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Summary

Due to the potential for using methane hydrates as an energy source, localizing, mon-

itoring and describing hydrate deposit areas are of interest. This has previously been

attempted by using acoustic methods and thus information on the relation between

the hydrate saturation, SH , and acoustic properties, such as cP , cS (compressional and

shear wave velocity, respectively) and αP (compressional wave attenuation coeffiscient)

is needed.

The overall aim of this PhD thesis is to measure and discuss cP , cS and the change in

αP (∆αP ) in ten Bentheim sandstone specimen having different initial water saturations,

Sw0 as a function of SH , during hydrate growth.

In the literature, laboratory studies typically focus on measuring cP and cS in uncon-

solidated hydrate bearing sediments using the ”first arrival of the pulse,” which means

that the measurement frequency of the elastic wave is not defined. Only a few laboratory

studies are found by this author to measure acoustic properties for hydrate bearing sed-

iments for defined frequencies, and only one study is found to report αP during hydrate

growth. Although one study is found on hydrate bearing consolidated sediments, no

laboratory studies are found by this author to measure cP , cS and the change in αP for

Bentheim sandstone during hydrate growth.

In this work, a pressure cell in which hydrates may grow is modified so that acoustic

measurements can be conducted during hydrate growth. Piezoelectric shear-wave (S-

wave) and compressional wave (P-wave) transducers are designed and constructed to

be used with the solid buffer measurement method and to fit inside the pressure cell.

Due to the limited space inside the pressure cell, unwanted acoustic reflections from e.g.

sidewalls will affect the measurements. The S-wave transducers transmit both P-waves

and S-waves and mode conversion between these may also occur. To measure P-wave

or S-waves, short pulses are needed to separate the measurement signal from the other

reflected or mode converted signals. To do so, broadbanded transducers are designed

with tungsten-epoxy backing and a quarter wave-length front-layer.

The Fourier spectrum method is able to determine the frequency content of the short
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measured signals and is thus used as the main signal processing method together with

the solid buffer method for both the S-wave transducers and the P-wave transducers.

The effect of the unwanted side-wall reflections and diffraction effects are investigated

using finite element simulations on plexiglas specimen having approximately the same

dimensions as the Bentheim sandstone specimen. The Fourier spectrum method is simu-

lated using the finite element simulations together with Fourier synthesis. cP , cS and αP

for plexiglas measured with the solid buffer method are compared with measurements

conducted with the immersion measurement method. The deviation found between these

measurement methods aid in understanding the importance of determining the effects

of sound diffraction and unwanted sidewall reflections.

Four main categories of measurement results are presented: 1) how the absolute cP

and cS , and the relative values of cP , cS and αP , change with SH , 2) how the cP /cS ratio

changes with SH , 3) how the compressional wave absorption spectrum differs between

distinct SH , and 4) investigate if dispersion of acoustic waves can be detected.

Hydrates can grow inside a sandstone in different ways, affecting the acoustic prop-

erties differently. The distribution of water and gas inside the sandstone also affect the

acoustic properties. To investigate the relation between cP , cS , Sw0 and SH , the results

are compared with several numerical hydrate growth models. In the first model, hy-

drates only form in the fluid, thus ”floating” around in the pores. In the second model

hydrates grow into the sandstone, becoming a part of the dry frame, acting as second

type of load-bearing sediment grain. In the third model, hydrates act as cement around

grain contacts, thus stiffening the dry frame.

To investigate how the change in αP may be related to SH , two more models are

used. The first attenuation model is based on modeling the Biot flow and squirting flow

inside the sandstone during hydrate growth. These are attenuation mechanisms caused

by pressure induced fluid flow. The second attenuation model is based on Waterman and

Truell’s multiple scattering theory. As the attenuation mechanisms inside a sandstone is

very complex, no attempt is done to directly relate αP , Sw0 and SH . However, based on

the numerical attenuation models, it is indicated whether pressure induced fluid flow and

multiple scattering mechanisms are present in hydrate bearing Bentheim sandstones.
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Chapter 1

Introduction

1.1 Background and motivation

Gas hydrates exist in sediments beneath the ocean-bed, inland seas and in the permafrost

[1, 2, 3, 4, 5]. Even when conservative estimates are considered, the consensus is that

hydrocarbon gas hydrate resources are vast [1, 2, 3, 4]. The gas hydrates can potentially

be used as an energy resource [6, 1, 3]. The ever-growing need for energy and the fact

that the CO2 footprint from natural gas is substantially lower than that of coal [7] makes

utilizing of gas hydrates highly relevant.

However, hydrate deposits stretch over vast areas, and are trapped in complex struc-

tures consisting of clay and porous geological structures also containing water and pock-

ets of gas [1]. Such hydrate deposits can cause sea-floor instability and submarine land-

slides [8, 9, 10, 11]. On a localized scale, drilling operations can destabilize hydrate rich

sediments, causing sediment collapse, sub-sea landslides, bore failures and potentially be

a risk for sub-sea structures [8]. It is also debated whether dissociated methane gas from

such sub-sea landslides could reach the atmosphere [12, 13].

Seismic surveys have for many years been important when mapping the geological

structures beneath the sea-floor [14, 15]. Also the description and monitoring of hydrate

deposit areas must be done using remote methods, such as acoustic methods [16, 1, 2].

Given the more stable nature of CO2 - containing hydrates, porous rock reservoirs can

also potentially be used for safe storage of CO2. This has been tested by injecting CO2

into the Utsira formation [17, 18]. Potential leakage and other safety concerns have been

studied in detail [19, 20]. Developing this method further requires close and accurate

monitoring of fluid flow and hydrate-, water- and gas saturation, during the injection of

CO2 into the formation. Possible monitoring methods are 4-dimensional seismic surveys

or acoustic logging in boreholes, which both rely on the use of acoustic waves.
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As such, the safe and efficient extraction of methane gas and insertion of CO2 gas, re-

quires continuous monitoring and detailed understanding of the changing physical prop-

erties in the reservoir. Gas hydrate or ice in sediment pores will significantly affect the

acoustic parameters such as compressional and shear wave velocities, cP , cS , respec-

tively, and compressional and shear wave attenuation coefficients, αP , αS , respectively

[21, 22]. Detailed knowledge of these changes can be used to detect and monitor gas

hydrates in porous rocks remotely [1]. Theoretical models (detailed in chapter 2), such

as the Biot model [23], friable sand model [24], the contact cement model [25, 26] or

the constant cement model [27, 28], can give further insight into physical and geological

properties of hydrate-containing porous rocks. Acoustic parameters are important input

parameters in these models. Efficient use and detailed understanding of sonic logs from

sediments bearing hydrates, also requires detailed understanding of the different con-

stituent’s elastic properties and their interaction [29]. This information can be acquired

through experiments in the controlled environment offered in a laboratory and skilled

use of numerical models.

Previously, cP and cS have been measured in unconsolidated, compressed sand-packs

during hydrate growth in the laboratory [22, 21, 30, 31, 32, 33, 34, 35]. Hydrate con-

tent have been found by interpreting the measured cP and cS with numerical models

[26, 24, 22, 21]. Valuable information of hydrate growth patterns has been achieved, i.e

whether hydrates form primarily within the pore fluid, hydrates form and grow on indi-

vidual grains, becoming a part of the frame, or hydrates form and grow at and around

grain contacts, becoming part of the frame but also cementing the grains together. There

are seemingly very few laboratory studies of the elastic properties of hydrate bearing

consolidated sediments; only one laboratory study has been found by this author [35].

One study has also been found using THF-technique (tetrahydrofuran hydrate forma-

tion technique) with consolidated Berea sandstone [36] (synthetic hydrates forming at

atmospheric conditions). In both consolidated and unconsolidated sediments, there is a

clear increase of both cP and cS during hydrate growth. However, for sediments having

the same hydrate saturation (SH), this increase is higher for unconsolidated sediments

[22, 21, 30, 31, 32, 33, 34, 35]. This indicates that different elastic properties should be

expected for the same amount of methane hydrate depending on whether the reservoir

sediment is a consolidated porous rock or unconsolidated sandy sediment. An example of

such a consolidated porous rock is Bentheim sandstone, which is relatively homogeneous

[37]. To the best of this author’s knowledge, no studies of elastic properties in methane

hydrate-bearing Bentheim sandstone have been performed.

In laboratory studies of elastic properties in hydrate bearing sediments, both ultra-
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sonic frequencies (>100 kHz) [22, 21, 30, 31, 34, 35] and lower frequencies (<10 kHz)

[32, 33] have been used. While ultrasonic frequencies give better resolution and can

potentially give better precision and more information than low frequencies, these are

not necessarily directly comparable to seismic logs where other dispersion (frequency-

dependent sound velocity) and attenuation mechanisms are present [32]. In seismic

surveys, the acoustic attenuation in reservoirs containing hydrates have been argued

to mostly be due to pressure-induced fluid flow in the reservoir [38, 39, 40]. At low

frequencies and high pressures, effects like scattering and frictional sliding are usually

considered negligible [41]. Only one laboratory study has been found by this author on

the compressional and shear wave attenuation coefficients of hydrate bearing unconsoli-

dated sediments. In this study performed by Nakagawa et al. [33] lower frequencies were

used (<10 kHz).

To interpret potentially more detailed and accurate ultrasonic acoustic signals, suit-

able numerical models must be used. Waite et al. [22] and Winters et al. [21] analyzed

hydrate content and growth patterns by interpreting laboratory results with numerical

models. In these studies 500 kHz transducers were used, but no attenuation spectra or

dispersion mechanisms were considered. Nakagawa et al. [33] used low frequencies (<10

kHz) to measure the cP and cS as well as the compressional Q-value (QP ) and shear

wave Q-value (QS) in hydrate-bearing sediments. In this study, the Gassman model

[42] was used to analyze cP and cS but no numerical model was used to investigate the

measured Q-values.

There is considerable theoretical knowledge of the different dispersion and attenua-

tion mechanisms in porous rocks [41, 43, 44, 45, 46]. A literature review on the topic

is given in sections (Sects.) 1.5 and 1.6. However, none of the laboratory studies on

hydrate bearing sediments mentioned above attempted to quantify these mechanisms in

a hydrate-bearing porous rock. Allthough one laboratory study was found linking QS

and QP with hydrate content in unconsolidated sediments [33], no studies have been

found by this author attempting to relate measured dispersion or attenuation spectrum

to hydrate content in hydrate bearing sediments.

Descriptions of experimental measurement setups for measuring acoustic properties

in porous rocks during hydrate growth have been given by for example Waite et al. [22]

and Hue et al. [35]. However, in these studies, the practical and safety issues of using

high voltage sources for weeks in an experiment with methane gas under high pressure

have not been addressed. Also, these published studies do not focus on giving insight

in the practical challenges of monitoring multi-frequency compressional and shear waves

in the confined space inside a pressure cell unattended for weeks. However, acoustic
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properties of plexiglas specimen have been measured using a measurement setups where

unwanted sidewall-reflections may occur [47].

1.2 Objectives

Due to the potential for using methane hydrates as an energy source, localizing, mon-

itoring and describing hydrate deposit areas are of interest. This has previously been

attempted by using acoustic methods and thus information on the relation between the

hydrate saturation, SH , and acoustic properties, such as cP , cS and αP is needed.

The overall aim of this PhD thesis is to measure and discuss cP , cS and the change in

αP (∆αP ) in ten Bentheim sandstone specimen having different initial water saturations,

Sw0 as a function of SH , during hydrate growth.

A pressure-cell setup able to withstand the pressure and temperature required for

hydrate formation (83 bar and 4 ◦C) is to be modified so that acoustic measurements may

be conducted inside the cell during hydrate growth. As specific dimensions are required

for experimental equipment to fit inside the pressure cell, transmitting and receiving

piezoelectric transducers will be designed and constructed. The transducers and the

equipment modifying the pressure cell must also be able to withstand the conditions

inside the pressure cell during the hydrate growth experiments. Each experiment may

last for up to two weeks. A robust Matlab logging algorithm able to log the acoustic

signal through the Bentheim sandstone every 15 min for weeks is to be developed. The

solid buffer method is to be used to measure cP , cS and αP on hydrate-bearing sandstones

inside the pressure cell.

A commonly used signal processing technique to obtain cP and cS in hydrate-bearing

sediments with the solid buffer method is to use the first arrival of the signal (leading

edge or onset of the signal) [22, 21]. However, the accuracy of this technique is debated

[48, 49, 50]. As the energy is low during the first half cycle of the signal, any interference

in this region may potentially give inaccurate measurements. Mode conversion between

S-waves and P-waves is known to occur using the solid buffer method [51]. Especially

if using a longer burst, part of of the mode-converted P-wave may interfere with the

S-wave, making the P-wave and the S-wave indistinguishable. This source of interfer-

ence may be minimized by exciting the transmitting transducer with short pulses instead

bursts containing several periods. In noisy signals, the very first peak of the signal may

also be hard to detect, making measurement methods relying on transit time measure-

ments unreliable. The Fourier spectrum method use short pulses and is not dependent

on measuring transit times directly. Therefore, the Fourier spectrum signal processing

technique is to be used together with the solid buffer method for measurements on the
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Bentheim sandstones inside the pressure cell.

Because of the limited space inside the pressure cell, unwanted acoustic reflections

from e.g sidewalls and interference between shear waves and compressional waves will

affect acoustic measurements, even when short pulses are used. The degree of this

interference and as such the validity of results is to be investigated by measuring cP , cS

and αP and simulating cP and αP in plexiglas specimen having the same dimensions as

the Bentheim sandstones. Finite element simulations are to be performed with Comsol

Multiphysics 4.2 with the use of Fourier synthesis to obtain time-domain signals. Using

these simulated time domain signals, cP and αP will be calculated using both the Fourier

spectrum method and methods relying on direct transit time measurements (basic pulse

method). Due to lack of computing power, 3D simulations of shear waves are not feasable.

The plexiglas properties cP , cS and αP measured using the solid buffer method will

be compared with measured cP , cS and αP using the immersion method. The sound

diffraction effects in the plexiglas specimen will be investigated using finite element

simulations and established methods to correct for diffraction effects [52, 53, 54] for

the solid buffer and immersion method. Some attention will be given to other sources

of uncertainty, such as the confining pressure that is exerted on the rocks inside the

pressure cell and the force which is applied to the transducers and thus on the porous

rock.

To formally address the effect of the unwanted acoustic sidewall reflections and sound

diffraction effects, the measurement methods used in this work are to be described with

transfer functions.

Ten experiments are to be performed on ten different Bentheim sandstones specimen.

Each experiment lasts from one to two weeks. Sw0 of the different specimen range from

0.48 to 0.95. Higher Sw0 gives potentially a higher SH after hydrate growth. One pair

of in-house built P-wave transducers and one pair of in-house built S-wave transducers

are to be used. The S-wave transducers may transmit both P-waves and S-waves. The

absolute cP and cS and the change in αP are to be measured during the ten experiments.

At SH below 0.2, the measured absolute value of αP is seen to highly vary from sandstone

to sandstone. Thus, to be able to compare the ten different experiments, αP is presented

relative to αP at SH 0.2.

Four main categories of measurement results are to be presented: 1) how the absolute

cP and cS , and the relative values of cP , cS and αP , change with SH , 2) how the

cP /cS ratio changes with SH , 3) how the compressional wave absorption spectrum differs

between distinct SH , and 4) investigate if dispersion of acoustic waves can be detected.

The measured cP and cS from the hydrate growth experiments are to be compared
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with several numerical models: Helgerud et al.’s models where hydrates form in the fluid

or in the frame [24] and Avseth et al.’s constant cement model [27] are used to model

hydrate growth with no loss present. From these models the hydrate growth pattern will

be discussed, i.e whether hydrates form primarily within the pore fluid, hydrates form

and grow on individual grains, becoming a part of the frame, or hydrates form and grow

at and around grain contacts, becoming part of the frame but also cementing the grains

together.

Helgerud et al.’s frame building hydrate growth model [24] will be used together with

the Biot theory [23], Dvorkin et al.’s squirt flow model [55] and Waterman and Truell’s

multiple scattering theory [56] to discuss whether loss mechanisms such as scattering or

pressure induced fluid flow are present in the hydrate-bearing Bentheim sandstone.

The results will be compared with the results of other laboratory studies on hydrate

bearing sediments [22, 21, 30, 31, 32, 33, 34, 35]. A discussion on whether these experi-

mental results are relevant for comparison with data from well-logs [39, 57] will also be

given.

1.3 Early laboratory measurement of elastic properties in

rocks

One of the first experimental studies of Young’s modulus and Poisson’s ratio in rocks

were reported by Adams and Coker in 1906 [58]. Using a static method they found the

elastic moduli by measuring the change of dimensions of rock samples subject to an axial

compression. Different measurements of elastic parameters of rocks in the early 20th

century gave inconsistent results [59]. It has been noted that different axial pressures

were applied on the rocks in the published data which is believed to be the cause of this

inconsistency [59].

The accuracy of the static method was questioned by Ide in 1936 [60] because of

the large deviations in the reported Young’s modulus [59]. Ide was one of the first to

find the Young’s modulus in rocks by exciting it’s first thickness resonance mode with

a transducer. One transducer was used as transmitter and one as receiver. The results

from this dynamic or resonance method was found to differ compared with the static

methods of Zisman [59]. A similar experimental setup was used by Birch in 1938 [61]. In

his work he measured both compressional and torsional waves in rocks subject to various

temperatures and pressures with the resonance method.

Parallel to measurements of the elastic moduli, the attenuation of sound waves in

rocks were investigated. When Kimaball and Lovell [62] presented their work on the
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compressional wave attenuation coefficient in 1927, it was believed by many researchers

that the loss mechanisms in solids were mainly due to viscous effects similar to those

in pure water. However, Kimball and Lovell and others [63, 64] concluded that other

non-linear attenuation mechanisms, so-called ”solid friction” attenuation effects, existed

in rocks as well.

The resonance method was found to have its limitations [65]. If the solid buffer

method is used, the detected resonance frequency will be the resonance frequency of

the whole measurement system. This system consists of the transmitting and receiving

transducers, buffers, surrounding medium and the test specimen. The resonance fre-

quency of the test specimen can be found if the effect of the transducers, buffers, sound

diffraction and the surrounding medium can be eliminated [65]. The measurement fre-

quency is limited to the frequency corresponding to the detected resonance mode in the

test specimen. At high frequencies the attenuation of the acoustic waves might be so

high that resonance modes are hard to detect.

As electrical components and circuits improved during and after the second world

war, fast-writing oscilloscopes became available to researchers. Now, gated time signals

or pulses could be inspected with high precision and numerous studies on the elastic

moduli of rocks were published [66, 67, 68, 69, 70]. In these studies, transit times were

directly measured from the oscilloscope.

1.4 Acoustic measurement methods

McSkimin categorized and discussed strengths and weaknesses of different acoustic mea-

surement methods for various media ranging from low and high viscosity fluids to rub-

bers, plastics, wood, rocks and metals [65]. The two main categories of signal processing

methods for measuring attenuation and velocities in solids were divided into pulse and

resonance techniques. The method referred to as the pulse technique by McSkimmin

will in this work be called the basic pulse method. This method relies on measuring

the transit time of the pulse for wave velocity measurements and the amplitude of the

pulse for attenuation coefficient measurements. McSkimin outlined how measurements

with the pulse method using the steady-state portion of the signal can be used to find

acoustic wave velocities and attenuation for distinct frequencies [65].

Winkler and Plona [51] developed a signal processing method using Fourier spec-

troscopy of short pulses to measure the dispersion of cP in rocks based on the work of

of Papadakis et al. [52], and Sachse and Pao [71]. The Fourier spectrum method uses

short pulses and might be less prone to unwanted reflections. This method has been

widely used to measure the absorption spectrum and dispersion of both compressional
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and shear waves of various materials [51, 72, 73, 74]. In this work, both the Fourier

spectrum method and the basic pulse method have been used. The Fourier spectrum

method is the primary signal processing method in this work when measuring cP , cS

and αP during hydrate growth.

The basic pulse and the Fourier spectrum method can be used with the immersion

[72] or the solid buffer measurement method [51] to measure sound velocity and the

absorption coefficient. The solid buffer method is a practical method where the trans-

ducers can be clamped on directly to the buffers or specimen. To use the solid buffer

method, the buffer-specimen transmission coefficient must be known. To use the immer-

sion method, the fluid-specimen transmission coefficient must be known [65, 72]. If shear

wave attenuation coefficients or velocity is to be measured using the immersion method,

the specimen needs to be rotated so that shear waves are generated on the specimen

surface [53]. Shear polarized piezoelectric transducers have often been used measuring

shear waves with the solid buffer method [75]. In this work, the solid buffer method is

used inside the pressure cell used for growing hydrates. The immersion method is used

as a reference method to investigate the accuracy of the solid buffer method.

Many authors make use of transit time measurements of a pulse when finding wave

velocities. This is typically done by taking the first rise of the pulse and correct for

time delays in the electronics [66, 67, 68, 69, 70] or using a reference measurement. In

measurements where unwanted reflections may occur, the use of the first rise of the signal

is a suitable technique. However, the accuracy of technique is debated [48, 49, 50]. For

highly attenuating media, Futterman [48] found a logarithmic behavior at the rise of

the signal and concludes that the very onset of the signal would be hard to pinpoint.

Molyneux et al. [49, 50] also discussed how high frequency components overrepresented

at the rise of the signal, make precise time of flight measurements difficult.

In early measurements of wave velocities and attenuation coefficients, diffraction of

the sound waves was given little or no attention. As experimental equipment improved

and high-precision oscilloscopes became available, diffraction effects could no longer be

ignored for precise measurements of acoustic properties. In 1951, Williams published a

model for the transducer diffraction effects describing the transducer as a plane circu-

lar vibrating piston mounted in a rigid, infinite baffle [76]. Khimunin used Williams’

model to define a diffraction correction relative to plane waves [77, 78]. Soon after, this

technique was used to correct for diffraction effects in experimental setups [52]. Due

to it’s relatively simple implementation in results attained from the solid buffer method

or the immersion method, the approximate formulation (valid for ka >> 1, where k is

the wavenumber and a is the radius of the piston) of Rogers and Buren is widely used
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[79, 53, 51, 72].

While many authors have used diffraction corrections on compressional wave mea-

surements, fewer authors have used diffraction corrections for shear waves. However, it

has been proposed to use the same diffraction correction formalism for a circular shear

polarized piezoelectric element as for P-wave transducers when measuring shear waves

with the solid buffer method [54] or with the immersion method [53].

The diffraction models based on the circular plane piston are not an exact represen-

tation of a real transducer. Instead of using the same diameter on the real transducer

and the piston in the diffraction model, the piston has been described with an effective

diameter [80, 81, 82]. The effective diameter of the piston is typically defined so that

the 3dB angle of the main lobe is the same for the transducer and the piston. Since the

3dB angle is hard to measure in a solid, in this work, the same diameter is used on the

piston in the diffraction model as the diameter of the piezoelectric element inside the

real piezoelectric transducer.

1.5 Studies on the elastic properties of methane-hydrate

bearing sediments

Water and methane gas naturally form hydrates at low temperature and high pressure [5].

To understand seismic data from reservoirs containing porous rocks, hydrates, pockets of

natural gas and water, the acoustic properties of all components as well as the interaction

between them must be known. The acoustic properties of the individual components in

the reservoir or of the individual components of a test specimen in the laboratory is also

used in numerical models (see section (Sect.) 1.6).

The porous sandstone used in this work is Bentheim sandstone. This is a porous

rock with quartz-content typically 95 % [83]. Quartz, natural gas and water is well

described in the literature and acoustic properties of these materials can be found in

physics textbooks [84].

The compressional and shear moduli of various forms of pure hydrate have been

investigated in laboratory studies and found to be similar to the properties of water-ice

[85, 29, 86]. In the laboratory studies, transit time measurements using the first arrival

of the signal together with the solid buffer method were used to find the compressional

and shear moduli. Pandit et al. [85] used piezoelectric transducers exciting pulses with

center frequencies 500 kHz -1 MHz and Helgerud et al. [29] and Waite et al. [86] used

transducers with center frequency 1 MHz.

Helgerud et al. measured the shear modulus of water-ice to decrease with increasing
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uniaxial pressure [29]. The shear modulus of methane hydrate samples were reported to

increase with increasing uniaxial pressure [85, 29, 86]. The compressibility was reported

to be larger for ice than for the methane hydrate samples [85, 29, 86]. Helgerud et

al. reported the accuracy in the measured shear and bulk moduli to be 4% and 6%,

respectively.

cP and cS are seen to increase for increasing confining pressures in both consolidated

sandstones [87, 88] and in unconsolidated sand-packs [31, 26]. Due to this effect, many

studies on the absolute value of cP and cS are not directly comparable [22, 21, 30, 31,

32, 33, 34, 35]. However, the relative increases in cP and cS due to hydrate growth have

been of interest when analyzing data from well-logs [39, 57, 89] or in seismic surveys

utilizing bottom simulating reflectors (BSR) when searching for gas hydrates beneath

the ocean-floor [38].

Winters et al. [21], Winters et al. [30] and Waite et al. [22] presented measured

values from the same data-set for cP during hydrate growth in packed Ottawa sand-

specimen. In the measurements, a confining stress of approximately 0.3 Mpa was used

(approximately 3 bar). cP was measured with the solid buffer method using transit

time measurements and the first arrival of the signal. A piezoelectric transducer having

center-frequency 1 MHz was used to generate the acoustic pulse. One of the specimen,

having an Sw0 of 16 %, reached 20 % SH , gave a baseline cP of 1.9 km/s and ending at

3 km/s at maximum SH . Another of the specimen, having an Sw0 of 58 %, reached 70

% SH , gave cP starting at 1.9 km/s and ending at 4 km/s at full SH . While cS was not

directly studied, the shear strength was seen to increase with SH in [21, 30].

Rydzy et al. [31] also measured cP in an Ottawa sand-pack. The sand-pack specimen

was subject to a confining pressure of 1 MPa (approximately 10 bar) during hydrate

growth and the Sw0 is reported to be 27.5 %. An increase in cP from 700 m/s to 2100

m/s at full hydrate growth is found, however, the degree of SH is not precisely defined.

cP was measured with the solid buffer method using transit time measurements and the

first arrival of the signal. A piezoelectric transducer having center-frequency 100 kHz

was used to generate the acoustic pulse.

Hu et al. [35] measured the increase of cP and cS in both unconsolidated and con-

solidated sediments. Details of the mineral content and the confining pressure during

hydrate growth is not described. For the measurements conducted on the consolidated

sediment, cP is reported to increase from 4242 m/s at zero SH to 4643 m/s at SH ap-

proximately 66 %. cP and cS was measured with the solid buffer method using transit

time measurements and the first arrival of the signal. A piezoelectric transducers having

center-frequency 500 kHz was used to generate the acoustic pulse.
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For the non-consolidated sediment studied by Hu et al. [35], bender element trans-

ducers were used with the solid buffer method. The compressional wave frequency was

recorded to be centered around three peaks: 75 kHz, 125 kHz and 140 kHz. The shear

wave frequency was recorded to be centered around 35 kHz. cS was measured with the

solid buffer method using transit time measurements and the first arrival of the signal.

cP was found by using the Fourier spectrum method, however, no dispersion plots are

presented in the study. cS was found to increase from approximately 500 m/s at zero SH

to 1700 m/s at 100 % SH . cP was found to increase from approximately 1300 m/s at zero

SH to 3700 m/s at 100 % SH . Hu et al. also recorded the change in cP and cS during

hydrate dissociation. For both the consolidated sediment and the non-consolidated sedi-

ment, the same baseline cP and cS were measured after the hydrate dissociation process.

However, during the dissociation process, some hysteresis is seen. Starting at maximum

SH , cP and cS decrease more rapidly in the hydrate dissociation process than seen in

the hydrate formation process.

Zhang et al. [34] measured cP in several samples of unconsolidated quartz sand where

Sw0 ranged from 15% to 70%. Depending upon Sw0 and the final SH , the increase in

cP during hydrate growth range from 1200 m/s to 3000 m/s. cP was measured with the

solid buffer method using transit time measurements and the first arrival of the signal.

No precise definition of the measurement frequency is given, however, they are reported

to be ranging between 500 kHz and 1 MHz. In the measurements a confining pressure

of approximately 5 bar was used.

Using the resonance method, Priest et al. [32] measured cP and cS in thirteen differ-

ent quartz sand-packs. The SH in these thirteen specimen ranged from 0 to 35 %. The

confining pressure was set to 5 bar. cP and cS were measured from approximately 1600

m/s and 300 m/s, respectively, at SH = 0. cP and cS were measured from approximately

2700 m/s and 1500 m/s, respectively, at SH = 35%. The frequency used in the resonance

method in the study of Priest et al. was reported to be 50-450 Hz.

Nakagawa and Kneafsey used the resonance method when measuring cP , cS , αp and

αS in packed US Silica, F110 sand [33]. They measured cP to range 700 m/s - 3000 m/s

from zero to maximum SH . cS was measured to range 500 m/s - 1900 m/s from zero to

full SH . They also measured the compressional and shear wave attenuation coefficients to

decrease from 3.7 dB/cm to 0.2 dB/cm and from 3.5 dB/cm to 0.4 dB/cm, respectively.

The frequencies used in the resonance method was reported to be 500 Hz to 2.5 kHz.

The studies mentioned above performed by Waite et al. [22], Winters et al. [21] and

Winters et al. [30] on hydrate growth in unconsolidated sand also show that the hydrates

mainly act as a load-bearing member of the frame [22, 21, 30]. No laboratory studies on
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methane-hydrate growth in consolidated Bentheim sandstones have been found by this

author. Hu et. al [35] reported an increase in cP from 4240 m/s at baseline condition to

4660 m/s at SH = 0.65 in the consolidated sediment they used in their study. For the

same specimen cS was reported to increase from 2530 m/s to 2725 m/s at full SH . Sw0

was given as 40 %. This increase in cP and cS reported by Hu et al. [35] will be seen to

be much lower than the cP and cS measurements conducted in this work for Bentheim

sandstones.

The basic pulse method has been widely used for measuring acoustic properties in

methane-hydrate bearing sediments in the laboratory [22, 21, 30, 35, 35, 31]. Piezoelec-

tric transducers with center-frequencies 500 kHz [22, 21, 30, 35] and 100 kHz [31] have

been used as well as bender elements exciting frequencies <100kHz [35]. In all of these

studies the first arrival or the first peak of the acoustic signal has been used to measure

the acoustic travel time which means that the actual frequency-content in the measured

signal is not precisely defined [49]. The Fourier spectrum method which precisely define

the measurement frequency, has been used in earth materials for decades [51, 71]. While

the Fourier spectrum method has been mentioned as a possible method for measuring

acoustic properties in hydrate-bearing sediments [35], this method has not been used in

the most cited laboratory studies on the topic [21, 30, 22].

Many well-established studies using the solid buffer method to measure acoustic

properties of rock-specimen in a confined space such as a pressure cell, have not discussed

whether unwanted acoustic reflections from sidewalls interfere with the signal [66, 67,

70, 51, 30]. However, even short time signal pulses that are used in the Fourier spectrum

method may be affected from side reflections and thus be inseparable and subject to

interference in the time domain. Specimen dimensions used in hydrate laboratory studies

are e.g. 2.5 cm diameter, 6 cm length [31], 7 cm diameter and 14 cm length [22, 21].

Unwanted acoustic reflections in such specimen might be present in laboratory studies

but to the best of this author’s knowledge, these issues have not been addressed [22, 21,

30, 31, 32, 33, 34, 35].

Acoustic velocities measured with ultrasound frequencies may not always be directly

applicable to data from seismic surveys measured with sonic or seismic frequencies be-

cause of acoustic wave velocity dispersion [32]. By using the resonance method, measure-

ment frequencies in the sonic range may be used also in the laboratory [32, 33]. However,

since the resonance frequency is shifted due to radiation of sound into transducers and

other structures in contact with the specimen, calibration or an analytical expression is

needed.

In hydrate bearing unconsolidated sediments, laboratory studies show that cP in-
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crease for increasing SH . [22, 21, 30, 31, 32, 33, 34, 35]. It has been pointed out that an

absolute correlation between SH and cP does not exist [34], partly because the hydrates

growth pattern may be different under different conditions (the main categories of hy-

drate growth patterns are discussed above). As an example however, in unconsolidated

sandy sediments, cP is reported to increase from 1300 m/s at baseline conditions to 3700

m/s at SH = 1.0 [35]. For consolidated sediments, less literature have been found by this

author. Hu et. al [35] reported an increase in cP from 4240 m/s at baseline condition to

4660 m/s at SH = 0.65 in the consolidated sediment used in their study. In general, a

high Sw0 will give a high SH and thus potentially a higher cP .

Laboratory studies also show that cS increase for increasing SH in both unconsoli-

dated [32, 33] and in consolidated sediments [35]. Many of the arguments used for an

increasing cP due to hydrate growth is used for cS . As an example, in unconsolidated

sandy sediments, cS has been reported to increase from 500 m/s at baseline conditions

to 1700 m/s at SH = 1.0 [35].

Nakagawa et al. [33] found a general decrease in αP and αS for increasing SH . From

low to maximum SH a decrease of approximately 3.5 dB/cm was found. An unexpected

sudden increase at very low SH is reported [33].

In the laboratory studies on hydrate-bearing sediments discussed here, different con-

fining pressures, different measurement methods and different sediment-types have been

used [22, 21, 30, 31, 32, 33, 34, 35]. Due to this, absolute values of cP , cS and αP measured

in this work can not be expected to give same values as found in the listed studies. How-

ever, it is interesting to compare the relative change of the parameters cP , cS and αP mea-

sured in this work with those presented in previous studies [22, 21, 30, 31, 32, 33, 34, 35].

1.6 Numerical models describing the elastic properties of

hydrate-bearing sediments

To evaluate the elastic moduli of sediments partially saturated with water, hydrates

and natural gas, numerical models describing the interaction of these phases are needed

[90, 91, 92, 26, 24, 93]. These models are typically developed out of a combination of a

vast number of simpler models [94, 95, 96, 97, 42, 23, 98, 69, 99, 100, 101, 102, 103, 104,

105, 106].

In the two phase Kuster-Toksöz model [94], the effective bulk modulus and shear

moduli are found by summing the displacement-contributions from all inclusions to the

incoming field. It is a long wavelength, first order scattering approximation which is also

called the average T matrix approximation.
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The Voigt upper [96] and Reuss [97] lower bounds are methods that calculates the

effective elastic modulus of a composite medium using strain and stress considerations

respectively. The Reuss lower bound (sometimes called Wood’s formula [99]) is found

assuming that the stress is everywhere uniform. The Reuss lower bound is a good

representation in the low-frequency limit for a mixture of two incompressible fluids. The

upper bound (Voigt) is found assuming that the strain is everywhere uniform and is

basically a weighted average of the elastic moduli. The true value of the elastic moduli

for a composite medium should lie between the Reuss and the Voigt bounds.

Other bounds where found by Hashin and Strikman 1963 [95] by using potential

strain energy considerations. By assuming symmetrically distributed, spherical inclu-

sions, more narrow upper and lower bounds where found compared to the Voigt-Reuss

bounds.

Other simple models are the Hill average [100], which is the average between the

Reuss and Voigt bounds, and Wyllie’s equation [69], which is the weighted average of

the travel time through the constituents of the composite medium.

Another effective medium model is the differential effective medium model (DEM)

[101, 102, 103]. This method is derived by successively mixing very small fractions of

one inclusion material in another host material. The host medium changes gradually

during this process into the desired composite material.

Gassman included effects of the fluid in a fluid-saturated porous medium by consid-

ering the pore pressures and the stresses between solid grains (inter-granular stresses)

as the acoustic wave travels through the medium [42]. The inter-granular stresses in the

water-saturated porous medium were modeled by introducing the modulus of the dry

frame in addition to the modulus of the fluid and the solid constituents. This frame

modulus [107] can be found by independent measurements [108] or by models using e.g

Digbys grain stiffness contact theory [109, 110, 104] or models using Hertz-Mindlin con-

tact theory [26]. E.g. Tang et. al. [105] used O’Conell and Budiansky’s theory for

cracked solids [111, 112, 113] to describe the dry frame in Gassman’s or Biot’s equations.

The Kuster-Toksoz model has also been used to find the dry modulus [114].

Biot’s model [23] is arguably the most common way of modeling a fluid-saturated

porous rock [39, 115]. Like in Gasmann’s equation, Biot used a dry frame modulus to

describe inter-granular effects. However, Biot offered a more thorough mathematically

framework that is capable of explaining additional effects, such as frequency-dependent

fluid-solid interaction. The fluid-solid interaction enters the equations as an additional

stiffness and mass term (added mass). The acoustic wave generates a pressure gradient

as it propagates through the saturated sandstone. This results in a fluid flow from areas
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having higher pore pressures. The acoustic energy transferred into fluid momentum

generates a secondary wave in the medium, the slow wave [38, 23]. This wave is predicted

in the equations and have also been measured experimentally [116].

Several authors have modeled three phased media consisting of two solids and one

liquid phase [90, 91, 92, 26, 24, 93]. Using Wylie’s time-average model [69], Timur

was able to model three-phase consolidated permafrost sediments consisting of rock,

frozen water and liquid water [90]. Wylie’s equation has also been used with Gassman’s

equation to model partially frozen media [92].

Zimmermann and King [91] used the Kuster-Toksöz model in two stages to model

unconsolidated permafrost. First they computed an effective homogeneous material of

the water and ice phases with water as the inclusion material. In the next step, inclusions

of solid grains where used in the homogeneous, effective ice-water composition.

A popular way to model hydrate growth has been to use Gasmann or Biot’s equations

to model fluid effects and a dry frame consisting of solid rock and hydrate [22, 21, 117,

118, 24]. Winters et al. [21] and Waite et al. [22] outlined three different main categories

in which hydrates can interact with the fluid-saturated sediment and compared the result

with a baseline model where no hydrates were present. They used models developed by

Dvorkin et al. [25, 26, 119] and Helgerud et al. [24] to analyze their results.

In the baseline model [26, 119, 24] no hydrates exist. In this model a minimum

and maximum value of the dry frame were used. Dvorkin et al. [119] defined the

minimum value (”well-sorted end member”) by using Hertz-Mindlin contact theory [120]

to calculate pressure-dependent elastic moduli at critical porosity. Critical porosity is

the porosity of an unconsolidated pack of grains in which grain-to-grain contact exist.

The maximum value (second end member) was simply defined as the modulus of the fully

consolidated, zero-porosity sandstone, i.e. the moduli of the solid mineral grain. At a

given porosity between the critical porosity and zero porosity, the calculated modulus will

lie between these two end members. A modified version of the Hashin-Strikman lower

bound [95] was used in the baseline model [26, 119, 24] to interpolate between these

two end members to find the elastic moduli of the sediment. The model was originally

developed for unconsolidated sediments [26, 119, 24], however, it has been argued that

the model can also be used for sandstones [121, 28]. Dvorkin et al. [119] and Helgerud

et al. [24] used the Gassman equation [42] to calculate the saturation effect after the

dry frame was found.

The first main category in which hydrates form in the sandstone is when they form

within the pore fluid [22, 21]. When hydrates form in the fluid, hydrate alters only the

fluid bulk modulus and density. To model this hydrate growth scheme, Helgerud et al.
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[24] used the Reuss average to calculate a new effective fluid modulus. They used this

new effective fluid in the baseline model to model the effect of hydrates growing in the

fluid.

The second way hydrates can grow in a sandstone is becoming a part of the frame,

acting as second type of sediment grain [22, 21]. Based on the SH , Waite et al. [22]

and Winters et al. [21] calculated a new sample porosity and density and used these

new values in the baseline model. The dry sand pack moduli in the baseline model were

recalculated by replacing the moduli of quartz with the Hill average [100] of the bulk

and shear moduli for quartz and hydrate.

The third way hydrates can grow in a sandstone is if hydrate act as cement around

grain contacts [22, 21]. A cementation model was proposed by Dvorkin based on Digby’s

contact theory [25, 26]. Two different cementing configurations for an unconsolidated

sand-pack at critical porosity were analyzed. One, in which all the hydrates grow around

the grain-contacts, cementing the grains together, and one configuration in which the

hydrates grow as a coating layer around the grains, successively cementing the grains

together as the coating layer grows [25, 26]. This model is called ”contact cement model”

[28] and assumes that all solid material in excess of the critical porosity is cementing the

sediment in accordance to the cementing configuration.

As for the baseline model, a modified version of the Hashin-Strikman lower bound

[95] can also be used with the contact cement model [25] to model sandstones with an ar-

bitrary porosity at a given cementing level [27, 28]. This modified contact cement model

is called the ”constant cement model.” The contact cementing model and the constant

cementing model are pressure-independent. Pressure-dependence of the frame modulus

can been added in the constant cementing model by implementing both cemented and

non-consolidated grain contacts [122].

The elastic properties of the different constituents in addition to the grain stiffness

were seen by Dvorkin and others to be main factors for deciding the wave velocities

in hydrate bearing sediments [26, 22, 21]. The grain stiffness was affected by pressure

and cementation [26, 122]. Inside hydrate-bearing sediments, acoustic energy in water,

methane gas, hydrate and rock interact in accordance with parameters describing grain

dimensions and geometry, the contact surface between grains, pore geometry and fluid

and hydrate distribution. Some of these effects have been analyzed using the models of

Dvorkin [25, 26, 119]. A full model of the physical behavior of a sediment like this is a

formidable task as all the components of the hydrate bearing sediments may affect the

elastic moduli and give rise to dissipation effects and acoustic scattering [123]. Main

attenuation mechanisms are discussed and summarized by Johnston, Winkler, Best and
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Wuff [87, 41, 124, 125, 126, 127] and are here divided into three categories.

The first attenuation mechanism is pressure induced fluid flow that the acoustic

wave generates as it is propagating in the sandstone [23]. Acoustic energy from both

the rock and the hydrate is transferred into fluid momentum . This flow is divided into

two different types: Global flow (Biot flow) and local flow (squirt flow) [106, 55, 128].

Pressure differences between pores or patches of pores give rise to global flow and pressure

differences inside a single pore (by e.g. a crack inside a pore) give rise to squirt flow.

Especially if parts of a pore (like a crack) are compliant, locally pressure gradients

may occur and squirt flow may be induced [106, 55, 128]. When hydrates form, the

permeability inside the rock will change and so will the fluid flow. Pores that previously

were compliant, giving pressure gradients, may stiffen or even close due to cementation so

that the amount of squirt flow and global flow may be reduced. When the fluid saturates

regions of the porous rock (patchy saturation), the induced fluid flow is affected by this

as well [129, 130].

The second attenuation mechanism is scattering effects. In general, all heterogeneities

in a material will contribute to acoustic scattering. The heterogeneities can be small or

large pores, cracks or regions with heterogeneities, such as patchy saturation [41, 126].

Pores and gaps between grains are the smallest heterogeneities. In measurements with

seismic or sonic frequencies, attenuation from these are typically neglected [33]. For

ultrasonic frequencies however, Rayleigh scattering may be present and might even be

the dominating attenuation mechanism [126, 131, 44, 45, 132, 133].

Multiple scattering between heterogeneities is relevant in porous materials and sand-

stones [134, 56, 135, 136, 43, 137, 138]. Sayers studied scattering in porous materials

[135] by calculating the scattering coefficients [139, 140] and using Waterman and Truell

multiple scattering theory [56]. Use of scattering coefficients of circular cracks has also

been used with Waterman and Truell’s multiple scattering theory [56, 43]. Patches of

water in patchy saturated sandstones, fluid- or gas-filled cracks and pores may give rise

to attenuation due to both fluid flow and multiple scattering. These two effects have

been studied simultaneously by calculating the scattering coefficients using both the fast

and slow wave when calculating the boundary conditions [136, 134, 43, 137].

