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Preface

This dissertation is submitted in partial fulfillment of the degree philosophiae doctor at the
Department of Earth Science at the University of Bergen.

The thesis work has primarily been conducted at the Nansen Environmental and Remote
Sensing Center, Bergen, with a research stay at the Woods Hole Oceanographic Institution (1
month) and a cruise conducted in the Fram Strait in 2013.

This project has been funded by the Office of Naval Research, Global (Grant No. N62909-
14-1-NO33 and UNDER ICE Grant No. 226373) and the Nansen Environmental and Re-
mote Sensing Center, Bergen. The HPC facilities were provided by NOTUR (project no.:
NN2993K).

The motivation for starting this study was to improve acoustic communication and naviga-
tion underneath the Arctic sea-ice. Acoustics provide the only practical alternative for wireless
communication, and autonomous or remote operated vehicles can presently not safely explore
and measure the Arctic. Other technologies are costly and difficult to use, leaving the Arctic
less explored than the rest of the world’s oceans. A better understanding of acoustic propa-
gation, and modelling techniques which may be employed in different scenarios, can be used
to design the best communication and navigation systems and predict the performance and
reliability of particular setups. This study may hopefully provide a small piece to the puzzle.
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Chapter 1

Objectives

The main objective of this project is to study the effect of sea-ice on underwater acoustic wave

propagation. Three main parameters define how acoustic waves react to the presence of sea-
ice: (i) the roughness of the underside of the sea-ice, (ii) the thickness of the sea-ice, and (iii)

the elastic parameters of the sea-ice determined by the material composition of the ice12.

To address the overall objective, field observations from the Marginal Ice Zone (MIZ) in the
Fram Strait and from the Van Mijen-fjord were analysed and compared with simulations per-
formed with the seismo-acoustic model OASES50.

In the Fram Strait, long-range under-ice acoustic propagation was studied by sending com-
munication signals (centered at 900 Hz) between two ice-tethered buoys. In this study the
focus was to understand the effect of sea-ice roughness and thickness on the signal propaga-
tion.

A seismic survey was conducted in the Van Mijen-fjord, providing observations for a de-
tailed study of how low frequency acoustic and elastic waves (up to 100 Hz) interact with an
ice plate.

In both studies the OASES model was used for simulating the elastic wave propagation in
the complex physical environments. The OASES model can be very computationally intensive
for complex problems and a significant effort went into developing and implementing a parallel
version of the model in order to vastly reduce the computation time.



2 Objectives

“
Wir sollen heiter Raum um Raum durchschreiten,

An keinem wie an einer Heimat hängen,

Der Weltgeist will nicht fesseln uns und engen,

Er will uns Stuf’ um Stufe heben, weiten.

Kaum sind wir heimisch einem Lebenskreise

Und traulich eingewohnt, so droht Erschlaffen,

Nur wer bereit zu Aufbruch ist und Reise,

Mag lähmender Gewöhnung sich entraffen.

”
- Herman Hesse (excerpts from “Stufen”)



Chapter 2

Introduction

2.1 Motivation and Organization

Acoustics provide a method for communication, navigation, and remote sensing (including
seismic) beneath the sea-ice where other technologies are impractical33,39. However, the
sea-ice affects how acoustic signals propagate. Scattering from the rough underside causes
increased transmission loss. Energy is transferred to elastic waves excited in the ice by under-
water sound waves. The elastic waves in turn set up a sound field in the ice and in the water
below which can mask other signals. It is therefore important to be able to accurately simulate
the effect of both roughness and elastic wave propagation at the relevant frequencies.

Organization

A brief background is given on the Arctic and Marginal Ice Zone in Section 2.2 including an
overview of the acoustic environment, the sea-ice, and the technologies used to study the ice-
covered Arctic. Thereafter follows an introduction to the interaction of acoustic waves with
sea-ice and the basic mechanisms which influence the acoustic parameters of the ice (Section
2.3). The effect of roughness is described in Section 2.3.1 while the different elastic waves
that can propagate in the ice-plate are described briefly in Section 2.3.2. The OASES model50

has been used throughout the work described in this dissertation and a brief introduction to the
OASES model is given in Section 2.4.

The main results from the research papers are presented in Section 3. Paper I studies
the effect of sea-ice roughness and thickness on long-range transmissions of communication
signals between two buoys in the Fram Strait. Paper II describes the parallelization of the
OASES model which has been essential to perform complex and extensive simulations with
the model. Paper III describes the observed elastic waves in the more homogeneous sea-ice
found in a fjord on Svalbard. Paper IV briefly compares the propagation conditions between
the Fram Strait (studied in Paper I) and a typical sound speed profile found in the Beaufort
Sea. And Paper V studies the soundscape in the Marginal Ice Zone.
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Finally, the main conclusions of this work are given in Section 4.

2.2 The Arctic Ocean and the Marginal Ice Zone

Figure 2.1: The Arctic Ocean and the Fram Strait with experiment locations indicated by red
dots. The East Greenland Current (EGC) and the West Spitsbergen Current (WSC) are roughly
indicated. Ice concentration measured by satellites for March 201711 is shown along with land
topography19.

The Arctic Ocean (Figure 2.1) is covered by a perennial sea-ice cover varying in extent
throughout the seasons and with the climate. The Fram Strait is the only deep-water connec-
tion between the Arctic Ocean and the rest of the world. More than 880,000 km2 of sea-ice, or
10% of the sea-ice-covered area in the Arctic, is exported out of the Arctic through the Fram
Strait annually53. Two main currents pass through the Fram Strait as warm Atlantic water
circulates into the Arctic along the Svalbard side (West Spitsbergen Current, eastern side of
Fram Strait)1, and cold water is transported southward along the Greenland side (East Green-
land Current, western side of Fram Strait)46. This causes the eastern side of the Fram Strait
to be ice-free, while the western side is to varying degrees covered by drifting sea-ice. The
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maximum sea-ice extent is usually seen at the end of February or in March, while September
usually sees the minimum extent.

The Marginal Ice Zone (MIZ) is the region between the fully ice-covered region and the
open water, defined by Wadhams57 as the "part of the ice cover which is close enough to

the open ocean boundary to be affected by its presence". The sea-ice cover consists of floes
of various shapes and size. In the Marginal Ice Zone the shape and distribution of floes are
determined by the ocean swell which can propagate several tens of kilometers into the ice
pack. The ice edge is compressed or extended by local weather and mesoscale processes in
the ocean (e.g. Johannessen et al.23).

The MIZ moves with the seasonal ice zone (the area between the summer minimum and the
winter maximum). However, during the recent years the MIZ has shown showing significant
changes in extent56. This suggests that a larger area of the Arctic Ocean may become seasonal
in the future27. Consequently, the conditions in the MIZ may therefore be found in a larger
part of the Arctic Ocean in the future.

2.2.1 The Surface Duct

Below the sea-ice the Arctic Ocean is characterized by a 100-200 m deep cold, fresh water
layer (mainly supplied by fresh water input). Below the cold fresh water, the warmer and
more saline Atlantic water is found. This boundary is known as a halocline and thermocline, a
steep gradient in salinity and temperature. The sound speed is dependent on pressure (depth),
temperature and salinity and this boundary causes a steep increase in sound speed, with a min-
imum found close to the surface (left panel of Figure 2.2). This steep sound speed gradient
results in an acoustic surface channel21,37. Inside the Arctic there are small horizontal gradi-
ents in the stratification of the water column3, however, when moving across the Marginal Ice
Zone, strong horizontal gradients are found24,45. The surface channel therefore breaks down
across the Marginal Ice Zone to the open water.

Figure 2.2: Acoustic transmission loss for 900 Hz showing the trapped sound energy in the
surface channel (Figure 8a from Hope et al.18)

The steeply increasing sound speed with depth from the surface causes sound waves to be
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refracted upwards. In Figure 2.2 the transmission loss is shown for a source in the surface
channel (depth 90 m) emitting a sound wave at 900 Hz. As can be seen above 200 m the
surface channel traps much of the sound waves and causes repeated, frequent interaction with
the ice. Deeper refracted waves can also be seen converging in focus zones close to e.g. 35 km
and 70 km. The interaction with the ice will be described in more detail later in Section 2.3.

2.2.2 Ambient Noise in the Marginal Ice Zone

Below the ice-cover, inside the Arctic, the ambient noise mainly consists of contributions from
ice dynamics (ridging, shearing, etc) or thermal cracking. Generally, this results in a relatively
quiet area compared to the open water35. Under the ice marine mammals as well as human
activities contribute to the ambient noise levels, even seismic surveys hundreds of km away
can be detected. Ice-breakers engaged in breaking ice may completely dominate the noise
spectra13. In the Marginal Ice Zone, where the ocean swell and sea-state of the open-water
become significant, the ambient noise levels increase. A maximum is found at the ice edge
where the ocean swell, wind, and mesoscale processes break, grind and crush the ice into
pieces6,25,45.

2.2.3 Sea-Ice

Sea-ice forms when the surface cools to about -1.8◦ (depending on salinity), undergoing a
series of freezing stages depending on how calm the water is. The salt is eventually removed
from the ice in what is called brine rejection, causing the ice to freshen and the salinity of the
water below the ice to increase. The cooling and increased salinity of the surface water causes
it to sink and be replaced by the warmer water from below. However, it is not necessary for the
entire water-column to cool for the surface to start freezing, but only down to the steep density
gradient at the halocline and thermocline bounding the surface duct at 100-200 meters in the
Arctic4.

It is tempting to think that the sea-ice is a smooth, well behaved cover above the ocean.
Figure 2.3 shows a photograph from the underside of the sea-ice. Tunnels have formed in
what is probably the keel from an earlier ridge. The photograph illustrates the complexity of
the underside of the ice.

The sea-ice drift is caused by two forces: ocean current, including the tide, acts on the ice
from below, and the wind acts upon its surface.

The force of the wind is largely determined by the shape and number of blocks or tilted
floes of ice protruding from the surface, so called sails. Rubble or ice protruding from the
underside of the ice into the water, so called keels (Figure 2.3), and the friction (drag) between
the underside and the water below determine the strength of the force caused by the ocean
currents. When these forces act together the ice can drift more than 40 km a day (personal
experience and Lavergne et al.32).
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Figure 2.3: Photograph made by divers from KV Svalbard looking up at the underside of the
sea-ice in the Marginal Ice Zone at roughly 82◦ in the Fram Strait during a field experiment in
2013. The keel in front is about 1.5 m deep below the about 2 m thick ice.

Opposing forces, or local processes that exert force on a limited area, cause tension and
compression in the ice cover. Converging or diverging ice cause pressure ridges or leads to be
formed respectively. When ice floes are moving transversely to each other, shear ridges may
also be formed, usually with lower porosity than pressure ridges12.

The thickness and strength of the ice, and whether the ice-cover is currently under tension
or has many open leads, determines how difficult it is for an ice-breaker to progress through
the ice. Under low-stress conditions the ice-breaker mainly pushes the ice-floes out of the
way since there are many open leads which gives the floes room to move. In high stress
situations the ice-breaker must break a new lead, and it will usually close immediately behind
the ship. The latter situation is the most dangerous since ships are better at moving forward
than backward, and if the ice-breaker encounters a ridge which it cannot pass it might not be
able to retreat.

Ridging (converging ice plates) can cause one part of the ice-plate to be subducted below
the other (especially if the floes are of different thickness) or cause large heaps of rubble to
pile up along the fracture, both above and below the surface. These ridges can extend tens
of meters below the surface12. The topography of the ice also influences where snow will
gather, the added weight of the snow will cause the plate to flex and sometimes be submerged.
The accumulated effect of these processes cause a heterogeneous and rough ice cover which
is constantly changing and moving.

The speed and attenuation of sound (compressional and shear) in the sea-ice are determined
by the elastic moduli: bulk and shear modulus respectively. These describe the elasticity of
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the ice, or the relationship between stress (restorative force) with strain (change in volume due
to compression or decompression). The elastic moduli are influenced by the temperature and
composition of the ice. For example: warmer ice with a high fraction of brine (highly saline
water) will have lower elastic moduli and a lower sound speed (since it is easier to compress),
while colder and stiffer ice will have a higher elastic moduli with higher sound speed (since
it more greatly resists compression). The elastic properties of the ice are influenced by the
growth processes of the ice, where calmer conditions will lead to more homogeneous ice.
Throughout the seasons temperature changes will cause the elastic properties to vary30.

2.2.4 Technologies for Measuring the Arctic Ocean

Figure 2.4: Components of the Global Ocean Observing System in October 2017 (used with
permission, retrieved from JCOMMOPS20)

Satellites measure the surface and immediately below the surface at high spatial coverage
and resolution, and are the most important source of observations of the sea ice in the Arctic.
However, the ocean underneath the ice is hard to access. While floats, ships, moorings, or
gliders have contributed an enormous amount of data about the world’s oceans, the sea ice
and remoteness prevent regular use of those observing platforms in the Arctic. This causes
the Arctic Ocean to be sparsely sampled compared to the rest of the oceans (Figure 2.4). A
limited number of Ice Tethered Platforms (ITP) with real time measuring capabilities are used,
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but deploying equipment on the ice and through the ice requires careful design of the platforms
to reduce the risk of losing the equipment due to ice dynamics.

Autonomous vehicles, floats and gliders can travel below the ice, but because of the ice
they are unable to access the surface. Additionally, water, and sea-ice, are mostly opaque to
radio waves. Therefore, all but the heaviest underwater vehicles are prevented from navigating
using GPS signals from satellites or communicating by radio signals.

In general, acoustic signals can propagate with very little attenuation over large distances in
the ocean, but the acoustic propagation conditions are strongly dependent on the bathymetry,
and sea-ice environment. Lower frequencies propagate longer, and signals of 19.6 Hz have
been sent across the Arctic Ocean38. Navigation and communication purposes ideally need
signals of higher frequencies and greater bandwidth, to increase temporal and spatial resolu-
tion (navigation) and to increase bit-rate (communication). However, higher frequencies cause
greater scattering losses. Communication signals often operate at tens of kHz, while acoustic
geo-positioning systems usually use frequencies in the ranges from 200 Hz and 1500 Hz. The
higher frequencies therefore provide shorter ranges but greater accuracy. This could be reme-
died by using nested networks, suggested by several authors, see for example Mikhalevsky
et al.39. The choice of frequency for communication and navigation signals will therefore be a
trade-off between resolution or bit-rate, and range.

To safely unleash autonomous underwater vehicles (AUVs), gliders and floats underneath
the ice one needs to develop and implement an underwater geo-positioning system. To operate
gliders and AUVs one needs to develop reliable two-way acoustic communication. These
developments require a better understanding of the acoustic propagation, signal stability, and
models that can predict the range and structure of the acoustic signals.

Through the 80s and 90s significant effort went into understanding the transmission loss
in the Arctic and the acoustic propagation in the elastic sea-ice, either from energy entering
the sea-ice or the scattering from the rough underside12,21. However, since then, the Arctic
has undergone significant changes due to climate change. The reduction in sea-ice extent55,
thinning and reduction of multi-year ice14, as well as changes in the ocean (which can also
affect the sea-ice cover52) are thought to have caused changes in the acoustic propagation.
Several studies have been carried out in the Fram Strait, Beaufort Sea and in the central Arctic
to study the new Arctic acoustic environment (see Mikhalevsky et al.39 for a summary).

2.3 Interaction of Acoustic Waves with Sea-Ice

The first experiment in this study, conducted in the Marginal Ice Zone in the Fram Strait (Paper
I and V, focuses on the effect of roughness and thickness on 900 Hz signals. The second
experiment in the Van Mijen-fjord on Svalbard (Paper III) focuses on the elastic waves in the
ice.

In this synopsis we mainly keep an ocean acoustician perspective. However, where an
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ocean acoustician sees a signal in the ocean, a seismologist sees noise interfering with a signal
returning from the sea-floor below. In ocean acoustics and long-range problems the explana-
tion of the transmission loss in the Arctic has been the focus of considerable effort and several
experiments7,21,45. In seismic surveys the waves excited in the sea-ice can cause significant
noise originating from the propagating flexural waves, this noise can completely mask the sig-
nal of interest. The flexural waves must therefore either be removed in post-processing, or the
experiment must be designed to minimize their effect, sometimes by ingenious methods where
even the environment is changed. Proubasta42, for example, describes a method where the
ice-plate is sawn through. The coupling and therefore propagation of especially shear motion,
and flexural waves, is then greatly decreased across the cut.

In both experiments the observations are compared with simulations in order to better un-
derstand them. Fundamentally, simulating acoustic propagation underneath sea-ice is difficult
because the scale of the ice-features are comparable to the interesting wavelengths. At the
same time the features are small compared to the range of interest (since the ice-plate is very
thin compared to range). Several different modelling techniques exist and have been applied
to Arctic propagation. When studying the details of a single ice-floe finite differences (e.g.
Fricke12) or analytic solutions (e.g. Dahl5, Lamb31) can be suitable. However, finite-difference
would be restricted by computationally demands for long ranges if the sea-ice is to be realized
at a sufficiently high resolution, and analytic solutions usually apply to ideal or oversimplified
situations.

At long ranges, with range-dependent sound speed (horizontal gradients), ray tracing mod-
els like BELLHOP41 are very useful methods in ocean acoustics. E.g. Diachok7 used ray
tracing with roughness incorporated into the reflection coefficient. However, ray tracing is not
well suited to simulate the elastic waves in the sea-ice. Ray tracing is a high-frequency approx-
imation to wave propagation and the reflection from the rough underside of the ice is therefore
very sensitive to the slope of the roughness, regardless how small it is. Alexander2 used Monte
Carlo-simulations of different realizations drawn from a statistical distribution describing the
underside of the ice to get a more general calculation of transmission loss. This method, while
more complex, allows an arbitrary ice canopy, but ignores elastic waves.

The OASES model50 can include an ice layer of arbitrary thickness with rough interfaces
based on statistical distributions by using the method of small perturbations (MSP)28,29. At
the same time the model can still simulate propagation at long-ranges, and since it is a full
wavefield model, elastic waves are included. This makes it a very useful tool, where we are
allowed to use it on the two quite different scenarios where the experiments were performed.
Range-dependence can be included through coupling of vertical slices51, but is not so well
suited for smooth horizontal gradients. The technique and model are relatively complex and
quickly become computationally intensive for high frequencies, thus a parallel version of the
of the OASES model was developed (Paper II).
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2.3.1 Roughness and Thickness

The rough underside of the ice causes the acoustic wave to be scattered as it is reflected.
In order to simulate long-range propagation the complex underside of the ice needs to be
simplified. The method of small perturbations is based on an interface which varies around a
mean (plane interface). A Gaussian distribution defined by the standard deviation (RMS with
mean deducted) and the characteristic correlation length describes how the interface varies
(other distributions are also possible). The roughness is required to be small compared to the
wavelength of the sound waves. This means that tunnels and water filled rubble are ignored
(Figure 2.3), and the interface is simplified to a one-to-one function of ice thickness. The
scattered part of the wave is then removed, with the coherent (mean) part being reflected. The
scattering can therefore be included in the boundary conditions (See Section 2.4) and appears
in the reflection coefficient.

