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Preface 
 
The Norwegian Mother and Child Cohort Study (MoBa) is a pregnancy cohort study             
with over 100,000 children enrolled. Data was gathered through questionnaires          
mailed to the mothers, but also in the form of biological samples where more than               
15,000 trios (mother, father, and child) have been genotyped so far. 
 
Data collected by MoBa is sensitive and its access is therefore restricted to protect              
the privacy of the study participants. This can make it difficult (or even impossible) to               
access the data, not only for parents and the general public, but also for scientists               
and medical professionals. To solve this issue, it is necessary to provide access to              
the data in a manner that is high-resolution without compromising participant privacy. 
 
The MoBa data is multidimensional and contains longitudinal information on several           
phenotypes (such as height and weight) for the children, as well as data on certain               
variables for the parents. Based on the recorded variables, the MoBa cohort can be              
divided into various subgroups that can be studied separately or compared with each             
other. Furthermore, the genotyping data can be viewed at different scales: (i) genetic             
variants can be considered individually, (ii) in the context of their genomic location, or              
(iii) the entire genome can be considered as a whole. Finally, a good presentation of               
the data has to account for and take advantage of the complexity of the MoBa data. 
 
Hundreds of gigabytes of summary statistics can be generated from the genotyping            
data from MoBa. Depending on the use case, only a small subset of this data is                
relevant to present to a user at a given time point. In order to present these subsets                 
to the user quickly upon request, a bioinformatics system that can find and dispatch              
data in a short amount of time must be implemented. 
 
This thesis demonstrates how the issues related to large-scale sensitive data access            
and dissemination can be solved through a publicly available web application able to             
handle the associated data volumes efficiently. 
 
The source code of a prototype web application is available at github.com/ 
helse-data/mobavis, and a demo can be tested at helse-data.no/demo. 
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1. Background 
1.1. Scientific context 

1.1.1. Visualization of health data 
Numerous web pages provide online visualizations of health data, either as their            
main focus or as part of many types of data visualized. Examples include Our World               
in Data (ourworldindata.org), Gapminder (gapminder.org) and IHME       
(healthdata.org). These websites all have an international perspective, unlike the          
web application presented here, which deals exclusively with Norwegian data. In           
terms of scope, this places our initiative closer to websites like Wellbeing in Germany              
(gut-leben-in-deutschland.de). Additionally, online resources visualizing data from       
the UK Biobank are in development, including holtzyan.shinyapps.io/UKB_geo and         
big.stats.ox.ac.uk. 
 
For the visualization of child growth standards, the World Health Organization has            
published weight-for-length charts (who.int/childgrowth/standards/    
weight_for_length_height), showing a percentile distribution for weight against        
height. Weight-for-length is the predominant method used to assess the amount of            
fat tissue in children under the age of two [1]. 
 
The developed web application is anticipated to have three main user groups: 
 

● scientists (particularly geneticists) 
● medical professionals 
● parents 

 
Each group has different prior relevant knowledge and interest in health data. Of             
these groups, the scientists likely differ the most from the two other groups. Genetic              
data is mainly the domain of scientists, and both medical professionals and parents             
likely have as their primary interest health data describing the general population in a              
manner not relying directly on genetic information (e.g. the median weight for all             
children of a certain age in a given population). 
 
Optimizing the web application for different user groups can be done in different             
ways, for example by: 
 

● creating separate user interfaces for the different user groups 
● making assumptions about which part of the web application the different user            

groups are most likely going to use, and optimize the individual parts of the              
application for the specific user groups 
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1.1.2. Availability of health data 

Health data from individuals is sensitive and must be confined to a secure             
environment for the protection of privacy. Only non-sensitive derivatives can be           
made freely accessible, e.g. as summaries in scientific publications. Since most           
scientists cannot access sensitive health data directly, but through rather complex           
procedures, the effective usefulness of the original data for research is to a large              
extent limited to the research focus of scientists with primary access. 
 
Norwegian health data (and more generally Nordic health data) presently has           
several advantages. It has detailed information on the study participants, and data            
on the same individual from different data sources can be connected through            
national identification numbers. The collected health data is rich, of good quality, and             
the Norwegian population is genetically homogenous and well-educated. Finally, the          
response rate to health studies is high, and Norway was an early adopter of digital               
information systems. 

1.1.3. Cohort studies 
Cohort studies are studies where specific groups of people, referred to as cohorts,             
are followed uniformly, possibly over time, and different variables, such as mortality,            
are measured. Many different cohort studies exist, with differences both in the            
selection and number of participants, and in the variables analyzed [2]. Cohort            
studies are considered one of the most important elements of modern epidemiology            
[3]. 
 
The American epidemiologist Wade Hampton Frost introduced the term cohort study           
in 1935 [3], though the analysis of cohorts with the purpose of studying diseases had               
been conducted previously [4], including studies by the Norwegian physician and           
tuberculosis researcher Kristian Feyer Andvord, who may also have been the first to             
use the method [5]. 
 
Birth cohort studies follow participants from birth, with participation often continuing           
until adulthood. Biological samples, such as blood, are collected by many such            
studies [6–8]. A distinction can be made between pregnancy cohort studies and birth             
cohort studies, where the former starts the data collection already during pregnancy,            
while the latter collects data from birth and onwards [9]. Several countries have large              
birth cohort studies, including Norway [10], Denmark [11], China [12], and the            
Netherlands [13], were several thousand, to more than one hundred thousand,           
mother-and-child pairs are enrolled in the individual studies [14,15]. 
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1.1.4. The Norwegian Mother and Child Cohort Study 
The Norwegian Mother and Child Cohort Study (MoBa) is a pregnancy cohort study             
recruiting more than 100,000 pregnant women between 1999 and 2008 with the aim             
of studying causes of disease. In excess of 114,000 children were enrolled in the              
study, making it the world’s largest study of its kind [14]. Starting in the year 2000,                
over 75,000 fathers were also recruited to the study through the mothers [16–18].  
 
As the study progressed, 50 of the 52 Norwegian hospitals with more than 200 births               
per year recruited pregnant women to the study, making it a national study. A few               
smaller clinics and private practitioners were also involved in the study. 
 
To collect data, questionnaires were sent out to the mothers at particular stages of              
the pregnancy and ages of the child, starting from week 15 of the pregnancy (fhi.no 
/en/studies/moba/for-forskere-artikler/questionnaires-from-moba). Around week 17,    
when the pregnant women attended a routine ultrasound examination at the hospital,            
blood and urine samples were also collected. If the father of the child was              
accompanying the mother, from year 2000 onwards, blood samples were also           
collected from him. At birth, blood samples were collected from the mother and the              
child; the latter from the umbilical cord. 
 
Through the questionnaires, different variables were recorded, for both the children           
and the parents. Data on the pregnancy itself includes duration, whether it was a              
multiple birth, whether the parents smoked during the pregnancy, and data on the             
the amniotic fluid (the fluid surrounding the fetus during pregnancy). For the children,             
among the data recorded was the height and weight for 12 different ages (from birth               
to age eight), behaviour (e.g. crying and hyperactivity) and disease (e.g. common            
cold and diabetes). The questionnaires also asked for height and weight for both             
parents, though only at one time point for the fathers and before and after the               
pregnancy for the mothers. Furthermore, the fields of the questionnaire concerning           
the parents also included questions about their health, such as whether they had             
been diagnosed with various diseases, plus their mental health and diet. Variables            
not directly describing the health or body, such as income and drug use, were also               
covered.  
 

1.1.5. DNA, genomes and genotyping 
Genomics is the study of genomes - the complete DNA content of an organism, a               
copy of which is found within most or all cells of an organism. DNA (Figure 1) is an                  
organic molecule acting as a set of instructions directing the machinery of cells. It              
consists of two strands intertwined to form a double helix. Each strand has a              
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sugar-phosphate backbone and a sequence of the four bases adenine (A), thymine            
(T), cytosine (C), and guanine (G), attached along its full length. RNA is a closely               
related polymer that has a different sugar-phosphate backbone and the base uracil            
(U) in place of thymine. In regular DNA, each base pairs up with another base on the                 
opposite strand, forming a base pair. Only two types of base pairing are observed in               
normal DNA (base complementarity): A pairs only with T (U in the case of RNA) and                
C only with G. 
 

 
 
Figure 1: The structure of DNA. In this figure, the sugar-phosphate backbone is shown in               
green and the four different bases are coloured yellow, red, cyan and dark blue. 
Figure by Servier Medical Art (smart.servier.com/smart_image/dna), licensed under CC BY          
3.0 (creativecommons.org/licenses/by/3.0). 
 
Genes are specific sequences of DNA that can encode proteins. Each gene consists             
of codons, which are DNA sequences three bases in length (Table 1). A given codon               
has a particular meaning in the genetic code, but multiple codons have the same              
meaning. Start codons mark where genes begin and stop codons where they end,             
and one of each is found within any given gene. The other codons encode one               
particular amino acid. More than one codon can encode the same amino acid: for              
example, the codons CGC and AGA both encode the amino acid arginine. 
 
