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Summary 

No chronic disease burdens the world more than psychiatric disorders (Collins et al., 2011), with an  

estimated 40% of the population in 30 European countries affected in any given year (Insel et al., 

2012). Current medical treatment for schizophrenia (SCZ), bipolar disorder (BPD) and major 

depressive disorder (MDD) is based upon well-established antipsychotic drugs and mood stabilizers. 

Treatment efficacy (30-40%) (P. Lowe et al., 2017) and potentially serious side effects (Leucht et al., 

2013) often challenge medication compliance, adding an additional challenge in the path towards 

wellness.  New drugs are required to address the burden of psychotic disorders, and yet a new science 

is required to address the interplay between the heterogeneous nature of psychotic disorders and 

drug mechanisms. 

Epigenetic mechanisms, particularly alterations of methylation patterns at CpG sites have been 

shown to alter gene expression in humans, animal models and in vitro cell cultures. It is believed that 

epigenetic modifications induced by antipsychotic drugs plays a role in therapeutic response. 

Identification of pathways implicated by epigenetically modified genes, including the dopaminergic 

pathway, for example, has enhanced our understanding of the therapeutic mechanism of the 

antipsychotic drug olanzapine (Melka et al., 2013).  

In the current study, we aimed to identify differentially methylated regions induced by olanzapine. 

82 European patients adhering to monotherapy were selected through the TOP Cohort (Thematically 

Organised Psychosis).  Methylation data derived from blood samples was assessed genome-wide 

using the Illumina 850K EPIC array. The statistical model was corrected for gender and smoking. 

Following identification of differentially methylated positions (DMPs) in patient blood, we exposed a 

cultured cell line (HepG2) to verify the modifying effect of olanzapine on DNA methylation levels.  

The results of our study provide evidence of differentially methylated positions and regions in the 

blood of patients adhering to olanzapine monotherapy. A comparison of models adjusting for cell 

type composition provided evidence of improved p-values when cell type adjustment was included 

in the model. This finding was in concordance with state-of-the-art epigenome-wide-association 

(EWA) studies. Our results showed concordance between blood and brain for two identified 

differentially methylated regions, including the Trio and F-actin binding protein (TRIOBP) shown to be 

relevant in schizophrenia (Nicholas J. Bradshaw et al., 2014). The pathways implicated by the 

differentially methylated genes showed evidence of alterations in immune pathways and the possible 

mediating effect of olanzapine.    
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Introduction 

1.1 Psychosis and treatment of psychosis 

1.1.1 Psychotic disorders 

Psychosis is a heterogeneous psychiatric condition that challenges an individual’s sense of self and 

experience with the external environment (Radua et al., 2018). This condition is characterized by two 

defining features:  the occurrence of auditory, sensory, or visual hallucinations; and a system of fixed, 

false beliefs called delusions (Arciniegas, 2015). Hallucinations may occur with or without the 

individual’s insight into the nature of the hallucination. Delusions may range from ordinary to bizarre, 

from ideas of persecution or grandiosity to thought control or thought broadcasting. The theme that 

is apparent in psychosis amongst several psychiatric diagnoses is the individual’s lack of insight into 

the seriousness of their condition (Ibid). 

Schizophrenia (SCZ) is the prototypical psychotic disorder (Figure 1.1). The burden of symptoms is 

divided into positive, negative, and cognitive categories that are somewhat informative of the 

underlying pathology and/or therapeutic response.  Classic positive symptoms include hallucinations, 

delusions, disorganized thinking and grossly disorganized behavior. Negative symptoms are 

characterized by passive behavior, social withdrawal, blunted affect and psychomotor slowing. The 

cognitive symptoms describe a broad group of cognitive dysfunctions (Kahn et al., 2015).   

Bipolar Disorder (BP), major depressive disorder (MDD) and schizophrenia share symptoms of 

debilitating chronicity and recurrent episodes of relapse. Individuals burdened by bipolar disorder 

and major depression experience episodes of severe depression, with periods of mania or hypomania 

occurring in bipolar disorder (Hirschfeld, 2014). 
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Figure 1.1   Psychotic episodes are experienced on a continuum in addition to negative and affective 
(mood) symptoms.  Psychotic symptoms observed outside these diagnostic categories may be 
observed in substance abuse and neurodegenerative illness (adapted from (DeRosse & Karlsgodt, 
2015). 

From epidemiological studies, a number of environmental factors reflect the increased risk for 

psychosis across the life span: obstetric complications (Kotlicka-Antczak et al., 2017); childhood 

neglect and trauma (McGrath et al., 2017); poor functioning in adolescence (Fusar-poli et al., 2017); 

adverse life events including post-traumatic stress disorder (PTSD) (Teicher, 2018; Teicher, Samson, 

Anderson, & Ohashi, 2016), migration (Cardano, Scarinzi, Costa, & d’Errico, 2018; Norredam, Nellums, 

Nielsen, Byberg, & Petersen, 2018) and urban living (Kahn et al., 2015). Psychotic experiences are 

associated with self-harm, suicidal ideation and suicidal attempts (DeVylder et al., 2015; Honings et 

al., 2016). Sleep disturbances are common indicating a disruption in circadian rhythms (Koyanagi & 

Stickley, 2004; Oh et al., 2016). Gender and age play a role; with younger males at increased risk  

(Fusar-poli et al., 2017).  

Psychotic disorders are commonly perceived as brain disorders, yet individuals burdened with 

schizophrenia, bipolar disorder and major depression have higher rates of physical illness, including 

15-20 years shorter life expectancy than the non-afflicted (Laursen, Nordentoft, & Mortensen, 2014). 

Multiple corporal systems may be dysregulated in addition to the central nervous system (CNS) 

(Pillinger, D’Ambrosio, McCutcheon, & D Howes, 2018).  Studies of first episode psychosis have shown 

dysfunction in cardiovascular (Christoph U Correll et al., 2017), metabolic (Greenhalgh et al., 2017), 

immune (Delaney et al., 2018), and hypothalamic pituitary adrenal (HPA) systems (Nordholm et al., 

2018).  The onset of psychosis then may be a predictor of concurrent dysregulation in the body. This 

evidence challenges the traditional perspective that poor health in psychosis reflects poor life style 

choices or a consequence of medication side effects (Pillinger et al., 2018). 
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The clinical boundaries between the disorders are often challenging, in particular in terms of 

predicting treatment outcomes or improving treatment resistance (P. Lowe et al., 2017; Remington 

et al., 2017).  Genetic analyses have found a high degree of correlation between many of the 

psychiatric disorders, suggesting that current clinical boundaries are not informative on a genetic 

level of the underlying processes contributing to disorder onset (Anttila et al., 2018). Currently, 

contributions from the field of psychiatric epigenetics are providing evidence of the environmental 

impact, and interplay, with the human genome.  

1.1.2 Antipsychotic drug therapy   

Effective therapies for individuals suffering from psychotic disorders were not available before the 

discovery of the first antipsychotic drug in 1952.  The development of chlorpromazine and the drugs 

that followed provided a strategy for discovering a biological basis of schizophrenia (Carpenter & 

Davis, 2012). Several observations about side effects suggested the mechanism of action was 

disruption of dopamine transmission. The major dopamine pathways in the brain are involved in 

motor control, and the predominant side effect initially observed was a Parkinsonian-like tremor or 

rigidity. Subsequently, drugs that mimicked dopamine were found to induce hallucinations.  

Evidence that antipsychotic drugs selectively blocked dopamine receptors occurred in 1974 when an 

association between dopamine D2 receptor inhibition and the antipsychotic potencies of the drugs 

was identified. These early first-generation drugs are commonly referred to as “typical” due to the 

typical motor “extrapyramidal” side effects.  Their efficacy in treating the positive symptoms of 

psychosis including hallucinations contributed to the hypothesis that dopamine pathways are 

overactive in schizophrenia (Seeman et al., 1987). 

Second-generation drugs were then developed that combined blocking D2 - receptors with 

antagonism of serotonin (5-HT) receptors.  These drugs were classified as “atypical” due to the 

reduction of motor side effects, the reduction of negative symptoms, and an improvement in mood 

and cognitive symptoms (Mauri et al., 2014). These therapeutic effects were associated with receptor 

binding to multiple serotonin (5-HT) receptors while still achieving antipsychotic effects of D2 binding 

(Meltzer, Matsubara, & Lee, 1989). 

Nevertheless, the pharmacology of these second-generation drugs is complex due to multiple 

receptor targeting (Kusumi, Boku, & Takahashi, 2015). In addition to multiple serotonin and 

dopamine receptors, atypical drugs target alpha-adrenergic, histaminergic, and cholinergic receptors 

with corresponding side effects.  Sedation and weight gain is associated with histaminergic inhibition; 
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orthostatic hypotension with alpha-adrenergic inhibition; and dry mouth, constipation, blurred vision 

and tachycardia with cholinergic receptor inhibition (C U Correll, 2010).   

Olanzapine, quetiapine, and aripiprazole are examples of widely used second-generation 

antipsychotics. Olanzapine and quetiapine have similar broad receptor binding profiles, yet 

quetiapine dissociates faster from the D2 receptor producing fewer extrapyramidal symptoms (Riedel, 

Müller, & Strassnig, 2007). Aripiprazole differs from them both by representing a class of partial 

dopamine agonist and serotonin antagonist. It is often referred to in the literature as a third-

generation antipsychotic (Tuplin & Holahan, 2017). 

The binding affinities of the three antipsychotics with dissociation constant Ki are indicated in Table 

1. The strength of binding affinity is associated either with therapeutic effect and/or risk of side 

effects. Most atypical antipsychotics have more potent 5-HT2A receptor antagonism than D2 receptor 

antagonism, resulting in a D2/5-HT2A ratio below 1 (Kusumi et al., 2015). As seen in Table 1, only 

aripiprazole has a D2/ 5-HT2A ratio below 1.  Both olanzapine and quetiapine have D2/ 5-HT2A ratios 

above 1, with a greater side effect profile than aripiprazole.  

   Table 1: Receptor binding affinity of atypical second/third-generation antipsychotic drugs. 

Receptor Ki (nM) Olanzapine Quetiapine Aripiprazole 
D2 Antagonist ++ +   

D2 PA     +++ 
D3 ++ + +++ 

5HT1A   +* +++ 
5HT2A +++ ++* ++ 
5HT2C ++ +* ++ 
5HT7 + ++* +++ 

α1 ++ +++ ++ 
M1 ++ ++*   
M3 ++ ++*   
H1 +++ +++* ++ 

Ratio D2/5-HT2A 8.9 2.6 0.085 
+          Weak binding affinity (100>Ki<1000) 
++        Moderate binding affinity (10>Ki<100) 
+++      Strong binding affinity (1>Ki<10) 
PA        Partial agonist 
*Binding property due primarily to the metabolite norquetiapine 

Based on Stahl’s Essential Psychopharmacology. 3rd edition and D2/ 5-HT2A Ki ratios  (Kusumi et al., 
2015). 

The D2 affinity for each drug is represented by a yellow line in Figure 1.2. Drug effects thought to 

explain efficacy are represented as blue bars for respective serotonin (5-HT1A , 5-HT2A ,5-HT1C, 5HT2C ) 
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and dopamine D2 receptors, while negative side effects are represented as red bars for adrenergic 

(a1A, a1B), muscarinic (M2 ) and histaminergic (H2) receptors.  

A   Olanzapine B Quetiapine C Aripiprazole  

   

Figure 1.2  Simplified receptor binding affinity profiles: Effects may be potentially therapeutic (5-
HT1A , 5-HT2A ,5-HT1C, 5HT2C , D2)  (blue) or potentially give side effects (a1A, a1B  M2 H2) (red). 5-HT2c 
(*) and D2 (*) characterize both effects. The yellow line indicates the D2 affinity level for each drug 
(adapted from (Mauri et al., 2014). 

1.1.3 Mechanisms of action of olanzapine 

Olanzapine is associated with substantial weight gain, diabetes type II, lipid dysregulation and 

cardiovascular disease (Lambert et al., 2005).  The burden of these physical health-related side effects 

reduces quality of life, and challenges medication compliance with consequent increased risk of 

psychotic relapse (Foster, Buckley, Lauriello, Looney, & Schooler, 2017). Olanzapine does show 

improvement for patients however in the area of cognition. Here cognitive improvement may be 

enhanced by an increase of prefrontal dopamine release mediated by  5-HT2A receptor antagonism 

(Castner, Williams, & Goldman-Rakic, 2000). 

Therapeutic drug action may also be attributed to the nature of the dopamine D2 receptor which is a 

G protein-coupled receptor (GCR). Multiple drug effects may be mediated by intracellular signaling 

mechanisms and downstream effectors of GCRs including adenylate cyclase, various ion channels, 

phospholipases, cAMP, cAMP dependent kinase, protein kinase C (PKC), and protein lipase C (PLC) 

(Fribourg et al., 2011). Alterations in the expression of genes that target neurons induce changes in 

neuronal plasticity and synaptic remodelling (Horacek et al., 2006). 

The primary metabolic pathways for olanzapine include glucuronidation and cytochrome P450 (CYP) 

mediated oxidation via CYP1A2 and CYP2D6 (Figure 1.3).  Glucuronidation occurs mainly in the liver.  

The rate of oxidation and subsequent available drug serum concentration is affected by factors such 

as age, gender, obesity, tobacco smoking and medication. Inhibition of CYP1A2 by some 

antidepressants is known to significantly increase maximum (Cmax) serum concentration of 
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olanzapine. In addition, concurrent administration of anti-epileptics may induce CYP2D6- activity up 

to 50% (Soderberg & Dahl, 2013; Urichuk, Prior, Dursun, & Baker, 2008). 

Serum concentrations of olanzapine are monitored in patients who smoke due to reduced 

metabolism of olanzapine by CYP2D. Male smokers show twice the serum concentration (AUC) of 

olanzapine as female smokers (T. R. Moore, Hill, & Panguluri, 2014). Tiili et al., (2015) reported an 

association between CYP2D6 genotype and smoking habits. They found the risk of becoming a heavy 

smoker was reduced for the poor metabolizer genotype, however the risk was increased for the rapid 

metabolizers. Additional factors influencing olanzapine-metabolism include co-morbid medical 

conditions (C U Correll, 2010) and CYP1A/CYP2D6 genotype (Eum, Lee, & Bishop, 2016).  

 

Figure 1.3  Metabolism of olanzapine metabolism and transport in the human liver showing 
candidate genes CYP1A2 and CYP2D6. Metabolism of olanzapine is influenced by age, gender, 
tobacco smoking, concurrent medications, and illness (Urichuk et al., 2008). (Image credit: 
PharmaGKB, https://www.pharmgkb.org/pathway/PA166165056) 

 Epigenetic mechanisms 

1.2.1 Three types of epigenetic modifications 
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DNA alterations induced by epigenetic modifications are characterized by at least three modes that 

may interact to regulate transcription: DNA methylation, histone modifications and microRNA 

(miRNA) silencing (Figure 1.4). Dysregulation of miRNAs can alter the expression of genes associated 

with neurodevelopment and regulate chromatin structure by targeting epigenetic factors, such as 

DNA methyltransferases (DNMTs) and histone deacetylases.  Histones may be modified by 

methylation or acetylation of lysine (K), contributing either to compaction of chromatin and gene 

silencing, or chromatin relaxation and gene expression (Babu Swathy & Banerjee, 2017).  Since it is 

the most accessible, DNA methylation is the most studied epigenetic mechanism and is described in 

the following chapter.  