The plane-wave reflection coefficient of an interface relates the amplitude of the reflected
to incident plane wave as a function of frequency and incidence angle.

Figure 2.5: Reflection coefficient for 2 m thick smooth ice above water (from Paper I).

Figure 2.5 shows the reflection coefficient for a smooth, homogeneous, ice plate above
water (cw = 1434 m/s). Its thickness is 2 m which was the mean thickness in the Fram Strait in
201114. A compressional wave speed of cp = 3600 m/s30, and shear wave speed of cs = 1800
m/s30 was used, with density ρ = 0.9 kg/dm3 30 and attenuations αp = 0.06 dB/m/kHz36,44 and
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αs = 0.36 dB/m/kHz36. The dips and features in the reflection coefficient represent energy that
is transmitted into the ice plate and must correspond to elastic waves in the ice (Section 2.3.2).
An advantage of the method of small perturbations is that the change in incidence angle due to
the rotation of the surface (because of the roughness) is accounted for34. Roughness introduced
by the MSP therefore not only increases scattering, but may also increase the amount of energy
transmitted to the sea-ice.

The effect of roughness appears in studies of transmission loss in the Arctic. Many earlier
studies (e.g. Diachok7) have looked into this, in particular at frequencies below 250 Hz. Jin
et al.22 and other authors observe that the shear wave parameters are very important to the
reflection coefficient. Additionally, the reflection coefficient is sensitive to the thickness (e.g.
Sagen45). Increased thickness causes the reflection coefficient in Figure 2.5 to be compressed
along the frequency scale15. This results in more features in the reflection coefficient appearing
at lower frequencies. Consequently, increased ice thickness causes the cut-off frequency of the
plate modes to be lowered (Eq. (2.1)) and therefore allow more mechanisms with which energy
may propagate into the ice-plate.

Figure 2.6: Incidence angle at a plane surface out to 40 km for a source at 90 m depth (calcu-
lated using BELLHOP41, from Paper I)

Figure 2.6 shows the incidence angles of rays traced with BELLHOP41 for a source in the
surface channel with a plane surface. For propagation in the surface duct at ranges of a few
tens of kilometers the majority of the rays that will be reflected off the ice will have incidence
angles above 80◦. Earlier authors also note that rays below 73-74◦ escape the surface duct7,21.
In this range the reflection coefficient is almost total, and little energy enters the ice. Since
changing the thickness only changes the reflection coefficient along the frequency axis, and
not the incidence angle, this holds for ice of increased thickness as well. There are cases
where the energy can enter the ice at high incidence angles, but these are not studied here.

Figure 2.7 shows the reflection coefficient of the same scenario as in Figure 2.5, except
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Figure 2.7: Reflection coefficient for a rough surface in an ice-plate otherwise identical to the
one described in Figure 2.5. From Paper I.

with a rough underside (σ = 0.6 m RMS). The magnitude of the reflection is significantly
reduced because of the scattering from the roughness. With a rough interface the magnitude
is reduced even at high incidence angles where most of the rays in the surface channel are
located. For frequencies below 100 Hz, LePage and Schmidt34 also notes that the higher order
modes are scattered significantly once roughness is introduced.

Figure 2.8: The reflection coefficient at 900 Hz for increased attenuation and increased rough-
ness. From Paper I.

The shear wave attenuation has been mentioned as being an important parameter in the
reflection coefficient. As we can see in Figure 2.8 this is true. Here the reflection coefficient is
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shown for incidence angles above 60◦ for a similar plate as in Figure 2.5 and 2.7. The relation
between compressional and shear attenuation is kept fixed at αp = 6αs. The left panel shows
smooth ice, while the roughness is gradually increased for each panel towards the right. At
the high incidence angles the effect of increased attenuation is low compared to the effect of
increasing roughness.

Rough interfaces are simulated in Papers I, II and IV.

2.3.2 Elastic Waves in the Ice Plate

A thin ice plate can support three fundamental modes of elastic waves: longitudinal waves
(symmetrical), flexural waves (asymmetrical), and horizontally polarized transverse waves8,9,21,40.
Several modes of each fundamental mode can exist at higher frequencies, but for a simple ho-
mogeneous plate only the lowest extends down to zero frequency. In the frequencies used in
the first experiment (Paper I, 900 Hz) several modes may exist, while in the second experiment
(Paper III, < 100 Hz) only one mode of each fundamental mode can be present.

The cut-off frequency for the modes in a simple plate or waveguide is given by (Eq. 1 in
Miller and Schmidt40 or Eq. 2.155 in Jensen et al.21):

fc =
mc
2h

(2.1)

where m is the mode number, h is the ice plate thickness, and c is the phase speed of
either the compressional or shear body wave. Above the cut-off frequency the mode has real
horizontal wavenumbers, and is therefore propagating in range and is not an evanescent mode.

Lamb31 famously described the elastic waves in a thin unloaded plate. Ewing et al.9 and
Ewing and Crary8 studied the elastic wave propagation in ice in lab experiments and in lake ice.
They observe and describe the extensional and flexural waves, analogous to those described by
Lamb31, but for an ice-plate resting on a fluid. The flexural waves (asymmetric) are dispersive:
the wave components with higher frequencies travel faster than those with longer periods. This
causes the flexural wave to be stretched in time, while conversely the spatial width of the wave
is stretched as it propagates in range. Figure 2.9 shows wave propagation in the Barents sea
covered by a smooth ice-layer. A source close to the surface (4 m) causes strong flexural waves
to be excited. The pressure field in the water column matching the flexural waves can be seen
just below the surface at approximately 100 m range at t = 0.1 s, at t = 0.2 s the pulse, now at
approximately 200 m range, is stretched (and weakened).

A source in the water below a plane ice-floe cannot excite horizontal shear waves (SH).
Only the pressure and the displacement of the compressional wave normal to the interface,
and no shear motion, exert force onto or displace the solid ice-plate (i.e. the radial stress σrz

in Table 2.1 is vanishing). Conversely, the propagation of a SH-wave in a plane fluid-loaded
plate is not affected by the fluid. On the other hand, the extensional and flexural wave speeds
are decreased by the fluid8. The ice is not completely plane however, and along discontinuities
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Figure 2.9: A Gaussian pulse with fc = 25 Hz propagating in the Barents Sea (modified from
Figure 10 in Paper II). The evanescent field matching the flexural wave in the sea-ice can be
seen close to the surface at approximately 100 m range at t = 0.1 s. As the pulse propagates
the flexural wave is spread in range (and time).

and keels that are not parallel to the wave front significant energy may go into generating SH-
waves40 (e.g. a ridge breaking axisymmetry in cylindrical geometry). In the modelling and
analysis here, the SH-waves and the energy that may be transferred to them, are ignored.

The symmetric, longitudinal, wave propagates as an extensional wave (P / SV) close to the
compressional sound speed in the plate54. The extensional wave is evanescent in the ice-plate,
but not in the water and will therefore leak energy to the water column. This can be seen by the
plane wave propagating from the ice plate, ahead of the main wavefront in the water column in
Figure 2.9. The flexural wave is evanescent in both media, and should therefore not leak any
energy to the water column. The evanescent field matching the flexural wave in the ice extends
into the water column (close to the surface in Figure 2.9 at approximately 100 m range) and
will be recorded there or at the surface if sensors are located there (as they often are in seismic
surveys). Once the ice plate becomes more complex and the evanescent field interacts with
other layers (e.g. ice in shallow fjords) the assumptions of the ideal theoretical descriptions
are no longer valid. The full wave-field model OASES is therefore used in these studies.

2.4 The Wavenumber Integration Method

The OASES model implements the wavenumber integration technique, and a brief introduction
to the method is given below.

The wavenumber integration technique is based on performing a series of integral trans-

forms to the linear wave equation in order to obtain first the Helmholtz equation and then
the depth-separated wave-equation. For a horizontally stratified environment the horizontal
wavenumber (kr) is constant, equivalent to Snell’s law across an interface. Within each layer
the sound speed is assumed to be either constant or linearly increasing and the wavefield can
therefore be solved analytically within each layer. What remains is to determine the boundary
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conditions between the different media (free surface, solid, or fluid). The total field is then a
superposition of the reflections from the interfaces and an arbitrary number of sources.

The displacement field (u) can be separated into the sum of a scalar potential ∇φ̇ (curl-
free), and a vector potential ∇×Ψ (divergence-free) corresponding respectively to longitudinal
(acoustic) waves and shear waves (present in solid media). These waves propagate indepen-
dently of each other and do not interact except at boundaries.

The linear wave equation for the scalar displacement potential is:(
∇

2− 1
c2

∂ 2

∂ t2

)
φ(x, t) = fs(x, t) (2.2)

In cylindrical coordinates with axisymmetry (∂Ψ

∂θ
= 0, ∂φ

∂θ
= 0) a scalar form (ψ) of the

shear potential (Ψ) may be defined10 so that the displacements are given by10,21:

ur =
∂

∂ r
φ +

∂ 2

∂ r∂ z
ψ (2.3)

uz =
∂

∂ z
φ − 1

r
∂

∂ r
r

∂

∂ r
ψ (2.4)

where ψ obeys the wave equation (Eq. (2.2)) with shear-wave-speed cs in place of c. A
fluid does not support shear waves and consequently the shear potential is zero in fluid layers.
In the following we focus on the derivation of the wave equation for compressional waves.

2.4.1 The Wave Equation in the Frequency Domain

The wave equation in the frequency domain is known as the Helmholtz equation where the
time dependence is separated out (e.g. Jensen et al.21, Pujol43, Schmidt47):

[
∇

2 + k(x)2]
φ(x,ω) = Fs(x,ω) (2.5)

where

k(x) =
ω

c(x)
(2.6)

is the medium wavenumber. Since the wave-equation is linear, the full solution is a super-
position of all frequencies. In theory the frequency-response would need to be calculated for
all frequencies, however, most seismic or ocean-acoustic problems are narrow band or band-
limited and only the response to a limited range of frequencies need to be calculated. For an
omni-directional point-source the forcing term is:

Fs = Sωδ (r) (2.7)



2.4 The Wavenumber Integration Method 17

In a horizontally stratified environment (axisymmetric), the sound speed and medium wavenum-

ber (k) only depend on depth:

[
∇

2 + k(z)2]
φ(r,z) = Sωδ (r)δ (z− zs) (2.8)

(2.9)

and a cylindrical coordinate system is a natural choice in which the azimuthal variable can
be omitted due to the axisymmetric propagation:[

∂ 2

∂ z2 +
1
r

∂

∂ r
r

∂

∂ r
+ k(z)2

]
φ(r,z) = Sωδ (r)δ (z− zs) (2.10)

2.4.2 The Wave Equation in the Frequency-Wavenumber Domain

The range dependence can further be separated out by using the Hankel transform:

g(kr) =
∫

∞

0
G(r)J0(krr)rdr (2.11)

G(r) =
∫

∞

0
g(kr)J0(krr)krdkr (2.12)

in order to obtain the depth-separated Helmholtz equation:[
d2

dz2 +(k2− k2
r )

]
φ(kr,z) = Sω

δ (z− zs)

2π
(2.13)

Each horizontal wavenumber (kr) corresponds to a conical wave, which the full wave-
field is composed of. The general Greens function is a superposition of the free-field Greens
function (φ̂ ) (particular solution to the inhomogeneous wave equation (2.13)) and the solutions
to the homogeneous wave equation (φ+ and φ−):[

d2

dz2 +(k2− k2
r )

]
φ(kr,z) = 0 (2.14)

so that the full solution is:

φ(kr,z) = φ̂(kr,z)+A+(kr)φ
+(kr,z)+A−(kr)φ

−(kr,z) (2.15)

where φ+ and φ− correspond to downgoing and upgoing waves. The coefficients A+(kr)

and A−(kr) are determined by the boundary conditions. In solid media additional coefficients
B+ and B− must be determined for the shear wave potential. In a homogeneous fluid solutions
to the homogeneous wave equation (Eq. (2.14)) are:
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φ
+(kr,z) = e−i

√
k2−k2

r z = e−ikzz (2.16)

φ
−(kr,z) = ei

√
k2−k2

r z = eikzz (2.17)

where the vertical wavenumber is related to the horizontal wavenumber by:

kz =
√

k2− k2
r (2.18)

2.4.3 Omni-directional Point-source

In a homogeneous fluid the solution to the free-field Greens function (Figure 2.10), or the
particular solution to the inhomogeneous wave equation (2.13), which satisfies the forcing
term (2.7) is:

φ̂(kr,z) =−Sω

eikz|z−zs|

4πikz
(2.19)

Figure 2.10: The free-field integrand for an omni-directional point-source in homogeneous
media (Eq. (2.19), with cw = 1500 m/s) between a source and receiver at the same depth for
100 Hz.

Sω is the source strength in terms of volume injection m3/s. Solutions can also be found
for media with linearly changing sound speed or solid elastic media (e.g. Jensen et al.21,
Schmidt47). The dashed line in Figure 2.10 shows where the horizontal wavenumber equals the
medium wavenumber. Above this the spectrum is evanescent (kz imaginary), or exponentially
decaying in the vertical direction. The importance of the evanescent field, as well as the
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difficulty in relating the integrand directly to physical field, are both made apparent here. The
main contributions are in the evanescent spectrum, while these wavenumbers are not directly
related to radiating plane (or conical) waves.

2.4.4 Horizontally Stratified Media

The problem is now reduced to matching and determining the coefficients of the incoming
waves in each layer (A+ and A−), forced by the sources, in order to obtain an expression for
the general Greens function for a receiver in any layer:

φ(kr,z) =−SωGω(kr,z,zs) (2.20)

The coefficients to the homogeneous solutions are matched between layers by the boundary
conditions of the displacement (Eq. (2.3) and (2.4)) and stresses (σzz and σrz) so that the
field parameters in each layer satisfy the conditions listed in Table 2.1 (e.g. Jensen et al.21,
Schmidt47) depending on medium type:

Medium ur uz σzz σrz

Vacuum Free Free Vanishing Vanishing
Fluid Free Continuous Continuous Vanishing
Solid Continuous Continuous Continuous Continuous

Table 2.1: Wavefield parameters involved in boundary conditions for the three medium types.

An interface between a fluid and vacuum results in both displacements to be unrestricted
in the fluid, but the normal stress (σzz, proportional to acoustic pressure) must be zero at
the interface in both media since it must vanish in the vacuum and be continuous in the fluid.
Additionally, the upper and lower halfspaces have no incoming waves (respectively A+,B+= 0
and A−,B− = 0) due to the radiation condition.

Attenuation in solid media is accounted for by allowing the medium wavenumber (k) to be
complex, a constant imaginary part resolves to a linear dependence between attenuation and
frequency. In a fluid the attenuation is given by Eq. 1.47 in Jensen et al.21.

2.4.5 Return to the Time-domain

In order to return to the frequency-space domain the inverse Hankel transform (Eq. (2.12))
is applied to Gω which forms the integrand in the wavenumber integral. However, except
in a few simple cases Gω(kr,z,zs) must be evaluated numerically. The wavenumber integral
must therefore be solved for a limited number of discrete wavenumbers, where limits and
resolution must be chosen so as to be great enough to avoid aliasing and wrap-around effects
in the frequency-space. These limits are difficult to specify general rules for, and must usually
be selected specifically for each problem (e.g. situations where high apparent velocities arise
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require a small lower limit on wavenumbers). The system of equations required to match
the boundary conditions and propagate the wavefield between the layers can be solved using
several numerical techniques, and in OASES the Direct Global Matrix21,47,49 is used. The
integral is then evaluated using one of several techniques, e.g. the Fast Hankel Transform,
which suit a specific problem best (close range, many receivers, speed or accuracy). The
Greens function in the frequency-space domain (Gω(r,z,zs)) is computed for a bandlimited
number of frequencies so that the time-domain solution can be found by multiplying it with
the frequency-domain source function (S(ω)) and taking the inverse Fourier transform. The
width and resolution of the frequency response must be selected great enough to avoid aliasing
and wrap-around effects in the time-domain.
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Main Scientific Contributions

The main scientific contributions of this dissertation are given in one conference paper (Paper
IV) and four research papers (Paper I, II, III and V).

An acoustic experiment was performed inside the Marginal Ice Zone in the Fram Strait
in 2013, and seismic surveys on top of ice were performed in the Van Mijen-fjord in 2013
and 2016. Paper I and V analyze these recordings and compare them with acoustic modeling
performed mainly with the OASES package48,49. The conference paper (IV) briefly compares
the difference in long-range propagation loss between the Fram Strait and the Beaufort Sea,
where the upper parts of the sound speed profile differ significantly. Paper II presents the
method and implementation of parallelization of the OASES model. In this paper the model is
applied to several elastic wave propagation problems which would otherwise be infeasible or
impractical to perform. Finally, Paper III focuses on the flexural waves in the sea-ice from the
experiment in the Van Mijen-fjord and how they can be modelled.

Below is a summary of the objectives and findings in each paper, with concluding remarks
thereafter. The full papers are attached at the end.

3.1 Paper I

Measured and modeled acoustic propagation underneath the rough Arctic sea-ice

Gaute Hope, Hanne Sagen, Espen Storheim, Halvor Hobæk, Lee Freitag.

In 2013 acoustic signals with a center frequency of 900 Hz were transmitted beneath the
Arctic sea-ice in the Fram Strait. The signals were repeated every hour for three days between
ice tethered buoys. XCTDs were used to gather measurements beneath the ice for calculating
the sound-speed, while historical measurements of ice thickness and ice drafts were used to
construct a basic statistical representation of the sea-ice roughness. Elastic parameters of the
ice were chosen from existing literature. These were used for the environmental model where
the signal propagation was simulated in OASES. As the buoys drifted southwards the sea-ice
cover expanded and the distance between the buoys increased. Together with the simulations,
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the stability of the measured signals were used to study the effect of the rough sea-ice on the
acoustic signals. The main findings in this paper are:

• Observations and modeling show that the waves trapped in the surface channel are weak-
ened with increased range.

• The deeper refracted and reflected waves which interact less with the ice are relatively
less weakened than those trapped in the surface channel.

• The observed weakening of the waves trapped in the surface channel is attributed to the
roughness of the ice rather than other sea-ice characteristics, because the waves trapped
in the surface channel have incidence angles mostly above 75◦ when interacting with the
sea-ice. At these incidence angles the reflection is almost total.

• A roughness of 0.6 m RMS is not large enough to account for the observed loss, however,
greater roughness at this frequency is not currently possible to simulate using OASES.
The simulated loss is therefore likely to be underestimated.

