages [14].
Isolation throughLooseCoupling Both SOA andmicroservices are built
around the concept of loose coupling. Microservices take the concept even further
by emphasizing the share nothing principle and strict data owning. This implies
that each service can be isolated: only able to access the information it needs, and
only able to access the particular services it needs. This limits the damage should an
individual service be compromised.

Better isolation as an inherent security benefit of microservice design has been
discussed by Otterstad & Yarygina [93]. Fetzer argues [32] that microservices can
be used to build critical systems where integrity, confidentiality, and correct execu-
tion insidemicroservices is warranted by secure containers and compiler extensions.
Such secure containers were implemented as Docker containers using an Intel Soft-
wareGuardExtensions (SGX) enclave that canprotect themicroservices running in-
side such secure containers fromOS, hypervisor, and cloud provider level attacks—
with a degree of isolation for each component that is much greater than what is
achieved in typical monolithic applications.
Diversity through SystemHeterogeneity Distributed systems are often
heterogeneous systems. Microservice architecture embraces this fact by allowing the
individual components to bewritten in any programming language and/or technol-
ogy given that they retain same interfaces (service contracts). This results in natural
diversity of components in the microservice architecture.

Otterstad & Yarygina [93] suggested diversification of microservices as a miti-
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gation technique against low-level exploitation. Although system diversity as a se-
curity inducing property is not new, the application of it in microservice setting
is. Diversity in computer systems can be achieved in many ways including the use
of different programming languages, compilers, OS/basic images. Microservice de-
sign philosophy readily allows for such approaches to be taken. Even coexistence
of older and newer versions of the same microservice adds to the heterogeneity of
the system. Otterstad&Yarygina [93] has also suggested use of N-version program-
ming to improve microservice security.
Fail Fast Although fault tolerance does not directly translate to security, we be-
lieve it contributes enough to be listed. If the main point is to disrupt the service,
such as in case of Denial of Service (DoS) attacks, fault tolerance does directly trans-
late to security. In contrast to monolithic systems where a failure is often total, dis-
tributed systems can be characterized with partial failures where only some of the
nodes fail. A microservice network should tolerate the presence of partial failures
and limit their propagation. The Circuit breaker pattern [80] prevents cascading
failures and increases overall system resilience by adjusting the node behavior if the
network interactions with its peers fail partially or completely. Following the fail
fast principle will decrease the likelihood of attacks succeeding and minimize the
possible damage. Fundamentals of fault tolerance in distributed systems can be
found in a book by Tanenbaum [125].

4.5 Emerging Security Practices
Although there are currently few industry practices for microservice security, some
interesting trends present themselves. The first one is the use of Mutual Trans-
port Layer Security (MTLS) with a self-hosted Public Key Infrastructure (PKI) as a
method to protect all internal service-to-service communication. The second trend
is use of tokens and local authentication. Both approaches are leaning towards the
defense in depth approach to security and further support our attack model pre-
sented in Section 4.3.2.

4.5.1 Mutual Authentication of Services Using MTLS
While sharing the same underlying concept, two different solutions for establishing
trust between microservices were developed simultaneously by Docker and Netflix.
Docker Swarm Case

Docker Swarm is a container orchestration solution and clustering system for
Docker that allows building distributed systems. Docker Swarm is particularly in-
teresting because a) it is a popular platform for implementing microservices; b) it
has a variety of built-in security features. MTLS is used by all the nodes in a swarm
to authenticate each other, encrypt all the network traffic, and differentiate between
worker and manager nodes [79, 90]. Docker Swarm automatically deploys its own
PKI to provide identity to all the nodes.

The first manager node generates a new self-signed root Certificate Authority
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(CA) along with a key pair. A hash of the root CA and a randomly generated secret
are sealed into a token that is provided to all other nodes during (re)deployment.
To join a swarm, a node verifies the identity of the remote manager based on the
token, generates a preliminary certificate data and sends a certificate signing request
(CSR) to the manager together with the token. After verifying the secret from the
token, themanager issues a certificate to the node. When a node needs to connect to
another node, both nodes will authenticate to each other and set up a TLS tunnel,
using the certificates issued to them by the CA. See Figure 4.3.

The default behavior for the nodes is to automatically renew their certificate ev-
ery three months, but shorter intervals can also be used. The update does not hap-
pen simultaneously for all the nodes but instead takes placewithin given time-frame
due to security reasons. Docker Swarm also supports rotation of the CA certificate
and embedding into already existing PKI.Another popular container orchestration
solution, Kubernetes, does not support MTLS with automated certificate provi-
sioning at themoment, but the work onKubelet TLS Bootstrap feature is ongoing.
Netflix Case

Netflix internal microservice network utilizes a PKI based on short-lived certificates
for TLS with mutual authentication [101]. The Netflix approach builds on the no-
tions of short- and long-lived credentials. The long-lived credentials are provisioned
into the service during a bootstrap procedure, stored either in Trusted Platform
Module (TPM) or SGX, and are required to obtain and update short-lived creden-
tials. While the Docker source code is publicly available, the Netflix PKI solution is
not.

The idea of issuing certificates with a short lifetime as a solution to the certifi-
cate revocation problem on the Web has been suggested before [109]. The short
expiration time of certificates limits the utility for revocation mechanisms.

TLS with mutual authentication addresses problems of service authentication
and traffic encryption, but not service authorization. Moreover, user to service au-
thentication and authorization are still left to the discretion of developers.

4.5.2 Principal Propagation via Security Tokens
After a user has been authenticated by the gateway, the microservices behind it will
be processing user’s requests. Microservices should be aware of the user authenti-
cation state, i.e. whether the user was authenticated, and what the user’s role is in
authorization context. The user needs to be identifiedmultiple times in each service
down the operation chain, as each service calls other services on the user’s behalf.
Security tokens and relevant standards

Token-based authentication is awell known commonplace securitymechanism that
relies on cryptographic objects called security tokens containing authentication or
authorization information. A security token is created on the server side upon
the successful validation of the client’s credentials and given to the client for sub-
sequent use. Security tokens substitute the client’s credentials within limited time-
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Figure 4.3: A generic solution for microservice trust based on MTLS. 1) CA service generates a self-
signed root certificate and a shared secret. 2) A cryptographic hash of the certificate and a shared secret
are extracted from the CA service and provisioned into the new benign service either automatically
or manually. 3) A benign service establishes a one-way TLS connection with the CA service, verifies
CA identity using the provisioned hash of the CA certificate, and if successful submits a CSR and
shared secret. 4) Upon successful verification of the received CSR and shared secret, CA service signs
and sends back the newly issued certificate. 5) Two benign services communicate over MTLS.

frame. Token-based authentication via HTTP cookies is a prominent example. Fu
et al. [39] gives a detailed security evaluation of the approach.

Token-based authentication advanced even further with the widespread adop-
tion of OpenID Connect [112], a security standard for single sign-on and identity
provisioning on the Web. The same functionality is provided by the Security To-
ken Service (STS). STS is a component of the WS-Trust standard [83] that extends
WS-Security standard with methods for issuing, renewing, and validating security
tokens. Other relevant standards are JSON security standards: JSON Web Signa-
ture (JWS), Encryption (JWE), and Token (JWT).

Reverse Security Token Service

A noteworthy trend in the industry is the use of JWT for principal propagation
within themicroservice network. Multiple informal records of the approach can be
found [25]. Although no formal description of it exists in scientific literature, those
familiar with the above-listed security standards will find the suggested approach
closely related to the existing standards.

Token-based user-to-service authentication where each service understands to-
kens allows transporting user identity and user session state through the system in
a secure and decentralized manner. After the user is authenticated with the authen-
tication service, a security token representing the user will be generated for internal
use within the microservice network. In this paper, we refer to a separate service
that is responsible for the token generation as a Reverse STS.

Limited lifetimeof the security token is achievedby including an expiration time
in its body. For security reasons, a shorter token lifetime is desired. Information
about the user and intended audience can be included if needed. The token will
be passed to the microservices involved in processing the request. Before executing
the received request each microservice will validate the adjacent token using a cor-
responding public key. Token validation is a mandatory first step of the request
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Figure 4.4: A generic token-based authentication scheme for microservices that enables a user-to-
service authentication and identity propagation based on cryptographic tokens. 1) Incoming user
request hits API Gateway. 2) APIGateway prompts user for authentication by redirecting to the ded-
icated user authentication service. 3) Requesting a security token. If user is authenticated successfully,
the authentication token service generates a token that represents the given user inside the system. 4)
Returning a security token. The token is passed alongside the user request to the downstream services.
This token is designated for internal use only and is not given to the user.

processing. See Figure 4.4.
This approach fits well with the second design principle of distributed systems:

individual nodes make decisions based on locally available information (see Sec-
tion 4.2.4). It facilitates loose coupling of the services and is highly scalable while
having no overhead of a centralized solution. Moreover, there is good tool support
for this approach. OAuth 2.0, a standard for delegated authorization, andOpenID
Connect, an authentication layer on top of OAuth 2.0, can be tailored for inter-
service security.

There are three caveats with this approach. The first is an assumption that the
clock synchronization problem is non-existent. To validate tokens, both the token
issuing node and the node performing validation must have their clocks synchro-
nized. This is usually straightforward to handle, e.g., using NTP. The second one
is that the tokens must be sent over a protected channel, i.e. TLS, otherwise the
tokens can be intercepted and re-used within their validity period. Having short va-
lidity time is a partial solution to this problem. The third one is that the private
key of the token issuing service must be kept safe at all times. If the private key is
compromised, any user can be impersonated by the attacker.

4.5.3 Fine-Grained Authorization
Although no prominent trends for microservice authorization exist in industry at
the moment, we will mention several promising approaches.
Security Tokens for User Authorization

Various access control mechanisms exist including Role Based Access Control
(RBAC) and Attribute Based Access Control (ABAC). RBAC and its predecessors
are user-centric access control models. Therefore, they do not account for relation-
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ship between the requesting entity and the resource. For fine-grained authorization
on resources, such as access to a specific API call, ABAC should be used.

Security tokens can include authorization information. For example, RBAC
authorization roles can be incorporated into JWT tokens as an additional attribute.
Inter-Service Authorization Based on Certificates

Use of digital certificates for authorization rather than authentication was first sug-
gested in 1999, e.g. Simple Distributed Security Infrastructure (SDSI) [110] and
Simple Public Key Infrastructure (SPKI) [27]. Later, Marcon [69] proposed a
certificate-based permission management system for SOA.

Not all microservices are deployed equal: only microservices co-dependent by
design should be able to call each other. If the microservice network already relies
onMTLS and self-hosted PKI, the same PKI can provide the basic service to service
authorization. A separate signing certificate should be created permicroservice type.
This certificate will be used to sign the certificates of all instances of the same type.

Let’s assume there are three types of microservices: A, B, and C. There are mul-
tiple instances of each type. While B is connected to both A and C, no direct con-
nection is allowed between A and C. The default rule is to trust no one. To allow
access to B fromA andC, all instances of B should be preconfigured to trust the cer-
tificates signed by certificate type A and C. To allow access to A and C from B, the
certificate for type B should be added to A’s and C’s trust lists.