 

Figure 1.4  Three modes of epigenetic modulation by antipsychotic drugs. Gene expression may be 
altered by DNA methylation, differential histone modifications, or miRNA expression. (Image credit: 
(Babu Swathy & Banerjee, 2017). 

1.2.2 Focus on DNA Methylation 

DNA methylation is catalyzed by a family of DNA methyltransferases (DNMTs) that are essential for 

establishing DNA patterns in early development and throughout the lifetime.  DNA methylation 

occurs when a methyl group from the S-adenyl methionine (SAM) is transferred to the fifth carbon of 

a cytosine residue to form 5mC. This enzymatic process occurs at genomic sites where a cytosine (C) 

nucleotide is followed by a guanine (G) nucleotide in a linear sequence in the 5´ ® 3´ direction.  This 

newly methylated site is referred to as a CpG and is evaluated in epigenetic studies as a marker of 

change within an organism (L. D. Moore, Le, & Fan, 2013). 
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CpG sites are spread throughout the genome and are best studied in areas called CpG islands and 

CpG shores (Figure 1.5-A/B). CpG islands are highly conserved stretches of DNA approximately 1000 

base pairs long (Ibid). They have a higher CpG density than the rest of the genome, although not all 

CpG islands are methylated (Bird, Taggart, Frommer, Miller, & Macleod, 1985). Instead, the role of 

these unmethylated CpG islands may be to promote gene expression, enabled by transcription factor 

binding at GC-rich transcription start sites (Carninci et al., 2006). Areas located up to 2 kb from CpG 

islands have highly conserved patterns of tissue-specific methylation. These areas are called CpG 

shores (Irizarry, Wu, & Feinberg, 2009) (Figure 1.5-B).   

A B 

  

Figure 1.5:  Methylation status and location of CpG islands and CpG shores: A) Methylated CpGs 
upstream of the promoter are associated with repression of gene expression; B) CpG islands, shores 
and methylation sites in relation to a hypothetical gene body. (Cartoon credits: A) UCSF School of 
Medicine  http://missinglink.ucsf.edu/lm/genes_and_genomes/methylation.html ; B) BioSynthesis: 
https://www.biosyn.com/tew/inheritance-of-epigenetic-defects.aspx).  

 

1.2.3 Differentially methylated regions 

The aim of analyzing the relationship between a phenotype/status and methylation levels, is to 

identify positions or regions that are differentially methylated between two conditions. This 

measurement of methylation status may be performed between different tissues, or between cases 

and controls. Single changes on the CpGs are often referred to as differentially methylated positions 

(DMPs), while differentially methylated regions (DMRs) have a statistically different DNA methylation 

pattern between several CpGs in a region (Rakyan, Down, Balding, & Beck, 2011). DMRs may occur 

throughout the genome, but have been identified particularly around gene promoters and at 

intergenic regulatory regions (Suzuki & Bird, 2008).  DMRs provide more information for biological 

interpretation due to their size, ranging in length from a few hundred to a few thousand base pairs 

(Rakyan et al., 2011). Of note, identification of DMRs is more robust and likely to be replicated, given 

the greater statistical power achieved when a dense region of CpGs is measured as a whole (Robinson 

et al., 2014; Ziller et al., 2013). 
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1.3 Epigenetics in psychiatric disorders 

A complete understanding of epigenetic mechanisms in the pathogenesis of psychiatric disorders has 

not yet been detailed, in particular the complex interactions between multiple epigenetic 

mechanisms, genetic phenotypes, and the environment (Nestler, Peña, Kundakovic, Mitchell, & 

Akbarian, 2016).  A current understanding however provides evidence of the role of 

neurodevelopmental pathways. The regulation of gene function has a crucial role in 

neurodevelopment and mediates complex processes involved in brain growth, synaptic plasticity, 

learning, memory and circadian rhythms (Ovenden, McGregor, Emsley, & Warnich, 2018) (Figure 1.6). 

Epigenetic mechanisms involved in the dysregulation of genes in these pathways have been shown 

to be a key determinant in the development of major psychosis (Labrie, Pai, & Petronis, 2012), 

specifically in bipolar disorder (Fries et al., 2016) and schizophrenia (Mill et al., 2008) 

 

Figure 1.6   Epigenetic mechanisms influence neural mechanisms in psychiatric disorders:  DNA 
methylation, histone modifications and noncoding RNAs are involved in the dysregulation of neural 
pathways contributing to the pathogenesis of these disorders (adapted from (Kocerha & Aggarwal, 
2018).  

The involvement of neurotransmitter systems in the psychiatric disorders is well documented, 

implicating over-activity of dopaminergic and glutamatergic systems, as well as hypo-function of 

serotonergic (Garbett, Gal-Chis, Gaszner, Lewis, & Mirnics, 2008) and γ-aminobutyric acid (GABA)-

ergic (Orhan et al., 2018) neurotransmitter systems. These systems may be epigenetically modified 

contributing to the symptoms of psychosis. For instance, the candidate gene catechol-O-

methyltransferase (COMT) has been implicated in the dopamine pathway. Hypo-methylation of 

(COMT) and subsequent upregulation of membrane-bound (MB)-COMT is thought to mediate over-

activity of dopaminergic pathways by enhancing dopamine degradation. This mechanism contributes 

to the symptom profile in schizophrenia and bipolar disorder . 
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GABAergic dysfunction has consistently been associated with psychosis and negative symptomology 

in schizophrenia  (Taylor & Tso, 2015).  Hyper-methylation of reelin (RELN) and glutamic acid 

decarboxylase (GAD1) is found in GABAergic neurons (Guidotti, Grayson, & Caruncho, 2016; Huang & 

Akbarian, 2007). Downregulation of RELN and GAD1 is associated with an increase in DNMT1 

expression in the cortex of patients with schizophrenia (Veldic, Guidotti, Maloku, Davis, & Costa, 

2005). This may suggest that increased methylation in GABAergic neurons is driven by DNMT1 activity 

(Dong, Ruzicka, Grayson, & Guidotti, 2015). 

Hypo-function of serotonergic systems is thought to be mediated by hyper-methylation of serotonin 

receptor type-1 (HTR1A) (Carrard, Salzmann, Malafosse, & Karege, 2011) and type-2 (HTR2A) 

(Abdolmaleky et al., 2011) mediating multiple signaling pathways involving dopamine transmission 

(Holloway & González-Maeso, 2015). 

1.4 Environmental influences on the epigenome 

1.4.1 Antipsychotics and co-medication with psychotrophics 

DNA methylation patterns are altered by mood stabilizers prescribed in bipolar disorder such as 

lithium, while valproic acid indirectly alters DNA methylation by acetylation/deacetylation of histones 

(Pisanu, 2018).  Costa et al., (2002) found that valproic acid enhanced the therapeutic effects of 

second-generation antipsychotics by indirectly countering the hyper-methylation of GABA and 

upregulating expression of RELN.  Asai et al., (2013) found the therapeutic effects of lithium may be 

mediated by countering the hyper-methylation of solute carrier family 6 member 4 (SLC6A4) found 

in the pre-frontal cortex of patients with bipolar disorder (Sugawara et al., 2011). 

1.4.2 Findings with gender 

The effects of gender on neural function are important variables and DNA methylation levels are 

known to be dependent on sex (Eranti, MacCabe, Bundy, & Murray, 2013). The role of differential 

methylation in sex hormones is well documented, including the variation in tissue-specific 

distribution of sex hormone receptors (Zouboulis, Chen, Thornton, Qin, & Rosenfield, 2007). Other 

factors contributing to the genetic differences between the genders includes the presence or absence 

of genes encoded on the X and Y chromosomes. Zechner et al. (2001) reported on the unusually large 

number of genes contained on the X chromosome that are involved in the development and function 

of the nervous system. The masculinizing effect on the brain by the Sex determining region Y (Sry) 

gene located on the Y chromosome was reported by Xu, Burgoyne, & Arnold, (2002). 
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1.4.3 Findings with smoking behavior 

Active tobacco smoking leads to changes in DNA methylation levels (Bauer et al., 2015) which are 

sensitive biomarkers in the early period of smoking initiation (R. A. Philibert, Beach, Lei, & Brody, 

2013). Differentially methylated CpGs associated with smoking can actually predict exposure with 

high accuracy (Zhang, Florath, Saum, & Brenner, 2016) even years after smoking cessation (Wan et 

al., 2012).  Many smoking-associated CpGs show less persistence and may show normalized 

methylation levels following smoking cessation. Bauer et al. (2015) reported that active tobacco 

smoking is also associated with a larger proportion of lymphocytes, suggestive of a protective 

immune response against the effect of smoking.  

1.4.4 Findings with age 

Gene expression is dependent on genetic and environmental factors, and undergoes changes during 

aging  (Bryois et al., 2017). It is relatively unknown which aspect of gene regulation is the first to 

become dysregulated (Booth & Brunet, 2016), nevertheless, several pathways are inter-connected in 

the aging process and disruption of one pathway by epigenetic dysregulation may lead to dysfunction 

in others  (Kirkpatrick & Kennedy, 2018).   

Horvath (2013) proposed the model of an “epigenetic clock” as a chronological age estimator based 

on the gradual tissue-specific accumulation of differentially methylated genes with age. A comparison 

of this chronological age predictor to biological aging reveals a pattern of accelerated aging influenced 

by multiple environmental factors. Degerman et al. (2017) incorporated this “epigenetic clock” into a 

longitudinal study. Their results showed that individuals with DNA methylation age younger than 

chronological age, preserved better memory function and cognitive status.  In contrast, the impact of 

negative environmental factors including life style were reflected in accelerated DNA methylation 

aging and impaired cognitive functions (Ibid). 

1.5 DNA methylation assayed in peripheral blood  

Peripheral blood is the most widely used tissue for methylation analyses due to ease of access.  

1.5.1 Cellular heterogeneity  

Whole blood represents a rich collection of diverse cell types, each with a very different DNA 

methylation profile (Houseman et al., 2012; Jaffe & Irizarry, 2014).  The six cells types adjusted for in 

epigenetic studies are involved in cellular immunity: leukocytes (granulocytes and monocytes), and 
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lymphocytes (B-cells, CD4+T cells, CD8+T cells, and natural killer cells (NK). Changes in cell type 

composition, especially in the proportion of lymphocytes may be indicative of an immune response, 

or a disease phenotype (R. Philibert & Glatt, 2017). It has been shown that antipsychotic drugs alter 

lymphocyte cell counts and their methylation patterns  (Houtepen, van Bergen, Vinkers, & Boks, 

2016).   

Many lymphocytes, such as B-cells, T- cells and NK cells express similar receptors as neuronal cells 

including brain-derived neurotrophic factor (BDNF), dopamine, and (GABA) (Gladkevich, Kauffman, & 

Korf, 2004). Disturbances in main neurotransmitter systems in psychotic disorders are seen 

concurrently with altered blood lymphocyte function (Ibid). Given that antipsychotic drugs are 

believed to mediate their therapeutic effect through these same systems, identification of 

differentially methylated regions mediated by antipsychotics may provide insight into new drug 

targets. 

1.5.2 Peripheral blood 

DNA methylation profiles are tissue specific with methylation patterns in the blood differing from 

other corporal tissues (Hannon, Lunnon, Schalkwyk, & Mill, 2015; R. Lowe, Slodkowicz, Goldman, & 

Rakyan, 2015). In particular, there are large differences observed between blood and brain (Horvath 

et al., 2012). However, in a large EWA on schizophrenia, Hannon et al. (2016) introduced a 

methodological approach that integrated genetic and epigenetic findings.  They identified DMPs and 

DMRs associated with schizophrenia that overlapped with previously identified loci associated with 

schizophrenia from genome-wide association studies (GWAS). This study was important for EWA 

studies. Evidence was provided for blood-based DNA methylation analysis to identify differentially 

methylated candidate genes identified through GWAS (Ibid).   

1.6 Methods for interrogating the epigenome 

Epigenetic-wide association studies (EWAS) use state-of-the-art methods to evaluate epigenome-

wide changes in the methylome. These methods include whole-genome sequencing and microarray 

technology.  Microarray technology offers several advantages that may be preferable in many 

experimental studies: the method is cost-effective compared to sequencing; it is rapid and 

reproducible; and it provides a high concordance of methylation values with sequencing methods.  

Notably, microarray technology facilitates hypothesis-generating studies as the array provides a 

“fingerprint” of the cellular state  (Wright et al., 2016). 
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1.6.1 Microarray technology for typing DNA methylation 

The current microarray of choice is the Illumina Infinium® MethylationEPIC BeadChip. This array has 

a higher number of probes than previous generations of arrays, thus allowing for a larger proportion 

of known methylation sites in the genome to be assayed. Currently the EPIC provides single-

nucleotide resolution across the genome at over 850 000 methylation sites (Pidsley et al., 2016).  

DNA samples are first subjected to sodium bisulfite conversion prior to microarray analysis.  During 

bisulfite conversion, unmodified cytosines (C) are converted to uracils (U). During subsequent 

amplification, uracils (U) which are copied as thymines (T). Methylated cytosines however are 

protected from this conversion (Figure 1.7).  Probes on the microarray are designed to detect 

converted thymines or unconverted cytocines at a CG site.  The bisulfite converted DNA is then 

amplified prior to hybridization to the microarray where two different probes with fluorescent colors 

report on corresponding methylation status. 

 

Figure 1.7  Sodium bisulfite conversion of DNA prior to microarray analysis allows for quantitation 
of methylated CpGs.  Unmodified (C)s are converted to (U)s and subsequently copied to (T)s. Probes 
designed to detect a converted (T) or unconverted (C) have different reporter colors (cartoon adapted 
from (Masser et al., 2018). 

 

Methylation data assayed from the microarrays will then be preprocessed prior to analysis. The 

pipeline described in Table 1 provides an overview of the methods used to process, normalize, and 

analyze the raw methylation data provided by the array. The pipeline provides for quality control 

(QC), reliability and reproducibility of the reported findings  (Wright et al., 2016).  
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Table 2  Major steps in the EPIC 850K microarray analysis pipeline 

Analysis Motivation for step  

Sample filtering 

Cohort samples are compared to control probes located on the 
array to identify samples that fail to adequately detect DNAm. 
Samples with poor detection are suspected of poor quality and 
excluded. 

Probe filtering 
Data screening and quality control of raw data. Probes are 
removed that fail to meet preset detection values (p < 0.05) or are 
unreliable due to overlap with SNPs which may confound results.  

Within-array normalization  
Background noise is removed, correction for technical dye-based 
(red/green) intensity, and probe type (I/II) differences in the 
array. 

Batch effects 
Technical or procedural differences may cause hidden variance in 
the dataset. This non-biological variation may be adjusted for.   