• Ice thickness alone does not directly increase transmission loss, but rather the increased
roughness with thicker, and therefore older ice, which has undergone more deformation
is likely to be the cause.

• For ranges above 30 km, and for 900 Hz signals, the roughness is the most significant
parameter of the sea-ice influencing the acoustic propagation.

3.2 Paper II

A Parallelization of the Wavenumber Integration Acoustic Modeling Package OASES

Gaute Hope, Henrik Schmidt.

The wavenumber integration model OASES can simulate the wave propagation in layered
media, consisting of rough interfaces as well as elastic and porous layers. For complex media,
and higher frequencies, the computation time quickly escalates. However, the wavenumber
integration technique calculates the frequency responses independently. This makes the tech-
nique ideal for parallelization. In this paper we implemented and demonstrated a paralleliza-
tion of the wavenumber integration model OASES. The model can now take advantage of
super-computers or multi-core personal computers, enabling simulations that would otherwise
be infeasible to perform. This reduction in computation time has been essential for conducting
the simulations in the other papers. The main findings in this paper are:

• A parallelization of the wavenumber integration technique has been developed and demon-
strated.
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• Up to 4096 cores have been used simultaneously on a super-computer, in one test case
reducing the computation time from 1.5 years to 5 hours.

• Simulations that would otherwise be infeasible or impractical are now possible.

• The transmission loss module (range-independent) and the pulse propagation module
(range-independent, range-dependent, 3D) have been parallelized.

• A test-suite compares the sequential OASES model results with the parallel OASES re-
sults for several cases. All cases show a perfect match, ensuring that the implementation
produces the same output as the original model.

• Careful memory management and memory mapped files allow large transfer functions
(hundreds of GB) to be computed and handled.

• The implementation was demonstrated for four cases, allowing the full wave-field to
be simulated: Under-ice arctic propagation, a vertical seismic profile in a coal mine,
a range-dependent ice cover in the Barents Sea, and a benchmark case similar to the
under-ice case.

3.3 Paper III

Seismic on Floating Ice on Shallow Water: Observations and Modelling of Guided Wave

Modes

Tor Arne Johansen, Bent Ole Ruud, Gaute Hope.

Three seismic experiments conducted in the shallow, ice-covered, Van Mijen-fjord on Sval-
bard are compared with simulations made with OASES. In each experiment several types of
sources are used, with receivers at the top of the sea-ice, in the water and at the sea-floor
recording. Flexural waves are excited in the ice and Scholte-waves propagate along the sea-
floor. By manually adapting the environmental model, a fairly good simulation compared to
the observations of the dispersion and speed of the flexural and longitudinal waves in the ice
can be made. The main findings in this paper are:

• Fairly consistent results between observed and modelled data are achieved by using a
simple two-layer model for the ice plate.

• Simple theoretical models of wave-guide propagation provide good first guesses for flex-
ural wave speed, which are necessary for adjusting the parameters for numerical model-
ing.

• The strength and presence of flexural and Scholte-waves are highly dependent on the
location and type of source.
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• Explosives on top of the ice and air-guns close below the surface cause strong flexural
waves. For hydrophones at 5 m depth the flexural waves are less visible, but in this case
the Scholte-waves become apparent.

• As the source is lowered, the received amplitude in the water-column of the Scholte-
waves along the sea-floor increase.

• The flexural waves can completely mask the reflected or refracted signals from the sea-
floor below. An experiment must take into account the sea-ice elastic properties and
thickness in order to create the optimal setup in order to minimize the overlapping co-
herent noise.

Errata

A few errors in this manuscript should be fixed in the final version:

• It should be made clear that the numerical modelling is performed for a cylindrical
geometry while the appendix describes propagation in a plane geometry.

• In the appendix the properties of the potentials Ψ and ϕ should read:

∇ · (∇×Ψ) = 0 (3.1)

∇× (∇ϕ) = 0 (3.2)

• In table 2a and 2b the quality factor Qp and Qs are not infinite for air and sea-water.
The attenuation is given by Eq. 1.47 in Jensen et al.21 in both cases, approximating the
frequency dependent attenuation of sea-water.

3.4 Paper IV (Conference paper)

Geometry of Acoustic Communication Links in the Arctic

Gaute Hope, Halvor Hobæk, Hanne Sagen.

Simulations of the transmission loss for 900 Hz at different source depths and sea-ice in
the Fram Strait and the Beaufort Sea are compared against each other. The same sound speed
profile that is used in Paper I is used for the Fram Strait, while the sound speed profile from
the Beaufort Sea is obtained from measurements made by an ice tethered profiler deployed as
part of the CANAPE project. In particular the upper part of the sound speed profile differs
between the two locations. Whereas the surface duct is clearly defined in the Fram Strait, it is
more stratified in the Beaufort Sea. This work compares the propagation conditions in Paper I
in the Fram Strait to the propagation conditions in the Beaufort Sea. The main findings in this
paper are:
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• Energy emitted from a source in the surface channel at this frequency will be trapped
inside the surface channel for both the Fram Strait and the Beaufort Sea.

• With rough ice, the energy trapped in the surface channel is quickly scattered in both
cases, with smooth ice it can propagate long distances.

• Placing the source at a deeper depth can provide longer propagation ranges when the
surface is covered by rough ice, these depths were found to be 250 m for the Beaufort
Sea and 450 m for the Fram Strait, both corresponding to deeper sound channels.

3.5 Paper V

Identification and quantification of soundscape components in the Marginal Ice Zone

Florian Geyer, Hanne Sagen, Gaute Hope, Mohamed Babiker, Peter F. Worcester.

As part of an experiment in 2012 as well as in 2013 (the same experiment as in Paper I)
the soundscape in the Marginal Ice Zone was studied. Several hydrophones recorded acoustic
data continuously for four days in each experiment along with ocean swell and meteorological
data. Transmission loss calculations made using OASES for smooth ice were fitted to the
upper and lower bounds of noise-levels caused by cavitation from an ice-breaker in order to
estimate noise-levels at ranges up to 150 km. The main findings in this paper are:

• The four major components of the soundscape were separated and quantified.

• Ship cavitation caused by heavy ice-breaking will dominate the soundscape when present,
even from up to 100 km distance away.

• Seismic air-gun noise (2-6 dB) from more than 800 km distance was present in more
than half of the duration of the experiments.

• Several marine mammals were identified, though their contribution to the noise-levels
were relatively little.

• Background noise from the ocean and ice processes in the MIZ are strong contributors,
and show strong temporal variability (12 dB difference between the two experiments).
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Chapter 4

Conclusions

The effect of sea ice on acoustic propagation is studied by comparing acoustic and seismic
observations with modelling results. A long-range acoustic propagation experiment at 900 Hz
was carried out in 2013 in the Fram Strait to study the effect of ice thickness and roughness. A
sequence of seismo-acoustic experiments were conducted in the Van Mijen-fjord on Svalbard
to study the elastic waves in the sea-ice. A relatively thin, possibly rough, ice layer is funda-
mentally difficult to simulate at both short and long-ranges. The OASES model can be used to
model the full wavefield in both the quite different environments. However, the simulations are
computationally intensive, and in order to perform the complex simulations a parallel version
of the OASES model was developed. This allowed simulations which would otherwise take
years to complete. The main results are as follows:

• In the Fram Strait long-range transmission study we find that the sea-ice roughness is
the most important parameter. In this case the source was located in the surface duct,
causing most of the wave-ice-interactions to occur at plane-wave incidence angles above
75◦. At these angles the reflection coefficient is mainly determined by the roughness.

• For roughness commonly found in the Arctic the OASES model is not able to simulate
the scattering at 900 Hz, since the roughness is required to be small compared to the
wavelength in the method of small perturbations.

• Increased thickness, without increased roughness, does not cause significantly greater
transmission loss at high incidence angles, since the reflection coefficient is not signifi-
cantly affected by thickness.

• In very rough ice the best propagation conditions (longest range) may be found in deeper
sound channels. The depth of the sound channels depend on where you are in the Arctic.
To optimize the propagation, the source-receiver setup must be adapted to the expected
environment.

• For the Van Mijen-fjord experiment, a good match between the observed and simulated
elastic waves was achieved by using a two-layer ice-plate model.
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• A source at or close to the sea-ice can excite flexural waves and extensional waves in
the ice-plate. These waves may propagate far if the ice-plate is continuous. The elastic
properties and the thickness of the sea-ice are important parameters for the excitation
and propagation of both types of waves.

• The flexural waves in the sea-ice can completely mask the reflections or refractions
from the seafloor and below. The flexural waves cause an evanescent field below the ice,
which diminish exponentially with depth.

• A deeper location of the source will reduce the flexural waves, but in shallow water
Scholte-waves may be excited along the seafloor.

• The interference of the flexural and Scholte-waves with the signal can be minimized by
optimal depth-placement of hydrophones.

• Extensive and complex computations using the wavenumber integration model OASES
result in long simulation times. These are reduced from years to hours, at a near linear
speedup up to at least 4096 CPUs, by developing a parallelization of the OASES model.

• The noise-levels in the Marginal Ice Zone are mainly dependent on natural sources.
Human sources of noise, like seismic surveys are detected from long ranges, and nearby
ice-breakers can completely dominate the soundscape.

Acoustic Interaction with Ice at Short and Long Ranges

At shallow depths and short ranges, where the ice plate is relatively continuous (e.g. close to
the shore, newly formed ice, or in a protected fjord). The elastic parameters and ice thickness
may be the most important parameters for how the acoustic waves interact with the ice. A
significant amount of energy may be transferred to waves in the ice by a source close to the
surface. The evanescent field from the flexural waves may in this case be avoided at greater
depths, or the source may be lowered to reduce their amplitude.

At longer ranges and for ice conditions common to the open water in the Arctic, leads and
fractures hinder the wave propagation in the ice. If flexural wave can propagate, they will travel
slowly and be stretched in time, requiring longer time between signals to avoid interference
with earlier signals. However, because of the surface channel and the reflection coefficient of
the ice most of the waves will be reflected at the ice interface, unless the source is located close
to the surface. Thus the ice roughness is the most important ice parameter for interaction of
acoustic waves with ice in this case.

Current Challenges and Future Work

In order to determine how well a specific communication or navigation scheme works, full
synthetic simulations of the systems in varying oceanographic and sea-ice conditions should
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be done. This should ideally include simulating a moving vehicle with navigation and com-
munication stations deployed. This would test the modem and navigation algorithms, together
with vehicle limitations and setup, and their response to the ocean and ice environment.

At high frequencies it is currently not possible to simulate the full roughness, and this
will be a cause of significant discrepancy. Additionally, the range dependence in the Marginal
Ice Zone is difficult to simulate at high frequencies with the OASES model now because of
inherent limitations in the spectral super-element method and the resolution of slices compared
to wavelength. This also applies to the sloping seafloor in the Van Mijen-fjord where the
Scholte-waves are expected to continue as Rayleigh-waves at the surface. The effect of small
variations in the seafloor also seems to break down (or generate) Scholte-waves, and these
phenomena are not captured in a horizontally stratified model.
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A characteristic surface duct beneath the sea-ice in the Marginal Ice Zone causes acoustic waves to

be trapped and continuously interact with the sea-ice. The reflectivity of the sea-ice depends on the

thickness, the elastic properties, and its roughness. This work focuses on the influence of sea-ice

roughness on long-range acoustic propagation, and on how well the arrival structure can be pre-

dicted by the full wave integration model OASES. In 2013, acoustic signals centered at 900Hz

were transmitted every hour for three days between ice-tethered buoys in a drifting network in the

Fram Strait. The experiment was set up to study the signal stability in the surface channel below the

sea-ice. Oceanographic profiles were collected during the experiment, while a statistical description

of the rough sea-ice was established based on historical ice-draft measurements. This environmen-

tal description is used as input to the range independent version of OASES. The model simulations

correspond fairly well with the observations, despite that a flat bathymetry is used and the sea-ice

roughness cannot be fully approximated by the statistical representation used in OASES. Long-

range transmissions around 900Hz are found to be more sensitive to the sea-ice roughness than the

elastic parameters.VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.5003786]
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I. INTRODUCTION

The Marginal Ice Zone (MIZ) is the region between the

fully ice-covered areas and open water that exists in the

polar regions of the world. The shape, extent and size distri-

bution of floes within the MIZ area are determined by ocean

swell propagating across the ice edge and several tens of

kilometers into the ice pack. Local winds and mesoscale

ocean processes, such as eddies, will shape the ice edge to

be diffuse or compact (e.g., Johannessen et al.1). The MIZ

exists within the seasonal ice zone, the area between the

summer minimum and the winter maximum, but its extent at

any given time varies with the season and is undergoing

changes according to recent satellite data analysis.2

As the size of the seasonal ice zone increases due to the

reduction in summer ice coverage, the MIZ spans larger

regions within the polar seas. The size and composition of

the MIZ varies with location, and the Greenland, Labrador,

and Bering Seas all have different characteristics that are

influenced by regional oceanographic features, wind, and

wave conditions.3 Recent studies in the Canada Basin reveal

what has been described as a “thermodynamically forced

MIZ,” of melt ponds and deteriorating ice that impact the

temperature and salinity of the upper layers.4

The structure of the ocean beneath the sea-ice is charac-

terized by a 100–200m deep, cold, and fresh layer. This sur-

face layer thins toward the edge of the ice. From an acoustic

perspective, this cold, freshwater layer under the ice forms a

shallow surface duct, which traps acoustic waves above a

cut-off frequency and causing them to repeatedly interact

with the underside of the sea-ice (e.g., Jensen et al.5). The
varying sea-ice characteristics of the MIZ, the near-surface

stratification and horizontal variation govern how acoustic

signals propagate in the MIZ.

A number of previous acoustic experiments have been

carried out at frequencies between 200–300Hz in the MIZ

between Greenland and Svalbard. The short-term acoustic

experiments in the 1980s during the “Marginal Ice Zone

Experiment” were carried out to learn more about the ice-

ocean processes, ambient noise (Johannessen et al.1), and
acoustic propagation (Dyer et al.,6 Dahl et al.7).

In the Greenland Sea tomography experiment in

1988–1989 (Worcester et al.8), signals of 250Hz were trans-
mitted in an area that was seasonally covered by sea ice. As

part of this scientific program, a modeling study was carried

out to investigate the reflection and scattering from the ice

cover at 250Hz (Jin et al.9). The study found that the

observed amplitude reduction in the acoustic receptions was

indeed caused by the sea ice, and in particular the shear

wave parameters of the ice. It was also observed that the

damping of the acoustic signal is sensitive to the details of

the ocean mixed layer.

However, most of the attempts to model acoustic propa-

gation across the ice edge included significant simplifications

of the physical conditions by ignoring or approximating the

effect of sea ice (e.g., Mellberg et al.,10 Sagen et al.11). The
effect of a discontinuous ice cover and strong gradients in the

ocean, which is often found in the outer part of the MIZ, and

sometimes within the pack ice, has only been addressed by a

few investigators (e.g., Dahl,12 Fricke13).a)Electronic mail: gaute.hope@nersc.no
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In the fully ice covered regions, the ocean is more strati-

fied, but also more stable in time and space. This results in

more temporal dispersal of the signal, which means the

multi-path arrivals are better resolved due to spread. This

was explored in the trans Arctic Experiments in the 1990s

where 20Hz signals were sent across the Arctic Basin to

demonstrate the possibilities of acoustic thermometry (e.g.,

Mikhalevsky et al.14). It was also found that the loss due to

sea ice is highly frequency-dependent, increasing exponen-

tially with frequency, and thereby creating a low-pass filter

(e.g., Diachok,15 Mikhalevsky16).

In the PRUDEX experiment (ice camp in 1987), coupling

of seismo-acoustic waves from explosives under the ice to the

sea ice was investigated using recordings from geophones and

hydrophone arrays (Miller and Schmidt17). It was found that

the shear wave attenuation of the sea-ice is the most important

parameter for the reflection of acoustic waves, and this con-

clusion is also supported by Fricke.13 McCammon and

McDaniel18 found that the shear wave attenuation is important

for incidence angles between 20� and 60�. Diachok15 studied
the effect of sea-ice ridges on reflection loss, noting that for

rays traveling longer than 30 km the incidence angles were

generally greater than 75�.
The main difficulty in modeling sound propagation in

ice-covered regions is inclusion of the reflection and scatter-

ing from rough elastic surfaces.13,19 LePage and Schmidt19

modeled the transmission loss of low-frequency propagation

in the Arctic (<100Hz) using SAFARI (the predecessor to

OASES), and the method of small perturbations (MSP) to

characterize the ice roughness (Kuperman and Schmidt20).

They showed that their model agreed fairly well with observa-

tions of transmissions across the Arctic for those frequencies.

The full-wave model OASES21 is currently the model

that best handles the rough sea-ice cover, although it is less

well-suited for range-dependent studies of the ocean because

these studies require a relatively smooth horizontal variation.

To study the impact of typical gradients in the ocean param-

eters, it is more convenient to use ray models, and models

based on parabolic approximations (Jensen et al.5).
In 2010, Woods Hole Oceanographic Institution

(WHOI) carried out an acoustic communication experiment

inside the ice-covered MIZ of the Fram Strait.22 The goal of

the experiment was to study the range and reliability of

acoustic communications in the MIZ. This study showed

that it was feasible to transmit data at frequencies of 700 and

900Hz over 10–100 km in this area of the Arctic. However,

it also raised questions about the mechanisms of loss in the

MIZ, helping to motivate an additional experiment and the

analysis presented here.

This paper focuses on the effect of sea-ice roughness on

propagation of specific acoustic signals centered at 900Hz.

This is done by analyzing signals transmitted under the sea-

ice and compare them with acoustic modeling results using

the OASES modeling package.21 The signals were transmit-

ted in the Fram Strait inside the Marginal Ice Zone in

September 2013 as part of the UNDER-ICE field program.

Section II provides details about experiment setup and

transmitted signals. In Sec. III the ocean parameters mea-

sured during the experiment, and historical ice draft

measurements, are used to create an acoustical model with

rough sea-ice as input to OASES. The effect on signal propa-

gation of including smooth sea-ice and rough sea-ice is

addressed in a sequence of simulation experiments in Sec.

IV. In Sec. V the received signals are analyzed and in Sec.

VI the observations are compared qualitatively with the

model simulations. Effect of sea-ice roughness on acoustic

signals and limitations of modeling and approach are dis-

cussed. Finally, a summary and concluding remarks are pro-

vided in Sec. VII.

II. EXPERIMENT CONFIGURATION

A. Experiment

In September 2013, two ice tethered buoys were

deployed on the sea-ice in the Fram Strait near 82�N and

0�E, as a part of the acoustic communication experiment.