4.6 Microservice Security Framework
As shown, no standard way to deal with microservice security concerns exists. The
existing implementations are often closed source (Netflix MTLS), not directly
portable to other environments (Docker Swarm MTLS), and in general not well
documented or understood. Moreover, a performance cost of using the existing se-
curity solutions in amicroservice setting is unknown. To partially address this prob-
lem we implemented a microservice security framework, MiSSFire that provides a
standard way to embed security mechanisms into microservices. Furthermore, we
evaluated the performance of the framework against a toy microservice-based bank
system of our design (MicroBank).

4.6.1 Design and Implementation
When designing the MiSSFire framework we tried to address the main microser-
vice security challenge—the problem of establishing trust between individual mi-
croservices. The core design criteria were security, scalability, and automation. We
followed the defense in depth principle and the attack model introduced in Sec-
tion 4.3.2. Security mechanisms that we implemented are heavily based on the
emerging security practices from Section 4.5, specifically mutual authentication of
services using MTLS and principal propagation via JWT.

The framework consists of a set of infrastructure services that need to be up
and running within a system and a template for a regular functional service. Cur-
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rently, the framework is bundled with two infrastructure services that expose rele-
vant REST APIs:

• The CA service is a core part of the self-hosted PKI that enables MTLS be-
tween microservices. It generates a self-signed root certificate and signs CSR
from other services. See Figure 4.3 for more details.

• The Reverse STS stays behind a user authentication service (not included) and
generates security tokens in JWT format. A new JWT is generated per user
request. See Figure 4.4 for more details.

The template for a regular functional service simplifies integration with the in-
frastructure services by providing all the necessary functionality. Additionally, it
forces use ofMTLS for all connections and requires presence of JWT for all incom-
ing requests.

4.6.2 Experiment
Although performance is not a security property, it has been an important deciding
factor for adoption or rejection of security mechanisms in the real world. In this
section we address the question of how the common security mechanisms that are
bundled in our framework impact the performance of an actual microservice-based
system.
MicroBank

To test the framework we needed an actual microservice application. For this pur-
pose we developed our own fictitious microservice-based bank system that consists
of the following microservices:

• API gateway: The main entry point to the system.

• Accounts: Manages user accounts.

• Payment: Provides payment functionality.

• Transactions: Handles transaction operations.

• Users: Manages users.

The system was built using mainstream development techniques for microser-
vices. The system is written in the Python v2.7 programming language. Although
the microservice style does not dictate what communication protocols or styles
should be used, in practice REST APIs and JSON format are the default choices.
Each service in the system exposes a set of relevant REST APIs. This is done by us-
ing the web framework Flask and WSGI HTTP server Gunicorn. The number of
workers per server is adjustable.

The ‘shared nothing’ architecture is a central part of the loose coupling concept
inmicroservice world. Therefore, Accounts, Transactions, andUsers microservices
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Figure 4.5: Experiment setup: payment operation.

maintain individual SQLite databases. For the simplicity of the experiment there is
only one instance of each microservice type.

The services of the bank model can be run as separate processes or in Docker
containers. The whole bank model can also be run as a multi-container Docker ap-
plication using the compose tool (though both the framework and the sample appli-
cation can work independently of Docker). The tool automates configuration and
creation of containers and allows to start the whole system with a single command.
The source code has a partial unit-test coverage.
Methodology

The test client registers two users and opens bank accounts for them. Then, the test
client carries out a series of payment operations between the two users. In the exper-
iment, 50 concurrent test clients are started simultaneously, where each test client
performs 100 sequential payment operations. To measure the system performance,
an average execution time of 5000 payment requests is calculated on the client side.

The payment operation involves four microservices as shown in Figure 4.5.
Several factors contribute to the time it takes to perform one payment operation.
These factors are network delays and processing time inside microservices includ-
ing database access time.

In the given setup, payment operations always succeed. If the operation is in-
valid, such as an attempt of transferring a negative amount, or if the recipient bank
account is closed in the middle of the payment operation, the implemented system
will roll back to revert the partially made changes. This would adversely affect the
payment operation execution time.

The experiment consists of four parts:

• Baseline. Running the test client against the bank model with security fea-
tures disabled.

• Tokens. Running the test client against the bank model with the Reverse
STS service in place and JWT tokens validation.

• MTLS. Running the test client against the bank model with the CA service
in place and all communication secured with MTLS.
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Figure 4.6: Performance of the bank model under load of 50 test clients making payments.

• Tokens+MTLS. Running the test client against the bank model with all se-
curity features enabled.

The experiment was run on a MacBook Pro with a 2,6 GHz Intel Core i7 pro-
cessor and 16 GiB of memory. The computing resources dedicated to Docker were
8 CPUs and 8 GiB of memory. Both the test clients and the bank model resided on
the same machine, all communication was performed via localhost.
Results and Discussion

Figure 4.6 presents the results of our experiment. As expected the performance in
the baseline case is higher than in the cases of tokens and MTLS. Closer inspection
of the data shows that the tokens decrease performance by 7% on average, while
the MTLS impact is around 4%. The most interesting aspect of this figure is that
the difference between the baseline case and the casewith all securitymechanisms in
place is relatively small, and accounts for around 11% in the given setup. Based on the
fact thatmicroservice solutions are slow in general, we believe this security overhead
is still acceptable, especially for security critical applications. There is a relatively
high cost to setting upHTTPS connections and validating tokens, whichwe reduce
by pooling and reusing existing connections between services when possible.

Ueda et.al. [128] showed that the performance of themicroservice version canbe
around 80% lower than themonolithic version on the samehardware configuration.
This is a significant overhead that industry is willing to take and in many cases has
already embraced. This alsomeans that the overhead of having amicroservice-based
solution in first place is so high, that the impact of security mechanisms becomes
insignificant in comparison.

Fromthe chart, it canbe seen that thebest throughput is achievedwith 3workers
(except for the MTLS case). When more workers are added the throughput starts
to deteriorate slowly. These results deviate from an expected behavior where the
throughput scales linearly up to the number of cores available, assuming the par-
allelizable portion of the program completely dominates the execution time. This
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may be related to the clients sharing the same CPU; though it may also be due to
specifics of Gunicorn.

The relatively slow performance of our bank model can be attributed to the
following: 1) SynchronousHTTP communication: sequential requests and no par-
allelization; 2) Slow database access. 3) Python is not as efficient as certain other
programming languages; 4) Suboptimal configuration of the web servers. Also, the
bank model is only a proof-of-concept and offers limited performance and scalabil-
ity.

4.6.3 Evaluation

Security Considerations

Our framework relies exclusively on well-known security mechanisms and stan-
dards such as SSL and JWT. No new cryptographic primitives or protocols are in-
troduced. Although implementation flaws are always possible, we need to rely on
security and trustworthiness of the building blocks.

The CA service and the Reverse STS are security-critical. It makes sense to run
these two services in a hardened environment. SGX-capable servers in the public
cloud offered by Microsoft Azure [76] is one of possible solutions.
Performance Evaluation

Our experiments show that a microservice network introduces latencies on the or-
der of milliseconds; in this setting the performance hit of basic security features be-
comes negligible.
Framework Limitations

Currently, the framework lacks multiple important security features. It is not a
production-ready tool, and shouldmostly be seen as a proof of concept. The frame-
work is overly simplified: it does not address authorization, there is no key rotation
or key revocation mechanisms. Also, it is currently limited to Python.
Reproducibility and Future Work

To support reproducible research and allow others to improve on our results we re-
leased our code open source under GNU GPLv3 license. The source code of both
MiSSFire framework and the MicroBank are publicly available at GitHub (https:
//github.com/yarygina/MiSSFire andMicroBank), including setup and benchmark-
ing scripts. In future investigations, we intend to improve on the aforementioned
limitations of our framework.

4.7 Conclusion
In this paper, we have examined the microservice architectural style, with a partic-
ular focus on its security implications. Microservices bring together concepts from
both service-orientation, distributed systems and fundamental software engineer-
ing principles of abstraction, reuse and separation of concerns. This combination



“thesis” — 2018/7/4 — 15:56 — page 72 — #72

72 Paper I: Overcoming Security Challenges in Microservice Architectures

brings both new challenges that must be addressed, as well as old security chal-
lenges in a newwrapping. The microservice style of highly isolated, easily redeploy-
able distributed components also implies new opportunities for better security, e.g.,
through increased diversity or restricting data access to only the services that need
it.

As a concrete example of microservice-specific security, we have developed a
small, openly available prototype framework for establishing trust and securing mi-
croservice communication with MTLS, self-hosted PKI and security tokens. Our
case study shows that there is little extra performance cost to securing microservice
communication, likely due to the overall high overhead of the communication it-
self.

With increased industry adoption of microservices, and the overall increasing
threat level on the Internet, researching and developing secure microservices is cru-
cial; and, withmicroservices seen as a lightweight, easy-to-use approach to SOA, we
believe it is particularly important that security solutions are also lightweight, easy
to use, and accessible to real-world developers.
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Low-level Exploitation Mitigation
by Diverse Microservices

Christian Otterstad, Tetiana Yarygina

Department of Informatics, University of Bergen, Norway

Abstract This paper discusses a combination of isolatable microservices and
software diversity as a mitigation technique against low-level exploitation. The ef-
fectiveness and benefits of such an architecture are substantiated. We argue that
the core security benefit of microservices with diversity is increased control flow iso-
lation. A simple implementation of a microservice network is given as a proof of
concept of the added isolation of the control flow. Exploitation attempts are made
against the microservice network and a monolithic counterpart, and the results are
discussed to support the assertion. Finally, a newmicroservices design pattern lever-
aging a security monitor service and anti-fragility to low-level exploitation is intro-
duced to further utilize the architectural benefits inherent to microservice architec-
tures.
Keywords security, software diversity, design patterns, robustness, anti-fragility

5.1 Introduction
Microservices is a recent trend in software design. A microservice architecture sim-
plifies the development of complex horizontally scalable systems that are highly flex-
ible, modular, and language-agnostic. These factors contribute to the increasing
popularity of microservices both in industry and academia. According to survey
results fromNGINX [86], one in three IT companies hadmicroservices in produc-
tion as of late 2015, and even more were planning to start using microservices. Nu-
merous sources, including books [85, 107], research papers [98], and various online
sources [37], discuss advantages and disadvantages of microservice solutions.

We define amicroservice as a small specialized autonomous service communicat-
ing over a network boundary. By extension, a microservice system is a distributed
software system consisting of a set of microservices communicating to perform
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some computation as an aggregated result of their collective operation. Similarly to
how a computer program is typically divided into procedures, the whole system is
divided into individual services. For further information, we refer the reader to the
comprehensive study of microservice principles by Zimmermann [138] who iden-
tified commonalities in the popular microservice definitions and concluded that
microservices represent a development- and deployment-level variant of the service-
oriented architecture (SOA).

Although microservice architectures constitute an important trend in software
designwithmajor implications in software engineering, surveys such as the one con-
ducted by Dragoni et al. [26] have highlighted a general lack of research in the area
ofmicroservice security. InNewman’s book [85] onmicroservice design, a subset of
security traits for improving the security ofmicroservice networks is discussed. The
idea of combining microservices with secure containers and compiler extensions to
build critical software has been investigated in a recent study by Fetzer [32]. The pa-
per by Lysne et al. [67] briefly introduces the notion of microservice networks to
mitigate vendor-malware and other forms of attacks, without any further elabora-
tion or working examples.