Cell-type composition 

Each blood sample may contain different proportions of cells 
types, each with potentially varying DNAm profiles.  Statistical 
methods are incorporated to estimate and correct for cellular 
heterogeneity.   

Differentially methylated 
positions (DMPs) 

Identification of CpG sites; sight-specific DNAm differences at 
single nucleotide resolution 

Differentially methylated 
regions (DMRs) 

DNAm differences identified in CpG-dense regional clusters. 

Over-representation and 
pathway-based enrichment 
analysis 

Genes mapped to DMPs are evaluated in multiple gene databases 
to discover functional or regulatory enrichment. Pathway analysis 
provides a snapshot of the relationship of enrichment to cellular 
mechanisms. 

Biological interpretation  
Several approaches may be required to interpret the biological 
relevance of hypo- or hyper-methylated DMPs, DMRs, and gene 
expression.  

 

1.7 Biological interpretation of epigenetic modifications 

Several interpretation-oriented approaches have been adapted to gain an understanding of the 

biological and clinical significance of DNA methylation results. The choice of analytical tool and/or 

publicly available database depends upon the study design. The genomic coordinates of identified 

differentially methylated regions is easily accessed through publicly available genome browsers 



 

   15 

(UCSC). Specialized epigenetic databases detail CpGs, their associated genes, and their concordance 

between peripheral blood and brain (Edgar, Jones, Meaney, Turecki, & Kobor, 2017). Gene set 

analysis that leads to implicated pathways is an leading discovery approach (Kamburov et al., 2011). 

And identification of proteins from these gene sets may be analyzed through their evolutionary 

relationships (Thomas et al., 2003). Following in silico analysis, animal or cell culture models may be 

used to adapt further studies, or to evaluate the significance of the observations in the clinic (B 

Swathy, Saradalekshmi, Nair, Nair, & Banerjee, 2018). 
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Aims 

Evidence is provided that antipsychotic medications influence DNA methylation genome-wide and at 

localized CpG sites of candidate genes.  Based on this background, the motivation of the thesis is to 

address the following issues: 

1. To identify the DNA positions and regions associated with altered methylation patterns due 

to treatment with olanzapine, 

a. To compare models for adjustment for cellular composition, 

2. To verify findings in HepG2 cells exposed to olanzapine, 

3. To evaluate concordance between blood and brain for CpGs that are differentially 

methylated in blood, 

4. To identify implicated pathways associated with methylation patterns altered by olanzapine.  
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Materials 

3.1 The Thematically Organized Psychosis (TOP) Cohort data set 

Data from patients (n = 691) and controls (n = 309) was obtained through the TOP Cohort project 

affiliated with the Norwegian Centre for Mental Disorders Research (NORMENT). The cohort included 

patients recruited in the Oslo area diagnosed with psychotic disorders including schizophrenia, 

bipolar disorder and major depressive disorder.  Clinical information relevant to the evaluation of 

DNA methylation levels and sample selection included ethnicity, gender, age, psychiatric diagnosis 

and the environmental effects of smoking behavior, antipsychotic and mood stabilizing medications. 

3.2 DNA methylation data sets 

DNA methylation levels derived from patient blood samples and olanzapine-exposed HepG2 cells 

were assayed on the Infinium® MethylationEPIC BeadChip at the Institute of Human Genetics, 

University Hospital of Bonn, Germany. 

3.3 Eukaryotic-cell line 

Name Description  Supplier Catalog no.  

HepG2 
human hepatoma 
cultured cell line  

American Type 
Culture Collection 
(ATCC), Manassas, 
Virginia, USA 

HB-8065 

3.4 Cell culture chemicals and reagents  

Reagents  Supplier Catalog no. 
Eagle’s Minimum Essential Medium (EMEM) Lonza  12-662F 
Penicillin / Streptomycin  Invitrogen 15140-122 
Fetal bovine serum (FBS)  Invitrogen  10106-169 
L-Glutamine Lonza  17-605F 
Dulbecco’s PBS  Sigma-Aldrich D1408 
Trypsin-EDTA Sigma-Aldrich T4299 
Tris-acetate-EDTA  Thermo Fischer 10123293 
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3.5 Commercial kits  

Name Components of 
kit 

Supplier Application Catalog no. 

AllPrep DNA/RNA Mini Kit 

Buffer RLT Plus, 
Buffer RW1, 
Buffer RPE, Buffer 
AW1, Buffer AW2, 
Buffer EB, RNase-
Free water 

Qiagen DNA and RNA 
purification 80204 

Amicon®Ultra-0.5 
Centrifugal Filter Device 

Centrifuge filters, 
tubes Merck KGaA DNA filtration, 

concentration 
UFC500396 

High Capacity cDNA 
Reverse Transcription Kit 

MultiScribe 
Reverse  
Transcriptase, 
dNTP, RT buffer, 
RT Random 
Primers 

Applied 
Biosystems cDNA synthesis 4368813 

LightCycler® 480 SYBR 
Green I Master  

FastStart Taq DNA 
Polymerase, SYBR 
Green I dye, PCR-
grade water 

Roche q-PCR 04707516001 

3.6  Chemicals 

Name Supplier Application 

Dimethyl sulfoxide (DMSO) Sigma - Aldrich Dissolving agent - Olanzapine 

Olanzapine 
Toronto Research 
Chemicals Inc., Toronto, 
Canada 

HepG2 treatment 

β-mercaptoethanol (β-ME) Sigma - Aldrich DNA and RNA purification 

Ethanol AntiBac DNA and RNA purification 

DNA Gel Loading Dye (6X) Thermo Fischer Agarose gel electrophoresis 

Ethidium bromide stock 
solution (2.5 mg/ml) 

Sigma - Aldrich  Agarose gel electrophoresis 

DNA standard ruler Thermo Fischer Agarose gel electrophoresis 

Agarose  Lonza Sea Kem LE Agarose gel electrophoresis 
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3.7 Oligonucleotides  

Primers* Sequence (5’à 3’) 

Hs_HPRT_Fwd 
Hs_HPRT_Rev 

tgaccttgatttattttgcatacc 
cgagcaagacgttcagtcct 

Hs_ChREBP-α_Fwd 
Hs_ChREBP-α_Rev 

agtgcttgagcctggcctac 
ttgttcaggcggatcttgtc 

Hs_ChREBP-β_Fwd 
Hs_ChREBP-β_Rev 

agcggattccaggtgagg 
ttgttcaggcggatcttgtc 

Hs_FASN_Fwd 
Hs_FASN_Rev 

caggcacacacgatggac 
cggagtgaatctgggttgat 

Hs_SREBF1_Fwd 
Hs_SREBF1_Rev 

cgctcctccatcaatgaca 
tgcgcaagacagcagattta 

*All primers were ordered from Sigma-Aldrich 

3.8 Instruments and software 

Instrument Supplier Application  

Countess Automated Cell Counter Bio-Rad Cell culture work 

NanoDrop ND-100 
Spectrophotometer 

NanoDrop Technologies DNA & RNA concentration 

GeneAmp®PCR system 9700 Applied Biosystems cDNA synthesis 

LightCycler®480 II Roche  q-PCR 

Hoefer™ HE33 Mini Submarine Fischer Scientific Agarose gel electrophoresis 

GelDoc ™ XR+ Bio-Rad Agarose gel image 
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Methods 

4.1 Preprocessing pipeline of methylation data  

Preprocessing and quality control (QC) was performed at the Dr. Einar Martins Group for Biological 

Psychiatry as described in the Appendix. The output from the preprocessing was a data matrix 

containing M-values. These values are representations of the log2 of the ratio between the 

methylated and unmethylated probes (Du et al., 2010). 

4.2 Analytical pipeline used in methylation analysis  

Procedures and standard protocols used in the methylation pipeline were followed using open-source 

statistical programming R-packages (R-Core Team, 2018) hosted at BioConductor (Huber et al., 2015). 

BioConductor provides a wide variety of scientific software for the analysis of microarray. The 

motivation for the procedure and the BioConductor R-packages and their authors are listed in Table 

4.1.   

Table 4.1 R-packages used to evaluate the effects of covariates, or unwanted variation on 

methylation 

Package Motivation for step   Authors 

SVA: Surrogate Variable Analysis 
v.3.28.0 

Batch effect and hidden variable 
identification  

(J T Leek, Johnson, 
Parker, Jaffe, & Storey, 
2012) 

Limma: Linear Models for Microarray 
Data, v. 3.38.2 

Statistical method of identifying 
significant DMPs 

(Ritchie et al., 2015) 

IlluminaHumanMethylationEPICanno. 
ilm10b2.hg19, v. 0.6.0 

Illumina EPIC annotation library 

Mapping probes to genes and 
genomic elements 

(Hansen, 2016) 

DMRcate,  v. 1.16.0 
Statistical method of identifying 
significant DMRs 

(Peters et al., 2015) 

TxDb.Hsapiens.UCSC.hg19.knownGene 
v. 3.2.2 

Genomic annotation database 
for DMR coordinates 

(Carlson, 2015) 

GenomicRanges, v. 1.34 
Computes annotated ranges for 
DMRs  

(Lawrence et al., 2013) 
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AnnotationHub, v.2.14.1 Annotated files for DMRs (Morgan, 2018) 

Gviz, v. 1.24.0 Visualization of DMRs (Hahne & Ivanek, 2016) 

 

4.3 Model selection  

In order to evaluate the effects of covariates, or unwanted variation on methylation, linear regression 

models were compared correcting for variables known to affect methylation, including gender (Eranti 

et al., 2013), smoking status (Bauer et al., 2015), age (Horvath et al., 2012) and estimated cells counts 

(eCells) (Jaffe & Irizarry, 2014) as presented in Table 4.2.  Each model was evaluated with the inclusion 

or exclusion of adjustments for eCells.  

Table 4.2: Linear regression models evaluated for antipsychotic effect on differential methylation 

Model Description 
Mod 1a 
Mod 1b 

y  ~ AP1 
y  ~ AP1 + eCells 

Mod 2a 
Mod 2b 

y  ~ AP1 + gender + smoker + age 
y  ~ AP1 + gender + smoker + age + eCells 

Mod 3a 
Mod 3b 

y  ~ AP1 + gender + smoker  
y  ~ AP1 + gender + smoker +  eCells 

 

Analysis of these models was initiated in R with Surrogate Variable Analysis (sva) (Table 4.1). The data 

was formatted as a normalized matrix of methylation (M) expression values with probes in the rows, 

and barcodes of the samples in the columns. Two model matrices were created: the full model 

containing the variable of interest (X) and desired covariates (A + B), i.e. y ~ X + A + B; and the null 

model containing the same covariates as the full model, however without the variable of interest, i.e. 

y ~ A + B. 

The sva algorithm then estimated all unmodeled sources of variation directly from the data and 

returned the surrogates variables (SVs).  The SVs were considered for incorporation into the model 

as additional covariates, i.e. y ~ AP1 + SVs, or for removal from the data set with the Combat tool 

(Table 4.1). As the sva tool does not identify the source of the estimated variation, a heatmap plot 

with the correlation of each SV to a given covariate was evaluated. The number (n) of surrogate 

variables for each model was recorded for evaluation during the model selection process. 
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4.4 Analysis of differentially methylated positions  

Differential methylation analysis was performed in R using Linear Models for Microarray Data limma 

(Table 4.1).  limma is commonly used to find differences between two groups of samples, even for a 

large set of features. A typical limma pipeline consists of 3 steps: 1) it fits a linear model using e.g. 

multiple linear regression, which takes into account the covariates to be corrected for in the analysis; 

2) it improves the estimation of variance by borrowing information across the different features using 

Baysian statistics. This method is particularly useful when the sample size is small; 3) lastly, it identifies 

the features that are different between the two groups under study using a contrast matrix.  

4.5 Gene annotation of differentially methylated positions  

Differentially methylated probes identified by limma were mapped to probes using the EPIC 

annotation library (Table 4.1). This library consists of all genes associated with the probes on the EPIC 

array including enhancer regions and DNase hypersensitive sites which are important in development 

and differentiation of blood cells. The output from limma provides information on probes that map 

to multiple genes and overlapping genes. 

4.6 Identification of differentially methylated regions  

Identification and ranking of the most differentially methylated regions genome-wide was assayed 

with DMRcate and associated R-packages (Table 4.1) (Peters, 2015). The tool relies on functions 

previously used in limma such as designing the linear model and contrast matrix.  Following FDR 

correction (0.3), CpGs from the EPIC array were annotated by regions that grouped from clusters of 

significant probes within a distance (< lambda = 1000) nucleotides to the next probe. 

 

The list of identified DMRs was converted to a genomic range (GenomicRanges) that annotates 

overlapping promoter regions (+/-) 2000 base pairs from the transcription start site (TSS). The ranges 

were then extracted from the human (hg19) data annotation package 

TxDb.Hsapiens.UCSC.hg19.knownGene and stored with the AnnotationHub package. The genome 

browser hosted at the University of California Santa Cruz (UCSC) (https://genome.ucsc.edu) was used 

to view the genomic coordinates. The subsequent ranges were plotted using Gviz package. 
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4.7 Validity of CpGs associated with identified differentially methylated regions 

Genes containing DMRs identified from Model 3b (FDR 0.3) were evaluated for concordance between 

blood and brain methylation levels. The names of the associated genes were entered into the online 

Shiny app for Blood-brain Epigenetic Concordance (BECon) (Table 4.3).  

4.8 Gene set over-representation analysis  

The ConsensusPathDB from the Max Plank Institute for Molecular Genetics, Berlin, Germany  

(http://cpdb.molgen.mpg.de/) is a webportal for multiple gene set and pathway-based databases. 

User defined lists of genes with p-values <10E-03 were submitted to the database using HGNC 

identifiers.  A background list of all the genes identified in the analysis was submitted.  The publicly 

available databases used in gene set analysis are seen in Table 4. 

Table 4.3 Publicly available databases used to interpret biological relevance 

 URL and version release     Reference 

BECon: Brain and Blood 
https://redgar598.shinyapps.io/BECon/ 
April, 2017 

(Edgar et al., 2017) 

ConsensusPathDB 
http://cpdb.molgen.mpg.de/ 

Release 32, January 11, 2017 

(Herwig, Hardt, Lienhard, 
& Kamburov, 2016; 
Kamburov et al., 2011) 

Gene Ontology Consortium 
http://geneontology.org/ (Ashburner et al., 2000; 

Gene Ontology, 2015; The 
Gene Ontology, 2017) 

Pathway Interaction 
Database (NCI-PID) 

hosted at NDEx 
http://www.ndexbio.org/#/ 

(Pillich R.T., J., V., D., & D., 
2017) 

KEGG: Kyoto Encyclopedia  

of Genes and Genomes 

 

https://www.kegg.jp/ 

Release 87.1, August 1, 2018 

(M Kanehisa, Furumichi, 
Tanabe, Sato, & 
Morishima, 2017; Minoru 
Kanehisa, Sato, 
Kawashima, Furumichi, & 
Tanabe, 2016) 

Reactome 
https://reactome.org/ 

Release 66, September 27, 2018  

(Fabregat et al., 2018; 
Sidiropoulos et al., 2017) 
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REVIGO 

http://revigo.irb.hr/ 

Maps to Gene Ontology release Jan 
2017 

(F Supek, Bosnjak, Skunca, 
& Smuc, 2011; Fran Supek 
& Skunca, n.d.)Supek et 
al., 2017 

Wikipathways http://wikipathways.org/ (Slenter et al., 2018) 

 

4.8.1 Over-representation analysis of gene sets 

A list of gene names with p-values < 10E-03 and a user defined background list consisting of all the 

mapped genes assayed from the given model was submitted to the ConsensusPathDB. Gene Ontology 

(Table 4.3). (GO) categories were searched by selecting gene ontology levels 2 and 3 for biological 

process (BP), molecular function (MF) and cellular component (CC) with p-value cutoff = 0.01.  A list 

of GO IDs and corresponding p-values was then submitted to the REVIGO human database (Table 4.3) 

where redundant gene sets were removed and the BP, MF and CC categories were summarized. Top 

hits from each category were evaluated for low –log p-values, low frequency and high uniqueness of 

the GO terms.  