The buoys, referred to as WHOI1 and WHOI2, were

equipped with a Geospectrum Technologies source sus-

pended at approximately 90m depth. The source signal was

a frequency modulated (FM) sweep with a center frequency

of fc¼ 900Hz, and variable bandwidth from 10 to 100Hz

with corresponding duration from T ¼ 20 to 2 s.

A third drifting observation platform, an “Integrated Ice

Station” (IIS) was deployed 32 km further south on the sea-

ice as part of UNDER-ICE led by NERSC. IIS was equipped

with a four element hydrophone array to record ambient

noise data (Geyer et al.23) and to receive the signals trans-

mitted from the buoys.

The IIS was deployed on the 14th of September at

81�450 N, 1�490 W on an ice floe 20 km from the ice edge,

and recovered four days later at 81�200 N, 1�420W, 46 km

from the deployment position. Transmissions were made

every hour according to a fixed schedule, resulting in a set of

72 transmission. Of these, the signals with bandwidth of

Df ¼ 25 Hz, between the WHOI1 buoy and the IIS station,

will be the focus of this analysis, since this path and band-

width contained the most measurements and the best dis-

cernible multi-path arrival structure.

The receiver station (IIS) was equipped with a vertical

receiver array of four High Tech Inc. HTI-90-U hydro-

phones. These were mounted at 15, 20, 25m, and 30m

depth. The hydrophones have a nominal frequency response

from 2Hz to 20 kHz, but have a built-in high-pass filter at

10Hz to reduce the effect of strumming. The sampling fre-

quency was 3906.25Hz, and recording was performed con-

tinuously over the course of the entire experiment.

Figure 1 shows the geometry of the experiment as the

buoys were drifting southward with the sea ice. The satellite

image shows the sea-ice extent on 14 September 2013. The

solid lines represent the ice edge determined from satellite

images taken each day during the deployment. Each buoy

was equipped with a Global Positioning System receiver

(GPS) logging its position. The colors used for the buoy

positions and the ice edge correspond to the different days of

the drift. The green squares along 82� N show the XCTD

casts that were made.

The relative distance between the buoys remained fairly

constant during the experiment, indicating that the sea ice

1620 J. Acoust. Soc. Am. 142 (3), September 2017 Hope et al.
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drifted southward with little deformation or rotation. While

WHOI1 and IIS moved parallel with the ice edge, some com-

pression and westward movement of the ice edge is seen on

the 14th around 81� 350 N.
The GPS receiver provided timing and position for the

buoys. However, due to clock skew and poor GPS reception

the transmission times and positioning are not accurate

enough to calculate absolute and relative travel times. Thus

our focus is on the arrival structure and its variability, with

respect to sea-ice surface conditions, rather than analyzing

changes in travel time.

B. Signal processing

The records containing the received signals are

extracted from the complete recording based on the known

transmission schedule. The signals are then processed using

standard matched filter (pulse compression) techniques.

First, the signal is demodulated to base-band, decimated so

that the sampling corresponds to the maximum frequency of

the matched filter, and filtered with the base-band template

sweep. A Hamming-window is applied to the matched filter

template to avoid ringing and reduce side-lobes. The gain

obtained by pulse-compression24 of the sweep with T¼ 8 s

and Df ¼ 25 Hz is H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T � Df

p
� 23 dB.

Figure 2 shows 9-s segments of the recordings after

matched filter processing, where the processed signal from

each hour is stacked vertically, starting with the first trans-

mission at the bottom. The amplitude shown is corrected for

pulse-compression gain.

The transmissions were turned off at some hours (e.g.,

hour 8 and 23) due to conflicting experiments, this results in

noisy or quiet traces in Fig. 2 as the matched filter may pick up

other signals. The traces are included here for completeness.

The receptions are characterized by a strong first arrival,

seen near 21.5 s for the first 6 h, with weaker arrivals follow-

ing. The arrival time is stable until 27 h since deployment,

after which the arrival time increases approximately linearly

with increased range until it slows down at approximately

60 h.

C. Bathymetry

The bathymetry between the transmitting and receiving

buoy is obtained from the International Bathymetric Chart of

the Arctic Ocean25 (IBCAO) and shown in the right panel of

Fig. 2. The right edge of the contours indicates the distance

between the two buoys. The experiment was carried out over

the Yermak plateau, north of Svalbard. Upon deployment,

the shallowest point (1600m depth) along the transect is

located between the buoys. As the buoys drift southward, the

transmitting buoy crosses the shallowest part (between 26

and 49 h after deployment), before both the transmitting and

receiving buoy drift out above the slope falling down toward

the deep Fram Strait (maximum 3200m depth).

For the first 36 h after deployment, the distance varies

from 31.9 to 35 km, which corresponds to an average

increase of 86m per hour. From 36 to 58 h after deployment

the increase is more rapid, from 35 to 39 km, or 180m/h.

Finally, it slows down to 140m/h for the last 2 km over the

next 14 h as the distance increases to 41 km.

D. Sound speed

Sound speed profile measurements in the region was per-

formed by XCTD casts approximately every 10 nm along 82�

N from 7� W to 1� W, with a total of six measurements along

a 94 km long transect. Figure 3 shows the raw data from the

measurements along the transect. The western-most probe ter-

minated at a shallower depth because of the wire getting tan-

gled in strong currents or getting in contact with the sea-ice.

A mean sound speed profile cwðzÞ is calculated from

these measurements (shown in Fig. 3). Two potential surface

channels are seen from the steep gradients in the sound speed:

one with a depth of 100m; and the other with a depth of

approximately 220m. These channels arise due to the cold,

FIG. 1. (Color online) Deployment

setup and drift path of the buoys.

WHOI1 and WHOI2 transmitted sig-

nals between each other, which were

recorded by IIS. The satellite image

shows the sea-ice on the 14 September

2013. The varying ice edge for the

days 14, 15, and 16 September is

shown. The shade of the ice edge and

the buoy drift track indicate which day

it represents. XCTD casts made during

the experiment are marked with circles

along 82� N. Figure modified from

Geyer et al. (Ref. 23).
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fresh water underneath the ice. The slowest sound speed is

c0 ¼ 1435 m/s, located near the surface. The sound speed is

relatively constant from 220m down to approximately 650m,

after which it increases linearly as a function of pressure.

A surface channel generally acts as a high-pass filter,

where sound above a certain cutoff frequency will be trapped

in the channel. This frequency, for an isothermal surface

channel with depth D and sound speed cd, is given by Eq.

(1.36) from Jensen et al.:5

f0 ’
cd

0:008 � D3=2
:

Using cd ¼ c0 ¼ 1435 m/s, the cutoff frequency is

approximately 55Hz for D¼ 220m, while D¼ 100m gives

a 180Hz cutoff frequency. These are both well below the

source frequencies used in this work and a large part of the

signal used here will propagate inside the surface channel.

III. MODEL SETUP

Modeling is performed with the range-independent ver-

sion of OASES. The model consists of a layer of water

enclosed above by a sea-ice layer with a vacuum half-space

on top, and below by a sea-floor half-space.

A. Ocean

The mean sound speed profile measured using XCTDs

is used to make a 12 point linear, piece-wise model as input

FIG. 2. (Color online) Left panel show the 72 received signals (matched filter output) fromWHOI1 to IIS, Df ¼ 25 Hz, fc¼ 900Hz, stacked with first transmis-

sion at the bottom. The right panel shows the bottom topography between transmitting and receiving buoy as the system drifts southward off the Yermak pla-

teau and onto the east facing slope toward the Fram Strait. The same signals were sent each hour. The 9-s segments are shown stacked vertically, with the first

transmission at the bottom and last transmission (after 72 h) at the top.
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to OASES. Figure 3 shows the model overlaid the mean

sound speed as a dashed line with each interface marked

with circles. The number of points is chosen in order to cap-

ture the most important features of the mean profile, while

limiting the number of interfaces, and consequently, the

computational time.

The attenuation in the water is calculated using Eq.

(1.47) from Jensen et al.,5 which for 900Hz is aw ¼ 0:06
dB/km.

B. Seafloor

The bathymetry in the model has a constant depth of

zb¼ 2000m. The elastic parameters of the visco-elastic sea-

floor are listed in Table I, where subscript p and s indicate
longitudinal and shear, respectively. These properties are

based on seismic observations from the Fram Strait.26

C. Sea-ice thickness and roughness

In OASES the sea-ice is represented as a sea-ice layer

replacing a part of the uppermost layer with a either a

smooth or rough water-ice boundary. The upper boundary of

the sea-ice is smooth, with a vacuum half-space above. The

roughness is implemented in OASES using the method of

small perturbations (MSP),20 with the sea-ice layer given in

terms of a mean ice-thickness of �hice, a RMS variation

around the mean, and a characteristic correlation length

(CL).

The underside of the ice in the Arctic consists of

strongly varying shapes such as ridges, edges, stacked ice-

floes or tunnels. The ice is constantly under the influence of

ocean currents, wind and freeze-melt processes and can

move more than 40 km in a day.27 Being subjected to com-

pression, decompression and opening of leads, the underside

of the sea-ice is constantly changing. A detailed map is

therefore not possible to make, nor would it be very useful

since it would be invalidated in a short time. A statistical

model is therefore used in OASES to parameterize the sea-

ice so that it can be modeled.

The method of small perturbations in OASES can han-

dle roughness with a RMS variation that is small compared

to the wavelength.28 At 900Hz the wavelength in water

(1435m/s) is kw ¼ 1:59 m, while kp ¼ 4:00 m and ks ¼ 2:00
m in the sea-ice. Existing measurements of sea-ice roughness

suitable for acoustic modeling are very sparse. DiNapoli and

Mellen29 measured the RMS roughness to be 1.9m (mean

thickness 3.9m), and characteristic correlation length to be

44.8m. These were used by Kuperman and Schmidt30 for

their numerical modeling experiments of Arctic propagation

for frequencies of 100Hz and below.

The ice thickness distribution (shown in Fig. 4), RMS,

and characteristic correlation length were calculated for one

segment in the Nansen basin (84.1� N, 25.2� E) measured in

FIG. 3. (Color online) Sound speed profile from 82� N used in model. The

line with circles shows the discretized model overlaid the mean sound speed

profile, calculated from XCTDs collected during the UNDER-ICE 2013
cruise. The background image shows the sound speed calculated for each of

the 6 casts between 7� W to 1� W.

TABLE I. A simplified, reflective, seafloor with elastic parameters compiled

from Jokat et al. (Ref. 26) is used in the model. K denotes spatial

wavelength.

Depth cp cs ap as q

2000m 2200m/s 1500m/s 0.5 dB/K 0.5 dB/K 2.9 kg/dm3

2200m 3500m/s 1500m/s 0.5 dB/K 0.5 dB/K 2.9 kg/dm3

FIG. 4. (Color online) Histogram of ice-thickness distribution computed

from National Snow and Ice Data Center 31. The distribution is used as

parameters for sea-ice roughness in OASES (Table IV).
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2005 by a submarine with upward looking sonar (distributed

by the National Snow and Ice Data Center31). The segment

of ice drafts closest to our area was chosen, however this is

still 440 km further north and 8 years earlier. The segment

consists of almost equidistant samples, except for a few gaps

of missing measurements. In order to calculate the autocorre-

lation function (ACF), equidistant sampling is required. The

full segment is split at each data gap, so that each sub-

segment now consists of almost equidistant measurements.

The autocorrelation functions for each sub-segment is then

calculated. The ACFs are combined by summing the over-

lapping lags of the ACFs, weighted with the number of sam-

ples in the sub-segment. The full segment is detrended

before the RMS is calculated, and the characteristic correla-

tion length is calculated from the combined ACF.20,32 The

mean ice-thickness for this segment is 2.4m, the standard

deviation (or RMS with mean deducted) is 1.52m, and the

characteristic correlation length is 19.1m.

A Gaussian distribution around the mean is used as

model for the sea-ice thickness in OASES. As can be seen in

Fig. 4, this does not match the reality. This model also

assumes the roughness to be isotropic and transversely invari-

ant. While the roughness is likely to exhibit similar character-

istics within the area of study, ice-keels extend along one

direction and are therefore not isotropic. In OASES, only 2D

transects are modeled and ice-keels or structures will therefore

be sliced through, making their orientation, and clear contra-

diction with the simplified statistical model somewhat less

important. At the same time, out of plane propagation is not

accounted for. These approximations should be kept in mind

while interpreting the effect of roughness.

The RMS value calculated from the upward looking

sonar measurements (1.52m) is too high compared to the

wavelength at 900Hz for it to be modeled with OASES

using the MSP. It was therefore adjusted to a maximum of

0.6m, a value where the reflection coefficient begin to show

instabilities at low incidence angles. This is clearly a limita-

tion in the model. However, it could be argued that the

roughness is likely to be somewhat less than 1.52m in our

case since (1) the transmissions in this study are done in the

end of the melting season, whereas the original measure-

ments were done in November; (2) the area of the experi-

ment is further south where the melting has been going on

for a longer time; and (3) the general ice-thickness and

amount of multi-year ice has decreased significantly since

2005.33 Still, a maximum roughness in the model of 0.6m

RMS is an underestimate. A lower RMS value of 0.2m is

used to study the effect of reducing the roughness.

The closest and most recent ice-thickness measurements

that match season and location were made in the Fram Strait

in 2011.33 These were made using a tethered upward looking

sonar and measured a mean ice-thickness of 2.0m. Only

thickness is used from this data set since suitable roughness

characteristics were unavailable.

D. Elastic parameters of sea-ice

The sea-ice is modeled as an elastic and isotropic layer,

which is described by density, and the compressional, and

shear speed with corresponding compressional and shear

attenuation. However, this is a simplification since sea-ice

consists of multiple layers meshed together forming fractures

and internal structure of a potential wide range of composi-

tions. The elastic parameters change throughout the season

as the temperature of the ice changes, and the surrounding

environment affects the internal structure. There can there-

fore be large variations in the reflection coefficient of the

same ice-floe throughout the season.34

Obtaining measurements of the internal elastic parame-

ters of the sea-ice is not trivial. Using cross-hole tomography

of an ice-floe Rajan et al.35 were able to produce a detailed

image of the internal sound speeds of one ice-floe in the

Beaufort sea. Laible and Rajan34 used these to produce a

background model, which agrees well with previous and his-

torical measurements of sound speed in sea-ice. This back-

ground model is judged to be the best starting point for

modeling in this analysis (see Table II). However, large var-

iations must be expected throughout the Arctic depending on

each ice-floe’s history (such as fracturing, stacking, melting,

and refreezing) as well as on the conditions of the ocean

water when the ice was formed.

The attenuation measured for the compressional wave

by Rajan et al.35 varies from 0.06 to 0.282 dB/m/kHz. These

estimates were made for a signal at 30 kHz. Clee et al.36

measured the attenuation at approximately 900Hz to be

about 0.115 dB/m/kHz, however these measurements were

made on glacier ice. McCammon and McDaniel18 gathered

several measurements on attenuation for the purpose of

modeling acoustic propagation in sea-ice. They arrived by

linear regression at an attenuation of 0.06 dB/m/kHz, which

is the same as the lower estimates by Rajan et al.35 and those

chosen by Laible and Rajan.34 In this regression analysis, the

values measured by Clee et al.36 became outliers. The values

measured by Rajan et al.35 and computed by McCammon

and McDaniel18 are therefore considered to be the best esti-

mate. The relation to shear wave attenuation is given by

as ¼ 6ap.
18

Hobæk and Sagen37 modeled the reflection coefficient

for several different cases of horizontally layered sea-ice,

and found that the reflection coefficient is sensitive to attenu-

ation. However, above 60� of incidence angles, the reflection
coefficient nevertheless remains almost total (in particular

for frequencies of 900Hz). McCammon and McDaniel18

found the shear attenuation to be the most important parame-

ter for the reflection coefficient between incidence angles of

20� and 60�. It should be noted that for some models of

TABLE II. Average values from Rajan et al. (Ref. 35) as estimated by

Laible and Rajan (Ref. 34), and McCammon and McDaniel (Ref. 18), was

used as a model for the sea-ice layer.

Parameter Value

cp 3600m/s (Ref. 34)

cs 1800m/s (Ref. 34)

qice 0.9 kg/dm3 (Ref. 34)

ap 0.06 dB/m/kHz (0.216 dB/K) (Refs. 18 and 35)
as 0.36 dB/m/kHz (0.648 dB/K) (Ref. 18)
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porous fluid filled seafloors, the reflection coefficient may be

reduced, in some cases even at high incidence angles.38 If

Biot theory39,40 is used to model the sea-ice,34 a lower reflec-

tion coefficient may be experienced. In this paper, an elastic

model for the sea-ice is used.

IV. MODELING RESULTS

The OASES package was used to simulate four cases

(Table III) based on Sec. III. The cases range from no sea-

ice to rough sea-ice. The numerical parameters for the wave

number integration of a model in OASES requires stabiliza-

tion, but once it is stable, the model can be carefully per-

turbed without requiring re-stabilization.

A. Sea-ice reflection coefficient

Figure 5 shows the reflection coefficient calculated

using OASES for the water-ice interface with 2m smooth

sea-ice (Case b in Table III) and for a sea-ice layer with

0.6m RMS roughness (Case d), as a function of frequency

and incidence angle. The black dashed line indicates 900Hz.

Increasing the thickness of the ice layer will compress the

plot along the frequency axis, so that doubling the thickness

of the ice layer to 4m will cause the 900Hz line to be moved

down to where 450Hz is now. The dips correspond to differ-

ent modes of Rayleigh-Lamb waves for which an acoustic

wave enters the ice.37 Above 70� of incidence angle the

reflection coefficient is almost total for the smooth ice (left).

The reflection coefficient to the right in Fig. 5 accounts for

scattering loss in the rough-sea ice case, in which case the

reflection coefficient is dramatically changed, and the reflec-

tion is decreased for high angles of incidence. The white

areas indicate regions where the reflection coefficient barely

exceeds 1. This is a sign of instability in the model caused

by the relatively high RMS value of 0.6m compared to the

wavelength. However, this occurs for frequencies and inci-

dence angles not considered here.

Figure 6 shows the reflection coefficient for 900Hz at

incidence angles above 60�. The attenuation is varied along

the ordinate, with a fixed proportion of as ¼ 6ap between the

shear and compressional attenuation. Increasing attenuation

above 0.06 dB/m/kHz (i.e., value used in this work) does

have an effect, in particular up to 75� angle of incidence.

However, this effect is dwarfed by the effect of increasing

the RMS roughness of the sea-ice to a, e.g., 0.6m.

Figure 7 shows the distribution of incidence angles for

all ray reflections at a fluid-vacuum surface interface, with

rays modeled out to a range of 40 km with BELLHOP;41

7000 rays were launched with an angle of 645� from a

source at 90m depth. All surface reflections are included in

order to determine the number of interactions with the sea-

ice, meaning that the total number of surface reflections is

greater than the number of rays. The different colors indicate

the turning point of the ray, with surface channel rays

defined as those reaching a maximum depth of 250m.