A third category of attenuation mechanisms is internal friction. Relaxation mecha-

nisms in pure water, hydrate and quartz grains are not mentioned by Johnston, Winkler,

Best or Wuff [87, 41, 124, 125, 126, 127], and are considered to be negligible. However,

other internal friction mechanisms, such as friction at grain contacts (frictional sliding)

have received some attention [141, 142, 143, 144, 87, 41, 126, 145]. This is a non-linear

attenuation mechanism in poorly consolidated sediments, which is dependent on the
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particle displacement if the particle displacement is large [141, 144, 87]. ”Loose” grain

contacts slip and thus energy dissipates at the grain contact due to the friction force

between grains. As hydrate grow, cementing the grains together, the frictional sliding

will diminish.

Leclaire [93] extended Biot’s theory [23] to be valid for a porous medium containing

two solid phases and one liquid phase (three phase Biot theory). Further improvements

of the three-phased Biot theory, like cementation, rock-ice interaction and squirt-flow

were provided by Carcione [38] and Guerin [39]. Several authors have used three-phase

Biot theory to find the effective elastic properties of hydrate and/or clay bearing porous

sandstone [39, 40, 57, 146, 40, 147, 148]. Following the three-phase Biot theory formalism,

three different longitudinal waves and two different shear waves exist, one longitudinal

and one shear in the two solid phases and one longitudinal in the effective water/gas

phase.

The models of Dvorkin et al. [26] and Avset et al. [27] have successfully been used

to model cP and cS in hydrate bearing sediments. Especially the cementing effect of

hydrate on the grain stiffnesses in a hydrate-bearing sediment is well-described. These

theories are purely elastic and do not regard attenuation mechanisms when they are used

with Gassman’s equations.

Biot accounted for the added mass and dissipation due to the internal water-flow. The

water-flow Biot considered was flow parallel to the acoustic wave propagation (Biot flow).

Local flow (squirt flow) have later been incorporated into the Biot’s theory and gives a

modified Biot’s theory [55, 149]. Scattering from pores, cracks or other heterogeneities

have been studied in porous rocks [43] by using the Biot theory [23] together with

Waterman and Truell’s multiple scattering theory [56]. Stoll propose to use a complex

modulus for the solid frame in the Biot theory to account for internal friction between

grains in the dry frame [150].

1.7 Outline of thesis

This thesis consists of eight chapters in total. The present introduction chapter presents

the motivation, relevant literature and the aim for this PhD thesis.

Chapter 2 gives the theoretical background for this work. The hydrate formation

inside the porous rock is briefly described. The diffraction correction used in this work

and the wave equations solved within Comsol multiphysics are presented. Theoretical

numerical models used to discuss the measurements are detailed.

In Chapter 3 the experimental measurement setups are described. First, the pres-

sure cell is presented. Next, the design and construction of the extra equipment needed
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for acoustic measurements inside the pressure cell is described. Then, the solid buffer

method for used inside the pressure cell, and the immersion method for independent

reference measurement are detailed. The basic pulse and Fourier spectrum signal pro-

cessing methods are descibed with an example of the Fourier spectrum method. Last,

the impedance analyzer used for electrical conductance measurements of the piezoelectric

transducers is described.

The transducer design and construction of the P-wave and S-wave transducers are

presented in Chapter 4. Measurements and finite element simulations of the electrical

conductance of the transducers are presented for the critical steps of the transducer

design.

The simulation setup for the solid buffer method using finite element simulations and

Fourier synthesis is presented in Chapter 5. How to formally address unwanted acoustic

sidewall reflections in the simulation setup is detailed.

The accuracy of the solid buffer method used inside the pressure cell is considered in

Chapter 6. Several simulations of different versions of the solid buffer method is given.

The accuracy and reproducability of measurements conducted on homogeneous plexiglas

specimen on porous sandstones are considered.

In Chapter 7, the results from the hydrate experiments are presented. cP , cS and αP

in Bentheim sandstone specimen are measured during hydrate growth. The four main

categories of measurements listed in the objectives (Sect. 1.2) are presented, discussed

and compared with simulation results of the numerical models.

Further work and conclusions are given in Chapter 8.
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Chapter 2

Theory

Chapter 2 gives the theoretical background for this work. In Sect. 2.1 the theory behind

behind hydrate formation and how the hydrates form in Bentheim sandstone specimen

inside the pressure cell is presented. The discrete Fourier transform (DFT) used with

the Fourier spectrum method is defined in Sect. 2.2. The diffraction correction used

for the solid buffer method and the immersion method used in this work is presented in

section 2.3. The wave equations solved with finite element (FE) simulations using Comsol

multiphysics are presented in section 2.4. The numerical models used to describe and

discuss the hydrate growth inside the Bentheim sandstone are discussed in Sect. 2.5:

Helgerud et al.’s hydrate growth models [24] and Avseth et al.’s constant cement model

[27] are used to model hydrate growth with no loss present. Helgerud et al.’s frame

building hydrate growth model [24] will be used together with the Biot theory [23],

Dvorkin et al.’s squirt flow model [55] and Waterman and Truell’s multiple scattering

theory [56] to discuss some of the dispersion and attenuation mechanisms present in the

hydrate-bearing Bentheim sandstone.

2.1 Hydrate formation

2.1.1 Methane hydrate chemistry

Natural gas hydrates consist of Van der Waals bounded water molecules structured as

cages around gas molecules called guest molecules. An example of such a cage is shown

in Fig. 2.1a) and is built up of twelve pentagonal faces, 512 [151]. This cage is called

Pentagonal dodecahedron. ”5” is labeling the shape of each face (here, a pentagon).

”12” is labeling the number of such faces. Another type of cage is built up from twelve

pentagonal faces and two hexagonal faces, 51262. ”6” is here labeling the hex and ”2” is

labeling number of hexes in the cage. Methane hydrates are formed by these two cage
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types and are called structure 1 type of hydrate, Fig. 2.1b). Structure 2 hydrates and

structure H hydrates are not addressed in this work. Usually, every cage in a structure

1 type hydrate contain a guest molecule [151]. This gives a ratio between the number of

water and guest molecules in structure 1 hydrate of 5.75, called the hydration number,

nw [152]. However, the average hydration number has been measured to be 5.99 in

methane hydrates, which indicates that some of the cages are empty of guest molecules

[153].

(a) (b)

Figure 2.1: Shows different cages and hydrate structures. The figure is found in the work

of Sloan [151]. a) Illustration of cage 512 (Pentagonal dodecahedron). b) Cages forming

different hydrate structures.

2.1.2 Hydrate stability zones

The nature of hydrate formation varies with type of gas filling the cavities in sediments.

Both biogenic gas (created by biological activity in sediments) and thermogenic gas

(created by geological processes deeper within the earth) can be sources of gas. P-T

(pressure - temperature) conditions will define the hydrate stability zones (HZS) (Fig.

2.2 [154]), and the geothermal gradient will govern its depth. For hydrates to form,

the surface energy related to creating a new surface needs to be overcome by the ther-

modynamic driving force. This will happen at temperatures and pressures inside the

hydrate stability zones presented in Fig. 2.2. Hydrate formation is a nucleation process

in which hydrates form and disperse. The critical mass is the tipping point were the

surface energy is less than the thermodynamic driving force and hydrates only form and

do not disperse [154].
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Figure 2.2: Hydrate stability zones for methane-hydrates (III,IV,V), CO2-hydrates

(II,IV,V), and nitrogen-hydrates (V) (The figure is found in the work of Husebø [154]).

2.1.3 Methane-hydrate formation in a closed system

If a net volume methane gas, VCH4, is injected into a closed system in which hydrates

grow containing a water-saturated Bentheim sandsone, the volume of methane hydrates

in the pores would be [152]

VH0 =

VCH4 ρpumpCH4
MCH4

nw Mw

ρcorew

1.26. (2.1)

ρpumpCH4 is the density of the methane gas injected into the closed system from a pressure

pump, ρcorew is the density of water in the pores.

Because hydrates filling varies somewhat with P-T and some of the cages are believed

to be empty, the hydration number, nw = 5.99, is based on experiments in the literature

[151]. MCH4 and Mw are the molar masses of methane and water, respectively, and 1.26

is the expansion factor of water into methane hydrate.

In this work, the closed system in which hydrate forms, is a pressure cell. The

pressure cell and the experimental setup for hydrate growth is presented in Sect. 3.1. As

the water expands into hydrate, some of the initial free methane gas will be displaced by

the hydrate formation and methane gas will be pushed out of the pressure cell. Thus,

the volume, VH0 , calculated from Eq. (2.1) with VCH4 read from the pressure pump

log, is too low. Due to the expansion of water the volume of methane gas, V exp
0 , that is

displaced from the pore volume is [152]
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V exp
0 =

VCH4 ρpumpCH4
MCH4

nw Mw

ρcorew

0.26. (2.2)

This extra volume of methane gas, V exp
0 , has also been responsible for forming methane

hydrate and the sum VCH4+V exp
0 is a more correct value for the total amount of methane

gas entering the pressure cell. However, this extra volume that is pushed out of the cell

will also have caused some expansion and the same argument can be used all over again.

An iteration process can be used to find the total amount of methane entering the

pressure cell [152].

VHn+1 = VHn +

V expn ρcoreCH4
MCH4

nw Mw

ρcorew

1.26,

V exp
n+1 =

V expn ρcoreCH4
MCH4

nw Mw

ρcorew

0.26.

(2.3)

The iteration process must be continued until the expansion volume, V exp, converges to

zero (approximately five steps). The hydrate saturation is found by dividing the hydrate

volume, VHn with the Bentheim sandstone pore volume. Equation 2.3 will be used to

calculate SH in the Bentheim sandstone specimen used in this work.

2.2 Fourier transform

In this work, the Fourier transform is used to analyze frequency components of a time

signal. The inverse Fourier transform is used in Fourier synthesis to construct time

signals from a known frequency response. The continuous Fourier transform and the

continuous inverse Fourier transform are given [155]

X(ω) =

∞∫
−∞

x(t)e−iωt dt,

x(t) =
1

2π

∞∫
−∞

X(ω)eiωt dω.

(2.4)

X(ω) represents the Fourier transform and x(t) represents the inverse Fourier transform.

ω is the angular frequency. The Fourier transform can be discretized in time t = n∆t

and frequency, f = l∆f , where ∆t is the time interval between two samples in the time

domain and ∆f is the frequency interval between two points in the frequency domain

[155]. l and n are integers.

By using the limits n ∈ [0, N − 1] and ω = 2πk∆f = k 2π
N∆t , gives the DFT and the

inverse DFT [155]
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X[l] =
N−1∑
n=0

x[n]e−i
2πk
N
n,

x[n] =
1

N

N−1∑
n=0

X[l]ei
2πk
N
n.

(2.5)

In this work, the DFT is computed with the fast Fourier transform (FFT) algorithm

[155]. The pre-defined FFT algorithm package in Matlab is used in this work [156].

2.3 Diffraction correction

Sound diffraction effects must be corrected for if precise measurements of cP , cS , αP and

αP are to be conducted using the immersion method [53, 72] or the solid buffer method

[52, 54, 157]. Based on the diffraction correction model presented by Rogers and Buren

[79], diffraction effects are corrected for in this work for the solid buffer method and for

the immersion method.

Williams proposed a model to describe the effects of transducer diffraction [76]. The

model is exact for a plane circular piston, mounted in a rigid baffle of infinite extent,

vibrating with uniform velocity amplitude and phase in an infinite fluid (”baffled piston

model”). Khimunin used Williams’ expression to define the ”diffraction correction,”

Hdif = 〈P 〉
P pl

[77, 78]. 〈P 〉 is the average free-field pressure over a measurement area (with

the receiver absent) a distance z from the piston source. P pl = ρwcwv0e
−ikwz is the plane

wave at the measurement area. kw = ω/cw is the wavenumber in water, cw is the sound

velocity in water and v0 is the piston particle velocity.

An approximate expression for Hdif , valid for kwa >> 1, was found by Rogers and

Buren [79]. a is the radius of the piston source and the circular measurement area.

Hdif =
〈P 〉
P pl
≈ 1− e−i(2π/S)

(
J0(2π/S) + iJ1(2π/S)

)
,

S =
2πz

kwa2
.

(2.6)

S is referred to as the Fresnel parameter. J0 and J1 are the zeroth and first order Bessel

function of the first kind, respectively. The diffraction correction expression of Rogers

and Buren, Eq. (2.6) is based upon Williams expression [76] which is developed for

wave propagation in a fluid. However, this expression has also been used to correct for

diffraction effects in cP and αP - measurements in solids [157]. The expression has also

been used to correct for diffraction effects in shear wave measurements using the solid

buffer method [54] and seemingly for the immersion method [53].

In both the immersion method and in the solid buffer method, two different measure-

ment setups are used: Measurement A without specimen inserted, and measurement B
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with the specimen inserted into the wave propagation path. In measurement A, Rogers

and Buren’s expression, Eq. (2.6), can be used directly, where kw is the wave number

of the water (when using the immersion method) or buffers (when using the solid buffer

method). By dividing the Fresnel parameter, S, into two terms, one term for the water

or buffers and the second term for the specimen, Eq. (2.6) can also be used for mea-

surement B. This way Rogers and Buren’s expression has been used to correct for sound

diffraction effects in the immersion method [72, 53] in measurement A and B:

Hdif
A = 1− e−i(2π/SA)

(
J0(2π/SA) + iJ1(2π/SA)

)
, SA =

2πD

kwa2
,

Hdif
B = 1− e−i(2π/SB)

(
J0(2π/SB) + iJ1(2π/SB)

)
, SB =

2π(D − d)

kma2
+

2πd

kma2
.

(2.7)

SA and SB are the Fresnel parameters in measurement A and B, respectively. D is

the distance between the transducers and d is the specimen thickness. km = kPm is the

compressional wavenumber and km = kSm is the shear wavenumber for the specimen.

Seemingly Wu et al. [53] present Eq. (2.7) to be used for shear wave diffraction correc-

tion. Using the immersion method for shear wave measurements, the specimen is tilted

to an angle, θi [53] (detailed in Fig. 3.16). A note is made here regarding how the tilting

of the specimen affects the shear wave propagating distance L inside the specimen (L in

Fig. 3.16). However, as will be seen in the plexiglas measurements in Ch. 6, the shear

wave diffraction effects of the plexiglas specimen used in this work are negligible using

Eq. (2.7).

Green et al. [54] defined the diffraction correction for use in solids in a similar way as

Khimunin [77, 78]. The medium in which the elastic waves propagate is defined as a half

space. Hdif = 〈tz〉
tpl

for compressional waves and Hdif = 〈tx〉
tpl

for shear waves. 〈tz〉 is the

average traction vector in the z-direction (compressional waves) over the measurement

area and 〈tx〉 is the average traction vector in the x-direction (shear waves) over the

measurement area. A coordinate system is shown in Fig. 2.5. tpl is the shear or

compressional plane wave traction vector propagating from the source. In the same way

as for the immersion method, the Fresnel parameter is divided into two terms, one term

for the buffers and the second term for the specimen. This way Rogers and Buren’s

expression, Eq. (2.6) has been used to find expressions for diffraction corrections for

sound diffraction effects in the solid buffer method [157]:

Hdif
A = 1− e−i(2π/SA)

(
J0(2π/SA) + iJ1(2π/SA)

)
, SA =

2π2Db

kba2
,

Hdif
B = 1− e−i(2π/SB)

(
J0(2π/SB) + iJ1(2π/SB)

)
, SB =

2π2Db

kba2
+

2πd

kma2
.

(2.8)

Db is the buffer length. kb = kzb is the buffer compressional wave number and kb = kxb

is the buffer shear wave number. This expression has been used in this work when
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measuring cP , cS and αP with the solid buffer method. In the studies using Eqs. (2.7)

[72, 53] and (2.8) [54, 157] the validity of the expressions are referred to Rogers and

Buren [79], that is ka >> 1, where k is the wave number of the medium in which the

waves propagate.

2.4 Simulations of electrical conductance and sound waves

using Comsol Multiphysics

Comsol Multiphysics version 4.2 has been used to simulate the electrical conductance

of the P-wave transducers used in this work as well as the transfer functions defined in

section 5.2.1 needed for the solid buffer method simulations. The expressions obtained

directly from the Comsol user’s guide [158, 159] use bold symbols for vectors (u). In the

rest of the thesis the vector notation, ~u is used.

Because of the limited space inside the pressure cell, unwanted acoustic reflections

from for example sidewalls will affect acoustic measurements. The simulations are used

to quantize the impact of the unwanted acoustic reflections on the measured cP and

αP inside the pressure cell. In this section, the equations solved with Comsol governing

the wave propagation in the piezoelectric material, the elastic material and in fluid

domains are presented. The finite element simulation models describing material data,

elements/wavelength and dimensions are presented in Ch. 5. As of today, the reference

manuals for version 4.2 are not accessible on-line without a license.

Piezoelectric elastic domains

In Comsol Multiphysics 4.2, the equation to be solved for the anisotropic, lossy piezo-

electric domains are [159]

−ρω2u = ∇ · s+ Fv,

∇ ·D = ρv,
(2.9)

with

s = s0 + CE : (ε− ε0)− eTE,

D = Dr + e(ε− ε0)− ε0,vacεrSE,

ε =
1

2
(∇u + (u∇)T).

(2.10)

Some of the variables used in Eqs. (2.9) and (2.10) are not easily accessible from the

Comsol structural mechanics reference manual [159]. However, from the manual it is

clear that ρ is the density of the solid material, ω is the angular frequency, u is the
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particle displacement vector, ∇ is the del-operator, s is the stress tensor, ε is the strain

tensor. C is the stiffness tensor relating strain to stress. : is the double-dot tensor

multiplication operator [159]. ρv is the volume charge density and is zero in this work.

D is the electrical displacement field. ε0,vac is the permittivity in vacuum (ε is used as

both permittivity and as strain). In the reference manual, εrS is defined as ”the relative

permittivity used on stress-charge form.” e is the piezoelectric coefficient tensor. In the

reference manual [159], C is defined as the stiffness tensor. CE is assumed to be the

stiffness tensor in the piezoelectric material at constant electric field, E. Dr is defined

as the remnant electric displacement.

The other symbols used in Eq. (2.12) and (2.13) were not found in the Comsol

reference manual [159] by this author. However, Fv is assumed to by body-forces, s0 and

ε0 are assumed to describe the initial stress and strain, respectively. All the terms Fv,

s0, ε0 and Dr are assumed to be set to zero by Comsol Multiphysics. To avoid confusion

with strain and permittivity in the notation, stress is renamed to τ , strain is renamed

to S, giving the equations

ρ
∂2ui
∂t2

= τij,j ,

Di,i = 0,

τij = CEijklSkl − ekijEk,

Di = eiklSkl − εSikEk,

(2.11)

In the diffraction correction description (Sect. 2.3) and in the system models presented

in Ch. 3, x, y and z are used to describe the cartesian coordinates. Due to the heavy

notation needed to describe the elastic waves in this section and in Sect. 2.5, Einstein’s

notation is used instead of x, y and z-coordinates (x1 = x, x2 = y and x3 = z). In

Eq. (2.14), Einstein’s summation convention is used and the comma symbol with an

index defines the spatial derivative. i, j, k and l are summation indices. τij , Sij and

ui are the stress tensor, strain tensor and particle velocity vector, respectively. CEijkl is

the stiffness tensor at constant electrical field. Di is the electrical displacement field, εSik

is the permittivity at constant strain, eikl is the piezoelectric charge coefficient tensor

and Ek is the electrical field. The equation of continuity lies implicit in the derivation

of the first equation in Eq. (2.11) [160]. Loss is implemented using complex stiffness

tensor. Complex tensors for CEijkl, ε
S
ik and eikl are defined for the anisotropic lossy elastic

piezoelectric domains.
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Isotropic, viscoelastic domains

In Comsol Multiphysics 4.2, the equation to be solved for the isotropic, viscoelastic

domains are [159]

−ρω2u = ∇ · s+ Fv, (2.12)

with

s = s0 + C : (ε− ε0 − εinel)

ε =
1

2
(∇u + (u∇)T).

(2.13)

Eq. (2.12) is the same as in Eq. (2.9). The variables are already defined for the piezo-

electric elastic domains above except from εinel, which is assumed to describe inelastic

strain components. This parameter is assumed to be set to zero by Comsol Multiphysics.

Using the same assumptions as for the piezoelectric elastic domains above the, this can

be written

ρ
∂2ui
∂t2

= τij,j ,

τij = CijklSkl,

Skl =
1

2
(ui,j + uj,i).

(2.14)

For the isotropic viscoelastic materials, the components of the stiffness tensor can be de-

scribed with two complex Lamé-constants. To calculate the Lamé-constants, a complex

cP and cS are defined for the isotropic viscoelastic domains.

Fluid domains

In this work, the ”linear elastic with attenuation” fluid model in the acoustics fluid mod-

ule in Comsol Multiphysics 4.2, defines the fluid elements [158]. In this fluid model, no

viscosity but a complex compressional velocity (c) is defined for the lossy fluid elements.

In Comsol the equation to be solved for the fluid domains are given [158]

−∇ · 1

ρc
(∇p− qd)−

k2
eqp

ρc
= Qm, (2.15)

with

p = p0 + p′,

k2
eq ≡ (

ω2

cc
)2,

cc ≡ c,

ρc ≡ ρ.

(2.16)
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ρ is here the fluid density, p is the total pressure, p0 the static pressure, p′ is the dynamic

pressure and c is the compressional wave velocity in the fluid [158]. Qm is defined as the

monopole source term and qd is defined to be the dipole source term. Both Qm and qd

are assumed to be set to zero by Comsol in this work. Some of this notation may seem

to be unnecessary, however, no effort is done by this author to explain the reason behind

the notation and why e.g. the fluid velocity is defined cc ≡ c. By not defining p0, this

is assumed to be set to zero by Comsol. By using the equation of continuity [160], Eq.

(2.15) may be written as

1

c

∂2p

∂t2
= p,ii (2.17)

Boundary conditions

To solve the equations governing the wave propagation in the piezoelectrc domains,

the elastic domains and in the fluid domains, appropriate boundary conditions must be

applied.

Comsol Multiphysics solves the set of equations 2.14, 2.11 and 2.17 using the finite

element method [159, 158]. To solve the wave equation between two media, boundary

conditions must be applied. A rigorous definition of these boundary conditions have not

been found by this author in the structural or acoustics reference manuals [159, 158].

However, for the solid-solid and solid-fluid interfaces, the displacement and the trac-

tion vectors must be continuous through the boundary [160]. The outer boundaries of the

solids are in this work oscillating freely. In Comsol Multiphysics reference manual [159]

this boundary condition is called ”free” and on these boundaries the normal component

of the traction vector is zero. On the boundaries outside fluid domains, the boundary

is called ”hard” [158] and on these boundaries, the normal component of the displace-

ment vector is defined to be zero. Across the electrodes of the piezoelectric element of

the transmitting transducer, the electrical potential 1 V is applied in this work. The

simulation setup for the Comsol models used in this work are presented in Ch. 5.

2.5 Numerical model to model hydrate growth in Ben-

theim sandstone

Waite et al. [22] and Winters et al. [21] outlined three main categories in which hydrates

may form inside a porous rock or sandy sediment. The first main category is hydrate

forming primarily in the pore fluid. For this hydrate-growth scenario the ”HFl”-model

is used in this work, which is based on Helgerud et al.’s ”hydrates in fluid model” [24].
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Two versions of the HFl-model is implemented in this work: HFlU-model, where the gas

and water are uniformly distributed in the sandstone pores and the HFlP-model where

the gas and water are distributed separately in patches. In the HFlP-model, the gas

hydrates grow in the water-filled pores.

The second way hydrates can grow in a sandstone is becoming a load-bearing member

of the dry frame, acting as second type of sediment grain. For this hydrate-growth

scenario the ”HFr”-model is used in this work, which is based on Helgerud et al.’s

”frame building model” [24]. As for the HFl-model, two versions of the HFr-model is

implemented: HFrU-model, where the gas and water are uniformly distributed in the

sandstone pores and the HFrP-model where the gas and water are distributed separatley

in pathces.

The third way hydrates can grow in a sandstone is if hydrates act as cement around

grain contacts, stiffening the dry frame. For this hydrate-growth scenario, Aveth et al.’s

”constant cement model” [27] is used. This model is labeled ”HC” in this work. As

for the HFl-model and the HFr models, two versions of the HC-model is implemented:

HCU-model, where the gas and water are uniformly distributed in the sandstone pores

and the HCP-model where the gas and water are distributed separately in patches.

All these three models (HFl, HFr and HC) are based upon the work of Dvorkin et al.

[25, 26]. A schematic of these models is shown in Fig. 2.3. In the models presented by

Helgerud et al. [24] the initial dry frame bulk modulus and the dry frame shear modulus

(before hydrate growth) where calculated with yet another model, the Hertz-Mindlin

model [120]. In this work, however, fixed dry frame bulk and shear moduli are used

so that the models fit the measurements conducted on Bentheim sandstone specimen

better. These are the dry frame bulk (Ksm,0) and shear moduli (µsm,0) before hydrate

growth.

These three models (two versions of each model) are purely elastic, meaning no loss

is present. To model and discuss αP and the dispersion of cP during hydrate growth, the

”BiotHFrU,” ”BiSqHFrU”, ”WaTrHFrU” and the ”WaTrBiSqHFrU”-models are used.

”BiotHFrU” simulates hydrates growing into the frame, includes loss due to global flow

and is based on the HFrU-model and the Biot theory [23, 161]. ”BiSqHFrU” simulates

hydrates growing into the frame, includes loss due to squirting flow and global flow and

is based on the HFrU-model and Dvorkin et al’s combined squirting flow and global flow

theory [55]. In Fig. 2.4 a schematic of squirting flow and Biot flow is shown.

”WaTrHFrU” simulates hydrates growing into the frame, includes multiple scattering

effects inside the sandstone and is based on the HFr-model and Waterman and Truell’s

multiple scattering theory [56]. ”WaTrBiSqHFrU” is purely a combination between
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the BiSqHFrU and the WaTrHFrU-models. The WaTrBiSqHFrU-model include loss-

mechanisms due to both scattering and pressure induced fluid flow effects. No schematic

of the multiple scattering effect is given here. However, space not occupied by quarz

grains or hydrate in Fig. 2.3 A), are treated as spherical scatters of different size in the

WaTrBiSqHFrU and the WaTrHFrU-models.

All these seven models are used in Ch. 7 to discuss the experimental results. The

models are detailed below. In the hydrate bearing Bentheim sandstone, the contents of

water, gas, pure quartz and hydrates are assumed to be given:

φw + φg + φH + φq = 1. (2.18)

φq = 0.76 is the typically quartz volume fraction in Bentheim sandstone [162]. The

volume fraction of hydrates, φH , is defined as an input vector ranging from zero to 0.24.

φg and φw are the volume fractions of gas and water, respectively. The initial water

(φw0) and gas volume fractions are known. Water forms into hydrate and expand by a

factor 1.26 (see section 2.1). In this work it is assumed that hydrates expand into gas-

regions, pushing some of the methane gas out of the sandstone. This process is assumed

to go on until (almost) all the methane gas is pushed out of the sandstone. When the

methane gas inside the sandstone is depleted, water will be pushed out of the sandstone.

Thus, depending on φH , two regimes of calculating the volume fractions of water (φw)

and gas (φg) have been implemented in this work:

When methane gas is available inside the sandstone, φg > 0:

φw = φw0 − SH/1.26β,

φg = 1− φq − φH − φw.
(2.19)

β is the porosity. When (almost) all the methane gas is pushed out of the sandstone and

φg → 0 in Eq. (2.19), φw is calculated:

φw = 1− φq − φH − φg. (2.20)

The volume fractions φw, φq, φH and φg are calculated with these equations during the

hydrate growth process and used in the following numerical models as input parameters.

To the best of this author’s knowledge, this way of calculating φw, φq, φH and φg has

not been reported. Important input parameters for the numerical models used in this

work are given in Tab. 2.1. These parameters together with a few others defined when

the specific model is used give the basis for the numerical models used in this work.
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Table 2.1: List of important parameters used in the numerical models.

Parameter Description

φq = 0.76 Volume fraction of quartz

ρw = 1000 kg/m3 Density water [55]

ρg = 70 kg/m3 Density methane gas at 83 bar [163]

ρq = 2650 kg/m3 Density quartz [55]

ρH = 850 kg/m3 Density methane hydrate [86]

Kw = 2.25 Gpa Bulk modulus of water [55]

Kg = 11 Gpa Bulk modulus of methane gas at 4◦C, 83 bar [163]

Kq = 38.7 Gpa Bulk modulus of quartz [55]

KH = 7.7 Gpa Bulk modulus of methane hydrate [86]

β0 = 0.24 Porosity of Bentheim sandstone before hydrate growth [162]

βc = 0.40 Critical porosity of sandpack

Ksm,0 = 11 Gpa Initial dry frame bulk modulus

µsm,0 = 8 Gpa Initial dry frame shear modulus

µq = 39.6 Gpa Shear modulus of quartz [55]

µH = 3.2 Gpa Shear modulus of methane hydrate [86]

ηg = 12.9 µPa s Viscosity of methane gas at 4◦C, 83 bar [163]

ηw = 1.8 mPa s Viscosity of water at gas at 4◦C [38]

ne = 9 Number of grain contacts per grain [26]

h = 170 µm Diameter of quartz grains [55]

κs0 = 1.1 D Permeability in Bentheim sandstone before hydrate growth [83]

ρ12 = −420 kg/m3 Fluid-solid mass coupling parameter [55]

As argued in Sec. 1.6, accurate modeling of the elastic wave propagation in a sand-

stone during hydrate growth is a formidable task. The models presented in this section

simplify the complex nature of a sandstone. A thorough analysis on the accuracy of

the different models is not performed in this work. However, models based on the same

principles as the HFl, HFr and HC - models are widely used to model cP and cS in

hydrate bearing sediments for both low measurement frequencies (<20 kHz) [164] and

for higher measurement frequencies (approximately 500 kHz) [22, 21, 34].

Attempts to model the attenuation in hydrate bearing sediments from well logs have

been seen in the literature [39]. No attempt have been found by this author to model

attenuation in hydrate bearing sediments in laboratory studies. The BiSqHFrU and

the WaTrHFrU models are based on modeling attenuation mechanisms due to pressure

induced fluid flow and scattering of elastic waves, respectively, which are attenuation

mechanisms known to exist in sandstones [55, 41, 165].

The models are used to qualitatively discuss the measured cP and cS and which

attenuation mechanisms that might be present in the sandstones used in this work.
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Figure 2.3: A schematic of hydrate growth models [22]. In A, the hydrates from in the

pore fluid (HFl). In B, hydrates grow into the frame, acing as a second grain (HFr). In

C, hydrates evenly coat grains, cementing them together (HC).

(a) (b)

Figure 2.4: Schematic for the Biot-squirt model [55]. a) An illusttration of the Biot flow

and the squirt flow as presented by Dvorkin and Nur [55]. In this work, the ”Represen-

tative volume” is described with the HFr-model. The P-wave is attenuated due to the

Biot flow and the squirt flow. b) An illustration of the squirting length parameters, Rsq

used in the models treating squirting flow.

34



2.5.1 Hydrates only forming in the fluid: HFl-model

In this work, the HFl-model is used to find cP and cS (Eq. (2.21)) for the hydrate-

bearing Bentheim sandstone when hydrates only form in the fluid (See Fig. 2.3 A)). The

effective bulk and shear moduli, Keff and µeff , respectively, are found based on the

Gassman’s equation [42]. The hydrates only affect the bulk modulus of the fluid. The

model is derived by Helgerud et al. [24]. However, while Helgerud et al. [24] used the

Hertz-Mindlin model [120] to calculate the dry frame moduli, Ksm,0, and µsm,0 are set

to 11 Gpa and 8 Gpa, respectively, so that the models fit the measurements conducted

on Bentheim sandstone specimen better.

Like Helgerud et al. [24], two different versions of the HFl-model (HFlU and HFlP)

are used in this work. Both use Eq. (2.21), but in his work the effective saturated bulk

and shear moduli, Keff and µeff , respectively, are calculated differently.

cS =

√
µeff
ρtot

,

cP =

√
Keff + µeff4/3

ρtot
.

(2.21)

The total density, ρtot is defined

ρtot = φwρw + φgρg + φHρh + φqρq. (2.22)

ρw, ρg, ρh and ρq are the densities of water, gas, hydrate and quartz, respectively. φw

and φg are calculated with Eqs. 2.19 and 2.20.

The HFlU-model: hydrates growing in the fluid with uniform gas and water

distribution

In the first version, hydrates form uniformly only in the pore fluid and an effective fluid

bulk modulus, Kf , is calculated using the Reuss average [97], Eq. (2.23).

Kf =
( Sw
Kw

+
Sg
Kg

+
SH
KH

)−1
. (2.23)

Sw, Sg, SH are the water, gas and hydrate saturations, respectively. Kw, Kg, and KH

are the bulk moduli of water, gas and hydrate, respectively. Using Kf as the fluid bulk

modulus, the total effective saturated bulk modulus, Keff , is found with the Gassmann’s

equation (Eq. (2.24)):

Keff = Ks
βKsm − (1 + β)KfKsm/Ks +Kf

(1− β)βKf + βKs −KfKsm/Ks
,

µeff = µsm.

(2.24)
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β is the porosity. Since hydrates are only forming in the pore fluid, the solid bulk

modulus is the quartz bulk modulus and the dry frame bulk and shear moduli are equal

to Ksm,0 and µsm,0, respectively. That is

Ksm = Ksm,0,

µsm = µsm,0,

Ks = Kq.

(2.25)

Kq is the pure quartz bulk modulus. Calculating cP and cS with Eq. (2.21) using Eqs.

(2.23), (2.24) and (2.25) is in this work called the HFlU-model.

The HFlP-model: hydrates growing in the water with the gas and water

distributed in patches

If the hydrates are growing in the water and the gas is separately distributed in patches,

Helgerud et al. [24] proposed the following formula for Keff and µeff :

1

Keff + 4
3µeff

=
Sw + SH

Ksat,wH + 4
3µsat,wH

+
Sg

Ksat,g + 4
3µsat,g

,

µeff = µsat,wH = µsat,g = µsm,0.

(2.26)

Ksat,wH and µsat,wH are the bulk and shear moduli, respectively of the sediment fully

saturated with the hydrate-water fluid mix having bulk modulus KwH =
(

Sw
(Sw+SH)Kw

+

SH
(Sw+SH)KH

)−1
. Ksat,g and µsat,g are the bulk and shear moduli, respectively of the

sediment fully saturated with the gas having bulk modulus Kg. Because the fluid does

not support shear waves, the saturated shear frame modulus is the same as the dry shear

modulus, µeff = µsat,wH = µsat,g = µsm,0.

Gassman’s equation, Eq. (2.24) is used to obtain Ksat,wH using Kf = KwH and to

obtain Ksat,g using Kf = Kg. As in the HFlU-model, the fluid is not affecting the dry

frame bulk or shear modulus and thus Eq. (2.25) is used in the calculations.

Calculating cP and cS with Eq. (2.21) using Eq. (2.26) and µeff = µsm = µsm,0 is

in this work called the HFlP-model.

2.5.2 Hydrates growing in the dry frame, acting as a second grain:

HFr-model

To model hydrates growing in a sandstone and become a load-bearing member of the

dry frame, acting as second type of sediment grain, the HFr-model is used (See Fig 2.3

B)). The model was derived by Helgerud et al. [24] as in the Hfl-model, Ksm,0, and
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µsm,0 are set to 11 Gpa and 8 Gpa, respectively, so that the model fit the measurements

conducted on Bentheim sandstone specimen better.

In the same way as for the HFl-model, Ksm is used with the Gassmann’s equation

to calculate cP and cS . However, the dry frame modulus, Ksm is now altered due to

hydrate growth. It is described with the modified Hashin-Strikman lower bound model

[26], Eq. (2.27).

As for the HFl-model, two different versions of the HFr-model (HFrU and HFrP) are

used in this work. Both use Eq. (2.27) but the fluid affects the saturated bulk modulus

in the HFrU and HFrP-models differently.

Ksm =
[ β/β0

Ksm,0 + 4/3µsm,0
+

1− β/β0

Ks + 4/3µsm,0

]−1
− 4/3µsm,0,

µsm =
[ β/β0

µsm,0 + Z
+

1− β/β0

µs + Z

]−1
− Z,

Z =
µsm,0

6

(9Ksm,0 + 8µsm,0
Ksm,0 + 2µsm,0

)
.

(2.27)

When hydrate grows, the porosity, β, of the rock will decrease. The modified Hashin-

Strikman lower bound model [26] is a heuristic model giving Ksm = Ksm,0 and µsm

= µsm,0 at β = β0. β0 is the porosity before hydrate growth. Ksm,0 = 11 Gpa and

µsm,0 = 8 Gpa are the dry frame bulk and shear moduli, respectively, before hydrate

growth. The model gives Ksm = Ks and µsm = µs at β = 0. Ks and µs are the effective

mineral bulk and shear moduli, respectively, calculated with the Hill average [100]:

Ks =
1

2

[ φq
φq + φH

Kq +
φH

φq + φH
KH +

( φq
φq + φH

1

Kq
+

φH
φq + φH

1

KH

)−1]
,

µs =
1

2

[ φq
φq + φH

µq +
φH

φq + φH
µH +

( φq
φq + φH

1

µq
+

φH
φq + φH

1

µH

)−1]
.

(2.28)

µq and µH are the shear moduli of pure quartz and hydrate, respectively.

The HFrU-model: hydrates growing the frame with uniform fluid and hydrate

distrubution

In this version, an effective fluid bulk modulus, Kf , is calculated using the Reuss average

[97] of water and gas:

Kf =
( Sw
Kw

+
Sg
Kg

)−1
,

(2.29)
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Using Eqs. (2.21), (2.24), (2.27) and (2.29) to calculate cP and cS is in this work called

the HFrU-model.

The HFrP-model: hydrates growing the frame with gas and water distributed

in patches

If the water and gas are located separately in patches and are not uniformly distributed,

Helgerud et al. [24] proposed the following formula for Keff and µeff :

1

Keff + 4
3µeff

=
Sw

Ksat,w + 4
3µsat,w

+
Sg

Ksat,g + 4
3µsat,g

,

µeff = µsm.

(2.30)

Ksat,w and µsat,w are the bulk and shear moduli, respectively, of the sediment fully

saturated with water. Ksat,g and µsat,g are the bulk and shear moduli, respectively of

the sediment fully saturated with the gas having bulk modulus Kg. These are calculated

with Eq. (2.24) using Eq. (2.27) and (2.28).

Using Eqs. (2.21), (2.30) and µeff = µsm from Eq. (2.27) to calculate cP and cS , is

in this work called the HFrP-model.

2.5.3 Hydrates cementing grains: HC-model

A third way hydrates can grow in a sandstone is if hydrates act as cement around grain

contacts, stiffening the dry frame. For this hydrate-growth scenario, Avseth et al.’s

”constant cement model” is used [27] (see Fig. 2.3 C)). The model is based on Dvorkin

et al’s cement model [25] which is developed for unconsolidated sand-packs. In this work,

this model is labeled the HC-model. As Ksm,0 and µsm,0 are not input parameters in this

model, no attempt is done to fit this model to the Bentheim sandstone measurements.

There are also two different versions of the HC-model: The HCU-model where the

fluid is distributed uniformly in the sandstone and the HCP-model where the water and

gas is distributed in seperate patches.

Dvorkin’s cementing model [25] is based on Digby’s contact theory [104] and how

added cement affects the grain-grain contact. The model make use of the concept of

critical porosity: the porosity, βc, of an unconsolidated pack of grains in which grain-

grain contact exist. At lower porosities than the critical, the excess material is either

located around or away from the grain-grain contacts. In Dvorkin’s cementing model,

all excess material is located around the grain contacts, thus cementing them together,

giving a bulk modulus and shear modulus for the cemented sand-pack
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Ksm,D =
ne(1− βc)(KH + 4/3µH)Sn

6
,

µsm,D =
3KD

5
+
ne(1− βc)µHSτ

20
.

(2.31)

ne ≈ 9 is the number of contact points between the mineral grains [25]. Dvorkin et al.

use Digby’s contact theory [104] to calculate the normal grain-grain stiffness, Sn, and the

tangential grain-grain stiffness, Sτ , between spheres cemented together. A pack of such

spheres with n ≈ 9 number of contacts per grains and with porosity βc has a dry frame

bulk modulus Ksm,D and a dry frame shear modulus µsm,D. The cementing material

is hydrate. Dvorkin et al. [25] give approximate expressions for the normal grain-grain

stiffness, Sn, and the tangential grain-grain stiffness, Sτ with an error margin less than

1%:

Sn = An(Λn)α2 +Bn(Λn)α+ Cn(Λn),

Sτ = Aτ (Λτ , ν)α2 +Bτ (Λτ , ν)α+ Cτ (Λτ , ν),

An(Λn) = −0.024153Λ−1.3646
n ,

Bn(Λn) = 0.20405Λ−89008
n ,

Cn(Λn) = 0.00024649Λ−1.9846
n ,

Aτ (Λτ , νq) = −10−2 · (2.26ν2
q + 2.07νq + 2.3) · Λ0.079ν2q+0.1754νq−1.342

τ ,

Bτ (Λτ , νq) = (0.0573ν2
q + 0.0937νq + 0.202) · Λ0.0274ν2q+0.0529νq−0.8765

τ ,

Cτ (Λτ , νq) = 10−4 · (9.654ν2
q + 4.945νq + 3.1) · Λ0.01867ν2q+0.4011νq−1.8186

τ ,

Λn =
2µH
πµq

(1− νq)(1− νH)

1− 2νH
,

Λτ =
µH
πµq

,

α = 2
[ βc − βD

3n(1− βc)

]0.25
.

(2.32)

νH is Poisson’s ratio of hydrate. νq is Poisson’s ratio of quartz. α is a parameter

describing an evenly distributed cementing layer coating the quartz grains. After the

cementing hydrate is added, the porosity is reduced to βD. For details, refer to the study

of Dvorkin et al. [25]. In Dvorkin et al.’s paper [25], other cementation schemes are also

presented, giving other values for α.

Avseth et al. [27] combined Dvorkin et al.’s [25] cement model with the modified

Hashin-Strikman lower bound (equation 2.27) to model the dry frame of cemented sand-

stones with a porosity β. In this way of using the modified Hashin-Strikman lower bound,

Ksm and µsm are substituted with Ksm,D and µsm,D, respectively. β0 is substituted with

βb. Now Ksm = Ksm,D and µsm = µsm,D at β = βD, and Ksm = Ks and µsm = µs at

β = 0.
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Ksm =
[ β/βD
Ksm,D + 4/3µsm,D

+
1− β/βD

Ks + 4/3µsm,D

]−1
− 4/3µsm,D,

µsm =
[ β/βD
µsm,D + Z

+
1− β/βD
µs + Z

]−1
− Z,

Z =
µsm,D

6

(9Ksm,D + 8µsm,D
Ksm,D + 2µsm,D

)
.

(2.33)

Ks and µs are given with Eq. (2.28).

The HCU-model: hydrates acting as cement with uniform fluid and hydrate

distrubution

In this version, an effective fluid bulk modulus, Kf , is calculated using the Reuss average,

Eq. (2.29). Using Eqs. (2.21), (2.24), (2.33) and (2.29) to calculate cP and cS is in this

work called the HCU-model.

The HCP-model: hydrates acting as cement with gas and water distributed

in patches

If the water and gas are located separately in patches and are not uniformly distributed,

Helgerud et al’s. [24] Eq. (2.30) for calculating Keff and µeff can be used

In this version, the water and gas are distributed separately in patches. Using Eqs.

(2.21) and (2.33) with µeff = µsm from Eq. (2.33) and Keff fraom Eq. (2.30) to

calculate cP and cS , is in this work called the HCP-model.

2.5.4 Biot’s model during hydrate growth with uniform fluid and hy-

drate distrubution (BiotHFrU)

In this work the Biot theory [23] is used to discuss the measured developement of at-

tenuation and dispersion curves during hydrate growth. Biot’s theory is a framework

governing the wave propagation in fluid saturated porous media [23]. Fluid flow induced

by the pressure-wave give rise to attenuation of the propagating wave (See Fig 2.4).