4.8.2 Over-representation analysis of pathway-based gene sets 

Default pathway databases were selected (i.e. Kegg, Biocarta, Wikipathways, Reactome, NCI-PID and 

Pharmgkb) with p-value cutoff = 0.01.  The top pathways with p-values < 10E-03 were evaluated 

further in the corresponding pathway databases identified by ConsensusPathDB in Table 4.3.  

4.9 Verification of differentially methylated position  

4.9.1 HepG2 cell culture exposure to olanzapine 

Eukaryotic cell culture experiments were performed under sterile conditions under a Laminar flow 

hood. HepG2 cells were cultivated in a medium flask (75 cm2) with Eagle’s Minimum Essential 

Medium (EMEM) supplemented with 10% FBS (v/v), penicillin/streptomycin (final concentration 

penicillin 100 U/mL, streptomycin 100 μg/mL) and 1% L-Glutamine (v/v) in a 5% CO2 humidified cell 

culture incubator at 37 °C. The medium was changed every 48 hours and the cells were washed with 

15 ml pre-warmed PBS (37 °C). When the cells reached 80 % confluence, 3 mL trypsin was added 

(37°C), followed by incubation (37°C) for 3-4 minutes. Trypsination was interrupted by adding 5 mL 

growth medium (37°C) and resuspending with a pipette. The cells were counted using Countess 
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Automated Cell Counter (Bio-Rad), and 150 000 cells/well were seeded out in a 12-well plate and 

placed in the incubator.  

Following the 48-hour growth period, the cells were exposed for 72 hours to different concentrations 

of olanzapine (1 µM, 50 µM and 100 µM) dissolved in 0.25% (v/v) DMSO. No treatment (NT) samples 

were prepared with EMEM, and Vehicle samples with 0.25% (v/v) DMSO. After the 72-hour exposure 

period, the medium was removed and the cells were washed with D-PBS  (37°C). RLT Lysis buffer (350 

µl) (Qiagen) was added to the cells to inhibit RNA degradation from endogenous RNases. The cell 

lysate suspension was transferred to RNase-free 2 ml Eppendorf tubes and stored at -80°C until 

extraction.  

4.9.2 Total RNA and genomic DNA extraction  

Standard protocol for the extraction of gDNA and RNA with the ALLPrep DNA/RNA Mini (Qiagen) was 

followed. gDNA and RNA concentrations were quantified by NanoDrop 1000 (Thermo Fischer).  gDNA 

samples were then concentrated threefold (60 ng/µl) to laboratory specifications for methylation 

analysis.  This was performed by pipetting 200 µl of the extracted gDNA into an Amicon® Ultra 0.5 mL 

Centrifugal Filters (Merk KGaA) and centrifuging at 14,000 x g for 20 minutes. The desired 

concentration of the newly purified gDNA was measured by NanoDrop 1000 (Thermo Fischer) and all 

samples were diluted to 20 µl.   

4.9.3 Analytical agarose gel electrophoresis 

An analytical agarose gel was performed to verify the DNA remained double-stranded following the 

extraction procedure. For nucleic acid detection, a 1.0 % (w/v) agarose gel (100 ml 1x TAE buffer, 1 g 

agarose, 100 µg/mL ethidium bromide) was used to separate the DNA fragments. The DNA samples 

were diluted with 6x DNA loading dye, to a final concentration of 1x DNA loading dye. 5 µl of a DNA 

ladder (Thermo Fischer) was loaded as a standard marker.  Electrophoresis was performed in 1x TAE 

buffer at 120 V for 30 minutes. The electrophoretic mobility of the DNA was visualized with the Bio-

Rad Gen Doc EZ Imager System. 

4.9.4 cDNA synthesis  

Conversion of RNA into complementary DNA (cDNA) was performed using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). A master mix was prepared by combining the 

components listed in Table 4.4. All components were placed on ice and the work was performed 
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quickly in sterile conditions under the hood.  Each sample of RNA was added as a final component to 

an aliquot of master mix.  

Table 4.4  Components of master mix and RNA for cDNA synthesis 

Volume  Components 

0.8 µl  25x dNTP mix 

2 µl  10x RT buffer 

1 µl  MultiScribe Reverse Transcriptase 

9.2 µl  Rnase-free water 

2 µl  10x RT Random Primers 

15 µl  Total Master Mix 
5 µl  Diluted RNA (20 ng/µl) 

20 µl  Total reaction volume 

 

The thermal cycler settings used in the cDNA thermal reactions are described in Table 4.5. 

Table 4.5  Thermal cycler settings 

 Step 1 Step 2 Step 3 Step 4 

Time (min) 10 120 5 ∞ 

Temperature (°C) 25 37 85 4 

 

The newly synthesized cDNA was diluted 1:3 in PCR-grade water and stored at -20°C until further use.   

4.9.5 Quantitative real-time polymerase chain reaction  

Quantitative real-time PCR (qPCR) was performed on all samples to measure gene expression in 

HepG2 cells following olanzapine exposure. The method is accurate and highly sensitive to the 

amount of mRNA detected in samples. This is done by detecting the level of fluorescent dye that 

binds to the amplified cDNA in candidate genes. Extracted RNA from HepG2 cells was used as a 

template for cDNA synthesis and subsequent qPCR-analyses.  

Genes associated with lipid biogenesis were selected to validate known drug effects on gene 

expression from earlier studies.  Lipid biogenesis may be induced by activating the sterol regulatory 
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element binding protein (SREBP), encoded by the sterol regulatory element binding transcription 

factor 1 (SFEBF1) gene (Fernø et al, 2006).  Lipid biosynthesis is also induced by the fatty acid synthase 

(FASN) gene, shown to be upregulated by olanzapine treatment (Fernø et al, 2008). And inducing the 

Carbohydrate-response element binding protein (ChREBP) gene upregulates lipid biosynthesis in 

metabolic tissues and cancer cells (Yu et al, 2014).   

The primers for these genes are listed in Table 3.6.  The components listed in Table 4.3 were then 

placed in the LightCycler ® 480 SYBR Green I Master (Roche). During the PCR reaction, single-stranded 

cDNA is first amplified followed by the formation of double stranded DNA (dsDNA). The fluorescent 

dye (SYBR green) binds to dsDNA and the detection of an increase of fluorescent signal will be 

proportional to the amount of dsDNA present.  Three series of the reaction were run for statistical 

analysis. 

Table 4.6  Components needed for one reaction  

Volume  Components 
4 µl  4 μl SYBR green Master I 

0.4 µl  Forward primer (20μM) 
0.4 µl  Reverse primer (20 μM) 
2.2 µl  Rnase-free water 

1 µl  cDNA  
8  µl  Total reaction volume 

   
 

4.9.6 Statistical analysis 

The q-PCR data was evaluated by testing the relative expression levels of the candidate genes against 

an endogenous control. The delta-delta Ct method was used for this purpose, followed by a two-sided 

student t-test to determine the statistical significance of the three series.  The threshold for statistical 

significance was set at p = 0.05.  

4.9.7 Identification of differentially methylated positions in HepG2 cells 

Preprocessing and analysis of the methylation data was performed following the methods and 

pipeline used for blood samples (Appendix) and R-packages (Table 4.1).  Differential analysis was 

performed with limma.  Four contrast matrices were created: Vehicle was subtracted from each 

exposure concentration and the control matrix represented Vehicle subtracted from No treatment 

(NT). The differentially methylated probes identified were mapped to genes using the EPIC 
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annotation library. The top 16 probes were visualized with ggplot2 to evaluate the variation of 

average methylation level (M value) for each exposure concentration (1 µM, 50 µM or 100 µM) or 

condition (NT or Vehicle). 

4.9.8 Identification of differentially methylated regions in HepG2 cells 

Identification of differentially methylated regions was performed using R-packages (Table 4.1) with 

standard settings as with patient blood samples: DMRcate, GenomeRanges, AnnotationHub and 

Gviz.   

4.9.9 Gene set over-representation analysis  

A user-defined gene list and a background list (p-values < 10E-03 ) with all mapped genes (n = 25 580) 

were submitted to ConsensusPathDB. The output provided GO IDs and corresponding p-values which 

were then submitted to the REVIGO human database (Table 4.1). Redundant gene sets were removed 

and the biological process (BP), molecular function (MF) and cell component (CC) categories were 

summarized.  The top pathways-based gene sets with p-value < 10E-03 were evaluated.  

4.10 Meta-analysis of HepG2 and Model 3b differentially methylated positions 

A meta-analysis was performed for statistical power to identify the enriched genes that ranked 

highest in both groups. 
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Results 

The main aim of this project was to identify DNA regions that were subject to methylation changes 

as a result of olanzapine treatment in patients. In our analytical approach we used a data set where 

DNA methylation patterns have been profiled in blood. The full data set contains data from patients 

on different antipsychotic drugs. Some patients use multiple drugs, making it difficult to identify 

changes induced by the individual drugs. A selection of appropriate samples was therefore made. In 

the following sections the sample selection and results from the identification of differentially 

methylated regions will and the results from gene set analysis will be described. The results from the 

verification step using HepG2 cells will be presented and finally, an evaluation of concordance 

between blood and brain. 

5.1 Sample selection and description  

DNA methylation data from 158 European samples were selected for analysis: olanzapine (n = 82), 

quetiapine (n = 48), and aripiprazole (n = 28) (Figure 5.1). Controls were excluded from DNA further 

analysis. 

  

 

Figure 5.1.  TOP cohort sample selection: A) Samples were removed during preprocessing steps as 
described in the Appendix, and B) samples were selected characterized by European, aged 18-44, and 
with serum concentration reflecting adherence to antipsychotic monotherapy. 

5.1.1 Distribution of gender, age and smoking status  
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Distribution plots were prepared of the three antipsychotics (Figure 5.2) using the R-package ggplot2 

(see Table 4.1). The distribution of gender (1 = male, 2 = female) in Figure 5.2.A suggests that far more 

men than women took olanzapine while the gender difference was less with aripiprazole and 

quetiapine. More patients smoked (0 = no, 1 = yes) while taking olanzapine, far fewer smoked while 

taking aripiprazole, and the difference was negligible for quetiapine (Figure 5.2.B). Age was evenly 

distributed for olanzapine while patients tended to be younger while taking either aripiprazole or 

quetiapine (Figure 5.2.C).  The range of serum drug concentrations varied considerably, and values 

below the recommended range were hardly visible for olanzapine (Figure 5.2.D).  In addition, 15 

samples total lacked recorded serum concentrations, yet were included due to registered 

methylation data.  

A   Gender B   Smoking status 

  

C   Age D   Drug serum concentrations 

  
 

Figure 5.2. Visualization of distributions: A) gender (1 = male, 2 = female), B) smoking status (0 = no, 
1 = yes), C) age, and D) drug serum concentration in 158 patients with psychotic disorders taking: 
olanzapine n= 82, quetiapine n = 48, and aripiprazole n = 28. Plots prepared with ggplot2. 

The age group of our samples (18-44) was determined by the maximum age for aripiprazole. As age 

was not evenly distributed for aripiprazole and quetiapine, a cumulative age distribution was plotted.  

The data suggested a trend towards more patients older than age 35 taking olanzapine, while patients 

taking aripiprazole and quetiapine would level off after this age (Figure 5.3).  
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Figure 5.3. Cumulative age distribution of patients adhering to monotherapy: In the TOP Cohort 
data set, more patients over the age of 35 years take olanzapine (red) than aripiprazole and 
quetiapine (blue). 

 

5.1.2 Distribution of serum concentrations  

Drug serum concentrations from the TOP Cohort data set were compared to the therapeutic 

reference values provided by Haukeland University Hospital Laboratory (Table 5.1).  The number of 

samples outside the therapeutic ranges is also presented.  

Table 5.1: Range of drug serum concentrations recommended for antipsychotic therapeutic effect 

Antipsychotic Therapeutic 
reference values Samples below Samples above NA serum conc. 

Aripiprazole  200 – 1100 nmol/L 6 2 2 
Olanzapine 30 – 200 nmol/L 15 4 6 
Quetiapine 50 – 700 nmol/L 4 3 7 

5.2 Identification of patterns of differential methylation  

5.2.1 Model selection  

The design of the model was based upon current practice in epigenome-wide association studies 

(EWAS). These studies correct for environmental factors such as age, gender, smoking status and cell 

type composition by including the factors as covariates in the model.  We included therefore these 

variables as covariates in our models yet used adjustment for cell type composition as a point of 

comparison between the models. The aim of this comparison was to determine if cell type 
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composition itself contributed to differentially methylated patterns associated with an olanzapine-

phenotype. 

The proposed models (Table 4.2) were then evaluated using Surrogate Variable Analysis sva (J T Leek 

et al., 2012, 2010) to uncover hidden variation in the data set.  This hidden or latent variation is 

represented as a surrogate variable (SV) which may be included in the model as a covariate.   The 

simplest model (y ~ AP1) from Table 4.2 was run to evaluate the correlation between surrogate 

variables, and covariates or variables selected from the data set.  A heat map was created (Figure 5.4) 

to visualize this correlation by –log transforming the p-values whereby the resulting white color 

represented the p-values with greatest significance, followed by the colors yellow, orange and red 

with least significance.   

A) Model 1a:  y ~ AP1 B) Model 1b:  y ~ AP1 + eCellCounts 

  

Figure 5.4: Correlation of selected covariates/variables to estimated surrogate variables (SVs): The 
heatmap represents the correlation between selected variables and the estimated (SVs) identified by 

sva. P-values are -log transformed and those with greatest significance are colored white, while red 
represents variables with the least significance. In Model 1b, SV3 is correlated with serum 
concentration of antipsychotic drugs.  

 

Five SVs were estimated with sva for Model 1a (Figure 5.4.A). Surrogate variable 1 (SV1) showed the 

most significant correlation with antiepileptic drugs (AE), granulocytes, monocytes, CD8+T and CD4+T 

cells (Figure 5.4.A). A correlation between AE and these cells may also exist. The serum concentration 

of antipsychotic drugs (Serum_AP) showed correlation with SV3 and SV4, while lithium (LIT) was 

significantly correlated only with SV4. Age was correlated with SV5, however some correlation 

between age and NK cells may also have occurred.  