Bottom reflected rays have one or more bottom reflections,

while the rest are deep refracted rays. Most of the rays have

incidence angles above 80�, with all rays that were trapped

in the surface duct or refracted deeper having incidence

angle above 75�. The setup is as for Case a, with the sound

profile as shown in Fig. 3. Earlier literature found that most

rays with incidence angles less than 73�–75� escape the

Arctic surface duct5,15 and will be refracted or reflected

deeper, and therefore experience fewer bounces off the sea-

ice over range.

This distribution of incidence angles were computed for

a surface interface which completely reflects the rays, show-

ing that the shape of the distribution is a function of the

sound speed profile and not the reflection coefficient at the

surface.

The incidence angle of a plane wave is altered at a rough

interface as a ridge or depression will change the inclination

of the interface. However, the OASES model only considers

the interface to be perturbed slightly (MSP) around a mean,

plane, interface. This allows the roughness to be accounted

for in the reflection coefficient (Fig. 6) and the incidence

angle should be regarded as relative to a plane interface.

Waves at lower frequency or at a smaller angle of inci-

dence will be affected more by the elastic parameters of the

sea-ice. However, the setup and range in this experiment

will contain waves with incidence angles generally above

75�. Above this angle the roughness is more significant than

the elastic parameters for the reflection coefficient of the

sea-ice.

B. Transmission loss

Figure 8 shows the magnitude of the coherent transmis-

sion loss (TL), using the range-independent OASES pack-

age, as a function of range and depth, for 900Hz, from 0 to

120 km range, with 2m smooth ice (upper panel), and 2m

thick ice with 0.6m RMS roughness and 19.1m correlation

length (lower panel). The sea-ice interface corresponds to

the reflection coefficients in Fig. 5. The sound speed profile

is shown in the left column and is the same as shown in Fig.

3. The surface channel at approximately 100m and a some-

what weaker channel at 220m is visible.

The TL illustrates how the sound is distributed through-

out the water column. Convergence zones causes the sound

to be re-focused at regular spatial intervals near the surface

at ranges of approximately 35, 70, and 105 km. In between

TABLE III. Ice condition cases modeled using OASES.

Case Ice thickness RMS roughness Characteristic correlation length

a 0m 0m 0m

b 2m 0m 0m

c 2m 0.2m 19.1m

d 2m 0.6m 19.1m

TABLE IV. Parameters for the Gaussian distribution used as model for the

roughness of the underside of the sea-ice.

Parameter Value

Mean ice thickness 2.0m (Ref. 33)

RMS roughness 0.2 – 0.6m

Characteristic correlation length 19.1m (calculated from Ref. 31)
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these high intensity regions, most of the energy extends

down to approximately 1800m depth. Bottom reflections are

especially visible at ranges closer than 20 km.

A similar behavior is also observed for the case with no

sea-ice. However, the reflection at the water/vacuum inter-

face is total, independent of the incidence angle.

With rough ice the overall propagation is qualitatively

similar as for smooth ice. However, there is a significantly

higher attenuation with range, due to the scattering at the

rough ice interface. Beyond 70 km range only the sound

trapped in the shallowest surface channel (D � 100 m) is

present, although weaker than for smooth sea-ice.

The sound speed profile is range dependent throughout

the Arctic Ocean and across the Marginal Ice Zone. Acoustic

signals propagated over long distances in the Arctic will

interact with different ice conditions, open leads and chang-

ing sound speed in the ocean. Transmission loss is therefore

determined by the scattering and reflection from the sea-ice,

the dimension of the surface channel and the sound speed

profile, and, in shallow water, reflectivity from the bottom.

Several different wave paths are visible in Fig. 8 that

cause multiple arrivals, these will be studied through time

domain analysis in Sec. IVC.

C. Time domain analysis

The transfer function between source and receiver is cal-

culated using OASES for the frequency band 870–930Hz. A

source FM sweep from 900Hz6 12.5 (8 s) is then windowed

using the Hamming window and transformed to the fre-

quency domain. The received signal is found by multiplying

the source spectrum with the transfer function and trans-

forming the result back to the time domain. The simulated

signal (FM-sweeps), in the time domain, is then processed

using pulse-compression in the same way as the data (see

Sec. II B).

Figure 9 shows the matched filter output of the simu-

lated signal for increasing ranges (r¼ 0 to 120 km) as a func-

tion of reduced time s ¼ t� r=c0 at 30m depth (no ice, Case

a). c0 ¼ 1435 m/s corresponds to the lowest sound speed in

FIG. 5. (Color online) The left panel shows the reflection coefficient for a 2m homogeneous, smooth, ice layer as described in Table II. The right panel shows

the same layer with 0.6m RMS deviations from the mean thickness. The frequency axis can be scaled with the thickness of the ice layer, causing the plot to be

compressed proportionally along the frequency axis when the ice thickness is increased.

FIG. 6. (Color online) Attenuation vs

roughness. The reflection coefficient

for 900Hz is plotted for increasing

attenuation (vertical) vs increasing

roughness (horizontal), for incidence

angles between 60� and 90�.
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the surface channel. This causes the pulses to be shifted for-

ward (leftward) with the travel-time at its range for the direct

path in the surface channel, so that the vertical line (B) near

s¼ 0 s is an arrival traveling with the same speed as the

sound speed in the surface channel. The received signal at

each range is stacked vertically, with the closest range at the

bottom. Additionally, each signal has been scaled with
ffiffi
r

p
to

compensate for cylindrical spreading loss, so that the ampli-

tude will remain comparable at increasing range.

The curved lines marked A1–A5 correspond to the

bottom reflected energy which together with the deep

refracted waves (D) converges and is re-focused in high

intensity zones that is observed close to the surface in

Fig. 8. A convergence-zone range of approximately 35 km

causes the high intensity zones to appear at regular spatial

intervals along the D-arrival at approximately 35, 70, and

105 km.

After about 20 km the deep refracted and bottom

reflected waves overtake the surface channel arrival (B). The

second reflected bottom reflection (A2) then start to appear,

before it also overtakes the surface channel arrival just after

40 km. As can be seen from the steep change in arrival time

for the bottom reflected arrivals their travel time is very sen-

sitive to range.

Traces of slightly deeper sound channel arrivals can be

seen as straight lines (e.g., C) arriving prior to the main sur-

face channel arrival (B). The deeper channels can be seen in

Fig. 8 as the deeper, partially overlapping, surface channels,

where the main surface channel arrival (B) is limited to ca.

100m depth, and deeper waves turn at approximately 220m.

The deeper sound channels have longer paths, but travel at

greater speed.

In order to distinguish the deep refracted waves (D)

with the bottom reflected waves (A) an additional simulation

was performed using Case a with an ocean half-space. In this

FIG. 8. (Color online) General propagation pattern: Transmission loss at 900Hz for a source located at 90m depth, calculated using OASES for the sound

speed profile shown in Fig. 3 with a 2 m thick ice layer. The top panel shows TL for smooth ice, while the lower panel shows the result for sea-ice with 0.6m

RMS roughness and 19.1m correlation length. A flat, reflecting sea-floor is used in the model.

FIG. 7. (Color online) Distribution of ray reflection incidence angles with a

plane vacuum interface for a source located at 90m out to a range of 40 km.

The majority of interactions have an incidence angle above 80�.
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case, the refracted waves arrived approximately at the same

time as the bottom reflected waves at ranges near 35 km.

Figure 10 shows a similar plot for Case b (2m smooth

ice), Case c (0.2m RMS, 2m ice), and Case d (0.6m RMS,

2m ice).

Adding a 2m smooth ice layer (Case b) to the model

causes several weak arrivals slightly faster than the surface

channel arrival to emerge. However, the effect of a change

from a surface with no ice (Case a) to one with ice (Case b),

is not dramatic. Transmission loss in the Arctic is sometimes

assumed to be caused by a thicker ice layer. However, Fig. 5

show that increasing the thickness of the ice layer will have

little effect on the reflection coefficient for incidence angles

above 75�. The correlation between thicker ice and older

(MY-ice), which has had more time to undergo deformation,

and therefore likely is rougher could therefore indirectly

account for the weakened signal.

The middle panel shows the pulse propagation for

0.2m RMS (Case c) rough ice, at this point some weaken-

ing of the surface channel arrival becomes apparent at

increased range compared to smooth ice. Some of the bot-

tom reflections also become weakened. The surface channel

arrival contains much energy and while it is weakened

more than deep refracted (D) and bottom reflected waves it

still appears strong in this plot. The bottom reflection and

deep refracted waves that have not interacted with the sea-

ice (no multiple reflections) remain almost intact (some

loss can be attributed to loss of constructive interference

from other paths).

As the roughness is increased to 0.6m RMS in the low-

ermost panel it becomes more apparent that the bottom

reflected and deep refracted waves that interact with the ice

are almost lost, while the surface duct arrival is significantly

weakened. The faster arrivals arising from waves traveling

in the deeper surface channels (e.g., D¼ 220m) disappear or

are weakened as the roughness is increased.

Increasing roughness causes all waves that interact with

the sea-ice to be weakened as they are scattered off the rough

sea-ice, while those that do not interact remain almost intact.

Some waves disappear before the surface channel arrival,

even though they interact less with the sea-ice per range,

because they contain less energy.

V. ANALYSIS OF RECEIVED SIGNAL STRUCTURE

In order to compare observations and signal, the

received signals are time-shifted and stacked so that the sig-

nal structure can be studied, and they can be compared with

the simulations. A representative mean signal is then

extracted and compared with the simulations in Sec. VI.

In Fig. 11 the arrivals have been stacked such that the

first arrival (bottom reflection, A1, or deep refraction, D) is

aligned to t¼ 0 s. Arrival A1 was chosen as reference, as

opposed to arrival B (surface channel arrival) in Figs. 9 and

10, because it is the most visible arrival throughout the data

set. The arrivals were time-shifted by automatically match-

ing the model output (of Case c) at the transmission distance

with the received signal using the model synthetic signal as a

matched filter template. This method generally performs bet-

ter than attempts at manually identifying and picking the

arrival, or simply using the maximum amplitude, which is

sometimes the first and sometimes the second arrival.

The automatically time-shifted arrivals for hours 12–15

and 30–32 were then additionally manually adjusted. The

manual adjustment was necessary because the same arrival

is not always the strongest. However, by using the context of

the previous and the following signal, and the smoothed and

enhanced matched filter output, the correct reference arrival

can be picked more easily. A more advanced selection algo-

rithm might be used to select the correct arrival automati-

cally, especially if absolute or relative travel times are

available.

FIG. 9. (Color online) Matched filter output for the modeled signal for no ice (Case a), shown as a function of reduced time and range. The pulse is propagated

from a source at 90m depth to a receiver at 30m depth for increasing range (r). Each pulse is time-shifted forward (leftward) with the travel-time at its range

for the direct path in the surface channel: s ¼ t� r=c0, where c0 ¼ 1435 m/s is the lowest sound speed in the surface channel. The pulses are stacked vertically

with the pulse received at 0 km at the bottom and the pulse received at 120 km at the top. The amplitude of each pulse is scaled with
ffiffi
r

p
to compensate for

cylindrical spreading loss, so that the amplitude will remain comparable at increasing range.
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FIG. 10. (Color online) Equivalent plots to Fig. 9 for 2 m smooth ice (Case b), 2m rough sea-ice (0.2m RMS, Case c), and 2m rough sea-ice (0.6m RMS, Case d).
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In Fig. 11, it can be seen that the bottom reflected arriv-

als A1 and A2 are visible throughout the experiment, while

the surface channel arrival is less persistent. For hours 12–15

the surface channel arrival (B) is stronger than A1, otherwise

A1 is the most stable arrival. The deep refracted arrival (D)

is difficult to identify.

The surface channel arrival remains visible for the first

25 h, though some instability is apparent at hours 18 to 22.

After the 25 h mark it is weakened, and only visible in a few

of the segments before it disappears entirely at a distance of

39 km. The change in surface channel arrival stability and

strength occurs as the network drifts apart from 32 to 39 km.

The waves trapped in the surface channel are significantly

affected by the sea-ice since they are continuously being

reflected off the underside of the ice. As the range is

increased waves in the surface channel undergo additional

scattering and the arrival is weakened. The disappearance of

the surface channel arrival could also be partly attributed to

oceanographic variability, or the buoys drifting into different

oceanographic conditions. Additional observations would be

required to more precisely separate the effects of the ocean

and ice on the signal structure.

VI. COMPARISON OF OBSERVATIONS WITH
SIMULATIONS

In order to find a representative signal that could be

compared with the synthetic signal, N¼ 15 transmissions

between 32.06 1.0 km (hours 1 to 19, with faulty transmis-

sions omitted) were collected and time shifted in the same

FIG. 11. (Color online) The received signals from Fig. 2 have been correlated with the synthetic signal (synthetics calculated at 1 km intervals). The maximum

correlation is used as a reference to time-shift the received signal in order to get a better alignment than simply using the maximum amplitude. Hours 12–15

and 30–32 were manually adjusted in addition to this, since the first arrival in these cases were so weak that the maximum correlation occurred at the second

arrival, and not the first as it does for the rest of the transmissions.
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way as in Fig. 11. Under the assumption that the signal struc-

ture does not change much within this range interval, the

mean was calculated across the amplitudes of the transmis-

sions. If the signal structure does not vary greatly, the coher-

ent structure should be enhanced by calculating the mean.

The mean was then used as a representative signal which

could be qualitatively compared to the synthetic signal.

Model simulations for Case b, c, and d (Table III) are

shown in Fig. 12 together with the mean of the signals calcu-

lated across the amplitudes of the 15 transmissions. The syn-

thetic traces have been synchronized to the surface duct

arrival (B) of the signals by using reduced time as in Figs. 9

and 10. The amplitude of arrival B in model Case b has been

scaled to match the mean amplitude (75.6 dB re 1 lPa) of the
corresponding arrival in the data. The result from the other

model cases have been scaled by the same factor as Case b

so that they can be compared with each other. Case a is not

included as phase changes from the different model (without

a sea-ice layer) could cause a different interference pattern

and make it unsuitable for direct comparison with the sea-ice

cases.

During this experiment, the sea-ice in the relevant area

consisted of small (20–100m) floes and it is unlikely that the

floes are coupled well enough for waves to propagate coher-

ently any longer than individual ice floes. Beam displace-

ment is therefore not a likely effect in the measured signal.

Beam displacement is accounted for in the OASES model,

but due to the near total reflection, very little energy enters

the sea-ice.

In Fig. 12, the deep refracted waves (D) become easier

to discern compared to each single observation in Fig. 11.

The bottom reflection (A1) and refracted arrival (D) arrive

with approximately 0.1 s difference in the observations,

while A1 and B (surface channel arrival) arrive with approx-

imately 0.25 s separation. The delay between A1 and B

matches quite well between observations and model, but the

delay between A1 and D is too small compared to the obser-

vations. The second bottom arrival (A2) arrives too early in

the model, possibly because of the simplified bathymetry in

the model. The somewhat arbitrarily chosen seafloor param-

eters, and the fact that the obliquely sloping seafloor is

assumed to be flat in OASES, increases uncertainty about

the relative amplitude between A1 and B in the modeled sig-

nals. Arrival D is not directly affected by the seafloor.

Figure 12 shows that A1 has greater relative amplitude

than B for the observed signals, while all model cases show a

weaker A1 than B arrival. However, increasing the roughness

in the model causes A1 to gain amplitude relative to the sur-

face duct arrival. This indicates both that increased roughness

weakens the surface duct arrival more than the bottom

reflected and deep refracted arrival, and that the roughness is

greater in reality than the 0.6m RMS. The weakened surface

duct arrival in the model must therefore be caused by

increased scattering from the sea-ice, and should be further

weakened by greater and more realistic roughness than 0.6m

RMS.

Note that the model signals are scaled with the ampli-

tude of the B arrival in Case b, so that if Case d was scaled

in the same way; its B arrival would be matched with the sig-

nal B arrival, and the A1 arrival would be about 3 dB higher

as well. This would further reduce the discrepancy in relative

amplitude strength between A1 and B in observations and

model.

For smooth sea-ice, the best propagation conditions can

be found in the surface channel, but both model and data

suggest that it is rapidly scattered when the sea-ice gets

rougher. This may make interpretation of signals easier as

there will be fewer multi-paths, but eventually the propaga-

tion pattern in the upper few 100m will be characterized by

shadow zones and high intensity zones (visible at, e.g.,

35 km in Fig. 8). As the sea-ice gets rougher, the surface

channel does not offer greater reception than the rest of the

water column. Ignoring the roughness when modeling a

setup either for communication or navigation will therefore

overestimate the relative strength of the surface channel

arrival when it may be weaker or not present at all.

VII. CONCLUSION

Observations of long-range acoustic signals in the Fram

Strait Marginal Ice Zone in September 2013 are compared

with simulations. The observations were made for ranges 32

to 41 km, while the simulations made using the OASES

package covered ranges from 0 to 120 km. Previous meas-

urements of acoustic and elastic properties of sea-ice were

used to establish a realistic description of the sea-ice layer.

A sound speed profile was derived from XCTD measure-

ments, while the elastic parameters of the flat seafloor are

based on seismic observations from the Fram Strait. These

environmental parameters were used as input to the acoustic

model. Simulations of reflection coefficients (1–1500Hz)

and pulse propagation (870–930Hz) were made without ice,

smooth ice, and increasingly rough sea-ice. Transmission

loss (900Hz) was calculated for smooth ice and rough

sea-ice.

FIG. 12. (Color online) Mean of 15 time-synchronized received signals at

distance 32.06 1.0 km (as shown stacked in Fig. 11). The dashed lines show

the synthetic signals computed by OASES at a range of 32 km for different

cases. Labels A1, D, B, and A2 show the identified arrivals; first bottom

reflection, refracted, surface duct arrival, and second bottom reflection for

the measured data (top) and model (bottom) respectively. Data gaps (e.g.,

hours 8–11) are not included in the mean.
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Observations and simulations show a clear weakening

of the waves that are trapped in the surface channel with

increasing range. The deeper refracted and reflected waves

which interact less with the sea-ice are relatively less weak-

ened than the surface trapped acoustic waves. The observed

weakening of the waves trapped in the surface duct is attrib-

uted to the roughness of the sea-ice rather than other sea-ice

characteristics. This is because the waves trapped in the sur-

face channel have incidence angles above 75� and therefore

experience close to total reflection at a smooth sea-ice inter-

face. Introducing a rough interface increases the scattering

loss for all incidence angles and can explain the observed

loss (Fig. 5). Consequently, for ranges above approximately

30 km, and for 900Hz signals, the roughness is the most sig-

nificant characteristic of the sea-ice for acoustic propagation.

Waves with lower frequency or lower incidence angles can

be more greatly affected by the elastic parameters of the sea-

ice. Lower incidence angles occur for short ranges, or for a

deeper surface duct.