At static conditions, there are no fluid flow and the Biot model breaks down to the

Gassmann equation [42]. In the same way as Gassman’s equation 2.24, Biot’s model

relies on determining the dry frame modulus, Ksm and the fluid bulk modulus Kf . In

this work Ksm and Kf is found in the same way as in the HFrU-model.
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The Biot theory only considers fluid flow parallel to the wave propagation direction.

This type of fluid flow is called ”global flow” or ”Biot flow” [55]. Studies have shown that

in a porous rock, there may be many compliant cracks [41, 128, 55]. These compliant

cracks are very sensitive to the pressure changes induced by the acoustic wave, and fluid

will flow in and out of the cracks. This flow is called ”local flow” or ”squirt flow.” Squirt

flow is considered in section 2.5.5. In the original Biot model [23], the pores are assumed

to be circular tubes where in the fluid flows according to Poiseuille’s law. Above a certain

frequency, ft =
πηf

4h2ρf
, where h is the diameter of the tubes, ηf is the fluid viscosity and

ρf is the fluid density, the Poiseuille flow breaks down. For pores with diameter 150 µ,

ft =62 Hz which is far below the frequencies used in this work. Biot extended his model

to be valid for frequencies above ft by defining a parameter describing the deviation

from Poiseuille flow, F . ηf = Fηf0, where ηf0 is the fluid viscosity. ηf is in this work

called the dynamic fluid viscosity. The equations describing this factor, F , are given in

Eqs (3.16), (3.17) and (3.19) in Biot’s second paper in 1956 [161]. There seems to be an

inconsistency due to a typing error in Eq. (3.17), and the factor F is not successfully

implemented in this work using the equations from Biot’s paper. However, a numerical

implementation of the factor F is presented by Leclaire [93] and has also been used by

others [39, 38]. This numerical implementation is used in this work:

F (ξ) =
1

2
+

1

12
(2ξ + e−0.7178(ξ−3.2)) + i

1

6
,

ξ =
h

2

√
ωρf
ηf0

.
(2.34)

Gei et al. [147] give the effective fluid viscosity, ηf0:

ηf0 = Swηw + Sgηg. (2.35)

ηw and ηg are the water and gas viscosities, respectively. The fluid flow is governed by

the viscosity of the fluid, ηf , and the permeability of the sandstone κs. While hydrates

grow inside the pores of the sandstone, the permeability is altered substantially [166,

167, 168]. κs of the hydrate-bearing sandstone now depends on the hydrate growth

pattern, i.e whether hydrates grow on pore walls, or if the hydrates float around in the

pore fluid or if hydrates grow in pore throats, plugging the passage of the fluid flow. A

precise description of this permeability is complex and empirical models are typically

used for different growth patterns [166, 167, 168]. In Eq. (2.36), a simple model for

the permeability in a hydrate-bearing porous rock is presented [166]. κ0 = 1.1 Darcy

is the permeability for Bentheim sandstone without hydrate growth. For Nperm = 2,

this models describes the situation in which hydrates coat the cylindrical walls with a

uniform layer. From Eq. (2.36), Nperm = 0 gives κs = κ0 and the hydrates have no
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affect on the permeability. At Nperm = 0, all hydrates are thus assumed to be forming in

the pore fluid, not affecting the permeability. For Nperm > 2, the hydrates are plugging

the pores in a more efficient way than when hydrates coat the cylindrical walls with a

uniform layer. Thus, when Nperm > 2, hydrates are growing in the frame, blocking the

fluid flow. κs is given [166]

κs = κ0(1− SH)Nperm . (2.36)

Nperm is a paramter used to fit the model with measurements.

A review of the Biot’s theory [23] is given here. Biot developed his theory by consid-

ering the motion along the x1-direction in a cartesian coordinate system. He used the

Lagrange equation to obtain the equations of motion in the solid and in the fluid.

∂

∂t

( ∂L
∂u̇1

)
− ∂L

∂u1
= 0,

∂

∂t

( ∂L
∂U̇1

)
− ∂L

∂U1
= 0.

(2.37)

L = T − V is the lagrangian where T is the kinetic energy and V is the total potential

energy. u̇1 and U̇1 are the time derivative of the particle velocities in the x1-direction

for the solid and the fluid, respectively. The total potential energy can be written as

V = Vl + Vd where Vl is the elastic potential energy and Vd is defined by Leclaire [93] as

the loss in potential energy due to dissipation. Only the kinetic energy in the Lagrangian

is dependent on the particle velocity (u̇1, U̇1) and thus the potential energy cancels out in

the first terms in Eq. (2.37). Only the potential energy in the Lagrangian is dependent on

the particle displacement (u1, U1) and thus the kinetic energy cancels out in the second

terms in the equations 2.37. The elastic forces in the solid and the fluid, respectively,

are defined q1 and Q1. The dissipation forces in x1-direction for the solid and the fluid

are defined f1d and F1d, respectively.

q1 = − ∂Vl
∂u1

, f1d = −∂Vd
∂u1

= − ∂D
∂u̇1

,

Q1 = − ∂Vl
∂U1

, F1d = −∂Vd
∂U1

= − ∂D
∂U̇1

.
(2.38)

D is the dissipation function and is related to the coefficient b as

D =
1

2
b
(

(u̇1 − U̇1)2 + (u̇2 − U̇2)2 + (u̇3 − U̇3)2
)
,

b =
ηfβ

2

κs
.

(2.39)

Inserting the lagrangian, L into Eq. (2.37) and using the definitions in Eq. (2.38) gives
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q1 =
∂

∂t

( ∂T
∂u̇1

)
− ∂D

∂u̇1
,

Q1 =
∂

∂t

( ∂T
∂U̇1

)
− ∂D

∂U̇1

.
(2.40)

To further develop Eq. (2.40), expressions for the kinetic and the potential energy must

be obtained. Biot found such expressions [23], inserted them into Eq. (2.40) and obtained

the equations of motion

N∇2~u+∇
(

(A+N)εs +Qεf

)
=

∂2

∂t2
(ρ11~u+ ρ12

~U) + b
∂

∂t
(~u− ~U),

∇
(
Qεs +Rεf

)
=

∂2

∂t2
(ρ12~u+ ρ22

~U)− b ∂
∂t

(~u− ~U).

(2.41)

~u = u1x̂1 + u2x̂2 + u3x̂3 and ~U = U1x̂1 + U2x̂2 + U3x̂3 are the displacement vectors in

the solid and the fluid, respectively. x̂1, x̂2 and x̂3 are the unit vectors in direction x1,

x2 and x3, respectively. εs = ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

and εf = ∂U1
∂x1

+ ∂U2
∂x2

+ ∂U3
∂x3

are the solid

and fluid dilatations, respectively. ρ11 = (1− β)ρs − ρ12 and ρ22 = βρf − ρ12. ρ12 is the

additional density experienced by the solid due to the motion of the solid into the fluid

[23]. ρ12 is calculated by several authors by considering the drag force of a spherical

solid grain moving through a fluid [169, 93]. In sandstones consisting of quartz-grains,

typically ρ12 = −420 kg/m3 [55].

The parameters A,N,Q,R are found by looking at the stress/strain-relations and

are given in Eq. (2.42). Refer to Biot and Willis [108] for details on the calculation.

N = µsm,

A =
γKsm + β2 + (1− 2β)(1−Ksm/Ks)

γ + 1/Ks −Ksm/K2
s

− 2

3
µsm,

Q =
β(1− β −Ksm/Ks)

γ + 1/Ks −Ksm/K2
s

,

R =
β2

γ + 1/Ks −Ksm/K2
s

,

γ = β(1/Kf − 1/Ks).

(2.42)

Biot [23] solved Eq. (2.41) by using the constants in Eq. (2.42). In this work, instead

of solving Eq. (2.41), Dvorkin and Nur’s modified Biot-squirt model is implemented

[55] and solved. Dvorkin and Nur’s Biot-squirt model is a model of cP and αp in fluid-

saturated porous rocks considering both the global flow and the squirt flow. The model

is used to analyze the measurements of cP and αP in chapter 7. In the Biot theory and

the Biot-squirt model, the medium is assumed to be statistically isotropic. For this to

be valid, the wavelength must be much larger than the pores. By using Fbiot (defined in

Eq. (2.47)), the Dvorkin and Nur’s Biot-squirt equations give the same results as the
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Biot theory solving Eq. (2.41). Attenuation and dispersion due to scattering of sound

waves are discussed in section 2.5.6.

In the following there is a brief review of the Biot-squirt model presented by Dvorkin

and Nur’s [55]. The x1-component in Eq. (2.41) is rewritten into Eq. (2.43) [55]:

(1− β)ρs
∂2u1

∂t2
+ βρf

∂2U1

∂t2
= M

∂2u1

∂x2
1

− αbiot
∂P

∂x1
,

βρf
∂2U1

∂t2
− ρa(

∂2u1

∂t2
− ∂2U1

∂t2
)−

ηfβ
2

κs
(
∂u1

∂t
− ∂U1

∂t
) = −β ∂P

∂x1
,

(2.43)

where P is the pressure and M = Ksm+4/3µsm. The rest of the parameters are defined

in Eq. (2.47). The equation of mass conservation for one-dimensional fluid flow in the

porous rock is

∂βρf
∂t

+
∂(ρfβ(U − u))

∂x
= 0. (2.44)

By introducing u = C1e
i(kx−ωt), U = C2e

i(kx−ωt) and P = P0e
i(kx−ωt) into Eqs. (2.43)-

(2.44), where C1, C2 and P0 are the amplitudes of the waves, a second order equation

was found which has two solutions for the wavenumber, k for the compressional wave:

k2
1

ω2
= − B

2A
+

√( B
2A

)2
− C

A
,

k2
2

ω2
= − B

2A
−
√( B

2A

)2
− C

A
.

(2.45)

From k1 and k2, the wavenumber giving the highest cP = ω/k1,2 is defined as the fast

wave, kfast. The other is the slow wave. The parameters A, B, C are defined

A =
βFbiotM

ρ2
,

B =
Fbiot(2α− β − β ρ1ρ2 )− (M + Fbiot

α2

β )(1 + rhoa
ρ2

+ iωcω )

ρ2
,

C =
ρ1

ρ2
+ (1 +

ρ1

ρ2
)(
ρa
ρ2

+ i
ωc
ω

).

(2.46)

The parameters used in Eq. (2.46) are given
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Fbiot =
( 1

ρfc
2
f

+
1

βQc

)−1
,

M = Ksm +
4

3
µsm,

ρ1 = βρs,

ρ2 = (1− β)ρs,

αbiot = 1−Ksm/Ks,

ρa = −ρ12,

ωc =
ηfβ

κsρf
,

Qc =
Ks

1− β −Ksm/Ks
,

(2.47)

where cf is the sound velocity in the fluid. The results obtained from Eq. (2.45) does

not contain squirt flow as long as the expression for Fbiot in Eq. (2.47) is used, and is a

representation of the Biot theory for compressional waves.

When calculating cP and αP using Eqs. (2.45), (2.46) and (2.47) with hydrates

growing in the frame with uniform water and gas distribution (Eqs. (2.29), (2.27) and

(2.28)) is here called the BiotHFrU-model. cP is calculated using the real part of the

fast wave number, cP = Real( ω
kfast

) and αP is calculated using the imaginary part of

the fast wave number, αP = −imag(kfast).

2.5.5 Biot-squirt model during hydrate growth (BiSqHFrU)

To include squirt flow, Dvorkin and Nur introduced fluid flow in the radial direction

in a cylindrical coordinate system (See Fig. 2.4). The equation of mass conservation

(Eq. (2.44)) was rewritten using cylindrical coordinates with the global fluid flow in the

x1-direction and the squirt flow in the r-direction in a cylindrical coordinate system.

∂βρf
∂t

+
∂(ρfβ(U̇1 − u̇1))

∂x
+∇cyl(ρfβU̇q) = 0. (2.48)

∇ is the del-operator in cylindrical coordinates and Uq is the fluid displacement in the q−
direction seen in Fig. 2.5. As for the Biot-theory, the dot is the time derivative ( ∂∂t). By

introducing u1 = C1e
i(kx1−ωt), U1 = C2e

i(kx1−ωt), Uq = C3e
i(kr−ωt) and P = P0e

i(kx1−ωt)

into Eqs. (2.43) and (2.48) and assuming that the average pressure in the r-direction is

representative for the pressure along the r-axis, a new expression of Fbiot in Eq. (2.47)

was found. Fsq is used instead of Fbiot in Eq. (2.47) [55]:

45



Fsq = Fbiot

(
1− 2J1(λRsq)

λRJ0(λRsq)

)
,

λ =

√
ρfω2

Fbiot

(β + ρa/ρf
β

+ i
ωc
ω

)
.

(2.49)

Rsq is a parameter describing the distance of the fluid flow in the r-direction and is called

”squirt flow length” (See Fig. 2.4 b)). Rsq is typically set to be close to the grain radius

of the porous rock [55]. As the model is not consistent with the Gassmann equation at

low frequencies [42], the model has been critizied [170]. However, the model has been

used widely to account for squirt flow [105, 149, 171] and has also been used in this work.

When calculating αP using Eqs. (2.45), (2.46) and replacing Fbiot in Eq. (2.47)

with Fsq (Eq. 2.49) and letting hydrates grow in the frame with uniform water and

gas distribution (Eqs. (2.29), (2.27) and (2.28)) is here called the BiSqHFrU-model. cP

is calculated using the real part of the fast wave number, cP = Real( ω
kfast

) and αP is

calculated using the imaginary part of the fast wave number, αP = −imag(kfast). No

attempt has been made to alter the squirting length, R, due to closing pores during

hydrate growth. Different values of Nperm is used in the model and Nperm is defined in

chapter 7.

2.5.6 Multiple scattering model during hydrate growth (WaTrHFrU)

Waterman and Truell [56] found a model describing the effective, complex wave number,

k, through a medium containing n0 identical scatterers. The model has been seen to

be valid for volume fractions of scatterers below 0.3 [135] and used to find cP and αP

in porous media [135, 138, 136, 134]. In this work, the total volume of the scatterers

(Vscat) is approximated by the gas and water volume in the HFr-model (Fig. 2.3 B)).

In each simulation, all scatterers are spherical and have the same radius (Rscat). The

model is used to investigate whether spherical heterogeneities with different effective

radii (Rscat =100 µm, 500 µm, 700 µm and 1000 µm) inside the Bentheim sandstones

might attenuate the acoustic wave.

Hydrates are assumed to grow into the frame in the scattering model used in this

work, thus contributing to the effective background medium needed in the multiple

scattering model (wavenumber k0 in Eq. (2.50)). Such an effective background medium

has been previously used by for example Ciz et al. [136] togeher with Waterman and

Truell’s scattering theory. Sw0 contributes to this effective background medium because

it is calclulated with the HFrU-model. When hydrates grow into the frame, the porosity

is reduced. The left pore space is described with n0 spherical inclusions. To avoid

confusion, it is worth noting that when Sw0 > 0, the background medium calculated
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with the HFrU-model medium contains water. However, the inclusions used in the

scattering model are only treated as either 100 % water inclusions or cavities (vacuum).

In other words Sw0 used to calculate the background medium is not used to calculated

the scatterer properties. In the models using water as scatterers, Eq. (2.58) is used to

calculate the scattering coefficients An used in Eq. (2.52). In the models using methane

gas as scatterers, Eq. (2.60) is used to calculate the scattering coefficients An.

As hydrates grow, the volume of the scatterers decrease according to Eq. (2.18).

By approximating the pore space not occupied by methane hydrates in Fig. 2.3 B) by

spherical inclusions (either water-inclusions or cavities), Waterman and Truell’s multiple

scattering theory [56] can be used to calculate the effective complex wave number, k, of

the porous rock: ( k
k0

)2
=
[
1 +

2πn0f(0)

k2
0

]
−
[2πn0f(π)

k2
0

]2
. (2.50)

N0 is related to the total volume fraction of scatterers, Vscat and the radius of the

scatterers, Rscat:

n0
4

3
πR3

scat = Vscat. (2.51)

Different values of Rscat will be used when presenting the results in Ch. 7. Vscat will

decrease with increasing hydrate saturation. f(0), and f(π) in Eq. (2.50) are called the

forward and backward scattering far-field amplitudes, respectively [56], and are given:

f(0) =
1

ik

∞∑
n=0

(2n+ 1)An,

f(π) =
1

ik

∞∑
n=0

(−1)n(2n+ 1)An.

(2.52)

k0 is the wave number of the background medium. Refer to Waterman and Truell [56]

for details. Two different versions are implemented for the WaTrHFrU-model. One

version where inviscid fluid inclusions act as scatterers. In this case An is calculated

using Eq. (2.58). In the second version, the inclusions are spherical cavities and An is

calculated with Eq. (2.60). This two versions are not given specific names, they are both

referred to as the WaTrHFrU-model. In this simple model, hydrate does not contribute

to scattering. When hydrates fill a pore, Vscat reduces.

In the WaTrHFrU-model, the HFrU-model is used to calculate the compressional wave

velocity of the background medium, cHFrU , to obtain k0 = ω/cHFrU (see Sect. 2.5.2).

Next αP = −imag(k) is calculated using Eq. (2.50) and the scattering coefficients, An

from either Eq. (2.58) or Eq. (2.60).
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Scattering coefficients

An is the compressional wave scattering coefficient of a single scatterer and is needed in

Waterman and Truell’s multiple scattering model, Eq. (2.50). The compressional wave

scattering coefficients for a spherical inclusion in an elastic medium were investigated

by Ying and Truell [139]. A compact way of calculating these scattering coefficients

were presented by Mao and Pao [140]. A plane elastic wave may be decomposed into a

translational and a rotational part [93]: An non-rotational vector corresponding to trans-

lations of matter without shear deformations and a vector without divergence describing

rotations without volume change. Here this is done by introducing the non-rotational

displacement scalar potential, Φ and the divergence-free displacement vector potential,

Ψ. For an elastic isotropic medium, the displacement vector, ~u and the stress tensor T̃

can thus be written [140]:

~u =∇sΦ +∇s × (~eΦ
∂Ψ

∂θ
)

τ̃ =λ(∇s · ~u)[I] + 2µ(∇s~u+ ~u∇s).
(2.53)

λ is the Lame’s first parameter, [I] is the identity matrix, ∇s is the del-operator in

spherical coordinates, θ is the polar angle shown in Fig. 2.5. ~eφ is the unit vector

along the azimuth angle, φ. λ1 and λ2, are the Lame’s first parameters outside and

inside the scatterer, respectively. ρ1 and ρ2 are the densities outside and inside the

scatterer, respectively. µ1 and µ2 are the shear moduli insisde and outside the scatterer,

respectively. r is the distance from origo, O. q is the radial distance. The arrows beneath

the figure illustrate the incoming plane wave.

The incident plane compressional wave on a scatterer in spherical coordinates can be

described with the two incoming displacement potentials [140]:

Φi = Φ0

∞∑
n=0

(2n+ 1)injn(kP1r)Pn(cos(θ))

Ψi = 0

(2.54)

where Φ0 is the amplitude of the incoming wave, jn is the spherical Bessel function of

the first kind of order n. kP1 is the compressional wavenumber in medium 1. Pn is the

Legendre polynomial of order n. The reflected wave is given [140]:

Φr =
∞∑
n=0

Anhn(kP1r)Pn(cos(θ)),

Ψr =
∞∑
n=0

Bnhn(kS1r)Pn(cos(θ))

(2.55)
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where kS1 is the shear wavenumber in medium 1. Bn is the shear wave scattering

coefficient. hn is the spherical Hankel function of first kind, order n. The refracted wave

is given [140]:

Φf =

∞∑
n=0

Cnjn(kP2r)Pn(cos(θ))

~Ψf =
∞∑
n=0

Dnjn(kS2r)Pn(cos(θ))

(2.56)

kP2 and kS2 are the compressional and shear wave numbers, respectively, in the scat-

terer (medium 2). Cn and Dn are the amplitude coefficients of the shear wave and the

compressional wave inside the inclusions.

x1

x3

x2

Figure 2.5: Spherical coordinate system with he directions x1 = x, x2 = y and x3 = z.

The other symbols are described in the text above. This figure is found in the work of

Pao and Mow [140].
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Inviscid fluid inclusions

For spherical inviscid fluid inclusions, continuity in displacement and traction through

the boundary gives the following boundary conditions [140]:

uir + urr = ufr ,

τ irr + τ rrr = τ frr,

τ irθ + τ rrθ = 0.

(2.57)

uir is the r-component of the incoming displacement-vector. urr is the r-component of

the reflected displacement-vector. uiθ is the θ-component of the incoming displacement-

vector. urθ is the θ-component of the reflected displacement-vector. ufr is the r-component

of the refracted displacement-vector. ufθ is the θ-component of the refracted displacement-

vector.

τ irr is the rr-component of the incoming stress field. τ rrr is the rr-component of the

reflected stress field. τ frr is the rr-component of the refracted stress field. τ irθ is the

rθ-component of the incoming stress field. τ rrθ is the rθ-component of the reflected stress

field.

Using the boundary conditions with the equations for displacement and stress, Eq.

(2.53) and inserting the potentials from Eqs. (2.54 - 2.56), gives a system of equations
E11 E12 E13

E31 E32 Ef33

E41 E42 0



An

Bn

Cn

 = Φ0


E1

E3

E4

 , (2.58)

where all values of Eij (also Ef33) are given by Pao [140]. For Pao’s equations to be

consistent with Waterman and Truell’s, Φ0 = 1
(2n+1)in [56, 140]. From Eq. (2.58) the

inviscid fluid single scatterers coefficients, An, are calculated.

Cavity inclusions

For spherical cavity inclusions, the boundary conditions are [140]

τ irr + τ rrr = 0,

τ irθ + τ rrθ = 0,
(2.59)

giving the system of equation[
E31 E32

E41 E42

][
An

Bn

]
= Φ0

[
E3

E4

]
. (2.60)
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2.5.7 Combined scattering and Biot-squirt flow model during hydrate

growth (WaTrBiSqHFrU)

In this model an attempt to model attenuation mechanisms due to scattering, global

flow and squirt flow is made. This is the same model as the WaTrHFrU-model (Sect.

2.5.6), however, instead of using the HFrU-model to obtain the background medium,

the BiSqHFrU-model during hydrate growth is used instead. This model is called the

WaTrBiSqHFrU-model.

51



52



Chapter 3

Measurement methods and

experimental setup

In this chapter, the measurement methods and experimental setup for monitoring the

acoustic properties (cP , cS and αP ) for a porous sandstone during hydrate growth is

presented. In Sect. 3.1, the setup for the pressure cell used for growing hydrates, in

which acoustic measurements are conducted, will be shown. The pressure cell has been

used for years at the hydrate laboratory at the University of Bergen but not not for

acoustic measurements.

In this work, equipment for acoustic measurements has been added to the existing

experimental setup to conduct acoustic measurements inside the pressure cell. A custom

made transducer holder with a custom made electrical feedthrough has been used with

the pressure cell. This equipment is presented in Sect. 3.2. The solid buffer method,

which is employed inside the pressure cell, is presented in Sect. 3.3. The immersion

method has been used as a reference method to compare with the solid buffer method

and is described in Sect. 3.4. The immersion method is also used to measure acoustic

properties in materials used in the transducer construction and for FE-modeling. Dif-

ferent signal processing techniques for use with the acoustic measurement methods are

are presented in Sect. 3.5. An example of the use of the Fourier spectrum method is

given. To characterize the electrical conductance of the in-house built transducers, an

impedance analyzer has been used and described in Sect. 3.6.

3.1 Pressure cell and experimental setup for hydrate growth

The conditions used for hydrate growth in this work, are pressure 83 bar and temperature

4 ◦C. As seen in Fig. 2.2 these conditions are inside the methane hydrate stability zone.
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These conditions are achieved inside the pressure cell used in this experimental setup

(Figs. 3.1 and 3.2).

The experimental equipment used for achieving the methane hydrate conditions can

be divided into four main parts: 1) The pressure cell, where the sandstone is placed and

hydrates form (number 5 in Fig. 3.1). 2) the gas pressure tank, storing and providing

the methane gas to the experiment, Fig. 3.3 a). 3) the pressure regulating pump, which

accurately regulates the pressure inside the pressure cell to be 83 bar, Fig. 3.3 b). 4) the

cooling system, lowering the temperature in the pressure cell from room temperature to

4 ◦C (number 11 in Fig. 3.1). The rest of the equipment and the use of it in Fig. 3.1

are described in section 3.3.

Figure 3.1: Experimental setup for acoustic measurements inside the pressure cell. 1:

Signal generator, 2: Power amplifier, 3: Attenuator, 4: Matching filter, 5: Pressure

cell, 6: Matching filter, 7: Signal amplifier, 8: HP high pass filter, 9: Oscilloscope, 10:

Logging computer, 11: Cooling pump.

Methane gas, which is injected into the pressure cell, is stored on a pressure tank

certified for gas pressure up to 200 bar. Through a valve, some of this gas is let into

the closed loop system containing the pressure cell and the pressure regulating pump

(Fig. 3.2). Inside the pressure regulating pump there is a volume controlled by a piston.

When the piston moves, the volume inside the pressure pump and thus the pressure in

the closed system changes.
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After closing the valve (see Fig. 3.2), the pressure in the closed loop is monitored

for about 24 hours to detect any gas leaks out of the pressure cell. Potential leaks are

located by spraying thick, liquid soap onto joints, gas inlets, electrical feedthroughs etc.

and looking for bubbles. An extensive description of the measurement setup for hydrate

formation, without the transducer holders, is given by Almenningen [152].

Figure 3.2: Schematic of the main parts of the experimental setup for hydrate growth.

Dimensions and more details are shown in Fig. 3.8.

If there are no leakages after 24 hours, the refrigerator pump is turned on, looping

water through the pressure cell, cooling the system down to 4 ◦C, see Fig. 3.2. In this

experimental setup, the water looping through the pressure cell was cooled to 1.5 ◦C to

maintain 4 ◦C in the pressure cell. After several hours, when the temperature in the

inner chamber approaches 4 ◦C, hydrates start to form inside the sandstone specimen.

As hydrates form, methane gas is consumed and the methane gas volume inside the

pressure regulating pump is logged. The total volume of methane gas, VH , consumed

by hydrate formation can be found by using the iteration scheme in section 2.1.3. The

methane hydrate saturation, SH , in the pore volume, Vpore can then be found by

SH =
VH
Vpore

. (3.1)

Since Bentheim sandstones are almost pure quartz (99 % quartz), the pore volume Vpore

is calculated by first vacuuming and drying the Bentheim specimen, then weighing and
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measuring the dimensions of the the dry specimen. The volume of the Bentheim speci-

men, density of pure quartz (2650 kg/m3) and the mass of the dry Bentheim specimen,

the pore volume is found. Similarily to SH , the initial water saturation (Sw0) is found:

Sw0 =
Vw0

Vpore
, (3.2)

where Vw0 is the volume of water inside the pores before hydrates start to grow.

The inner chamber of the pressure cell is cylindrical and sealed with a rubber-sleeve

open in both ends, see Fig. 3.2. In this inner chamber, the test specimen and the

transducer holders with the transmitting and the receiving transducers are placed. Oil

under pressure squeezes the sleeve firmly around the specimen, the transducer holders

and the threaded end-pieces. This squeezing prevents gas from creeping out, between the

rubber sleeve and the transducer holder. The transducer holders are described further

in section 3.2.

(a) (b)

Figure 3.3: Photographs of a) Methane gas on pressure tank (200 bar). b) Pressure

regulating pump.

The oil to methane gas differential pressure is set to be approximately 30 bar for the

cell to be pressure tight, i.e. oil pressure at 110 bar when the methane gas pressure is 83

bar. All components inside the inner chamber must be cylindrical and have a diameter

56



that fits the inner chamber so that the inner sleeve doesn’t bulge inwards and tear. The

components must also be strong enough to withstand the differential pressure of 30 bar.

In Fig. 3.2 there is a small glitch between the transducer-holders and the specimen,

leaving the inner sleeve unsupported. For the sleeve to not bulge inwards and tear, such

glitches can only be a few millimeter wide. In this setup, these glitches are less than 2

mm. The absolute oil pressure must always be higher than the absolute pressure inside

the pressure cell so that the sleeve does not bulge outwards, into the oil chamber.

3.2 Transducer holders and electrical feedthrough

The experimental setup for the pressure cell has been proven pressure tight without

the use of acoustic measurement equipment [152]. In this work, however, two new

components are introduced and must be proven pressure tight to satisfy the ”no-leak”

condition of maximum 3ml/24 hours leak rate at the methane hydrate laboratory at the

University of Bergen. The transducer holder and the electrical feedthrough are shown

in Fig. 3.4 and as a component in the measurement setup in Fig. 3.8. The transducer

holders with the electrical feedthrough have two main functions: holding the transducers

in a fixed position during acoustic measurements and act as the pressure barrier to the

atmospheric conditions outside the pressure cell.

3.2.1 Transducer holders

The transducer holders are acting as the pressure barrier and are aligning the transducers,

making reproducible acoustic measurements possible. The transducer holders are turned

out of solid pieces of aluminum at the mechanical workshop at the University of Bergen.

All turning and use of a lathe in this work, is done on the mechanical workshop. The

transducers and the buffers are glued together to have as few loose parts as possible inside

the pressure cell (detailed in Ch. 4: transducer design). In Fig. 3.4, the transducer-

buffer construction is shown. The holders are designed so that the transducers with the

buffers are sticking out approximately 2 mm (exaggerated in Fig. 3.4). The acoustic

energy can now by radiated directly into the specimen, as shown in Fig. 3.2.

Inside the transducer-holder, there is a plexiglas ring, and a plexiglas cup made to

centralize the transducers. Grooves in the plexiglas cup and the plexiglas ring ensures

that gas may pass through. In section 3.3 it is described how a torque wrench is used

to apply a net force on the transducer. The rubber ring between the plexiglas cup and

the transducer makes sure that the torque exerted on the transducer holder, uniformly

transfers to a net force on the transducers.
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Behind the plexiglas cups are some room for the cable to bend and adjust, so that

e.g an unwanted rotation of the transducer will not twist and damage the cable. The

diameter of the transducer holder is the same as the specimen, 50 mm. The sleeve inside

the pressure cell will clamp on the transducer holders so that no gas can leak out, along

the sides of the transducer holders. The transducer holder shown in Fig. 3.4 is made of

a aluminum cylinder having 5 mm thick walls with inner radius 40 mm and open in one

end. Threads are drilled in through the base of the aluminum cup, for the gas inlet and

for the electrical feedthrough. Swagalock fittings (1/8”) have been used for the gas inlet.

A conax plug (1/4”) is used to seal a custom made electrical feedthrough for transferring

electrical power into the pressure cell.

50 mm

15 cm

10 cm
Swagelok tubing

Swagelok plug

Conax plug

Electrical feedthrough Coax cable

35 mm

Plexiglas cup

with grooves
Plexiglas ring

with grooves

Rubber ring

2 mm

Transducer and buffer

Figure 3.4: Schematics of the transducer holder

3.2.2 Electrical feedthrough

The electrical feedthrough enables transfer of electrical power to the transducer inside

the pressure cell, without gas leakage. The signal wire is threaded through a 10 cm long

steel pipe. The steel pipe with the wire is then potted with polyurethane so that the

steel pipe with the wire is pressure tight, see Fig. 3.5. A PG2 Conax plug is then used

to seal the steel pipe, as seen in Fig. 3.4.

Tapered threads are drilled into the transducer holder so that a PG2 Conax plug

1/4” can be screwed into the transducer holder. The steel pipe has 1/4” outer diameter

and wall thickness 1.5 mm. The last centimeter at one of the ends is tapered so that

the wall thickness is 2 mm at the far end, see Fig. 3.5. A 1 cm long PVC-cylinder with
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outer diameter equal to the steel pipe inner diameter is machined in the turning-lathe

at the mechanical workshop. A 0.5 mm hole for the signal wire is drilled through the

center of the PVC cylinder. The PVC-cylinder acts as a plug and is squeezed down

through the pipe, down to the tapered end. Now, Solr-Res 01 polyurethane is pressed

into the the steel cylinder from the non-tapered end, filling the steel pipe completely.

Finally, a 0.5 mm single copper wire is threaded through the steel pipe, from the tapered

end, through the hole in the PVC-plug and through the steel pipe. After curing, this is

a pressure tight electrical feedthrough where the high pressure side is the non-tapered

end. The shield of a coax-cable is glued to the inside of the steel pipe, on the tapered

end, with silver paint. The space behind the PVC-plug is then filled with 5 min rapidly

drying epoxy from Loctite. Now, the coax-shield is cemented in position and will not

come in touch with the single copper wire in the steel pipe. The inner wire of the coax

cable is soldered on the single wire in the steel pipe. A small Lemo-connector with outer

diameter less than 1/4” is attached to the coax cable. On the transducer side, almost

the same procedure is repeated. The transducer cable is 3 cm long. The shield is glued

with silver paint and epoxy to the steel pipe on the outside. The inner wire is soldered

onto the copper-wire in the steel pipe. Some rapidly drying epoxy is used to make sure

the shield and the signal wire are not in contact. The electrical feedthrough now acts as

a solid coax cable with an outer steel shield.

Figure 3.5: Schematics of the electrical feedthrough.
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Different potting materials and construction designs of electrical feedthroughs were

tested for use with the pressure cell before the design of the electrical feedthrough pre-

sented in Fig, 3.5 was found.

3.3 Solid buffer method inside pressure cell

The solid buffer method is widely used for measuring acoustic properties of rocks under

pressure [22, 21, 30, 31, 32, 33, 34, 35]. To monitor the changes of acoustic properties in

a Bentheim sandstone specimen during methane hydrate growth, the solid buffer method

is employed inside the pressure cell at methane hydrate conditions (83 bar, 4 ◦C). In

this work, the acoustic parameters of interest are the compressional wave velocity, the

shear wave velocity and the compressional wave attenuation coefficient. The term ”wave

velocities” is often referring to both the compressional wave velocity and the shear wave

velocity.

3.3.1 Experimental setup

In the solid buffer method, two different measurement setups are used: Measurement A

without specimen inserted, and measurement B with the specimen inserted into the wave

propagation path. The compressional and shear wave velocities and the compressional

wave attenuation coefficients for the specimen are found by comparing measurement A

and measurement B.

In the measurements, in-house constructed shear-wave and compressional-wave trans-

ducers, with center frequencies 460 kHz and 560 kHz, respectively, have been used. Two

block diagrams for the different components in the measurement setups for measurement

A and measurement B are shown in Fig. 3.6. The only thing separating the diagrams is

the specimen inserted in measurement B.

The transmitting transducer is driven by an Agilent 33250A signal generator, con-

nected to an ENI 240L RF power amplifier and a simple impedance matching filter. The

power amplifier has a gain of 50 dB. A picture of the measurement setup is shown in

Fig. 3.1. In the measurement setup, there is an attenuator which is meant for use if

the smallest possible voltage output from the signal generator is too high (number 3

in Fig. 3.1). To ensure that the transducers will not be damaged, the signal from the

signal generator never exceeds 100 mV. Still, a too high voltage (below 100 mV) has

been seen to give non-linear effects or produce signals larger than the oscilloscope can

handle. This is the case for measurement A for the solid buffer method. Even for the

lowest possible output signal from the signal generator, 1 mV, a distorted signal is seen
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on the oscilloscope for measurement A. To avoid this distorted signal in measurement

A, the attenuator is attenuating the signal 20 dB. No disortion is seen in measurement

A after the 20 dB attenuation.

When the Bentheim sandstone is inserted (measurement B), no distortion is seen by

dynamically changing the voltage from the signal generator with the logging script. Dur-

ing measurement B, the attenuator is still present in the measurement setup, however,

it is set to give no extra attenuation, i.e attenuation 0 dB. A simple test is performed

to investigate whether there is any difference in the phase response of the attenuator

at 0 dB and 20 dB. By examining the steady-state portion of different electrical signals

having frequencies 250 kHz, 500 kHz and 1 MHz, passing through the attenuator, no

time-shift is seen in the signal using the attenuator settings 0 dB, 10 dB, 20 dB, 30 dB,

40 dB and 50 dB. This means that the phase response of the attenuator is the same in

measurement A and measurement B.

Maximum power is transmitted from a source to a load (here a transducer) when

Zs = ZconjT , where Zs is the output impedance of the source and ZconjT is the complex

conjugate of the input impedance of the transducer. The output and input impedances

of the signal generator and power amplifier are listed to be 50 Ω [172, 173]. The input

and output impedances of the attenuator is assumed to be 50 Ω as well. The input

impedances of the transducers have an reactive and resistive part. In this work no

attempt is performed to match the resistive part of Zs (50 Ω) and ZT . However, an

inductor is put in series with the transmitting transducer intending to satisfy Xs = 0 =

ωL + XT , at 500 kHz, where Xs is the output reactance seen from the output ports of

the attenuator. L is the inductance of the inductor and XT is the input reactance of the

transducer. The reactance of the transducer, XT is measured to be approximately 200

Ω at 500 kHz. To satisfy the equation 0 = ωL+XT , L should be 64 µH, however, 33 µH

inductors where used. The same impedance-matching principle is used on the receiving

side. Now, the output impedance seen at the transducer output ports is matched with the

input impedance on the signal amplifier using the same matching principle as described

above. In this work, an increase of signal transmission from transducer to transducer of

approximately 10 % is seen by using the inductor matching filters.

For the hydrate measurements, a 1 cycle pulse with frequency 500 kHz is used. The

burst repetition rate of the signal generator is set to be 50 ms. The amplitude needed for

the signal to propagate through the porous sandstone depends heavily on the amount

of hydrate present in the sandstone. In the measurements, the amplitude of the signal

from the signal generator is initially set to 100 mV. The oscilloscope volts/div-setting

is then adjusted to the signal. No distortion is seen in the signal at these settings. By
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changing the signal generator input voltage from 100 mV to 50 mV, no change in the

phase is seen in the recorded signal. However, the amplitude of the signal seen on the

oscilloscope is not linearly scaling by changing the signal generator input voltage from

100 mV to 50 mV. From this, it is assumed that non-linear effects are negligible for cP

and cS-measurements but not negligible for αP measurements. Signal generator input

voltage amplitudes below 50 mV give a weak acoustic signal before hydrate growth,

which is hard to record on the oscilloscope. An extensively study of non-linear effects

is not conducted in this work. However, during hydrate growth, the attenuation in

the specimen is seen to greatly reduce. Now the acoustic signal can be recorded at a

much lower signal generator emf. At hydrate saturation 0.2, the signal generator emf is

typically reduced to 10 mV. It is assumed that there are no non-linear effects affecting

αP -measurements for SH higher than 0.2. For hydrate bearing Bentheim sandstones,

αP -measurements are only presented for SH higher than 0.2.

By having the volts/div setting on the oscilloscope fixed and instead dynamically

change the voltage from the signal generator to fit the signal inside the oscilloscope

window distortion of the signal is avoided. The signal generator amplitude settings are

dynamically changed from 100 mV to 1 mV during the hydrate growth experiment.

When the signal amplitude from the signal generator is at the lowest possible value (1

mV), the oscilloscope window settings are changed to acquire the signal.

One measurement series of the acoustic properties of a Bentheim sandstone during

hydrate growth may last for up to 10 days. A robust and automatic logging script is thus

needed to measure the acoustic signal. A logging script was developed able to change the

frequency, number of cycles and the voltage of the input signal, as well as automatically

finding a suitable window on the oscilloscope (see appendix A for the logging script). The

acquired time and voltage signal is saved in addition to the time of each measurement,

and all the input parameters listed above. The signal was logged and saved every 15

min giving approximately 100 saved data files every day.

A too high signal amplitude can damage the equipment and also lead to non-linear

effects. Potential electrical shortcuts and damaged electrical equipment due to high

voltages are of extra concern in a methane gas laboratory. The Eni power amplifier used

is capable of delivering high power, thus it is very important that the maximum limit of

100 mV is never exceeded.
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Figure 3.6: Schematic overview of the solid buffer method used inside the pressure cell.

a) Measurement A, b) Measurement B.

The receiving transducer is connected to the matching filter and then to a Panamet-

rics Ultrasonic Preamp with gain 60 dB and a HP high-pass filter with cutoff-frequency

200 kHz. Because of the large attenuation coefficient in porous materials, lower frequency

components may dominate in the signal. The HP filter is used as a high-pass filter to

ensure that the signal frequency is detectable. A Tektronix DPO 3012 oscilloscope ac-

quires the signal by continuously averaging 256 measured signals. The signal acquired by

the oscilloscope is triggered externally by the pulse from the signal generator. The script
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(presented in appendix A) ensures that measurements are taken every 15 min during the

test period. The signal generator is controlled by the PC via GPIB communication and

the signal is acquired with the oscilloscope via an USB connection.

The acoustic measurement equipment in Fig. 3.1 is also used for measurements on

plexiglas at atmospheric pressure. These measurements are conducted to validate the

solid buffer method and investigate the effect of unwanted sidewall reflections (presented

in Ch. 6). In these measurements the exact same measurement setup is used, apart from

that the power amplifier and the attenuator is bypassed. The transmitting transducer is

excited with both one cylce pulses and 10 cycles bursts with signal amplitudes 20 mV.

3.3.2 Measurements

As described above, the solid buffer method, transducers and other components have

been custom made to fit inside the pressure cell, see fig. 3.8. The available space inside

the pressure cell is a tube with inner diameter 50 mm and length 30 cm. Methane gas

will be flowing inside the pressure cell and the porous rock needs to have a certain surface

exposed to the gas for the gas to efficiently seep into the porous rock. The diameters of

the constructed transducers and the buffers must therefore be a little smaller, 35 mm.

The design of the transducer with dimensions is presented in Ch. 4.

In an ideal measurement setup for the solid buffer method, the buffers and the speci-

men would have a much wider diameter to avoid sidewall reflections. This is however not

feasible in the current hydrate laboratory at the University of Bergen. The acoustic waves

may be reflected from the sidewalls of the buffers and interfere with the direct signal.

The effect of these unwanted sidewall-reflections on the measurements have been seen to

not be critical compared with other uncertainties in the measurements. Sidewall reflec-

tions and uncertainty contributions are discussed in Ch. 6. Acoustic measurements have

been conducted on cylindrical Bentheim sandstone specimen, during hydrate growth,

having length 4-6 cm and diameter 50 mm. Measurements on plexiglas have also been

conducted to quantify the effect of the sidewall reflections. The length of these specimen

are 20 mm and 60 mm with diameter 50 mm. The specimen are shown in Fig. 3.7.

To make the acoustic measurements reproducible, the acoustic transmission through

the buffer/specimen interfaces must be the same in all measurements. The transducers

with buffers have to be pressed together with the same force, or if the specimen is present,

the two transducers with buffers must be pressed towards the specimen with the same

force in all measurements. As descried in section 3.2.1, this is done using the custom

made transducer holders. They are designed so that the transducers are aligned and

centralized. A force is exerted on the transducer-holder by applying a torque wrench on
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the torque key adapter that is attached to the threaded end-pieces, see Fig. 3.8 and fig.

3.9. A flexible rubber-ring inside the transducer-holder ensures that a force exerted on

the transducer-holder is uniformly transfered to the transducer. In all measurements, a

torque of 10 Nm is used.

Figure 3.7: Photographs of specimen used in the solid buffer method. The Bentheim

sandstone has length 4.8 cm and diameter 50 mm. The plexiglas specimen have lengths

20 mm and 60 mm and diameter 50 mm.

Gas inlet

Figure 3.8: Detailed schematic overview of the components inside the pressure cell.

Coupling fluid is applied on the P-wave transducers. On the S-wave transducers, a

thin film of polyurethane is covering the surface of the buffers, acting as a coupling layer.

A more detailed description of the design of the transducers and the transducer holders

is presented in Ch. 4 and in Sect. 3.2, respectively.