When estimated cell counts values were added to Model 1b (Figure 5.4.B), sva estimated only 3 

surrogate variables in the data set.  The correlation with AE and LIT was most significant for SV1, 
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followed by gender and age.  The most significant correlation for SV2 was with array, while SV3 was 

correlated with slide, plate, antipsychotic serum drug concentration and smoker.  

The ComBat tool (Table 4.1) was then used to remove the identified SVs from the models. This 

resulted in no beneficial reduction of SVAs. The method prescribed then that the SVAs should be 

added to the model. We selected therefore the models with the least number of SVs (Model 3a and 

Model 3b) to limit sources of hidden variation during downstream analyses (Table 5.2). 

Table 5.2  Models evaluated for differential methylation analysis and their surrogate variables 

Models Description of models SVAs  

Mod 1a     y  ~ AP1 + sva 5 

Mod 1b     y  ~ AP1 + eCells + sva 3 
Mod 2a     y  ~ AP1 + gender + smoker + age + sva 3 

Mod 2b     y  ~ AP1 + gender + smoker + age + eCells + sva 3 

Mod 3a     y  ~ AP1 + gender + smoker + sva 0 

Mod 3b     y  ~ AP1 + gender + smoker + eCells + sva 0 

 

5.2.2 Differentially methylated positions  

Differentially methylated patterns at CpG loci were identified from the data set of methylation values 

by using limma (Table 4.1) to uncover differential expression between the antipsychotic drugs. A 

contrast matrix was used to essentially extract the effect of olanzapine from quetiapine and 

aripiprazole. This resulted in a set of differentially methylated probes associated with an olanzapine-

effect. Model 3a and Model 3b were run and the identified probes were mapped to 25 580 associated 

genes using the EPIC annotation library (Table 4.1). The number of probes and associated genes for 

each model are listed in Table 5.3.  

Table 5.3  Identification of differentially methylated probes and associated genes 

Differentially methylated probes identified Total N 

Probes with p < 10E-03  

  Model 3a 1 421 

  Model 3b 1 988 

  

Genes mapped to probes  25 580 

  Model 3a   (p < 10E-03) 1 178 
  Model 3b   (p < 10E-03) 1 581 
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In addition to the probe names, the output of the limma analysis provided metrics for log-fold change 

(FC), average expression (AveExpr), and p-values. The fold change indicates the expression change for 

a given probe while the AveExpr represents the average log2-intensity values for a particular probe 

across the arrays. In Tables 5.4 and 5.5, the negative AveExpr is colored pink while positive AveExpr 

is colored green.   

Differentially methylated probes for Model 3a: y ~ AP1 + gender + smoker 

The top 18 probes (p-values < 10E-05) and associated gene names for Model 3a is shown in Table 5.4. 

Probes not annotated to a gene in the EPIC annotation library may be intergenic and associated with 

regulatory elements, such as enhancers. Note that probe 10 is located in two overlapping genes. 

Table 5.4: Top 18 Differentially methylated probes with p < 10E-05 mapped to genes for Model 3a 

 Probe logFC AveExpr P-Value Gene 
1 cg05491587 -0.6195 2.1588 8.08E-07 KCNG2 
2 cg04695077 -0.2203 -1.8804 1.30E-06 

 

3 cg25289484 0.3571 3.0323 4.58E-06 SPEN 
4 cg13002170 -0.2196 3.8477 4.59E-06 NCOA2 
5 cg00136105 0.2108 -3.9058 4.78E-06 GNPTAB 
6 cg17256711 0.2261 -1.6588 5.18E-06 OPRM1 
7 cg22989843 0.2346 -2.4029 5.66E-06 PAX3 
8 cg21706229 0.1762 -2.1700 6.20E-06 

 

9 cg00553886 0.2030 -1.3150 6.43E-06 TEAD1 
10 cg16688303 0.2534 0.6503 6.85E-06 LRRTM2;CTNNA1 
11 cg06914048 0.2045 -2.9314 7.28E-06 CABLES1 
12 cg08403345 0.2270 -2.3930 7.53E-06 MADCAM1 
13 cg18730746 -0.1522 -3.9261 7.67E-06 TEX264 
14 cg05646885 -0.1698 0.1278 7.79E-06 

 

15 cg23855260 -0.1947 3.2232 8.30E-06 
 

16 cg10027085 -0.2305 -3.8932 8.34E-06 ANGEL2 
17 cg23504411 0.1965 -1.1872 8.44E-06 HIST1H3J 
18 cg11565785 0.1659 -2.4412 9.73E-06 

 

 

The foremost significant gene listed was the potassium voltage-gated channel modifier subfamily G 

member 2 gene (KCNG2); followed spen family transcriptional repressor (SPEN); paired box 3 (PAX3); 

and TEA domain transcription factor 1 (TEAD1); the nuclear receptor coactivator 2 (NCOA2) and 

opioid mu receptor 1 (OPRM1); catenin alpha 1 (CTNNA1); mucosal vascular addressin cell adhesion 

molecule 1 (MADCAM1); Cdk5 and Abl enzyme substrate 1 (CABLES1); N-acetylglucosamine-1-

phosphate transferase subunits alpha and beta (GNPTAB); testis expressed 264 (TEX264); histone 
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cluster 1 H3 family member j (HIST1H3J); angel homolog 2 (ANGEL2); and leucine rich repeat 

transmembrane neuronal 2 (LRRTM2). 

Differentially methylated probes for Model 3b (y ~ AP1 + gender + smoker + eCells) 

The top 23 probes (p-values < 10E-05) and associated gene names for Model 3b is shown in Table 5.5. 

Probes not annotated to a gene in the EPIC annotation library may be intergenic and associated with 

regulatory elements, such as enhancers. Note that probes number 9 and 19 are located in two 

overlapping genes. 

Table 5.5: Top 23 differentially methylated probes with p < 10E-05 mapped to genes for Model 3b 

 Probe logFC AveExpr P-Value Gene 
1 cg05491587 -0.6227 2.1588 1.20E-06 KCNG2 
2 cg04695077 -0.2133 -1.8804 1.99E-06  
3 cg25289484 0.3696 3.0323 2.46E-06 SPEN 
4 cg23296325 0.1823 -4.1634 2.61E-06 NAA30 
5 cg05646885 -0.1646 0.1278 4.33E-06  
6 cg14476293 0.2551 2.9945 4.38E-06 MIR548F3 
7 cg15986164 -0.1875 3.7964 4.50E-06 GAK 
8 cg23504411 0.1967 -1.1872 4.70E-06 HIST1H3J 
9 cg16688303 0.2482 0.6503 4.72E-06 LRRTM2;CTNNA1 

10 cg18765801 0.1858 3.2942 5.11E-06 MYADM 
11 cg23653184 0.1669 0.4235 5.29E-06  
12 cg17256711 0.2258 -1.6588 5.34E-06 OPRM1 
13 cg01551350 -0.1850 -1.3218 6.47E-06  
14 cg24004990 -0.1077 -0.2035 7.01E-06  
15 cg13128436 -0.1270 -1.9972 7.50E-06 MECR 
16 cg00136105 0.1972 -3.9058 7.55E-06 GNPTAB 
17 cg13002170 -0.2043 3.8477 7.71E-06 NCOA2 
18 cg19056004 -0.1499 0.4453 7.73E-06 LRRC23;ENO2 
19 cg22037687 0.1626 3.3374 8.05E-06 NFATC2 
20 cg06647382 0.1562 3.7626 9.10E-06 PDK2 
21 cg00553886 0.2007 -1.3150 9.30E-06 TEAD1 
22 cg01666716 0.1389 2.5179 9.43E-06  
23 cg22989843 0.2166 -2.4029 9.83E-06 PAX3 

 

Model 3b differs from Model 3a by the identification of N(alpha)-acetyltransferase 30, NatC catalytic 

subunit (NAA30); pyruvate dehydrogenase kinase 2 (PDK2) and cyclin G associated kinase (GAK); 

myeloid associated differentiation marker (MYADM); mitochondrial trans-2-enoyl-CoA reductase 

(MECR); leucine rich repeat containing 23 (LRRC23); enolase 2 (ENO2); microRNA 548f-3 (MIR548F3); 

and a nuclear factor of activated T cells 2 (NFATC2). 
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Model 3a and Model 3b coincide with 10 genes mapped to probes with p < 10E-05. They share the 

top two genes KCNG2 and SPEN, with KCNG2 slightly more significant in Model 3a. P-values and fold-

change values differ slightly for HIST1H3J, LRRTM2, CTNNA1, OPRM1, GNPTAB, NCOA2, TEAD1 and 

PAX3. The average of probe intensities is the same for both models (Table 5.4 and Table 5.5). 

Shared genes between Model 3a and Model 3b    

An analysis was made of all genes shared between the models (p-value < 10E-03) to evaluate any 

differences after adjusting for estimated cell counts in Model 3b. The total number of shared genes 

(n = 959) represented 53.3% of the total number of genes. These genes were visualized in a Venn 

diagram (Figure 5.5). 

 

Figure 5.5. Unique genes shared between Model 3a and Model 3b annotated by the EPIC 

annotation library (p-value < 10E-03): Model 3a (n = 1178), Model 3b (n = 1581). Genes shared 
between the two models (n = 959) represented 53.3% of the total number of genes (n = 1800) for 
both models. Venn diagram generated with webtool created by the Van de Peer lab of Bioinformatics 
and Evolutionary Genomics (http://bioinformatics.psb.ugent.be/beg/tools/venn-diagrams).    

 

Hypo and hyper-methylated genes shared between the models 

An analysis was then made of the shared hypo- and hyper- methylated genes to evaluate if there was 

a general methylation pattern that might be associated with olanzapine (Figure 5.6). A methylation 

score was calculated as the inverse of the p-value for each gene. Genes with negative scores indicated 

hypo-methylated status, while genes with positive scores indicated hyper-methylated status. The 

number of genes from each state and model is presented in Table 5.6 and represented in Venn 

diagrams in Figure 5.6.  
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Table 5.6 Hypo- and hyper-methylated genes coincide between Model 3a and Model 3b 

State Model 3a Model 3b Shared  Unique 
hypo-methylated 435 683 352 766 
hyper-methylated 743 898 590 1051 

 

 

Hypo-methylated genes Hyper-methylated genes 

  

 

Figure 5.6.  Shared hypo- and hyper-methylated genes as measured by inverse p-value < 10E-03. 
Model 3a and Model 3b share 766 hypo-methylated genes and 1051 hyper-methylated genes. Venn 
diagram generated with webtool created by the Van de Peer lab of Bioinformatics and Evolutionary 
Genomics (http://bioinformatics.psb.ugent.be/beg/tools/venn-diagrams). 

 

The data in Table 5.6 indicate that a greater number of genes that coincide between the models are 

hyper-methylated (63%) compared to hypo-methylated (37%).  A complete understanding of the role 

of methylation status on gene expression is still under investigation. Nevertheless, identification of 

the genomic coordinates of richly methylated regions may provide greater insight into the gene 

regulatory mechanisms at these loci.  

5.2.3 Differentially methylated regions  

The aim of EWAS is to identify differentially methylated regions that are significantly different in 

methylation status between tissues or individuals. These densely methylated regions have more 

statistical power than individual CpGs because they represent persistent change across a region.  
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Biological interpretation is therefore enhanced by the identification of a correlation between 

differentially methylated regions and phenotype.  

R-packages for identifying differentially methylated regions included DMRcate, computation of 

genomic ranges with GenomeRanges, annotation of files in AnnotationHub, and subsequent 

visualization in Gviz (Table 4.1). 

Model 3a (y ~ AP1 + gender + smoker): Three differentially methylated regions (DMRs) were 

identified with a false discovery rate (FDR 0.4).  As there were no findings with FDR 0.3, further 

evaluation was discontinued with Model 3a. 

Model 3b (y ~ AP1 + gender + smoker + eCells): Fifteen DMRs were identified with false discovery 

rate (FDR 0.3). Two DMRs were evaluated for further analysis: one hyper-methylated DMR at the Trio 

and F-actin binding protein (TRIOBP) on Chr. 22q13 (Figure 5.4), and one hypo-methylated DMR at 

the transcription factor Sry-box 30 (SOX30) on Chr. 5q33.3 (Figure 5.5). 

In Figure 5.7, methylation levels for TRIOBP CpGs (pink) were higher in patients taking olanzapine, 

than methylation levels in patients taking aripiprazole or quetiapine (blue).     

 

Figure 5.7.  DMR identified (FDR 0.3) on Chr. 22q13: Hyper-methylation of TRIOBP at most CpGs was 
identified in patients taking olanzapine (pink) compared to patients taking aripiprazole or quetiapine 
(blue). 

In contrast, methylation levels for most CpGs at the SOX30 gene were lower in patients taking 

olanzapine (pink) than in patients taking aripiprazole or quetiapine (blue) (Figure 5.8). 
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Figure 5.8.  DMR identified (FDR 0.3) on Chr. 5.q33.3: Hypo-methylation of SOX30 identified at most 
CpGs in patients taking olanzapine (pink) compared to patients taking aripiprazole or quetiapine 
(blue). 

The biological interpretation of these DMRs may be evaluated in relation to their role in cellular or 

metabolic pathways.  Identification of significant pathways may suggest the mediating effect of 

olanzapine. 

5.3 Gene set over-representation analysis  

Gene set over-representation analysis enhances the biological interpretation of epigenetically 

modified genes by using statistical methods to map gene sets in curated databases to our user-

defined gene list.  Over-representation analysis determines whether a set of identified gene 

categories are present more than would be expected by chance in our set of differentially methylated 

genes. Gene Ontology (GO) categories are used for this purpose.  The approach is then extended to 

identify pathways containing over-represented gene sets that map to our list. ConsensusPathDB 

accesses both GO and publicly available pathway databases for this purpose (Table 5.3).  

Gene lists with p-value < 10E-03 prepared from Model 3a (n = 1178) and Model 3b (n= 1581) were 

submitted to ConsensusPathDB with default settings (level 2 and 3 GO categories with p-value cut-

off = 0.01). 

Gene set over-representation analysis:  The output of the database search in ConsensusPathDB 

provided a list of Gene Ontology (GO) categories and term IDs which classify different aspects of gene 

function. The top 5 gene sets identified in each category: Biological process (Table 5.6), Molecular 

function (Table 5.7) and Cellular component (Table 5.8) were organized by corresponding log10 p-

value for each model. 
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Terms relating to biological process in GO describe cellular processes that require multiple molecular 

activities.  Gene sets characterized by cellular adhesion, development and structure are present in 

the top 5 hits for both models.   The adjustment for cell type composition in Model 3b may have 

resulted in slightly more significant p-values than in Model 3a (Table 5.6).  