 

First 
base 

Second base 

U C A G 

U 

UUU 
Phe 

UCU 

Ser 

UAU 
Tyr 

UGU 
Cys 

UUC UCC UAC UGC 

UUA 

Leu 

UCA UAA 
Stop 

UGA Stop 

UUG UCG UAG UGG Trp 

C 

CUU CCU 

Pro 

CAU 
His 

CGU 

Arg 
CUC CCC CAC CGC 

CUA CCA CAA 
Gln 

CGA 
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CUG CCG CAG CGG 

A 

AUU 

Ile 

ACU 

Thr 

AAU 
Asn 

AGU 
Ser 

AUC ACC AAC AGC 

AUA ACA AAA 
Lys 

AGA 
Arg 

AUG Met / 
Stop 

ACG AAG AGG 

G 

GUU 

Val 

GCU 

Ala 

GAU 
Asp 

GGU 

Gly 
GUC GCC GAC GGC 

GUA GCA GAA 
Glu 

GGA 

GUG GCG GAG GGG 
 
Table 1: The genetic code. Each amino acid is in bold and referred to by the short form of                   
its name. AUG encodes for methionine (Met) in addition to being a start codon. The code in                 
this table refers to the codons as they are found on mRNA, where uracil replaces thymine. 
 
A protein is an organic molecule consisting of one or more chains of amino acids in                
an ordered sequence. The order of amino acids determines the structure and            
function of a protein. Before a protein can be made from a gene, a special type of                 
molecule reads (transcribes) the sequence of the gene and creates an RNA            
molecule, known as messenger RNA (mRNA), carrying the gene sequence          
information. Finally, a large molecular complex known as a ribosome creates an            
amino acid chain based on the mRNA by adding amino acids one-by-one. The order              
of which amino acids are added by the ribosome is determined by the sequence of               
codons in the gene encoding the protein. 
 
In all multicellular organisms, the DNA in a cell is organized in the form of               
chromosomes. Each chromosome is a highly compacted DNA molecule associated          
with various proteins. The human genome is organized into 23 chromosomes, where            
one copy of each is inherited from each parent. The chromosomes are further             
divided into somatic (chromosomes 1-22) and sex chromosomes (X and Y). While            
females have two copies of their sex chromosome (X), like they have for each              
somatic chromosome, males have one copy of the X chromosome and one copy of              
the Y chromosome. 
 
The DNA of a cell can change, for instance by the alteration of a single base pair in a                   
DNA molecule, by deletion of a sequence and loss or duplication of entire             
chromosomes. A change in the sequence of DNA is known as a mutation. The              
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alteration of a single base pair is a common form of mutation, and in any given                
population, the base pair at a given position of the DNA can vary between              
individuals. Mutations can have physical consequences, for example when one base           
pair is substituted with another within a codon. If the new codon encodes a different               
amino acid, the mutation is called a missense mutation. Since a protein resulting             
from a missense mutation has a different amino acid sequence compared to the             
original, it may function differently, or not at all. 
 
Some mutations occur after a person was conceived (de novo mutations) and will             
most likely be present only in a few cells in the body, while other mutations are                
inherited from one or both parents. Mutations vary significantly in how common they             
are in a population. Of mutations occurring in a single base pair, the more common               
ones are known as single-nucleotide polymorphisms (SNPs, Figure 2). The four           
possible bases of a SNP are known as alleles, of which typically only two are               
common in a given population [19]. SNPs are one of the most common forms of               
genetic variation in the human genome [20], and the type of genetic variation             
considered in this thesis. Rare single-point mutations are often referred to as            
single-nucleotide variants (SNVs). 
 

 
 
Figure 2: A single-nucleotide polymorphism (SNP). In this figure, one of the DNA strands              
is shown in green and the other in red, and the individual bases are labeled with their                 
one-letter abbreviations. The panels show the two different alleles of a SNP. When looking              
at the red strand, allele 2 has the base T at the same position where allele 1 has the base C.                     
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As required by base complementarity in DNA, the complementary bases on the green             
strands are also different for the different alleles. 
(Figure by David Hall, published under the GNU Free Documentation License) 
 
The genotype of an individual is their precise DNA sequence, which, for a given              
chromosome, is the particular base pair they have at each position. Since humans             
normally have two copies of each somatic chromosome, an individual’s genotype for            
a given SNP comprises two sets of alleles: one allele on the copy of the               
chromosome inherited from the father and one allele on the copy of the chromosome              
inherited from the mother.  
 
For a given SNP, the frequency of the least common base is called the minor allele                
frequency (MAF). More than 80 million SNVs in the human genome have been             
reported, regardless of MAF [21]. A reference genome has been constructed for            
humans [22], and the base of a SNP that is identical to the base found in the                 
reference genome is referred to as the reference allele and is labeled A. The other               
base is referred to as the alternative allele and is labeled B.  
 
Individuals with two copies of the same allele are referred to as homozygous and              
individuals with two different alleles are referred to as heterozygous. With this            
terminology, the three possible genotypes for a given SNP are: 
 

● AA - the individual is homozygous for the reference allele  
● AB - the individual is heterozygous 
● BB - the individual is homozygous for the alternative allele 

 
Linkage disequilibrium (LD) is a form of correlation between alleles in a genome. It              
accounts for the fact that the inheritance of genetic material from parents is             
non-random: genetic material is inherited chromosome-wise. Linkage disequilibrium        
can be measured by the square of the correlation coefficient (r2) between SNPs in a               
given cohort [23]. A haplotype is a stretch of DNA on a single chromosome inherited               
from one parent, so all alleles of a haplotype are inherited together. 
 
Meiosis is the process where precursor cells divide to form sperm or egg cells.              
During meiosis, genetic material is exchanged between chromosomes through the          
process of recombination. This breaks the inheritance linkage between neighbouring          
regions on a chromosome where the recombination occurred. Thus meiotic          
recombination affects the genetic diversity within a population by shuffling around           
genetic elements, creating novel genetic combinations [24]. The recombination rate          
is measured in units of centimorgans per megabase (cm/Mb), where 1 Morgan is the              
distance between two points on a chromosome for which the expected number of             
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genetic recombinations occuring on the sequence between them in a single meiosis            
event is equal to one [25]. 
 
Whereas DNA sequencing determines the full order of nucleotides in the DNA,            
genotyping establishes how a specific DNA sequence in the genome of an organism             
compares to a reference sequence through the evaluation of specific SNPs. On            
average, every 300th base pair in the human genome is a SNP , thus genotyping can               1

be much more focused in scope compared to DNA sequencing while still covering             
many of the ways the DNA of an individual can differ from that of others. 
 
Through linkage disequilibrium, the alleles of SNPs in the same haplotype can be             
imputed. For a given population, the stronger the linkage disequilibrium within a            
haplotype, the larger the probability that the genotype of a SNP will allow predicting              
the alleles within this haplotype. It is hence possible to infer the alleles of SNPs               
within a haplotype from the genotyping of haplotypic markers. Consequently,          
genotyping requires fewer resources and is less expensive compared to DNA           
sequencing while providing a good coverage of common variants. Unless specifically           
targeted by the genotyping array, rare and de novo variants are however not             
accessible. So far, a randomly selected subset of 15,000 trios (mother, father, and             
child) of the MoBa participants have been genotyped. For imputation, the IMPUTE2            
software tool was used (mathgen.stats.ox.ac.uk/impute/impute_v2.html), and SNPs       
with an imputation score greater than 0.7 were considered of high imputation quality.             
In the resulting genotypes, more than 98.5% of the alleles are imputed, with the              
exact percentage varying from chromosome to chromosome.  
 
A genome-wide association study (GWAS) evaluates the association between the          
genotype of individuals and their phenotype. The first GWAS results were published            
in 2005-2007 [26]. Such studies results in a list of effect sizes and p-values that               
describe the association of a given SNP with the phenotypic variable under            
consideration. In this thesis, the additive model is used for the association. In this              
model, the mean of a phenotype increases by c for individuals having a single copy               
of a so-called effect allele (AB) compared to those having none (AA), and by 2c for                
those having two copies of that allele (BB). 
 
For the MoBa study, association p-values were not available until late in the thesis. 

1.1.6. Visualization of GWAS data 
1.1.6.1. Manhattan plots 

Manhattan plots are scatter plots where the association p-values of individual SNPs            
are plotted against chromosomal coordinates (Figure 3). The p-values are          

1 ghr.nlm.nih.gov/primer/genomicresearch/snp 
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transformed with the formula -log10(p ), so the haplotypes with the most significant            
associations appear as vertical columns on the plot. 
 
Although variations are found in the literature, 5 × 10-8 is widely accepted as              
genome-wide p-value significance threshold and is indicated by a horizontal line on            
the Manhattan plot. Another, lower threshold that can be encountered in the context             
of GWASs is the suggestive genome-wide significance threshold. It may e.g. be            
equal to 1 × 10-5, and is also represented by a horizontal line in the plot. With the                  
advent of very large GWASs, the usage of the suggestive threshold decreased and             
instead more stringent thresholds further controlling for multiple hypothesis testing          
are displayed on Manhattan plots (Figure 3). 
 

 
Figure 3: Manhattan plot. The negative of the base-10 logarithm of association p-values of              
a GWAS are plotted against chromosomal coordinates. SNPs are coloured according to            
which chromosome they belong to. Several SNPs are mentioned by name in the plot. Two               
horizontal lines have been drawn for -log10(p) greater than 7.5 and 11, representing two              
significance thresholds for the study. Figure by Elliott et al. [27] with changes (label              
removed), licensed under CC BY 4.0 (creativecommons.org/licenses/by/4.0). 
 

1.1.6.2. Quantile-quantile plots 
In quantile-quantile plots (QQ-plots), the quantiles of two distributions are plotted           
against each other (Figure 4). If the two distributions are similar, the points of the plot                
will be positioned along the diagonal. 
 