Care must be taken when screwing in the end-pieces. The friction between the

transducer holder and the end-piece may be so large that the transducer holder also

may rotate inside the pressure cell. The signal transmitted from the compressional wave

transducers are symmetric and the signal is therefore not affected by the rotation of

the transducers. On the contrary, the shear waves from the shear wave transducers are
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asymmetric by nature and a rotation of the transducers will affect the received signal

in both phase and magnitude. The transducer holders may also twist while the the

transducer itself stays fixed due to the friction against the specimen. A rotation of the

transducer holder while the transducer stays fixed may twist the cable of the transducer

so that it eventually snaps. This is further detailed in Ch. 4. Some considerations on

the uncertainties of the measurements are given in Ch. 6.

Figure 3.9: Torque wrench used on the torque key adapter attached on the transducer

holder.

3.3.3 System model for the solid buffer method

To describe the measurements conducted with the solid buffer method in this work, block

diagrams are used. Block diagrams of measurement A and measurement B are shown in

Fig. 3.11 a) and b), respectively. Each block may be described with a transfer function,

which enables a mathematical description of the measurement system.

Probes generating compressional or shear waves in a solid have previously been mod-

eled with a traction on the surface of the transmitter [174, 175, 176]. Such a transducer

description has also been used here. In the system model used to describe the measure-

ments in this chapter, numbered nodes may lead to confusion if x1 and x3 where used

to describe the directions. Due to this x and z-coordinates are used. In Fig. 3.10, a

cartesian coordinate system used for describing the solid buffer method is shown. For

compressional waves, the traction vector is pointing in the direction of the receiving

transducer, z-direction, and for shear waves, the traction vector is pointing in the x-

direction. The y-axis is directed inwards in into the paper, ”Tx” and ”Rx” are the

transmitting and receiving transducers, respectively, ”buff” are the buffers and ”Med”

is the specimen. In the following description, tz is the traction vector component in the

z-direction, tx is the traction vector component in in the x-direction. To avoid describing
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two almost identical models for shear wave measurements and compressional wave mea-

surements, ∗ decides whether compressional waves or shear waves are measured. ∗ = z

for compressional wave measurements and ∗ = x for shear wave measurements.

;

Figure 3.10: Shows the coordinate system used for the system model. Here the acoustic

transducers with buffers and specimen for measurement B is shown as an illustration.

Schmerr and Song [177], Niklasson et. al. [174], Bostrom et. al. [175] and Eriksson et.

al. [176] use system models and transfer functions to describe acoustic wave propagation.

None of these studies have addressed unwanted acoustic reflections from e.g. sidewalls

as they define the traction in an elastic half-space. The half-space is analogue to the

free-field conditions in a fluid. In the solid buffer method used in this work, some

unwanted reflections will be present. To the best of this author’s knowledge, there are

no established system models for quantitatively including such unwanted reflections. In

this work, transfer functions including unwanted reflections have been defined so that

unwanted reflections can be addressed in a more formal way (Eq. (3.5)). To quantify

such reflections, finite element simulations are presented in Ch. 5 and 6.

In Fig. 3.11, system models for measurement A and measurement B, respectively, are

shown for the solid buffer method. The different blocks represent the transfer functions of

components of the measurement setup shown in Fig. 3.6. In between every block, a node

is defined. Either voltage, V , or the on-axis traction vector, t, is defined at each of these

nodes, labeled with a number. Here, the ”on-axis” is defined by the symmetry-axis of the

transducers (along z-axis, x=0 in Fig. 3.10). All variables are in the frequency domain.

Each variable is labeled with the node number and A or B, denoting measurement A or

measurement B, respectively. r is labeling a variable containing acoustic and electrical

reflections from all directions in addition to noise.

For measurement A, the input voltage on the signal generator, transmitting electron-

ics and the transmitting transducer are denoted as V0,A, V1,Ar and V2,Ar, respectively.

The transmitting electronics corresponds to the power amplifier, attenuator and match-

ing filter shown in Fig. 3.6 a). The input voltage is assumed to be the same as the emf
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of the signal generator. t∗3,A denotes the on-axis ∗-component of the traction vector (z

or y-component) at the transmitting transducer’s front surface. t∗4,A denotes the on-axis

∗-component of the traction vector at the buffer-buffer interface. That is, between the

buffer attached to the transmitting transducer (buffer 1) and the buffer attached to the

receiving transducer (buffer 2). t∗5,A denotes the on-axis ∗-component of the traction

vector at the receiving transducer’s front surface. V6,Ar and V7,Ar denote the input volt-

age on the receiving electronics and oscilloscope, respectively. The receiving electronics

is the matching filter, signal amplifier and filter, shown in Fig. 3.6 a).

For measurement B, the input voltage on the signal generator, transmitting electron-

ics and the transmitting transducer are denoted as V0,B, V1,Br and V2,Br, respectively.

Here, the transmitting electronics corresponds to the power amplifier, attenuator and

matching filter shown in Fig. 3.6 b). The input voltage is assumed to be the same as

the emf of the signal generator. t∗3,B denotes the on-axis ∗-component of the traction

vector (z or x-component) at the transmitting transducer’s front surface. t∗4,B denotes

the on-axis ∗-component of the traction vector at the buffer-specimen interface on the

transmitting side. t∗5,B denotes the on-axis ∗-component of the traction vector at the

specimen-buffer interface at the receiving side. t∗6,B denotes the on-axis ∗-component of

the traction vector at the receiving transducer’s front surface. V7,Br and V8,Br denote the

input voltage on the receiving electronics and oscilloscope, respectively. The receiving

electronics is the matching filter, signal amplifier and filter, shown in Fig. 3.6 b).

(a)

(b)

Figure 3.11: System model of the solid buffer method presented as a block diagram. a)

Measurement A. b) Measurement B.
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Mathematically, the system model for measurement A and B can be written

V7,Ar = V0,A
V1,Ar

V0,A

V2,Ar

V1,Ar

t∗3,Ar
V2,Ar

t∗4,Ar
t∗3,Ar

t∗5,Ar
t∗4,Ar

V6,Ar

t∗5,Ar

V7,Ar

V6,Ar
, (3.3)

V8,Br = V0,B
V1,Br

V0,B

V2,Br

V1,Br

t∗3,Br
V2,Br

t∗4,Br
t∗3,Br

t∗5,Br
t∗4,Br

t∗6,Br
t∗5,Br

V7,Br

t∗6,Br

V8,Br

V7,Br
. (3.4)

To formally describe the simulations presented in section 5.2.1 - 5.2.2 and link them to

the measurements, some transfer functions are useful:

HV V,open
26,Ar ≡

V open
6,Ar

V2,Ar
, HV V,open

27,Br ≡
V open

7,Br

V2,Br
.

HV V,open
26,A ≡

V open
6,A

V2,A
, HV V,open

27,B ≡
V open

7,B

V2,B
.

(3.5)

”open” denotes terminated with an open circuit. V open
6,Ar is the voltage across the elec-

trodes of the receiving transducer in measurement A, for open circuit conditions. V open
7,Br

is the voltage across the electrodes of the receiving transducer in measurement B, for

open circuit conditions. When ”r” is left out in the expressions, there are no acoustic

(or electrical) reflections in the measurement system, in either the x or z-direction. The

transfer function in Eq. 3.5 are used in the finite element simulations of the solid buffer

method (Sect 5.2).

The system model in Eqs. (3.3) and (3.4) can in principle describe all effects related

to wave propagation, such as diffraction effects, acoustic wave reflections, electrical wave

reflections, electrical cross-talk and other noise-effects. Such model will be extremely

complex and an analytical solution of the variables in the different nodes would be hard

to find.

To obtain an expression used for calculating cP and αP , the equation for the system

model is rewritten using an uniformly vibrating, circular piston mounted in an infinite

rigid baffle as the transmitting transducer. t3 = tz3 is then the traction in the z-direction

across the whole surface of the piston source. A similar approach is used to obtain an

expression for cS . The source is vibrating in the x-direction (see Fig. 3.10) and t3 = tx3

is then the traction in the x-direction across the whole surface of source. The wave

propagation for both the compressional and shear waves is described with a plane wave

description and a diffraction correction term. The diffraction correction term describes

the deviation between the plane wave and the average of the traction vector in a half-

space across a surface equal to the receiving transducer. The approach of using a plane

wave and a diffraction correction term to describe the wave propagation is used in both

fluid [72, 53] and in solids [52, 54]. Assuming there are no unwanted reflections in

the measurement system, the modified system model for measurement A and B can

mathematically be expressed
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V7,A = V0,A
V1,A

V0,A

V2,A

V1,A

t∗3,A
V2,A

e−ik
∗
bDbT ∗Ae

−ik∗bDb
〈t∗5,A〉

t∗,pl5,A

V6,A

〈t∗5,A〉
V7,A

V6,A
, (3.6)

V8,B = V0,B
V1,B

V0,B

V2,B

V1,B

t∗3,B
V2,B

e−ik
∗
bDbT ∗B1e

−ik∗mdT ∗B2e
−ik∗bDb

〈t∗6,B〉

t∗,pl6,B

V7,B

〈t∗6,B〉
V8,B

V7,B
. (3.7)

Db is the buffer length. k∗b = kzb is the compressional wave number in the buffers and

k∗b = kxb is the shear wave number in the buffers. k∗m = kzm is the compressional wave

number in the specimen and k∗m = kxm is the shear wave number in the specimen. ”pl”

denotes the plane wave. T ∗B1 = T zB1 and T ∗B2 = T zB2 are the plane compressional wave

traction transmission coefficients defined by Schmerr and Song [177]:

T zB1 =
2R2

R1 +R2
, T zB2 =

2R1

R1 +R2
,

R1 = ρbc
b
P , R2 = ρmcP .

(3.8)

T ∗B1 = T xB1 and T ∗B2 = T xB2 are the plane shear wave traction transmission coefficients

defined by Schmerr and Song [177]:

T xB1 =
2R2

R1 +R2
, T xB2 =

2R1

R1 +R2
,

R1 = ρbc
b
S , R2 = ρmcS .

(3.9)

When two identical buffers are welded together, T ∗A is given [177]:

T zA = T xA = 1. (3.10)

ρb and ρm are the densities of the buffers and the specimen, respectively. cbS and cbP are

the compressional and shear wave velocity of the buffers, respectively. In this model, the

medium in which the acoustic wave propagates is assumed to be a half-space. Thus, there

are no unwanted sidewall reflections and the parameter ”r” is left out in the expressions.

〈t∗5,A〉 describes the average ∗- component of the traction over the receiving transducer’s

front surface without the transducer present in measurement A. 〈t∗6,B〉 describes the

average ∗- component of the traction over the receiving transducer’s front surface without

the transducer present in measurement B. The diffraction correction terms are defined

Hdif
A =

〈t∗5,A〉

t∗,pl5,A

, Hdif
B =

〈t∗6,B〉

t∗,pl6,B

. (3.11)

Mathematical expressions for these are given in Eq. (2.8) for the solid buffer method.

This way of defining the diffraction correction has previously been used in solids for

compressional waves [52] and for shear waves [54]. In the system model 3.6 and 3.7,
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t3 is propagating as a plane wave to the receiver. The plane wave at the receiver in

measurement A and B are defined

t∗,pl5,A = t∗3,Ae
−ik∗bDbT ∗Ae

−ik∗bDb ,

t∗,pl6,B = t∗3,Be
−ik∗bDbT ∗B1e

−ik∗mdT ∗B2e
ik∗bDb .

(3.12)

The plane wave at node 5 in measurement A, t∗,pl5,A , is the plane wave propagation of

t∗3,A through the buffer medium. Without any sidewall reflections, the wave propagates

through buffer 1 and into buffer 2. In this model (Eqs. (3.6) and (3.7)), buffer 2 is

mathematically treated as a half space and the acoustic wave propagates through buffer

2 to the front of the receiving transducer without the receiving transducer present. The

plane wave transmission coefficient through the buffer-buffer interface is in this work

assumed to be TA = 1, because the buffers are made of the same material.

Similar to measurement A, the plane wave at node 6, t∗,pl6,B , on the receiving trans-

ducer’s front surface in measurement B, is the plane wave propagation of t∗3,B through

buffer 1, the specimen and the half-space buffer 2. As in measurement A, the acoustic

wave propagates through buffer 2 to the front of the receiving transducer without the

receiving transducer present.

3.3.4 Expressions for cP , cS and αP for the solid buffer method

By dividing the modified expressions for measurement A with the modified expressions

for measurement B (Eqs. (3.6) and (3.7)) the following fraction is obtained:

V8,B

V7,A
=

V0,B
V1,B
V0,B

V2,B
V1,B

t∗3,B
V2,B

e−ik
∗
bDbT ∗B1e

−ikmdT ∗B2e
−ik∗bDb

〈t∗6,B〉
t∗,pl6,B

V7,B
〈t∗6,B〉

V8,B
V7,B

V0,A
V1,A
V0,A

V2,A
V1,A

t∗3,A
V2,A

e−k
∗
bDbT ∗Ae

−ik∗bDb
〈t∗5,A〉
t∗,pl5,A

V6,A
〈t∗5,A〉

V7,A
V6,A

. (3.13)

From Eq. (3.13), expressions for cP , cS and αP are derived. When no unwanted acoustic

reflections are assumed, many of the transfer functions will cancel out,
V1,A
V0,A

=
V1,B
V0,B

,

V2,A
V1,A

=
V2,B
V1,B

,
t∗3,A
V2,A

=
t∗3,B
V2,B

,
V6,A
〈t∗5,A〉

=
V7,B
〈t∗6,B〉

,
V7,A
V6,A

=
V8,B
V7,B

. Canceling the terms above, Eq.

(3.13) reduces to:

V8,B

V7,A
=
V0,Be

−ik∗mdT ∗B1T
∗
B2H

dif
B

V0,AH
dif
A T ∗A

. (3.14)

Compressional wave velocity

To find cP , the compressional wavenumber, k∗m = kzm, must be used and the phase of

Eq. (3.14) must be computed:
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∠
(V8,B

V7,A

)
= ∠

(V0,B Hdif
B

V0,A Hdif
A

TB1TB2

TA
e−ik

P
md
)
. (3.15)

From Eqs. (3.8)-(3.10), ∠
(
TB1TB2
TA

)
= 0. By also assuming ∠

(
V0,B
V0,A

)
= 0, the equation

reduces to

∠V8,B − ∠V6,A = ∠Hdif
B − ∠Hdif

A −KP
md,

(3.16)

where Kz
m = ω/cP is the real part of the compressional wavenumber. An expression for

cP is found:

cP =
d

−(∠V8,B/ω − ∠V6,A/ω) + (∠Hdif
B /ω − ∠Hdif

A /ω)
. (3.17)

cP can be calculated with this equation using the Fourier spectrum method, presented

in Sect. 3.5.2. By defining tA ≡ −∠V6,A/ω, tB ≡ −∠V8,B/ω, tdifA ≡ −∠Hdif
A /ω and

tdifB ≡ −∠Hdif
B /ω, Eq. (3.17) may be expressed in the time domain:

cP =
d

tB − tA + tdifA − tdifB
. (3.18)

tdifA and tdifB are calculated for a distinct frequency using the definitions above and the

diffraction correction presented in Eq. (2.8). A distinct frequency can be defined in the

steady-state portion of a burst. tA and tB are not directly measured, however, tB − tA
can be found by measuring the time delay between the steady-state portion of a burst

in measurement A and measurement B. This is described in the basic pulse method in

Sect. 3.5.1.

In the literature, the typical presentation of the solid buffer method is without a

rigorous system model for the frequency domain [71, 50, 124] and time domain [22, 65].

Diffraction effects are typically not included in the equation for cP (Eqs. (3.17)-(3.18))

but addressed separately after cP has been calculated [178, 51].

Shear wave velocity

Since the exact same procedure for calculating the wave velocity applies for both shear

and compressional waves, the shear wave velocity is calculated using the shear wavenum-

ber, k∗m = kxm:

cS =
d

−(∠V8,B/ω − ∠V6,A/ω) + (∠Hdif
6,B/ω − ∠Hdif

5,A/ω)
, (3.19)

where the shear wave diffraction corrections from Eq. (2.8) are used. A discussion on the

uncertainty of using Rogers and Buren’s diffraction correction to correct for diffraction
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effects for shear waves are given in Ch. 6. Expressed with measured transit times, tA

and tB:

cS =
d

tB − tA + tdifA − tdifB
. (3.20)

Compressional wave attenuation coefficient

When finding the compressional wave attenuation coefficient, the absolute value of Eq.

(3.14) is taken with k∗m = kzm.∣∣∣V8,B

V7,A

∣∣∣ =
∣∣∣V0,Be

−ikzmdT zB1T
z
B2H

dif
B

V0,AH
dif
A T zA

∣∣∣.
ln
∣∣∣V8,B

V7,A

∣∣∣ = ln
∣∣∣V0,B

V0,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln |e−ikzmd|+ ln
∣∣∣T zB1T

z
B2

T zA

∣∣∣. (3.21)

The wave numbers are complex values having real and imaginary parts: kzm = Kz
m−iαP .

The equation reduces to

ln
∣∣∣V8,B

V6,A

∣∣∣ = ln
∣∣∣V0,B

V0,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣− αPd+ ln
∣∣∣T zB1T

z
B2

T zA

∣∣∣. (3.22)

αP may now be written

αP =
− ln

∣∣∣V8,BV6,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣T zB1T

z
B2

T zA

∣∣∣
d

(3.23)

Expression 3.23 has been used in αp-measurements including diffraction correction terms

[50] for the solid buffer method. The transmission coefficients, T zB1, T zB2 and T zA are given

in Eqs. (3.8)-(3.10).

3.3.5 Noise

Electrical noise is seen in the measurements, both as coherent noise with the same

frequency and number of cycles as the input signal, and as incoherent noise, giving an

unsteady acquired signal. Even if the acquired signal from the oscilloscope consists of

the average of 256 individual signals, the incoherent noise did not vanish completely. In

addition, some other, unidentified noise components were detected from time to time in

the measurements. These may be due to other electrical equipment in the room.

In Fig. 3.12, an electrical circuit where a receiving transducer and an amplifier make

out the main parts is shown. The load in the circuit, ZL, is the oscilloscope. There are

two nodes in the figure. Node 1 is located at the transducer’s ground output port. Node

2 is located at the amplifier’s ground input port. The transducer produces a differential

signal across it’s electrodes regardless of the existing electrical potential at node 1.
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Both the shield and the signal wire in the coax cables inherit capacitive reactances

[179]. In Fig. 3.12, the capacitive reactance in the shield of the coax-cable between the

transducer and the amplifier is named Ccx. ZG1 and ZG2 are impedances coupling the

circuit to ground G1 and ground G2, respectively.

Cables may act as antennas and pick up noise from the surroundings. However, by

moving cables around, no change in the acquired signal is seen. Thus, electromagnetic

cross talk between cables are assumed to be negligible.

Figure 3.12: Electrical curcuit showing a receiving transducer, signal amplifier and oscil-

loscope (ZL). Zcx is the capacitive reactance in the coax-cable between the transducer

and the amplifier. 1,2 are nodes used to explain noise mechanisms on the receiving side

of the solid buffer measurement setup. ZG1 and ZG2 are impedances between node 1

and ground G1 and between node 2 and ground G2, respectively.

The ground potential, G1, is coupled through the metal chassis of the pressure cell

and onto the ground of the transmitting transducer. Now, if G1 6= G2, a small ground

loop current may flow between G1 and G2 and be amplified, giving a noise signal on

the oscilloscope. A small leakage from the signal on the transmitting side and into the

ground, G1 may give rise to the coherent noise signal seen in the measurement. This

signal has similar shape as the electrical signal produced by the signal generator and

starts at time zero on the oscilloscope. Shortcutting node 1 and node 2 in Fig. 3.12

may reduce this noise. In this work, this has been done by attaching aluminum foil

to the coax-shield as close as possible to the receiving transducer and connecting it to

the ground of the Panametrics Ultrasonic Preamp. The cable-induced impedance in this

very flat ”aluminum cable” is close to zero and node 1 and 2 are thus short-cutted. Using

the aluminum foil, Zcx in Fig. 3.12 is thus greatly reduced. The differential signal on the

input ports of the amplifier is now only dependent on the differential signal across the

transducer. The same principles apply on the transmitting side as on the receiving side.
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The shield of the coax-cable near the transducer and the shield of the signal generator is

also short-cutted with aluminum foil to eliminate cable induced impedances in the shield

of the coax cable.

By shortcutting node 1 and node 2 in Fig. 3.12 using aluminum foil, the signal

stabilized and some of the electrical noise in the start of the signal disappeared. The

variation in the amplitude of the received signal is reduced from 40-50 % to less than

5 % in very noisy measurements. The unidentified noise components mentioned above

(probably due to other electrical equipment in the room) is greatly reduced with the

used of aluminum foil and use of the averaging function on the oscilloscope. Using the

aluminum foils and the averaging function on the oscilloscope gave a signal-to-noise ratio

(SNR) of at least 40dB at maximum hydrate growth. Before hydrate growth SNR ¿ 20

dB using the aluminum foils.

The coherent noise in the start of the oscilloscope window is easily separated from

the delayed acoustic signal manually. However, without using the aluminum foil, the

electrical noise is large in amplitude and the logging script adjusts the settings on the

signal generator and the oscilloscope to fit the largest signal in the oscilloscope window.

A large (separable) noise signal and a weak acoustic signal give poor utilization of the

dynamic range of the oscilloscope because the dynamic range is fitted for the noise signal.

However, by using the aluminum foil, the electrical noise is usually lower in amplitude

than the delayed acoustic signal and the dynamic range of the oscilloscope is adjusted to

the acoustic signal. An effort is done to set the time window so that the electrical noise

signal is not present at all in acquired signals. By using the aluminum foil and setting

the time window on the oscilloscope to separate the electrical noise from the delayed

acoustic signal, the logging script is able to automatically adjust the settings on the

signal generator and the oscilloscope to acquire the acoustic signal during through the

Bentheim sandstone during the days or weeks in which the hydrate experiments lasted.

3.4 Immersion method

The immersion method has been widely used to measure acoustic properties of elastic

materials [72, 53, 65]. In this work, measurements on plexiglas using the immersion

method has been compared with measurements on plexiglas conducted with the solid

buffer method. The immersion method is thus acting as a reference method for the

solid buffer method. The method has also been used to measure the acoustic properties

of materials used in the transducer design, such as PVC, and tungsten-filled epoxy

samples. The plexiglas and the PVC plates used in the immersion method are both 9x9

cm, with thickness 20 mm. The tungsten-epoxy samples have thicknesses 8 - 20 mm and
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diameter 50 mm. Tungsten-epoxy samples with tungsten grains 5 and 50-250 micron are

constructed. The plexiglas plate, PVC plate and two of the tungsten-epoxy samples are

shown in Fig. 3.13.

Figure 3.13: Photographs of specimen used in the immersion method. The plexiglas

and PVC-plates are 9x9 cm, with thickness 20 mm. The small discs are tungsten-epoxy

samples with 5 micron (dark grey) and 50-250 micron tungsten grains tungsten-epoxy

(light gray). They both have 50 mm diameter. The 5 micron and 50-250 micron tungsten-

epoxy samples have thicknesses 1.2 cm.

3.4.1 Experimental setup and measurements using the immersion method

As in the solid buffer method, two different measurements are used in the immersion

method: Measurement A without specimen inserted, and measurement B with the spec-

imen inserted into the wave propagation path (see Fig. 3.14). Wave velocities and

attenuation coefficients for the specimen are found by comparing measurement A and

measurement B. In the immersion method used in this work, the specimen is immersed

in a cell containing distilled water. The transducers are at fixed positions on the wall of

the water-filled cell.

In the measurements, a pair of Olympus immersion transducers (Olympus Panametrics-

NDT- V302 1.0 MHz) are used in the water immersion cell shown in Fig. 3.14. In this

figure, measurement A and measurement B are shown. The adapter holding the spec-

imen can be rotated. Compressional waves are measured with the specimen aligned

normal to the incident beam. Shear waves are transmitted into the specimen by rotating

the adapter and the specimen. In this work, shear wave measurements are conducted by

rotating the specimen to the critical angle of the compressional waves, which is the angle

where the compressional waves disappear. The theoretical background of the method is

presented below.
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(a) (b)

Figure 3.14: a) Picture of water-filled cell used in measurement A. b) Picture of water-

filled cell with specimen inserted used in measurement B.

Block diagrams of measurements A and measurement B are shown in Fig. 3.15. The

transmitting transducer is driven by an Agilent 33250A signal generator. The exciting

signal from the signal generator has frequency 500 kHz. One cycle pulses and bursts

with 10 cycles are used with an amplitude 20 mV. The received signal is amplified

with a Panametrics Ultrasonic Preamp with gain 54 dB. A HP high-pass filter with

cutoff-frequency 200 kHz in series is used to remove low-frequency noise components. A

Tektronix DPO 3012 oscilloscope acquires the signal by averaging 256 signals at all times.

The signal acquired by the oscilloscope is triggered externally by the pulse from the signal

generator. The signal generator is controlled by a PC via GPIB communication and the

signal is acquired with the oscilloscope via an USB connection. The script for controlling

the instruments in the immersion method is the same as for the hydrate measurements

(appendix A).

The water cell is 15 cm long, 10 cm wide and 10 cm high. Water is approximately

completely filling up the measurement cell and the distance between the transducers is

measured to be 12.5 cm. The diameter of the active element inside the piezoelectric

transducers is listed to be 25 mm [180]. By using Pythagoras’ theorem, the first theoret-

ical sidewall reflections are calculated to travel a distance 21 mm longer than the pulse

traveling directly from transducer to transducer. 21 mm corresponds to approximately

7 periods in water at 500 kHz. From this it is concluded that pulses 7 periods or shorter

are not affected by any sidewall reflections.
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Figure 3.15: Block diagrame of the experimental setup using the immersion method. The

components are described in the text above. a) Measurement setup for measurement A.

b) Measurement setup for measurement B.

3.4.2 System model for the immersion method

As for the solid buffer method, the immersion method used in this work is described

with block diagrams. Block diagrams of measurement A and measurement B (Fig. 3.15)

are shown in Fig. 3.17 a) and b), respectively. Each block may be described with a

transfer function, which enables a mathematical description of the measurement system.

This block-diagram representation of a measurement setup has been used previously

[181, 182, 183].

The blocks in Fig. 3.6 represent transfer functions of individual components of the

measurement setup shown in Fig. 3.17. In between every block, a node is defined. Either

voltage, V , the on-axis pressure, P or the on-axis particle velocity vector, v, is defined

at each of these nodes. The setup principle is very similar to that presented for the solid

buffer method in section 3.3.3. All variables are in the frequency domain. Each variable

is labeled with the node number and A or B, denoting measurement A or measurement
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B, respectively. The coordinate system is defined in Fig. 3.16.

For measurement A, the input voltage on the signal generator, transmitting electron-

ics and the transmitting transducer are denoted as V0,A, V1,A and V2,A, respectively. The

input voltage is assumed to be the same as the emf of the signal generator. In the setup,

the transmitting electronics only consist of the cables between the signal generator and

the transmitting transducer. vz3,A denotes the on-axis z-component of the particle veloc-

ity at the transmitting transducer’s front surface. P4,A is the on-axis free-field pressure

at the receiving transducer’s front without the transducer present. V5,A is the voltage at

the output terminal of the receiving transducer. V6,A is the voltage at the output of the

receiving electronics and is also the measured signal when the oscilloscope is assumed

to have an infinite terminal impedance. The transmitting electronics consist of the filter

and the signal amplifier seen in Fig. 3.17 a).

For measurement B, the input voltage on the signal generator, transmitting elec-

tronics and the transmitting transducer are denoted as V0,B, V1,B and V2,B, respectively.

As for measurement A, the input voltage is assumed to be the same as the emf of the

signal generator. In the setup, the transmitting electronics only consist of the cables

between the signal generator and the transmitting transducer. vz3,B denotes the on-

axis z-component of the particle velocity at the transmitting transducer’s front surface.

P4,A is the on-axis free-field pressure at the immersed specimen’s front surface without

the specimen present. To avoid describing two almost identical models for shear wave

measurements and compressional wave measurements using the immersion method, ∗

decides whether compressional waves or shear waves are measured. ∗ = z for compres-

sional wave measurements and ∗ = x′ for shear wave measurements. vz5,B denotes the

on-axis z-component of the particle velocity at the specimen-water interface at node 5.

vx
′

5,B denotes the x′-component of the on-axis particle velocity along the specimen-water

interface at node 5. The z, x, and x′ directions are defined in Fig. 3.16. In the figure, θi,

defines the angle of the incoming plane pressure wave. In this work, compressional waves

are measured for θi = 0. For θi > 0, shear waves are generated inside the specimen. In

this work, shear waves are measured for θi = 38◦ (critical angle). θt is the angle relative

to the normal of the specimen surface (x′−y-plane) of the refracted wave. L is the length

inside the specimen in which the shear wave propagates (distance of the sound ray path).

L2 is the projection of L in the z-direction. θi, L and L2 are variables mainly used for

deriving expressions for cS-measurements using the immersion method in Sect. 3.4.3.

P6,B is the free-field pressure at the receiving transducer’s front without the transducer

present. V7,B is the voltage at the output terminal of the receiving transducer. V8,B

is the voltage at the output of the receiving electronics and is also the measured signal

79



when the oscilloscope is assumed to have an infinite terminal impedance.

Figure 3.16: Immersion method with tilted specimen.
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Figure 3.17: System model of the immersion method presented as a block diagram. a)

Measurement A. b) Measurement B.

Mathematically, the immersion method system model for measurement A and B can

be written
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V6,A = V0,A
V1,A

V0,A

V2,A

V1,A

vz3,A
V2,A

P4,A

vz3,A

V5,A

P4,A

V6,A

V5,A
(3.24)

V8,B = V0,B
V1,B

V0,B

V2,B

V1,B

vz3,B
V2,B

P4,B

vz3,B

v∗5,B
P4,A

P6,B

v∗5,B

V7,B

P6,B

V8,B

V7,B
. (3.25)

To obtain an expression used for calculating cP , cS , αP , the equation for the system

model is rewritten using an uniformly vibrating, circular piston mounted in an infinite

rigid baffle as the transmitting transducer. vz3 is then the particle velocity across the

whole surface of the piston source. The wave propagation is described with a plane wave

description and a diffraction correction term.

The diffraction correction term describes the deviation between the plane pressure

wave and the average of the pressure across a measurement area equal to the surface of

the receiving transducer. The approach of using a plane wave and a diffraction correction

term to describe the wave propagation in the immersion method is used for compressional

wave measurements [72] and shear wave measurements [53]. The modified system model

for measurement A and B can mathematically be expressed

V6,A = V0,A
V1,A

V0,A

V2,A

V1,A

vz3,A
V2,A

e−ikwD ρwcw Hdif
A

V5,A

〈P4,A〉
V6,A

V5,A
, (3.26)

V8,B = V0,B
V1,B

V0,B

V2,B

V1,B

vz3,B
V2,B

e−i(kw(D−L2)+k∗mL)T ∗w1T
∗
w2 ρwcw Hdif

B

V7,B

〈P6,B〉
V8,B

V7,B
. (3.27)

ρwcw transfers the velocity to pressure using Euler’s equation [84]. T ∗w1 and T ∗w2 are the

plane wave transmission coefficients through the water-specimen and specimen-water

interfaces, respectively. These depend on θi and whether shear waves or compressional

waves propagate through the specimen. Wu et al. [53] obtained ∠T zw1 = ∠T zw2 = ∠T x
′

w1 =

∠T x
′

w2 = 0. This is also used in this work. With normal incident (θi = 0), the plane wave

transmission coefficients, T zw1 and T zw2 are given [53]:

T zw1 =
2R2

R1 +R2
, T zw2 =

2R1

R1 +R2

R1 = ρwcw, R2 = ρmcP

(3.28)

The plane shear wave attenuation coefficients, T x
′

w1 and T x
′

w1, are given by Wu et al. [53].

However, since αS is not calculated in this work, these are not of interest here. kw is

the complex wavenumber in the water. k∗m = kx
′
m is the complex shear wave number in

shear wave measurements. D is the distance between the two transducers. D − L2 is

the wave propagation distance in the water. Because in general the specimen is tilted,

the sound ray traveling through the specimen will travel a greater distance than the

thickness of the specimen, d. At normal incidence L = L2 = d, where d is the thickness

of the specimen. The parameters are shown in Fig. 3.16.
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〈P4,A〉 is the average incoming free-field pressure over the surface of the receiving

transducer in measurement A when the transducer is absent. 〈P6,B〉 is the average

incoming free-field pressure over the surface of the receiving transducer in measurement

B when the transducer is absent. Expressions for Hdif
A and Hdif

B are given in Eq. (2.7)

for the immersion method.

3.4.3 Expressions for cP , cS and αP for the immersion method

By dividing the expressions for measurement A and B in Eqs. (3.26)-(3.27), expressions

for cP , cS and αP are obtained:

V8,B

V6,A
=
V0,B

V1,B
V0,B

V2,B
V1,B

vz3,B
V2,B

e−i(kw(D−L2)+k∗mL)Tw1Tw2 ρwcw Hdif
B

V7,B
〈P6,B〉

V8,B
V7,B

V0,A
V1,A
V0,A

V2,A
V1,A

vz3,A
V2,A

e−ikwD ρwcw Hdif
A

V5,A
〈P4,A〉

V6,A
V5,A

(3.29)

The transducer and electrical transfer functions in measurement A and B, respectively,

will cancel out,
V1,A
V0,A

=
V1,B
V0,B

,
V2,A
V1,A

=
V2,B
V1,B

,
vz3,A
V2,A

=
vz3,B
V2,B

,
V5,A
〈P4,A〉 =

V7,B
〈P6,B〉 ,

V6,A
V5,A

=
V8,B
V7,B

, and

Eq. (3.29) reduces to:

V8,B

V6,A
=
V0,B Hdif

B

V0,A Hdif
A

Tw1Tw2e
−i(kw(−L2)+k∗mL). (3.30)

For normal incidence L = L2 = d and k∗m = kzm:

V8,B

V6,A
=
V0,B Hdif

B

V0,A Hdif
A

Tw1Tw2e
−i(kw(−d)+kzmd). (3.31)

Compressional wave velocity

When measuring compressional waves, the incident angle of the plane waves on the

specimen is normal to the surface. The wave propagation through the specimen is equal

to the specimen thickness, d. Letting km = kzm, cP can be calculated by investigating

the phase of Eq. (3.31):

∠
(V8,B

V6,A

)
= ∠

(V0,B Hdif
B

V0,A Hdif
A

Tw1Tw2e
−i(kw(−d)+kzmd)

)
. (3.32)

Assuming that he phase angle pf
V0,B
V0,A

, Tw1 and Tw2 are zero and letting kzm = Kz
m− iαP ,

the equation reduces to

∠V8,B − ∠V6,A = ∠Hdif
B − ∠Hdif

A +Kwd−Kz
md, (3.33)
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where Kw and Kz
m are the real parts of the wave numbers in water and the specimen,

respectively. Using Kw = ω/cw and Kz
m = ω/cP , where cw is the compressional wave

velocity in water, an expression for cP using the immersion method is found [184]:

cP =
d

d/cw − (∠V8,B/ω − ∠V6,A/ω) + ∠Hdif
B /ω − ∠Hdif

A /ω)
. (3.34)

Using the steady state portion of a burst, Eq. (3.34) may be expressed with the transit

times, tA and tB, where tA ≡ −∠V6,A/ω and tB ≡ −∠V8,B/ω. The diffraction correction

in the time domain for distinct frequencies may also be defined, tdifA ≡ −∠Hdif
A /ω and

tdifB ≡ −∠Hdif
B /ω, giving a time-domain expression for cP [185]:

cP =
d

d/cw + tB − tA + tdifA − tdifB
. (3.35)

The wave velocity in the water, cw, is needed in the model. The measurement depth is

approximately 5 cm and the gauge pressure is thus assumed to be zero. Assuming no

salinity in the water and zero gauge pressure, cw can be approximated by [84]

cw(Ts) = 1402.7 + 488Ts − 482T 2
s + 135T 3

s (3.36)

where Ts is the scaled temperature Ts = T/100, where T is the temperature in kelvin.

Shear wave velocity

At a tilted angle θi, shear waves are generated inside the specimen. Fig. 3.16 shows

the geometry in such a measurement. According to the shear wave model, km = kx
′
m is

the shear wavenumber in Eq. (3.30). The resulting equation (Eq. (3.40)) has already

been presented by Wu et al. [53], however no rigorous derivation of the formula needed

to calculate cS has been found by this author. Such a derivation is presented here. By

taking the phase on both sides of Eq. (3.30), gives:

∠V8,B − ∠V6,A = ∠Hdif
B − ∠Hdif

A +KwL2 −Kx′
mL. (3.37)

Kx′
m is the real part of the shear wave number of the specimen. Kw is the real part

of the compressional wave number of water. By inserting the trigonometric identity

cos(θt− θi) = L2
L into Eq. (3.37) and defining ∆∠Hdif ≡ ∠Hdif

B −∠Hdif
A (for shortened

notation), gives

∠V8,B − ∠V6,A −∆∠Hdif = Kw cos(θt − θi)L−Kx′
mL,

cS
∠V8,B − ∠V6,A −∆∠Hdif

ωL
= cos(θt − θi)

cS
cw
− 1,

(3.38)
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where cS = ω/Kx′
m is the shear wave velocity in the specimen. θi, θt L2, L are shown in

Fig. 3.16. Using the following relations

cos(θt − θi) = cos(θt) cos(θi) + sin(θt) sin(θi)

sin(θt) = sin(θi)
cS
cw

cos(θt) =

√
1− sin2(θt) =

√
1− sin2(θi)(

cS
cw

)2,

(3.39)

gives

cS
∠V8,B − ∠V6,A −∆∠Hdif

ωL
=
(√

1− sin2(θi)(
cS
cw

)2 cos(θi) + sin2(θi)
cS
cw

) cS
cw
− 1,

−cS
∠V8,B − ∠V6,A −∆∠Hdif

ωL
= − cS

cw

√
1− sin2(θi)(

cS
cw

)2 cos(θi) +
(

1− sin2(θi)(
cS
cw

)2
)
.

(3.40)

Inserting L = d√
1−sin2(θt)

= d√
1−sin2(θi)(

cS
cw

)2
, gives finally

cS =
cw√

sin2(θi) +
[
∠V8,B−∠V6,A−(∠Hdif

B −∠Hdif
A )

ωd + cos(θi)
]2
.

(3.41)

In the measurements conducted in this work, the incident angle, θi, is set to the P-

wave critical angle (the angle in which no compressional waves are transmitted into

the specimen) for shear wave measurements. Eq. (3.41) with (∠Hdif
B − ∠Hdif

A ) = 0 is

consistent with the expression for cS presented by Wu et al. [53]. Wu et al. [53] seemingly

use Rogers and Buren’s diffraction correction expression to discuss the diffraction effects

after cS is calculated with Eq. (3.41) (with (∠Hdif
B − ∠Hdif

A ) = 0). Like for cP , cS may

also be expressed with transit time measurements.

Using the steady state portion of a burst, Eq. (3.41) may be expressed with transit

times, tA and tB, where tA ≡ −∠V6,A/ω and tB ≡ −∠V8,B/ω. The diffraction correction

in the time domain for distinct frequencies may also be defined, tdifA ≡ −∠Hdif
A /ω and

tdifB ≡ −∠Hdif
B /ω, giving a time-domain expression for cS

cS =
cw√

sin2(θi) +
[
−tB+tA+(tB−tA)

ωd + cos(θi)
]2
.

(3.42)

Compressional wave attenuation coefficient

When finding αP , the incident acoustic wave is normal to the specimen (θi = 0). The

absolute value of Eq. (3.31) is taken:
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∣∣∣V8,B

V6,A

∣∣∣ =
∣∣∣V0,B Hdif

B

V0,A Hdif
A

Tw1Tw2e
ikwd−ikzmd

∣∣∣
ln
∣∣∣V8,B

V6,A

∣∣∣ = ln
∣∣∣V0,B

V0,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln |eikwd−ikzmd|+ ln
∣∣∣Tw1Tw2

∣∣∣ (3.43)

The wave numbers are complex values having real and imaginary parts: kw = Kw− iαw,

kzm = Kz
m − iαP , for water and specimen, respectively. The equation reduces to

ln
∣∣∣V8,B

V6,A

∣∣∣ = ln
∣∣∣V0,B

V0,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣− αPd+ αwd+ ln
∣∣∣Tw1Tw2

∣∣∣. (3.44)

αP may now be written [184]

αP = αw +
− ln

∣∣∣V8,BV6,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣Tw1Tw2

∣∣∣
d

(3.45)

|V0,A| and |V0,B| are the amplitudes of the voltage signal of the emf in the signal generator

in measurement A, and B, respectively. |V6,A| and |V8,B| are the amplitudes of the voltage

signal acquired by the oscilloscope in measurement A, and B, respectively. The use of

|V0,A|, |V0,B|, |V6,A| and |V8,B| are discussed in Sect. 3.5. |Hdif
A | and |Hdif

B | are discussed

in 2.3 and are the magnitude-responses of the diffraction correction in measurement A

and, B, respectively. With normal incident, the plane wave transmission coefficients,

Tw1 and Tw2 are given in Eq. (3.28).

3.5 Signal processing methods

McSkimmin [65] outlines how the cP and cS in a specimen can be found using the

immersion method or the solid buffer method measuring the transit times of pulses.

He does not include diffraction corrections in his expressions for cP and cS but discuss

diffraction effects in general after calculating cP and cS . Different features of the pulse

can be used to determine the transit time. No absolute name is provided, but the

method or techique is referred to as ”the pulse technique”, ”the pulse method” or ”the

basic pulse method” [65]. McSkimmin also refers to transit time measurements of short

pulses and longer pulses using the steady-state portion of a signal [65]. Measurements

of αP and αS is referred to as ”amplitude measurements of the pulse” [65]. Finding the

acoustic parameters measuring the transit-time and the amplitude of the pulse is in this

work called the basic pulse method. By using short pulses with the basic pulse method,

there will be no steady-state portion of the signal and thus no defined amplitude or

frequency. By using bursts with the basic pulse method and the steady-state portion of

the signal, transit time measurements between two signals having a defined frequency

and amplitude may be conducted.
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The Fourier spectrum method is another method that can be used to find the acoustic

parameters of the specimen [51, 72, 73, 74]. The pulses in measurement A and B are

transformed into the frequency domain via the Fourier transform. For the hydrate

experiments, this method is mainly used because of it’s ability to measure dispersion and

attenuation spectrum of the specimen using short pulses. Short pulses may be isolated

from unwanted acoustic reflections and mode converted signals between S-waves and

P-waves, interfering with the signal. Contrary to the basic pulse method, the Fourier

spectrum method may be used to measure dispersion and attenuation coefficients of

a specimen using short signals with no steady-state portion of the signal [51, 72, 73,

74]. The basic pulse method and the Fourier spectrum method have been compared by

measuring the acoustic properties of plexiglas.

3.5.1 Basic pulse method

In the basic pulse method, the wave velocities are found by measuring tB − tA by direct

transit measurements of the pulses used in measurement A and B. tA and tB are defined

in Sect. 3.4.2 and 3.3.4: tA ≡ −∠V6,A/ω and tB ≡ −∠V8,B/ω. In the basic pulse

method, tA and tB are not measured directly but tB − tA is found by measuring the

transit time of a feature in the steady-state portion of the burst used in measurement A

and measurement B. This may be done by measuring the transit time to a point where

the AC-signal crosses the zero-line. Such a point is here called a zerocross. Zerocrosses

and the ”first arrival of the signal” are defined in Fig. 3.18 a) (this signal is measurement

A of the solid buffer method using the P-wave transducers at frequency 500 kHz). Many

authors have used features outside the steady-state portion of the signal, such as ”the

first arrival” [22, 21], to measure tB−tA, however, the accuracy of this method is debated

[48, 49, 50].

Mathematically, the solid buffer basic pulse method for cP and cS is the same as Eqs.