Table 5.6 Comparison of over-represented gene sets classified by GO terms for biological process 

Biological process  

Model 3a Model 3b 

Term ID Description log10 
 p-value 

Term ID Description log10 
 p-value 

GO:0007155 Cell adhesion -7.502 GO:0048856 
Anatomical 
structure 
development 

-8.083 

GO:0048468 Cell development -6.519 GO:0048468 Cell development -7.863 

GO:0048731 
System 
development -6.491 GO:0007155 Cell adhesion -7.498 

GO:0007275 
Multicellular 
organism 
development 

-6.490 GO:0007275 
Multicellular 
organism 
development 

-7.010 

GO:0048856 
Anatomical 
structure 
development 

-6.176 GO:0048731 
System 
development 

-6.848 

 

Terms relating to molecular function in GO are characterized by the activities of gene products that 

require multiple molecular activities performed on the molecular level. Gene sets characterized by 

the binding of proteins and enzymes are represented in both models, although Model3a has 2 terms 

that are more specific for DNA binding (Chromatin binding and RNA polymerase II transcription factor 

activity, sequence-specific DNA binding (Table 5.7).   
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Table 5.7 Comparison of over-represented gene sets classified by GO terms for molecular function 

Molecular function  

Model 3a Model 3b 

Term ID Description log10 
 p-value 

Term ID Description log10 
 p-value 

GO:0005515 Protein binding -6.731 GO:0005515 Protein binding -6.445 

GO:0003682 Chromatin binding -4.213 GO:0019899 Enzyme binding -6.100 

GO:0019899  Enzyme binding -4.091 GO:0005088 

Ras guanyl-
nucleotide 
exchange factor 
activity 

-4.791 

GO:0000981  

RNA pol. II TF 
activity, sequence-
specific DNA 
binding  

-3.969 GO:0019904 
Protein domain 
specific binding -3.852 

GO:0044877  
Macromolecular 
complex binding -3.734 GO:0008092 

Cytoskeletal 
protein binding -3.309 

• transcription factor (TF) 

 

Terms relating to cellular component in GO are characterized by the locations where a gene product 

performs a function in relation to the cellular structure. In Model 3b, all five gene sets are 

characterized by the neuron, and include specifically the cell body, dendrites, synapses and 

postsynaptic components such as neurotransmitter receptors.  Model 3a shares 3 of these gene sets 

however the log10 p-values are lower than the values in Model 3b (Table 5.8). 
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Table 5.8 Comparison of over-represented gene sets classified by GO terms for cellular component 

Cellular component  

Model 3a Model 3b 

Term ID Description log10 
 p-value 

Term ID Description log10 
 p-value 

GO:0098794 Postsynapse -5.420 GO:0097458 Neuron part -7.333 

GO:0097458 Neuron part -4.854 GO:0036477 
Somatodendritic 
compartment -5.979 

GO:0036477 
 

Somatodendritic 
compartment -4.295 GO:0098794 Postsynapse -5.886 

GO:0043296 
Apical junction 
complex -4.270 GO:0014069 

Postsynaptic 
density -5.492 

GO:0019897 
Extrinsic 
component of 
plasma membrane 

-4.001 GO:0099572 
Postsynaptic 
specialization -5.398 

 

The over-represented gene sets characterized by GO terms identified categories of gene functions 

where the modifying effects of olanzapine may be located.  These gene sets indicated activity 

localized to the neuron in synaptic receptors. Gene sets involved in the process of cell adhesion and 

structural development were also over-represented.  Pathway-based gene sets were then evaluated 

to see which pathways were implicated our differentially methylated gene sets.  

Pathway-based over-representation analysis:  The top pathways identified by the gene lists 

submitted to ConsensusPathDB provided additional information for comparison of the two models 

as seen in Table 5.9 (Model 3a) and Table 5.10 (Model 3b).   

 

 

 

 

 

 



 

   43 

Table 5.9  Model 3a: 11 pathway-enriched gene sets identified with p < 10E-03 

Pathway p-value q-value Database External_id 
Hippo signaling pathway   9.85E-06 9.72E-03 KEGG path:hsa04390 
Posttranslational regulation of 
adherens junction stability and 
dissassembly 

1.08E-05 9.72E-03 PID ajdiss_2pathway 

White fat cell differentiation 1.54E-04 6.37E-02 Wikipathways WP4149 
Syndecan-2-mediated signaling events 1.77E-04 6.37E-02 PID syndecan_2 
Cardiac Progenitor Differentiation 2.94E-04 8.82E-02 Wikipathways WP2406 
Mitochondrial tRNA aminoacylation 4.81E-04 1.19E-01 Reactome R-HSA-379726 
Wnt Signaling Pathway and 
Pluripotency 5.83E-04 1.19E-01 Wikipathways WP399 

TCR signaling in naive CD4+ T cells 5.97E-04 1.19E-01 PID tcr_pathway 
Transcriptional activation by NRF2 6.63E-04 1.19E-01 Wikipathways WP3 
MAPK Signaling Pathway 7.86E-04 1.22E-01 Wikipathways WP382 
Pathways in cancer - Homo sapiens  8.16E-04 1.22E-01 KEGG path:hsa05200 

 

Pathways associated with signaling and cell differentiation were identified in Model 3a.  The MAPK 

and Wnt signaling pathways are involved in cell proliferation, differentiation and cell migration. T cell 

receptor (TCR) signaling mediates diverse functional outcomes in naïve versus memory CD4 T cells.   

Table 5.10  Model 3b: 9 pathway-enriched gene sets identified with p < 10E-03 

Pathway p-value q-value Source External_id 
Hippo signaling pathway  1.44E-06 2.86E-03 KEGG path:hsa04390 
RUNX1 regulates transcription of genes  
involved in WNT signaling 1.41E-04 1.40E-01 Reactome R-HSA-

8939256 
Neuronal System 2.66E-04 1.76E-01 Reactome R-HSA-112316 

RUNX3 regulates p14-ARF 4.06E-04 2.00E-01 Reactome R-HSA-
8951936 

Protein-protein interactions at synapses 5.21E-04 2.00E-01 Reactome R-HSA-
6794362 

TP53 regulates transcription of additional cell  
cycle genes whose exact role in the p53 
pathway remain uncertain 

7.59E-04 2.00E-01 Reactome 
R-HSA-
6804115 

RUNX3 regulates YAP1-mediated transcription 8.73E-04 2.00E-01 Reactome R-HSA-
8951671 

G alpha (12/13) signaling events 9.00E-04 2.00E-01 Reactome R-HSA-416482 

FCERI mediated NF-kB activation 9.88E-04 2.00E-01 Reactome R-HSA-
2871837 
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The top pathway (p-value < 10E-05) for both Model 3a and Model 3b was the Hippo signaling 

pathway. This pathway is involved in the regulation of cell proliferation and apoptosis. The difference 

in nominal p-values and q-values between the models was less than expected considering the 

adjustment for cell type composition in Model 3b.  

Pathways identified in Model 3b related to the neuronal system and synaptic mediated  

neurotransmitter activity. Intercellular communication and cell-cell adhesion also occur at synapses 

mediated by protein-protein interactions. G(12/13) signaling pathway in involved in the regulation of 

cellular proliferation and NF-kB activation by FCERI is necessary for proinflammatory cytokine 

production and allergic inflammatory disease process (Fabregat et al. 2018). 

In order to verify the olanzapine-mediated changes in methylation patterns found in the blood, a cell 

culture trial was performed with hepatic HepG2 cells.  The human hepatic HepG2 cell line is widely 

used in drug metabolism and hepatoxicity studies. These cells offer a stable phenotype that does not 

depend on donor characteristics (Donato, Tolosa, & Gómez-Lechón, 2015). 

5.4 Verification of epigenetic modifications in blood using olanzapine-exposed 

HepG2 cells 

Three different analytical-approaches were performed with the hepatic cell line (HepG2) to identify 

drug-induced effects following a 72-hour exposure to olanzapine.  Gene expression was evaluated 

with genes known to alter fatty acid synthesis. DNA isolated from the exposed cells was purified and 

methylation status was assayed on the EPIC microarray. The methylation data was then evaluated in 

silico using the same pipeline as with blood samples (see Appendix).  Prior to methylation analysis, 

the quality of the isolated DNA was assessed for purity, concentration and integrity. 

5.4.1 Analytical agarose gel electrophoresis  

Agarose gel electrophoresis is a technique used for separating linear DNA molecules by size in an 

electric field. Negatively charged DNA molecules migrate towards the positive electrode and smaller 

fragments will migrate faster within the gel. A standard analytical agarose gel was performed to 

confirm the integrity of the DNA prior to sending the samples for methylation analysis. In Figure 5.9, 

all samples corresponded to circa 6 000 base pairs without visible smaller DNA fragments. The clarity 

of the gel indicated that the double-stranded DNA remained intact following the purification 

procedure.  
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Figure 5.9.  Analytical agarose gel (1% w/v) electrophoresis confirms integrity of DNA samples. 
Lanes 1 – 4 (No treatment), lanes 5 – 8 (Vehicle – DMSO), lanes 9 – 12 (1 µM), lanes 13 – 16 (50 µM) 
and lanes 17 – 20 (100 µM).  Lane M: 6 000 bp DNA Marker (25 ng). Lane E is empty and lane Er is a 
highly concentrated sample.  

5.4.2 Validation of gene response to olanzapine following 72-hour exposure  

Quantitative real-time PCR (qPCR) was then performed to measure the fold change in gene 

expression. Genes known to induce alterations in gene expression following exposure to second-

generation drugs were selected due to evidence of their role in fatty acid synthesis.  Lipid biogenesis 

may be induced by activating the sterol regulatory element binding protein (SREBP), encoded by 

sterol regulatory element binding transcription factor 1 (SFEBF1) (Fernø, Skrede, Vik-Mo, Håvik, & 

Steen, 2006),  as well as by the fatty acid synthase (FASN) gene, shown to be upregulated by 

olanzapine treatment (Vik-Mo, Ferno, Skrede, & Steen, 2009). A third gene known to induce lipid 

biogenesis is the carbohydrate-response element binding protein (ChREBP) in response to glucose, 

although it has been shown to be induced by a different antipsychotic drug and not olanzapine (Liu, 

2017). 

Expression of SREBF1 (Figure 5.10-A) shows a clear dose response (50 µM olanzapine average fold 

change ± standard error of mean (SEM), 1,52 ± 0,26, p-value:0,03), 100 µM olanzapine (3,26 ± 0,76, 

p-value: 0,02). A dose trend was seen also with 1 µM olanzapine (p-value: 0,07) however it did not 

pass the significance level. The dose response for FASN is noticeable only between 50 µM and 100 

µM however was not significant (data not shown). ChREBPα expression showed greater variability 

amongst all samples and was not significant (data not shown).   
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Figure 5.10 Gene expression following 72 hours of Olanzapine (Olz) exposure:  A) Expression of 
SREBF1 followed a dose response trend response (50 µM olanzapine average fold change ± SEM, 1,52 
± 0,26, p-value: 0,03), 100 µM olanzapine (3,26 ± 0,76, p-value: 0,02 ) although not significant at 1 
µM Olz; B) The dose response for FASN is noticeable only between 50 µM and 100 µM however was 
not significant (data not shown); C) Expression of ChREBPα showed greatest variability amongst all 
samples however not significant.  NT: ENEM medium; Vehicle: DMSO.  

5.4.4 Differentially methylated regions after olanzapine exposure in HepG2  
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Nine DMRs were identified in HepG2 cells (FDR 0.3) containing between 2 - 7 CpGs. The DMR shown 

in Figure 5.12 consists of 7 CpGs and overlaps with the ALKBH3 antisense RNA1 (ALKBH3-AS1) located 

on the minus strand of chromosome 11p11.2.  The average methylation levels do not differ for the 

100 µM samples (blue), except for one CpG which is hypo-methylated in comparison to Vehicle-DMSO 

(pink). 

Overlapping with this gene, but on the opposite strand is ALKBH3, which belongs to a family of 

proteins that mediates DNA damage repair: Alkylated DNA Repair Protein AlkB Homolog 3 (ALKBH3). 

The protein protects against cytotoxicity of methylating agents by demethylating DNA and RNA 

containing 1- methyladenosine (m1A) (Duncan et al., 2002).   

 

Figure 5.12.  DMR identified in 100 µM samples (FDR 0.3) on Chr. 11.p11.2: The DMR identified for 
ALKBH3-AS1 spans 7 CpG sites where only one CPG is markedly hypo-methylated in 100 µM samples 
(blue) compared to Vehicle-DMSO (pink). The genomic coordinates: chr11: 43941594-43942682. 

5.4.3 Differentially methylated probes identified following olanzapine-exposure  

The methylation data was for HepG2 cells was then assayed using limma to identify differentially 

methylated probes following 72-hour exposure to olanzapine. The genome-wide statistical analysis 

for the 100 μM concentration samples was selected for downstream work as a greater effect 

response was anticipated at this concentration. The top 21 differentially methylated probes (p-value 

< 10E-07) and their associated genes, mapped using the Epic annotation library are presented in 

Table 5.9.   

These genes included: Rho associated coiled-coil containing protein kinase 2 (ROCK2); protein 

activator of interferon induced protein kinase EIF2AK2 (PRKRA); tight junction protein 2 (TJP2); F-box 
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protein 31 (FBXO31); EMAP like 1 (EML1); TOX high mobility group box family member 3 (TOX3); 

ATPase phospholipid transporting 11A (ATP11A); ring finger protein 145 (RNF145); CTD small 

phosphatase2 (CTDSP2); nucleoporin 93 (NUP93); zinc finger AN1-type containing 4 (ZFAND4); zinc 

finger and BTB domain containing 10 (ZBTB10); zinc finger protein 557 (ZNF557); coiled-coil alpha-

helical rod protein 1 (CCHCR1); long intergenic non-protein coding RNA 1947 (CTB-7E3.1); microRNA 

548n (MIR548N); transcription factor 19 (TCF19); BCL6, transcription repressor (BCL6); atonal bHLH 

transcription factor 8 (ATOH8); activating transcription factor 7 (ATF7); and core-binding factor 

subunit beta (CBFB). 

Table 5.9  Top 21 probes from 100 µM  samples with nominal p-value  < 10E-07 and associated 

genes. Negative average expression of the probes is colored light pink while positive expression is 

colored light green.  Genes were mapped using overlap at probes 5 and 9. 