For GWASs, QQ-plots are used for quality control: the quantiles of expected            
association p-values are plotted against the quantiles of observed p-values.          
Deviations from the diagonal for the majority of p-values indicates issues with the             
calibration of p-values. On the other hand, deviations from the diagonal for very             
small p-values are illustrative of significant association p-values. 
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Figure 4: Example QQ-plot from the literature. Observed association p-values are plotted            
against expected association p-values. Here, the p-values deviate from the diagonal at            
significant p-values only (observed p < 10-7.5). Figure by Elliott et al. [27], without changes,               
licensed under CC BY 4.0. 

1.1.6.3. Regional plots 

Like a Manhattan plot, a regional plot (or locus zoom plot) displays association             
p-values against chromosomal coordinates, but this time restricted to a locus (a            
specific region of the genome) centered around a given SNP of interest, highlighted             
with a diamond (Figure 5). 
 
Where a Manhattan plot displays the entire genome at once, a regional plot thus              
provides a resolution in the x-axis allowing the distinction of individual SNPs. The             
level of linkage disequilibrium between SNPs in the locus and the SNP of interest are               
shown in color. 
 
In addition, a regional plot shows known gene coordinates and the recombination            
rate in the chromosomal context of the SNP being studied. 
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Figure 5: A regional or locus zoom plot for a region on human chromosome 2. The                
association p-values are plotted in the upper panel against chromosomal coordinates. The            
LD relative to two reference SNPs (diamond) is represented by a colour scale from yellow to                
dark red. The recombination rate is plotted in the lower panel, where the coordinates of               
genes are also indicated by horizontal bars. Figure by Bycroft et al. [28], without changes,               
licensed under CC BY 4.0. 

1.1.7. Generated summary statistics of the MoBa data 
Summary statistics on the MoBa data were generated for this master’s project by the              
Johansson Group at the University of Bergen. They were generated on the HUNT             
Cloud (ntnu.edu/huntgenes/hunt-cloud), which provides a secure infrastructure for        
sensitive data. Annotation files, one for each chromosome, storing information on all            
SNPs included in the MoBa data were also generated. The annotation files are             
sorted by chromosomal coordinates and contain information on each SNP such as            
the chromosome it resides on, chromosomal coordinates and whether it was imputed            
or genotyped. Data that describes a number of individuals below ten was omitted to              
protect the privacy of the individuals. 
 
The generated summary statistics can be divided into two categories: data with and             
data without genotype information. In the first category, the phenotypes are stratified,            
i.e. grouped, by SNP genotype. In the second category, the data comprises            
summary statistics for the phenotypes without any form of genotype information. The            
phenotypes stratified by genotype comprise a volume of several tens of gigabytes            
compressed, whereas the phenotype summary statistics (i.e. the data without          
genotype information) are less than 40 megabytes uncompressed. Both categories          
of data are stratified by sex.  
 
The data on the children is longitudinal and covers the phenotypes height, weight             
and body mass index (BMI). The number of mothers answering the questionnaires            
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varied from age to age, and the number of children for which data was obtained at a                 
given age are included for both categories of data.  
 
In part due to time constraints, the generated summary statistics came in three             
different formats; one format for all the data with genotype information, and two             
formats for the phenotype summary statistics. 

1.1.7.1. Phenotypes stratified by genotype 

Generated data on the phenotypes stratified by genotype was output in the form of              
plain text files. All the genotyped SNPs and SNPs whose imputation has a quality              
score above a certain threshold (0.7) were included. Data on the parents and             
association p-values are not included. Many SNPs have a reference SNP ID number             
(rs number), and have names starting with rs followed by their rs number. For the               
purpose of this project, SNPs without rs numbers were given unique internal            
identifiers that included their chromosome, chromosome position, reference allele         
and alternative allele, all separated by underscores. For example, a SNP at position             
154,729,900 on chromosome 1 with reference allele T and alternative allele G is             
named 1_154729900_T_G. 
 
For each sex, age, and genotype, three summary statistics are generated for the             
phenotypes:  
 

● median - the 50th percentile, the point where one half of the sample population              
with the given genotype falls above and one half falls below 

● an inter-quantile based estimation of the (SEM) - [29,30], the        ±  √n
1.58 IQR

   

standard error of the mean of the phenotype of the individuals with the given              
genotype 

● 2.5th and 97.5th percentiles - marks the area where 95% of the individuals of              
the cohort with the given genotype falls within 
 

1.1.7.2. Phenotype summary statistics 

The variables of the phenotype summary statistics (Table 2) come in two categories: 
continuous (e.g. pregnancy duration) or discrete (e.g. whether or not the birth was 
premature). For the the continuous variables, every fifth percentile from the 5th 
percentile to the 95th percentile was calculated (and for each age for the longitudinal 
variables). Conditioned statistics were also generated (Table 3): for each continuous 
variable (e.g. height), each participant was placed in several groups based on which 
percentile they belonged to for a set of other variables (such as weight), and 
summary statistics were calculated for each such group. 
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Data on the parents are also included in the phenotype summary statistics; including             
height, weight and BMI, but also information on income, smoking during pregnancy            
and drug use. Additional information includes the pregnancy duration and whether or            
not the child was born prematurely. For some variables, there was a checkbox on              
the MoBa questionnaire to indicate if something was the case (e.g. if the child was               
fed breast milk at an of age of 6 months), but there was no checkbox to indicate if it                   
was not, such that it is unknown whether the the question was overlooked, or if “no”                
was the correct value. For variables that had a “no” option, the number of missing               
values was included in the statistics. 
 
The phenotype summary statistics were generated in two batches: statistics for the            
continuous variables were generated early in the thesis, and statistics for the the             
discrete variables later in the thesis. The first batch contained variables describing            
the children and both parents, while the later batch mostly contained variables            
describing the mother. 
 
 Child Mother Father Pregnancy 

Height* 
 

Height Height Duration 

Weight* Weight Weight Amniotic fluida 

BMI* BMI BMI Premature birthb 

Breast milk**   Caesarean 
sectionc 

* from birth to age eight 
** from birth to 18 months of age; either “yes” or “no value” 
a whether the amount of fluid was less or more than normal, and whether it was malodorous                 
or infected 
b yes or no 
c whether the Caesarean was elective, an emergency, unspecified, or “no value” 
 
Table 2: Sample of variables recorded by MoBa questionnaires and included in the             
generated summary statistics. Discrete variables have grey backgrounds. Variables with          
longitudinal data are marked with one or more asterisks. 
 
 

Variable Condition variable Condition 

Weight Height at birth < 5th percentile 

< 10th percentile 
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< 25th percentile 

25th to 75th percentile 

> 75th percentile 

> 95th percentile 

Height at 6 weeks of age ... 

Height at 3 months of age ... 

... ... 

Height Height at birth ... 
 
Table 3: Conditioned variables. In this table, the height of children is used as an example                
of a conditioned variable. For each conditioned variable, a second variable is used as the               
condition. Highlighted in blue is the weight for the group of children whose height at birth was                 
less than the 25th percentile. 

1.1.8. Storing and retrieving health data 
To manage large amounts of data efficiently, some form of database system is             
needed. The speed of a database system depends on both software and hardware.             
Two common types of database architectures are relational databases and          
key-value stores. In relational databases, the data is stored in tabular form, and the              
user requests rows or columns. Key-value stores have their data stored in the form              
of pairs of keys and values, and the user requests a key to retrieve the associated                
value. Memory-mapped files are an alternative to database software. Here a file is             
loaded into the computer’s memory, so that the file contents can be read directly              
from memory rather than from the computer’s persistent data storage. 
 
A database needs a storage medium, and different storage media have different            
read speeds and different data persistence. Three commonly used storage media           
today are random access memory (RAM), hard disk drives (HDDs) and solid-state            
drives (SSDs). RAM is faster than both SSDs and HDDs, but is a form of volatile                
memory and loses its data when powered off. RAM can be converted into a so-called               
RAM drive that acts as a regular storage medium as long as the computer is               
powered on. SSDs and HDDs are both non-volatile forms of memory and retain their              
data when powered off. SSDs are significantly faster than HDDs, but also cost             
significantly more per unit of storage capacity. 
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1.2. Main challenges 

Data access 
and participant 
privacy 

A bioinformatics framework that provides access to MoBa data         
should make the data available at a fine level of granularity to            
maximize its usefulness, without compromising the privacy of        
the MoBa participants. It should be intuitive and easy to use for            
parents, medical professionals, and scientists. 

Data complexity The informatics framework developed should account for the        
complexity of the MoBa data, including visualizing data on         
different subgroups of the MoBa cohort. It should present the          
genetic data at the different levels of the human genome:          
genome-wide level, locus level, and SNP level. Methods for the          
visualization of multiple longitudinal phenotypes     
simultaneously, which could help spot health trends, should be         
evaluated. 

Data 
management 

Large volumes of summary statistics were generated from the         
MoBa data, presenting challenges for its management and the         
responsiveness of the interface. Requested subsets of the data         
should be displayed by the informatics framework in a         
reasonable amount of time, not leaving the user waiting and          
discouraging them from further data queries. 
 

1.3. Proposed solutions 
Develop a prototype web application addressing the above problems as detailed           
below. 
 

Data access 
and participant 
privacy 

By relying on summary statistics, MoBa data are made         
accessible to the different user groups without compromising        
patient privacy. The summary statistics are not sensitive as         
they cannot be used to identify individuals represented by the          
data. By allowing the refinement of the summary statistics         
according to covariates, the data can furthermore be navigated         
at fine levels of granularity.  
 
By presenting the data in a web application with an intuitive           
user interface, navigating multidimensional data is also       
simplified. The user interface is designed with all three user          
groups in mind. 
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Data complexity Well-established standard methods for the visualization of       
genetic data at the genome-wide (Manhattan plots) and locus         
levels (regional plots) exist and are implemented for the web          
application. At the SNP level, the phenotypes stratified by         
genotype are plotted against age in a line chart.  
 