(3.18) and (3.20):

cP,S =
d

tB − tA + tdifA − tdifB
. (3.46)

For the immersion basic pulse method, the expression for cP is the same as Eq. (3.35):

cP =
d

d/cw + tB − tA + tdifA − tdifB
, (3.47)

and cS is found using Eq. (3.42):

cS =
cw√

sin2(θi) +
[
tB−tA−(tdifB −t

dif
A )

d + cos(θi)
]2
. (3.48)
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d is the thickness of the specimen, tdifA and tdifB are the time delay due to diffraction

effects. cw is the sound velocity in water. In this work, θi = 38◦ is used. The feature

used in the measurement to obtain tB − tA is given in the section describing the results

of the measurement.

When finding αP using the basic pulse method, the amplitudes of the steady-state

region of the signals in measurement A and B are used. For the solid buffer method, αP

is found using Eq. (3.23):

αP =
− ln

∣∣∣V8,BV7,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣TB1TB2

TA

∣∣∣
d

(3.49)

and for the immersion method, αP is found using Eq. (3.45):

αP = αw +
− ln

∣∣∣V8,BV6,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣Tw1Tw2

∣∣∣
d

.

|V8,BV7,A
| and |V8,BV6,A

| are here denoting the ratios of the amplitudes in measurement A and

B of the steady state region of a burst for the solid buffer and immersion method,

respectively. |V0,BV0,A
| is denoting the ratio of the amplitude-settings of the burst on the

signal generator.

An example of two measured signals are shown in Fig. 3.18 b) and c). The solid

buffer method is used and the in-house constructed P-wave transducers have been used.

The signals have center frequency 500 kHz and are 10 cycles long. In between 2-8 periods

after the first break of the signal, there is a steady-state region in the signal.

In measurement A, some noise is present, but the first peak is still detectable. There

are some more ripples after the signal. This is probably due to sidewall-reflections in the

buffers. The effect of the sidewall-reflections is discussed in Ch. 6. In measurement B,

there is a second signal, which is a reflected signal from the end of the buffers.

In the steady-state region of the signal, the frequency and amplitude of the signal

are defined. In this region, an exact feature of the signal can be identified. By using

e.g. position 5 (5th zerocross) in measurement A and B to calculate tB − tA, the wave

velocity can be calculated for a defined frequency. The ratio of the measured amplitudes

in the steady-state region of the signals in measurement A and B, VBVA is used to calculate

αP .

In this work, the basic pulse method has been used in two ways: 1) Reference mea-

surements on plexiglas used to compare with and increase the confidence of the Fourier

spectrum method. 2) Measuring the acoustic properties of the other materials used

in the transducer construction: PVC and the tungsten-epoxy specimen. 3) Measuring
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the wave velocities of Bentheim sandstone during hydrate growth to compare with the

Fourier spectrum method.

For 1) and 2) above, signals with 10 periods and 500 kHz are used with the basic

pulse method. Zerocrosses in the steady state region of the pulses are used to measure

the wave velocities. For 3), short pulses must be used and there is no steady-state region

in the signals. Thus zerocrosses 2 and 3 are used. When using the basic pulse method

in the hydrate measurements there is no steady-state region because the pulses used are

to short.

The measured αP using the immersion method is calculated using Eq. (3.45), and

the measured αP using the solid buffer method is calculated using Eq. (3.23).
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Figure 3.18: a) Definitions of first arrival and the zerocross numbers in a measured signal

(zoomed in version of Fig. 3.18 b)). b) Measurement A using the solid buffer method

with P-wave transducers with frequency 500 kHz. c) Measurement B using the solid

buffer method on a plexiglas specimen (length 20 mm) with P-wave transducers with

frequency 500 kHz.
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3.5.2 Fourier spectrum method

In the Fourier spectrum method, the DFT (Eq. (2.5)) of the signal in measurement A and

B are used to calculate the acoustic properties of the specimen [51, 72, 73, 53]. For the

wave velocities, the unwrapped phase angle of the DFT is used. The unwrapping process

is described below. For the compressional wave attenuation coefficient, the absolute value

of the DFT is used.

The Fourier spectrum method is used with the solid buffer method inside the pressure

cell and with the immersion method. The method is described here by showing an

example: Measurement of the shear wave velocity of a plexiglas specimen using the solid

buffer method inside the pressure cell at atmospheric conditions. Then, how to find the

other acoustic parameters is described, both for the immersion and for the solid buffer

method.

The Fourier spectrum method is used as the main signal processing method in this

work, due to its ability to measure dispersion and attenuation spectrum of the specimen

using short pulses. The use of short pulses is important to be able to separate the wanted

acoustic signal from reflections or mode converted signals. The Fourier spectrum method

can be used to calculate cP , cS , αP in the frequency domain for the solid buffer method

by slightly altering Eqs. (3.17, (3.19) and using Eq. (3.23) [51]:

cP,S =
d

−(
∠V shift8,B

ω − ∠V shift7,A

ω ) + tshift,B − tshift,A + (
∠Hdif

B
ω − ∠Hdif

A
ω )

. (3.50)

αP =
− ln

∣∣∣V8,BV7,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣TB1TB2

TA

∣∣∣
d

.
(3.51)

V shift
8,B and V shift

7,A are the DFT of V shift
8,B (t) and V shift

7,A (t), which are the measured pulses

shifted with a time tshift,B and tshift,A, respectively. The time shifting of the pulses is

described below with Fig. 3.20, Fig. 3.21 and Eq. (3.55).

In the same way as for the solid buffer method, the immersion method can be used to

calculate cP , cS , αP in the frequency domain by slightly altering Eqs. (3.34) and (3.41)

and using Eq. (3.45), respectively [53]:

cP =
d

d
cw
− (

∠V shift8,B

ω − ∠V shift6,A

ω ) + tshift,B − tshift,A + (
∠Hdif

B
ω − ∠Hdif

A
ω )

. (3.52)
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cS =
cw√

sin2(θi) +
[
ωtshift,B−ωtshift,A−(∠V shift8,B −∠V shift6,A )+(∠Hdif

B −∠Hdif
A )

ωd + cos(θi)
]2
.

(3.53)

αP = αw +
− ln

∣∣∣V8,BV6,A

∣∣∣+ ln
∣∣∣Hdif

B

Hdif
A

∣∣∣+ ln
∣∣∣V0,BV0,A

∣∣∣+ ln
∣∣∣Tw1Tw2

∣∣∣
d

.
(3.54)

For a continuous signal in the frequency domain, acoustic reflections from e.g. the buffer

sidewalls and the buffer-specimen interface are present in addition to potential mode

converted signals, such as P-waves mode-converted into S-waves. From the solid buffer

method system model in Eqs. (3.3)-(3.4), the acquired signals are V7,Ar and V8,Br in

measurement A and B, respectively. To use Eqs. (3.17) or (3.19), V7,A and V8,B are

extracted from V7,Ar and V8,Br. This is done using the Fourier spectrum method with

short, isolated pulses so unwanted reflections are avoided and filtered out in the time

domain. In the following, an example is shown how to use the Fourier spectrum method

to measure cS of a plexiglas specimen with the S-wave transducers. It is also outlined

how cP and αp can be found and how to obtain cP , cS and αp using the immersion

method. It is shown how the pulses from a S-wave transducer can be isolated and how

the Fourier spectrum method is used to obtain ∠V7,A, |76,A|, ∠V8,B and |V8,B|, from

V8,Br and V6,Ar.

Identification of the pulses in the signal

Using the shear wave transducers, several pulses are present in the measurements. The

in-house built shear wave transducers are able to excite short pulses, thus the arrivals

of the different pulses in the measurements are separable, see Fig. 3.19. In the follow-

ing example, the shear wave pulse is used. V7,A and V8,B can be found by taking the

Fourier transform (Eq. (2.5)) of the isolated shear wave pulses in measurement A and

measurement B.

In Fig. 3.19 a), the pulses in measurement A are shown. In this example, the

different pulses are manually inspected. A1 is the P-wave propagating directly from the

transmitter to the receiver. A3 is the S-wave propagating directly from the transmitter
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to the receiver. A2 is the S-wave propagating through the first buffer, being mode

converted on the buffer-buffer interface to a P-wave which propagates directly to the

receiver. A6 is the sum of two S-waves: The first shear wave is reflected one time at

the receiver and the second time at the buffer-buffer interface before received by the

receiver. The second shear wave is reflected one time at the buffer-buffer interface and

the second time at the buffer-transmitter interface before received by the receiver. A4

and A5 are more complicated to interpret. However, A4 is interpreted in this work as

a sum of two waves: The first wave is the S-wave reflected into a mode converted P-

wave at the buffer-receiver interface. This P-wave is again reflected at the buffer-buffer

interface. The second wave is the reflected S-wave at the buffer-buffer interface. At the

buffer-transmitter interface this S-wave is reflected into a mode converted P-wave which

is received by the receiver. The same argument is used on A5, however, now the original

S-wave propagates through three buffer-lengths before converted into a P-wave. The

mode converted P-wave travels directly to the receiver. Mode conversion between S-

waves and P-waves has been documented in measurements using the solid buffer method

[51]. cS and cP in plexiglas are measured to be approximately 1350 m/s and 2700 m/s,

respectively, in Ch. 6. The identification of the different pulse arrivals in Fig. 3.19, are

based on these measurements.

In Fig. 3.19 b), the pulses in measurement B are shown. B1 is the P-wave propagating

directly from the transmitter to the receiver. B4 is the S-wave propagating directly

from the transmitter to the receiver. B2 is the S-wave propagating through the first

buffer, being mode converted to a P-wave at the first buffer-specimen interface and

then propagating directly to the receiver. B3 is the S-wave propagating through the

first buffer and the specimen, being mode converted to a P-wave at the second buffer-

specimen interface and then propagating directly to the receiver. B5 is believed to be

the reflected S-wave at the first buffer-specimen interface. At the buffer-transmitter

interface this S-wave is reflected into a mode converted P-wave which is received by the

receiving transducer. B6 is the shear wave being reflected back and forth once inside the

specimen.

When shear wave measurements are performed, A3 and B4 are used. When com-

pressional wave measurements are performed, A1 and B1 are used. In the hydrate

measurements, the acquired signals (see Fig. 7.4) are similar in shape as the plexiglas

measurements shown in Fig. 3.19. The signals shown in Fig. 3.19 are representative

for the hydrate measurements. In the following, it is shown how the Fourier spectrum

method can be used manually. However, for each of the ten hydrate experiments pre-

sented in Ch. 7, there are approximately 1000 files and a Matalb routine is made to
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automatically perform the procedure explained below.

(a) (b)

Figure 3.19: Solid buffer method using shear wave transducers. Pulse arrivals for a)

Measurement A, b) Measurement B.

Isolation of the shear wave pulse

To calculate ∠V7,A and ∠V8,B, the unwrapped phase of the Fourier transform of the shear

wave pulses A3 and B4 must be calculated. To do so, these pulses are first isolated. In

the start of the pulse, A3, a hidden reflection is suspected. As the shear wave velocity is

approximately half of the compressional wave velocity of plexiglas, the reflected P-wave

will arrive at approximately the same time as the shear wave. This will be the case of

all the measurement A’s conducted with the S-wave transducers in this work. The pulse

B4 has a negative peak at the very start of the signal, while A3 has not. The start of

the isolated pulse is thus defined by the start of the first peak (Fig. 3.20).

Deciding exactly where the pulse ends, may be challenging. In this work, the signal

has been cut off by smoothing the last half period in the signal. This has been doen

by linearly trailing off this last half period. Potential aliasing effects due to the abrupt

start and stop of the signal are assumed to be small by comparing Fig. 3.26 (signal is

abruptly truncated) and 3.24 (linearly trailing off the last half period). The difference

in the measured cS at 500 kHz in Fig. 3.26 and 3.24 is small.

The isolated pulses, A3 and B4, with all other pulses removed are shown in Fig.

3.20. These voltage signals are now the time domain acquired signals with no unwanted

reflections present, V7,A(t) and V8,B(t).
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Figure 3.20: Isolated pulses based on the signal in Fig. 3.19. a) S-wave pulse in mea-

surement A, A3. b) S-wave pulse in measurement B, B4.

A3 and B4 are located approximately in the middle of the time window. It’s easier

to calculate the unwrapped phase angle of the Fourier transform of a signal which is

shifted to the start of the time window [72]. ∠V shift
7,A and ∠V shift

8,B are related to ∠V7,A

and ∠V8,B by

∠V7,A = −ωtshiftA + ∠V shift
7,A ,

∠V8,B = −ωtshiftA + ∠V shift
8,B .

(3.55)

ωtshiftA is the phase due to the time shift, tshiftA . ωtshiftB is the phase due to the time

shift, tshiftB . ∠V shift
A and ∠V shift

B are found by calculating the unwrapped phase of the

DFT of the shifted pulses.

The frequency resolution of the discrete Fourier transform is dependent on the length

of the time signal (Sect. 2.2). The time-signal is zero-padded so that the total length of

the signal is 100 000 samples long or 100 µs, see Fig. 3.21. This is found to give sufficient

frequency resolution for investigating details in the phase spectrum.
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Figure 3.21: Time-shifted and zero-padded signals based on the signals in Fig. 3.20. a)

Shear wave signal in measurement A, A3. b) Shear wave signal in measurement B, B4.

The Fourier transform of the isolated pulse

The DFT of the pulses A3 and B4 are presented as the magnitude of the DFT in Fig.

3.22 and the wrapped phase angle of the DFT in Fig. 3.23 a) and b). In this work, the

bandwidth of a signal is defined as the frequency band where the magnitude spectrum

is more than half it’s maximum value.

Using Matlab to calculate the DFT (Eq. (2.5)), the phase angle is presented as

the wrapped phase angle. It is wrapped within −π and π radians. Sudden jumps in

the wrapped phase is seen in the Fig. 3.23 a) and b). These ”phase-jumps” would be

exactly 2π for an infinitely long signal trace. Because of the frequency resolution of a

finite length sampled signal, the jumps are less than 2π. Here, the definition of a jump

is set to 6 radians.

The unwrapped phase angle is obtained by subtracting 2π to the wrapped phases

whenever there is a phase-jump in the signal. The unwrapped phase is shown in Fig.

3.23 c) and d). Even if the frequency resolution is good enough, noise and unwanted

reflections interfering with the signal may distort the frequency spectrum. Outside the

bandwidth of the signal, when the SNR is low, distortion of the phase spectrum may be

observable. Here, the phase spectrum below 200 kHz and above 600 kHz is seen to be

distorted.
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Figure 3.22: Magnitude spectrum of the signals in Fig. 3.21. a) Shear wave signal in

measurement A, A3. b) Shear wave signal in measurement B, B4.

0 2 4 6 8 10

10
5

-4

-3

-2

-1

0

1

2

3

4

(a)

0 2 4 6 8 10

10
5

-4

-2

0

2

4

(b)

0 2 4 6 8 10

10
5

-20

-15

-10

-5

0

5

(c)

0 2 4 6 8 10

10
5

-20

-15

-10

-5

0

5

(d)

Figure 3.23: Phase spectra of the shifted pulses A3 and B4 from Fig. 3.21. a) Wrapped

phase, measurement A, A3. b) Wrapped phase, measurement B, B4. c) Unwrapped

phase, measurement A, A3. d) Unwrapped phase, measurement B, B4.
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The unwrapped phase from Fig. 3.23 c) and d) can be used with Eq. (3.55) and

inserted into Eq. (3.19) to find the shear wave velocity in Eq. (3.50).

The shear wave velocity is presented in Fig. 3.24. For the red curve, labeled “Diffrac-

tion correction,” the diffraction corrections in Eq. (2.6) are used to calculate Hdif
A and

Hdif
B . For the blue curve, labeled “No diffraction correction,” ∠Hdif

A = ∠Hdif
B .
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Figure 3.24: cS for the 60 mm plexiglas specimen using the solid buffer method with the

Fourier spectrum method on the signals presented in Fig. 3.23.

A shear wave velocity around 1370 m/s for 500 kHz is found to be reasonable in

Ch. 6. The unwrapped phase spectrum shown in Fig. 3.23 c) and) are thus assumed

to be reasonable. If one of the jumps in the wrapped phase was not registered in the

unwrapping process, there would be an error in the unwrapped phase of ±2π. The

corresponding error in the shear wave velocity is approximately ±200 m/s.

The basic pulse method can be used in comparison with the Fourier spectrum method.

The use of the short pulses in the Fourier spectrum method gives signals without a

steady-state region. However, the use of the first arrival of the signal has been widely

used in acoustic velocity measurements [66, 67, 68, 69, 70]. Transit time measurements

of different zerocrosses outside the steady state region has also been used to measure the

wave velocities [186]. The measured transit times using features of the signal outside the

steady-state region of the signal are assumed to be correct within a margin of error less

than a period for a given frequency. In this example (measurement A and B shown in

Fig. 3.19), cS calculated with the basic pulse method and the first arrival of the signal,

cS = 1409 m/s. For zerocross 1-5, cS is calculated to be 1377 m/s, 1376 m/s, 1374 m/s,

1371 m/s and 1369 m/s, respectively. These values correspond to cS calculated with the
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Fourier spectrum method within ”2π phase error margin” of ±200 m/s.

In the hydrate measurements, the transit time through the specimen has been found

with both the basic pulse method and the Fourier spectrum method. If these differ with

more than one period, 2π has been added or subtracted to the unwrapped phase.

Interference from a weak non-separable signal component

As mentioned above, In the start of the pulse, A3, a hidden non-separable P-wave signal

component is suspected to be present. As the shear wave velocity is approximately

half of the compressional wave velocity of plexiglas, the reflected P-wave will arrive at

approximately the same time as the shear wave. No thorough investigation of this effect

has been conducted, but an illustrative example is shown here. In Fig. 3.25 a), the

same isolated signal as in Fig. 3.20 is shown (the signal is truncated 1 period earlier

and indexes are shown on th x-axis). A noise signal shown in figure b) is added to the

signal and the superposition of these give the signal in figure c). The noise signal in b)

is half a period ”500 kHz pulse” with the same amplitude as the first peak in the signal

in figure a). By using signal c) instead of the signal shown in Fig. 3.20, a new graph

of cS is obtained, figure d). Comparing the new value of cS in d) with the original in

Fig. 3.24 it is concluded that this half period noise signal is not critically affecting the

measured cS . No thorough investigation of how different noise signals might affect the

measurements. By looking at the half period noise component, it is indicated here that

noise is not critically affecting the measurements. No absolute explanation is given in

this work of the shape of the cS curves in Fig. 3.25. However, some considerations on

the accuracy of the measurements are given in Ch. 6.

By abruptly truncating the signal and using no smoothing function on the last period

of the original signal, slightly different values of cS are obtained. In Fig. 3.26 the

signals in measurement A and B are abruptly truncated after 4 periods. When abruptly

truncating a signal, aliasing effects may occur. The effect of this abrupt truncation is

also not critically affecting the measured cS .
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Figure 3.25: Figure showing the effect of small non-separable noise component on the

measured cS of plexiglas using the solid buffer method and the Fourier spectrum method.

a) Measurement A for the solid buffer method (same as Fig. 3.21 a)). b) Synthetic signal,

half a period ”500 kHz pulse” noise-component. c) Superposition of the measured signal

in figure a) and the synthetic signal in figure b). d) cS of plexiglas using the solid buffer

method and the Fourier spectrum method. Measurement A for the example shown

above is substituted with measurement A shown in figure c). For the red curve, the

diffraction corrections in Eq. (2.6) are used to calculate Hdif
A and Hdif

B . For the blue

curve, ∠Hdif
A = ∠Hdif

B .
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Figure 3.26: Measured cS using the signals in Fig. 3.21 and abruptly truncating them

after 4 periods.

Using the Fourier spectrum method with the solid buffer method and the

immersion method

The Fourier spectrum method can be used with the immersion method and the solid

buffer method. Above, an example with shear wave transducers has been described for

the solid buffer method. The shear wave velocity can be found by isolating A3 and B4

and using Eq. (3.19).

For the same signals, cP and αP are found with the solid buffer method by isolating

the compressional wave pulses A1 and B1 and calculating the DFT (V6,A and V8,B). The

approach is analogue as described for the shear waves above. cP can be found using the

phase of V6,A and V8,B and inserting the them in Eq. (3.17). The compressional wave

attenuation coefficient can be found using the magnitude of V6,A and V8,B and inserting

the them in Eq. (3.23). V0,A and V0,B are the DFT of the electrical input signal on the

signal generator (emf), (V0,A(t) and V0,B(t)), respectively.

In Ch. 6, plexiglas measurements with both the P-wave and the S-wave transducers

are presented. When using the P-wave transducers, the shear wave signals in Fig. 3.19

are not present and the isolation of the pulses is simpler. Solid buffer method measure-

ments conducted with the S-wave transducers and P-wave transducers are compared.

Plexiglas measurements with the immersion method is used as reference measurements.

The Fourier spectrum method can also be used with the immersion method. The

isolation of the pulses is analogue to the description above. The shear wave pulses must

be isolated for shear wave measurements and the compressional wave pulses must be

isolated for compressional wave measurements. The compressional wave velocity and

attenuation coefficient is calculated by the equations 3.34 and 3.45, respectively. The

shear wave velocity is found by rotating the specimen to the critical angle. The shear
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wave propagating through the specimen can then be detected and isolated. The shear

wave velocity is calculated with Eq. (3.41).

3.6 Impedance Analyzer Setup

The electrical admittance of the P-wave transducers and S-wave transducers is measured

in all the important stages of the transducer building process presented Ch. 4. The

P-wave transducers electrical admittance measurements are compared with FEM simu-

lations of the electrical admittance. The measurements are conducted with a HP4192A

impedance analyzer from Agilent connected to a PC with a USB-GPIB adapter. The

piezoelectric element is attached to the impedance analyzer with small copper wires. To

reduce the effects of inner electrical circuits of the impedance analyzer and the small

copper wires, the instrument with the copper-wires is zero-adjusted before the measure-

ments [187]. The use of the impedance analyzer is detailed further by Aanes [188]. The

impedance analyzer with a polystyrene holder for piezoelectric element measurements is

shown in Fig. 3.27.

Figure 3.27: Picture of the HP4192A impedance analyzer used measure the admittance

of the transducers.
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Chapter 4

Transducer design

In this chapter, the design and construction of the P-wave and S-wave transducers used

with the solid buffer method inside the pressure cell is presented. The limited space and

the pressure and temperature conditions inside the pressure cell impose some restrictions

on the transducer design and some general considerations on the transducer design are

given in Sect. 4.1. The construction and design of the P-wave and S-wave transducers

are presented in Sect. 4.2 and Sect. 4.3, respectively. In Sect. 4.4, electrical conductance

measurements and simulations of the P-wave transducers during the important steps of

the transducer construction process are presented. In Sect. 4.5, the measured electrical

conductance of the S-wave transducers during the important steps of the transducer

construction process are presented.

4.1 Considerations

Some general considerations must be taken into account when designing the transducers

for use in this work. The transducers are to be used with the solid buffer method inside

the pressure cell (Sect. 3.3). The limited space within the pressure cell poses some

restrictions on the dimensions of the transducers. The pressure inside the pressure cell is

cycled from atmospheric conditions to 83 bar and back to atmospheric conditions again

during the test period. The hydrate measurements lasts for weeks and the transducers

must withstand the pressure of 83 bar during the measurement period.

The available space inside the pressure cell is a tube-formed chamber with inner

diameter 50 mm and length approximately 35 cm (see Fig. 3.8). The Bentheim sandstone

specimen have a diameter of 50 mm. The porous rock needs to have a certain surface

exposed to the gas for the gas to efficiently seep into the porous rock. The diameters of

the constructed transducers and the buffers are thus 35 mm.
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The Bentheim sandstone or plexiglas specimen, transducers, buffers and transducer

holders must all fit inside the inner chamber of length 35 cm. A total length of 20 cm is

given the transducers and the buffers, that is 10 cm available space for one buffer and one

transducer combined. The transducers consists of a piezoelectric element, a frontlayer,

a backing layer, a pressure tight seal behind the backinglayer and a lid at the back. The

S-wave transducers have length 69 mm and the P-wave transducers have length 66 mm.

As discussed in Sect. 3.5.2, the buffers must be long enough so that the different

reflected acoustic pulses are separable in each measurement. To have maximum acoustic

energy transmitted through the system, buffers with characteristic acoustic impedance

in between the transducer’s and the specimen’s characteristic impedance should be cho-

sen. The compressional wave characteristic acoustic impedance, ZP , in a medium having

density ρ and compressional wave velocity cP , is ZP = ρcP . The shear wave characteris-

tic acoustic impedance is defined ZS = ρcS . Aluminum has such an acoustic impedance

(approximately ZP = 17 MRayl [189]), however, aluminum has a compressional wave-

length of approximately 13 mm for a 500 kHz compressional wave (cP ≈ 6420 m/s

[189]). This will only give room for a few periods before reflections from the end of the

buffer interfere with the signal. Aluminum is also electrically conductive and the ground

electrodes using aluminum buffers would be electrically coupled. This may give ground

current loops as discussed in Sect. 3. Plexiglas buffers with length 31 mm and ZP = 3.2

Mrayl and cP 2709 m/s (Tab. 4.1) where chosen for the shear wave transducers. In these

plexiglas buffers there are room for 11 compressional wavelengths at frequency 500 kHz

before reflections from the end of the buffer interfere with the direct signal. Plexiglas

buffers have been used in the solid buffer method previously [51].

Acoustic waves in a medium with high wave velocity will in theory be diffracted more

than acoustic waves in a medium with lower wave velocity. A lower wave velocity in the

buffers may thus give less reflections from the sidewalls. PVC has a compressional wave

velocity 2380 m/s and ZP approximately the same as plexiglas [189]. 34 mm PVC-buffers

where chosen for the P-wave transducers. In these PVC buffers there are room for 13

compressional wavelengths at frequency 500 kHz before reflections from the end of the

buffer interfere with the direct signal.

As discussed in Sect. 3.5.2, short pulses are needed to use the Fourier spectrum

method. Broadband transducers with tungsten-filled epoxy quarter-wavelength front

layers are designed and constructed in this work. The characteristic acoustic impedance

of the backing layer is designed to be as close as possible to the characteristic acoustic

impedance of the piezoelectric element used in the design (Pz37 for P-wave transducers

and Pz27 for S-wave transducers). This way, acoustic energy on the backside of the
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piezoelectric element will radiate into the backinglayer. For maximum transmitted en-

ergy into the buffer, the acoustic characteristic impedance of the front layer is designed

to be the geometrical mean of the impedance of the transducer and the buffer. The

content and construction procedure of the tungsten-epoxy backing and front layers are

presented in Sect. 4.2. In Tab. 4.1, there is a list of the elastic materials with material

parameters used in the transducer construction. In the table there is either a literature

reference or a label, (m), denoting that the parameter is measured in this work.

Table 4.1: Materials used in the transducer construction. Tungsten-epoxy frontlayer F1

and F2 are used in the P-wave and S-wave transducers, respectively. cS for the tungsten-

epoxy-mixtures are typically approximately half the value of cP [190]. Thus cS = 800

m/s is assumed for all the tungsten-epoxy coupling layers. (m): parameter is measured

by this author.

Material cP [m/s] cS [m/s] QP ρ [kg/m3] ρcP [Mrayl]

backing layer

Tungsten-epoxy
1600 (m) 800 13.5 (m) 7470 (m) 11.9

front layer F1

Tungsten-epoxy
1600 (m) 800 28.5 (m) 4590 (m) 7.3

front layer F2

Tungsten-epoxy
1600 (m) 800 [191] 28.5 (m) 5470 (m) 8.7

Aluminum 6420 [189] 3040 [189] 500 [189] 2700 [189] 17.3

Plexiglas 2709 (m) 1347 (m) 63 (m) 1184 (m) 3.2

PVC 2380 (m) 1190 51 (m) 1380 (m) 3.3

Polyurothane 1760 [189] 345 [189] 14 [189] 1100 [189] 1.9

The material properties of polyurethane and aluminum are found in the literature

[189]. The acoustic parameters of plexiglas have been measured with the immersion

method. cP and αP for PVC, the tungsten-epoxy backing layer and front layers have

been measured with the immersion basic pulse method at 500 kHz. QP is calculated

with QP = Kz
m

2αP
, where Kz

m = ω/cP . cS is typically approximately half the value of cP in

tungsten-epoxy mixtures [191] and in PVC [189], and has thus been used in this work.

A full set of anisotropic material parameters for Meggitt Pz27 is provided by the

manufacturer [192]. However, the material parameters of Pz27 has been studied exten-

sively [193, 188] and another full set of anisotropic material parameters for Pz27 are

given in Tab. 4.3 [193]. These material constants have been found to better fit electrical

measurements than that of the manufacturer.
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To the best of this author’s knowledge, a full set of anisotropic material constants

for Meggit Pz37 has not been published. The manufacturer of Pz37 (Meggitt) does only

provide a limited set of the piezoelectric material parameters [192], shown in Tab. 4.2.

The parameters are defined in the IEEE piezoelectric standard [194] and are consistent

with the definitions found on the manufacturers web page [192]. KT
33 is the relative

dielectric permittivity. tan δ is the dielectric dissipation factor. kp and kt are the planar

and thickness coupling factors, respectively. Np = fpl and Nt = fsl are the planar

and thickness frequency constants, respectively. fp and fs are the parallel and series

resonance frequencies, respectively. l is the thickness of the piezoelectric element.

Table 4.2: Material parameters of Pz37 [192].

KT
33 tan δ kp kt Np Nt Qp ρ

1200 0.017 0.35 0.52 1550 Hz m 1400 Hz m 50 6000 kg/m3

From kt, Np and ρ, the compressional wave velocity and characteristic impedance can

be calculated, which are useful in the transducer design. cP = 2800 m/s and ZP = ρcP ≈
17 Mrayl for Pz37 are obtained by inserting kt, Np and ρ into Eq. 4.1 [194]:

cE33 = 4ρN2
p (1− k2

t ),

cD33 =
cE33

1− k2
t

,

cP =

√
cD33

ρ
.

(4.1)

cP = 4347 m/s and ZP = ρcP = 33.5 Mrayl for Pz27 are obtained by using the listed

parameters in Tab. 4.3 and inserting them into Eq. 4.2 [194].

cD33 = cE33 +
e2

33

εS33

,

cP =

√
cD33

ρ
.

(4.2)

cS = 1655 m/s and ZS = ρcS = 12.7 Mrayl for Pz27 are obtained by using the listed

parameters in Tab. 4.3 and inserting them into Eq. 4.3 [194]. In the shear wave transduc-

ers, shear-wave polarized piezoelectric elements Pz27 have been used. The piezoelectric

crystals in these have been polarized so that a voltage signal across the electrodes give

a displacement along the surface of the shear-wave polarized piezoelectric elements.

cS =

√
cE44

ρ
. (4.3)
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In this work, a backinglayer with ZP approximately 12 Mrayl is constructed and used in

both the S-wave and the P-wave transducers (see Tab. 4.1). Pz37 have ZP ≈ 17 Mrayl

which is significantly closer to ZP of the backing layer than Pz27 (33.5 Mrayl). Thus,

Pz37 piezoelectric elements are chosen as the active element for the P-wave transducers.

The S-wave transducers have ZS ≈ 12.7 Mrayl. The backinglayer have ZS = ρcS ≈ 6

Mrayl.

Table 4.3: Material parameters for Pz27 [193].

Variable Pz27

cE11[1010 N/m2] 12.025(1 + i/96)

cE12[1010 N/m2] 7.62(1 + i/70)

cE13[1010 N/m2] 7.42(1 + i/120)

cE33[1010 N/m2] 11.005(1 + i/190)

cE44[1010 N/m2] 2.11000(1 + i/75)

e31[ C/m2] −5.4(1− i/166)

e33[ C/m2] 17(1− i/324)

e15[ C/m2] 11.20(1− i/200)

εS11[10−9 F/m] 8.11044(1− i/50)

εS33[10−9 F/m] 8.14585(1− i/130)

ρ [kg/m3] 7700

The full set of anisotropic material constants for the Pz27 elements in Tab. 4.3 may

be used to do 3D finite element simulations. In Ch. 5, a rough estimate of a full set

of anisotropic material constants for the Pz37 elements are given so 3D FE-simulations

may be performed for the Pz37 P-wave transducers.

4.2 Construction and design of P-wave transducers

Pz37 [192] piezoelectric elements with 23 mm diameter and thickness 2.9 mm are used

as the active elements in the P-wave transducers. From conductance measurements

presented in Sect. 4.4, the series resonance frequency (maximum conductance)[194]

is measured to be fs ≈ 570 kHz. The P-wave transducers design is presented in Fig.

4.1. Dimensions and measurement uncertainties are shown. Many of the components are

manufactured with the turning machine at the University of Bergen, having accuracy 0.2

mm. The piezoelectric elements from Meggitt are measured with a Mitutoyo MDH-25M
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digital micrometer gauge [195] having a listed uncertainty of 0.5 µm. However this author

was only able to obtain an accuracy of ±0.02 mm using this tool. Because the backing

layer and the polyurothane pressure seal is poured into the transducer construction, there

is a big uncertainty in the thicknesses of these layers. Better accuracy of the backinglayer

might have been achieved if this was manufactured separately and attached as a solid

coupling layer instead of pouring it into the transducer construction. The construction

of the transducer and the different components are described in detail below.

Figure 4.1: Schematics of the P-wave transducer design.

First, 7 cm of the outer insulation layer on a coax cable is cut off and the inner

wire of the coax cable is separated from the shielding. The coax cable is bent and put

down on the piezoelectric element in a way so that the mechanical stress of the cable

presses itself down onto the back electrode of the piezoelectric element. The inner wire

is glued on to the piezoelectric element with several drops of Ted Pella silver paint [196]

to ensure good electrical conductivity. The silver paint is a poor adhesive and a drop of
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rapid drying Loctite epoxy is used after the silver paint dries to ensure good adhesion,

see Fig. 4.2 a).

For high voltages, the tungsten-filled epoxy backing layer may theoretically be weakly

electrically conductive. A plexiglas cylinder, open in both ends, with inner and outer

diameter 28 mm and 29 mm, respectively, 1 mm thick and 4 cm high, is used as an

insulator between the aluminum casing and the tungsten-filled epoxy. The Pz37 element

with the wire attached, is glued with Epofix epoxy [197] into this cylindrical plexiglas

shell, see Fig. 4.2 b).

(a) (b)

Figure 4.2: Pictures of a) inner coax cable wire, glued onto the Pz37 element, b) piezo-

electric element glued into the plexiglas shell.

In the following, sketches of the transducer design is shown to illustrate the construc-

tion process. In Fig. 4.3 a) the piezoelectric element with the plexiglas shell glued on, is

shown. The next step is to attach the aluminum casing. The casing is a cylinder open in

both ends, 2 mm thick, has an outer diameter of 35 mm and is 63 mm long. It is glued

on to the plexiglas shell so that there is space available for the frontlayer (more than 0.7

mm), see Fig. 4.3 c). This has been achieved by first flipping the plexiglas shell with the

piezoelectric element and placing it on a custom made fitting tool with grooves for the

plexiglas shell, see Fig. 4.3 b). Now, a small amount of rapid drying Loctite epoxy is put

on between the aluminum casing and the plexiglas shell, sealing the opening. After a

few minutes the whole structure is flipped again, and Epofix epoxy is poured in between

the aluminum casing and the plexiglas shell from the other side, filling the space and

solidifying the transducer construction.

The coax - cable inner wire is threaded. In a high pressure environment, gas may

creep along the threaded wire, down to the piezoelectric element. When the system

is depressurized again, gas inside the transducer might expand, possible damaging the
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structure. To avoid this, some of the inner wire is removed and a single wire is soldered

onto the threaded wire. The ground cable is glued onto the aluminum casing with Ted

Pella silver paint and Loctite epoxy. The signal wire and the ground wire is gathered in

a coax cable (Fig. 4.3 d).

(a) (b)

(c) (d)

Figure 4.3: Schematics of a) Piezoelectric element with the plexiglas shell. b) Use of

Loctite rapid drying epoxy to seal the space in between the plexiglas shell and the

aluminum casing. c) Epofix epoxy poured down in between the plexiglas shell and the

aluminum casing. d) Ground cable, single wire signal cable and coax cable attached to

the threaded inner wire.

Ted Pella silver paint is then applied to electrically connect the ground electrode of

the piezoelectric element to the aluminum casing. A thin layer of silver paint is used on

the whole front of the transducer. The thickness of this is assumed to be negligible. In

Fig. 4.4, the transducer is shown with the applied silver paint on the front, connecting

the electrode of the piezoelectric element and the aluminum casing. In Fig. 4.4 b) the

transducer is flipped upside down and placed in a plastic holder compared with the

schematics in a). The white silver electrode is seen on the front of the transducer.
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(a) (b)

Figure 4.4: Ted Pella silver paint is applied to electrically connect the ground electrode

of the piezoelectric element and the aluminum casing. b) Schematics, a) Picture.

The next steps are adding backing layer, front layer and a pressure tight seal behind

the transducer. Tungsten-filled epoxy mixtures are suitable as backing layers in trans-

ducer applications [191, 190]. Mixtures containing large tungsten grains are reported to

have higher attenuation and acoustic impedance than mixtures with smaller tungsten

grains [191, 190].

For the backing layer, tungsten-epoxy mass ratio of 10 is used. The tungsten grains

have diameters 50-250 µm. In the transducer design, the backing layer tungsten-epoxy

mixture is poured into the open space behind the piezoelectric element, almost filling

the plexiglas cylinder (see Fig. 4.5 a)). The thickness of the backing layer is set to 33

mm. The backing layer of a maximum damped transducer has characteristic acoustic

impedance equal to the piezoelectric element. A backing layer with acoustic impedance

12 Mrayl is successfully constructed in this work. First, the two component Epofix epoxy

is mixed. The tungsten grains are then added to the mixture. Approximately 1 hour

passed from the epoxy was mixed and to the tungsten-epoxy mixture was poured into the

space behind the piezoelectric element. The backing layer was poured into the transducer

construction. By vacuuming the tungsten-epoxy mix, a higher ZP might been achieved,

however this was not done. The acoustic parameters for the backing layer presented

in Tab. 4.1 are obtained by constructing another sample with tungsten-epoxy ratio 10

using 50-250 µm tungsten grains. The tungsten-epoxy mixture is stirred for the last time

1 hour after the two-component epoxy is mixed (same as used for the backinglayer). The

diameter of this test sample is 44 mm and has thickness 1.8 cm.

To radiate maximum of the acoustic energy from the piezoelectric element and

into the buffer, a quarter wavelength front layer with characteristic impedance Zm =
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√
ZPz37
P ZPV CP should be used. With ZPz37

P = 17 Mrayl (characteristic compressional

wave acoustic impedance of Pz37) and ZPV CP = 3.3 Mrayl (characteristic compressional

wave acoustic impedance of the PVC-buffer), Zm should be 7.5 Mrayl. The front layer is

constructed as a quarter wave front layer with respect to the series resonance frequency,

fs ≈ 570 kHz. The front layer has thus thickness 0.7 mm. To find a way to manufacture

the front layer, three tungsten-epoxy test samples were constructed.

Tungsten grains with diameter 5 µm are used to make the three tungsten-epoxy

test samples with diameter 44 mm and lengths approximately 1 cm. Tungsten-epoxy

mass ratios 4, 4.5 and 5 are used. As for the backing layer, the two-component Epofix

epoxy is mixed. The 5 µm tungsten grains are added and the mixture is stirred. The

tungsten-epoxy mixture is then vacuumed for 10 minutes, removing air bubbles. The

compressional wave velocity for the samples are measured with the immersion method

and the density is found by measuring the mass of the sample and calculating the vol-

ume using the dimensions of the sample. The three test samples are presented in Tab.

4.4. The first arrival of the pulse is used with the immersion method to calculate the

compressional wave velocity. The surface of the test-samples are rough and there is

an uncertainty in the thickness of approximately 0.4 mm (the uncertainity in specimen

thickness dominates the uncertainty in cP ). The uncertainty in the acoustic impedance

in Tab. 4.4 is thus approximately 1 Mrayl.

Table 4.4: Material parameters for tungsten-epoxy samples with tungsten grain diameter

5 µm.

Specimen F1 F2 F3

Tungsten-epoxy mass ratio 4.0 4.5 5.0

Density [kg/m3] 4.59 5.47 5.34

Compressional wave velocity cp [m/s] 1604 1595 1557

ρcP [MRayl ] 7.3 8.7 8.3

In Tab. 4.4 the specimen closest to the geometrical mean, Zm = 7.5 Mrayl, is

the front layer with tungsten-epoxy mass ratio of 4. The diameter of the specimen is

shaped in a turning machine to fit in the space in front of the piezoelectric element. The

front layer is then glued onto the piezoelectric element with 3M Epoxy [198]. The silver

paint electrode underneath the frontlayer ensures electrical contact from the piezoelectric

element and to the aluminum chassis. The 3M epoxy squeezes out on the sides of the

piezoelectric element, filling the small space in between the aluminum chasses and the

front layer, Fig. 4.5) b). After the 3M epoxy cures, the front of the transducer is turned
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down so that the front layer has thickness equal to quarter of a wavelength at fs = 570

kHz, 0.7 mm (see Fig. 4.5 c)). The accuracy of the turning machine is 0.1-0.2 mm.

After adding the front and backing layer to the transducer, Sol-Res 01 polyurothane

[199] is poured into the back of the backing layer, immersing the single signal wire and

sealing the transducer from behind (see Fig. 4.5 d)).

6

(a) (b)

(c) (d)

Figure 4.5: Schematics of a) Tungsten-epoxy backing layer poured in behind the piezo-

electric element. b) Front layer material glued onto the piezoelectric element with 3M

epoxy. c) Front of the transducer turned down so that the front layer is 0.7 mm (quarter

wave length). d) Polyeurothane poured in behind the backing layer.

The last steps of the transducer construction is to attach the lid behind the trans-

ducer and the buffer. The final transducer construction is shown in Fig. 4.1. To have

a minimum of loose parts inside the pressure cell, the buffers are glued onto the trans-

ducers with 3M epoxy. 3M epoxy is seen in to provide better adhesive strength than

Epofix epoxy or rapid-drying Loctite epoxy inside the pressure cell at hydrate conditions.

Thus, 3M epoxy is chosen as the adhesive on between the piezoelectric element and the
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frontlayer, and between the the front layer and the buffer.

To protect against potentially creeping gas in between the buffer and the aluminum

casing, a thin layer of polyurethane is applied around the transducer and the buffer to

seal the structure.

Electrical conductance measurements and simulations are conducted for important

steps in the transducer design. These are presented in Sect. 4.4.

4.3 Construction and design of S-wave transducers

The design and construction process of the S-wave transducers and P-wave transducers

are almost identical. The piezoelectric element of the shear wave transducer is a 15× 15

mm square-shaped shear wave polarized Pz27 element with thickness 2.0 mm. The

piezoelectric crystals in these have been polarized so that a voltage signal across the

electrodes give a displacement along the surface of the shear-wave polarized piezoelectric

elements. From conductance measurements presented in Sect. 4.5, the series resonance

frequency of the piezoelectric element is measured at maximum conductance, fs ≈ 430

kHz.

Plexiglas buffers have previously been used in the solid buffer method [51] and are

chosen as the buffers for the shear wave transducers. The length of the aluminum casing

used in the shear wave transducer is 66 mm. The buffers have length 31 mm so that

aluminum casing + aluminum lid + buffer = 10 cm. This is also true for the P-wave

transducers.

The shear wave characteristic acoustic impedances (ZS) for plexiglas and Pz27 are

1.6 Mrayl and 12.7 Mrayl, respectively. The geometrical mean of these are 4.5 Mrayl.

As no cS-measurements where conducted on the tungsten-epoxy specimen, ZS for the

frontlayers presented in Tab. 4.4 are assumed to be half the values as ZP . F2 is the

sample with the closest value for ρcS . The tungsten-epoxy mass ratio of the chosen

front layer is thus 4.5. The front layer is constructed to as a quarter wave front layer

with respect to the series resonance frequency, fs ≈ 430 kHz. The front layer has thus

thickness 0.4 mm.