 Probe logFC AveExpr P-Value Gene 
1 cg12394201 -1.2887 0.9224 8.99E-13   
2 cg12771518 -0.6895 -0.6113 1.08E-09 ROCK2 
3 cg09211893 1.3579 -3.5961 2.45E-09 EML1 
4 cg11389179 1.3891 -4.1691 1.30E-08 ZFAND4 
5 cg13151361 -0.6477 1.0152 1.61E-08 PRKRA;MIR548N 
6 cg01571169 -0.6319 2.6449 1.62E-08 FBXO31 
7 cg03876705 0.9820 -2.0613 1.74E-08 TOX3 
8 cg19742870 -0.6083 1.0162 2.09E-08 TJP2 
9 cg00080118 0.7573 -3.1322 3.67E-08 CCHCR1;TCF19 

10 cg01744729 -0.8273 3.2903 4.50E-08 ATP11A 
11 cg03271007 -0.5595 1.2194 5.06E-08 RNF145 
12 cg23087770 -1.1663 -0.3865 6.42E-08   
13 cg10091025 -0.5340 0.7108 6.52E-08 BCL6 
14 cg02464123 0.5491 -2.5533 6.84E-08 CTDSP2 
15 cg19956166 0.8559 -3.1523 7.25E-08 ATOH8 
16 cg03319894 -0.9717 1.2080 7.77E-08 ZBTB10 
17 cg23415810 -0.7549 1.2225 8.75E-08 ATF7 
18 cg12270595 0.7824 -0.5593 8.90E-08 NUP93 
19 cg04508379 0.5708 -3.6236 8.95E-08 ZNF557 
20 cg09000178 1.7868 -4.2566 9.44E-08 CBFB 
21 cg09733789 -0.8264 1.0838 9.86E-08 CTB-7E3.1 

 

Box plots were also made for the top 16 probes using ggplot2 as shown in Figure 5.11. The aim of this 

figure is to present the methylation values (M-values) as box plots in order to compare each exposure 

condition to 100 µM samples. The average methylation level of the top 16 probes for 100 µM 

generally tended to be lower than for 50 µM probes, except for 6 probes with associated genes: EML1, 

ZFAND4, TOX3, CCHCR1, CTDSP2, and ATOH8.  The 50 µM probes had lower methylation levels in 4 
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probes with associated genes: NA, ROCK2, ZFAND4 and BCL6, compared to 1 µM. There was generally 

little variation with 1 µM probes compared to Vehicle or NT. These probes tended to share a similar 

pattern of expression.    

 

Figure 5.11 The top 16 significant DMPs identified in HepG2 cells following 100 µM 72 hours with 
either no treatment (NT), Vehicle, or concentration of exposure to olanzapine.  The average 
expression (AveExpr) of the probes are represented as box plots with NT (orange), Vehicle (olive), 1 
µM (green), 50 µM (blue), or 100 µM (pink) olanzapine on the X-axis and the M-value on the Y-axis 
(note values are different for each boxplot). The gene names associated with each probe are listed 
beside the probe name.  

 

Despite the lower methylation levels in 100 µM probes compared to 50 µM probes, the difference in 

methylation levels between 100 µM and Vehicle was larger than the difference between 50 µM and 

Vehicle. The downstream analysis was continued with the 100 µM samples. 

5.4.5 Meta-analysis Model 3b and HepG2  

To see how the results obtained from the analysis in the patient blood samples using Mod3b 

compared to the results obtained from the olanzapine-exposed HepG2 cells, a meta-analysis was 

performed between the results from the two analyses. The meta-analysis will enrich for differentially 
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methylated positions that are ranked high on the lists of either analysis, and where the direction of 

change goes in the same direction. The top 34 probes p-value < 10E-05 is shown in Table 5.10. The 

direction of methylation pattern between Mod3b and HepG2 is indicated as (++) for hyper-

methylated and (- -) for hypo-methylated.  

Table 5.10  Top 34 probes p-value < 10E-05 from meta-analysis with direction of methylation 

pattern 

No. Probe P.value Direction Gene 
1 cg12698713 1.27E-07 ?- NA 
2 cg04695077 1.54E-07 --  
3 cg01551350 9.46E-07 --  
4 cg23504411 1.06E-06 ++ HIST1H3J 
5 cg08525481 1.36E-06 -- OGFR 
6 cg12412751 1.57E-06 ++ SBNO2 
7 cg09593028 1.70E-06 ++ ZNF518A 
8 cg23724384 1.96E-06 ++  
9 cg18730746 2.12E-06 -- TEX264 
10 cg06914048 2.45E-06 ++ CABLES1 
11 cg05646885 3.01E-06 --  
12 cg25289484 3.26E-06 ++ SPEN 
13 cg23653184 3.27E-06 ++  
14 cg24004990 3.33E-06 --  
15 cg27408541 3.86E-06 ++ TANC1 
16 cg01666716 3.86E-06 ++  
17 cg06647382 3.88E-06 ++ PDK2 
18 cg11068289 3.99E-06 --  
19 cg17256711 4.11E-06 ++ OPRM1 
20 cg13756796 4.67E-06 ++ LOC102724421 
21 cg22989843 4.78E-06 ++ PAX3 
22 cg00799842 4.98E-06 ?+ NA 
23 cg22678739 6.19E-06 --  
24 cg00947599 6.19E-06 -- GNA12 
25 cg19786998 6.46E-06 ++ PRTG 
26 cg02474628 6.48E-06 ++ WDFY1 
27 cg21908248 6.52E-06 ++ PPP1R15B 
28 cg18541417 6.74E-06 ++ RASGRP1 
29 cg00236832 7.00E-06 ++ RARA 
30 cg10266418 7.32E-06 -- CMTM3 
31 cg23149016 8.15E-06 -- SP7 
32 cg05008948 8.48E-06 -- ZNF655 
33 cg23265096 9.37E-06 -- CTSZ 
34 cg18765801 9.66E-06 ++ MYADM 
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Despite the differences in olanzapine concentration between patient blood samples and 100 μM-

exposed HepG2 cells, the pattern of methylation in the identified genes is concordant between the 

two groups in the top 34 probes. The genes identified as hypo-methylated included: opioid growth 

factor receptor (OGFR); testis expressed 264 (TEX264); G protein subunit alpha 12 (GNA12); CKLF like 

MARVEL transmembrane domain containing 3 (CMTM3); Sp7 transcription factor (SP7); zinc finger 

protein 655 (ZNF655); and cathepsin Z (CTSZ). 

The genes identified as hyper-methylated included: histone cluster 1 H3 family member j (HIST1H3J); 

strawberry notch homolog 2 (SBNO2); zinc finger protein 518A (ZNF518A); Cdk5 and Abl enzyme 

substrate 1 (CABLES1); spen family transcriptional repressor (SPEN); paired box 3 (PAX3); 

tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1 (TANC1); pyruvate 

dehydrogenase kinase 2 (PDK2); opioid mu receptor 1 (OPRM1); protogenin (PRTG); WD repeat and 

FYVE domain containing 1 (WDFY1); protein phosphatase 1 regulatory subunit 15B (PPP1R15B); RAS 

guanyl releasing protein 1 (RASGRP1); retinoic acid receptor alpha (RARA); myeloid associated 

differentiation marker (MYADM); and uncharacterized (LOC102724421).   

Pathway-based gene set over-representation of meta-analysis: Model 3b and HepG2 p < 10E-03   

An analysis was made on the pathway level of the genes enriched in the meta-analysis between 

Model 3b and HepG2. A list of 2158 probes and their associated genes were submitted to 

ConsensusPathDB with p-value < 10E-03. The top four pathways are shown in Table 5.11. 

 

Table 5.11 Validation of over-represented pathway-based genes in meta-analysis: Model 3b and 
HepG2 

Pathway p-value q-value Source 
Extracellular matrix organization 1.49E-05 3.12E-02 Reactome 
Hippo signaling pathway - Homo sapiens  4.39E-05 4.61E-02 KEGG 
L1CAM interactions 1.54E-04 5.36E-02 Reactome 
DNA Damage Response (only ATM 
dependent) 1.67E-04 5.36E-02 Wikipathways 

 

The extracellular matrix performs many dynamic functions and is able to influence cell behaviours 

including proliferation, adhesion and migration (Hynes, 2014).  The L1CAM family cell adhesion 

molecules have been implicated in processes integral to nervous system development, including 

inter-neuronal adhesion. They are predominately expressed by neuronal cells during development 
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(Yu, Yang, Fu, & Jin, 2016). In disease, the ATM dependent DNA damage response is involved in signal 

transduction pathway deregulation (Berger, Stanley, Moore, & Goodarzi, 2017).  

5.5 Concordance of identified differentially methylated regions in brain 

The blood samples from patients adhering to olanzapine treatment were used as a surrogate for brain 

tissue to identify epigenome-wide modifications to the DNA. Although DNA methylation is tissue-

specific, many CpGs show concordance between blood and brain tissue. Differentially methylated 

regions in TRIOBP and SOX30 genes were therefore evaluated for their concordance using the Blood-

brain Epigenetic Concordance (BECon) method  (Edgar et al., 2017).  This method evaluates the 

concordance (measured as variability) of CpGs between blood and Brodmann Area 10 (anterior 

prefrontal cortex), Brodmann Area 20 (temporal cortex), and Broadmann Area 7 (parietal cortex).  

5.51 Trio and F-actin Binding Protein (TRIOBP) 

Twenty-five of the 27 CpGs identified for TRIOBP by Edgar et al. (2017) were present in our data set, 

while only two of the CpGs had p-value < 10E-03 (cg03360992, p-value 2.57E-05 and cg12379720, p-

value 8.36E-04). The top 12 CpGs showed inter-individual variability between three brain regions 

(Brodmann Areas 10, 20 and 7) and peripheral blood samples (Figure 5.13).   

 

Figure 5.13  CpGs associated with TRIOBP show inter-individual variability between brain and blood 
at BA10 (orange), BA20 (pink), BA7 (red) and blood (blue) as evaluated by the  BECon method  (Edgar 
et al., 2017).  27 concordant CpGs were identified by submitting the TRIOBP gene name to the Shiny 
app https://redgar598.shinyapps.io/BECon/.  Note probes cg03360992 p-value 2.57E-05 and 
cg12379720 p-value 8.36E-04). The x-axis represents the inter-individual variability while the y-axis 
represents the Beta values of the methylation data.  
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The top 12 CpGs ranked by variability, correlation and cell composition in brain and blood are 

presented in Figure 5.14.  Variability and correlation metrics are calculated from cell composition 

adjusted data. Variability (green) is the reference range of methylation beta values between the 10th 

– 90th percentile of all samples. Correlation is represented as Spearman correlation values of 

methylation between blood and the brain area, with darker gray representing lower correlations and 

darker orange higher correlations. The cell composition metrics represent how much the beta values 

change on average at a CpG with the cell composition adjustment.   

The top 10 CpGs showed 90% positive correlation values (0.51-0.81) in BA10, BA20, and BA7.  The 

beta values changed at a given CpG on average 4% in 75-90% of blood cells, and on average 2% in 50-

90% of brain cells (Figure 5.14). 

 

 

 

 

 

Figure 5.14   27 CPGs associated with TRIOBP show 
concordance between brain and blood. The 
genomic coordinates are provided including the 
gene region(s). The top 12 CpGs show variability 
between Brodmann Areas 10, 20, 7 and blood. 
Spearman correlation values between brain regions 
(0.41-0.81). The beta values changed at a given CpG 
on average 2-5% in the blood and 1-3% in the brain. 
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5.5.2 SRY-box 30 (SOX30) 

All 13 CpGs identified for SOX30 by Edgar et al. (2017) were present in our data set, while only one 

CpG had p-value < 10E-03 (cg06200339 p-value 7.99E-04). These CpGs showed inter-individual 

variability between Brodmann Areas 20, 10 and 7 and peripheral blood samples (Figure 5.15). 

 

Figure 5.15  CpGs associated with SOX30 show inter-variability between brain and blood at BA10 

(orange), BA20 (pink), BA7 (red) and blood (blue) as evaluated by the BECon method (Edgar et al., 

2017). 13 concordant CpGs were identified by submitting the SOX30 gene name to the Shiny app 

https://redgar598.shinyapps.io/BECon/.  Note probe cg06200339 with p-value 7.99E-04. The x-axis 

represents the inter-individual variability while the y-axis represents the Beta values of the 

methylation data. 

Six of the 13 CpGs showed higher variability between brain and blood, although the correlation values 

in BA10, BA20, and BA7 for these 6 CpGs were low (-0.11 – 0.55): cg12606933, cg04897804, 

cg07484354, cg07025583, cg16313910, cg06200339. The beta values changed at a given CpG on 

average 2% in < 90% of blood cells, and on average 0-1% in < 75% of brain cells (Figure 5.16). 
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Figure 5.16 13 CPGs in the SOX30 gene show 
concordance between brain and blood. The 
genomic coordinates are provided including the 
gene region(s). Only 6 CpGs show consistent 
variability between Brodmann Areas 10, 20, 7 and 
blood. Spearman correlation values for these 6 
CpGs between brain regions (-0.11-0.55). The beta 
values changed at a given CpG on average 2% in < 
75% of blood cells and on average 0-1% in < 75% of 
brain cells. 
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6. Discussion 

Epigenome-wide association studies are relevant for the study of psychosis and the drugs used to 

treat them.  This is apparent by the increasing number of EWAS in psychiatric disorders in the last 

decade.  While these studies have identified genes implicated in the etiology of psychotic disorders, 

much still remains unknown regarding the underlying molecular mechanisms. A complete 

understanding of antipsychotic drug mechanisms is lacking.  It is important to know if genes involved 

in the induction of side effects are also implicated in the therapeutic drug response.  

The motivation of this study then was to identify the DNA positions and regions associated with 

altered methylation patterns in patients adhering to monotherapy with the antipsychotic drug 

olanzapine. We identified two differentially methylated regions from patient blood samples and the 

concordance of these regions between blood and brain showed that these blood samples could be 

used as a surrogate for brain tissue, especially for the TRIOBP DMR. 

In addition, we identified differentially methylated positions in cultured HepG2 cells exposed to a 

high concentration of olanzapine. The positions from HepG2 cells and patient blood were subjected 

to a meta-analysis, which showed concordance in the top 34 probes, with a predominance of hyper-

methylated genes.  Finally, pathway analysis indicated the Hippo signaling pathway and Extracellular 

matrix organization pathway as implicated by the differentially methylated genes.  

6.1 Identification of DNA positions and regions associated with altered methylation 

patterns following treatment with olanzapine  

Differentially methylated positions were identified from methylation data assayed on the state of the 

art Illumina Infinium® MethylationEPIC BeadChip. The study design was developed in accordance with 

EWAS whereby models were designed that addressed the influence of environmental factors on 

methylation levels. We incorporated gender and smoking as covariates into the model, however 

chose to remove the age factor despite the reported influence of age on the methylome (Booth & 

Brunet, 2016). This decision was based upon sva reporting 0 surrogate variables for the model when 

age was excluded (Model 3b). 

Before deciding on a model for analyzing differentially methylated positions, we checked the hidden 

variance in the Top Cohort data set by using the statistical method, Surrogate Variable Analysis 

(Jeffrey T Leek, Johnson, Parker, Jaffe, & Storey, 2012).  Using this method we were able to estimate 
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sources of variation in the data set that were correlated with the environmental factors under 

consideration.  Jaffe and Irizarry (2014) amongst others have reported on the correlation between 

age and cell type composition. Using sva we uncovered one surrogate variable that was correlated 

with age. This exercise facilitated our choice of model. 

Influence of cell type composition between Model 3a and Model 3b. One additional consideration 

was evaluated before selecting the model for downstream analysis.  We wanted to evaluate the 

impact of cell type composition on methylation levels identified with our model.  Most EWA studies 

today correct for cellular heterogeneity due to different methylation profiles in different cell types 

(Jaffe & Irizarry, 2014). While changes in leukocyte composition may reflect an underlying phenotype 

related to a disease process (Houseman et al., 2012), an alternative perspective suggests that these 

changes may of themselves represent a biomarker of interest (R. Philibert & Glatt, 2017).  Philibert 

and Glatt (2017) recommended therefore that methylation results be reported with and without 

adjustments for cellular heterogeneity. We employed this perspective in our study design to 

determine if there was any significant difference between the models. 