The method of small perturbations used to model rough-

ness in OASES have been shown to work well for long

wavelengths compared to the scale of the roughness.30 For

sea-ice parameters used in this work the method is found to

be limited to a roughness less than approximately 0.6m

RMS for 900Hz. However, this is less than the estimated

roughness from ice draft measurements and the correspond-

ing simulations underestimate the dampening of the waves

trapped in the surface duct in comparison with the

observations.

Lack of high resolution sea-ice thickness measurements

and observations of elastic properties limits comparison with

acoustic experiments and the understanding of long-range

under-ice acoustic propagation. Further progress can be

made by improving theory and numerical solutions to handle

scattering from rougher sea-ice in long-range problems.
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1 INTRODUCTION 
 
The Arctic is characterized by strong vertical stratification of the water column. A fresh water layer                
traps the acoustic energy against the sea-ice and the steep sound speed gradient below creating a                
surface channel. The stratification varies throughout the Arctic, and the amount of energy trapped in               
the surface channel varies with it. 
 
The amount of energy trapped in the surface duct is dependent on the source position, in these                 
proceedings two locations in the Arctic are surveyed using an acoustic model: the Fram Strait and the                 
Beaufort Sea. 
 
An acoustic model with a rough sea-ice layer will be used in the OASES package 1 to calculate                 
transmission loss and signal structure for a frequency of 900 Hz. Sea-ice elastic parameters are               
derived from Laible et. al. (1996) 2,3 and agree quite well with previous and historical measurements of                
the sound speed for sea-ice. Table 1 summarizes the elastic parameters used for the sea-ice layer for                 
the acoustic model. 
 

Parameter Value  

Cp  3600 m/s  

Cs  1800 m/s  

ρice  0.9 kg/dm 3  

αp  0.06 dB/m/kHz (0.216 dB/ )λ  

αs  0.36 dB/m/kHz (0.648 dB/ )λ  
 

Table 1: Average sea-ice elastic values based on Rajan (1993) 3,  as estimated by Laible, et. al. 
(1993) 2 . 
 
Figure 1 shows the reflection coefficient calculated for the water-ice interface for a smooth ice layer                
with the parameters described in Table 1. It shows that there is generally total reflection for incidence                 
angles above 60 o . Waves traveling any distance are usually above this angle, meaning that the               
roughness is the most important parameter for the interaction with the sea-ice. The plot can be scaled                 
vertically with frequency and ice thickness, the right hand side of the plot (above 60 o ) will nonetheless                 
be close to total reflection. 
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Figure 1 : Reflection coefficient for 2 m homogeneous, smooth, ice. For angles of incidence greater 
than 60 o  there is generally total reflection. Most of the waves traveling any distance have incidence 
angles greater than 60 o  and the interaction with the sea-ice is therefore mainly defined by the 
roughness. 
 
The roughness of the sea-ice is parameterized into RMS thickness and characteristic correlation             
length. These are used for a statistical model of the internal ice thickness distribution. The OASES                
model is capable of modeling RMS roughness of up to about 0.6 m with frequencies of 900 Hz.                  
Unfortunately, the limited measurements available of RMS thickness indicate that the values of about              
1.5 m are more realistic 4 . This will lead to an under estimation of the scattering from the sea-ice. The                   
correlation length has been found to be of less importance for values greater than 5 m. A                 
characteristic correlation length of 20 m is used in this model. For both locations a sea-ice thickness of                  
2 m is used, which corresponds to the mean thickness in the Fram Strait in the summer 5 . 
 
For the locations: Fram Strait and Beaufort Sea, the transmission loss is calculated using OASES with                
a rough sea-ice layer on top of the respective measured sound speed profiles. Different              
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transmitter-receiver geometries are simulated for smooth to increasingly rough sea-ice to determine            
the effect of a rough sea-ice layer for different geometries. The sound speed profiles are presented                
below in Section 1.1 while the results from the numerical modeling is presented in Section 2. Finally,                 
the results are summarized and implications for communication and navigation systems are discussed             
in Section 3. 
 
1.1 Sound speed profiles 

Figure 2 shows the sound speed profiles for the Fram Strait (left) and the Beaufort Sea (right). The                  
profile from the Fram Strait is a mean of the calculated sound speeds from a section of XBTs along                   
82 o N. The Beaufort Sea profile was measured from an ice tethered profiler. The Fram Strait profile                 
was discretized into 14 piecewise linear segments, while the Beaufort Sea profile was discretized into               
12 segments. A generic reflecting sea-floor is used in both cases, based on Jokat et. al. (1995) 6 . 
 

  

Figure 2 : Sound speed profiles for the Fram Strait (left) along 82N, and the Beaufort Sea (right). 
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2 NUMERICAL RESULTS 
The different sound channels permit sound waves to travel long distances in the Arctic, some               
however, interact more with the sea ice and are more sensitive to its roughness. 

 

 

 
Figure 3 : Transmission loss for a 900 Hz signal in the Beaufort Sea (top) and the Fram Strait 
(bottom) with 2 m smooth sea ice, source depth: 50 m. 

 

Figure 3 shows the transmission loss for a source placed at 50 m depth with smooth ice (almost total                   
reflection). For a source this shallow, placed within the surface channel, the propagation pattern in the                
upper 150 - 250 m are fairly similar for both locations, although the surface channel is somewhat                 
deeper in the Beaufort Sea. For both profiles convergence and focus zones are visible at               
approximately each 35 km resulting from the deep refracted rays. These rays are also sensitive to the                 
sea-ice roughness since they are reflected at the surface. 
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Figure 4: Beaufort Sea (top) and Fram Strait (bottom): roughness increased to 0.6 m RMS,               
otherwise the same situation as in Figure 3. Source depth: 50 m.  

 
Figure 4 shows the transmission loss as for Figure 3, but with a roughness of 0.6 m RMS added. It is                     
apparent that the waves travelling in the surface channel and the deeper refracted waves are               
dampened significantly. This is at the limit of the roughness level that is possible to model with the                  
statistical method applied in the OASES model, and is an underestimation of the damping that can be                 
expected. 
 
By increasing the depth of the source to 100 m in the Beaufort Sea a more persistent channel                  
emerges. Figure 5 shows how a narrow channel forms below the first sound speed maximum. As the                 
source is moved further down it fails to fill the narrow channel with energy and a pattern similar to that                    
in the Fram Strait forms. This consists of a surface channel bounded by the sound speed gradient                 
located at roughly 250 m. The energy in this channel is dampened by rough sea-ice in the same way                   
as in the Fram Strait in Figure 4. 
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Figure 5: The Beaufort Sea (top) and Fram Strait (bottom) with a source depth of 100 m and a                   
roughness of 0.6 m RMS. 
 
 
In the Fram Strait a narrow channel unaffected by the sea-ice roughness does not form until the                 
source is moved well below the steep sound speed gradient to roughly 450 m depth (Figure 6). This                  
channel is less sharply defined than the channel in the Beaufort Sea. At this source depth the Beaufort                  
Sea no longer forms long range propagating channels that do not interact with the sea-ice. 
 

 
Figure 6: Beaufort Sea (top) and Fram Strait (bottom) transmission loss for a source located at 450 
m with sea-ice roughness of 0.6 m RMS. 

In effect the arrivals that would be expected to travel in the surface channels are greatly influenced by                  
the sea-ice roughness, and modeling not taking the roughness into account would overestimate their              
strength. By moving the source further down below the surface channel, narrower, and perhaps less               
persistent, sound channels can be reached that are less sensitive to the sea-ice roughness and may                
be more suitable for long range propagation in the Arctic. These are strongly dependent on location                
since the sound speed profile differs in the upper 500 m for the two locations. 

3 CONCLUSIONS 
Since reflection at these frequencies is almost total for relevant incidence angles of incidence, the               
sea-ice roughness is more important for the acoustic transmission loss than the thickness and the               
elastic parameters of the ice. 
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The sea-ice thickness is often thought to increase transmission loss. However, this happens indirectly              
since older, thicker, multi-year ice tends have undergone more deformation, and is therefore rougher. 
 
Placing a source in a well defined propagation channel that interacts with the surface may not provide                 
the intuitive increased propagation range when it is covered by rough sea-ice. Rather, deeper              
propagation channels that are bounded by the sound speed gradient above may provide a better               
option. These channels seem to be quite narrow in depth, and may be sensitive to small perturbations                 
in the sound speed profile. The Beaufort Sea provides the most clearly defined secondary sound               
speed channel at roughly 250 m, however it is created by very detailed stratifications in the upper                 
water layers and may be less robust than wider channel present at roughly 450 m depth in the Fram                   
Strait. 
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Acoustic experiments using an integrated ice station were carried out during August 2012 and

September 2013 in the Marginal Ice Zone (MIZ) of Fram Strait. The two experiments lasted four

days each and collected under-ice acoustic recordings together with wave-in-ice and meteorological

data. Synthetic aperture radar satellite data provided information on regional ice conditions. Four

major components of the under-ice soundscape were identified: ship cavitation noise, seismic airgun

noise, marine mammal vocalizations, and natural background noise. Ship cavitation noise was con-

nected to heavy icebreaking. It dominated the soundscape at times, with noise levels (NLs) 100 km

from the icebreaker increased by 10–28 dB. Seismic airgun noise that originated from seismic sur-

veys more than 800 km away was present during 117 out of 188 observation hours. It increased NLs

at 20–120Hz by 2–6 dB. Marine mammal vocalizations were a minor influence on measured NLs,

but their prevalence shows the biological importance of the MIZ. The 10th percentile of the noise

distributions was used to identify the ambient background noise. Background NLs above 100Hz

differed by 12 dB between the two experiments, presumably due to variations in natural noise sour-

ces. VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[http://dx.doi.org/10.1121/1.4945989]

[JFL] Pages: 1873–1885

I. INTRODUCTION

The focus of this paper is to study the soundscape of the

Marginal Ice Zone (MIZ) of Fram Strait, located between

Greenland and Svalbard. This strait is the only deep-water

connection between the world oceans and the Arctic Basin.

The circulation pattern is dominated by the transport of

warm water into the Arctic along the Svalbard side and the

transport of cold water southward from the Arctic on the

Greenland side (e.g., de Steur et al., 2014). The circulation

causes the eastern side of the strait to be ice-free ocean,

while the western side of the strait is more or less covered

with southward drifting ice. The MIZ is the transition zone

between the ice covered portion of Fram Strait and open

ocean. The ice conditions in the MIZ range from diffuse ice

to compact ice, newly frozen grease ice to multiyear ice, and

floe sizes from a few meters to hundreds of meters. The

wind, wave and mesoscale processes along the ice edge

determine the location, configuration, and composition of

the MIZ (e.g., Johannessen et al., 2003). These processes are

natural sound generation mechanisms in the MIZ, which

therefore has a different soundscape compared to the interior

Arctic.

Ambient noise levels (NLs) in the interior Arctic are

generally low and characterized by episodic sound generat-

ing mechanisms, such as ridging, break up of sea ice, and

thermal cracking (e.g., Makris and Dyer, 1986; Pritchard,

1990; Lewis and Denner, 1988). Recent investigations, how-

ever, indicate that a large part of the Arctic ice cover has

become seasonal, much more dynamic, and exposed to

atmospheric influence (e.g., Kinda, 2013). Therefore, the

future Arctic soundscape can be expected to have character-

istics similar to those previously observed in the MIZ.

In the MIZ the primary natural sound-generating mecha-

nisms are due to ocean processes impacting the sea ice dy-

namics, such as ocean waves propagating into the ice pack,

ice edge eddies, inertial oscillations, and internal waves gen-

erated at the ice edge (Makris and Dyer, 1991; Lynch et al.,

1993; Johannessen et al., 2003). The temporal variations in

sound generation are significant in the MIZ, driven by the

direction of wind and waves relative to the ice edge. During

on-ice wind and wave conditions, the sea ice is compact, and

a large number of sound generating mechanisms create a

more or less continuous high background sound level in the

MIZ (e.g., Sagen, 1998; Johannessen et al., 2003). During

off-ice wind and wave conditions and low sea state, the

sound level has been observed to be significantly lower with

10–15 dB differences at frequencies above 100Hz (e.g.,

Johannessen et al., 2003; Sagen et al., 2014). Considerable

spatial variability in ambient NL depending on the distance

from the ice edge and on the concentration of sea ice were

observed in previous studies (e.g., Makris and Dyer, 1991;

Johannessen et al., 2003; Sagen et al., 2014). The sound

level is particularly low in areas with grease ice, whicha)Electronic mail: florian.geyer@nersc.no
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dampens sound generating waves at the sea surface

(Johannessen et al., 1994).

The MIZ is an area with high biological productivity

during spring and summer, and this attracts fish and marine

mammals. Analysis of a yearlong recording (2008–2009)

from a passive listening system at 79�N in the western part

of Fram Strait showed that seasonal variability in vocaliza-

tion varies from species to species. Bowhead whale calls are

heard year round. Blue whales are heard from June to

October, while fin whale calls are heard from August to

March (Moore et al., 2012; Klinck et al., 2012).

The MIZ is more exposed to acoustic noise generated by

human activities like shipping, icebreaker operations, and

seismic air guns than the interior Arctic. Recordings in Fram

Strait and the Greenland Sea have shown that most of the year

signals from seismic airguns dominate the low frequency por-

tion of the soundscape (Moore et al., 2012; Klinck et al.,

2012). In Fram Strait this is mostly not nearby activity. Sound

from airguns used 1400 km away at the coast of Norway is

heard in Fram Strait. As the sound reaches the ice edge, it is

attenuated with distance into the ice pack (Tollefsen and

Sagen, 2014). Human activities, such as icebreaker operations,

commercial shipping, and air guns used for seismic explora-

tion, are increasing in Arctic and sub-Arctic areas. This will

change the composition of the soundscape in the Arctic and in

particular, in the MIZ. It is therefore important to establish the

baseline and the natural variability of the sound levels to be

able to quantify human influence.

In this paper we analyze data from a drifting integrated

ice station (IIS), which collected four days of continuous

acoustic recordings each in 2012 and in 2013 as part of the

Waves-in-Ice Forecasting for Arctic Operators (WIFAR) pro-

ject. The aim was to investigate the relation between environ-

mental conditions and ambient noise, as well as the acoustic

fingerprint of selected human activities: icebreaker operations

and seismic exploration. This study concentrates on identify-

ing and quantifying four main components of the observed

soundscape: seismic airgun noise, ship cavitation noise during

heavy icebreaking maneuvers, marine mammal vocalizations,

and natural background noise during quiet periods of the

recordings. Section II presents the experimental setup,

describes the environmental conditions, and gives an over-

view of the acoustic recordings. Sections III–VI focus on the

individual soundscape components. A comparison of their

strength and prevalence concludes the article in Sec. VII.

II. EXPERIMENT DESCRIPTION

Two field experiments, in August 2012 and September

2013, were carried out as part of the WIFAR project in the

Fram Strait MIZ. In both experiments an IIS was deployed

and drifted for four days before it was recovered. The IIS

continuously recorded acoustic and environmental condi-

tions as observed from an individual ice floe drifting with

the ice field. Along with the in situ observations, high-

resolution remote sensing data were collected to monitor ice

conditions. This section describes the instrumentation and

the data sets collected in the two experiments.

A. Instrumentation and data processing

The IIS consisted of (1) an under-ice acoustic array con-

sisting of 2–4 self-contained hydrophone modules, (2) a me-

teorological station, and (3) a wave-in-ice buoy that

contained a three-axis accelerometer. All surface modules

had GPS positioning. The meteorological station measured

temperature, wind speed and wind direction at 1m and 5m

above surface. The recordings of the under-ice acoustic array

were stored internally in each hydrophone.

The hydrophones used were High Tech, Inc. HTI-90-U.

These hydrophones are nominally rated for 2Hz to 20 kHz,

but our units have a high-pass filter at 10Hz to reduce strum.

In addition, the hydrophone module input has a high-pass fil-

ter at 7.7Hz. The instrument sample rate was 3906.25Hz.

Spectrograms were calculated from calibrated and de-

trended acoustic pressure data using 50% overlapping Kaiser

windows with a length of 1024 samples to produce time series

of power spectrum density (PSD). This results in a spectro-

gram consisting of one spectrum every 0.131 s (corresponding

to a sample rate of 7.63Hz). The frequency resolution of the

resulting spectra is 3.81Hz. The high temporal sampling ena-

bles us to observe rapidly varying components of the noise

field. To observe the low frequency component, we increase

the length of the Kaiser windows to 16 384 samples, still with

50% overlap. This increases the frequency resolution to

0.24Hz, but on the other side this leads to one spectrogram

each 2.10 s. This corresponds to a sample rate of 0.48Hz for

the time series at a chosen sound frequency.

Seven satellite images from Radarsat2 were acquired

during the experiments, four images in 2012 and three

images in 2013. The images are in Scansar wide mode cov-

ering an area 500 km wide with 100m resolution and dual

polarization HH /HV. The images were mainly used for

deployment and tracking of the instrument, studying ice con-

ditions, and mapping the ice edge.

B. Setup and environmental conditions
in the 2012 experiment

The IIS was deployed on a medium-sized floe at 1200

UTC on 25 August 2012. The floe was roughly 200m by

50m in size, 1.5–3m thick, and located at 79� 400N, 001�

490E, about 6 km from the ice edge. After four days, the ship

returned to the ice flow and the IIS was recovered at 79�

280N, 000� 2.340E. The hydrophone modules were clamped

to the wire 19m and 21m below the surface. The hydro-

phone at 19m depth is used in this study.

The satellite image in Fig. 1(a) is from the day of

deployment of the ice station. Lines indicate the changes in

ice edge position on consecutive days until the recovery of

the IIS. This indicates that on-ice wind and wave conditions

pushed the ice edge in a north-westerly direction, leading to

a general compression of the ice field during the first three

days and some decompression (relaxation of the ice field) on

the fourth day. The track of the drifting IIS is plotted with

dots on top of the satellite image, using the same shades as

for the ice edge. The distance from the IIS to the ice edge

decreased from 6.0 km on 25 August 2012 to 5.2 km on 27

August 2012 and then increased again to 6.3 km on 29
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August 2012. The trajectory shows a southwesterly drift of

the IIS with the distinct signature of inertial oscillations. The

amplitude of the inertial oscillations decreased towards the

end of the IIS drift, likely because of the increased compres-

sion of the ice field combined with reduced wind speed. A

summary of the environmental conditions during the deploy-

ment period is presented in Table I.

C. Setup and environmental conditions in the 2013
experiment

The IIS was deployed 20 km from the ice edge on an ice

floe that was approximately 1.5m thick and 50m by 50m in

area. The deployment took place on 13 September 2013 at

81� 450N, 001� 490W and recovery was done four days later

at 81� 200N, 001� 420W. Four hydrophone modules were

clamped to a 33m long wire at depths of 15, 20, 25, and

30m. The uppermost hydrophone at 15m depth is mainly

used in this study. Background NLs from all four hydro-

phones are compared in Sec. VII.