Herein, we expand and elaborate on the generalized notion of mitigating low-
level exploitation. To our knowledge, we are the first to demonstrate the benefits
of using amicroservice architecture to defend against remote low-level exploitation.
Unlike a deploymentmonolith, amicroservice architecture facilitates strongprocess
isolation partly because the services run on different physical machines or in differ-
ent virtual environments. The advantages of process isolation are demonstrated
by carrying out low-level attacks on a simplified bank application, implemented as
both a monolith and a microservice solution. The paper also introduces a security
monitor service that further leverages the architectural benefits of a microservice
network, including added software diversity, to enable anti-fragility to low-level ex-
ploitation.

The rest of the paper is organized as follows. In Section 5.2, the attack model
is presented and discussed. The same section also introduces the various attack vec-
tors and the basic types of exploits that are topical to this paper. Section 5.3 provides
key design rules for microservice networks in the context of security. Section 5.4
introduces a security monitor system to respond to security-related incidents. Sec-
tion 5.5 contains the programming example demonstrating that microservice solu-
tions provide added protection against low-level exploits compared to deployment
monoliths. Finally, Section 5.6 concludes the paper.

5.2 Model Overview and Exploitation Analysis

This section introduces a model of a microservice solution and discusses the basic
exploitation primitives thatwe assume are available to an attacker. Later, thismodel
and its exploitation primitives will be used to demonstrate the security benefits of
microservice solutions compared to deployment monoliths.
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5.2.1 Model Overview
The general model applicable to this study is a microservice network where we con-
sider generic functionality offered to external users. There are several possible de-
signs for how such a network can be structured and hosted. As they are all appli-
cable in this context, they will be briefly described. The common trait to all of the
designs is control flow isolation through some mechanism. This mechanism can
be—in the order of increasing strength—traditional process isolation, containers, a
hypervisor, or physical machine isolation. The schemes offering stronger isolation
tend to be more costly for the defender in terms of overhead and additional hard-
ware as compared to the less strongly isolated configurations.

Traditional process isolation exposes the whole user space kernel interface to
each process. Containers enforce stronger isolation, whereby only a subset of the
user space kernel interface is accessible to the process. Hypervisor isolation enables
the processes to reside in a virtual machine, where the interface exposed is mostly
limited to the hypervisor itself. Physical machine separation completely removes
the dependency on the same physical hardware as two processes run on different
machines. The reason the stronger types of isolation are desirable will be justified
later in the paper. The microservices communicate in the same manner in all cases.

5.2.2 Exploitation Overview
In general, an attacker wants to gain access to an asset controlled by a defender, ex-
tending up to full access to the targeted systemwhere root shell access or equivalent
is typically the most desired.

The system offers the attacker, as well as any ordinary user, some form of func-
tionality, such as a web store, which allows any user to put items in the shopping
basket or make a purchase. While this functionality is intended by the developer,
the attacker’s goal is to extend the set of possible operations beyond the intended
functionality. The goal is achieved through exploitation. For low-level exploitation,
the attacker often takes control over the program by hijacking the control flow of
execution, with program execution often facilitated by code-reuse techniques such
as return-oriented programming [116]. While high-level exploitation, which does
not directly take control over the program counter, is also possible, we are only con-
cerned with low-level exploitation in this paper.

It is assumed that the external attacker is able to carry out the following types of
exploits: an initial exploit (Einit), a virtual machine or sandbox escape exploit (EVM),
and a lateral exploit (Elat). Einit is used to gain a shell on a microservice node, EVM
enables the attacker to escape froma sandbox,while Elat is an exploit type that abuses
the trusted relationshipbetweenmicroservice nodes in caseswhere additional attack
surface is needed and Einit is not sufficient.

Figure 5.1 illustrates an attack propagation through amicroservice networkwith
diverse microservices running in virtualized environments on networkedmachines.
The attacker initially obtains access using Einit and then proceeds to escape the sand-
box using EVM. Once the attacker has executed the latter exploit, full control over all
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Figure 5.1: Attacking a microservice architecture with diverse microservices running in virtualized
environments on networked machines.

nodes hosted by the same hypervisor is obtained. However, the attacker does not
control the whole network. To extend the control further, the process must basi-
cally be repeated. However, the same exploit Einit1 may not work against VMn1

—a
node hosted by a different machine n, which cannot be reached through the hyper-
visor. Therefore, the attacker will have to resort to either using a different exploit
Einit2 , or, depending on the available attack surface and overall exploitability, a lat-
eral exploit Elat1 to utilize the now exposed trusted relationship between the nodes.

There exist various techniques to mitigate low-level exploits. Examples are vir-
tualization techniques (e.g. VT-x), ASLR (Address Space Layout Randomization),
NX-bit (No eXecute), canaries,MPX (Memory Protection Extensions), SGX (Soft-
ware Guard Extensions), SMAP (SupervisorMode Access Prevention), IDS (Intru-
sion Detection System), and XnR (Execute no Read).

5.3 Microservice Architecture and Its Security Merits
Independently of whether a new microservice-based system will be built from
scratch or an existing monolithic system will be transformed into a microservice
network, several important architectural decisions must be made. This section dis-
cusses the security benefits ofmicroservice architectures as well as how the common
microservice design patterns affect security. Additionally, this section elaborates on
the notion of robustness (hardening) and how to prevent an attacker from spread-
ing between microservices as first presented in the Lysne et al. paper [67].

5.3.1 Microservice Design Patterns Affecting Security
Before discussing microservice architectures in a security context, we outline a few
basic designpatterns. The literature presents various designpatterns that amicroser-
vice oriented system might employ. Although we focus on a microservice architec-
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ture, many design patterns originate from the world of distributed systems preced-
ing microservices.

• API Gateway [80, 107] is the entry point for all clients. A system without
an API Gateway or equivalent would need to expose the required services
to external users—hence increasing the initial attack surface. From a security
perspective, the API Gateway provides an additional obstacle for the attacker
in the sense that the API Gateway must likely be compromised in order to
expose the internal services, assuming the internal services only trust the API
Gateway by design.

• Service Discovery [80, 107] is a centralized scheme allowing services to discover
other services. It is used becausemanual updates are infeasible in practice. Al-
ternatively, a distributed peer-to-peer system could be used to exchange lists
of available nodes, although likely at the cost of increased complexity. An
attacker can exploit the service discovery to determine the internal structure
and communication patterns between services. If the attacker manages to
compromise the service discovery, then the attacker might be able to host ma-
licious services and redirect traffic to themwhen their addresses are requested
by benign services, thus exposing a client-side attack surface on the services
being targeted.

• Circuit breaker prevents cascading failures by changing the component behav-
ior based on the number of failed calls made. The pattern was popularized
in the book by Nygard [89], and has received significant attention since [80].
The Netflix Hystrix library provides an implementation of the pattern.

5.3.2 Security Considerations
There are two distinct types ofmicroservices in the context of interaction: microser-
vices that allow both external and internal interaction and microservices that only
allow internal interaction. Internal interaction is communication between two mi-
croservices within the system boundary. External interaction is interaction between
an external host and a microservice that is part of the system. A microservice that
only allows external interaction is effectively defined as a monolithic program.

However, regardless of the type of microservice and of the granularity at which
microservices are implemented, every microservice must contain functionality for
network interaction. The code the user can directly interact with is the most ob-
vious attack vector. The microservices must assume that any input encountered is
hostile. Not only are the microservices communicating over an insecure network,
but some of the nodes in the network may be compromised. Therefore, even prop-
erly authenticated nodes should not trust the subsequent input to be sane or prop-
erly formatted by its peer(s).
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µService1 µServicei µServicei+1
...

Operation1→i Operationi→i+1

Operation1→i+1

Figure 5.2: Depiction of an unnecessary edge, exposing additional attack surface.

A robust system is basically what is commonly referred to as a hardened system.
Robustness is a property we use to denote how much effort is required to success-
fully performa low-level exploit against the system. The following discussion covers
some security considerations specific to enhancing the robustness of microservice
networks.

Maximizing API security. Exposed network interfaces must be minimal,
have strong input validation, and be of the highest type in the Chomsky hierar-
chy [113]. These are well-known design traits for a secure system, and they apply
equally to both monolithic designs and microservice designs. If there is any way to
accomplish the same functionality while exposing the server to less computation on
external input, this is advisable. The defender should strive to minimize the set and
depth of possible control flow paths that the attacker can influence at any step.

Avoiding unnecessary node relationships. The defender must employ
an architecture that prevents unnecessary node relationships. Consider Figure 5.2.
If µService1 can reach µServicei+1 through µServicei, then there should not be any
edge between µService1 and µServicei+1. Adding the extra edge may increase the
attack surface for the involved nodes. While taking a shortcut of this type to ob-
tain information or perform functions directly might result in better performance
and less complexity, doing so would violate the trade-off of increased security for
less performance and higher complexity. If a microservice network forms a dense
graph, then most likely the design of such a system and/or its decomposition into
microservices is incorrect.

Asymmetric node strength. To optimize the robustness of the network to
low-level exploitation, the more secure nodes should be placed at critical network
segments, such as entry points and nodes guarding the more valuable assets, as
shown in Figure 5.3. A more priced asset could be functionality that allows mak-
ing a transaction as compared to merely viewing the list of already performed trans-
actions. The payment functionality could use most of the budget for hardening
whereas viewing an account is considered less severe and should not be as prioritized.
Examples of hardening are given in the next section. High diversity as a mechanism
for hardening microservices is also discussed in the next section. Such changes can
be done a priori, in contrast to tactical choices based on real world statistics.
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5.3.3 Security Through Diversity

The purpose of diversity is to make an exploit less statistically likely to succeed and
to make the attack scale less effectively, thus, providing the defender with time to
react to the attack. The most common (as of 2017) examples of diversity in com-
puter systems are the use of different programming languages, hardware architec-
tures, cloud providers, operating systems, hypervisors, compilers or compiler argu-
ments, and ASLR versions [19, 47, 132] that enable identical programs to possess
diversity.

It should be stressed again that amicroservice system has inherent diversity, sim-
ply as a consequence of microservices implementing different functionality. Dif-
ferent bugs are assumed to be associated with different functionality. However,
this may not be true in all cases—two microservices with different functionality
could employ a common library with an exploitable vulnerability. It should also
be pointed out that while some type of diversity may alter the nature of a bug, a
successful replay attack using the same exploit may still be possible.

A defender should make a system with as much diversity as possible. Minimal
diversity has previously been defined [96] as “when failure of one of the versions is
always accompanied by failure of the other”. This definition is also applicable in the
context of exploitation. If there is so little diversity that the exact same exploitworks
equally well on both versions, then the diversity is of no benefit to the defender.
However, it should be stressed that the diversity still serves a purpose in terms of
redundancy against other types of failures, but not against targeted attacks.

N-version programming. The expansion of one node into multiple nodes
through N-version programming allows the set of nodes to be more robust due
to their inherent diversity as compared to a single node. In the N-version program-
ming scheme, a voting system is employedwhere amajoritymust be reached by a set
of nodes performing the same computation in parallel. Therefore, being able to ex-
ploit a subset of nodes less than the limit used by the voting system tomake choices
would not give the attacker the same control as if no N-version programming was
used.