Summary statistics for subgroups of the MoBa cohort are made          
accessible through and visualized in the web application. 
 
Different visualization methods will be evaluated for their ability         
to show multiple longitudinal phenotypes in the same plot in a           
meaningful way. 

Data 
management 

Different database software and different types of data storage         
hardware are compared for their suitability for storage and         
retrieval of the generated MoBa summary statistics. Of        
particular importance is the effective read speed of the         
combined software and hardware system. 

 

2. Methods and tools 
2.1. Server 

The web application is deployed on a Lightsail virtual private server provided by             
Amazon Web Services (AWS, aws.amazon.com) running Amazon Linux, managed         
through the Secure Shell client PuTTY. The server is hosted on SSDs, providing fast              
storage for the MoBa summary data. A web domain was purchased for the             
application and a Transport Layer Security certificate was obtained free of charge            
from the certificate authority Let's Encrypt (letsencrypt.org) to enable encrypted          
(HTTPS) communication with the web application. The summary statistics was          
uploaded to the LightSail instance using WinSCP, and is accessed via the file             
system on the instance. No sensitive data is stored on the server. 
 
The two server softwares Glassfish and Apache Tomcat 8 were used for the web              
application. Whereas Apache Tomcat was run on an online web server, Glassfish            
was run locally on the computer where the web application was developed, and             
made it possible to see how changes to the code affected the application without              
having to deploy it on the online server. During deployment of the web application, a               
WAR file is first built from the project source code and uploaded to the Lightsail               
instance. The WAR file contains all the code of the web application, but none of the                
data to be visualized. On the Lightsail instance, the WAR file is deployed on an               
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Apache Tomcat 8 running on the instance, and the web application is accessible             
over the Internet through HTTPS requests.  
 
New versions of the web application are deployed by stopping the Tomcat server,             
deleting the files of the previous deployment and then restarting the server. It is              
possible to deploy a new version without restarting the Tomcat server, but this often              
leads to memory leaks on the server.  
 
The internal routing of HTTPS requests in the Linux operating system was modified             
to make port numbers redundant in the URL of the web application, since the              
Tomcat server by default only listens to certain port numbers that differ from the              
standard for both HTTP and HTTPS. The settings of the Tomcat server and files              
specific to the web application were configured so that an attempt to establish an              
HTTP connection with the web application automatically results in an HTTPS           
connection instead.  

2.2. Back end 
The web application (see Figure 6 for an hierarchical overview) was written in the              
programming languages Java and JavaScript. Visualizations are generated by the          
JavaScript code, which is run in the web browser. Server-side, Tomcat runs the Java              
code, which operates the database system and dispatches the data from the server             
that the JavaScript code should display. It also sets up the user interface, which is               
ultimately rendered by the browser. Styling of the web application, i.e. the            
configuration of the appearance (such as colour) of individual user interface           
elements, was done using the Cascading Style Sheets (CSS) extension Sass. 
 
JavaScript Object Notation (JSON) is used for the communication between the Java            
code and the JavaScript code, which stores data in the form of key-value pairs. A               
special Java class stores JSON objects, and special JavaScript script (known as a             
connector) registers when new JSON objects are stored in the Java class and             
passes on the JSON objects to other JavaScript code, such as the code for a plot.  
 
For communication from the JavaScript side to the Java side, a Java class can              
create a JavaScript function callable from the JavaScript code that can pass            
information from the JavaScript code to the Java code. This way, the Java code can               
be notified of events such as the user clicking on a plot. 
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Figure 6: Hierarchical overview of the prototype web application and its server            
environment. Amazon Web Services provides the hosting of the web server, a Lightsail             
virtual private server. The virtual private server hosts the database files and supporting index              
files and runs Apache Tomcat 8 in the same environment. Tomcat executes the web              
application, which has Vaadin as its fundament and is programmed in both Java and              
JavaScript. 
 
The source code for all of the web application was developed using the integrated              
development environment (IDE) NetBeans, including the styling. Apache Tomcat and          
Glassfish are both integrated within NetBeans, such that either software can be            
launched directly from within the IDE, which also builds the WAR files deployed on              
Tomcat 8 on the AWS server or on the GlassFish server locally. Software             
dependencies were handled using Maven, also integrated within NetBeans. 
 
Appearance and performance of the web application was mainly tested in Google            
Chrome, and occasionally in Firefox and Opera. The fundament of the web            
application is provided by Java framework Vaadin (Figure 6). It is the Vaadin code              
that is initiated by the web server and that must itself initiate the rest of the code of                  
the web application, either directly or indirectly. JavaScript code can readily be            
integrated with Vaadin and extend the functionality of the framework. This makes it             
possible to include existing JavaScript libraries directly in Vaadin applications,          
including plotting libraries and other visualization tools. 
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The Java code is highly modular, and each visualization (such as for the SNP level               
or the Manhattan plot) is given its own Java class. An instance of a controller class                
storing the SNP currently selected by the user is passed around to the different              
visualization instances, so that the selected SNP is not reset when a different             
visualization is selected. The controller object also allows the code in a visualization             
class to change which visualization is currently active and displayed to the user. 
 
The Java database libraries RocksDB (rocksdb.org, a key-value store) and SQLite           
(sqlite.org, a relational database) were evaluated for their suitability for the web            
application, particularly for the genotyping data. For both SQLite and RocksDB,           
database files containing genotyping data from MoBa were created, with one file per             
chromosome. The SQLite files were provided early in the thesis by the Johansson             
Group to provide a starting point for the thesis. Later, a new version of the               
genotyping data were provided in plain text files, from which RocksDB database files             
were created. The SQLite and RocksDB database files covered similar size ranges,            
with the SQLite files ranging from 4.88 to 31.4 GB in size, and the RocksDB files                
from 3.81 to 17.6 GB. Because of the time and effort it would take to create                
RocksDB and SQLite based on the same underlying data, such files were not             
created, and the database files containing the genotyping data were used for            
performance comparison within the web application, but not for benchmarking of the            
database libraries. 
 
For all benchmarking, a HP Envy 700-306no stationary computer running Windows           
8.1 64 bit with 8 GB RAM, an Intel Core i5 4460 processor (four cores with a speed                  
of up to 3.2 GHz), and an NVIDIA GeForce GTX 770 graphics card with 2048 GB                
GDDR5 memory, was used. 
 
Database benchmarking was done outside of the web application with randomly           
generated data. For the random data, a set of 100,000 pairs of keys and values in                
the form of random text strings were generated. The size of the keys and values of                
the randomly generated strings were intended to be similar to those of the IDs of               
SNPs and the values stored, respectively. RocksDB and SQLite databases with           
different numbers of entries were created from the same subset of the randomly             
generated data, ranging in size from 1-10,000 entries (the latter corresponding to            
230-250 megabytes of database file size) were used for benchmarking. 
 
For use within the application, both database libraries were integrated directly within            
the Vaadin code, and do not run as separate applications on the web server. They               
are both supported by an index system that identifies which chromosome a given             
SNP resides on, so that the database library can query the correct database file              
(Figure 7), if the SNP is requested by its rsID.  
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The index system consists of a master index that points to the other index files, with                
each index file storing which chromosome a range of SNPs belong to, a range              
defined by their rs numbers. All indexes are numerically sorted, meaning that a given              
index file for instance can store which chromosome each SNP with an rs number              
between 20,000 (rs20000) and 40,000 (rs40000) resides on. In practice, since not            
every SNP with an rs number in a certain range is likely to be present in the MoBa                  
data, the actual ranges of the indices are irregular in the current implementation,             
necessitating a master index.  
 
If the user inputs a chromosome and a position instead of the ID of the SNP, the                 
annotation file for the input chromosome is read line by line until either a SNP with a                 
matching position is found, or the position of the SNP on the line of the file currently                 
being read is beyond the input position. If a matching SNP is retrieved from the               
annotation file, its ID is used to retrieve its data from the database system as               
previously described. If a SNP lacks an rsID and is requested by its unique internal               
identifier (for example 21_28849120_G_C), the chromosome is included in its ID and            
the database system already knows which database file to query.  
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Figure 7: A request in the database system. When a user requests a particular SNP               
through the user interface (rs25000 in this case), the database system of the web application               
searches the numerically sorted master index for the correct index file. The index file, also               
numerically sorted, is then searched for the name of the SNP itself. The index file provides                
the chromosome the SNP is located on and hence which database file the database library               
should query. Data stored on the SNP in the database is then returned for utilization by the                 
rest of the web application and ultimately presented to the user. Unlike in this figure, the                
ranges of the index files in the actual web application are not predictable. 
 
Two methods were used to store and retrieve the phenotype summary statistics. The             
first method was used for the early batch of summary statistics containing continuous             
variables, while the later method was used for the later batch containing discrete             
variables. The first method is the simplest, and stores data in plain text files that are                
parsed by the application, which then loads the parsed data in-full into memory. The              
second method is more complicated and relies on memory-mapped files. An           
Application Programming Interface (API) to query the memory-mapped files was          
made available by the Johansson Group, and implemented allowing the web           
application to query these files. Time did not permit the evaluation of whether one of               
the methods were preferable for storing MoBa data for the web application. Since the              
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data stored in the two different formats also is different, both methods are in use by                
the current implementation web application. 
 
For the visualization at the SNP level, the API of the dbSNP database [20] is               
automatically queried when a SNP is selected by the user through the interface. The              
request returns a JSON object that is parsed and searched for information of             
interest, such as which locus the SNP resides in by dbSNP’s definition. 