Figure 1(b) displays a satellite image from the day of

deployment of the IIS with lines denoting the changes in the

ice edge position on consecutive days. The satellite data

show a stable north-south oriented ice edge. The distance

from the IIS to the ice edge varied from 18.7 km (14

September 2013) to 24.8 km (15 September 2013) before

decreasing again to 20.8 km (16 September 2013). A sum-

mary of the environmental conditions during the deployment

period is presented in Table I.

FIG. 1. (Color online) (a) Radarsat2
synthetic aperture radar (SAR) satellite

image depicting ice conditions and the
drift of the IIS during the 2012 experi-

ment. The satellite image was acquired
on 25 August 2012, the day when the

IIS was deployed. The position of the

ice edge for each day of the experi-
ment is marked by solid lines. The drift

of the ice buoy from northeast to
southwest (25–29 August 2012) is

marked by dots in identical shades as
the ice edge markings. (b) SAR satel-

lite image depicting ice conditions and
the drift of the IIS during the 2013

experiment. The satellite image is

acquired on 14 September 2013, the
second day of the IIS deployment. The

drift of the ice buoy from northeast to
southwest (13–17 September 2013) is

marked by dots. SAR satellite images
are available for three days during the

deployment to determine the position

of the ice edge: 14, 15, and 16
September 2013, the line shadings are

identical to the ice buoy drift
markings.
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D. Acoustic observations

Figures 2 and 3 present the four-day long acoustic

recordings obtained during the two experiments. The two

recordings show strong variability in NLs and types of

observed noises in the frequency range (8–1950Hz).

The 2012 recording (Fig. 2) is dominated by cable

strumming noise at frequencies below 20Hz, which is identi-

fiable by the sharp maximum at 9Hz. The second dominant

noise component is the distant seismic airgun noise observed

from 25 to 100Hz during large parts of the recording. Other

noise components are ship engine noise at 330Hz, ship

noises from icebreaking (10–50Hz), marine mammal vocal-

izations (80–200Hz), and transient noise events from direct

hydrophone contacts. Examples of each of these noise types

are annotated in Fig. 2.

The noise observed in the 2013 experiment (Fig. 3,

upper panel) differs sharply from the observations in the pre-

vious year. Nearly half of the recording is dominated by

very strong noise from ship propeller cavitation during

heavy icebreaking activity of the research vessel (see Roth

et al., 2013, for a thorough discussion of propeller cavitation

from icebreaking vessels). In the top panel of Fig. 3, four dif-

ferent time periods are denoted A–D. During periods A and

C the ship cavitation noise dominates the frequency range

from 8 to 1950Hz, with characteristic maxima (strong spec-

tral lines) at 30, 75, 90, 400, and 800Hz. In periods B and D

ship cavitation noise is only occasionally observed. During

period A (hours 19–37), ship cavitation noise occurs with

the icebreaker close by. During period C (hours 68–88), the

icebreaker is 70–130 km from the ice station (Fig. 3, lower

panel). During the quiet periods B (hours 40–67) and D

(hours 89–111), ship engine noise is observed as a distinct

line in the spectrogram at 330Hz. Seismic airgun noise is

present from 20 to 100Hz and is an important component of

noise variability during the periods without cavitation noise.

The signals at 900Hz are from an acoustic communication

experiment carried out in parallel with the acoustic recording

(Freitag, 2015).

Some of the main soundscape components can be identi-

fied in NL distributions of the 2012 and 2013 experiments

(Fig. 4). In 2012 strumming noise dominates all percentiles

at 8–12Hz (Fig. 4, left panel). Also, ship engine noise is

identifiable as sharp spectral peaks at 300, 670, and 1000Hz.

During extraordinary ship maneuvering captured in the

higher percentiles, the number of spectral peaks due to ship

engine noise increases. Seismic airgun noise and noise from

marine mammal vocalizations contribute to the difference

between high and low percentiles of the NL distribution at

20–500Hz, but they are not easily identifiable as they

increase NLs over a wide spectral range. Broad spectral

peaks at 17, 34, 65–70, and 110Hz at the highest percentile

levels are connected to icebreaking activity of the research

vessel. They are similar to the ship cavitation noise observed

in the 2013 experiment, but much weaker.

The NL distribution of the 2013 experiment (Fig. 4,

right panel) is dominated by strong noise from ship

TABLE I. Summary of environmental conditions for the 2012 and 2013 experiments.

Environmental parameter WIFAR 2012 experiment WIFAR 2013 experiment

Date 25.8. 26.8. 27.8.–29.8. 13.9.–14.9. 15.9. 16.9.–17.9.

Wind [m/s] 5–8 8–10 2–5 10 0 2–4

Wind direction —a East (along ice-edge)

Significant wave height [m] 0.25–1.5 1–1.9 <1 0.75–1.2 0.75–1.2 0.25

Dominant wave period [s] 15–17 s 15–17 s 15–17 s 12 14 14

Ice conditions Compact ice, ice compression during deployment period Close, broken up ice between station and ice edge

aNot available due to instrument error (movement of ice edge indicates on-ice wind direction).

FIG. 2. (Color online) Overview of pas-

sive acoustic recording in the 2012
experiment: spectrogram of 15-min mean

acoustic NLs (NLs) with 0.24Hz fre-

quency resolution. The main different
sound types visible are ice breaking noise

(12–50Hz), seismic exploration noise
(20–120Hz, maximum at 40Hz), marine

mammal vocalizations (80–500Hz, max-
imum at 120Hz) and ship engine noise

(horizontal lines at 330Hz and various

higher frequencies). Increased NLs at
hours 50 and 64 are due to hydrophone

hits; increased noise at hours 87–89 is due
to ship extraordinary ship maneuvering.
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cavitation. Most striking is the strong overall increase in

NLs for the middle (50%) to high percentile curves (90%).

At the 90th percentile, NLs exceed 100 dB for frequencies

up to 100Hz. The 90th percentile curve also displays a large

number of wide spectral peaks connected to ship screw cavi-

tation during icebreaking activity, with the most prominent

at 30, 75, 90, 400, and 800Hz. Normal ship engine noise is

visible as much narrower spectral peaks at 330 and 670Hz

in the 50th percentile curve. The strong peak at 900Hz in the

lower percentile curves stems from the acoustic communica-

tion experiment. In the lower percentile curves there is a

wide spectral peak at 18–25Hz. This was identified as the

effect of fin whale vocalizations, which were much more

common in 2013 than in 2012. Noises from other marine

mammals were less frequent in 2013 than in the previous

year and had hardly any impact on the overall soundscape.

Using spectrograms and NL distributions as a sound

identification tool has limitations. Seismic airgun signals

occur as a series of repeated shots with constant time inter-

vals of 8–13 s for a typical duration of 30min to two hours.

This regular repetition pattern can be used to identify seismic

airgun noise and quantify its contribution to the soundscape.

III. SEISMIC AIRGUN NOISE

Many man-made noises are either noises occurring at a

constant frequency, e.g., the engine noise from a ship travel-

ling at constant speed, or regularly pulsating noises, such as

a series of seismic airgun shots. Airgun shots occur typically

every 8–15 s, depending on the purpose of the seismic survey

and the water depth in which the seismic exploration vessel

is operating. This characteristic regularity of seismic airgun

noise can be used to detect this type of noise and to separate

and quantify its contribution to the observed soundscape. For

this purpose a spectral analysis of the acoustic spectrograms

was carried out.

FIG. 3. (Color online) Overview of

passive acoustic recording in the 2013
experiment. Upper panel: Spectrogram

of 15-min mean acoustic NLs with

0.24Hz frequency resolution. Four dis-
tinct periods are designated (A: hours

19–37, B: 40–67, C: 68–88, D:
89–111). Lower panel: Distance from

icebreaker.

FIG. 4. Comparison of NL distribu-

tions of hourly mean NLs in the 2012

(left panel) and 2013 (right panel)
experiments. 1, 10, 50, 90, and 99 per-

centiles are plotted with a frequency
resolution of 0.24Hz.
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Acoustic spectrograms consist of time series of sound

levels as a function of frequency. The spectrograms used

here to study seismic airgun noise have a frequency resolu-

tion of 3.81Hz and a time resolution of 0.131 s. For the fol-

lowing analysis the data were binned into 1/10 octave

frequency bands to reduce the amount of data. Power spectra

are then calculated for time series at each sound frequency

for hourly recording intervals, averaging over 50% overlap-

ping (detrended) Kaiser windows with a window length of

2048 samples. The new power spectra are a function of fre-

quency bands (sound frequency) and modulation frequency,

which describes the amplitude modulation of sound at a

given frequency band. The power spectra can be presented

as contour plots as shown in the lower panel of Fig. 5. The

modulation frequency describes the variability of sound lev-

els at a given frequency with time and can be used to identify

sounds with a periodic pattern (e.g., repeated airgun shots).

A continuous wave sound (e.g., ship engine noise) will have

a modulation frequency close to 0Hz.

Figure 5 (upper panel) presents an example of a spectro-

gram of one-hour duration. The spectrogram contains seis-

mic airgun noise, marine mammal vocalizations, and ship

engine noise. The different noise types are marked in the

spectrogram. The lower panel of Fig. 5 shows the resulting

power spectrum of the spectrogram. Natural sounds, such as

marine mammal noises (in this case Balaena mysticetus

calls), with their irregular time variation form wide horizon-

tal bands. Seismic airgun noise is visible as vertical bars at

15–110Hz acoustic frequency. The bar with the lowest mod-

ulation frequency identifies the shooting interval of the seis-

mic exploration, while bars at higher modulation frequencies

represent the harmonics. Ship engine noise with its slowly

varying amplitude and narrow frequency band is observed as

a point at 330Hz sound frequency close to 0Hz modulation

frequency. The weak marine mammal noises in this example

are visible as horizontal bands of increased power at

130–300Hz acoustic frequency. Figure 5 shows an example

with strong seismic noise and weak marine mammal noises.

In the opposite case of strong marine mammal noise and

weak seismic noise, the horizontal bands from the marine

mammal noise would dominate, but the seismic signal would

still be clearly identifiable due to its sharp signature in mod-

ulation frequency stemming from the precise timing of the

repeating seismic airgun shots.

Power spectral densities of hourly spectrograms are cal-

culated for the 2012 and 2013 experiments using a window

length of 2048 samples as described above. Inspecting the

power spectra shows seismic noise as a clear peak at modu-

lation frequencies between 8–13 s (the repetition time of suc-

cessive airgun shots) at sound frequencies of 15–120Hz.

The strongest signal occurs at 40Hz sound frequency. An

overview of the hourly power spectra of the 40Hz noise

time series during the 2012 experiment is shown in the upper

panel of Fig. 6 for the typical modulation periods of the seis-

mic airgun shots. The plot displays the noise component

occurring at 40Hz sound frequency and amplitude modula-

tion periods of 7–15 s. This amplitude modulation period

corresponds to the repetition times of the airgun shots. All

peaks between 8 and 13 s in the upper panel of Fig. 6 were

verified by listening to correspond to seismic airgun noise.

Seismic airgun noise is present in 69 h out of 92 h total ob-

servation period in the 2012 experiment.

The analysis presented here allows the detection of even

weak seismic signals and the precise determination of the

sound frequencies influenced by the seismic airgun noise.

Directly using the regular shooting intervals that characterize

seismic airgun noise gives a high signal-to-noise ratio for

seismic airgun noise vs the other noise contributing to the

soundscape at the same sound frequencies as the seismic air-

gun noise. This motivates an attempt to construct a proxy

FIG. 5. (Color online) Upper panel:
Spectrogram example (1 h duration)

from the 2012 experiment displaying

three annotated soundscape components:
seismic airgun noise (50–100Hz), ma-

rine mammal vocalizations (80–500Hz),
and ship noise (330Hz). Lower panel:

Power spectrum of the upper panel spec-
trogram, sound frequency along the y

axis, frequency of sound amplitude mod-

ulation along the x axis. Three sound-
scape components are annotated: seismic

airgun (15–100Hz sound frequency,
0.12, 0.24, and 0.36Hz modulation fre-

quency), marine mammal noise (weak
horizontal bands at 80–400Hz sound fre-

quency), and ship engine noise (330Hz

sound frequency, close to 0Hz modula-
tion frequency).
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value for seismic airgun noise that could be used to auto-

matically detect the presence of seismic airgun noise in lon-

ger time series. This proxy time series is calculated as the

mean power density for the 8–13 s amplitude modulation

band at 40Hz sound frequency and is shown in the middle

panel of Fig. 6. The proxy time series is tested against the

manual identification of seismic exploration noise in the

middle panel of Fig. 6. Hours with manually identified seis-

mic exploration noise are marked by circles. The proxy time

series compares relatively well to the manually identified

occurrence of seismic noise. However, varying background

levels mean that the correspondence is not perfect.

Depending on the threshold chosen, there are 3–4 misses and

1–2 false detections out of 69 instances of seismic noise.

The misses occur for the weakest identified seismic noise

signals.

Using the manual detection of seismic airgun noise, the

mean effect on low-frequency NLs is estimated. The lower

panel of Fig. 6 shows the comparison of sound levels for

periods with seismic airgun noise to periods without seismic

airgun noise during the 2012 experiment. Five hours with

exceptionally strong contributions from other sound sources,

such as ship maneuvering and icebreaking, were excluded

from this comparison. The presence of seismic exploration

noise increases the low-frequency NLs between 20 and

120Hz. The sound level increase due to seismic exploration

noise is largest at 40–45Hz, where the 50th percentile sound

level of hourly data increased from 78 to 84 dB. At 100Hz

the NL increase caused by seismic exploration noise is still

2 dB at the 50th percentile. Differences below 20Hz are

caused by variable ship noise from icebreaking, as are the

spectral peaks at 17, 34, 69, and 110Hz. The comparison

shows that seismic airgun noise causes a strong NL increase

at low frequencies without forming a distinct spectral peak.

This highlights the necessity of using the repetitive nature of

seismic airgun shot series to identify and quantify this im-

portant component of the MIZ soundscape.

During the 2013 experiment large parts of the record-

ings were characterized by strong ship cavitation noise due

to heavy icebreaking carried out by the research vessel (see

Sec. IV). However, seismic noise is still an important part of

the soundscape in the 2013 observations. The method intro-

duced above was used to identify the seismic airgun noise in

the same way as was done for the 2012 experiment. Seismic

airgun noise was similar to that in 2012, with modulation

periods of 8–15 s at sound frequencies between 15 and

150Hz. Seismic noise was present in 48 out of 96 total ob-

servation hours, i.e., exactly half of the observation period. It

is likely that the prevalence of seismic airgun noise was

underestimated in 2013, as the extremely strong cavitation

noise during periods A (hours 19–37) and C (hours 68–88,

see Fig. 3) might have masked the presence of seismic air-

gun shots. Seismic airgun noise was present for practically

all of the quiet periods B and D. The cavitation noise periods

FIG. 6. (Color online) Upper panel:
Overview of the power spectra of the

40Hz noise time series for the 2012
experiment, zooming in on the ampli-

tude modulation periods of seismic air-
gun noise. All peaks between 8–13 s

modulation period were manually

identified as seismic airgun noise.
Middle panel: Proxy for seismic airgun

noise—time series of mean power
spectral densities of 40Hz noise with

8–13 s amplitude modulation periods.
Manually identified instances with

seismic airgun noise are marked by

circles. Lower panel: Comparison of
NLs for periods with and without seis-

mic airgun noise during the 2012
experiment. 50-percentile hourly mean

NLs are plotted for both cases. Four
hours with exceptionally strong contri-

butions from other sound sources, such

as ship maneuvering, ice breaking, and
transient hydrophone noises, were

excluded from the compared periods.
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also influence the proxy for seismic exploration noise devel-

oped for the 2012 experiment. The increased background

noise values during periods of strong cavitation noise would

lead to numerous false detections if using the proxy for the

2013 data set. Therefore, this proxy cannot be used in the

presence of very strong low-frequency ship noise. For the

automatic analysis of longer time series, one would thus

need to exclude such periods before carrying out the

analysis.

IV. SHIP CAVITATION DURING ICEBREAKING

ACTIVITY

Normal ship engine noise from a distant single ship

influences only a small part of the underwater noise spec-

trum. Such noise was observed during large parts of the

2012 experiment as sharp spectral peaks at 330 and 600Hz.

The absolute NLs at the two spectral peaks were 96 and

80 dB, respectively, at the 50th percentile level (Fig. 4, left

panel). During the “quiet periods” (periods B þ D) of the

2013 experiment, the same spectral peaks were observed

(Fig. 4, right panel).

In the 2013 experiment a much stronger type of noise

was observed during periods A and C, raising the NLs by

20 dB and more over the entire observed sound spectrum

(5–1950Hz, Fig. 4, right panel). This dominant sound source

was confirmed to be cavitation noise from heavy icebreaking

activity of the research vessel by comparison with the ship

position log and the detailed description of cavitation noise

in the recent paper of Roth et al. (2013). The ship cavitation

noise was strongest during backing-and-ramming maneuvers

of the icebreaker during attempts to break through pressure

ridges. Backing-and-ramming maneuvers were also identi-

fied as the source of the strongest instances of cavitation

noise by Roth et al. (2013).

In addition to the broad spectral NL increase that ranges

from more than 35 dB at 15Hz to 20 dB at 1800Hz, the ship

cavitation noise was characterized by three low-frequency

spectral peaks at about 30, 70, and 95Hz and two high-

frequency spectral peaks at 400 and 800Hz (Fig. 4, right

panel). The 400 and 800Hz peaks are a characteristic ringing

noise with an amplitude modulation frequency of about

4.5Hz. To analyze the increase of sound levels due to cavita-

tion noise, the time series was split into four parts (see Fig. 3).

Period A, at hours 19–37, was dominated by cavitation noise

from the icebreaker, which was 266 7 km from the IIS, with

a minimum distance of 15 km and a maximum distance of

34 km. During period B (hours 40–67), little cavitation noise

was present. Period C (hours 68–88) was again dominated by

cavitation noise, with the icebreaker 926 22 km from the IIS.

The minimum distance during this period was 45 km, and the

maximum distance was 114 km. Cavitation noise was absent

during period D (hours 89–111). A comparison of the two

periods with cavitation noise (A, C) and the two periods with-

out cavitation noise (B, D) can be seen in Fig. 7. During pe-

riod A, with the icebreaker close by, NLs at the 30Hz peak of

the cavitation noise increased by more than 50dB at the 50th

percentile level, compared to the quiet periods. The whole

noise spectrum up to 1000Hz was elevated by at least 25 dB

at the 50th percentile level. During period C, with cavitation

noise from the distant icebreaker, the increase in sound level

at 15Hz was still as high as 28 dB at the 50th percentile level.