Another small difference between the P-wave transducers and the S-wave transducers,

is the inner epoxy-layer covering the area between the piezoelectric element and the

plexiglas shell. Since the S-wave piezoelectric element is square-shaped, the amount of

epoxy on the side of the piezoelectric element in the two transducer constructions are

slightly different (see Fig. 4.6). For the construction of the S-wave transducers, refer to

the procedure described above. The shear wave transducer with dimensions is shown in

Fig. 4.7.
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(a) (b)

Figure 4.6: Illustration of the difference between the a) P-wave tansducer and b) the

S-wave transducer.

Figure 4.7: Schematics of the S-wave transducer design.
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It is also worth to mention that several transducers were made and tested in the

pressure cell before the design presented here was found. A general problem was seen

to be that the frontlayer detached from the transducers under depressurization in the

pressure cell. In the early designs, other types of epoxy were used between the frontlayer

and the piezoelectric element (e.g. Epofix epoxy) that seemed to more easily break

compared with the 3M epoxy used in the final design. One attempt was also made to

pour a tungsten-epoxy mixture into the open space in the front of the transducers, which

did not work either. Even if the transducers presented in this work was used for almost

a year for the hydrate experiments, they eventually broke down as well. However, the

transducers showed no signs of wear during the experiments presented in this work.

4.4 Simulated and measured conductance of P-wave trans-

ducers with buffers

The electrical conductance of the transducer has been measured and simulated during

the important steps of the transducer construction process, starting from the single Pz37

element (Fig. 4.8). All measurements are conducted at room temperature, atmospheric

conditions. Comsol multiphysics has been used to perform finite element simulations of

transducer’s conductance for the same steps. By comparing the measured and simulated

conductance for the different stages of the transducer design, potential flaws in the

transducer construction may be discovered. Consistency between the simulated and

measured conductance gives confidence in the finite element simulations of solid buffer

method presented in chapter 5. The simulation setup with all material parameters used

in the simulations are detailed in chapter 5. The same structure as shown in Fig. 4.7

is simulated except from the aluminum lid, the wires and the silver electrode. The

dimensions used in the simulations are the nominal dimensions shown in Fig. 4.7.
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Figure 4.8: First step of the P-wave transducer construction. a) Piezoelectric element

Pz37 with diameter 23.0 mm and thickness 2.90 mm. b) Measured conductance. c)

Simulated conductance.

The peaks in the measured and simulated conductance are not perfectly aligned in

Fig. 4.8. The uncertainties in the measured dimensions are not big enough to explain

the deviations between measurements and simulations. The deviations are believed to

be because the assumptions regarding the piezoelectric parameters presented in chapter

5 are too rough. However, in this work, the thickness-extensional mode (TE) of the Pz37

element inside the P-wave transducers is used. The thickness mode is split for the Pz37

element but is located around 550 kHz in both the simulation and the measurement.

The backing layer and front layer are heavily influencing the thickness mode, and the

simulated and measured conductance is seen to be more comparable after adding the

front and the backing layer (Fig. 4.10).

Both the measured and the simulated electrical conductance are affected when at-

taching the plexiglas shell and the outer aluminum casing to the piezoelectric element

(Fig. 4.9). An extensively study of all the modes of the piezoelectric element is not

conducted here. However, a mass added at the the outer edge of the element, is assumed

to affect radial modes. The main features of the thickness mode around 550 kHz in Fig.

4.8 are still present in Fig. 4.9.
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Figure 4.9: Second step of the P-wave transducer construction. a) Transducer config-

uration with the plexiglas shell and the aluminum casing glued on to the piezoelectric

element b) Measured conductance. c) Simulated conductance.

Adding the tungsten-epoxy backinglayer to the back of the piezoelectric element,

heavily dampens and widens the thickness mode peak of the transducer (Fig. 4.10).

The simulated and measured conductance at this stage is in well agreement. A mode

at around 200 kHz has survived the effect of the backinglayer and is visible in both

the simulation and the measurement. There are some more ripples in the measured

conductance than in the simulated conductance below 400 kHz. This is indicating that

the constant Q-value from Tab. 4.1 used for the backing layer is not entirely representing

the attenuation at frequencies below 400 kHz. The conductance is measured at the end

of the 50 cm long coax cable of the transducer.
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Figure 4.10: Third step of the P-wave transducer construction. a) Transducer configu-

ration with the tungsten-epoxy backing layer. b) Measured conductance. c) Simulated

conductance.

When the quarter wavelength frontlayer is added onto the transducer configuration,

there is a dip in the measured and simulated electrical conductance (Fig. 4.11). The

measured and simulated conductance give the same main features. However, the sim-

ulated peak above 600 kHz and the dip between the peaks are shifted towards higher

frequencies relative to the measured conductance.
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Figure 4.11: Fourth step of the P-wave transducer construction. a) Transducer config-

uration with the tungsten-epoxy backing and front layer. b) Measured conductance. c)

Simulated conductance.

In Fig. 4.12 the measured and simulated electrical conductance of the final P-wave

transducer construction with buffer is shown. The buffer acts as the medium in which

the transducer radiates acoustic energy into. Because the medium is a finite medium,

the sound will reflect back and forth giving rise to ripples in the conductance spectrum.

The ripples are bigger in the simulation compared with the measurement. This is be-

lieved to be because the attenuation is set too low in the simulation compared to the

measurements.

The deviations between the simulations and the measurements indicate that the

material parameters are not describing the materials used in the transducer construction

perfectly. The thin silver electrode between the front layer and the piezoelectric element

is left out in the simulations. The simulation setup is detailed in chapter 5. As the

main features of the simulated and the measured conductance plots are consistent, there
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are assumed to be no major flaws in the transducer. The finite element simulations are

assumed to be representative for the transducers and will be used to analyze the effects

of unwanted acoustic sidewall reflections the buffers in chapter 6.
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Figure 4.12: a) Measured conductance of the final P-wave transducer construction with

the buffer attached. b) Simulated conductance of the final transducer construction with

the buffer attached.

4.5 Measured conductance of S-wave transducers with buffers

The measured electrical conductance of the shear wave transducer is shown in Fig. 4.13.

In Fig. 4.13 a) the electrical conductance of the shear wave Pz27 piezoelectric element

is shown. The thickness-shear (TS) mode is located around 430 kHz. In Fig. 4.13 b)

the electrical conductance of the shear wave transducer configuration with the backing

layer is shown (analogue to the P-wave transducer configuration in Fig. 4.10).

As for the conductance of the P-wave transducer, the TS-mode for the Pz27 element

inside the S-wave transducer is heavily dampened by the backing layer. In 4.13 c) the

electrical conductance of the shear wave transducer configuration with the front layer is

shown (analogue to the P-wave transducer configuration in Fig. 4.11). The thickness

mode is split in two in the same way as for the P-wave transducers. In 4.13 d) the

electrical conductance of the final shear wave transducer with the buffer attached is

shown. The conductance measurements of the shear wave transducer are similar to the

conductance measurements of the P-wave transducer. Thus there are assumed to be no

major flaws in the shear wave transducers.
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Figure 4.13: Measured electrical conductance of a) a 15 × 15 mm shear wave Pz27

piezoelectric element with 2.0 mm thickness, b) the transducer configuration with the

backing layer added (analogue to the P-wave transducer configuration in Fig. 4.10), c)

the transducer configuration with the backing layer and the front layer (analogue to the

P-wave transducer configuration in Fig. 4.11), d) the final transducer with the buffer

attached.
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Chapter 5

Simulation setup for conductance

simulations and simulation of the

solid buffer method

Two different types of simulations are presented in this chapter. 1) Finite element mod-

eling (FEM) is conducted to investigate the electrical conductance of the transducer

using Comsol Multiphysics 4.2a [?]. By comparing the simulated electrical conductance

with the measured electrical conductance presented in Sec. 4, potential flaws in the

transducer construction may be discovered. The simulation setup for the electrical con-

ductance of the P-wave transducer is presented in Sec. 5.1. The S-wave transducer has

not been simulated due to lack of computing power. 2) Simulation of the solid buffer

method with use of Comsol and Fourier synthesis is performed to investigate the effects

of unwanted reflections in the solid buffer measurement setup. The results of the simula-

tions are shown in Ch. 6. The simulation setup for the solid buffer method is presented

in Sec. 5.2. A simulation example for the solid buffer method is given. A third set of

simulations are the numerical models used to investigate attenuation mechanisms inside

the Bentheim sandstones in Ch. 7. These numerical models are already presented in

Ch. 2 and left out of this chapter.

5.1 Finite element simulations of the P-wave transducers

using Comsol Multiphysics

The setup for the finite element simulations of the P-wave transducers using Comsol

Multiphysics 4.2a [?] is presented here. The available material parameters and how to

obtain a rough estimate for a full set of anisotropic material parameters for Pz37 is
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discussed.

5.1.1 Material parameters used in the finite element simulations

The mechanical properties of the materials used in the Comsol model are presented in

Tab. 5.1. Many of these are already presented in Tab. 4.1. However, the shear wave

Q-value (QS) is given here and is assumed to be equal to the compressional wave Q-

value (QP ) in the simulations. The values of cP and cS for plexiglas used in the Comsol

simulations where measured at an early stage using the solid buffer method. The values

measured using the immersion method in Tab. 4.1 where measured later and are assumed

to be more accurate.

The Q-values of the elastic materials are implemented in the FE simulations by using

complex wave velocities, ĉS = cS + i cS2QS
and ĉP = cP + i cP2QP

[200].

Table 5.1: Materials used in the FE-simulations.

Material cP [m/s] cS [m/s] QP QS ρ [kg/m3]

Backing layer 1600 800 13.5 13.5 7470

Front layer (F1) 1600 800 28.5 28.5 4590

Aluminum 6420 3040 500 500 2700

Plexiglas 2715 1358 63 63 1184

PVC 2380 1190 51 51 1380

Polyurothane 1760 345 14 14 1100

To do 3D finite element simulations a full set of the anisotropic piezoelectric material

constants is needed. As mentioned in Ch. 4, the manufacturer of Pz37 does only provide

a limited set of the piezoelectric material parameters [192], shown in Tab. 4.2. The

parameters in Tab. 4.2 are used to calculate some of the Pz37 material parameters

needed for the 3D finite element simulations [194]:

εS33 = (1− k2
p)(1− k2

t )ε0K
T
33

cE33 = 4ρN2
p (1− k2

t )

e33 = kt

√
εS334ρN2

p .

(5.1)

cE33 is the Pz37 stiffness constant at a constant electrical field in the thickness-direction

(the directions are defined in the IEEE piezoelectric standard [194]). εS33 is the relative

permittivity at constant strain in the thickness-direction. e33 is the piezoelectric constant

in the 33-direction. To the best of this authors knowledge, a full set of anisotropic Pz37

material constants are not published. A full set of anisotropic Pz27 material parameters
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are presented in Tab. 4.3 and repeated in the first column in Tab. 5.2 [188, 193] and

used as a basis to obtain a rough estimate of a full anisotropic set of Pz37 material

parameters.

First the ratios of the Pz27 stiffness constants
(
cE11
cE33

)
Pz27

,
(
cE12
cE33

)
Pz27

,
(
cE13
cE33

)
Pz27

and(
cE44
cE33

)
Pz27

are calculated. These ratios are assumed to be the same as the ratios for

the Pz37 stiffness constants:
(
cE11
cE33

)
Pz37

,
(
cE12
cE33

)
Pz37

,
(
cE13
cE33

)
Pz37

and
(
cE44
cE33

)
Pz37

. From this

assumption the Pz37 material constants cE11, cE12, cE13 and cE44 are obtained. The listed

QP -value of 50 is used for all the Pz37 stiffness constants.

The same technique is used on the other Pz37 material parameters as well. First

the Pz27 ratios of the piezoelectric constants
(
e31
e33

)
Pz27

and
(
e15
e33

)
Pz27

are obtained.

These ratios are assumed to be the same for the Pz37 piezoelectric constants
(
e31
e33

)
Pz37

and
(
e15
e33

)
Pz37

. From this assumption the Pz37 piezoelectric constants e15 and e31 are

obtained. εS11 for Pz37 is found in the same way as the stiffness and piezoelectric constants

(assuming
(
εS11
εS33

)
Pz27

=
(
εS11
εS33

)
Pz37

). The Q-value for εS11 and εS33 are obtained by QE =
1

tan δ . This value is used for all the Pz37 permittivity constants.

Table 5.2: Material constants for Pz27 [188, 193] and Pz37 (rough estimate).

Variable Pz27 Pz37

cE11[1010 N/m2] 12.025(1 + i/96) 6(1 + i/50)

cE12[1010 N/m2] 7.62(1 + i/70) 3.8(1 + i/50)

cE13[1010 N/m2] 7.42(1 + i/120) 3.7(1 + i/50)

cE33[1010 N/m2] 11.005(1 + i/190) 5.3(1 + i/50)

cE44[1010 N/m2] 2.11000(1 + i/75) 1.03(1 + i/50)

e31[ C/m2] −5.4(1− i/166) −4

e33[ C/m2] 17(1− i/324) 11.3

e15[ C/m2] 11.20(1− i/200) 7

εS11[10−9 F/m] 8.11044(1− i/50) 5.75(1− i/59)

εS33[10−9 F/m] 8.14585(1− i/130) 5.77(1− i/59)

ρ [kg/m3] 7700 6000

Qp - 50

tan δ - 0.017

Using the ratio of Pz27 piezoelectric constants to calculate the anisotropic piezo-

electric constants for Pz37 gives only a rough estimate. Deviations are seen between

conductance measurements and simulations. However, by comparing the conductance
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measurements and simulations in Sec. 4.4 there is a fair agreement for the thickness

mode of the transducer.

5.1.2 Conductance simulations of the P-wave transducers

An axisymmetric geometry is defined for the important stages of the transducer con-

struction process (Figs. 5.1, 5.2 and 5.3). Comsol Multiphysics is used to simulate

the electrical conductance of the important stages of the transducer construction. The

simulation setup for the electrical conductance of the different stages of the transducers

design is presented here.

The electrical conductance is obtained between the electrodes of the transducer. The

Piezoelectric-Acoustics Module package is used without fluid-domains. Outside the the

defined structure, there is vacuum. A frequency domain study is performed with the

frequency range 50 kHz - 1.2 MHz and frequency resolution 2 kHz.

Second order, triangular elements are used to mesh the transducer structure. For

all domains (piezoelectric and elastic), the mesh has minimum 10 elements/λP , where

λP is defined as the compressional wavelength calculated using frequency 500 kHz and

cP =2715 m/s (compressional wave velocity of plexiglas). The piezoelectric disc is de-

fined as a piezoelectric domain, and the rest are defined as elastic domains. A conver-

gence test of the phase and magnitude of a received voltage signal indicates that 10

elements/wavelength is sufficient resolution (see Sec. 5.2.3). The simulated and mea-

sured electrical conductance of the P-wave transducer is presented in Ch. 4. A full 3D

simulation is performed using the axisymmetric geometry.

The first simulation stage of the transducer design is the piezoelectric disc. The

piezoelectric disc is shown in Fig. 5.1 b) with the symmetry-axis at r=0. The mesh

of the axisymmetric FEM of the piezoelectric element is shown in Fig. 5.1 a). The

piezoelectric disc is meshed in 2D from the symmetry axis to the outer edge of the disc.

The axisymmetric solution in Comsol ensures that a full 3D solution of the problem

shown in 5.1 a) is obtained. The meshed part is used in the axisymmetric FEM.
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(a) (b)

Figure 5.1: a)) Meshing of the axisymmetric finite element model of the Pz37 element.

b) A schematic of the simulated Pz37 element.

The simulated transducer structures during the construction process are shown in

Fig. 5.2. In Fig. 5.2 a), the piezoelectric element with the isolation and the housing

is shown. In Fig. 5.2 b), the backing layer is added to the simulation model. In

Fig. 5.2 c), the frontlayer is added to the simulation model and the. In Fig. 5.2 d),

polyurethane potting material is added behind the backing layer. The final simulated

P-wave transducer with the buffer attached is shown in Fig. 5.3. The symmetry axis is

shown in the same way as for the piezoelectric disc in Fig. 5.1 b).

The mesh is obtained in all the transducer configurations in Figs. 5.2 and 5.3 in

the same way as in Fig. 5.1 b): meshing the structure from the symmetry axis to the

outer edge of the structure. Like above; for all domains (piezoelectric and elastic), the

mesh has minimum 10 elements/λP . The mesh is not shown here. The dimensions of

the transducer construction is presented in Fig. 4.1. These are used in the simulations

as well. The silver paint electrode is left out in the simulations. The Pz37 material data

used in the simulations are given in Tab. 5.2, the rest of the material parameters are

given in Tab. 5.1. A 3D simulation of the S-wave transducers can not be performed with

the 2D axisymmetric simulation setup and require more computing power than available.

Simulations of the S-wave transducers have therefore not been performed.
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(a) (b)

(c) (d)

Figure 5.2: Schematics of simulated P-wave transducer configurations. a) Piezoelectric

element with plexiglas insulation and aluminum casing glued on with epoxy. b) Trans-

ducer configuration a) with backinglayer attached. c) Transducer configuration b) with

frontlayer. d) Transducer configuration c) with polyurethane as sealing material.
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Figure 5.3: A schematic of the final simulated P-wave transducer.

5.2 Simulation of the solid buffer method

The solid buffer method is simulated by the use of finite element modeling and Fourier

synthesis. These simulations are used to investigate the effects of unwanted reflections

in the solid buffer measurement setup.

5.2.1 Equations for the simulated solid buffer method

The equation used for calculating cP and αP with the solid buffer method (Eq. (3.14)),

depends on the input quantities V7,A and V8,B, V0,A and V0,B. Since no models for

electrical equipment such as cables, signal generator, amplifiers etc. are used in this

work, the equation for the solid buffer method is rewritten so that V open
6,A and V open

7,B ,

V2,A and V2,B can be used instead. V open
6,A and V open

7,B are defined in Sec. 3.3.3. In this

work, whenever measurement A is simulated, this is called ”simulation A,” and whenever

measurement B is simulated, this is called ”simulation B.”

From the system model describing measurement A and B (Eqs. 3.6 and 3.7, respec-

tively), V7,A and V8,B are defined as signals in the frequency domain propagating through

the measurement system with no reflections from buffers or speimen. Thus it is assumed
V0,B
V0,A

=
V2,B
V2,A

and
V8,B
V7,A

=
V open7,B

V open6,A
. With these assumptions, Eq. (3.14) is rewritten

V open
7,B

V open
6,A

=
V2,Be

−ikmdTB1TB2H
dif
B

V2,AH
dif
A TA

. (5.2)

V open
6,A and V open

7,B are the signals at the open circuit output terminals of the receiving

transducer in simulation A and B, respectively, with no reflections from buffers or spec-
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imen present. In such a system, V2,A and V2,B are the electrical signals across the

electrodes of the piezoelectric element of the transmitting transducer in simulation A

and B, respectively, with no reflections from buffers or specimen. For each frequency

step in the Comsol simulations, V2,Ar and V2,Br are predefined by the user and
V open6,Ar

V2,Ar

and
V open7,Br

V2,Br
are obtained directly from the simulations. By doing the isolation process

described in Sec. 3.5.2, simulations of
V open6,A

V2,A
and

V open7,B

V2,B
may be obtained.

Simulation of the solid buffer method using voltage to voltage transfer func-

tions

V open6,A

V2,A
and

V open7,B

V2,B
may be obtained through five steps:

1. Obtaining the transfer functions from Comsol: HV V,open
26,Ar =

V open6,Ar

V2,Ar
and HV V,open

27,Br =

V open7,Br

V2,Br
in simulation A and simulation B, respectively (Eq. (3.5)).

2. Defining V2,Ar and V2,Br as the frequency spectrum of a short pulse. Thus V2,Ar =

V2,A and V2,Br = V2,B. Obtaining V open
6,Ar and V open

7,Br by multiplying the transfer

functions in (1) with V2,A and V2,B, respectively.

3. Obtaining time domain signal trace, V (t)open6,Ar and V (t)open7,Br with Fourier synthesis.

These are the full traces of the simulated time signals in simulation A and B,

respectively.

4. Isolating the pulse traveling directly from the transmitter to the receiver, V (t)open6,A

and V (t)open7,B from V (t)open6,Ar and V (t)open7,Br, respectively.

5. Taking the discrete Fourier transform of V (t)open6,A and V (t)open7,B to obtain V open
6,A and

V open
7,B .

Now, V open
6,A and V open

7,B are the simulated voltage signals, resulting from the input signals,

V2,A and V2,B in simulation A and B, respectively. V open
6,A , V open

7,B V2,A and V2,B are used

in Eqs. (3.50) and (3.51) instead of V7,A, V8,B, V0,A and V0,B, respectively.

Simulation of the solid buffer method using a baffled piston as transmitter

and the buffers approximated with synthetic ”fluid-buffers”

The diffraction corrections (Eq. (2.8)) used in this work are originally developed for fluids

[79]. To investigate how well the proposed diffraction corrections correct for diffraction

effects in a solid, the solid buffer method is simulated using synthetic fluids as buffers and

specimen. The buffers and the specimen are modeled as inviscid fluids and have cP and
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QP equal to that of PVC and plexiglas, respectively. The fluid-buffers are wide enough

so that no reflections are interfereing with the direct pulse. The transmitting transducer

is modeled as a circular, uniformly vibrating, piston mounted in an infinite, rigid baffle.

The receiver is modeled as the average free-field pressure over a measurement area equal

to the receiving transducer (see Fig. 5.4).

The transfer functions obtained with Comsol are now 〈PA〉
vzA

and 〈PB〉vzB
for simulation A

and B, respectively. 〈PA〉 and 〈PB〉 are the average free-field ”pressure” in the synthetic

fluid buffer over the measurement area in Fig. 5.4. vzA and vzB are the piston velocities

in the z-direction in simulation A and B, respectively. By assuming
V open7,B

V open6,A
= 〈PB〉
〈PA〉 and

vB
vA

=
V2,B
V2,A

the ”solid buffer method” may be expressed:

〈PB〉
〈PA〉

=
vzBe

−ikmdTB1TB2H
dif
B

vzAH
dif
A TA

. (5.3)

The five steps listed above can now also be used for the ”solid buffer method” defined

here with synthetic fluids. However, 〈PA〉 and 〈PB〉 are used instead of V open
6,A and V open

7,B ,

respectively. vzA and vzB are used instead of V2,A and V2,B, respectively.

In the following, the simulation setup for four different solid buffer methods are

presented. In three of them, the transfer functions
V open6,A

V2,A
and

V open7,B

V2,B
for simulation A and

simulation B are obtained and Eq. (5.2) is used. In the fourth, a baffled piston has been

used to model the transmitting transducer. The transfer functions 〈PA〉vzA
and 〈PB〉

vzB
are

obtained and Eq. (5.3) is used to calculate cP and αP .

5.2.2 Simulation setup for the solid buffer method

By simulating the solid buffer method with solid buffers and synthetic fluid buffers of

different widths, the effect of the buffer sidewall reflections and diffraction effects are

analyzed. In the same way as for the conductance simulations above, axisymmetric

geometries are defined to describe the simulated solid buffer method. Four different

simulations of the solid buffer method are conducted: Simulation 1: solid buffer method

with wide synthetic fluid PVC buffers and a baffled piston as source. The receiver is

sensitive to the average free-field ”pressure” in the buffers over the measurement area

(Fig. 5.4). Simulation 2: solid buffer method with wide synthetic fluid buffers (Fig. 5.5)

with piezoelectric transducers as source and receiver. Simulation 3: solid buffer method

with with wide elastic buffers (Fig. 5.6) with piezoelectric transducers as source and

receiver. Simulation 4: solid buffer method with with narrow elastic buffers (Fig. 5.7)

with piezoelectric transducers as source and receiver. The synthetic PVC fluid buffers

have a complex cP with the imaginary part corresponding to QP . The elastic PVC
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buffers have a complex cP and cS with the imaginary part corresponding to QP and

QS , respectively (see Tab. 5.1 for material data). The synthetic fluid plexiglas specimen

have a complex cP with the imaginary part corresponding to QP . The elastic plexiglas

specimen have a complex cP and cS with the imaginary part corresponding to QP and

QS , respectively (see Tab. 5.1 for material data).

Comsol Multiphysics version 4.2a is used to solve the wave equations 2.12, 2.9 and

2.14 for the elastic, piezoelectric and fluid domains for the axisymmetric problems shown

in Figs. 5.4-5.7. In the figures, a symmetry-line at r=0 is defined in the same way as for

the electrical conductance simulation in Fig. 5.1. The Piezoelectric-Acoustics Module

package is used. A frequency domain study is performed with the frequency range 50

kHz - 1.2 MHz with a frequency resolution 2 kHz. The mesh is defined in the same way

as for the conductance simulations presented in Sec. 5.1.2.

In simulation 1, a baffled piston with diameter 23 mm is modeled by a prescribed

velocity in the z-direction at a line segment 23 mm long (see Fig. 5.4). The buffers are

wide enough so that potential sidewall reflections do not interfere with the direct signal.

As the diffraction correction in this work is described in a fluid with a baffled piston as

the source, this simulation is supposed to simulate the exact compressional wave velocity

and compressional wave Q-factor. The velocity to pressure transfer functions 〈PA〉vzA
and

〈PB〉
vzB

are simulated in simulation A and B, respectively. In this simulation the buffers

and the specimen are defined as synthetic fluids, and modeled as fluid domains. The

buffers have length 34 mm and diameter 18 cm. The specimen has length 60 mm and

diameter 18 cm. Simulation 1-4 are presented and discussed in Sec. 6.1.

Simulation model 2 (Fig. 5.5) has the same simulation setup as simulation 1, except

that the source is now the piezoelectric transducer shown in Fig. 5.2 c). The voltage to

voltage transfer functions
V open6,Ar

V2,Ar
and

V open7,Br

V2,Br
(Eq. (3.5)) are simulated. The user is free

to define V2,Ar or V2,Br on the input terminal of the transducer, thus the transmitting

transducer is exited with a prescribed voltage at the input terminals. The received signal

is retrieved on the output terminal of the receiving transducer. The use of the baffled

piston diffraction correction model to describe the diffraction of the transducer can be

analyzed by comparing simulation 1 and 2.

Simulation 3 (Fig. 5.6) is the same as simulation 2, except from that the buffers and

specimen are now modeled as elastic domains. The voltage to voltage transfer functions
V open6,Ar

V2,Ar
and

V open7,Br

V2,Br
are simulated. Simulation 2 where the buffers are modeled with elastic

domains should give approximately the same results as simulation 3, where the buffers

are modeled as fluid domains for the proposed diffraction correction to be valid in elastic

materials.
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In simulation 4 (Fig. 5.7) the solid buffer method presented in Ch. 3 is simulated.

This is the same simulation setup as simulation 3, but the specimen and buffers have the

same dimensions as in the real measurement setup. Again the voltage to voltage transfer

functions
V open6,Ar

V2,Ar
and

V open7,Br

V2,Br
are simulated. The transducer with buffers is presented in Fig.

5.3. The specimen have diameter 50 mm and length 60 mm. By comparing simulation

4 with simulation 1-3, the effect of unwanted sidewall reflections in the buffers and

diffraction effects can be investigated.

(a) (b)

Figure 5.4: Simulation 1. a)) Simulation 1 A. b) Simulation 1 B (with the specimen

present).

(a) (b)

Figure 5.5: Simulation 2. a)) Simulation 2 A. b) Simulation 2 B (with the specimen

present).
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(a) (b)

Figure 5.6: Simulation 3. a)) Simulation 3 A. b) Simulation 3 B (with the specimen

present).

(a) (b)

Figure 5.7: Simulation 4. a)) Simulation 4 A. b) Simulation 4 B (with the specimen

present).

5.2.3 Convergence

A brief study of the convergence in the Comsol simulations with respect to the grid

mesh is conducted. In Fig. 5.8, the results of simulation 4B (Fig. 5.7 b)) is presented

at 500 kHz for different elements/λP (calculated for 500 kHz and cP=2715 m/s). In a),

the magnitude of the voltage across the electrodes of the receiving transducer is plotted

and in b) the phase of the voltage across the electrodes of the receiving transducer is

plotted. Assuming that elements/λP = 30 is correct, the deviation in magnitude from

the ”correct” value at 10 elements/λP is less than 1.3 %. The deviation in the phase

from 30 to 10 elements/λP is maximum 0.02 rad. This corresponds to a transit time of

approximately 6 ns which gives a difference in cP less than 1 m/s using the solid buffer

method with the basic pulse method (Eq. (3.18)).
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Figure 5.8: Convergence test for the mesh in the Comsol simulations for different ele-

ments/wavelength (or elements/λP ). Simulation 4B is used (Fig. 5.7 b)). a) Shows the

magnitude of the voltage across the electrodes of the receiving transducer. b) Shows the

phase angle of the voltage across the electrodes of the receiving transducer.

The electrical conductance simulation results presented in Fig. 4.8 for the Pz37

element have been found to agree with simulations conducted with another finite element

simulation program FEMP [201]. The electrical conductance simulation result from the

two finite element simulation programs, FEMP and Comsol, was indistinguishable (<

0.1%). The FEMP simulation setup apart from the Pz37 material constants is described

by Aanes [193].

5.2.4 Fourier synthesis example

The five step (Sec. 5.2.1) procedure of simulating the solid buffer method (simulation 4)

is shown here. In step 1, the transfer functions H(f)V V,open26,Ar and H(f)V V,open27,Br are obtained

(Fig. 5.9). They have a frequency resolution, ∆f =2 kHz, and a frequency range 2 kHz

- 1.2 MHz. The sampling frequency, Fs, is set to 50 MHz (100 samples/period at 500

kHz) and the transfer functions from 0 Hz to Fs = 50 MHz are obtained by zeropadding.

The transfer functions from Comsol are first zeropadded from 1.2 MHz to Fs/2. The

transfer function spectrum from frequencies Fs/2 to Fs −∆f is the complex conjugate

of the transfer function spectra from Fs/2 to 0 (Fig. 5.9) [155].
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Figure 5.9: Padded transfer functions from Comsol. a) Simulation A, HV V,open
26,Ar (f). b)

Simulation B, HV V,open
27,Br (f).

In step 2, V open
6,Ar and V open

7,Br (Fig. 5.11) are obtained by multiplying the transfer

functions, HV V,open
26,Ar and HV V,open

27,Br (Fig. 5.9), with V2 (magnitude of V2 shown in Fig.

5.10 b)). In the simulations, the same input signal is used in simulation A and B. V2(t)

is a short, zeropadded pulse with Fs = 50 MHz and length 500 µs (25 000 samples,

Fig. 5.10 a)). The frequency components of this short pulse (with ∆f = 2 kHz) do not

contain any reflections, thus V2,Ar = V2,Br = V2.

Because the user is free to define V2 and only the transfer functions
V open6,A

V2,A
and

V open7,B

V2,B

are needed in Eq. (5.2) to find cP and αP , no Thevenin circuit is needed to describe the

signal from the signal generator in this work.
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Figure 5.10: Input signal on the transmitting transducer. a) Zeropadded input signal

V (t)2. b) Magnitude of input signal, V (f)2.
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Figure 5.11: Magnitude of the received signals. a) V (f)open6,Ar , b) V (f)open7,Br.

In step 3, V (t)open6,Ar and V (t)open7,Br (Fig. 5.12) are obtained by taking the inverse DFT

of V (f)open6,Ar and V (f)open7,Br (Fig. 5.11), respectively.
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Figure 5.12: Received time domain signal on receiving transducer. a) V (t)open6,Ar , b)

V (t)open7,Br, c) zoomed V (t)open6,Ar , d) zoomed V (t)open7,Br.
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In step 4, the main signal seen Fig. 5.12 c) and d) are isolated and zeropadded as

described in the isolation process in Sec. 3.5.2. From this process the signals containing

no reflections, V (t)open6,A and V (t)open7,B are obtained.

In step 5, the DFT of the isolated signals V (t)open6,A and V (t)open7,B are taken so that the

solid buffer Fourier spectrum method can be used to calculate cP and αP , using Eqs.

(3.50) and (3.51). Due to folding, echoes or other reflections arriving later than the time

trace shown in Fig. 5.12 a) and b), will be folded into the time window. By examining

the time trace in Fig. 5.12 a) and b), there is no signal towards 500 µs. It is thus assumed

that errors due to folding are minimal. The simulation results for plexiglas specimen are

presented in Ch. 6 and compared with measurements to consider the accuracy of the

solid buffer method used inside the pressure cell.
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Chapter 6

On the accuracy of the solid

buffer method for use inside the

pressure cell

The accuracy of the measurements conducted with the solid buffer method inside the

pressure cell is considered. To do this, compressional and shear wave measurements with

the solid buffer method are compared with compressional and shear wave measurements

using the immersion method. Measurements conducted with the P-wave and S-wave

transducers are treated separately. Simulations of the solid buffer method (presented in

Sec. 5.2) using the P-wave transducers are used to investigate the effects of diffraction

of sound waves and sidewall reflections in the buffers and specimen. The simulations are

compared with plexiglas measurements. In the hydrate experiments in Ch. 7, both the

P-wave and the S-wave transducers are used.

In Sec. 6.1, cP and αP for plexiglas specimen are measured with both the immersion

method and the solid buffer method using P-wave transducers. The solid buffer method is

simulated to investigate the effects of diffraction of sound waves and unwanted reflections

from the sidewalls (described in Ch. 5). The accuracy of cP and αP - measurements using

the P-wave transducers is considered based on the simulations and comparing the solid

buffer method with the immersion method. cP obtained with the Fourier spectrum

method is also compared with cP obtained with the basic pulse method for confidence

in the Fourier spectrum method. The effect on cP and αP - measurements for Bentheim

sandstones due to the torque exerted on the transducers and the pressure exerted on the

sandstones due to the confining sleeve is commented. The presented sensitivity analysis

on the measured cP using the solid buffer method gives an estimate of the combined

sensitivity due to the listed uncertainty contributions, ∆csensP ≈ 12 m/s.
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In Sec. 6.2, cP and αP for plexiglas measured with the solid buffer method using

S-wave transducers are presented. cP and αP measured with the S-wave transducers are

compared with measurements using the immersion method and measurements using the

solid buffer method with the P-wave transducers. The difference in the measured cP

using the S-wave transducers and the immersion method is estimated to be ∆ccompareP ≈
60 m/s.

In Sec. 6.3, cS for plexiglas specimen is measured and compared with cS measured

with the immersion method. The difference in the measured cS from the methods is

estimated to be ∆ccompareS ≈ 60 m/s.

6.1 On the accuracy of the solid buffer method using the

P-wave transducers

The accuracy of the measurements conducted with the solid buffer method using P-wave

transducers inside the pressure cell is considered. To do this, cP and αP for plexiglas

specimen are measured with the solid buffer method (Sec. 3.3.4) and compared with

measurements conducted with the immersion method (Sec. 3.4.3). To investigate the

effect of unwanted sidewall reflections and diffraction effects, the results are compared

with simulations of cP and αP using the solid buffer method (the simulation setup is

described in Sec. 5.2.2).

In the derivation of the solid buffer Fourier spectrum method (Eq. (3.50) and Eq.

3.51), it is assumed that V7,A and V8,B contain no unwanted sidewall reflections and that

the electrical and transducer transfer functions cancel out in Eq. (3.13). It is assumed

that the transducers, buffers and specimen surfaces in contact with each other are plane

and aligned so that the specimen can precisely be defined with a length d and the buffers

with a length x. The diffraction correction is assumed to be described with Eq. (2.8).

The phase of the plane wave transmission coefficients are assumed to be zero. Any

uncertainties in the components in Eqs. (3.50) and (3.51), or any deviation from the

assumption listed above will contribute to the uncertainty in cP and αP -measurements.

In the following, measurements and simulations are conducted to investigate and

consider the accuracy of the solid buffer method used inside the pressure cell.

6.1.1 Simulations of cP and αP in plexiglas using the solid buffer method

To investigate how diffraction effects and unwanted acoustic reflections affect the mea-

surements, the solid buffer method is simulated as described in Sec. 5.2. The acquired

time signals in measurement A and B in the solid buffer method are simulated. cP and
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αP in plexiglas are input values in the simulations, and are thus known. The acoustic

reflections from the buffer-sidewalls are investigated by using buffers of different widths.

Diffraction effects are investigated by comparing simulations where a piezoelectric trans-

ducers are used with simulations where a baffled piston is used as the transmitter. The

main goal in this subsection is to indicate an uncertainty in the simulated cP and αP

due to diffraction effects and sidewall reflections. These uncertainties are labeled ∆creflP ,

∆αreflP , ∆cdifP and ∆αdifP and are also assumed to be valid for the plexiglas measurements

presented in Sec. 6.1.2.

As detailed in Sec. 5.2, transfer functions representing measurement A and B are

obtained by FE-simulations and the time-domain signals are obtained by using Fourier

synthesis. These time-domain pulses are used with the Fourier spectrum method and the

basic pulse method to calculate cP and αP . Four different simulations are performed.

Simulation 1 (Fig. 5.4) is an idealized model where no unwanted acoustic reflections

from sidewalls are present due to wide buffers. The buffers are modeled as fluids and

the transmitting transducer is modeled as a baffled piston with radius equal to the

piezoelectric element. The receiver is modeled as the average free-field pressure over

a measurement area equal to the receiving transducer and the diffraction Rogers and

Buren’s diffraction correction model [79] is assumed to be accurate. Simulation 2 use

the same buffers and specimen as simulation 1, however, the transmitter and receiver are

modeled with the P-wave piezoelectric transducers (see Fig. 5.5). Simulation 3 use the

same transducers and dimensions as simulation 2, however, the fluid buffers are replaced

with elastic buffers (see Fig. 5.6). In simulation 4, the solid buffer method, with realistic

dimensions is simulated (see Fig. 5.7).

By stepwise simulating cP and αP for the four simulation models listed above, the

effect of acoustic reflections from buffer sidewalls and the validity of Rogers and Buren’s

diffraction correction model are investigated.

Simulation 1

In simulation 1, the transmitting transducer is simulated as a baffled piston (piston

mounted in an infinite, rigid baffle) with radius 11.5 mm (radius of the piezoelectric

element) and the receiver is sensitive to the average pressure over a measurement area

the same size of the transducer. The buffers and specimen are modeled as ”synthetic

fluids”, that is inviscid fluids having cP and αP equal to the buffers and the specimen.

The simulation setup is presented in Fig. 5.4 in Sec. 5.2.2. The schematic of simulation

1 is repeated in Fig. 6.1. The transfer functions 〈PA〉vzA
and 〈PB〉vzB

defined in Sec. 5.2.2 are

simulated for measurement A and B, respectively. The piston oscillates with a particle
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velocity amplitude −iωU0 where U0 = 1 nm is the displacement amplitude.

(a) (b)

Figure 6.1: Simulation 1: Wide synthetic fluid buffers and a baffled piston as the trans-

mitting transducer (same as Fig. 5.4). a)) Simulation of measurement A. b) Simulation

of measurement B.

The synthetic fluid-buffers have diameter 18 cm and length 34 mm. The specimen

have diameter 18 cm and length 60 mm. cP and αP are expressed with a complex

ĉP = cP + i cP2QP
, where QP = ω

2αP cP
. From Tab. 5.1, cP = 2380 m/s and QP = 51 for

PVC and cP = 2715 m/s and QP = 63 for plexiglas. αP due to QP = 63 is 0.4 dB/cm

at 250 kHz and 0.8 dB/cm at 500 kHz.

By geometrical considerations, the first potential reflections from the specimen side-

walls arrive 15-20 periods after the first arrival of the direct pulse in simulation B. Thus,

no sidewall reflections are assumed to interfere with the signals when simulating cP and

αP .

In the simulations, cP and αP are known from the input parameters. The diffraction

correction model of Rogers and Buren is based on the same setup as the simulation 1: A

baffled piston radiating into a fluid of infinite extent (no unwanted reflections interfering

with the signal). Thus, the use of the baffled piston diffraction correction model should

therefore accurately correct for the diffraction effects in simulation 1.

In Figs. 6.2 a) and b), the simulated αP and cP are obtained using simulation 1 (Fig.

5.4) using the Fourier spectrum method. A 1 cycle 500 kHz pulse with displacement

amplitude 1 nm is used. The simulation procedure is detailed in Sec. 5.2.2. In c) the

simulated cP is obtained using the basic pulse method. After the sine signals have been

simulated, the basic pulse method is used in the same way as described in Sec. 3.5.1.

For the basic pulse method a 10 cycles, 500 kHz tone burst is used.
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Figure 6.2: Simulation of cP and αP using the solid buffer method with the transmitter

modeled as a baffled piston and the the buffers modeled as wide fluid-buffers (simulation

1). a)) αP using the Fourier spectrum method. b) cP using the Fourier spectrum

method. c) cP using the basic pulse method with a 10 cycles, 500 kHz toneburst.

Using the proposed diffraction correction model [79], a close to exact agreement is

found between the input parameters of the FE-simulation and cP and αP obtained using

simulation 1 (red curve). Only a small deviation is seen at high frequencies for the

Fourier spectrum method. These might be due to aliasing effects (described in Sec.

3.5.2, Fig. 3.26). For the basic pulse method, there is a small deviation for early zero-

crosses. As higher frequencies components are more protruding in the early features

of the received signal [49] the same potential aliasing effects seen in Fig. 6.2 b) may

be present in the basic pulse method shown in Fig. 6.2 b). However, in this work,

acoustic properties within the bandwidth 300 - 620 kHz are of main interest. For the

ble curve labeled ”no diffraction correction” in Fig. 6.2, Hdif
A = Hdif

B . The blue curve

clearly overestimates αP and cP , giving strong indications that Hdif
A ¬H

dif
B . The close

agreement between the simulated cP and αP with the input parameters (red curve) gives
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confidence in the FE-simulations and the signal processing methods used to obtain cP

and αP . It also indicates that the diffraction correction model detailed in Sec. 2.3 is

describing diffraction effects properly for simulation 1.

Simulation 2

Simulation 2 uses the same buffers and specimen as simulation 1, however, in simulation

2, the transmitter and receiver are modeled with piezoelectric transducers (presented in

Sec. 5.1). The dimensions of the transducer is presented in Fig. 4.12. Due to the wide

buffers with diameter 18 cm used in simulation 2 (see Sec. 5.2), there are assumed to

be no unwanted reflections in the simulations. However, the diffraction can no longer

be expected to accurately be described with Rogers and Buren’s diffraction correction

model, which is based on the use of a baffled piston as the transmitting transducer. The

simulation setup is presented in Sec. 5.2.2, Fig. 6.3. The schematic of simulation 2 is

repeated in Fig. 6.3. The open circuit voltage to voltage transfer functions HV V,open
36,Ar

and HV V,open
37,Br for measurement A and B, respectively, are simulated. The transmitting

transducer is exited with a 1 cycle pulse with 1 V amplitude, across the input terminals.

(a) (b)

Figure 6.3: Simulation 2: Wide synthetic fluid buffers and piezoelectric transducers

as transmitter and receiver (same as Fig. 5.5). a) Simulation of measurement A. b)

Simulation of measurement B.

cP and αP simulated with simulation 2 is shown in Fig. 6.4. The simulated values

can largely be compared with the piston model in simulation 1. By using Rogers and

Buren’s diffraction correction model, a cP in the range 2709-2717 m/s is obtained within

the 6 dB bandwidth 300-620 kHz defined in Sec. 6.1. The simulated αP coefficient is

approximately 0.85 dB/cm at 500 kHz, which is close to the true value of the input

parameter, 0.80 dB/cm at 500 kHz. This indicates that the diffraction correction model
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is representing the diffraction from the transducer fairly well around 500 kHz. Compared

to simulation 1 (Fig. 6.2), αP is in general slightly overestimated for higher frequencies

and underestimated for lower frequencies within the bandwidth 300 - 620 kHz. The only

difference between simulation 1 and 2 is that piezoelectric transducers are introduced in

simulation 2. It is concluded here that the deviations seen between cP and αP in Figs.