2.3. User interface 
The user interface was built using elements provided by the Vaadin framework.            
Vaadin provides a range of user interface elements (referred to as components),            
such as buttons, drop-down lists, and input fields. Several component can contain            
other components, a property making the Vaadin interface highly modular as           
components can be programmatically added, removed, or substituted on the fly as            
needed.  
 
In a Vaadin application, components are organized by a type of components known             
as layout components, which organize other components in the user interface by            
placing them side by side vertically or horizontally, or in a grid. The tab sheet               
component (Figure 8) organizes content in the form of tabs, with each tab holding              
another component. In the web application presented here, a tab sheet rather than a              
layout component acts as the root component and fills the page in the web browser.               
The data with genotype information and the phenotype summary statistics are given            
two separate tabs (the outer tabs) in this tab sheet. Each of these two tabs in turn                 
contain a new tab sheet, with each of their tabs (the inner tabs) having a particular                
visualization component as its content. Each visualization component consists of one           
or more plots and a tailored interface that lets the user manipulate the plots and               
select which data to visualize. 
 

 
Figure 8: The tab sheet component in Vaadin. Each tab contains another component,             
such as another tab sheet. 
 
No particular design choices were made for the user interface in terms of optimizing              
it for the three user groups, though the two outer tabs do to some extent emulate two                 
separate user interfaces: the tab for data with genotype information is most relevant             
for scientists, while the tab for phenotype summary statistics is most relevant for             
medical professionals and parents. 
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As (i) permission was not obtained from the owners of MoBa to make summary              
statistics from the study available, and (ii) the genotyping data was unpublished, a             
landing page with a password feature was implemented to prevent unauthorized           
access to the data through the AWS server. 

2.4. Visualizing data in the web browser 
All visualizations in the web application are rendered in the web browser by             
JavaScript libraries. Thus, only the data to be visualized is sent from the server to               
the client, and not any graphics. Several JavaScript libraries are used: the regional             
plot is implemented using the library LocusZoom.js [31] and LiteMol [32] is used to              
allow the user to visualize the 3D structure of proteins within the application. All other               
visualizations are implemented with the use of the open-source JavaScript library           
plotly.js (plot.ly). 
 
An important aspect of the JavaScript libraries used is that they are interactive, so              
that the user can quickly and intuitively adjust the way the data is being presented,               
and interact with it. Plotly.js was chosen among five free interactive JavaScript            
plotting libraries considered. It supports zooming and panning, it does not depend on             
other JavaScript libraries and provides an extensive selection of plot types. It is built              
on top of d3.js (d3js.org) and stack.gl (github.com/stackgl), and is under active            
development. 
 
As association p-values from MoBa were not available until late in the thesis,             
p-values from other studies were instead used for the development of the Manhattan             
plot and the regional plot. For the regional plot, p-values from a type 2 diabetes               
GWAS performed by the DIAbetes Genetics Replication And Meta-analysis         
(DIAGRAM) Consortium was used [33]. The data from this study was store online in              
a format that meant it could be requested directly from LocusZoom.js; none of this              
data was stored on the server. LocusZoom.js supports using own data sources, such             
that the library is ready to use association p-values from MoBa. 
 
The development of the Manhattan plot used a dataset from the GIANT BMI Exome              
Array containing more than 246,000 SNPs [34]. This dataset was stored in a plain              
text file on the server and parsed and loaded into memory by the web application.               
Using MoBa p-values for the Manhattan plot is a simple matter of storing them in a                
plain text file with the same format used for the GIANT BMI Exome Array data. 
 
Given the large number of SNPs expected to have their association p-values plotted             
in a single Manhattan plot (up to 10 million or more), the plot performance for large                
number of data points is important. Therefore, the Manhattan plot was created with             
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the WebGL option for the Plotly scatter plot, which allows plotting more data points              
with better performance, rather than the regular Scalable Vector Graphics (SVG)           
option. 
 
The performance of the WebGL option was further benchmarked with randomly           
generated mockup data to see how many data points it could maximally handle while              
retaining usable interactivity and without taking more than a handful of seconds to             
render. 3D scatter plots were also created with plotly.js to test the possibility of              
having Manhattan plots for multiple phenotypes in the same interactive plot. For the             
longitudinal phenotype summary statistics, an input form was implemented that          
enables the user to input data to overlay the MoBa data in the plot. Extra CSS styling                 
was added to allow the highlighting of user input fields, used to indicate problems              
with input from the user (such as a negative age). 
 
Three general methods were considered for the visualization of two longitudinal           
phenotypes simultaneously: (i) using parameterization, (ii) plotted per age, and (iii)           
plotted against all ages. With parameterization, the individuals studied can be           
divided into different groups, for example by genotype. At each age point, one or              
more statistics (e.g. median) are calculated for the groups for the two phenotypes             
and the resulting statistics are used as x and y coordinates on the plot (Figure 9).  
 
For a single age, binning is used on one axis while percentiles are used on the other                 
(Figure 10). Non-overlapping ranges are created for the binned phenotype, and for            
each bin, the median and lower and an upper percentiles are calculated for all the               
individuals in that bin. When showing all ages at once, without parameterization, a             
specific subgroup of individuals is followed at a time (Figure 11). The group is              
defined by its statistics for one phenotype (such as how their height compares to the               
rest of the population), and the development of another (such as weight) is followed              
longitudinally in the plot. Due to time constraints, no summary statistics were            
generated for any of the methods, nor were visualizations created in the web             
application. 
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Figure 9: Visualizing two phenotypes simultaneously using parameterization. The plot          
follows the longitudinal development of three groups of individuals, for example grouped by             
the three different genotypes of a SNP. For each line, four data points correspond to four                
different ages. The four data points could for instance have the group median for height and                
weight as x- and y-coordinates, respectively. 
 

 
Figure 10: Visualizing two phenotypes simultaneously using binning and percentiles          
for a given age. In this plot, the heights are binned while weights are are represented by                 
percentiles. The vertical bars represent the range of the weight between the 10th and 90th               
percentiles at a given height, the central dot is the median, and the upper and lower                
horizontal bars represent the upper and lower percentiles considered, respectively. Only           
phenotypes at a given age are considered with this method. 
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Figure 11: Visualizing the longitudinal development of two phenotypes         
simultaneously. One group or bin at a time is followed by the plot. The group could for                 
example be the shortest 10 percent of the children, which is a group whose members are                
likely to change from age to age. Alternatively, it could be the shortest 10 percent of the                 
children at age two, a group whose membership is constant. 
 
 

3. Results 
A prototype web application able to visualize data from MoBa without compromising            
participant privacy was developed, organized in two layers of tabs. All visualizations            
are interactive, allowing the user to zoom and pan. RocksDB and SQLite were             
compared for the purpose of storing large amounts of genotyping data from MoBa,             
with RocksDB being selected as the preferred option. 

3.1. Database benchmarking 
Within the application, it appeared that if an SQLite database file is not queried for a                
few hours or so, the next query can take 20 seconds or more. This was not observed                 
with RocksDB, whose query times are a few seconds at most. When benchmarked             
outside of the application, four trends emerge: 
 

1) For databases with less than 4-5000 entries (around 100 megabytes of data),            
the median RocksDB performance is often better (less than a fourth of that of              
SQLite for 1,000 entries) than SQLite; but beyond this, it could be much             
worse, with a median query time of more than 88 times that of SQLite for               
10,000 entries (Figure 12). At the same time, the shortest query times for any              
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database size are delivered by RocksDB. In general, RocksDB tends to have            
much greater variation in the query times than SQLite. 

2) The first query to an SQLite database is usually much slower than following             
queries; sometimes by a factor of several thousands. For RocksDB, no similar            
pattern was observed. 

3) The creation of SQLite databases can be order of magnitudes slower than the             
creation of RocksDB databases (Figure 13). In the benchmarking session          
shown in Figure 12, SQLite is almost 250 times slower than RocksDB at             
10,000 entries, taking more than 20 minutes to create compared to less than             
five seconds for RocksDB. 

4) The sizes of the databases are similar, with SQLite database files being            
slightly larger in the size range studied, and the difference appears to be             
growing with larger numbers of entries (Figure 14). 

 
A query time of tens of seconds is well beyond what can be considered acceptable               
for an interactive web application like this, even if it just for the first query to a                 
database file in several hours. RocksDB was therefore chosen over SQLite as the             
preferred database software for the prototype web application. 
 

 
Figure 12: Box plot of query times for RocksDB and SQLite. Query times measured in               
seconds are plotted against the number of entries in the queried database as box plots. For                
databases with less than 6,000 entries, all keys in the database were requested exactly              
once. For larger databases, 5,000 randomly selected keys were requested once. Results for             
SQLite are shown in blue and RocksDB in black. The first query to the database during the                 
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benchmarking session is indicated by arrowheads, with green heads for RocksDB and red             
heads for SQLite. A logarithmic scale is used on the y-axis. The horizontal bar in a box                 
represents the median, the lower and upper limits of the box, the first and third quartiles,                
respectively. The horizontal bars at either end of the vertical bars extending from a box are                
whiskers. For all the boxes, the lower whisker corresponds to the minimum value and the               
upper whisker to the upper fence. The upper fence is located at a distance from the box                 
equal to 1.5 times the length of the box. Outliers are drawn as individual points outside of the                  
boxes. 
 
 
 
 

 
Figure 13: Database creation times for RocksDB and and SQLite. Creation times from a              
single benchmarking session measured in seconds are plotted against the number of entries             
in the created databases. A logarithmic scale is used on both axes. 
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Figure 14: Database sizes for RocksDB and SQLite. Database sizes in megabytes are             
plotted against the number of entries in the databases. A logarithmic scale is used on the                
x-axis. 