In the special case where the attacker controls exactly half, the attack is reduced
to a denial of service attack, as the defender can choose to ignore all the input. Any
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Figure 5.3: The use of asymmetric node strength to defend against low-level attacks.
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Algorithm 1 The Security Monitor basic operation
1: procedure MutateService
2: if IDS() is true: then
3: Kill the service environment.
4: Diversify.
5: Rebuild the environment and restart the service.

node can be dynamically expanded in this manner, and any set of expanded nodes
canbedynamically reducedback to a smaller number ofnodes or a single node. This
expansion and contraction can be performed automatically based on the available
resources to the system.

5.4 The Security Monitor Service
Normally, a system will only get patched after developers have identified issues and
rolled out the changes. Although this improves the system over time it can intro-
duce a large attack window due to the inherent latency of the process. A microser-
vice network may automate some of the issues that arise, specifically by introduc-
ing a security monitor system. The security monitor can identify nodes that either
report erroneous data, trigger IDS detections, or simply report inconsistent data
compared to their siblings in an N-version programmed subsystem. Anomalous
behavior may result in the monitor taking explicit, autonomous action. The goal
of the monitor would always be to remove the attacker from the system, as well as
introduce diversity into the system in order tomake it less likely that the same attack
will succeed if attempted again.

5.4.1 Design Overview
The security monitor has at its disposal an arbitrary set of ways to introduce new
diversity. This set would likely be largely dictated by the budget of the defender,
but could consist of different N-version programmed versions of the same service,
strongASLR implementations, earlier versions of the service, and different versions
of libraries. The controller can decide to employ some or all of these at the diversifi-
cation step in the case that a security issue is detected. The overall operation of the
service monitor is depicted in Algorithm 1.
N-version programming with microservices. A simple example would
be an N-version programmed system with a set of nodes that perform the same
task using compiler derived diversity [54]. Similarly to the N-variant system sug-
gested byCox et al., we propose a scheme to exploit the fact that the defender retains
part of the control flow of the overall system [17]. For security critical systems, indi-
vidual microservices can be implemented as N-version programmed systems. The
nodes within such a system will perform the same task using compiler derived di-
versity [54]. If a particular node issues erroneous data, the security monitor can
detect it by comparing the output against the healthy nodes. The erroneous node is
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then isolated and the security monitor notes the compiler arguments that resulted
in this defective machine code. The security monitor is not concerned with the
root cause of the program error, but will attempt to correct the problem. Such a
correction could be done by issuing different compiler arguments to permute the
assumed faulty code, or rolling back to an earlier version that likely does not contain
the faulty code.

µService1
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Figure 5.4: A security monitor dealing with an infection in an N-version system.

Referring back to the example with N-version programming, consider the case
of removing an infection as indicated in Figure 5.4. The security monitor detects
invalid data being sent from a service. The security monitor’s presence on the host
system is more privileged than the service itself. Hence, the security monitor is able
to forcibly destroy the environment for the service, permute, and restore it. If the
permutation step was skipped, the attacker could simply replay the exploit. The
security monitor should proceed to flag the event as an anomaly to allow a human
to examine the faulty binary to identify the underlying cause—which is likely only
masked by the permutation.
Security monitor policy. A simple policy for a security monitor service is to
detect an intrusion, e.g. by using an IDS, kill the service environment, rebuild the
environment, and finally restart the service. In this generalized procedure, the de-
fender can either host the security monitor as a normal process with normal user
privileges, in a container environment, or in a virtual machine. Regardless, the pol-
icy should be the same. It is important to destroy thewhole environment, otherwise
the risk of the attacker persisting increases dramatically. Even when destroying the
environment the risk is only made smaller. If no containers are used, all processes
should be removed and ideally the system (and firmware) restored from a trusted
image—although even in this case advanced rootkits may persist. If containers or
virtual machines are used, the entire container or virtual machine must be rebuilt.
The permutation step ensures that diversity is added, which hopefully removes the
issue.

The securitymonitormay choose to no longer trust the hostingmachine for the
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infected service, i.e. informing the assumed clean services to blacklist the malicious
nodes as well as wipe and restore the system in an attempt to deal with a rootkit
on the hosting machine. In addition, the security monitor can decide to destroy,
permute, and restore all immediately adjacent services.

The securitymonitor system can bemulti-layered. A local securitymonitormay
reside in each execution context for each service, but preferably in amore privileged
state so that a compromised service cannot trivially compromise the security moni-
tor. However, an additional external security monitor is also possible. An external
security monitor would enable more complex evaluations and actions being taken
as a result of the state of the overall system, as compared to merely the state of a
single node.
A honeypot strategy. Another possible strategy for the security monitor is
to start a new node and ignore, but record the I/O of the infected node, as well
as monitor it through the host system. The defender would be able to learn infor-
mation about the attacker—in particular exploitation attempts—as the attacker is
likely to continue to interact with the system. Such a honeypot strategy could be
implemented to varying degrees of sophistication. All requests could be ignored, or
some could be simulated, such that the attackerwould continue to interact with the
simulated environment, but not be able to gain any valuable asset or do damage. In
the case of multiple infected nodes, a segment of the system could be isolated. Re-
gardless, the defender should then also migrate away any other services running on
the same infected host(s). There is always the risk that the attacker could escape the
VM and take control over the whole system. If the defender does not own the sys-
tem and risks exposing a cloud provider and other clients of the same provider to a
known malicious attack, it seems at least plausible that this situation could lead to
legal issues.

5.4.2 Evaluating the Security Monitor
In terms of the overall system architecture, the security monitor becomes a part of
the infrastructure similarly to logging, monitoring, and discovery services that are
needed for any reasonably sizedmicroservice system to functionproperly. While the
circuit breaker pattern aims to make systems more robust by preventing cascading
failures, the security monitor pattern aims to make them more anti-fragile.

The securitymonitor scheme essentially allows the system to autonomously dis-
cover certain security related issues and react to them. Manual interaction is still
required to resolve the root cause of the issue. However, at the same time the mi-
croservice architecture ensures that more effort is required to compromise the over-
all system, which makes the system more secure.

A more privileged mode that offers an attack surface is an ideal target. Indeed,
the security monitor is such a target itself. IDS systems and anti-malware solutions
have previously become a viable attack surface which raises the question whether
such systems do more harm than good [91]. An IDS is always a trade-off, to pre-
vent it from exposing the system to more risk rather than protecting it, the security
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monitor should adhere to the aforementioned principles from Section 5.3.2 of least
privilege, minimal attack surface, and have any grammar be of the highest type in
the Chomsky hierarchy [113].

5.5 Proof of Concept by Example
This section presents a simplified banking system with minimal functionality and
describes two attacks: one against themonolithic variant and a similar attack against
themicroservices variant of the system. We demonstrate that themicroservice archi-
tecture makes a system more robust to the impact of attacks.

5.5.1 System Architecture
The system architecture contains four logical components: Gateway, Users, Ac-
counts, and Transactions. Gateway provides the user interface and access to the func-
tionality of the rest of the system. Users hosts the users’ database and provides func-
tionality for fetching user information and managing users. Accounts hosts the ac-
counts database and provides account management operations. This service also
has an IDS for demonstration purposes that reacts when a threshold is exceeded.
Transactions hosts the transactions database and enables the creation of new trans-
actions on demand. In themonolithic version of the system, all the components are
contained within the same program.

The system is only presented in brief, as the details are not relevant to the issue
being explained. The same concepts would apply for any similarly designed system,
regardless of implementation details. The system is written in C and for simplicity
uses raw sockets. The core functionality is a simple text-based user interface sup-
porting basic transactions and accountmanagement. To illustrate the functionality,
the following example shows a transaction being performed by a user after having
logged in.

> view accounts
User ID: 1
Authorization: 0
Listing all accounts.
Account ID 1: Balance: 1000.000000
Account ID 2: Balance: 1000.000000
> pay 1 2 100
Transaction completed successfully.
> view transactions
Transaction ID 1, date: 2017-01-02 09:49:24: From account: 1 To
account: 2
Amount: 100.000000
>

It is assumed that the attacker has a copy of the source code of the program
and knows the environment under which it was built and is presently executed. In
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the following subsection, the first attack demonstrates how the attacker gains full
control of the entire monolithic system. The second attack demonstrates that the
attacker is only able to partly gain control of the microservice solution.

5.5.2 Exploitation Example

The goal of both attacks is read/write access to the accounts database. The attacker
wants to manipulate the amount of money in a particular account. To achieve this
goal, the attacker exploits a vulnerability in the server, obtains a shell, and finally
interacts directly with the accounts database.

Attacking the monolith version. The attacker exploits the server using a
stack based buffer overflow using a standardROP (Return-oriented Programming)
based exploit with the target having ASLR and NX-bit enabled. The exploit over-
flows a 512 byte buffer, hijacks the instruction pointer, and uses the stack to execute
a set of gadgets (snippets of code contained in the target program which are care-
fully selected to execute a shell). Once the shell is obtained, the attacker spawns an
interactive shell using Python to allow the sqlite3 utility towork. It can then be seen
how the attacker leverages the fact that the asset in question (the accounts database)
is readily available and can be directly manipulated with the privileges of the bank.
The following is a session showing such an attack.

$ ./mono_exploit.py
[+] Opening connection to localhost on port 31337: Done
[*] Switching to interactive mode
Welcome to the Elite Bank

user: $ python -c 'import pty; pty.spawn("/bin/bash");'
<service_network/research/banking_system_monolith $ $ sqlite3
bank.db
sqlite3 bank.db
SQLite version 3.13.0 2016-05-18 10:57:30
Enter ".help" for usage hints.
sqlite> $ select * from accounts;
select * from accounts;
1|1000.0|2
2|1000.0|2
sqlite> $ update accounts set balance=9999999 where id=2;
update accounts set balance=9999999 where id=2;
sqlite> $ select * from accounts;
select * from accounts;
1|1000.0|2
2|9999999.0|2
sqlite> $ .exit
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Attacking the microservice version. In the next example, the attacker
uses the same exploit, only adjusted for the different gadget offsets for the microser-
vice version.

$ ./microservice_exploit.py
[+] Opening connection to localhost on port 31337: Done
[*] Switching to interactive mode
Welcome to the Elite Bank.

user: $
$ nc -lp 2000 > steal_money.py
$ python steal_money.py 1
Success!
$ python steal_money.py 1
Success!
$ python steal_money.py 10
Success!
$ python steal_money.py 986
Failed!
$

It can be seen that the attacker again obtains a remote shell. However, the as-
set is not present on the server, therefore direct manipulation of the database is not
possible. The attacker does, however, gain the ability to issue payment operations
without proper authentication. Once having obtained the shell, the attacker im-
mediately uploads a script to the compromised server which is used to steal money.
The attacker specifies the amount ofmoney to steal with a command line argument.
This script interacts directly with the accounts service by connecting to it and issu-
ing commands. This interaction would not be possible without having established
a shell on the gateway node since the accounts service only trusts the gateway ser-
vice. Connection attempts from the attacker would simply be dropped. However,
the IDS employed by the accounts service detects the suspicious behavior and limits
the damage.
Discussion. The attacker could at this point attempt to use a secondary exploit
and move laterally within the microservice nodes, but this would require more ef-
fort from the attacker as comparedwith themonolithic version. The attacker could
also try to avoid triggering the IDS. However, the defender has not lost the control
flow of the whole system and has the possibility to mitigate such attacks.