We used therefore adjustment for cell type composition as a point of comparison to evaluate possible 

differences in the models associated with olanzapine-treatment. Our results indicated that while 

Model 3b (adjusted) identified over 550 more probes and over 400 more genes than Model 3a 

(unadjusted), the top significant probe for both models mapped to the potassium voltage-gated 

channel modifier subfamily G member 2 (KCNG2) gene.  The role of potassium ion channel pathology 

is recognized in the development of psychiatric disorders including Bipolar Disorder. Multiple 

neurobiological mechanisms are mediated by potassium ion channels, including regulation of 

dopaminergic pathways, synaptic plasticity, and myelination (Balaraman, Lahiri, & Nurnberger, 2015). 

Pathway analyses from larger studies within the Bipolar Disorder and Schizophrenia Working Group 

of the Psychiatric Genomics Consortium (PGC) have shown enrichment of genes related to potassium 

ion response (2018). 

Next we looked at the number of differentially methylated genes that coincided in both models (n = 

959). These shared genes represented approximately 53 % of the total number of genes (n = 1800).  

The higher proportion of hyper-methylated genes (63%) compared to hypo-methylated genes (37%), 

may be suggestive of a modifying effect of olanzapine.  Similar findings were reported in a rat model 

where olanzapine–induced hyper-methylation levels were localized in hippocampal, cerebellum and 

liver tissues (Melka et al., 2014). 
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Comparison of the models through gene set over-representation analysis. Gene lists from both 

models submitted to ConsensusPathDB returned Gene Ontology (GO) terms for Biological process 

relating to cellular adhesion, development and structure; Molecular function terms characterizing 

binding activities; and Cellular component terms corresponding to the neuron and the synapse in 

particular.  The models differed however.  The unadjusted model (Model 3a) showed 2 GO terms 

specific to DNA binding that the adjusted model (Model 3b) did not have.  Nevertheless, Model 3b 

had more terms specific to the synapse, in addition to lower p-values.  Genes with less significant p-

values may be representative of greater variation and therefore may be mapped less specifically to 

gene sets in pathway-based over-representation analysis.  Further investigation therefore of Model 

3a was discontinued. 

Identification of differentially methylated regions. Differentially methylated regions are more 

informative than individual CpGs given their size (< 1 kb up to 1 MB) (Rakyan et al., 2011). We 

identified 15 CpGs using Model 3b (FDR 0.3) and presented two examples for further study: The Trio 

and F-actin binding protein (TRIOBP) gene was hyper-methylated at most CpGs in individuals taking 

olanzapine compared to aripiprazole or quetiapine; and the transcription factor Sry (sex determining 

region Y)-box 30 (SOX30) was hypo-methylated at most CpGs in individuals taking olanzapine 

compared to aripiprazole or quetiapine.  

Three major variants have been identified for TRIOBP (TRIOBP-1 and TRIOBP-4/5). There is no genetic 

overlap between TRIOBP-1 and TRIOBP-4 although both are associated with the regulation of actin 

cytoskeletal reorganization. TRIOBP-1 has been found to accumulate in the brain of individuals with 

schizophrenia (N J Bradshaw et al., 2014). Accumulation of TRIOBP-1 at adherens junctions (Park et 

al., 2018) has implications for disruption of endothelial cells in the blood-brain barrier and risk of CNS 

inflammation (Stamatovic, Keep, & Andjelkovic, 2008). There is evidence that these aggregations are 

mediated by the disruption of protein degradation; a process affecting cell morphology and cell 

development (N J Bradshaw et al., 2014). 

SOX30 encodes a member of the SOX (SRY-related HMG-box) family of transcription factors involved 

in the regulation of embryonic development and in the determination of cell fate  (Osaki et al., 1999). 

Yet when it forms a protein complex with another protein, SOX30 acts as an interactor protein. 

Together with Four and a half LIM domains protein 2 (FHL2), the complex locates to the nucleoplasm 

and interacts in the lipid metabolism pathway (REACTOME, EMBI: interaction_id:EBI-19031624). 
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6.2 Validation of findings in HepG2 cells exposed to olanzapine 

In order to further analyze the effects of olanzapine on DNA methylation observed in patients, we 

performed experiments using cultured HepG2 cells.  As a control for the model system, gene 

expression of selected genes was analyzed prior to methylation status. 

6.2.1 Gene expression analysis  

Olanzapine is known to affect gene expression of SREBF1 (Le Hellard et al., 2008; Steen et al., 2017) 

and FASN (Vik-Mo et al., 2008) but not in ChREBPα (Liu et al., 2017) in cultured HepG2 cells.  These 

genes were selected therefore as controls for the effect of olanzapine in HepG2 cells.  

A clear dose response was apparent for SREBF1, displaying significant upregulated expression in 

response to 50 µM and 100 µM. Of note, the standard error of the mean (SEM) was larger for the 100 

µM samples, indicating more variation between the samples at higher doses.  The possible source of 

the variation could not be attributed to the solvent DMSO as we prepared the samples with 0.25% 

(w/v) DMSO, well within the widely accepted  concentration range of (0.1% to 1%, w/v) in cell culture 

research (Tunçer et al., 2018).  

The results of the gene expression study indicate a measure of cytotoxicity, possibly induced by the 

100 µM concentration.  At this point a cytotoxicity assay would have been beneficial to clarify this 

point. We assumed that the 100 µM concentration would be sufficient exposure to affect methylation 

levels while the 50 µM and 1 µM samples showed lower gene expression levels.  The decision to 

continue working with the 100 µM samples may be considered a limitation of the study.   

Overall, alterations in gene expression were observed for SREBF1 and FASN, with both displaying 

upregulated expression patterns in response to olanzapine, as previously described (Fernø et al., 

2006). These results show that the cells indeed have an effect of the drug at the selected candidate 

gene level. This could imply that alterations at the DNA methylation level are also present.   

6.2.2 DNA Methylation analysis and meta-analysis 

The top 21 probes and associated genes for 100 µM samples were identified and boxplots of the top 

16 probes from each exposure group were presented for comparison. Generally, the top 16 probes 

for 100 µM samples showed a lower trend in average methylation level than the 50 µM samples. 

Examining the genes associated with the top differentially methylated probes shows genes involved 

in cellular activities pertaining to a cytotoxic environment. This was also supported by the analysis of 
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differentially methylated regions where one of the seven DMRs found is associated with human 

homolog 3 ALKBH(ALKBH3-AS1). 

ALKBH3 functions as a demethylase enzyme to repair DNA, especially targeting single-stranded DNA 

that has been methylated by metabolic or environmental insults. ALKBH3 is upregulated otherwise 

in cancer cells and is necessary for cellular proliferation  (Liefke et al., 2015). ALKBH3-AS1 is an 

antisense RNA located on the opposite strand on Chromosome 11 and can regulate gene expression 

by silencing AKLBH3  (Magistri, Faghihi, St Laurent  3rd, & Wahlestedt, 2012). ALKBH3-AS1 is an 

antisense RNA located on the opposite strand on Chromosome 11 and can regulate gene expression 

by silencing AKLBH3  (Magistri et al., 2012).   

We were hesitant therefore to use these samples in a pathway-based over-representation analysis. 

The suspicion remained that these top genes for the 100 µM samples were associated with the 

cytotoxic event and therefore pathways implicated would reflect a bias towards diseased pathways. 

Instead, we performed a meta-analysis between Model 3b and HepG2 in order to identify the 

differentially methylated positions that ranked high on both lists.   

6.2.3 Blood-brain concordance 

DNA methylation levels vary between subjects and the question arises regarding the extent to which 

this variability can be measured in inaccessible tissues in the brain. Hannon et al., (2015) addressed 

this question by first identifying 4 regions in the brain highly correlated with each other.  Next, they 

developed a method to use the variation of DNA methylation measured in the blood as a predictive 

metric of inter-individual variability identified in the brain. They found that while blood may give 

limited information relating to underlying pathological processes, it may be useful in the identification 

of disease biomarkers already present in the brain (Ibid). 

In our study we used BECon (https://redgar598.shinyapps.io/BECon/) based on Hannon et al.’s 

(2015) work to evaluate blood-brain concordance between the differentially methylated regions 

identified for TRIOBP and SOX30.  The top 12 CpGs for TRIOBP showed concordance between blood 

and Brodmann Area 10 (anterior prefrontal cortex), Brodmann Area 20 (inferior temporal cortex), 

and Brodmann Area 7 (parietal cortex). 10 CPGs for TRIOBP showed 90% positive correlation values 

(0.51-0.81) in these three brain regions.  All three regions are associated with psychosis (Woodward 

& Heckers, 2016). 

In contrast, the top 12 CpGs for SOX30 showed less concordance compared to TRIOBP amongst all 

probes.  Six of the probes with greatest variability amongst Brodmann Area 10, Brodmann Area 20, 
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Brodmann Area 7 and blood, showed lower correlation values between brain regions (-0.11-0.55). 

Lower correction value may reflect different functions for the transcription factor SOX30 in these 

three brain regions. 

6.4 Pathways implicated by differentially methylated genes identified 

We used ConsensusPathDB to map lists of differentially methylated genes to pathway-based gene 

sets in the database. We compared the top pathways for blood alone (Model 3b) and the meta-

analysis. Amongst the top pathways for both groups was the Hippo signaling pathway and the WNT 

signaling pathway. The Hippo signaling pathway functions as part of the immune response, 

modulating the development and function of leukocytes (Taha, Janse van Rensburg, & Yang, 2018). 

Altered methylation levels in leukocytes have been shown in schizophrenics (Melas et al., 2012), 

nevertheless olanzapine has been shown to have antioxidant activity in neutrophils, reducing free 

radical-induced damage and mediating a neuroprotective effect (Brinholi et al., 2016).  

The WNT signaling pathway is critical for neurodevelopment and has been shown to be associated 

with psychosis (Mill et al., 2008; Wesseling, Gottschalk, & Bahn, 2015).  A recent study using the TOP 

Cohort dataset showed abnormal gene expression in the WNT signaling pathway in patients with 

Schizophrenia and Bipolar Disorder (Hoseth et al., 2018).  They showed upregulation the Nuclear 

factor of activated T cells 3 (NFATC3) in the patient blood of a mixed-antipsychotic drug group. Our 

study identified hyper-methylation of (NFATC2) in patients treated with olanzapine mono-therapy, 

indicating altered gene transcription during an immune response. These results indicate a role for 

antipsychotic drug targeting in the WNT pathway in the treatment of psychosis   (Hoseth et al., 2018).  

6.5 Future directions 

Several additional analyses may be performed with the methylation data obtained in this project. An 

analysis of genotyping data for CYPD26 from the TOP Cohort could be undertaken to determine if 

patients with recorded low serum levels of olanzapine were high metabolizers, or unambiguously 

non-compliant with their medication. 

Increased sample size may provide the statistical power to evaluate the difference in methylation 

patterns between patients who are taking additional medications. Mood stabilizers such as lithium 

(Pisanu, Papadima, Del Zompo, & Squassina, 2018) and valproic acid (Babu Swathy & Banerjee, 2017) 

are known to alter methylation patterns, often in combination with other drugs. 
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Gene expression data from the TOP Cohort overlaps with methylation data for samples in this project. 

The gene expression data therefore could be evaluated with regard to the DMRs identified. The DMR 

for TRIOBP was hyper-methylated, a state generally associated with reduced gene expression. The 

effect of altered methylation levels on gene expression however, is complex. Since TRIOBP-1 was 

found to aggregate in the brain of patients with schizophrenia (N J Bradshaw et al., 2014), it would 

be interesting to ascertain if reduced gene expression may be associated with a therapeutic effect of 

olanzapine.  The DMR for SOX30 was hypo-methylated, suggestive of increased gene expression.  

Further study will be required to evaluate the role of this transcription factor in embryonic 

development and cell fate. 

Finally, the biological interpretation of DNA methylation in patients taking olanzapine may be 

enhanced by incorporating clinical data. Quantifying the relationship between differential 

methylation and clinical response to the drug may aid in the development of new guidelines for 

personalized treatment in psychiatry.      

EWA studies are still in their infancy although promising work has already been done in psychiatric 

epigenetics. There is good reason to believe these studies will continue to contribute important work 

towards unraveling the complexity between multiple environmental factors, and the underlying 

genetic vulnerabilities in individuals with psychotic disorders.   



 

   63 

7 Conclusion 

Differentially methylated positions and regions were identified in the blood of patients adhering to 

olanzapine monotherapy.  A comparison of models adjusting for cell type composition provided 

evidence of improved p-values when cell type adjustment was included in the model.  Our results 

showed concordance between blood and brain for two identified differentially methylated regions.  

The pathways implicated by the differentially methylated genes showed evidence of alterations in 

immune pathways and the possible mediating effect of olanzapine. 

In conclusion, epigenetic modifications induced by the antipsychotic drug olanzapine may provide 

insight into mechanisms that inform treatment response.  Given the burden of psychosis worldwide 

and the challenge to successfully treat psychotic disorders, the epigenetics of drug treatment 

response may contribute to new drug targets, improved treatment outcomes and personalized care.  
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9. Appendix  

Genome-wide quantification of DNA methylation 

Data for 1000 samples obtained using the Illumina EPIC platform was imported to R and preprocessed 

for data analysis, using BioConductor packages minfi (Aryee et al., 2014) and watermelon (Pidsley et 

al., 2013), the following way: 1) 19 samples having 1% of sites with a detection p-value greater than 

0.05 were removed, as well as 1762 sites with a bead count less than 3 in 5% of the samples and 6614 

sites having 1% of samples with a detection p-value greater than 0.05 were removed.  

2) The dataset was normalised using Dasen (Pidsley et al., 2013). 

3) Removed probes on the X and Y chromosomes. 

4) Removed probes flagged by (Zhou et al., 2017) using their supplementary file 

EPIC.manifest.pop.rda and MASK.general.EUR column. Here probes that may have issues with cross-

hybridisation or contain snps close to the target CPG are marked for removal.  

5) Compared SNPs from the EPIC array to genotype data from the same samples and removed 

samples that did not match.  

6) Calculated pairwise correlation between all and removed samples with a correlation to another 

sample in the dataset that was higher than 0.9. The dataset passing quality control had 957 samples 

and 776023 probes. 

 

Prediction of cell type composition  

Cell type composition was predicted using the estimateCellCounts function in the minfi package.  

 

Preprocessing of the HepG2 data 

Preprocessing of the HepG2 data was done using a similar pipeline as for the blood samples:  

1) No samples were removed due to high detection p-value, 6769 sites were removed.  

2) The dataset was normalised using Dasen (Pidsley et al., 2013).  

3) Removed probes on the X and Y chromosomes.  

4) Removed probes flagged by (Zhou et al., 2017) using their supplementary file 

EPIC.manifest.pop.rda and MASK.general.EUR column.  
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