3.2. User interface 

The first page displayed to the user in the web application, is the landing page with a                 
password feature (Figure 15). If they user provides the correct password, the tab             
sheet-based user interface is made available (Figure 16 and 17). This interface has             
four tabs for visualization of data with genotype information: (i) a Manhattan plot, (ii)              
a regional plot, (iii), a plot for phenotypes stratified by genotype, and (iv) a              
visualization for information describing the SNPs available in the data (such as how             
many SNPs on each chromosome). For the phenotype summary statistics, three           
tabs are available: (i) for the children, (ii) for the mothers, and (iii) for the fathers. A                 
closeable welcome message appears at the bottom of the web application when the             
user first enters the application. The message provides some background          
information on MoBa and indication to users about what data will most likely interest              
them. Note that the layout and style of the user interface was not the primary focus                
of this work, and remain to be optimized. 
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Figure 15: The landing page for the web application with a password feature. The red               
button beneath the input field for the password redirects the web browser to the URL of the                 
publicly available demo version. At the bottom of the page, a set of buttons take the user                 
directly to a visualization, provided they have entered the correct password. 
 

 
Figure 16: The appearance of the application in the web browser. The different elements              
of the web application visible here are: 1) the outer tabs, 2) the inner tabs for the selected                  
outer tab, 3) a drop-down list for the selection of the sex to visualize data from (females                 
currently selected), 4) a drop-down list for the phenotype to visualize (height currently             
selected), a drop-down list for the condition category (non selected) and a drop-down list for               
the condition, given a selected condition category (not active as no condition category             
selected), 5) a button that opens a pop-up letting the user enter data, 6) a button that opens                  
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a pop-up displaying the data underlying the plot, 7) a checkbox that specifies whether the               
MoBa summary statistics should be displayed in the plot, and 8) the plot visualizing the               
selected data. Elements 1-7 are implemented with Vaadin and element 8 with plotly.js. The              
plot shows the percentile distribution of height (cm) for females from birth to eight months of                
age.  
 

 
 
Figure 17: The tab layout of the user interface. The tab for the genetic data is selected in                  
a) and the tab for non-genetic data in b). 

3.3. Visualizations with genotype information 
3.3.1. Manhattan plot 

When the tab for the Manhattan plot (Figure 18) is first loaded, a button takes the                
place of the plot in the interface. The plot takes a few seconds to load, so through                 
the button-dependent loading, the web application avoids unnecessary slowdowns if          
the user accidentally selects the tab for the Manhattan plot, is just exploring the web               
application, or is otherwise interested in looking at the interface surrounding the plot             
without necessarily being interested in looking at the plot itself. Only after this button              
is clicked, is the Manhattan plot rendered, which takes four to eight seconds. Once              
loaded, the interactivity of the Manhattan plot is comparable to less complex Plotly             
plots: when zooming or panning the plot, the response is practically instant, with the              
delay measured in a small fraction of a second. 
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Figure 18: The Manhattan plot of the web application. In this figure, the negative of the                
base-10 logarithm of the association p-values with BMI are plotted against chromosomal            
coordinates for variants on the 1-22 and X chromosomes. The plot is zoomed in, so SNPs                
with an association p-value less than 10-29 are not shown. Colours of the individual SNPs               
alternate between grey and black depending on which chromosome they reside on. Two             
significance thresholds are represented in the plot by green horizontal lines: the upper line is               
the genome-wide significance threshold (p = 5 × 10-8) and the lower line the suggestive               
significance threshold (p = 1 × 10-5). 
 
The implementation has the options to hide and show the genome-wide and the             
suggestive significance thresholds. When the user hovers the mouse pointer over a            
specific SNP, information on the SNP in question appears in a box on top of the plot.                 
The user can click on any SNP on the plot and select it, which will result in a pop-up                   
with information on the SNP selected as well as the option to navigate to the regional                
plot with the SNP selected, or to see how the phenotypes vary by the genotype for                
this SNP (Figure 19). 
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Figure 19: Interacting with the Manhattan plot. The same data is plotted as in Figure 18.                
SNPs from chromosomes 10-12 are shown, as are the genome-wide and suggestive            
significance thresholds. Two boxes are overlaid on the plot; the left box is a pop-up in                
response to the user clicking on the SNP rs6265 (implemented with Vaadin), while the right               
is a popup (implemented with plotly.js) in response to the user hovering over the same SNP.                
Both boxes display the ID, chromosome, position and association p-value of the SNP. The              
left box also contains two buttons that will take the user to regional plot (left button) or the                  
plots with phenotypes stratified by genotype (right button) with the clicked SNP as the              
selected SNP. 
 
During testing in the Google Chrome web browser, the plotly.js scatter plot could             
handle several million data points, although it would sometimes enter debugging           
mode due to the slow rendering times (often more than ten seconds) with this many               
points. The rendering times appeared to even out around four million data points             
(Figure 20), with the observed median decreasing from three to four million points,             
perhaps due to the large fraction of points overlapping in the plot, some quirk in the                
code for the plotting library, or both. The further increase in rendering time observed              
at five million points could be due to the increasing amount of data for the library to                 
handle, regardless of the degree of point overlapping.  
 
The zooming and panning functions, though useable, felt noticeably slower when a            
few million points were plotted. Rendering times in Firefox and Opera were similar to              
the rendering times in Chrome. The 3D scatter plot option in plotly.js is less capable               
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of handling large number of data points and starts to struggle with a few hundred               
thousand data points. Nonetheless, 3D plots with multiple Manhattan plots          
containing over 200,000 points (Figure 21) were successfully created, with rendering           
times around eight seconds, and retaining interactivity. 
  

 
Figure 20: Box plot of rendering times of plotly.js Manhattan plots. The time it took in                
seconds to render the Manhattan plot is plotted against the number of points rendered as               
box plots. For all boxes, the horizontal bar in the box is the median, and the upper and lower                   
whiskers correspond to the maximum and minimum values, respectively. The tests were            
performed ten times for each number of points in the Google Chrome web browser. 
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Figure 21: Manhattan plots for multiple phenotypes in a single interactive 3D scatter             
plot. Randomly generated association p-values on the z-axis are plotted against           
chromosomal coordinates and a set of eight phenotypes. 200,112 points in total, or 25,014              
points per phenotype, are plotted, distributed across 22 chromosomes. 

3.3.2. Regional plot 
LocusZoom.js was integrated successfully with Vaadin in the web application (Figure           
22), although some issues with the size of the plot were encountered. LocusZoom.js             
has built-in support for zooming and panning. A drop-down list for the chromosomes             
and a text field for the chromosome position were added to the user interface to               
provide additional means for the user to navigate the regional plot. A warning is              
displayed upon entering a negative chromosome position or a position that exceeds            
the length of the selected chromosome. The currently selected SNP is highlighted by             
a red cross, which is the only configuration altered from the default LocusZoom.js             
setup. 
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LocusZoom.js creates a plot consisting of two panels. The upper panel contains a             
scatter plot of the association p-values plotted against chromosomal coordinates,          
combined with a line chart for the recombination rate. In the lower panel, coordinates              
of known genes overlapping the region are shown. LocusZoom.js by default seems            
to set the SNP with the lowest p-value as the reference SNP for which the LD is                 
calculated, but allows the user to set a different reference SNP by clicking on it in the                 
scatter plot. 
 

 
Figure 22: The regional plot of the web application. Chromosomal coordinates are on the              
x-axis and transformed p-values on the left y-axis. The recombination rate (centimorgans per             
megabase) is shown as a blue line and uses the y-axis on the right. A red cross marks the                   
SNP selected by the user. The colours of the individual SNPs correspond to the strength of                
the linkage disequilibrium calculated relative to the reference SNP (purple diamond). The            
area beneath the scatter plot shows the coordinates of known genes in this region on the                
chromosome, marked by blue horizontal lines with bars. In this case, the two genes              
RPGRIP1L (left) and FTO (right) are found in the region. Arrows next to the gene names                
indicate which of the two DNA strands the gene in question resides on, and in this case, the                  
two genes reside on opposite strands as indicated by opposite arrows. The chromosome             
and position input fields above the scatter plot are Vaadin elements allowing the selection of               
a SNP and are not part of the LocusZoom.js library.r 

3.3.3. Phenotype stratified by genotype 
In order to visualize a phenotype stratified by SNP genotype, the user can enter the               
SNP to study in an input field that also allows selection from a drop-down list. The                
input field accepts input in three formats: (i) rsID number or the unique internal ID               
format, and (ii) the chromosome and position separated by a colon. Phenotypes can             
be selected from a drop-down list, and the data used in the plots is available in a                 
pop-up window through a button. 
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This visualization instance is the only one that requests data from the database             
system of the web application, as the regional plot and Manhattan plot only use              
non-MoBa data. If a user selects a SNP in the regional plot, the chromosome and               
position is used to query the database system (input format (ii) above), while if it is                
selected in the Manhattan plot, the rsID number is used (format (ii)). The query              
happens only when and if the phenotypes stratified by genotype tab is selected by              
the user. When the user selects a SNP in the web application, the controller object               
introduced previously is updated, such that other visualization instances can retrieve           
the identity of the currently selected SNP from the object. 
 
The data retrieved for the requested SNP is visualized in two separate plots (Figure              
23), one for females and one for males. The range of the y-axis is the same for the                  
female and male plots by default, and the estimation of the mean is drawn as a                
dashed line while the estimation of the SEM and the 2.5th and 97.5th percentiles are               
drawn as ribbons. Below each phenotype plot, a bar chart shows the number of              
children with each genotype for which data is available at a given age (Figure 24).               
The age is selected by a slider beneath each bar chart, and dragging this slider also                
highlights the three medians on the graph corresponding to the selected age. 
 