There are obviously several ways to restrict access to the asset and achieve the
same security benefits, depending on the application architecture. However, such
mitigationswould have to be tailored to the particular application. With amicroser-
vice based architecture, the security benefit is gained as a side effect of the architec-
ture itself.
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It should also be noted that the likelihood of the same bug existing in the mi-
croservice gateway node is less when directly comparedwith its monolithic counter-
part. In addition, the code base for themicroservice should be smaller, which could
complicate the exploitation if key gadgets aremissing. In this example, the required
gadgets have simply been manually added to facilitate easy exploitation. Although,
even without any of the critical gadgets, an arc injection or data-oriented exploit
could still be performed in some cases.

5.6 Conclusion
We have examined how the increased isolation of microservices coupled with soft-
ware diversity can mitigate the impact of low-level exploitation. Microservices,
when coupled with some method of achieving diversification, appears to offer
added robustness over monolithic solutions. Key design rules and examples were
presented to substantiate this claim. Furthermore, an implementation of an exam-
ple system demonstrated that a microservice solution is less vulnerable to low-level
attacks than a deployment monolith.

We claim that the slow turnaround time for issues to be detected, fixed, and fi-
nally deployed by human operators can bemademore autonomous andwith lower
latency if we introduce an automated security monitor to resolve the issues. One
of the open questions that still remain is determining to what extent arbitrary pro-
grams can benefit from hardening and diversification. It is particularly important
to consider the cost asmost security enhancing features introduce overhead in terms
of performance, compatibility, or usability, the mitigations suggested herein being
no different.
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Abstract Themicroservice architecture is a subtype of distributed systems that
has been attracting a lot of interest both in the industry and academia. Emerging
research recognizes the need for a better understandingofmicroservice security, and,
in particular, mechanisms that enable defence-in-depth and adaptive security. With
the continuously growingnumber of possible attacks anddefenses, the choice in the
optimal defense strategy becomes non-trivial as well as time critical. We propose a
cost-sensitive adaptable intrusion response system for microservices, which uses a
game theoretic approach to automatically respond to network attacks in real time.
Furthermore, we discuss both the applicable attacks and defense responses specific
to microservices.
Keywords adaptive security, self-protection, game theory, defense-in-depth, SOA,
IPS, IDS, minimax

6.1 Introduction
Microservice architecture is gaining significant attention both by practitioners and
in academia [85, 98]. Microservices allow for building flexible systems where the
components can be written in different programming languages, use different tech-
nologies, scale independently, and can be easily updated and redeployed. Many mi-
croservice architectural principles such as modularity, loose coupling, and fail-fast
are not new and stem from fundamentals of distributed systems [125]. Microser-
vices are a particular implementation approach to Service-Oriented Architecture
(SOA) [138]. However, the scale ofmicroservice adoption is unprecedented and can
perhaps be compared with the invention of object-oriented programming (OOP).

A key aspect ofmicroservices is automation. With hundreds or thousands ofmi-
croservices, manual updates are infeasible. Centralized logging, performance mon-
itoring, service discovery are examples of such automation that are ubiquitously
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adopted. Such trends as contentious integration, DevOps culture, and need for
high scalability and flexibility further increase the importance of automation in mi-
croservice networks. Yet, not all the areas of microservice operation are automated.

Self-protection and other self-* properties, such as self-configuration and self-
optimization that allow software systems to adapt to the changes in the environ-
ment, are actively researched areas [137]. However, the problem of self-protection
for microservices has received scant attention in the research literature.

Regarding microservice security, Fetzer [32] discussed deployment of microser-
vices inside secure containers to build critical systems. Sun et al. [123] proposed a
virtual network monitoring solution that enforces policies over the network traffic
in the cloud. Otterstad & Yarygina [93] pointed out the isolation benefits of mi-
croservices, as well as proposed the use of N-version programming for a simplified
IDS. Yarygina & Bagge [135] have investigated automation of secure inter-service
communication and defense-in-depth principle for microservices.

Intrusiondetection systems (IDSs) provide systemadministratorswith informa-
tion onmalicious activity in the system. While intrusion prevention systems (IPSs)
attempt to block intrusions that are detected, the handling of complex situations
and choice of intrusion responses are often left to humans. Once an intrusion is
detected, actions should be taken as fast as possible to stop an attack.

According to Stakhanova et al. [121], an ideal intrusion response system (IRS)
should be automatic, proactive, adaptable, and cost-sensitive. One of the possible
ways of achieving such an IRS is through security games. Game theory [92] stud-
ies mathematical models of how multiple agents act when optimizing their payoffs.
While the conventional game theory has a variety of applications in economics, po-
litical science, biology, it also received significant attention in the area of network
security [88, 111, 139].

There is a general lack of research in IRS for microservices. With the continu-
ously growing number of possible attacks and defenses, the choice of the best de-
fense strategy is complicated. A game theoretic approach potentially solves this
problem. Our main contribution in this paper is the design of a cost-sensitive auto-
matic IRS for microservices with game-theoretic foundation; we also elaborate on
the response actions specific to microservice architecture.

This paper is organized as follows. Section 6.2 explains the game theory fun-
damentals and defines the game model used in this paper. In Section 6.3, the ar-
chitecture of the proposed IRS is presented. Section 6.4 evaluates the proposed
architecture. Section 6.5 concludes the paper.

6.2 Security Games: Assumptions and Solutions
We observe that the microservice architecture readily allows for employing game
theory derived algorithms. This is a foundation for the system ability to respond
to intrusions. This paper models the strategic interaction between an attacker and
a defender as a finite dynamic zero-sum game. Different game theoretic solution
concepts exist [92].
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6.2.1 Finite Dynamic Two-player Zero-sum Game
Most security games involve two counteracting parties—an attacker and a defender.
While attacker’s goal is to exploit the system, a defender is trying to protect the sys-
tem, its resources, anddata. Eachplayer has a set of actions available to themat given
time. Each action has a positive or negative reward associated with it. In the case of
attacker and defender, each player’s gain or loss is balanced by the losses or gains
of the other player, which makes this game zero-sum. A compromised microservice
node has a negative score for the defender, but a positive score for the attacker.

The attacker and defender take actions and receive rewards in turns, as seen in
Figure 6.1. In this way, the gamemoves from one security state to the other. Games
with more than one stage are called dynamic or extensive.

There is a limited number of states a given system can be in. Some of the states
are the final states, i.e. the leaf nodes on the game graph. The security states where
the attacker gains full control of the system can be seen as final states. In such case,
the game is called finite.

6.2.2 Minimax
The goal for the defender is to choose the optimal response action in the given con-
text. A common solution to this problem is the minimax algorithm. The mini-
max strategy for a defender is a strategy that minimizes the maximum payoff of an
attacker, i.e. maximizes the benefit of a defender. For two-player finite zero-sum
games, the minimax solution is the same as the Nash equilibrium.

In a two-player game, the minimax strategy for a defender i against an attacker
−i is arg minai∈Ai maxa−i∈A−i ud(ai, a−i), where ai is the response action taken by de-
fender, a−i denotes the attack action taken by adversary, and ud is the utility func-
tion of defender.

Completely analyzing certain games using solely the minimax algorithm is im-
practical. The minimax algorithm traverses the nodes of a game tree. The number
of nodes on the tree increases exponentially with the number of turns that can lead

Defender’s
turn

Defender’s
turn

Attacker’s
turn

Attacker’s
turn

Compromised

Normal
node

node

Figure 6.1: Security game between the defender and attacker. An attacker decides which microser-
vice to attack. The response actions deployed by the defender may or may not eradicate the attacker.
If defense measures are insufficient and/or unsuccessful, the attacker will propagate laterally through
the network.
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to a combinatorial explosion. The performance of the minimax algorithm can be
improved using alpha-beta pruning or other pruning methods.

6.3 Proposed Architecture

Building on this game theoretic foundation, we propose a microservice intrusion
response system. The system is cost-sensitive, in that the game allows us to chose
the most effective, least costly response to an attack, rather than applying drastic
measures in every situation.

The system consists of a distributed set of local monitoring processes and a cen-
tral entity called the Microservice Game Engine (µGE), as depicted in Figure 6.2.
The purpose of the system is to minimize the damage caused by an attack in real
time. The µGE allows the microservice network to dynamically react to threats
while taking action costs into consideration. In particular, the µGE exploits the
fact that a partially compromised microservice network has not yielded total con-
trol to the attacker. A strong separation of the control flow and increased isolation
are inherent benefits of microservice architectures [93, 135].

TheµGEaggregates information, builds a game tree and takes automated action
based on the observed input obtained from the local IDSes running on the respec-
tive microservices. In order to facilitate these actions, the µGE relies on several key
components discussed below.

6.3.1 Network Mapping

The ability tomaintain an accurate view of themicroservice network at all times is a
prerequisite for the µGE to respond effectively to malicious activity. The initial mi-
croservice network can be mapped in several ways. For example, each microservice
can report its incoming and outgoing edges to the µGE.

After the network has been initially built by the µGE, it is ready to start play-
ing the game in anticipation of attacks. However, when the real network changes,
its representation inside the µGE should also be updated, and all computation per-
formed thus far will be discarded. Nodes are inserted and removed from the tree as
they report to the µGE.

G
a
m
e
E
n
g
in
e

Topology

Deploy action

µService
logic

Detec-
tion

alerts
IDS

Figure6.2: An overview of the proposed architecture. The detection code in each microservice reports
to the game engine, which evaluates the current state of the system and plans a response to any ongoing
attack. Responses are deployed by e.g., restarting or reinstalling services, or other response actions.
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6.3.2 Intrusion Detection and Events Reporting
Intrusion detection functionality resides in each microservice, informing the µGE
of events of interest. Multiple sources of IDS information, as well as non-IDS in-
formation may be used. An IDS such as Snort [120] can detect among other things
stealth port scans, operating system fingerprinting, and buffer overflows. Non-IDS
information include events in the network, such as a service having stopped sending
heartbeats, service registration and deregistration.

Attack actions in the game can be defined through the intrusion detection func-
tion. The set of possible attack actions is limited to the knowledge base of the par-
ticular IDS in place.

6.3.3 Event Evaluation Function
The evaluation function takes as its argument a node object representing a state
of the microservice network. The state of this network in terms of score is then
evaluated and returned as an integer. The most basic and coarse node states may
be grouped into three categories. Benign: default normal state of all nodes. Under
attack: an alert for the node has been raised. Compromised: a node that conducts
malicious activity or is suspected of one.

TheµGEcannotice that events have happened over time, and/or that events are
happening inmultiple places of the network at the same time—each eventwhich by
itself is not enough to trigger an issue, but as an aggregated result. The aggregated
result may be accumulated in a temporal and/or spatial sense. This is similar to
what distributed IDSs would do, see the survey by Folino [36].