Even at these distances, the whole noise spectrum up to

1000Hz was elevated by 10 dB at the 50th percentile level.

During the 2012 experiment ship cavitation noise was

only occasionally observed, as the ship was not engaged in

heavy icebreaking comparable to the activities during the

2013 experiment. In the left panel of Fig. 4 the typical wide

cavitation peaks at 30, 70, and 95Hz are visible in the high-

est percentiles. None of the higher frequency cavitation

FIG. 7. Comparison of NLs distribu-

tions for four different periods in the
2013 experiment: (A) cavitation noise

from nearby icebreaker, hours 19–37.
(B) calm conditions, hours 40–67. (C)

cavitation noise from distant ice-

breaker, hours 68–88. (D) normal ship
activity, hours 89–111. 1, 10, 50, 90,

and 99 percentiles are plotted. The
peak at 900Hz during periods B and D

originates from an acoustic communi-
cation experiment carried out in paral-

lel to the observations and is ignored in

this analysis.
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peaks were observed in 2012. Other, less distinct icebreaking

noises were observed at 10–25Hz (90th percentile, Fig. 4,

left panel). Icebreaking noises of this type were present on

29 out 92 total observation hours. The research vessel was

always closer than 100 km from the integrated ice station

during the 2012 experiment.

Strong cavitation noise during icebreaking activity in

2013 was measured at different distances from the ship. The

NLs are compared to simulated levels from OASES (Ocean

Acoustics and Seismic Exploration Synthesis model; Schmidt

and Jensen, 1985). The model setup and results are found in

Fig. 8. The horizontally constant sound-speed profile employed

in the model was constructed using XCTD and XBT measure-

ments carried out during the experiment. Roth et al. (2013)

used an extensive set of measurements at a short distance from

an icebreaker to calculate accurate source level. In our case the

measurements were made at a substantial distance from the

icebreaker. Correspondingly, we do not aim to calculate accu-

rate source levels, but to establish the wide range of source lev-

els produced by an icebreaker operating under varying (but

heavy) ice conditions. This justifies the simplifications

employed in the model calculation of sound propagation.

Figure 8 (upper panel) compares the measured NLs at

70Hz as a function of the distance of the ship from the

acoustic recorder with transmission loss calculations (in

grey) using the OASES model for two source levels. The

crosses refer to periods with cavitation noise, both with the

ship nearby (period A) and at larger distance (period C), dots

mark the quiet periods (periods B þ D), when hardly any

cavitation noise was observed (see Fig. 3 for the definitions

of the periods). The cavitation noise events stand out above

the background NL of 80 dB observed during the quiet peri-

ods without heavy icebreaking, allowing a clear identifica-

tion of the cavitation noise. Using the modelled transmission

loss as a function of distance, upper and lower source level

bounds were estimated by fitting the model results (grey

curves) to the observed NLs for each frequency (Fig. 8,

upper panel). The lower bound refers to the lowest NLs still

distinguishable from the background noise at the observed

distances from the icebreaker. Similarly, the maximum and

minimum source levels were calculated for the spectral

peaks at 30, 95, 400, and 800Hz. An overview of the source

level estimates for the five frequency peaks is shown in the

lower panel of Fig. 8. The estimates for the maximum source

level range from 245 dB (30Hz) to 180 dB (800Hz).

Although these are rough estimates, higher source levels

of cavitation noise were observed during heavy icebreaking

than those reported by Roth et al. (2013). The main impor-

tance of these observations lies in the documentation of the

strength of icebreaker cavitation noise at substantial distan-

ces from the icebreaking vessel and in the use of ship dis-

tance information to separate the cavitation noise from the

constant background NLs, which are independent of ship

distance (Fig. 8, upper panel).

V. MARINE MAMMALS

Marine mammal vocalizations were present during large

parts of the 2012 and 2013 experiments. The NLs produced

FIG. 8. (Color online) Upper panel:
Cavitation noise versus range for the

70Hz cavitation noise peak frequency.

Separate periods are as defined in Sec.
II: Close-by cavitation (period A), far-

off cavitation (period C), quiet periods
(periods BþD). Grey curves denote the

modelled NL curves for the source
levels of 205 dB (maximum estimate)

and 170 dB (minimum estimate), form-
ing upper and lower bounds for the

cavitation noise. Lower panel:

Estimated source level ranges for the
five main frequency peaks of cavita-

tion noise using the modelled transmis-
sion loss. Model setup: Source depth

6.5m, ocean depth 2000m, elastic sea-
ice layer thickness: 2m, sea ice density

0.9 km/dm,3 compressional wave speed

3600m/s (attenuation 0.216 dB/K),
shear wave speed 1800m/s (attenua-

tion 0.648 dB/K) following Laible and
Rajan (1996).
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by marine mammal vocalizations were lower than the seis-

mic airgun NLs or the ship cavitation noise. They were,

however, still an important part of the soundscape, increas-

ing the NLs and especially the short-term NL variance

around 20Hz and between 100 and 500Hz.

During the 2012 experiment the dominant marine mam-

mal vocalizations were identified as bowhead whale

(Balaena mysticetus) calls. The spectrogram in the upper

panel of Fig. 5 shows such bowhead calls. The bowhead

whale calls were present during 48 out of 92 observation

hours. As the marine mammal vocalizations were weaker

than the seismic airgun noise during the experiment, it was

difficult to estimate the exact contribution of marine mam-

mal vocalizations to mean sound levels. A maximum contri-

bution was estimated by comparing hours before and after a

sudden onset of strong marine mammal vocalizations and

otherwise calm conditions, i.e., minimal disturbance from

other soundscape components. Comparison of these subse-

quent hours with strongly differing marine mammal activity

showed NL increases of 2–5 dB at several wide spectral

peaks at 100–150, 200, and 390Hz, with the strongest

increases occurring at 120Hz. In addition, a wider spectral

range of about 80–1000Hz shows slightly increased NLs

during periods of strong marine mammal activity. During

the 2013 experiment bowhead calls were absent. Several

types of high frequency calls were instead observed, includ-

ing sperm whale (Physeter macrocephalus) and narwhal

(Monodon monoceros) vocalizations. They did not strongly

influence hourly mean sound levels.

Fin whale (Balaenoptera physalus) vocalizations

formed the marine mammal contribution to the low-

frequency end of the soundscape during both the 2012 and

2013 experiments. Fin whale vocalizations could be identi-

fied during 9 out of 92 h in the 2012 experiment, with 1–5

vocalization sequences per hour. The vocalization sequences

lasted about 10 min each with a call occurring about every

12 s. During the 2013 experiment, fin whale vocalizations

were present during 24 out of 94 observation hours, a much

higher percentage than in 2012. The vocalizations did not

occur in distinct vocalization sequences in 2013, but as a

continuous series of calls occurring roughly every 12 s for up

to several hours. The maximum contribution from fin whale

vocalizations was again estimated by comparing hourly

mean NLs from subsequent hours with and without fin whale

vocalizations during otherwise calm conditions. Fin whale

vocalizations increased the mean hourly NLs by up to 10 dB

at frequencies between 18 and 25Hz.

VI. BACKGROUND NOISE

In this section we focus on the component of the sound-

scape related to the natural sound generating mechanisms

and the sound propagation characteristics in the Arctic.

Revisiting Fig. 4 we see that the shape of 1% and 10%

FIG. 9. (Color online) Upper panel:

comparison of NLs during quiet peri-
ods in the 2012 and 2013 experiments.

The 10th-percentile level is plotted for

2012 and 2013. Lower panel: compari-
son of 10th-percentile level noise at

different depths in 2013.
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percentiles are similar to each other, and their smoothness

indicates a minimum influence from ship cavitation noise

and other transient noise events, such as seismic noise and

marine mammals. We therefore claim that 1% and 10% per-

centiles represent the background NL caused by the natural

environment even in the presence of very loud anthropo-

genic noise during substantial parts of the acoustic record.

Remaining non-natural noise signatures in Fig. 9 are peaks

related to strumming (9Hz, 2012), ship engine noise (330,

660Hz), and noise from an underwater communication

experiment (900Hz, 2013). Those noise signatures in the

10th-percentile NLs are narrowband and do not impact the

analysis of the natural background noise below.

The 10th-percentile NLs in 2012 and 2013 are compared

in the upper panel of Fig. 9. A logarithmic decay of NLs with

frequencies is observed above 50Hz in 2013 and above 100Hz

in 2012. The logarithmic decay with frequency is typical in the

MIZ and is established by the Arctic propagation conditions

(e.g., Buckingham and Cheng, 1988; Sagen, 1998; Johannessen

et al., 2003). Furthermore, we observe that the NL in 2012 was

higher than in 2013. The difference in NL increased gradually

from being equal at 30Hz to 12 dB at 200Hz. Above 200Hz

the difference was constant up to 1800Hz.

Table I shows that in 2012 the compact ice edge was

combined with moderate (1m) to strong (2m) wave condi-

tions and strong inertial oscillations. In 2013 the ice edge was

compact as well, but the wave measurements showed weak

swell conditions. In 2013 the IIS was located approximately

15 km further into the ice pack from the ice edge than in

2012. While the absolute wind speeds during the 2012 and

2013 experiments were comparable, the wind directions were

different. The prevalent south-easterly wind in 2012 led to a

strong compression of the ice edge (Fig. 1), as opposed to the

steady northerly wind in 2013, which neither compressed nor

spread the ice. Also in 2012, waves-on-ice conditions were

observed with larger wave heights than in 2013 as measured

by the integrated ice station’s wave-in-ice buoy (see Sec. II).

We therefore conclude that the 12 dB higher NLs observed in

2012 compared to 2013 can be explained by the different

positions of the IIS with respect to the ice edge and by differ-

ences in wind, wave, and ice conditions. Similar relation of

then NLs to the distance to ice edge and wave conditions has

been reported by Johannessen et al. (2003).

Table II compares the ambient NLs observed in this

study with earlier experiments. The different environmental

conditions are given for the various experiments. The com-

parison shows that at 315Hz the highest levels are found at

the compact ice edge (78–79 dB), intermediate levels a few

kilometres into the ice pack (75 dB), and that the lowest lev-

els are found well into the ice edge (61 dB). A similar reduc-

tion of ambient NLs in to the ice pack is observed at

1000Hz.

The strong relation between observed NLs and distance

into the ice pack from a compact ice edge is well known

(e.g., Diachok and Winokur, 1974; Yang et al., 1987;

Johannessen et al., 2003). Swell and wind generated waves

interacting with a compact ice edge produce many sound

generating events such as floe-floe interaction, and increased

wave breaking just outside the ice edge. This increases the

ambient NL at the ice edge. The short wind-generated waves

dampen rapidly down and do not propagate far into the ice

pack, while the long waves (swell) are attenuated much

slower while propagating into the ice pack. Therefore, in the

case of a compact ice edge and swell, the sound generation

caused by swell will gradually be reduced with distance into

the ice pack. In the case of off-ice wind conditions or low

winds in a very dynamic area a diffuse ice edge will result.

In such cases the NLs in the MIZ are more variable and less

related to the distance from the ice edge (Johannessen et al.,

2003). In diffuse ice edges the high NLs are related to con-

vergence zones due to ice edge eddies, and low levels are

related to areas with grease ice and new frozen ice

(Johannessen et al., 2003).

The ambient noise field is composed by contribution

from a large number of distant and nearby sources, and

therefore flavoured by the acoustic propagating conditions.

In general, the low-frequency ambient noise is dominated by

distant sources, while the higher frequency components cor-

respond to nearby sources (e.g., Buckingham and Cheng,

1988). The lower panel of Fig. 9 displays the 10th percentile

NLs at four different hydrophone depths between 15m and

30m. Low-frequency noise (f< 50Hz) shows a clear depth

dependency with NLs increasing by 3–5.5 dB from 15 to

30m depth. No depth dependence is observed for frequen-

cies above 70Hz. Long-range transmission loss estimates at

100–150 km source range calculated with the OASES

TABLE II. Comparison of median ambient NLs to earlier NL measurements in the Fram Strait MIZ. All NLs are in dB re 1 lPa2/Hz. For the WIFAR 2013

experiment only period D (see Fig. 3) is displayed to minimize ship influence.

Frequency 315Hz 1000Hz Distance from ice edge [km] Ice conditions Wind and wave condition

WIFAR 2012 75 67 5.2–6.3 Compact ice On-ice wind: 2–10m/s

Swell: 0.25–1.9m significant wave height

WIFAR 2013, period D 61 53 20.8 Compact ice Along ice-edge wind: 2–4m/s,

No swell: 0.25m significant wave height

Diachok and Winokur, 1974 79 68 0 Compact ice edge Sea state: 2

Yang et al., 1987 78 — 0 Compact ice edge Sea state: 2

MIZEX 1987, Johannessen et al., 2003 78 68-69.5 1.0–10.0 Compact ice edge Wind: 5–9m/s parallel to ice edge

Swell: 0.7–1.5m significant wave height

MIZEX 1985, Johannessen et al., 2003 70.7 63.5 1.0–35.0 Diffuse ice with eddies Wind: 3-5m/s parallel to ice edge

No swell: <0.5m significant wave height

Yang et al., 1987 64 — 0 Diffuse ice edge Sea state: 2
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simulation described in Sec. IV yield a mean noise increase

with depth of 5.6 dB at 30Hz frequency and an increase of

3.1 dB at 70Hz frequency. No depth dependency is observed

at 400Hz frequency. The observed and modelled depth de-

pendency is in accordance with mode theory as the main

energy for low frequencies is in the lower modes, which

have a maximum at 80–100m depth. For a 150m thick sur-

face duct with a sound speed of 1440m/s the estimated cut-

off frequency is around 100Hz. Above this frequency the

acoustic energy is trapped in the surface channel underneath

the sea ice. This leads to vertical uniform distribution of the

acoustic energy with in the surface channel. Furthermore,

the ducted acoustic energy repeatedly interacts with the sea

ice leading to the characteristic f-n dependency in the fre-

quency spectrum (e.g., Buckingham and Cheng, 1988;

Sagen, 1998).

VII. CONCLUSIONS

It was possible to separate and quantify the four major

components of MIZ soundscape as measured by the experi-

ments carried out in 2012 and 2013. Seismic airgun noise,

ship cavitation, and the variations of the natural background

noise due to differing geophysical conditions were all sub-

stantial contributors to shaping the soundscape variability

during the two four-day experiments. To a lesser degree, the

frequent marine mammal vocalizations also played a part in

shaping the observed noise spectra in the MIZ. Table III

gives an overview of the observed mean NL changes due to

different sound sources.

In this study ship cavitation caused by heavy icebreak-

ing is the dominant source, increasing the NL by more than

10 dB below 1000Hz and 28 dB at 15Hz (Table III). The

cavitation noise during the 2013 experiment dominates at

distances as large as 100 km from the icebreaker. This

implies that this type of noise may change the Arctic sound-

scape significantly, in particular, with the expected increase

of icebreaker activity in the Arctic. Furthermore, this study

shows that sound production during icebreaker operations in

the MIZ depends strongly on how heavy the ice conditions

are, and suggests that choosing routes, which minimize

heavy icebreaking, will reduce the noise contribution from

icebreakers. Little is known about the prevalence of cavita-

tion noise in the Arctic and the cumulative effect of

increased icebreaker activity on the Arctic soundscape.

Analysis of longer time series would provide information on

how common this type of ship noise is in the Fram Strait

MIZ.

The background noise generated by natural processes is

another strong contributor to NL variability in the MIZ. The

dynamic conditions observed in the 2012 experiment raise

the NL compared to the measurements in 2013 by 12 dB

between 200 and 1800Hz. Several publications have previ-

ously reported similar strong variability of natural sound lev-

els in the MIZ due to the impact of swell propagating into

the ice edge, depending on the compactness of the ice edge

and the distance from the ice edge (e.g., Makris and Dyer,

1991; Bourke and Parsons, 1993; Sagen, 1998; Johannessen

et al., 2003; Sagen et al., 2014).

The contribution of 2–6 dB from distant seismic airgun

shots to NLs in the MIZ as observed in the 2012 and 2013

experiments was somewhat weaker than the first two sound-

scape components mentioned here (Table III). However, the

prevalence of seismic airgun noise was remarkable. During

the two experiments seismic airgun noise was observed dur-

ing 117 h out of 188 observation hours. This is likely an

underestimate due to extreme ship cavitation noise prevent-

ing the detection of seismic airgun noise during part of the

2013 experiment. The nearest operational area of seismic ex-

ploration vessels during the experiments was in the south-

western Barents Sea, at least 800 km from the experiment

sites. Due to the large distance from the possible sound

source, the measured airgun noise can be seen as representa-

tive for—and therefore highly relevant to—large parts of the

MIZ of the European Arctic. Moore et al. (2012) have

reported high prevalence of airgun signals in Fram Strait for

large parts of the year. As seismic exploration might move

further north in the future, monitoring such noise and further

investigations on how fast it is attenuated with distance into

the ice pack (see Tollefsen and Sagen, 2014; Tollefsen et al.,

2015) seems highly relevant. Due to its easily recognizable

regular sequences of repeated shots, seismic airgun noise

was also the soundscape component that showed the greatest

promise for automated detection and quantification. The

spectral analysis methods described in Sec. III form a possi-

ble basis for such a detection algorithm.

Bowhead whale, sperm whale, narwhal, and fin whale

calls were identified in the acoustic recordings. The contribu-

tions of marine mammal vocalizations to the observed noise

spectra were of second order compared to the other sound-

scape components during both the 2012 and 2013 experi-

ments. It was therefore more difficult to quantify the mean

contribution of marine mammals to the observed sound-

scape, and the maximum effect of the observed marine mam-

mal vocalizations on hourly mean NLs was estimated

instead. This was done by finding sudden onsets of strong

marine mammal vocalizations during otherwise calm peri-

ods, i.e., periods with minimal disturbance from other sound-

scape components. A comparison of the hourly mean spectra

before and after the onset of the marine mammal vocaliza-

tions was then used to determine the values presented in

Table III. Marine mammal vocalizations, while mostly not

very strong in terms of their contribution to mean NLs, were

prevalent during large parts of the recording. Their complex

TABLE III. Comparison of NL changes due to different soundscape

components.

Sound component Mean NL increase Frequency range

Seismic airgun noise 2–6 dB f¼ 20–120Hz

(distance > 800 km)

Ship cavitation noise 28 dB f¼ 15Hz

(�100 km distance) >10 dB f< 1000Hz

Marine mammal vocalizations <10 dBa f¼ 18–25Hz (fin whale)

<5 dBa f¼ 100–400Hz

(bowhead whale)

Background noise 12 dB f> 100Hz

aMaximum estimates.
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patterns often stand out on spectrograms of the acoustic

record.
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