6.2 and 6.4 are due to a non-perfect description of the diffraction effects. However, using

the proposed diffraction correction gives a value for cP and αP closer to the true value

than not using the diffraction correction (Hdif
A 6= Hdif

B ).
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Figure 6.4: Simulation of cP and αP using the solid buffer method with the transmitter

and receiver modeled as a piezoelectric transducers and the buffers modeled as wide

buffer-fluids (simulation 2). a)) Compressional attenuation coefficient using the Fourier

spectrum method. b) cP using the Fourier spectrum method.

Simulation 3

In simulation 3, the fluid buffers and specimen in simulation 2 are replaced with elastic

PVC buffers with cP = 2380 m/s, cS = 1190 m/s, QP = QS = 51 and a plexiglas

specimen with with cP = 2715 m/s, cS = 1358 m/s and QP = QS = 63 (Tab. 5.1).

The simulation setup is presented in Sec. 5.2.2. The schematic of simulation 3 is

repeated in Fig. 6.5. This simulation with elastic buffers and specimen is completely

analogue with simulation 2 with fluid buffers and specimen. Simulation 2 (Fig. 6.4)

and simulation 3 (Fig. 6.5) are very similar. At 500 kHz the difference in αP and

cP are less than 0.02 dB/cm and 1 m/s, respectively. Due to the close match, the

description of simulation 2 is also valid for simulation 3. The small differences seen

between the simulated cP and αP in Figs. 6.4 and 6.6 are probably because shear wave

components in the elastic buffers affect the simulations. However, these are small and
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using the proposed diffraction correction model (red curve) and (as for simulation 2) the

simulated values of cP and αP in simulation 3 are close to the input values.

(a) (b)

Figure 6.5: Simulation 3: Wide elastic PVC-buffers and piezoelectric transducers as

transmitter and receiver (same as Fig. 5.6). a)) Simulation of measurement A. b)

Simulation of measurement B.
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Figure 6.6: Simulation of cP and αP using the solid buffer method with the transmitter

and receiver modeled as a piezoelectric transducers and wide elastic buffers (simulation

3). a)) Compressional attenuation coefficient using the Fourier spectrum method. b)

cP using the Fourier spectrum method.
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Simulation 4

In simulation 4 (Fig. 5.7) the solid buffer method presented in Ch. 3 is simulated.

This is the same simulation setup as simulation 3, but the specimen and buffers have

the same dimensions as in the real measurement setup. The specimen has diameter 50

mm and length 60 mm. The buffers are 34 mm long and have diameter 35 mm. The

simulation setup is presented in Sec. 5.2.2, Fig. 5.7. The simulation setup is repeated in

Fig. 6.7. The open circuit voltage to voltage transfer functions HV V,open
36,Ar and HV V,open

37,Br

for measurement A and B, respectively, are simulated. The transmitting transducer is

exited with 1 cycle, 1 V amplitude pulse across the input terminals.

(a) (b)

Figure 6.7: Simulation 4: Narrow, elastic PVC-buffers and piezoelectric transducers

as transmitter and receiver (same as Fig. 5.7). a) Simulation of measurement A. b)

Simulation of measurement B.

The simulated cP and αP for simulation 4 using the Fourier spectrum method are

shown in Figs. 6.8 a) and b), respectively. In 6.8 c), cP is shown using the basic pulse

method with a 500 kHz, 10 cycles long tone burst. For both the basic pulse method and

the Fourier spectrum method, cP is found to be approximately 2711 m/s at 500 kHz.

This is very similar to value obtained in simulation 3 for 500 kHz and is 4 m/s less than

the input value of 2715 m/s. αP is seen to be approximately 0.6 dB/cm at 500 kHz

which is 0.20 dB/cm less than the input value of 0.80 dB/cm at 500 kHz.
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Figure 6.8: Simulation of cP and αP using the solid buffer method with the transmitter

and receiver modeled as a piezoelectric transducers and narrow elastic buffers (simulation

4). a)) Compressional attenuation coefficient using the Fourier spectrum method. b)

cP using the Fourier spectrum method. c) cP using the basic pulse method with a 10

cycles, 500 kHz tone burst.

Summary of simulation 1-4

Simulation 1 is an idealized model and gives the same cP and attenuation coefficient

as used for the input parameter for the specimen. The close agreement between the

simulated cP and αP with the input parameters gives confidence in the FE-simulations,

the signal processing methods and the measurement methods used to obtain cP and αP .

Using the proposed diffraction correction model, gives more accurate results than not

using the proposed diffraction correction. It is thus concluded that Hdif
A 6= Hdif

B .

In simulation 2 and 3 the buffers are wide and there are assumed to be no reflections

from the buffer sidewalls interfering with the direct measurement signal. The deviations

between simulation 2-3 and 1 are assumed to be mainly because the Rogers and Buren’s

diffraction correction model is not accurately describing the diffraction effects from the
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transmitting piezoelectric transducer. However, comparing the results presented Figs.

6.4-6.6 with Fig. 6.1 it is assumed that Rogers and Buren’s diffraction correction model is

representing the diffraction from the transducer fairly well around 500 kHz. αP is seen to

be slightly overestimated for higher frequencies and underestimated for lower frequencies

within the bandwidth 300 - 620 kHz. This gives a sensitivity in the simulated αP and

cP due to the uncertainty in Rogers and Buren’s diffraction correction model of ∆αdifP =

0.1 dB/cm and ∆cdifP = 4 m/s at 500 kHz.

The deviation between the simulated cP and αP in Fig. 6.8 (simulation 4) and Figs.

6.4-6.6 (simulation 2-3) are assumed to be due to reflections from the sidewalls of the

buffers and the plexiglas specimen in simulation 4. αP in simulation 4 is approximately

0.2-0.3 dB/cm less than αP in simulation 2 and 3 at 500 kHz. This gives a sensitivity

in the simulated αP due to sidewall reflections of ∆αreflP ≈ 0.3 dB/cm for simulation

4 at 500 kHz. cP in simulation 4 and simulation 2-3 is approximately the same at 500

kHz (less than 1 m/s difference). However, at frequencies 300-400 kHz, the difference is

larger. This gives a sensitivity in cP due to sidewall reflections of ∆creflP = 1 m/s for

simulation 4 for at 500 kHz.

∆αdifP , ∆cdifP , ∆αreflP and ∆creflP are also assumed to be valid for the plexiglas mea-

surements presented in Sec. 6.1.2.

6.1.2 Comparison of the measured cP and αP in plexiglas using the

solid buffer method and the immersion method

In this subsection, measurements of cP and αP in plexiglas using the immersion method

and the solid buffer method, are presented. The immersion method is widely used and

regarded as a reliable measurement method for measuring cP and αP for plates made of

plastics such as plexiglas plates [72, 53, 73].

The immersion method is assumed to be more reliable than the solid buffer method

as the ”water-buffers” are much wider than the PVC solid buffers. The geometries of

the immersion cell and the plexiglas specimen plate (Fig. 3.14) are such that the pulse

traveling directly from transducer to transducer arrives at least 7 periods before any

theoretical sidewall reflections (or other interfering reflections) from the immersion cell

or the specimen at 500 kHz. For short pulses used with the Fourier spectrum method,

no sidewall reflections should be present.

Kline et al. summarize studies in the literature on the measured cP and αP for

plexiglas [73] and found some deviations in the reported cP and αP . However, the

trends for the measured cP and αP in plexiglas that Kline et al. present, agree well with

αP and cP measured with the immersion method in Fig. 6.9 a) between 300 kHz and
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600 kHz. Kline et al. report the αP to be between 0.5 dB/cm and 1 dB/cm at 500 kHz

[73] and measures cP to be between 2700 m/s and 2800 m/s at 5 MHz. These values for

cP and αP are consistent with the measurements conducted in this work (Figs. 6.9 b)

and c)).

He et al. [72] conduct measurements on different plastic specimen using the im-

mersion method with the Fourier spectrum method. He et al. use Rogers and Buren’s

diffraction correction model [79] and neglects all other uncertainty effects than the un-

certainty in the plane wave transmission coefficients and the thickness of the specimen,

d. In this work, Rogers and Van Buren’s diffraction correction is used in all αP , cP

and cS-measurements not labeled with ”no diffraction correction.” For measurements

labeled with ”no diffraction correction” Hdif
A = Hdif

B . In all other measurements Eq.

(2.8) is used for the solid buffer method and Eq. (2.7) is used for the immersion method.

The radius of the piezoelectric element inside the transducer (a) is used as the radius of

the baffled piston used in the diffraction correction model. ka ≈ 26 for 500 kHz in water

and ka ≈ 16 for 500 kHz in PVC.

In Fig. 6.9 a), the Fourier spectrum method is used to measure αP for three different

plexiglas specimen. The in-house built P-wave transducers are used in the solid buffer

method (see Sec. 3.3) and the Olympus transducers are used in the immersion method

(see Sec. 3.4). The input signal settings on the signal generator is a 20 mV, 1 cycle,

500 kHz pulse (measured time signals using the P-wave transducers are shown in Ch.

7, Fig. 7.1 a). All the tree specimen are manufactured from the same batch order

at the workshop at the University of Bergen. The blue curve shows the measured αP

for the 20 mm plexiglas plate using the immersion method. The red curve shows the

measured αP for the 20 mm plexiglas disc using the solid buffer method and the black

curve shows the measured αP for the 60 mm plexiglas cylinder using the solid buffer

method. For measurement frequencies close to 300 kHz, the measured αP attain negative,

unphysical values for the solid buffer methods. In Fig. 6.9 c), the magnitude spectrum

of measurement B (|V7,B(f)|) for the 60 mm specimen using the solid buffer method

is shown. The 6 dB - bandwidth (where the signal amplitude is within 6 dB of it’s

maximum value) is approximately 300 kHz - 620 kHz. Only attenuation spectra and

dispersion curves within this bandwidth are investigated. The measured αP for the 20

mm disc and the 60 mm cylinder shown in Fig. 6.9 a) deviates from αP measured with

the immersion method. The same kind of deviation is clearly seen between the simulated

αP using the solid buffer method (Fig. 6.8) and the ”idealized” piston solid buffer method

(Fig. 6.2). For the 60 mm specimen, the solid buffer method gives measured values for

αP systematically lower than αP -measurements of the 20 mm plexiglas plate using the
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immersion method. This is also the case when comparing αP simulated with simulation

4 (Fig. 6.8) and the input values or using the ”idealized” piston solid buffer method

(Fig. 6.2).

In Fig. 6.9 b), the Fourier spectrum method is used to measure cP for the three

different plexiglas specimen. The measured cP for the 20 mm disc and the 60 mm cylinder

deviates from cP measured with the immersion method. There is a dip in the dispersion

curves around 500 kHz in the simulations (Fig. 6.8 b)) and in the measurements (Fig.

6.10 b)). Because of the relatively close similarities between the αP and cP curves

obtained by the simulations and the measurements, it seems likely that the deviations

seen in the measurements in Figs. 6.9 a and b) at least partly can be explained with

sidewall reflections and diffraction effects not explained with the proposed diffraction

correction model.
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Figure 6.9: Measurements of three plexiglas specimen using the Fourier spectrum

method. a) Measured αP for the three different plexiglas specimen using the immersion

method and the solid buffer method. b) Measured cP for three different plexiglas speci-

men using the immersion method and the solid buffer method. c) Magnitude spectrum

of received pulse in measurement B for the 60 mm specimen.
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The Fourier spectrum method is also compared with the basic pulse method to give

further confidence in the measurements (Figs. 6.10 b) and c)). In the basic pulse method

(Sec. 3.5.1), the input signal settings on the signal generator is a 20 mV, 10 cycles, 500

kHz burst.
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Figure 6.10: Measurements conducted on the 60 mm pleciglas specimen with the solid

buffer method. a) Measured αP using Fourier spectrum method. b) Measured cP using

Fourier spectrum method. c) Measured cP using the basic pulse method.

In Figs. 6.10 a) and b) the measured αP and cP for the 60 mm plexiglas cylinder

are shown. The Fourier spectrum method is used. The blue curve shows the measured

cP and αP assuming Hdif
A = Hdif

B (”no diffraction correction”) in the figures. The red

curve is shows the measured cP and αP when using the diffraction corrections Eq. (2.8).

cP and αP are approximately 2712 m/s and 0.55 dB/cm, respectively, using the Fourier

spectrum method. The basic pulse method is also used to find cP of the 60 mm plexiglas

cylinder for frequency 500 kHz. cP is measured to be approximately 2710 m/s using

zerocrosses higher than 6 (Fig. 6.10 c)). Zerocross 6 corresponds to the zerocross three

periods into the signal and is within the steady-state region. A close agreement between
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the basic pulse method and the Fourier spectrum method is seen. In the basic pulse

method (Fig. 6.10 c)) the diffraction correction for the basic pulse method is calculated

at 500 kHz.

There are uncertainty contributions in the acquired signals (V A
6 and V B

8 ) and all

the transfer functions and the diffraction correction expressions describing the system

model for the immersion method, Eq. (3.27). However, He et al. [72] argue that

uncertainty contributions cancel out in the calculation of the immersion Fourier spectrum

method (Eqs. (3.52)-(3.54)) and they neglect all other uncertainty effects than the

uncertainty in the plane wave transmission coefficients and the thickness of the specimen,

d. No thorough uncertainty analysis for the immersion method is presented in this work,

however, some uncertainty contributions are considered.

The reproducibility of the αP and cP -measurements are ∆αreproduceP = 0.05 dB/cm

and ∆creproduceP = 9 m/s, respectively, for the immersion method (decoupling and recou-

pling the measurement setup). The uncertainty in the measured length of the plexiglas

plate is 0.02 mm. By using Eqs. (3.51) and (3.50), the sensitivity in αP and cP due to

this change in the specimen length are ∆αlengthP = 0.09 dB/cm and ∆clengthP = 3 m/s,

respectively, for the 20 mm plexiglas plate. The sensitivity in αP and cP due to the

uncertainty in the plane wave transmission coefficient is assumed to be smaller in the

immersion method compared with that in the solid buffer method. From the analysis

shown in Eq. (6.3), this contribution is neglected.

The combinded sensitivity in the measured αP due to ∆αreproduceP and ∆αlengthP is:

∆αsensP =

√
(∆αlengthP )2 + (∆αreproduceP )2

=
√

(0.09 dB/cm)2 + (0.05 dB/cm)2 ≈ 0.1 dB/cm.
(6.1)

Very little dispersion is reported for plexiglas [73] and plastics having similar acoustic

properties such as polyethylene [72]. In the frequency range 300 - 620 kHz, cP varies

from 2708-2716 m/s for the immersion method (blue curve in Fig. 6.9 a)). This is an

indication that there are other uncertainty contributions than ∆creproduceP and ∆clengthP .

However, the combined sensitivity in cP due to ∆creproduceP and ∆clengthP is

∆csensP =

√
(∆clengthP )2 + (∆creproduceP )2

=
√

(3 m/s)2 + (9 m/s)2 ≈ 10 m/s.
(6.2)

As for the immersion method, the solid buffer method is sensitive to all the component

in the system model, Eq. (3.4). No thorough uncertainty analysis is provided here for

the solid buffer method either. However, in addition to the uncertainty components

given in Eqs. (6.1)-(6.2), uncertainty contributions due to the diffraction correction and

reflections from buffer sidewalls are considered for the solid buffer method.
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The reproducibility of the αP and cP -measurements are ∆αreproduceP = 0.2 dB/cm

and ∆creproduceP = 11 m/s, respectively, for the solid buffer method.

V7,A and V8,B in Eqs. (3.50)-(3.51) do not contain any reflections and are obtained

by assuming that buffers, specimen and transducers are perfectly aligned. The acquired

signals in measurement A and B (V7,Ar and V8,Br) contain some unwanted reflections

and are not exactly representing V7,A and V8,B. The analysis presented in Sec. 6.1.1

indicates that the sensitivity in αP due to the uncertainty in (V8,B/V7,A) due to sidewall

reflections (∆αreflP ) are approximately 0.3 dB/cm at 500 kHz.

The same analysis in Sec. 6.1.1 does not show any drastic change in the simulated

cP when the narrow buffers are introduced (Figs. 6.6-6.8). The change in cP from Fig.

6.6 to Fig. 6.8 is set to be 1 m/s at 500 kHz. Thus, the sensitivity in cP due to the

uncertainty in (∠V8,B −∠V7,A) due to sidewall reflections is set to ∆creflP =1 m/s for the

60 mm plexiglas specimen at 500 kHz. The uncertainty in the measured length of the

plexiglas cylinder is 0.02 mm. By using Eqs. (3.50)-(3.51), the sensitivity in αP and cP

due to this change in the specimen length are ∆αlengthP = 0.03 dB/cm and ∆clengthP = 1

m/s, respectively, for the 60 mm plexiglas specimen.

There is an uncertainty in the combination of the plane wave transmission coefficient,

T = TB1TB2/TA. TA is assumed to be 1 and ∠T is assumed to be zero (see Sec. 3.3.3),

thus

T =
( 2ρbuffcbuff
ρbuffcbuff + ρmcP

)( 2ρmcP
ρbuffcbuff + ρmcP

)
=

4ρmcPρbuffcbuff
(ρbuffcbuff + ρmcP )2

. (6.3)

From Eq. (3.51), αP is sensitive to T and thus to the compressional wave velocities

of buffers (PVC) and the specimen (plexiglas), cbuff and cP , respectively. ρbuff is the

density of the buffer and ρm is the density of the specimen (here plexiglas). All specimen

are machined with a tolerance of 0.2 mm. By using the high-accuracy weight A&D GF-

3000 [202] with listed accuracy 0.01 g, dimensions are assumed to be the main uncertainty

factor in any density calculations ρ = m
V where V is the volume and m is the mass of a

test specimen. A sensitivity study on the density due to an uncertainty in the volume

for a plexiglas and a PVC cylinder gives ∆ρbuff ≈ 10 kg/m3, ∆ρm ≈ 10 kg/m3.

In a sensitivity analysis for T in Eq. (6.3), ∆cbuff , ∆cP , ∆ρbuff and ∆ρm contribute.

∆T cP = 0.001 and ∆T cbuff = 0.001 are the sensitivities in T due to ∆csensP = 10 m/s

and ∆csensbuff = 10 m/s, respectively (calculated using Eq. (6.2)). ∆T ρm = 0.001 and

∆T ρbuff = 0.001 are the sensitivities in T due to ∆ρm = 10 kg/m3 and ∆ρbuff = 10

kg/m3, respectively. The sensitivity in T is thus given:

∆T =
√

(∆T cP )2 + (∆T cbuff )2 + (∆T ρbuff )2 + (∆T ρm)2

=
√

(0.001)2 + (0.001)2 + (0.001)2 + (0.001)2 = 0.002.
(6.4)
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From Eq. (6.4), the sensitivity is ∆T =0.002. By using Eq. (3.51), the sensitivity in αP

due to this change in T is ∆αTransP = 0.004 dB/cm. This is based upon the assumption

that the buffers and specimen are perfectly welded together.

From the analysis in Sec. 6.1.1, the diffraction correction in the simulated solid buffer

method is seen to be fairly well described with Rogers and Buren’s diffraction correction

model within the bandwidth 300-620 kHz. The sensitivity in the simlated cP and αP

due to diffraction effects are thus approximately ∆αdifP = 0.1 dB/cm and ∆cdifP = 4 m/s

for 500 kHz. These sensitivities are assumed to be valid for the measurements as well.

As mentioned above, it is assumed that the transducers, buffers and specimen are in

contact with each other. It is assumed that the contact surfaces are plane and aligned

so that the specimen can precisely be defined with a length d and the buffers with a

length Lbuff . It is assumed that the electrical transfer functions can be canceled and

that the transducers are symmetric so that rotation of the transducers does not affect

the transmitted sound field.

The fact that the measurements are reproducible within 0.05 dB/cm and 5 m/s in-

dicates that not all the assumptions listed above are entirely correct. For example, if

the transducers are asymmetric, this might affect the sound diffraction and the proposed

diffraction correction may be less accurate than estimated in Sec. 6.1.1. If there are ir-

regularities across the buffer-specimen interface, the plane wave transmission coefficient

can not be precisely defined on this surface with the buffer and specimen compressional

wave velocities and densities. Also the frequency dependence seen in the plexiglas mea-

surements using the solid buffer method indicates that other sources of uncertainties are

present. However, a combined sensitivity study of the measured cP and αP on the 60

mm plexiglas specimen due to the listed uncertainty contributions give:

∆csensP =

√
(∆creproduceP )2 + (∆clengthP )2 + (∆cdifP )2 + (∆creflP )2

=
√

(11m/s)2 + (1m/s)2 + (4m/s)2 + (1m/s)2 ≈ 11m/s,

∆αsensP =

√
(∆αreproduceP )2 + (∆αlengthP )2 + (∆αdifP )2 + (∆αreflP )2 + (∆αTransP )2

=
√

(0.2dB/cm)2 + (0.03dB/cm)2 + (0.1dB/cm)2 + (0.3dB/cm)2 + (0.004dB/cm)2

≈ 0.4dB/cm.

(6.5)

∆csensP and ∆αsensP in Eq. (6.5) are found by partly considering the simulations in Sec.

6.1.1 at 500 kHz.

Considering that αP ≈ 0.85 dB/cm at 500 kHz in plexiglas (immersion method, Fig.

6.9 a)), the sensitivity of ∆αsensP = 0.4 dB/cm from Eq. (6.5) is large for the 60 mm

plexiglas specimen. However, this uncertainty is not so large when considering partially
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water-saturated Bentheim sandstones where αP may be in the range 5-10 dB/cm. By

assuming that the uncertainty contributions do not change during hydrate growth, the

sensitivity in ∆αP (hydrate experiments) should be less than ∆αsensP =0.4 dB/cm. The

uncertainty due to sidewall reflections are systematic, however, in this work no attempt

has been made to correct for these reflections in cP and αP . The reflections are treated

as a component of uncertainty.

αP and cP obtained with the solid buffer method and the immersion method (Fig. 6.9

a)) give consistent results by using the sensitivities of ∆αsensP ≈ 0.4 dB/cm and ∆csensP ≈
12 m/s at 500 kHz as indicated measurement uncertainties. At lower frequencies the

deviations between αP measured with the immersion method and the solid buffer method

is higher (∆αsensP ≈ 0.6 dB/cm). In the hydrate experiments, one of the main goals is

to monitor the change in cP and αP during hydrate growth.

6.1.3 Reproducibility of the measured cP and αP for Bentheim sand-

stones during hydrate growth using P-wave transducers

In addition to the uncertainty contributions discussed for the solid buffer method in

Sec. 6.1.2, there are at least three more important factors that affect cP and αP - mea-

surements for Bentheim sandstones during hydrate growth: The applied torque on the

transducer holders, the confining pressure around the sandstone and when pressurizing

the inne chamber with methane gas.

In the plexiglas measurements, torques in the range 2-8 Nm are not seen to affect

the measurements. For the Bentheim sandstones however, the torque has a clear impact

on the measured cP and αP . In Tabs. 6.1-6.2, cP and αP are measured for a Ben-

theim sandstone with unknown water content using the basic pulse method. The signal

generator is set to produce a 10 cycles, 500 kHz burst with 100 mV amplitude. The

experimental setup is detailed in Sec. 3.3.1. In Tab. 6.1 the torque is varying from 1-10

Nm. αP is varying from 7.7 dB/cm to 6.6 dB/cm by changing the applied torque from 1

Nm to 10 Nm. cP is varying from 2730 m/s to 2850 m/s by changing the applied torque

from 1 Nm to 10 Nm.

In the hydrate measurements presented in Ch. 7 a torque of 10 Nm is used in all

measurements. Due to friction in the threads, the absolute force exerted on the trans-

ducer holder can not be directly calculated from the applied torque. By user experience,

the accuracy of the torque exerted on the transducer holders are believed to be within

1-2 Nm.
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Table 6.1: Measured αP and cP using the solid buffer method inside the pressure cell,

applying different torques.

Applied torque αP [dB/cm] cP [m/s]

1 Nm 7.7 2730

3 Nm 7.5 2750

4 Nm 7.4 2760

10 Nm 6.6 2850

In Tab. 6.2, the torque is held constant at 10 Nm. αP is varying from 6.6 dB/cm

to 4.6 dB/cm and cP is varying from 2850 m/s to 2965 m/s by varying the confining oil

pressure from 0 to 30 bar.

Table 6.2: Measured αP and cP using the solid buffer method inside the pressure cell,

applying 10 Nm torque and different confining pressures.

Applied torque and confining pressure αP [dB/cm] cP [m/s]

10 Nm, 0 6.6 2850

10 Nm, 10 bar 5.5 2895

10 Nm, 20 bar 4.9 2940

10 Nm, 30 bar 4.6 2965

The moment when the inner chamber in the pressure cell is pressurized with methane

gas, the measured cP is seen to systematically increase 20-80 m/s from before to after

pressurizing the inner chamber. The amplitude is also seen to systematically drop so

that the measured αP decrease by 1-3 dB/cm (no tables presenting such measurements

are shown here). These effects on the measured cP and αP are not investigated further

in this work and are not fully understood. An explanation may be that the pressurized

gas inside the pressure cell is pushing on the transducer holders so that the contact force

between the buffer and the specimen is reduced. Another explanation may be that the

83 bar methane gas creeps in between the sleeve and the sandstone so that the sandstone

itself experiences a lower pressure from the confining sleeve.

The uncertainties due to the applied torque, confining pressure and the effect of

pressurizing the inner chamber of the pressure cell are not treated as uncertainties in the

sense discussed in Sec. 6.1.2. The acoustic measurements are assumed to be accurate

to the level described in Sec. 6.1.2 for a given pressurized sandstone at a given torque

and confining pressure. However, the acoustic properties of the Bentheim sandstones are

assumed to change due to these effects, making measurements hard to reproduce. Even
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if absolute measurements of cP and cS are fairly accurate, comparing measurements of

different sandstones are proven challenging. Also, the sandstones are not homogeneous

media as plexiglas and the acoustic properties may change from specimen to specimen.

Due to this, many of the measurements in Ch. 7 are presented as relative measure-

ments, that is, the change in cP , cS and αP are reported during hydrate growth. No

absolute measurements of αP is resented for the hydrate experiments. In such rela-

tive measurements, uncertainties due to sidewall reflections should also decrease because

sidewall reflections are present in all measurements during hydrate growth (assuming

that the effect of the sidewall reflections are constant during hydrate growth). This

argument may also be used for other uncertainty contributions such as uncertainties in

the specimen length, diffraction correction and transmission coefficient (Eq. (6.5)).

To conduct more reproducible measurements, better control of the effects presented

here is needed. As discussed in Sec. 3.3.1, potential non-linear effects are assumed to

not effect cP and cS- measurements (not more than other uncertainty contributions).

No thorough analysis is provided, but some indications are seen that non-linear effects

are affecting the measured αP for SH < 0.2. Due to this, αP -measurements for hydrate-

bearing sandstones are only presented for SH > 0.2 in Ch 7.

In previous studies on cP in hydrate bearing sediments, the measurement uncertainty

is typically not addressed [22, 21, 30, 31, 33, 35]. Priest et al. [32] report a measurement

uncertainty in cP of 100-400 m/s during hydrate growth in sandy sediments. Zhang et

al. [34] offer no uncertainty analysis but claim an uncertainty in the measured cP of 1

%.

6.2 On the accuracy of P-wave measurements with the

solid buffer method using the S-wave transducers

The S-wave transducers transmit both compressional and shear waves. In this section

the accuracy of the P-wave measurements using the S-wave transducers is considered.

3D finite element simulations for the shear wave transducers are not conducted due

to lack of computing power. Thus, no sensitivity study on cP and αP due to sidewall

reflections and uncertainty in the diffraction correction is provided. However, the P-wave

measurements with the solid buffer method using in-house built S-wave transducers are

compared with measurements conducted with the immersion method.

In Sec. 6.1, cP and αP in plexiglas is measured to be 2709 m/s and 0.85 dB/cm

at 500 kHz, respectively using the immersion method. In Eqs. (6.1) and (6.2) the

combined sensitivity in cP and αP due to the listed uncertainty contributions for the
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plexiglas measurements using the immersion method is indicated to be ∆csensP ≈ 10 m/s

and ∆αsensP ≈ 0.1 dB/cm.

cP (Eq. (3.19)) and αP (Eq. (3.23)) for the 60 mm plexiglas specimen are measured

with the S-wave transducers using the solid buffer method. The measurement setup is

detailed in Sec. 3.3, Fig. 3.11. The input signal settings on the signal generator is a 20

mV, 1 cycle, 500 kHz pulse. The acquired voltage signals in measurement A and B are

shown in Fig. 6.11. The compressional wave is the first pulse arriving at approximately

40 µs and 60 µs in measurement A and B, respectively. A time window is used to isolate

the P-wave signal as illustrated with Fig. 3.19. The Fourier spectrum method is used

to obtain cP and αP (Fig. 6.12). Refer to Fig. 3.19 to identify the different pulses

seen in the measurements. Rogers and Buren’s diffraction correction model is used (Eq.

(2.8)). The piezoelectric element used in the S-wave transducers are square-shaped with

width 15 mm giving an surface area of 15mm × 15mm = 225 mm2. The radius of the

piston used in the diffraction correction model is 8.5 mm, which is the radius which

gives a piston surface area 225 mm2. This gives a ka-number in PVC and plexiglas of

approximately 11 and 10, respectively, at 500 kHz.
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Figure 6.11: Measured time signals with S-wave transducers using the solid buffer

method. a) Acquired voltage signal in measurement A. b) Acquired voltage signal in

measurement B for the 60 mm plexiglas cylinder.
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Figure 6.12: Compressional wave measurements for the 60 mm plexiglas cylinder con-

ducted with the S-wave transducers using the solid buffer method. a) Measurement of

αP . b) Measurement of cP .

In Fig. 6.12, typical measured cP and αP for the 60 mm plexiglas specimen are

shown. However, the measured αP and cP for the 60 mm plexiglas specimen using the

S-wave transducers are differing from measurement to measurement. The reproducibility

in the measurements are poor. αP is measured in other measurements in the range 0.5

dB/cm to 1.6 dB/cm. cP is measured in other measurements in the range 2720 m/s to

2765 m/s.

The poor reproducibility may be due to several reasons. Small irregularities on the

end face of the solid buffers may affect the plane wave transmission coefficient. The

polyurethane film used on the surface of the buffers in the S-wave transducers (see

transducer design, Ch. 4.3) may alter the transmission coefficient. An important feature

of the S-wave transducers is the fact that they are asymmetric. The piezoelectric ele-

ments in the S-wave transducers are square shaped, thus the receiving and transmitting

properties are affected by the rotation of the transducers. Because the transducers are

hidden inside the pressure cell, visual inspection is challenging.

cP seem to systematically be measured to high compared with the immersion method

(Fig. 6.9 a), cP ≈ 2710 m/s). Rogers and Buren’s diffraction correction model (Eq.

(2.8)) is based on describing the transducer as a baffled circular piston. The assumption

that the transmitting S-wave transducer can be described as a baffled circular piston

with an effective radius, is not necessarily correct. However from Fig. 6.12 b), using the

diffraction correction seem to give a value closer to cP ≈ 2710 m/s measured with the

immersion method.

No simulations are conducted to aid in an uncertainty analysis of the measurements

conducted with the S-wave transducers. However, cP and αP - measurements conducted
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with the S-wave transducers are compared with the measurements from the immersion

method presented in Fig. 6.9 a). The maximum measured value of αP (1.6 dB/cm) is

compared with the measured αP from the immersion method giving ∆αcompareP ≈ 0.8

dB/cm. The same is done for cP , giving ∆ccompareP ≈ 60 m/s.

The uncertainties are larger using the S-wave transducers than using the P-wave

transducers. However, as mentioned in Sec. 6.1.3, many of the measurements in Ch.

7 are presented as relative measurements. Thus, the uncertainties listed in Eq. (6.5)

should also reduce for the solid buffer method using the S-wave transducers. For the

hydrate experiments in Ch. 7, cP measurements using the S-wave transducers is only

presented for 500 kHz.

6.3 On the accuracy of S-wave measurements with the

solid buffer method using S-wave transducers

To investigate the accuracy of the measured shear wave velocity in plexiglas, measure-

ments conducted with the solid buffer Fourier spectrum method (Eq. (3.50)) are com-

pared with measurements conducted with the immersion Fourier spectrum method (Eq.

(3.53)).

In the immersion method Olympus transducers are used as the sound transmitter and

receiver. The measurement setup is detailed in Sec. 3.4.1. The input signal settings on

the signal generator is a 20 mV, 1 cycle, 500 kHz pulse. The 20 mm plexiglas specimen

is rotated to the critical P-wave angle 38◦. At this angle and above the compressional

waves are not seen in the acquired signal from the oscilloscope. The acquired signal for

measurement B using the immersion method is shown in Figs. 6.13 a) and b) for the

time domain and the frequency domain, respectively.

The Fourier spectrum method is used to calculate cS and is presented in Fig. 6.14

for the immersion method. Wu et al. [53] propose to use Rogers and Buren’s diffraction

correction model [79] to correct for diffraction effects for shear waves in the immersion

method. This approach is used in this work as well, however, the diffraction correction

has little effect on the measurements. Around 400 kHz there is a ripple in the dispersion

curve. This ripple is probably because the signal is weak around 400 kHz (see Fig. 6.13

b)) and noise will be more protruding around 400 kHz. In Fig. 6.14, cS = 1347 m/s at

500 kHz using the immersion method. For the hydrate experiments in Ch. 7, cS is only

presented for 500 kHz.
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Figure 6.13: Acquired signal for measurement B in the immersion method. Plexiglas

plate rotated to θi = 38◦. a) Acquired signal in the time domain. b) Magnitude of the

acquired signal in the frequency domain.
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Figure 6.14: cS for the 20 mm plexiglas plate measured with the immersion method

using the Fourier spectrum method.
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Figure 6.15: Measured cS for the 60 mm plexiglas specimen using the solid buffer method

with the Fourier spectrum method.

As discussed for the P-wave measurements, small irregularities on the end-face of the

solid buffers may affect the plane wave transmission coefficient. The polyurethane film

used on the surface of the buffers in the S-wave transducers (see transducer design, Ch.

4.3) may alter the transmission coefficient. Rogers and Buren’s diffraction correction

model is defined for P-waves. Using this diffraction correction is not necessarily correct.

The shear wave piezoelectric elements are only sensitive to shear waves parallel to the

polarization direction. From observations, a relative rotation between the transmitting

and receiving transducer affects the phase of the acquired signal.

In Fig. 6.15, Fig. 3.24 is repeated. It shows a typical measurement for cS for

the 60 mm plexiglas cylinder using the solid buffer method. Other measurements show

that the reproducibility is within 20 m/s at 500 kHz. Time signals and magnitude

responses for this particular measurement is shown in Sec. 3.5.2. No simulations are

conducted to aid in an uncertainty analysis of the measurements conducted with the

S-wave transducers. However, the measurements (giving maximum cS) conducted with

the S-wave transducers are compared with measurements from the immersion method

presented in Fig. 6.14. This give ∆ccompareS ≈ 60 m/s at 500 kHz.
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Chapter 7

Results Hydrate

cP , cS and the change in αP are measured for ten Bentheim sandstone specimen (cut from

the same batch) during hydrate growth. The final hydrate saturation (SH) is limited

by Sw0 and different values of Sw0 are thus used in the experiments. One experiment

is performed for each of the sandstones. Each experiment may last to up to two weeks.

A list of the ten experiments is shown in Tab. 7.1. The measurement setup is detailed

in Sec. 3.3. In experiments 1-4, P-wave transducers are used and in experiment 5-10,

S-wave transducers are used.

In Sec. 7.1 the development in cP and cS during hydrate growth is presented. cP

and cS measured in the different experiments are compared at SH = 0.5. The numerical

models presented in Secs. 2.5.1-2.5.3 are used to analyze the hydrate growth pattern

inside the Bentheim sandstones.

Similar to the Bentheim sandstone sound velocity measurements, the development

in αP during hydrate growth is presented in Sec. 7.2. Due to the uncertainties discussed

in Sec. 6.1.3, the compressional wave attenuation is presented as αP relative to αP

at hydrate saturation SH = 0.2: ∆αP = αP − αP (SH = 0.2). The numerical models

presented in Sec. 2.5.4-2.5.7 are used to discuss which attenuation mechanisms that may

be present in the hydrate bearing sandstones.

In Sec. 7.3, the frequency dependent value (cP (f)−cP (f0)) at SH = 0.5 are presented.

The attenuation spectrum (αP (f) − αP (f0)) is presented at SH = 0.2 and SH = 0.5.

f0 = 350 kHz. Due to missing data points and large measurement uncertainty for the

S-wave transducers, dispersion and attenuation spectrum plots are not provided for all

ten experiments.

A summary of the measurement results and a discussion is given in Sec. 7.4.
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Table 7.1: List of Sw0, final SH and transducers used in experiment 1-10.

Experiment nr. Sw0 Transducers used Final SH

1 0.48 P-transducers 0.58

2 0.55 P-transducers 0.54

3 0.65 P-transducers 0.67

4 0.69 P-transducers 0.73

5 0.73 S-transducers 0.62

6 0.76 S-transducers 0.73

7 0.78 S-transducers 0.85

8 0.92 S-transducers 0.85

9 0.94 S-transducers 0.78

10 0.95 S-transducers 0.85

7.1 Development in cP and cS during hydrate growth for

Bentheim sandstones in experiment 1-10

cP and cS are measured and modeled using the lossless HFl, HFr and HC-models de-

scribed in Secs. 2.5.1, 2.5.2 and 2.5.3, respectively, during hydrate growth for experiment

1-10 (listed in Tab. 7.1). To monitor SH in the Bentheim sandstone core, the consumed

methane gas is continuously logged. From the consumed methane gas and volume of the

pores inside the Bentheim sandstone core, SH is calculated using the iteration scheme

presented in Eq. (2.3). The measurements are presented as a function of SH for experi-

ment 1-10 and as a function of Sw0 at fixed hydrate saturations for experiment 1-10.

7.1.1 Measurements of cP and cS for Bentheim sandstones hydrate

growth in experiment 1-10

The solid buffer method is used to measure cP and cS during hydrate growth for the ten

experiments presented in Tab. 7.1. In experiment 1-4, the initial water saturation, Sw0,

of the sandstones range from 0.48 to 0.69 and the in-house built P-wave transducers are

used. In experiment 5-10, Sw0 range from 0.73 to 0.95 and the in-house built S-wave

transducers are used.

The solid buffer method is used in all the experiments (Sec. 3.3). As detailed in Sec.

3.3.1, the amplitude of the EMF inside the signal generator is dynamically reduced from

100 mV before hydrate growth to a minimum of 1 mV after hydrate growth. A one cycle

500 kHz input signal is used. The oscilloscope is programmed to log the acoustic signal
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every 15th min and to automatically adjust the window so that the logged signal is not

clipped. For the P-wave transducers (experiment 1-4), the Fourier spectrum method (Eq.

(3.50)) is used to find cP at frequencies 350 kHz, 500 kHz and 600 kHz. Also the basic

pulse method using the first arrival of the signal is used with the P-wave transducers (Eq.

(3.46)). For the S-wave transducers (experiment 5-10), the Fourier spectrum method is

used to find cS at frequency 500 kHz (Eq. (3.50)).

Experiment 1-2: Measured cP for hydrate-bearing Bentheim sandstones with

Sw0 0.48 and 0.55

Acquired time signals using the in-house built P-wave transducers are shown for experi-

ment 1 in Fig. 7.1. The measured voltage signals presented in Fig. 7.1 are representative

for experiment 1-4. In a), measurement A is shown, where the buffers are face to face. In

b), a time signal for measurement B is presented before hydrates start to form and in c),

a time signal for measurement B at the end of the hydrate growth process is presented.

The input settings of the EMF in the signal generator is a 1 cycle, 500 kHz pulse in

all measurements presented in Fig. 7.1. In a), b) and c), the input voltage amplitudes

are 1 mV, 100 mV and 5 mV, respectively. From figure b) to figure c) the main pulse

is shifted in time due to the change in cP . The pulses arriving later than the main

pulse, are reflections. In b) there is a small signal arriving before the main pulse. It

arrives at (approximately) the same time as the pulse in figure a). If this is a P-wave

traveling through the specimen, this would correspond to a cP → ∞ in the specimen.

It is not clear what this signal is. It is here suggested that there may exist an electrical

noise signal at time 0 (not seen in the figure). This electrical noise signal excites the

receiving transducer and an acoustic signal is generated. The small pulse at around 35 µs

in the figure may then be the acoustic signal traveling to the buffer-specimen interface

at the receiving side and being reflected back to the receiving transducer. This way

the receiving transducer is acting as the transducer in a ”pulse’-echo” measurement. In

figure c), this unintended pulse-echo measurement is not seen because the input voltage

on the transmitting side is much smaller and the electrical noise on the receiving side is

much smaller too.

In b) there is also seen to be more noise in general. However, the repeatability of

measurements conducted before hydrates start to grow is seen to be approximately the

same as for the plexiglas measurements (Eq. (6.5)). Thus the noise seen in figure b) is

assumed to not affect the measurements critically. The sensitivity study for the plexiglas

measurements given in Sec. 6.1 is also assumed to be valid for the hydrate experiments,

that is ∆csensP ≈ 12 m/s.
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Figure 7.1: Typical measured time signals during experiment 1 for a) the reference

measurement (measurement A), b) the sandstone before hydrate growth (measurement

B), SH = 0 and c) the sandstone at maximum hydrate saturation (measurement B),

SH ≈ 0.55.

For experiments 1-2 shown in Fig. 7.2, the P-wave transducers are used. In experiment

1 presented in Fig. 7.2 a), cP increases with approximately 1000 m/s during hydrate

growth for the measurement frequencies 350 kHz, 500 kHz and 600 kHz. In experiment

2 presented in Fig. 7.2 b), cP increases with approximately 1100 m/s during hydrate

growth using frequency 350 kHz. cP increases with approximately 900 m/s during hy-

drate growth using the 500 kHz and 600 kHz. In general, higher frequencies give a

higher cP . Dispersion mechanisms are discussed further in Sec. 7.3. The maximum SH

is approximately the same in experiment 1 and 2, i.e ranging from SH = 0.5 to 0.6.

Experiments 1-2 have the lowest Sw0, 0.48 and 0.55, respectively of all 10 experiments.

At zero hydrate growth, cP at 500 kHz is approximately 3000 m/s for experiment 2 and

2900 m/s for experiment 1. This difference may be due to several factors:

cP may differ from specimen to specimen depending on porosity, cracks or mineral

distribution [124]. From the literature, the pore fluid distribution is also known to affect
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cP of the porous rock [42, 26, 24]. If some regions are fully water-saturated and other

regions contain gas (”patchy saturation”), cP is higher than if the water is uniformly

distributed in the pores. Even though 10 Nm torque is used in experiment 1 and 2, the

effective force exerted on the transducers may be different due to friction in the threads.

This may give different confining pressures on the sandstones and different cP . The

confining pressure may close partially water-saturated compliant pores or cracks, giving

fully water saturated pores [111, 112]. The difference seen in cP before hydrate growth

between Fig. 7.2 a) and b) may be due to the gas and water distribution. The higher

measured cP in Fig. 7.2 b) compared with a) indicates that the sandstone in experiment

2 have a more ”patchy” saturation than the sandstone in experiment 1.

In experiment 1 and 2, the logging script malfunctioned in the early stage during

hydrate growth. In these experiments there are only three data points from SH =0-0.3.

For SH larger than 0.3, the data points are much denser.
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Figure 7.2: Measured cP with increasing SH for experiment 1 and 2. a) Experiment 1,

Sw0 0.48. b) Experiment 2, Sw0 0.55.

Experiment 3-4: Measured cP for hydrate-bearing Bentheim sandstones with

Sw0 0.65 and 0.69

As for experiment 1 and 2, cP for experiment 3 and 4 are measured. In Fig. 7.3, the

measured cP for two Bentheim sandstones during hydrate growth are presented. Sw0 for

experiment 1 and 2 are 0.65 and 0.69, respectively giving a maximum SH of 0.67 and

0.72, respectively (Tab. 7.1). The vertical lines at maximum SH in a) and c) are due to

further development in wave velocity after hydrates stop to form. This development is

plotted in b) and d) with time after hydrates start to form on the x-axis (hours).