The evaluation function should be able to aggregate information such that a
node can be inferred to be compromised based on its behavior. E.g. if there is a port
scan orAPI probing attempt from an internal node, this is assumed to only be possi-
ble if the node is compromised. The nodemay therefore be flagged as compromised
even though no direct detection of an attacker present on the system was detected.
If there is only one other node which could communicate with the compromised
node, the evaluation function can further infer that this node is also compromised.
By extension, theµGE can infer a chain of guaranteed compromised nodes and pos-
sibly compromised nodes. As an example, if there are two additional nodes which
can communicate with the node, the evaluation function can trivially assume with
50% probability that either of them are compromised, assuming everything else is
equal.

6.3.4 Decision Function
Thedecision function runs aminimax algorithmwith specific pruningmechanisms.
If there is no actualmalicious action andnonetwork relatedupdate takingplace, the
µGE will populate the tree representation of different possible states. For each par-
ticular node of the microservice network, based on the state of the network, there
will be a list of possible actions the attacker or defender can perform. The set of pos-
sible actions is used to create new states of the same microservice network, creating
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new nodes, where the edges from the previous node represent the particular action
taken.

Whenever any new information which results in a different state is received, the
µGE stops its search, and updates the root of the tree to be that resulting state. This
simulates performing the actual operation the attacker did against the real network.
It is now the defender’s turn. The µGE will also run the evaluation function on all
the leaf nodes and compute the optimal move for the defender. We make the con-
jecture that the time taken to actually run this part of the algorithm is negligible and
can be run post attack. The best strategy is chosen based on the available response
actions discussed below.

6.3.5 Intrusion Response: Defender’s Actions
Traditional fault tolerance techniques include rollback, rollforward, isolation, re-
configuration, and reinitialization [5]. Microservice based systems, however, allow
more actions to be taken. In the case of an assumed compromised node, the de-
fender may opt for the following choices.

Rollback/restart the service. This will destroy the current instance of the service
and start a newone from the same configuration. If the problempersists, even older
configuration of the service may be used. This allows the defender to hopefully
mitigate attacks based on flawed configuration assuming it was ever correct, as well
as bugs introduced in the latest version.

Diversification through recompilation or binary rewriting. Introducing random-
ness into the binaries executing in themicroservicemay be done by binary rewriting
or recompilation with special compiler support [54]. An example of a freely avail-
able framework providing such support is the LLVM multicompiler.

Diversification through cloud provider. Moving amicroservice to a different host
in attempts to mitigate attacks that rely on host characteristics, such as exploits that
target hardware or a malicious cloud provider.

Scale up and down n-variant services. The N-variant microservice system was
proposed as a security measure by Otterstad&Yarygina [93]. This action uses the
existing diversification techniques (compiler diversity/binary rewriting and cloud
diversity) to spawn additional microservices, which feed their result to a governor
node that compare the results for consistency. This allows nodes that have been
tampered with to be detected.

Split or merge services. Requires a tool support for code auto modification that
does not currently exist. An extension of this approach is to add dummy hardened
services to the path. A node may be split at the function level, this may mitigate
certain attacks that rely on there being a binary path of execution which enables the
exploit to work, and/or the existence of certain gadgets, which will not be available
after a split has been performed.

Isolation/Shutdown. Entails physical exclusion of the faulty service: stop the
service permanently. This approach has a high cost associated with it and is unac-
ceptable for the systemswith high availability requirements. Noureddine et.al. [88]



“thesis” — 2018/7/4 — 15:56 — page 103 — #103

6.4 Evaluation and Discussion 103

showed that disconnecting nodes in a response to an attack efficiently delays an at-
tacker that is moving laterally in the simulated network.

6.4 Evaluation and Discussion

Advantages. The controller system has two main advantages: low latency, and
depth. In contrast to a human, who may need time to understand and react to the
attack, the µGE can react instantly. The latency is important due to the fact that
some attacks may be automated and complete a sequence of steps in the attack very
quickly, which would make it critical to be able to respond promptly.

The depth is important for related reasons. The µGE can search deeper into
the tree and gain a deeper insight than a casual observation from a human. Some
choices may not seem intuitive as they result in a better network state deeper down
in the tree. Itmay be possible that the attacker performs a particular attack towhich
the naive reaction is what allows the actual attack to proceed.

Algorithm complexity. The depth of the tree ismwith b legal moves on average
(the branching factor of the tree). The running time of the minimax algorithm is
O(bm), and space complexity (memory) isO(b ∗m). For large trees, high complex-
ity can make the approach computationally infeasible. For the alpha-beta pruning
algorithm, sorting the moves by the result improves performance, such that for the
perfect ordering the running time isO(bm/2).

Model limitations. So far, we discussed only a subset of all possible attack and
defense actions. In a real world scenario there are not only more nodes, but many
more operations the attacker and defender could do. This causes an explosion in
the complexity of the tree, which greatly limits the depth of the search, consumes
much more memory, and CPU time.

The list of attacker and defender operations is a model of the real world. Any
suchmodelwill have limitations in terms of granularity. The extent towhich the de-
fender is willing to exert resources on creating an accurate representation of the real
worldwill affect the effectiveness of the system. However, even formissing classes of
attacks, they are likely to result in a state which the systemwill detect. Lets consider
a node compromised with a zero-day exploit that went unnoticed. It is extremely
unlikely the attacker has a zero-day for every node in the network. Thus, when the
attacker starts to probe the rest of the network from an internal node, looking for
well-known vulnerabilities, the µGE will again notice the issue and can consult its
graph for the optimal course of action.

This paper assumes that the utility function and reward values are designed by
experts offline. Selecting the best defensemodel is difficult because of a lack of quan-
tifiable securitymetrics. Despite themultiple attempts to address this problem[118],
putting values to parameters is still a human responsibility.
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6.5 Conclusions
This paper presented the design of a cost-sensitive adaptable IRS applicable to mi-
croservice networks called µGE. The µGE collects information from the network
as well as issues actions based on a search tree of possible outcomes once an attack
has been detected. The proposed solution exploits the fact that the microservice
network is modular by design and components can be restarted, permuted, moved,
and even in some cases removed, without destroying the entire operation of the net-
work. In general, no mitigation technique provides a guarantee an attacker cannot
succeed. However, theµGE enables low latency and far lookaheadwhich is a strong
advantage for a defender.

Several open questions remain. An efficient approach to identifying and set-
ting the values that are topical to each defender has not been presented, as this is
highly subjective and specific to the assets that are important. Furthermore, for an
algorithm of this type to be efficient on big networks, it is likely that a significant
amount of aggressive pruning of the search tree must be performed.
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Abstract The shift in web service design towards the REST paradigm has
spawned a series of security concerns. To date there has been no general agreement
on how the REST paradigm addresses security and what web security mechanisms
adhere to the REST style. This paper analyzes the REST paradigm from a security
perspective and shows significant incompatibilities between the style constraints
and typical securitymechanisms. We conclude that theRESTstylewasnotdesigned
with security properties in mind and does not fit the security requirements of mod-
ern web applications.
Keywords web services security, REST, stateless, token authentication

7.1 Introduction
Web services enable rapid design, development, and deployment of software solu-
tions. They provide a unified web interface and hide complexity and heterogeneity
of the underlying infrastructure, enabling simple integration of diverse clients and
external components [108]. Unfortunately, the desirable simplicity does not extend
to the security aspects of web services.

Representational State Transfer (REST) is an architectural style for web services
that is widely adopted. As an architectural style, REST imposes six general design
constraints [35]: client-server, stateless resource, cacheable responses, uniform inter-
face, layered, and code-on-demand (optional constraint). These constraints enforce
the original concept of the Web as a scalable distributed hypermedia system with
loosely coupled components. Web services that strictly adhere to REST style con-
straints are commonly referred to asRESTful services, while thosewith loose adher-
ence are often called REST-like services.

It was long believed [100] that RESTful services should be used for ad hoc inte-
gration over the Web, whereas Big Web services (see [108] for naming convention)
were preferable in enterprise application integration scenarios with longer lifespans
and advanced security requirements. However, today we find that more and more
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corporate solutions, even the most security demanding ones like financial systems
and sensitive data operations, are based on RESTful or REST-like services. In con-
trast to Big Web services, no formal security framework exists for RESTful services.

There are relatively few studies of RESTful services security, herein wemention
most of them. A recent study by Gorski et al. [40] compares the security stacks of
Big Web services and RESTful services. A paper by Lo Iacono and Nguyen [66]
compares RESTful authentication mechanisms with focus on message signing. In
particular, the authors propose a signing mechanism not limited to HTTP. Fi-
nally, two papers describe approaches tomessage security for RESTful services [115]
and secure communication between mobile clients and RESTful services [21]. Al-
though all of these studies claim to deal with RESTful security, they do not discuss
the REST architectural style from security perspective.

Amuch debated question among practitioners is what security mechanisms are
truly RESTful. As an example, discussion threads onRESTful authentication1 and
best practices for securing REST APIs2 are viewed more than 250,000 times each.
The introductionof security components often changes systembehavior, which can
affect how a system adheres to the REST style constraints. To date there has been
no general agreement on how the REST paradigm should address security. Apart
from Inoue et. al. [53], who argued that a session state is not against the REST ar-
chitectural style, there is a lack of research in the area.

This paper aims to unravel some of themysteries surroundingRESTful security.
We analyze the REST paradigm from a security perspective and show significant
incompatibilities between the style constraints and typical securitymechanisms. To
our knowledge, we are the first to conduct such a detailed security evaluation of the
REST style and prove that RESTful security is impossible.

The rest of the paper is organized as follows. In Section 7.2, an overview of
common web security mechanisms and a brief discussion of their security merits
are given. Section 7.3 explores in detail how particular security decisions and espe-
cially authentication schemes relate to core principles of theREST style. Section 7.4
concludes the paper by summarizing the uncovered contradictions, discussing the
implications of the findings, and providing insights for future research.

7.2 Overview of Security Mechanisms for the Modern Web
Adequate security mechanisms are needed to build secure RESTful services. This
section focuses on common security mechanisms such as Transport Layer Security
(TLS), cryptographic objects in JavaScript Object Notation (JSON), token-based
authentication, client side request signing, and delegated authorization and shared
authentication. The overview creates a background for a more advanced analysis of
how common security mechanisms adhere to the REST style constraints.

TLSwas originally designed to be independent of any application protocol and

1https://stackoverflow.com/questions/319530/restful-authentication
2https://stackoverflow.com/questions/7551/best-practices-for-securing-a-rest-api-web-service
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has became a de facto security protocol on the Web. Although the design of TLS
supports mutual authentication, HTTPS in its current form is largely used to au-
thenticate the gateway, but not the client. Even though the idea of both parties
maintaining digital certificates is simple and secure, embedding a unique certificate
into each client is a serious implementation obstacle. Therefore, client authentica-
tion must be provided on the application (message) level.

Toprovide higher security, aswell as client authentication, TLS canbe and often
is combined with encryption and signing on the message level. Standards for cryp-
tographic objects in JSON and XML were created to address security needs on the
message level and to facilitate interoperability. Cryptographic objects can be seen as
containers incorporating secured data and the information necessary for its process-
ing. The JSONObject Signing and Encryption (JOSE) suite of specifications offers
powerful and flexible building blocks for message security in web services by pro-
viding a general approach to signing and encryption of JSON-formatted messages.
The JOSE suite is essential for delegated authorization and shared authentication
schemes, such as OAuth 2.0 and OpenID Connect (see Figure 7.1).