Information on the selected SNP is shown underneath the plot options and includes             
the ID of the SNP, the chromosome it resides on and at which position. From dbSNP                
the name of the associated locus (as defined by dbSNP) is shown in short form. The                
full name of the locus is shown when the user places the mouse pointer over the                
short form. 
 
The settings for the plots are placed to the right and control which of the three                
statistics are shown and whether or not to show the bar charts for the number of                
children. A button placed above these settings opens a pop-up with more options,             
including whether x-axis labels should be evenly distributed or have a position on the              
x-axis correspond to the age. 
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Figure 23: Stratification of phenotypes by SNP genotype. In addition to the plots, shown              
here is: 1) the input field for the SNP (rs2155619 entered), 2) a drop-down list for the                 
selection of the phenotype (BMI selected), 3) a button that launches the regional plot in a                
pop-up, 4) a button that launches LiteMol in a pop-up, 5) a button that opens a pop-up                 
displaying the data underlying the plot, 6) a button opens a pop-up for additional plot options,                
7) a group of checkboxes for adjusting the plot settings for both plots, and 8) information on                 
the selected SNP. The left bar chart and line chart correspond to females, and the right bar                 
chart and line chart to males. Both line charts show the BMI distribution for the sex in                 
question from birth to age eight stratified by genotype, with the mean estimation represented              
by a dashed line and the SEM by a ribbon. The 2.5th and 97.5th percentiles are deselected in                  
the plot options and not drawn. For all charts, AA is plotted in red, AB in grey and BB in red.                     
Each horizontal bar chart beneath the line charts shows the number of individuals for which               
data exist at the selected age, which is at birth for both bar charts in this figure. 
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Figure 24: Dragging the slider for the bar chart visualizing the number of children. In               
the figure, the slider is set to age three, and the median for the three genotypes at that age                   
are displayed in separate boxes overlaid on the plot. 
 
The emulation of three physical dimensions that 3D graphics provide allow the            
coordinates of a plot to represent three variables instead of the two variables             
possible with a regular 2D visualization in the xy-plane. 3D rendering of the two              
phenotype plots were therefore implemented and are available through the plot           
settings (Figure 25). As with the 2D version, the phenotype is plotted against age              
using the x- and y-axes, while the number of individuals is now plotted on the z-axis,                
instead of the bar charts accompanying the 2D versions. The 3D plots are interactive              
just like the 2D plots, the user can manipulate the plots independently of each other               
by rotating them, zoom in or out, or pan.  
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Figure 25: 3D versions of the phenotype stratification plots. The 3D versions are used              
with the same interface as the 2D versions, with separate plots for females (left) and males                
(right). The number of individuals is plotted on the z-axis and the phenotype (BMI in this                
case) against age on the two other axes, as with the 2D versions. The right plot is rotated                  
relative to the left plot. 
 
LiteMol is accessible through a button above the phenotype stratification plots and            
opens up in a separate window in the user interface (Figure 26). For SNPs located in                
the codon of a gene, alternative alleles of the SNP can yield different amino acids in                
the protein encoded by the gene. LiteMol can highlight individual amino acids in the              
protein sequence in the 3D model, and thus the amino acid affected by the SNP               
selected by the user. This makes it possible to speculate on possible consequences             
of a non-synonymous variant from the 3D model. LiteMol does not automatically            
search the PDB database for relevant protein models, and in the current            
implementation of the web application, the user instead has to enter the name of the               
model they wish to render. 
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Figure 26: Visualizing protein 3D structure with LiteMol in the web application. PDB             
model 4IE5 of the FTO protein is visualized by LiteMol in this figure. SNP rs758583500 is                
located in a codon of the gene encoding FTO and has an alternative allele that leads to the                  
amino acid arginine appearing instead of lysine at position 365 (Lys 365) in the protein (see                
ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?geneId=79068). The lysine is located in an alpha        
helix (here represented by a corkscrew shape), and is highlighted in yellow in the 3D model. 
 

3.3.4. SNP statistics 
Statistics on the data with genotype information, generated separately for each           
chromosome, are displayed by bar charts in a separate tab (Figure 27). The             
statistics include the number of available SNPs per chromosome, how many are            
genotyped or imputed, the number of alleles that are the same or different from the               
reference genome, and whether imputed SNPs have an imputation score that meets            
the quality threshold. Except from the first, all the data can be visualized either by               
absolute numbers or fractions. 
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Figure 27: Visualization of statistics on SNPs available in the data. This particular bar              
chart shows the number of imputed SNPs per chromosome of high quality. To the right of                
the bar chart, two groups of radio buttons (red rectangles) set the content of the plot. The                 
upper group selects which statistic to plot and the lower group whether absolute numbers or               
fractions should be used. 
 

3.4. Visualizations for the phenotype summary statistics 
3.4.1. Data on the children 

The phenotype summary statistics are presented in a user interface similar to that             
used for the SNP level visualization. For children, only data for one sex at a time is                 
plotted (Figure 28). The percentiles are drawn in shades of blue with darker shades              
representing percentiles closer to the median. Phenotype and sex are both selected            
from drop-down lists. Two other drop-down lists enable the specification of           
subgroups of the cohort. The first drop-down list specifies which variable the            
subgroup is based on and the second drop-down list the precise subgroup (Figure             
29). As with the SNP level plots, the underlying data is available via a pop-up. 
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Figure 28: Plotting of phenotype summary statistics. This plot shows the BMI (kg/m2)             
distribution in terms of percentiles from birth to age eight of male children. The dashed line is                 
the median, and percentiles closer to the median are represented by darker shades of blue. 
 

 
Figure 29: Plotting of summary statistics of cohort subgroups. The user interface is the              
same as in Figure 16, only with a condition category and condition value selected (red               
rectangle). In this case, the selected condition category is the BMI of the father and the                
condition value “>95%”. This selection corresponds to the girls whose fathers had a BMI              
above the 95th percentile, and their weight distribution in kilograms from birth to age eight is                
plotted. 
 
A feature that separates the summary cohort statistics visualization from SNP level            
visualization is the ability for the user to enter their own data (Figure 30). The user                
enters data in a pop-up accessible through the button with a light blue colour              
gradient. A black line overlaid on the summary cohort statistics represents the user             
input and is updated immediately in response to input from the user. The user input               
is checked for whether the input age is correct and supports input in the form of                
days, weeks, months and years, in addition to birth. An input field with invalid input               
that the user is interacting with is highlighted by a yellow border, while a red border                
highlights other input fields with invalid input. A short-lived pop-up appears if the user              
enters invalid input and informs them of why the input is invalid. 
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Figure 30: Plott cohort summary statistics with own data and warnings. The user             
interface is the same as in the previous figures for the visualization of phenotype summary               
statistics. The pop-up over the plot is an input form for users. A message overlaid on the                 
pop-up warns the user that a negative age has been entered in one of the input fields,                 
namely the field highlighted in yellow, which is also where the mouse cursor of the user is.                 
The input field below is highlighted in red and has an invalid age unit. The plot in the                  
background displays a weight distribution in kilograms for females from birth to age eight,              
and the overlaid black line is the plotted user input. 
 

3.4.2. Data on the parents 
Two different visualizations were implemented for the variables describing the          
parents. The first (Figure 31) visualizes the continuous variables in the form of a line               
chart, while the second tab visualizes the discrete variables in the form of bar charts               
(Figure 32). All other discrete variables (such as whether the birth was premature)             
are also visualized through such bar charts. 
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Figure 31: Visualization of continuous variables describing the parents. This plot shows            
the percentile distribution of height in centimetres for fathers who had daughters. The             
number in the title indicates that the distribution is based on data from 4013 fathers. 
 
 

 
Figure 32: Visualization of discrete variables describing the parents. This visualization           
shows the smoking habits of the mother at the end of the pregnancy. The left bar chart                 
corresponds to mothers of boys and the right to mothers of girls. From left to right on each                  
bar chart, the columns represent the following cases at the end of the pregnancy: data               
missing, mother did not smoke at all, mother smoked sometimes, and mother smoked daily.              
The drop-down list above the left bar chart specifies which variable to visualize. 
 

4. Discussion and future work 
4.1. Running, expanding and adapting the web 

application 
Since the web application and its source code is highly modular, adding new             
visualizations or additional features, or adapting it to different forms of data or             
different cohort studies is a relatively simple process. The current process of adding             
new or updating existing data to the web application server is also relatively             
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straightforward, particularly because the data is non-sensitive and do not require           
special solutions relating to data security.  
 
There is still room to make the data deployment more efficient; the step of              
transferring newly generated summary statistics may be possible to automate, so           
that the statistics are automatically transferred to the web application server after            
generation. Potentially, users of the web application could also request the           
generation of specific summary statistics not currently stored on the server through            
the web application user interface. If user-requested statistics are stored on the            
server only for a limited amount of time, the user could be allowed to fine-tune the                
summary statistics they want to use without prohibitive data storage capacities being            
required on the server-side. 
 
By using a commercial cloud hosting service such as AWS to host the web              
application and its data, hardware maintenance and operation is entirely outsourced,           
as are several aspects of software operation. One downside is that the Amazon             
Linux operating system used by default by LightSail does not offer any graphical             
user interface, so the server has to be operated solely through a command line              
interface. The server system requires little maintenance, though certain software          
updates have to be installed as the operator of the virtual server. Each Let's Encrypt               
certificate lasts for 90 days, so a new certificate has to be obtained regularly; but this                
process is automatable. 

4.2. Web application interface and navigation 
The current implementation of the user interface has the disadvantage that some            
parts of the application may be simultaneously interesting for very different user            
groups, making optimization of the user interface difficult. Implementing separate          
user interfaces has the disadvantage that more navigation is necessary before the            
user can browse the data in a user interface optimized for them, unless the group the                
user belongs to can be known or guessed in advance (e.g. by which precise URL the                
user followed to the application).  
 
It would be desirable to look more closely at the option to develop two or three                
separate user interfaces for the three different user groups, given their large            
differences in interest and background knowledge; particularly scientists versus         
parents. A user interface optimized for the parents could, for example, give much             
less prominence to the visualization of the genetic data, given both the inability of              
most parents to understand the terminology and their probable lack of genotype            
information both for themselves, their children or other relatives.  
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A similar analysis also holds for many medical professionals. At the same time,             
future expansion of the use of genotyping in personalized and precision medicine            
[35,36] and an increase in the use of private genotyping services like 23andMe             
(23andme.com) could mean that both parents and medical professionals (and          
people more generally) could find the genetic data both more interesting and            
understandable. 
 
During further development and refinement of the web application, medical          
professionals should be involved so that feedback can be received on the            
user-friendliness of the web application interface, the intuitiveness of the          
visualizations, and what data they want to have visualized. Ideally, parents without            
scientific or medical background would also be involved for the same reasons. 
 
With the current implementation of the user interface, it is possible to refine             
navigation with simple steps, for example by introducing a navigational guide that in             
some detail explains to users where they can find different data, and that could have               
different versions tailored to different user groups. The guide could be clearly visible             
in the user interface also linked to from the welcome message, and be in the form of                 
a pop-up or a separate menu. 
 
Currently, the web application does not support the use of URLs to navigate or              
otherwise send information to the application. It is not possible to link to a specific               
visualization, or to set visualization or application settings through the URL,           
something that could be very useful for users. Back and forward navigation in the              
web browser is also not supported. It could therefore be worthwhile to look into ways               
of supporting some or all of these features relating to web application URLs. 

4.3. Visualization strategies for the web application 
While 3D visualization allows three variables of a dataset to be represented by three              
coordinates in the same plot, 3D visualizations on 2D displays (such as a regular              
computer monitor) may not be suitable for the visualization of many forms of data, as               
it can be difficult to read values off the plot. However, interactive 3D plots, like those                
provided by plotly.js, that let the user rotate the scene should be of lesser concern               
[37]. This means that the concerns are less relevant for the 3D versions of the               
phenotype stratified by genotype plots and the multiple Manhattan plots in 3D. For             
the latter, the alternation between grey and black makes it easier to read off which               
chromosome a SNP belongs to, and with the introduction of a colour scale where              
each colour corresponds to a single chromosome, this could be made even easier. 
 
The methods to visualize multiple phenotypes simultaneously should be reviewed          
further and implemented in the web application, and summary statistics generated           
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from the raw data for this purpose. For the method considering a single age at a                
time, a slider can be implemented to let the user select the age. The slider would                
also make it possible for the user to follow the development longitudinally by             
dragging the slider. An option to make the plot automatically iterate over the ages,              
i.e. making it animated, could also be implemented. 
 
For the two methods to visualize multiple phenotypes simultaneously relying on           
groups (parameterization and following a single group longitudinally), care needs to           
be taken when defining the groups. Certain definitions will yield groups with likely             
non-constant membership, for example definitions in terms of a phenotype like           
height, or a diagnosis. As an example, for the group of the 10 percent shortest               
children at the current age, some in the group may at a later age grow to become                 
taller than children not in the group, and get replaced by them as members of the                
group. For a group of individuals with a certain diagnosis, reasons for non-constant             
group membership include additional individuals getting the diagnosis at a later age            
due to a later onset of symptoms or disease, and the changing of the diagnosis               
criteria. 
 
The 3D visualization of protein structure should be properly integrated with the            
application: either the application should itself select the most relevant model to            
visualize for a given protein, or it should present a list of models the user can choose                 
from. A basic QQ-plot should also be added to the application to allow the users to                
see quality control information for the genotype data. For the regional plot, it would              
be more useful if by default the SNP used as the reference for the calculation of the                 
linkage disequilibrium is the SNP the user has selected through the user interface. 

4.4. Computing power available to the application and 
scaling of datasets 

The fact that the graphics used in the visualizations are all generated client-side in              
the user’s web browser rather than server-side means that a lot of the computing is               
decentralized and does not place any computing load on the server. One downside             
to this approach is that different users are likely to use computer units of different               
computing power, so the limits of data volume and visualization complexity that the             
user’s computer unit is capable of can vary a lot from user to user. Another potential                
downside is that the web browser may not be able to utilize as much of the available                 
computing power on the user’s computer unit as a dedicated standalone           
visualization application may be able to do. 
 
For the first issue, an alternative is to generate all graphics server-side and stream              
them to the user [38]. For the second issue, a dedicated desktop application could              
be created to supplement the web application. Part of the motivation for creating a              
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web application is to make the data easily accessible without having to install or              
download any extra software. However, if the available computing power increases           
sufficiently with a desktop application to enable useful visualizations that are not            
possible in a web browser on most computer units, it could potentially be worthwhile. 
 
The current implementation of the Manhattan plot does not scale well to the many              
millions of SNPs that can be commonly found in GWASs. However, by setting an              
upper limit for the number of SNPs included in the Manhattan plot and by only               
including the most statistically significant SNPs, the current implementation should          
be able to handle much larger datasets while providing a Manhattan plot that is still               
both interactive and displays the most interesting SNPs in the GWAS data. Without             
interactivity, most of the less significant SNPs would not be possible to discern on a               
Manhattan plot anyway, given its compressed x-axis relative to the amount of points             
plotted. It might still be worthwhile to benchmark other plotting libraries to see if they               
can handle large amounts plot points better; including non-interactive ones, which           
could potentially have interactive functionality overlaid. A similar analysis holds for           
the 3D scatter plot with multiple Manhattan plots. 

4.5. Alternative implementations of the database system 

Although the current implementation of the database system relying on RocksDB is            
relatively fast, it could be faster still; and it would be worthwhile to continue              
evaluating database software options. This may include SQLite, which showed some           
promising benchmarking results, although it would have to be used in a manner             
where the occasionally extremely slow initial query of a database is not an issue              
(such as through creating many smaller databases), or eliminated completely. 
 
The current server implementation uses SSDs as storage media. Another method to            
speed up the database system is by loading the database files into the RAM, for               
example by creating a RAM drive. A major downside to this is that the RAM available                
on the hosting service is likely to be a bottleneck due to the large volumes of data                 
generated from MoBa. Given the volatile nature of RAM, non-volatile storage media            
would also be needed on the server to store the data for whenever the instance is                
powered off, or the RAM cleared. However, if all the data is loaded into the RAM,                
and only as the server system is started up or rebooted, it should be adequate to use                 
cheaper HDDs over more expensive SSDs for the non-volatile storage. Another           
solution is to differentiate the data based on how probable it is that it is requested by                 
the user, and only load the data that is the most likely to be requested into the RAM. 
 
If the database architecture is otherwise unchanged, it might be better to skip the              
master index for the database system and simply create index files that contain             
every SNP with an rs number in a certain range, where the range of each index file                 
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would be of the same size. This would give a varying number of SNPs per index file                 
and less precise control over the number of SNPs per index file, but neither point               
should be particularly problematic. 

4.6. Potential of the web application  
Given the current state of access to Norwegian health data in general, and not just to                
the MoBa data, the developed web application may help to alleviate this larger issue              
of data access both directly and indirectly. Directly, the web application can be             
adapted to other cohort studies (or other forms of health data), and a similar              
methodology can be used to generate summary statistics for the application to            
visualize. Indirectly, the web application may inspire others to develop new systems            
that provide public access to Norwegian health data. Examples of cohort studies the             
web application can be adapted to include the Hordaland Health Studies (HUSK,            
husk-en.w.uib.no) and the Nord-Trøndelag Health Study (HUNT, ntnu.edu/hunt). 
 
For the indirect potential in particular, the exposure of the application is crucial. This              
application should have a certain potential, simultaneously interesting three different          
groups of people (parents, medical professionals and scientists) that at any given            
time represents a significant fraction of the Norwegian population. By providing           
high-quality data on the health of Norwegian children, a future refined version of the              
application could potentially become a part of the toolbox of many groups of             
Norwegian medical professionals. When they interact with the health services,          
parents could in that case learn about the application as a tool they can use to                
compare the development of their children with the general population. The resulting,            
significant, exposure of the application to the general public should help raise the             
expectations for access to Norwegian health data, providing an actual and useful            
example of a public web portal to Norwegian health data. 

5. Conclusion 
A prototype web application that can visualize data from the Norwegian Mother and             
Child Cohort Study without compromising participant privacy has been developed. It           
enables the users to visualize data in interactive plots on subgroups of the cohort,              
and data with genotype information data on three genomic scales: genome-wide           
level, regional level and SNP level. The developed framework is able to retrieve and              
visualize all requested data within a few seconds at most, and has a user interface               
organized in a way that makes navigation easy and intuitive. Finally, the web             
application prototype can readily be modified and implemented for other cohort           
studies, and may both directly and indirectly work to reduce the difficulty with             
accessing Norwegian health data for scientists, medical professionals and parents. 
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The documented source code of the web application is available at           
github.com/helse-data and a running demo is available at helse-data.no/demo. 
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