HTTP is a stateless protocol, which implies that requests are treated indepen-
dently of each other. Nevertheless, most web applications require sessions. Session
management in HTTP is historically performed via HTTP cookies, URL param-
eters, HTTP body arguments in requests, or custom HTTP headers. A natural
extension of session management is client authentication. In modern web applica-
tions, there exist two main approaches to authentication: token-based authentica-
tion and client side request signing. The following discussion focuses on the security
aspects of these approaches.

Traditionally [74], message authenticationmethods includeMessage Authenti-
cationCodes (MACs), digital signature schemes, and appending a secret authentica-
tor value before encrypting the whole text. In the context of modern web services,
either JWS or XML Signature standards can be used for message authentication de-
pending on the message format. For the sake of simplicity, the term signature is
used to refer to both MACs and actual digital signatures.

7.2.1 Token-based Authentication
Token-based authentication via HTTP cookies is the most widely adopted authen-
tication mechanism in web applications. The mechanism is based on a notion of

JWS JWE

JWT

OAuth 2.0

OpenID
Connect

Figure 7.1: The hierarchical relation between the JOSE suite, OAuth 2.0, and OpenID Connect.
The JOSE suite incorporates JSON Web Signature (JWS), JSON Web Encryption (JWE), JSON
Web Token (JWT) [55], and several other specifications.
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security tokens—cryptographic objects containing information relevant for authen-
tication or authorization.

An authentication token is generated by a web service and sent to a client for
future use. A service generates a token upon the successful validation of the client’s
credentials either during the initial user log in or a re-authentication. A token can
be seen as a temporary replacement for the client’s credentials: every request from
a client must include a valid token to be fulfilled. A token-based authentication
scheme was first analyzed by Fu et. al. in 2001 [39].

Security considerations. Server-created security tokens ensure scalability of the
solution and server statelessness by moving the maintenance responsibility for to-
kens to clients. Additionally, a limited lifetime of security tokens makes them su-
perior to direct use of passwords such as in HTTP Basic/Digest Authentication. A
server-side secret used to create tokens is the most important security asset of the
server. If the secret is leaked, the damage is not limited to one user: an adversary can
impersonate any user of his or her choice.

Hijacking of security tokens is another serious threat. Token-basedmechanisms
rely on channel confidentiality. If compromised, a security token can be used by
an adversary to impersonate the client until the token expires or is revoked. Short
expiration time of tokens limits the possible damage, but also reduces usability of a
system by requiring frequent user re-authentication.

The severity of security token hijacking is rooted in the static nature of such to-
kens and their independence of particular requests. Dacosta et. al. [18] proposed
to switch from static cookies to dynamic ones (request-specific). Channel-binding
cookies is another approach to strengthen cookie-based authentication by binding
cookies to TLS channels using TLS origin-bound certificates [22]. However, no
approach has gained wide adoption mostly due to increased complexity. The evi-
dence presented herein suggests that token-based authentication requires minimal
amount of data being stored on the server-side, i.e. contributes to server stateless-
ness, but also has significant security limitations.

7.2.2 Client Side Request Signing
Many existingRESTful services implement client authentication and in-transit tam-
pering protection by requiring a client to sign each request. Cryptographic keys
are established between parties during or after the initial authentication step. Re-
quest signing implies signing of an actualmessage (HTTPpayload) and, optionally,
HTTP headers.

Request signing involvingHTTPheaders has been successfully deployed by sev-
eral major web services such as Amazon Web Services (AWS) [2] and Microsoft
Azure [75]. Both are cloud services intended only for programmatic use through
REST APIs. An investigation shows that numerous newly developed systems bor-
row AWS’ HMAC-SHA256-based approach to request signing [2].

A comparison of REST message authentication mechanisms based on request
signing was performed by Lo Iacono and Nguyen [66]. The paper contributes a
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detailedHMAC-based scheme for authentication of all types of RESTmessages, in-
cludingHTTPmessages. A similar, but not as detailed approach toHTTP signing
can be found in the IETF draft Signing HTTP Messages [12].

Security considerations. Client-signed requests provide stronger authentication
than mere token-based schemes. Signing of each client request effectively mitigates
session hijacking attacks by limiting damage only to a single request. A signing key
never leaves a clientwhichmakes stealing the keymuchmore difficult than stealing a
token that is not only stored on the client, but also repeatedly sent over the channel.
As often happens, higher security comes at a price of lower scalability and higher
complexity since a server needs to maintain a separate key for each user.

7.2.3 Delegated Authorization and Shared Authentication
Delegated authorization and shared authentication have become an integral part of
modern web security. The popular security protocols underlying delegated autho-
rization and shared authentication mostly instantiate the token-based authentica-
tion introduced earlier. Therefore, they share both advantages and disadvantages
of token-based authentication.

Delegated authorization. We consider a scenario where a user, or resource
owner, has stored some sensitive information on a server. The desire to separate
the login process on the server from the process of granting permissions to a client
application on the behalf of the user has stimulated the emergence of OAuth [44].
OAuth is a delegated authorization protocol providing third-party applications
(clients) with delegated access to protected resources on behalf of a user (resource
owner). Client side request signing in OAuth 1.0 enables client authentication and
message integrity, while OAuth 2.0 does not. Developers often fail to implement
OAuth correctly due to its ambiguity and complexity [13, 122, 131].

Shared authentication. OAuth 2.0 is used as an underlying layer for shared au-
thentication protocols and Single-Sign-On (SSO) systems. Prominent examples
are OpenID Connect [112], Facebook Login, and Sign In With Twitter. In such
schemes the user authenticates into a third party service (a Relying Party or RP) us-
ing a digital identity at an Identity Provider (IdP) of the user’s choice. However,
additional steps must be taken in order to use OAuth 2.0 for authentication. Se-
curity analyses of commercially deployed OAuth-based SSO solutions (i.e. popular
social login providers) [122, 130] have revealed various security and privacy issues.

7.3 REST Architectural Style and Security
So far this paper has focused on the security mechanisms commonly used to secure
RESTful services. This section elaborates on why none of the systems using such
mechanisms are strictly RESTful by analyzing the REST style and its constrains
from a security perspective. It is worth mentioning that the majority of RESTful
services actually fail to adhere to REST for reasons unrelated to security. Absence
of custom media types support and use of verbs in URIs are common examples of
such violations.
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The REST architectural style was introduced by Fielding in his influential dis-
sertation [35] and related paper [33] in 2000. The style is widely adopted andmany
popular web services, such as Twitter3 and LinkedIn4, haveRESTAPIs. The disser-
tation remains themost fundamental sourcewhen talking about the core principles
of REST.

7.3.1 Not Designed with Security in Mind

The REST style was proposed as an architectural standard for the Web and intro-
duced only the properties that seemed necessary for the Web at that time. Fielding
makes no attempt to address the question of security in REST. The words secu-
rity, authentication, and authorization are rarelymentioned in Fielding’swork. The
words encryption and signing do not appear at all.

According to Fielding [35], “REST emphasizes scalability of component inter-
actions, generality of interfaces, independent deployment of components, and in-
termediary components to reduce interaction latency, enforce security, and encapsu-
late legacy systems.” The claim that REST enforces security is neither justified in
the dissertation nor explained in any other literature related to REST.

When talking about scalability of theWeb, Fieldingwrites [35, Sec. 4.1.4.1] “since
authentication degrades scalability, the architecture’s default operation should be
limited to actions that do not need trusted data.” In modern Web, and especially
for REST APIs, the situation is reversed: some form of authentication is always
present. TLS is only mentioned as a connector type [35, Sec. 5.2.2], no encryption
on the message level is considered.

The REST architectural style does not incorporate security as one of its goals
and leaves it up to the developer to decide how security fits the six core principles.
The introduction of security components affects system behavior initially shaped
by REST constraints. Most of the constraints, such as client-server, uniform inter-
face, and layered system, are high-level and flexible enough to not interfere with
adopted security mechanisms. At the same time, the stateless, cacheable, and code-
on-demand constraints have several practical security implications. The security im-
plications of the relevant REST constraints are discussed in the following sections.

7.3.2 Stateless Constraint

Revisiting the definition. The stateless resource constraint is particularly prob-
lematic from a security perspective. The constraint is often misunderstood by
practitioners and overlooked in the scientific literature. According to Fielding [35,
Sec. 5.1.3], for a resource to be stateless “each request from client to server must con-
tain all of the information necessary to understand the request, and cannot take ad-
vantage of any stored context on the server.” Such a definition makes no exceptions
and, when followed to the letter, leaves no room for security mechanisms.

3https://dev.twitter.com/rest/public
4https://developer.linkedin.com/docs/rest-api
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Furthermore, [35] specifies that the “session state” (also referred to as “applica-
tion state”) should be stored exclusively on the client side; however, a definition
of session state is never given. A commonly used interpretation of the stateless re-
source constraint introduced in [108] differentiates between application state and
resource state. A resource state is defined as any information about the underlying
resource [108].

While the resource state belongs to the server, it still can be changed in response
to a client request. If we consider a user as a resource, then the balance of the user’s
bank account is a resource state that is changing with each performed transaction.
Similarly, usernames and passwords are also resource states that change over time.

Security implications. Most security components introduce additional resource
states. Stateless security protocols do not exist. It is very hard, if at all possible, to
prevent replay attacks without maintaining at least some form of client state on the
server side. Nonces (numbers used once), counters, and timestamps are examples
of such a resource state. All authentication mechanisms described in Section 7.2 in-
corporate one or more such components. Thus, web services utilizing these mecha-
nisms are not strictly RESTful.

Differentiating between application state and resource state can be difficult. For
example, security tokens are stored by the client, but are issued exclusively by the
server. The server must maintain the key(s) used to sign tokens, which introduces
more resource states.

The demand of “taking no advantage of any stored context on the server” is
impractical. For example, a common security practice of restricting the number of
login attempts made per specific account relies on the login history being available.

As pointed out by Fielding [35, Sec. 6.3.4.2], HTTP cookies fail to fulfill the
stateless constraint of REST. An example of such a violation is the use of cookies
to identify a user’s “shopping basket” stored on the server, while the basket can be
stored on the client side and presented to the server only when the user checks out.
This mismatch between REST and HTTP makes a huge part of the modern Web
not RESTful and implicitly deprecates cookie-based authentication for RESTful
web services.

When token-based mechanisms, such as JWT, OAuth 2.0, and OpenID Con-
nect are used, a server needsO(1) resource states to authenticateN users [39]. With
client request signing as in OAuth 1.0a and AWS, the server needs tomaintain a sep-
arate key for each client, thus havingO(N) resource states. Therefore, token-based
mechanisms can be considered stateless in a sense that there is no per-user or per-
session state when compared to client request signing given a substantial number
of clients. Although token-based authentication fits the REST style better then the
client side request signing, the latter is generally more secure as explained in Sec-
tion 7.2.

Additionally, it is possible to classify application state into two classes, security
insensitive and security sensitive, that must be treated differently. The server can-
not prevent the client from tampering with the data given to it, nor can the server
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directly protect data stored on a client frommalicious third parties. The latter puts
user privacy at risk if the data stored is security sensitive.

Even though the definition of the stateless constraint dictates that a client’s re-
questmust contain all of the informationnecessary to understand the request, sensi-
tive information should not be transferred unless absolutely necessary. All security
sensitive application states must belong to the server and be resource states.

Advantages and disadvantages. To evaluate immediate importance of stateless
resource constraint for modern security-aware applications, the advantages and dis-
advantages of the constraint must be revisited. According to Fielding [35], stateless
resource constraint induces the properties of visibility, reliability, and scalability.

The original argument for improved visibility [35] was that the server should
process a client request without looking beyond this request. The argument is valid
until security is involved. Let us consider an online store. If some items are added to
the shopping basket, the only allowed step should be a payment step, and not goods
delivery. To ensure this restriction, the user must have state within the system.

Additionally, intrusiondetection systems (IDS), anti-denial-of-service, and anomaly
detectionmechanisms aremore likely tomitigate attackswhen they have knowledge
of the state and the history of requests. If we consider security sensitive data such
as authentication tokens, the server unavoidably needs to validate the token, which
requires retrieval of the cryptographic keyused to generate the token. The step of to-
ken verification can also be seen as one that decreases visibility. The aforementioned
suggests that improvement of visibility can only be seen for security insensitive data.

The common belief is that maintaining client states on the server side can po-
tentially create a high load of sessionmanagement and degrade systemperformance.
However, storing clients states on the server side does not cause significant perfor-
mance problems for existing high load systems and Cloud services; a study of REST
session state [53] showed that the impact of the stateless resource constraint on scal-
ability and reliability of REST in the modern Web is insignificant.

Moreover, maintaining client states on the server side is a desired property in
many cases, for example personalized services, targeted advertisement, smart sug-
gestion systems, and IDS benefit from it. An alternative solution to scalability and
reliability issues is adoption of special software architecture styles, such as microser-
vices [32].

The stateless constraint puts significant limitations onhandling session synchro-
nization. In the example with the shopping basket, the problems occur when the
user has initialized a session on a mobile device and wants to continue the session
using the browser on a laptop. Storing session state exclusively on the client side
and not on the server makes it impossible to keep persistent state in such situa-
tions. Hence, current demand for client state synchronization negates the stateless
resource constraint of REST.



“thesis” — 2018/7/4 — 15:56 — page 117 — #117

7.3 REST Architectural Style and Security 117

7.3.3 Other Constraints Affecting Security

Cache constraint. The cachebility constraint is affecting security much less than
the stateless criteria, but the effect is still noteworthy. The definition of the con-
straint [35] states that the server responses must be explicitly marked as cacheable
or noncacheable. Of course, only actual caching of responses improves scalability
and network efficiency by eliminating identical repeating interactions. Caching of
server responses can be performed by intermediates, i.e. proxies and gateways, or
clients themselves.

Caching by intermediates has less value on themodernWebdue to an increasing
amount of encrypted traffic such as HTTPS traffic. As of February 2017, 52.8%
of the most popular websites implemented HTTPS [127]. When encrypted either
by TLS or on the message level, server responses are not cacheable by intermediate
proxies. Encrypted content cannot be cached unless the intermediates are allowed
to decrypt the traffic, which defeats the purpose of encryption in the first place.

Although caching by clients is not affected by encryption, it loses its importance
due to different reasons. Modern websites include large amounts of dynamic per-
sonalized content that cannot and should not be cached. In case of online banking
or online shopping the content (the bank account balance or availability of specific
items in the shopping basket) is dynamic and gets outdated fast. Such content is not
suitable for caching due to reliability reasons. Similarly, sensitive content should
never be cached for security reasons.

Taken together, encryption and personalized content dramatically reduce the
benefits of traditional web caching in general, and the importance of cache con-
straint of the REST style in particular. While the content marked as noncacheable
does not contradict the definition of the cache constraint (since the constraint only
requires proper labeling), it brings no actual benefit in terms of scalability or net-
work efficiency.

Code-on-demand constraint. In the code-on-demand paradigm the code for a
specific task is requested by the client, provided by a server, and executed in the
client’s context. As argued in [35], the code-on-demand constraint of REST im-
proves system extensibility, but also reduces visibility. Therefore, it is only an op-
tional constraint.

It should be noted that the code-on-demand constraint is relevant primar-
ily within the browser environment. In semantic web with machine-to-machine
communication and native clients consuming REST APIs, execution of external
JavaScript code in the native applications is currently uncommon.

An important security implication of the code-on-demand paradigm is an in-
creased attack surface on a client. Among the major security concerns are authen-
ticity of the received code and the client’s ability to limit the behavior of the code.
These problems have been studied for a long time and mitigation techniques, such
as sandboxing, Address Space LayoutRandomisation (ASLR), andData Execution
Prevention (DEP), are implemented in modern browsers. However, the problems
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still persist.

7.4 The Way Forward

7.4.1 Security Failure of REST
Themain goal of this paper was to asses how the REST style addresses security and
whether security mechanisms adhere to the style constraints. The study has shown
that the REST style fails to take security into account, or to explain security impli-
cations of the constraints. To fill the gap, we provided themissing security interpre-
tation of the relevant style constraints and made the following observations:

• Stateless resource constraint. The more security critical a system is, the more
resource states it is likely to have. Among authentication approaches, token-
based authentication most closely fits the stateless resource constraint. How-
ever, it is not entirely stateless.

• Cache constraint. Although formally the cache constraint (labeling of re-
sponses) is not directly affected by security mechanisms, the constraint loses
its meaning for security critical systems. Encrypted, dynamic, and personal-
ized content is not suitable for caching.

• Code-on-demand constraint. The optional code-on-demand constraint re-
duces security of the system by increasing the attack surface on the client side.

To be strictly RESTful and follow all the constraints as they were originally de-
fined, a system should neither deploy authentication nor store session identifiers in
HTTP cookies or headers. Since only the absence of security mechanisms allows
an entity to provide truly RESTful APIs, a bank claiming to have RESTful APIs
either has serious security problems or the APIs do not satisfy all the RESTful re-
quirements.

An important finding is that the concept of RESTful security is impossible. We
conclude that the strict REST style on one side and security mechanisms and se-
curity best practices on the other side are incompatible. We suggest that secure
applications trying to adhere to the REST style should never be called RESTful,
but REST-like, i.e. partially adhering to the REST style constraints. Although the
term REST-like does appear in some security specifications, such as OpenID Con-
nect [112], it has never been justified from a security perspective.

7.4.2 What to Do
The right security approach is system-specific and heavily dependent on the con-
text. In particular, the frameworks OAuth 2.0 and OpenID Connect rely on TLS
for confidentiality, integrity, and server authentication. These frameworks priori-
tize scalability over security because they use server signed tokens for client authen-
tication. The overall conclusion from the analysis is that systems with high security
requirements should deploy client signatures, even though it comeswith the cost of
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Figure 7.2: Making the right security decision.

reduced performance when compared to token-based approaches. Social login so-
lutions are both easy to support and convenient for users, but should be avoided if
privacy is a serious concern. OAuth should not be relied on for authentication and
needs to be combined with a component for authentication. Figure 7.2 contains a
flow chart showing how to choose the correct security architecture.

7.4.3 Future Research
Inoue et. al. [53] introduced an architectural style called RESTUS, which incorpo-
rates session state at the server-side as an additional constraint. RESTUS partially
addresses the security issues of the stateless resource constraint, but not the issues re-
lated to the cache and code-on-demand constraints. Similarly to REST, it does not
accommodate security. Future research should therefore concentrate on resolving
the existing conflicts. A natural progression of this work is to propose an architec-
tural style that incorporates basic security principles.
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Conclusion and Future Work

Answering RQ1. a) Do microservices have security concerns distinct from those of
SOA and distributed systems? b) If so, what is the overlap between microservices and
SOA/distributed systems security? What can be reused?

Conceptually, there is little difference between SOA and microservices. How-
ever, there is a practical difference in development and deployment approaches. Se-
curity concerns in microservices are indeed similar to those in SOA and distributed
systems. Paper I shows that although there are many similarities, SOA and SOA se-
curity are generally more complex than what microservices aim for. Microservices
are positioned as a lightweight and easy to start with architecture; microservice se-
curity should ideally follow the same principles.

As explained in Section 2.2.4, SOA security comprises of general security stan-
dards and multiple Web Services security standards, including XML security stan-
dards. However, microservices are not limited to web services and XML format
and can employ various communication protocols. Much of SOA security can be
reused for microservices given enough harmonization and porting effort, but may
feel out of place or be too complicated for the average microservice developer.

These results led us to look deeper into specific advantages and disadvantages of
microservice architecture, resulting in research questions number 2 and 3.

Answering RQ2. What are the security challenges on the path to microservice
adoption? How can these challenges be addressed?

There are several key security challenges on the path to microservice adoption:

• Automation of microservice security solutions on all levels is of critical impor-
tance because manual security provisioning and manual intrusion response
are infeasible on a large scale. Microservice networks consisting of hundreds
or thousands of nodes require automated securitymechanisms that scale well.
There is a need for tools and frameworks to improvemicroservice security, ide-
allywith open source code. We attempt to address this issue bydeveloping the
MiSSFire framework to enforceMTLS and security tokens with a self-hosted
PKI (Paper I), and designing theµGE intrusion response systemwith a game
theoretic approach (Paper III).

• Microservice security guidelines and standards are currently missing and rep-
resent a security challenge of its own. Formalization of microservice security
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principles and developers awareness of them is the first step towards more se-
cure microservice implementations. Such standards should be harmonized
with and reuse the existing and well-known security mechanisms and proto-
cols such as TLS andOAuth. However, the pitfalls of SOA andWS-* security
stack, namely unmanageable complexity, should be avoided. The issue of mi-
croservice security standards is not addressed in this thesis due to the global
nature of the problem; it requires community effort.

Answering RQ3. Can the microservice architectural style lead to better security?
If so, what are the opportunities enabled by it?

Microservice architecture can lead to better security because it facilitates defense
indepthbydesign, as shown inPaper I, andhas inherentbenefits of increased service
isolation and software diversity, as shown in Paper II. However, it is always possible
to build insecure systems independently of what architecture is adopted: microser-
vices are in no way a security panacea.

Open questions and future work. Plenty of open questions remain on the
topic of microservice security. Some open questions raised in the Papers I - IV are:
to what extent can arbitrary microservices benefit from hardening and diversifica-
tion; what security overhead is industry willing to accept; can neural networks be
used for microservice IRS; what is the best authorization solution for inter-service
communication; is automated splitting andmerging of microservices a feasible and
effective intrusion response.

Moreover, there is a lack of real-world statistically significant data on how
production-ready microservice networks are structured and how the attacks spread
in them. Such datasets are needed for testing and effectiveness evaluation of the fu-
ture security tools on simulatedmicroservice networks, e.g. evolving our automated
response system.

We believe it would be fruitful to design tools for automated microservice di-
versification and evaluate the effectiveness of the proposed IRS for real-world mi-
croservice networks.
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