The cP -profile in Fig. 7.3 a) and b) are more similar to the profile in Fig. 7.2 b),

than the profile in Fig. 7.2 a). For experiment 2 (Fig. 7.2 b)), the Sw0 is 0.55, which is
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closer to the Sw0s of experiment 3 and 4 than the Sw0 in experiment 1 (Fig. 7.2 a)).

For experiment 3 in Fig. 7.3 a), the measured cP is seen to increase with approxi-

mately 1100 m/s from zero to maximum hydrate growth. For experiment 4 in Fig. 7.3 c),

the measured cP is seen to increase with approximately 900 m/s from zero to maximum

hydrate growth. The measured cP in experiment 3 and 4 are similar to the measured cP

in experiment 2. However, there are some development in cP after maximum hydrate

growth is reached. The development after maximum SH seen in Fig. 7.3 b) and d)

may be due to redistribution of the hydrates. That is, hydrates earlier forming in the

pore fluid, reforming for example into the frame, becoming a load bearing grain. Redis-

tribution of hydrates have been observed earlier in sandstones [203]. Hydrates are not

in thermal equilibrium and it is seen from micro-model experiments that redistribution

may occur [204].
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Figure 7.3: Measured cP for experiment 3 and 4 during hydrate growth and by time after

maximum SH . The data points are so dense that a continuous line is representative. a)

Experiment 3, hydrate growth. Sw0 0.65. b) Experiment 3, wave velocity development

at maximum SH . c) Experiment 4, hydrate growth. Sw0 = 0.69. b) Experiment 4, wave

velocity development at maximum SH .
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In the same way as for experiment 1 and 2, cP is obtained using the Fourier spectrum

method for frequencies 350 kHz, 500 kHz and 600 kHz. In addition to these three

measurement frequencies, the first arrival of the signal is used to find cP . The increase in

cP for low SH is seen to be more moderate in experiment 3-4 compared with experiments

1-2.

The accuracy of using the fist arrival in wave velocity measurements is debated

[50, 49], however this method is widely used to find the compressional and shear wave

velocities in porous rocks [22, 21]. As seen in Fig. 7.3, the measured cP is higher using

the first arrival of the signal compared with the Fourier spectrum method. As discussed

by Molyneux et al. [50, 49], the first arrival of the signal may be challenging to find.

Also, higher frequency-components are known to be well represented in the first period

of a signal propagating through porous rocks [50, 49]. Thus, dispersion effects may give

a high cP using the first arrival of the signal.

Experiment 5-7: Measured cP and cS for hydrate-bearing Bentheim sand-

stones with Sw0 0.73-0.78

By measuring both cP and cS during hydrate growth, more insight may be gained com-

pared with measurements where only the compressional wave velocity is measured. In

experiment 5, 6 and 7, cP and cS are measured for sandstone specimen having Sw0 0.73,

0.76 and 0.78, respectively, giving maximum SH of 0.62, 0.72 and 0.85 respectively (see

Tab. 7.1).

As described in Sec. 3.3.1, the solid buffer Fourier spectrum method is used with the

in-house built S-wave transducers to measure cP and cS during hydrate growth. 10 Nm

torque is applied on the transducer holders. Care is taken so that the transducers do not

twist when using the torque key. The receiving and transmitting properties of the shear-

polarized piezoelectric elements are depending on the orientation of the piezoelectric

element. The S-wave transducers are aligned so that the square shaped piezoelectric

elements inside the transducers are positioned along the same direction.

In Fig. 7.4 a) the acquired voltage signal in measurement A for the solid buffer

method is shown. The compressional wave pulse arrives at approximately 25 µs. The

shear wave pulse arrives approximately after 45 µs. Identification of the other pulses are

discussed in 3.5.2, Fig. 3.19.

In Fig. 7.4 b) and c), the acquired voltage signals in measurement B before and at

full hydrate growth are shown, respectively for experiment 5. The input settings of the

EMF in the signal generator is a 1 cycle 500 kHz pulse with amplitude 100 mV and 10

mV, respectively. The compressional wave pulse arrives at approximately 40 µs and 35
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µs in figure b) (SH = 0) and c) (SH ≈ 0.62), respectively. The shear wave pulse arrives

at approximately 75 µs and 70 µs in figure b) and c), respectively.

No exact number for the uncertainty in the cS and cP measurements using the S-wave

transducers are given. However the ”comparison” studies for the plexiglas measurements

given in Secs. 6.2, and 6.3 are also assumed to be valid for the hydrate experiments,

that is ∆ccompareP ≈ 60 m/s and ∆ccompareS ≈ 60 m/s.
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Figure 7.4: Typical measured time signals during experiment 5 for a) the reference

measurement (measurement A), b) the sandstone before hydrate growth (measurement

B), SH = 0 and c) the sandstone at maximum hydrate saturation (measurement B),

SH ≈ 0.6.

The measured cP (blue curve) in experiment 5-7, shown in Fig. 7.5 a), c) and e),

exhibits some of the same features as cP measured in experiment 3 and 4 (Fig. 7.2).

At low SH , there is almost no increase in cP . Before hydrates start to grow, cP is

approximately 3400 m/s for experiment 5, and 3250 m/s for experiment 6-7. A power

outage at University of Bergen during experiment 6, left a gap in the data, which is

marked by the red circles.
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Figure 7.5: Measured cP and cS for experiment 5-7 at 500 kHz. There are no data-points

in between the red markers in experiment 6 due to a power outage. a) Experiment

5: Sw0 = 0.73. b) Experiment 5: cP /cS- ratio. c) Experiment 6: Sw0 = 0.76. d)

Experiment 6: cP /cS- ratio. e) Experiment 7: Sw0 = 0.78. f) Experiment 7: cP /cS-

ratio.

Of the three experiments the highest cP is measured for experiment 7 where SH

is highest. The measured cP changes from zero to maximum SH in experiment 5-7 as

3400-4150 m/s, 3250-4100 m/s and 3250-4400 m/s respectively. Contrary to experiment
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3-4, there seems to be little development in the measured cP in experiment 5-7 after full

hydrate growth.

The measured cS shown in Fig. 7.5, changes from zero to maximum SH in experiment

5-7 as 1900-2400 m/s, 1800-2400 m/s and 1800-2500 m/s, respectively (red curve). The

measured cS (red curve) shows similar behavior as cP (blue curve). A small increase in

cS and cP is seen at low SH and a higher increase is seen towards higher SH .

In Fig. 7.5 b), d) and f) the ratio between the compressional and shear wave velocity

(cP /cS) is plotted. In 7.5 d) and f) there seem to be an increase in the cP /cS-ratio until

a drop of approximately 0.1 in the cP /cS-ratio is seen at around SH =0.6. In figure d),

this drop is seen immediately after the measurements continued after the power outage.

In b), there seems to be a drop in the cP /cS- ratio at around SH =0.2. There might be

a drop starting right after SH = 0.6. However hydrates ceased growing at this SH and

no conclusion can be made. In f) there seems also to be a drop at around SH = 0.85.

There is a general trend of a growing cP /cS-ratio with one or two sudden drops.

Experiment 8-10: Measured cP and cS for hydrate-bearing Bentheim sand-

stones with Sw0 0.92 and 0.95

As for experiment 5-7, cP and cS are measured in experiment 8-10 and presented in Fig.

7.6. In experiment 8-10, the Sw0 are 0.92, 0.94 and 0.95 respectively, giving maximum

SH of 0.85, 0.78 and 0.85 respectively (Tab. 7.1). The same experimental setup as is

used for experiment 5-7, is used in experiment 8-10.

Neither the measured cP or cS in Fig. 7.6 a), c) and e) are showing any sign of

increase for low SH . A possible decrease in cP for low SH is observed. SH reaches the

highest value in experiment 8 (figure a)) where the highest wave velocities are observed

as well. cP increase from 3500 m/s-4400 m/s, 3500 m/s - 4200 m/s and 3300 m/s - 4200

m/s for experiment 8, 9 and 10, respectively. cS increase from 1990 m/s-2550 m/s, 1900

m/s - 2450 m/s and 1900 m/s - 2400 m/s for experiment 8, 9 and 10, respectively.

In 7.6 b), d) and f) the cP /cS-ratio is plotted for experiment 8-10. In b), d) and f)

there is a drop in the cP /cS-ratio at around SH =0.4. There seem to be a slight increase

in the cP /cS-ratio after the drop. There also seems to be a drop at around SH = 0.8
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Figure 7.6: Measured cP and cS for experiment 8-10 at 500 kHz. a) Experiment 8: Sw0 =

0.92. b) Experiment 8: cP /cS- ratio. c) Experiment 9: Sw0 = 0.94. d) Experiment 9:

cP /cS- ratio. e) Experiment 10: Sw0 = 0.95. f) Experiment 10: cP /cS- ratio.

7.1.2 Measured cP and cS at fixed SH for experiment 1-10 as function

of Sw0

From the measurements shown in the previous section, it is clear that higher SH gives

higher compressional and shear wave velocities. To compare results for the 10 experi-
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ments, the wave velocities have been plotted at SH =0.5. In Fig. 7.7 a), cP at SH = 0.5

is plotted as a function of Sw0 for the ten measurements.

In Fig. 7.7 a), cP at SH = 0.5 is plotted as a function of Sw0 for the ten mea-

surements. No clear relation between cP and Sw0 is seen. As discussed in Sec. 6.1.3,

even if measurements are fairly accurate, the acoustic properties of two different Ben-

theim sandstones may be different due to for example different confining pressures in the

pressure cell and non-uniformity of water and gas distribution.

In Fig. 7.7 b) the increase in cP from SH = 0 to SH = 0.5 is plotted. This increase

is labeled ∆cP . ∆cP as a function of Sw0 shows a clear trend: Bentheim sandstones

having low Sw0 exhibit a larger ∆cP than Bentheim sandstones having higher Sw0. To

the best of this authors knowledge this finding has not been reported.
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Figure 7.7: Measured absolute and relative compressional wave velocity at SH = 0.5 for

experiment 1-10. a) Absolute compressional wave velocity (cP ) at SH = 0.5. b) Increase

in cP from SH = 0 to SH = 0.5 (∆cP ).

In the same way as for the P-waves, cS and the relative shear wave velocity (∆cS) are

plotted as a function of Sw0 for the six shear wave experiments (Fig. 7.8). In Fig. 7.8

a) cS is plotted and in figure b), ∆cS is plotted.

The measurements shown in Fig. 7.8 indicates the same trend as for the compres-

sional wave measurements presented in Fig. 7.7. Sandstones having low Sw0 have a

larger ∆cS than sandstones having higher Sw0. The trend is, however, much weaker

than the compressional wave measurements shown in Fig. 7.7.
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Figure 7.8: Measured absolute and relative shear wave velocity at SH = 0.5 for exper-

iment 5-10. a) Absolute shear wave velocity (cS) at SH = 0.5. b) Increase in cS from

SH = 0 to SH = 0.5 (∆cS).

7.1.3 Numerical models and discussion of the development in cP and

cS during hydrate growth in Bentheim sandstones

By comparison with measurements, numerical models (presented in Sec. 2.5) may give

insight in how methane hydrates grow inside a porous rock or sandy sediment [119, 25,

28, 22, 21, 24]. Waite et al. [22] and Winters et al. [21] outlines three main categories

in which hydrates may form inside a porous rock or sandy sediment.

The first main category is hydrate forming primarily in the pore fluid. In this work,

this model is called HFl-model and is detailed in Sec. 2.5.1. There are two versions of

this model. One version where the fluid and hydrates are uniformly distributed in the

sandstone (”HFlU”) and one version where the fluid and the hydrates are distributed in

patches (”HFlP”).

HFlU and HFlP are plotted for Sw0 = 0.5 and 0.8 in Fig. 7.9 and 7.10, respectively.

The other input parameters are given in Tab. 2.1. As water expands into methane

hydrates with a volume expansion factor 1.26 (see Sec. 2.1.3), the maximum theoretical

SH with Sw0 = 0.5 is SH = 0.5 · 1.26 = 0.63 if all water is converted to hydrates. For

Sw0 = 0.5 and 0.8, SH is calculated up to 0.6 and 0.9, respectively, using Eqs. 2.18, 2.19

and 2.20. When hydrates uniformly distribute in the fluid, the hydrates in fluid model

(HFlU) predicts no increase in cP except for high SH (blue curve in Fig. 7.9 a) and

7.10 a)). This is because the fluid bulk modulus is calculated with the Reuss average

for this model (Eq. (2.23)). At high SH , there is almost no free methane gas left in the

sandstone and the gas bulk modulus stops to dominate the effective fluid bluk modulus

calculated with te Reuss average. When water and gas are distributed in patches, the
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HFlP-model predicts an increase in cP of approximately 200 m/s from zero to SH = 0.5.

Neither the HFlU-model or the HFlP-model predict any change in cS . This is because

the shear modulus is not affected by the pore fluid [24]. cS and cP are slightly higher

for Sw0 = 0.5 (Fig. 7.9 a)) compared with Sw0 = 0.8 (Fig. 7.10 a)). Even if increased

water content stiffens the effective fluid bulk modulus, the effective fluid density is also

larger which results in lower cP and cS . As fluids do not support shear waves [24], there

is no shear modulus to be affected by the hydrate growth in the HFlU-model or the

HFlP-model.

The cP /cS-ratio is similar in Fig. 7.9 b) (Sw0 = 0.5) and 7.10 b) (Sw0 = 0.8) for the

HFlU-model and HFlP-model.
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Figure 7.9: Modeling of cP and cS using the ”hydrates growing in fluid model” with

Sw0 = 0.5 for both uniform (HFlU-model) and patchy fluid distribution (HFlP-model).

The models are presented in Sec. 2.5.1 with input parameters given in Tab. 2.1. a))

cP and cS using the HFlU-model and the HFlP-model. b) cP /cS-ratio using the HFlU-

model and the HFlP-model.
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Figure 7.10: Modeling of cP and cS using the ”hydrates growing in fluid model” with

Sw0 = 0.8 for both uniform (HFlU-model) and patchy fluid distribution (HFlP-model).

The models are presented in Sec. 2.5.1 with input parameters given in Tab. 2.1. a))

cP and cS using the HFlU-model and the HFlP-model. b) cP /cS-ratio using the HFlU-

model and the HFlP-model.

Before the HFl-model is used to discuss the experimental results, the theoretical results

from the other hydrate growth models, ”hydrates grow in the frame-model” (HFr) (Sec.

2.5.2) and the cementation model (HC) (Sec. 2.5.3) are presented.

The second way hydrates can grow in a sandstone is becoming a load-bearing member

of the dry frame, acting as second type of sediment grain. As for the HFl-model, there is

one version where the fluid-components are uniformly distributed (HFrU-model) in the

sandstone and one version where the fluid-components are distributed in patches (HFrP-

model) throughout the sandstone. In Fig. 7.11 and 7.12 these models are presented for

Sw0 = 0.5 and Sw0 = 0.8, respectively. When water and gas are uniformly distributed

(blue curve in Fig. 7.11 a) and 7.12 a)) there is an increase in cP of approximately 700

m/s from SH 0 to 0.5. When water and gas are distributed in patches (black curve in

Fig. 7.11 a) and 7.12 a)) there is an increase in cP of approximately 600 m/s from SH 0

to 0.5. The HFrU-model and HFrP-model give the same cP at maximum hydrate growth

in which all water is included in methane hydrates.
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Figure 7.11: Modeling of cP and cS using the HFr-model with Sw0 = 0.5 for both uniform

(HFrU-model) and patchy fluid distribution (HFrP-model). The models are presented in

Sec. 2.5.2 with input parameters given in Tab. 2.1. a)) cP and cS using the HFrU-model

and the HFrP-model. b) cP /cS-ratio using the HFrU-model and the HFrP-model.
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Figure 7.12: Modeling of cP and cS using the HFr-model with Sw0 = 0.8 for both uniform

(HFrU-model) and patchy fluid distribution (HFrP-model). The models are presented in

Sec. 2.5.2 with input parameters given in Tab. 2.1. a)) cP and cS using the HFrU-model

and the HFrP-model. b) cP /cS-ratio using the HFrU-model and the HFrP-model.

For the HFr-model, both the effective bulk and shear moduli are affected. cS is increasing

approximately 500 m/s from SH = 0 to SH = 0.5 in Fig. 7.11 a) and 7.12 a). The cP /cS-

ratio is dropping more for the HFrP-model compared with the HFrU-model.

The third way hydrates can grow in a sandstone is if hydrate act as cement around

grain contacts, stiffening the dry frame. This model is based on Dvorkin et al. [25] and

developed by Avseth et al. [27]. As described in Sec. 2.5.3 this model is developed
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for packs of sand at atmospheric pressure. This model is only used qualitatively to

understand the hydrate growth pattern and not to model the absolute values of cP and

cS in Bentheim sandstones.
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Figure 7.13: Modeling of cP and cS using the ”cementation model” with sw0 = 0.5 for

both uniform (HCU-model) and patchy water and gas distribution (HCP-model). The

models are presented in Sec. 2.5.3 with input parameters given in Tab. 2.1. a)) cP and

cS using the HCU-model and the HCP-model. b) cP /cS-ratio using the HCU-model and

the HCP-model.
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Figure 7.14: Modeling of cP and cS using the ”cementation model” with sw0 = 0.8 for

both uniform (HCU-model) and patchy water and gas distribution (HCP-model). The

models are presented in Sec. 2.5.3 with input parameters given in Tab. 2.1. a)) cP and

cS using the HCU-model and the HCP-model. b) cP /cS-ratio using the HCU-model and

the HCP-model.

The cementation model with uniform (HCU) and patchy (HCP) gas and water distri-
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bution give a dramatic increase in cP and cS at small levels of SH for Sw0 = 0.5 and

Sw0 = 0.8 (Figs. 7.13 a) and 7.14 a), respectively). For patchy water and gas distribution

there is also a significant drop in the cP /cS-ratio shown in Figs. 7.13 b) and 7.14 b).

For the HCU-model the cP /cS-ratio is almost constant for increasing hydrate content.

These three models describing the three categories of hydrate growth (fluid, frame

and cementation) inside the sandstone are used to interpret the measurement results in

experiment 1-10.

Experiment 1-2

By comparing the measured cP for experiment 1 shown in Fig. 7.2 a) with the modeled

cP using the HFlU and HFlP shown in Fig. 7.9 a), a strong indication is seen that the

increase in cP is likely not due to hydrate growing inside the pore fluid. The modeled

increase in cP is approximately 200 m/s using the HFlP-model and the measured cP

shows an incrase of 900 - 1000 m/s for experiment 1 from SH 0 - 0.5.

The total increase in the measured cP of approximately 1000 m/s (in Fig. 7.2 a))

may partly be described by the HFrU-model or HFrP-model which predicts an increase

in cP of 900 - 1000 m/s depending on the fluid distribution (Fig. 7.11 a)). However,

by examining the shape of the measured cP − SH - curve for low SH (Fig. 7.2 a)), the

hydrate in frame models do not predict the increase in cP from SH = 0 to SH = 0.3. The

hydrate cementing model, which is developed for packs of sand at atmospheric pressure,

is used to qualitatively describe the hydrate growth pattern.

In Fig. 7.13, the two versions of the cementing model with Sw0 = 0.5 is plotted.

Here, methane hydrates coat and cement the grains in the sandstone. Hydrate acting as

cement around grain contacts may explain the dramatic increase seen for low SH in Fig.

7.2 a). For SH >0.4, there is no development in the measured cP . The only model able

to explain this among the three models presented above is the HFlU-model (blue curve

in Fig. 7.9 a)).

The measured cP for experiment 2 in Fig. 7.2 b) shows a development that can

fairly well be described with hydrate in frame model. There is an increase in cP around

SH = 0.3 that is not well explained with the hydrate in frame models. The 500 kHz

measurement (red curve in Fig. 7.2 b)) is plotted in the same figure as the HFrU and

HFrP-models in Fig. 7.15. No absolute conclusion can be made whether the hydrate

growth pattern can be solely described by the hydrate in frame model or if it is a

combination between the hydrates in fluid model, hydrates in frame model and hydrate

cementing model.
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Figure 7.15: Measured cP for experiment 2 with the solid buffer Fourier spectrum method

at frequency 500 kHz plotted together with the HFrU and HFrP-models with Sw0 = 0.5.

Experiment 3-4

The measured increase in cP during hydrate growth in experiment 3-4 (Fig. 7.3) is

similar to the measurements in experiment 2 (Fig. 7.2 b)). Whether Sw0 = 0.5 or

Sw0 = 0.8 is not seen to affect the simulated cP with the HFrU or HFrP-models (Fig.

7.11 a) and Fig. 7.12 a)). Sw0 = 0.8 is used to compare with the 500 kHz measurement

in experiment 4, shown in Fig. 7.16.
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Figure 7.16: Measured cP for experiment 4 with the solid buffer Fourier spectrum method

at frequency 500 kHz plotted together with the HFrU and HFrP-models with Sw0 = 0.8.

Similar, however, the increase in cP is smaller for SH below 0.2 in experiment 4 (red
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curve in Fig. 7.3 b)) compared with experiment 2 (red curve in Fig. 7.2 b)). The hydrate

in frame model shown in Fig. 7.16 is not describing the measured cP in experiment 4 well

for SH less than 0.2. It seems likely that hydrates are at least partially forming in the

pore fluid below SH = 0.2. For higher SH , there is a better fit between the HFr-model

and the measured cP in experiment 4. Like for experiment 1-2, no absolute conclusion

can be made, however, it seems likely that there is a combination between hydrates

forming in the pore fluid and on the frame. To gain further insight in the hydrate

growth pattern, shear wave transducers are used to measure both the compressional and

shear wave velocity during hydrate growth in experiment 5-10.

Experiment 5-10

cP in experiment 5-7 increases with less than 100 m/s from SH = 0 to SH = 0.2. (Fig.

7.5 a), c) and e)). cS in experiment 5 and 7 also increase with less than 100 m/s. cS in

experiment 6 increase with less than 200 m/s from SH = 0 to SH = 0.2. As water does

not support shear waves, any change in cS must be due to changes in the solid frame.

The cP /cS-ratios for experiment 5-7 are plotted in Fig. 7.5 b), d) and f). As detailed

in Ch. 6, the uncertainty in the sound velocity measurements are at least 60 m/s, using

the S-wave transducers with the solid buffer method. This means that there is at least

an uncertainty of 0.1 in the cP /cS-measurements. Therefore extra care is taken when

analyzing the cP /cS-ratio.

The drop in the measured cP /cS-ratio for low SH in Fig. 7.5 b), d) and f) can

theoretically be described with the cementation model if the gas is distributed in patches

(HCP-model, Fig. 7.14). However, a combination of hydrates forming in the frame

and hydrates forming in the fluid may also explain the cP and cS measurements for

experiment 5-7.

For experiment 8-10 shown in Fig. 7.6, no increase is seen in neither cP nor cS

for SH < 0.2. This is a feature of the HFl-model (Fig. 7.10) which indicates that all

hydrates are formed in the pore fluid for SH < 0.2 in experiments 8-10. In Fig. 7.17, cP

and cS are plotted for experiment 9 together with the HFrU and HFrP-models. In this

figure it seems like the patchy distribution of the gas and water gives the best fit with

the measurements before hydrates start to grow. However, there is no measured increase

in cP or cS , and the HFlU (uniform gas and fluid distribution) is the best suited model

when there is no increase in cP . One explanation may be that gas and water are mostly

distributed in patches, however, methane hydrates are only forming in pores where both

water and gas exist. This way the Reuss average must be used with the pores where

hydrates form, and thus cP is not affected.
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As for cP in experiment 4 shown in Fig. 7.16, the increase in cP for SH larger

than 0.2 is fairly well described with hydrates in frame model. This is also true for

cS . In experiment 8-10 (Fig. 7.6) there is a clear measured drop in cP /cS at around

SH = 0.4. As the measurement uncertainty is at least 0.1 (see Ch. 6), this drop is not

necessarily physical. However, it is measured in three different sandstone specimen in

three independent experiments, which indicates at least that cS increase relative to cP .

The HCP-model is able to explain such a drop in the cP /cS-ratio directly. However,

hydrates floating around in the pore fluid may start to grow into the frame at higher

SH [204]. This way, hydrates previously floating in the fluid may suddenly act as frame

building hydrates in the HFr-model. This specific hydrate growth pattern has been

reported [205, 204]. This may be seen as a sudden drop in the measured cP /cS-ratio.

In experiment 8-10 (Fig. 7.6), where Sw0 ≈ 0.9, the measured cP /cS-ratio seems to

be slightly higher than in experiment 5-7 (Fig. 7.5), where Sw0 ≈ 0.75. This agrees

with reported Poisson’s ratios (ν) for consolidated sandstones [206] and unconsolidated

sediments [26] (ν = (cP /cS)2−2
2(cP /cS)2−2

[206]).
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Figure 7.17: Measured cP and cS for experiment 9 with the solid buffer Fourier spectrum

method at frequency 500 kHz plotted together with the HFrU and HFrP-models with

Sw0 = 0.8. a)) cP . a)) cS .

As discussed here, a combination of different hydrate growth patterns are possible. For

sandstones having high Sw0 (especially experiment 5-10, Fig. 7.5 and 7.6) it seems likely

that hydrates are forming in the pore fluid for low SH . This finding has been reported

earlier [46]. When SH further increases, hydrate are at least partially growing into the

frame acting as additional grains in the sandstone. In the unconsolidated sand-packs

that Waite et al. [22] studied, the hydrates where found to act as cement around grain

contacts.
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Seismic data obtained from the Blake Ridge where analyzed by Ecker et al. [207]

and Helgerud et al. [24]. They concluded that the hydrate acted as a mineral grain

supporting the sediment frame. However, Chand et al. [57] suggested that hydrates

acted as a cement from the same data. These contradictory conclusions regarding the

interaction between hydrate and sediment highlight the importance of validating seismic

models with laboratory data. Hu et al. [35] measured cP in consolidated sediments and

found no increase in cP for SH below 0.1. This is consistent with the findings in this

work as well. Hu et al. presented no thorough analysis on hydrate growth patterns but

report an increase in cP for SH between 0.1 and 0.3. For unconsolidated sediments, Hu

et al. indicated hydrates acted both as cement and as load bearing grains.

7.2 Development in αP during hydrate growth for Ben-

theim sandstones in experiment 1-10

The relative attenuation ∆αP = αP − αP (SH = 0.2) is measured to see if there are any

development in the αP during hydrate growth. The BiotHFrU (Biot model with hydrates

growing in the frame), BiSqHFrU (Biot-squirt flow model with hydrates growing in the

frame), WaTrHFrU (Waterman and Truell multiple scattering model with hydrates grow-

ing into the frame) and WaTrBiSqHFrU-models (combination of the BiSqHFrU-model

and the WaTrHFrU-model) detailed in Secs. 2.5.4, 2.5.5, 2.5.6 and 2.5.7, respectively,

are used to simulate αP and discuss which attenuation mechanisms may be present in

the hydrate bearing Bentheim sandstone during hydrate growth.

7.2.1 Measurements of ∆αP for the Bentheim sandstones during hy-

drate growth in experiment 1-10

The solid buffer method (detailed in Sec. 3.3) is used to measure ∆αP during hydrate

growth for the ten experiments presented in Tab. 7.1. Because of the considerations

regarding possible non-linear effects detailed in Sec. 3.3.1, the attenuation measurements

are presented with ∆αP = αP − αP (SH = 0.2). The Fourier spectrum method (Eq.

(3.51)) is used to measure ∆αP in all the experiments. ∆αP is measured using the same

signals as for cP .

Typical signals for SH at maximum hydrate growth for experiment 1-4 and 5-10

are already shown in Figs. 7.1 b), and 7.4 b), respectively. A signal for SH = 0.2 in

experiment 2 is shown in Fig. 7.18 a). This signal is representative for experiment 1-4. A

signal for SH = 0.2 in experiment 7 is shown in Fig. 7.18 b). This signal is representative

for experiment 5-10. The P-wave signal is the signal arriving after approximately 30 µs.
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A one cycle, 500 kHz is used as the input settings on the signal generator.
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Figure 7.18: Measured time signals at SH = 0.2 for a) experiment 2 using P-wave

transducers and b) experiment 7 using S-wave transducers.

Experiment 1-2: Measured ∆αP for hydrate-bearing Bentheim sandstones

with Sw0 = 0.48− 0.55

In Fig. 7.19, ∆αP is presented for experiment 1 (Sw0 = 0.48) and experiment 2 (Sw0 =

0.55). In general αP decrease during hydrate growth.
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Figure 7.19: Measured ∆αP with increasing SH for experiment 1 and 2. a) Experiment

1, Sw0 =0.48. b) Experiment 2, Sw0 =0.55.

There is a drop in the measured ∆αP at 500 kHz in experiment 1 and 2 from SH = 0.2

to SH = 0.5 of approximately 5 dB/cm and 3 dB/cm, respectively. For 350 kHz this drop

is approximately 4 and 2.3 dB/cm, respectively and for 600 kHz 5.5 and 3.1, respectively.

The decrease in ∆αP is largest from SH = 0.2 to SH = 0.3. The total drop in ∆αP from

SH = 0.2 to SH = 0.5 is largest in measurements using measurement frequency 600 kHz
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and lowest using measurement frequency 350 kHz. As will be seen in this section, ∆αP

seem to generally decrease for higher frequencies for SH < 0.5.

Experiment 3-4: Measured ∆αP for hydrate-bearing Bentheim sandstones

with Sw0 = 0.65− 0.69

In Fig. 7.20, ∆αP is presented for experiment 3 (Sw0 = 0.65) and experiment 4 (Sw0 =

0.69) during hydrate growth.

There is a drop in the measured ∆αP for 350 kHz and 600 kHz of approximately 2

dB/cm from SH = 0.2 to SH = 0.5 in experiment 3 (figure a)). For 500 kHz this drop

is approximately 2.1 dB/cm. In experiment 4 (figure b)), the 350 kHz, 500 kHz and

600 kHz measurement curves are decreasing 2.8, 3.2 and 3.5 dB/cm, respectively from

SH = 0.2 to SH = 0.5.
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Figure 7.20: Measured ∆αP during hydrate growth for experiment 3 and 4. a) devel-

opment in ∆αP during hydrate growth in experiment 3 (Sw0 =0.65). b) development

in ∆αP after maximum SH in experiment 3. c) development in ∆αP during hydrate

growth in experiment 4 (Sw0 =0.69). d) development in ∆αP after maximum SH in

experiment 4.
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In Fig. 7.20 a) and c) there is a general decrease in ∆αP , however, the curves have

more ripples, dips and peaks compared with Fig. 7.19. There is a peak in ∆αP for 600

kHz (black curve) in Fig. 7.20 a) for SH ≈ 0.4− 0.5. At SH ≈ 0.6, there are dips in the

measured curve for ∆αP in a) and c).

Like for the cP - measurements presented in Fig. 7.3, there is a development in the

measured ∆αP after full hydrate growth. In experiment 3, for 350 kHz, 500 kHz and

600 kHz, there is a drop in the measured ∆αP of 0.5, 1 and 1.5 dB/cm, respectively,

after maximum SH is reached. In experiment 4 (figure d)) there is a drop for 350 kHz,

but the development in ∆αP after full hydrate saturation is not as clear for 500 kHz and

600 kHz.

Experiment 5-7: Measured ∆αP for hydrate-bearing Bentheim sandstones

with Sw0 = 0.73− 0.78

In Fig. 7.21, ∆αP is presented for experiment 5 (Sw0 = 0.73), experiment 6 (Sw0 =

0.76) and experiment 7 (Sw0 = 0.78) during hydrate growth. The total drop in ∆αP is

in general measured to be larger for higher frequencies in experiment 5-7.

There is a drop in the measured ∆αP for 350 kHz in experiment 5 and 7 from SH = 0.2

to SH = 0.5 of approximately 2 dB/cm. For 500 kHz this drop is approximately 2 and

2.5 dB/cm, respectively. For 600 kHz this drop is approximately 3 dB/cm. Due to the

power outage there is no information of αP at SH = 0.5 for experiment 6. In experiment

6, Red circles are showing the last data point before and after the power outage. A line

is drawn to show interpolated values.

In experiment 5 (figure b)), there is a clear development in ∆αP after maximum SH is

reached. αP increases 0.5-1 dB/cm over time at maximum SH for all the measurement

frequencies. There is a small peak in ∆αP at approximately SH = 0.33 in figure a)

(experiment 5).
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Figure 7.21: Measured ∆αP during hydrate growth for experiment 5, 6 and 7. a) de-

velopment in ∆αP during hydrate growth in experiment 5 (Sw0 =0.73). b) development

in ∆αP after maximum SH in experiment 5. c) development in ∆αP during hydrate

growth in experiment 6 (Sw0 =0.76). d) development in ∆αP after maximum SH in ex-

periment 6. e) development in ∆αP during hydrate growth in experiment 7 (Sw0 =0.78).

f) development in ∆αP after maximum SH in experiment 7.
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Experiment 8-10: Measured ∆αP for hydrate-bearing Bentheim sandstones

with Sw0 = 0.92− 0.95

In Fig. 7.22, ∆αP is presented for experiment 8 (Sw0=0.92), experiment 9 (Sw0=0.94)

and experiment 10 (Sw0=0.95) during hydrate growth.

There is a drop in the measured ∆αP at 350 kHz in experiment 8, 9 and 10 from

SH = 0.2 to SH = 0.5 of approximately 1 dB/cm, respectively. For 500 kHz this drop is

approximately 2, 1.4 and 1.3 respectively. For 600 kHz this drop is approximately 3.9,

1.9 and 1.9 respectively. Within each experiment 8-10, from SH = 0.2− 0.5, the drop in

∆αP is measured to be larger for higer frequencies. In experiment 8 (figure a)), the blue

and red curves are crossing, meaning that ∆αP is measured to drop more for 350 kHz

than for 500 kHz from SH = 0.2 to maximum SH . There is a clear peak in ∆αP for 350

kHz at SH = 0.45 for experiment 8. In experiment 9 and 10 (figure c) and e)), no clear

peaks in ∆αP are detected at SH ≈ 0.45. For 350 kHz there is no clear decrease in αP

for SH < 0.45.

In experiment 8 and 9 there is a development in ∆αP after maximum SH is reached

(figure b) and d)). In experiment 8, ∆αP is slightly decreasing (figure b)), In experiment

9 (figure d)), ∆αP is decreasing for 350 kHz but increase for 600 kHz and 500 kHz.

In experiment 9, measurement frequency 350 kHz gives a larger drop in ∆αP com-

pared with 500 kHz and 600 kHz. This is a contradiction to the general trend seen in

experiment 1-10, where 350 kHz typically gives the smallest drop in ∆αP . Numerical

models presented in Sec. 7.2.3 may give some insight in these attenuation mechanisms.

The effect of frequency on ∆αP is discussed in Sec. 7.4.
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Figure 7.22: Measured ∆αP during hydrate growth for experiment 8, 9 and 10. a) devel-

opment in ∆αP during hydrate growth in experiment 8 (Sw0 =0.92). b) development in

∆αP after maximum SH in experiment 8. c) development in ∆αP during hydrate growth

in experiment 9 (Sw0 =0.94). d) development in ∆αP after maximum SH in experiment

9. e) development in ∆αP during hydrate growth in experiment 10 (Sw0 =0.95). f)

development in ∆αP after maximum SH in experiment 10.
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7.2.2 Measured αP at fixed SH for experiment 1-10 as function of Sw0

From the measurements shown in the previous section, it is clear that higher SH give a

decrease in αP .

In Fig. 7.23 a), the drop in ∆αP from SH 0.2 to 0.5 (∆αP |SH=0.5) is plotted for the

ten experiments as a function of Sw0 for frequency 350 kHz. ∆αP |SH=0.5 is measured to

be larger for sandstones with low Sw0 compared with sandstones having high Sw0.

The measured ∆αP |SH=0.5 as a function of Sw0 in figure a) (350 kHz) are shifted

towards lower values compared with the measurements shown in figure b) (500 kHz).

For a given Sw0, αP seem to generally decrease more for lower frequencies.
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Figure 7.23: Measured ∆αP at SH = 0.5 for experiment 1-10. a) Measurement frequency

350 kHz. b) Measurement frequency 500 kHz.

7.2.3 Numerical models and discussion of the development in αP dur-

ing hydrate growth in Bentheim sandstones

Numerical models are used to model αP to gain further insight in which attenuation

mechanisms are present in the sandstone. The models used in Sec. 7.1.3 to model cP do

not contain information about attenuation. To model attenuation, the Biot model is used

[23] together with models accounting for attenuation due to squirt flow [55] and scattering

[56] inside the porous rock. In the following, four models containing information about

attenuation are presented and compared with the results in Sec. 7.2.1. In the four

models it is assumed that hydrates are growing in the frame and that the gas and water

are uniformly distributed. The models are detailed in Ch. 2: The BiotHfrU-model (Sec.

2.5.4), the BiSqHfrU-model (Sec. 2.5.5), the WaTrHfrU-model (Sec. 2.5.6) and the

WaTrBiSqHfrU-model (Sec. 2.5.7).
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Simulation of αP using Biot’s model during hydrate growth (BiotHfrU-model)

In the original Biot model [23], αP is found by modeling the pressure-induced flow

inside the sandstone. The fluid flow is governed by the viscosity of the fluid and the

permeability of the sandstone, (Eq. (2.36)). How to use the Biot-model during hydrate

growth (labeled BiotHfrU-model) is detailed in Sec.2.5.4.

The permeability of the hydrate-bearing sandstone depends on the hydrate growth

pattern, i.e whether hydrates grow on pore walls, or if the hydrates float around in the

pore fluid or if hydrates grow in pore throats, plugging the passage of the fluid flow. A

precise description of this permeability is complex and empirical models are typically

used for different growth patterns [166, 167, 168]. In Eq. (2.36), a simple model for

the permeability in a hydrate-bearing porous rock is presented [166]. In Fig. 7.24,

the BiotHFrU-model is used with different Sw0 and Nperm. As detailed in Sec.2.5.4,

Nperm = 2 describes the situation in which hydrates coat the cylindrical walls with a

uniform layer. For Nperm > 2, the hydrates are plugging the pores in a more efficient

way than when hydrates coat the cylindrical walls with a uniform layer. Almenningen

et. al [208] found Nperm = 14 for hydrates growing in Bentheim sandstones.

In Fig. 7.24 a), Nperm = 2 is used to calculate the permeability in Eq.(2.36). With

Nperm = 2, the BiotHfrU-model predicts very little attenuation. Using Nperm = 10 and

Nperm = 14, a peak is seen around SH = 0.2 and SH = 0.3, respectively, in αP during

hydrate growth. The frequency is 500 kHz.

αP does not exceed 0.7 dB/cm using the BiotHFrU -model for the simulations in Fig.

7.24. The model predicts an attenuation peak due to the global flow which decreases

for growing SH . However, the simulated attenuation due to Biot flow can not by itself

explain the measured attenuation presented in Figs. 7.19, 7.20, 7.21 and 7.22. It is

well-known that the Biot-theory underestimates αP in sandstones [128, 55] and this is

also strongly indicated in the attenuation measurements in this work (Figs.7.19, 7.20,

7.21 and 7.22).
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Figure 7.24: Simulated αP using the BiotHFrU -model detailed in Sec.2.5.4. a) BiotHFrU

-model using Nperm = 2, b) BiotHFrU -model using Nperm = 10 and c) BiotHFrU -model

using Nperm = 14.

Simulation of αP using Biot flow and squirting flow during hydrate growth

(BiSqHfrU-model)

When a pressure wave passes a compliant pore, the fluid is pressed in and out of the

compliant pore. This type of flow is called squirt flow and attenuates the acoustic waves.

Dvorkin et al. developed an unified theory taking into account both the Biot flow and

the squirting flow [55]. This model is called BISQ (Biot squirt). In this work, the

BISQ-model is used together with the HFrU-model and is labeled the BiSqHfrU-model

(detailed in Sec.2.5.5). The frequency is 500 kHz.

In Fig. 7.25, αP calculated with the BiSqHfrU model is presented with Rsq = 170

µm. In a) where Nperm = 2, little attenuation is predicted. For Sw0 = 1.0, in b),

Nperm = 10 and a region with increased αP (approximately 1 dB/cm) is predicted for

values of SH = 0.3−0.5. In b) Nperm = 14 and this region gives approximately αP = 1.2

dB/cm for SH = 0.2− 0.3.

In Fig. 7.25 b) and c), Sw0 is clearly affecting the simulated αP . In general the
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attenuation increase with increasing Sw0.
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Figure 7.25: Simulated αP using the BiSqHFrU -model detailed in Sec.2.5.5 with Rsq =

170 µa) BiSqHFrU-model using Nperm = 2, b) BiSqHFrU-model using Nperm = 10 and

c) BiSqHFrU-model using Nperm = 14.

The BiSqHFrU-model (Fig. 7.25) predicts more attenuation than the BiotHFrU-model

(Fig. 7.24), however it is not enough to explain the levels of attenuation seen in the

experiments (Figs. 7.19, 7.20, 7.21 and 7.22). The simulations (Fig. 7.25) provide for

example a poor fit with the attenuation measurements in experiments having low Sw0

(Fig. 7.19). However, some features in the experiments having high Sw0 may be seen in

the simulations. The peak in the simulations (Fig. 7.25) around SH 0.2-0.5 for Sw0 = 1,

may partly explain the flat region in ∆αP around SH 0.2-0.5 in Fig. 7.22) c) and d).

In the simulations shown in Fig. 7.25, Rsq = 170 µm, which is a typical size of

the quartz-grains in Bentheim sandstone [37] and has also been used for sandstones by

Dvorkin et al. [55]. Rsq is illustrated in Fig. 2.4 b). In a real Bentheim sandstone, there

sure exist different sized pores and cracks [37, 136]. No thorough investigation of squirting

flow in cracks or sandstones with pores of different sizes is performed in this work (a
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more detailed study is conducted by Jakobsen et al. [170]). However, by describing the

pores and cracks with other values for Rsq, the BiSqHFrU-model potentially predicts

higher attenuation. In Fig. 7.26 this is illustrated, where the attenuation is clearly

affected by Rsq. A combination of the curves seen in Fig. 7.26 might describe some of

the attenuation seen in the experiment shown in Figs. 7.19, 7.20, 7.21 and 7.22. In this

work, Rsq is fixed in each simulation and does not change for increasing SH . This is

probably a simplification because the hydrates are changing the pore structure, possible

altering Rsq as hydrate grows and SH increases.
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Figure 7.26: Simulated αP using the BiSqHFrU -model detailed in Sec.2.5.5 for Nperm =

14 with Rsq = 50 µ, Rsq = 170 µand Rsq = 400 µ.

Simulation of αP using Waterman and Truell’s multiple scattering theory

during hydrate growth (WaTrHFrU)

Heterogeneities in the sandstone may give rise to scattering effects [43, 124]. Hydrates

are assumed to grow into the frame in the scattering model used in this work, thus

contributing to the effective background medium needed in the multiple scattering model

(wavenumber k0 in Eq. (2.50)). Sw0 contributes only to the background medium and not

to the inclusions. The inclusions used in the scattering model are treated as either 100

% water inclusions (and Eq. (2.58) is used to calculate the scattering coefficients An) or

cavities (”vacuum spheres”, and Eq. (2.60) is used to calculate An). As hydrates grow,

the volume and thus the number of scatterers decrease. The model is further detailed

in Sec. 2.5.6.

In Fig. 7.27 a), αP calculated with the WaTrHFrU-model is plotted using inclu-

sions with radius 100 µm radius which is the size of a typical pore inside the Bentheim
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sandstone [83]. For the blue curve, the inclusions are cavities and for the red curve the

inclusions are water. Little attenuation is predicted for both water-inclusions and the

cavities for the 100 µm - inclusions.

In Fig. 7.27 b), αP calculated with the WaTrHFrU-model using cavity inclusions

with different radii are shown. Larger cavity-inclusions give higher attenuation. As

hydrate grows, the porosity decreases and the number of cavitiy-inclusions decrease,

giving a lower simulated αP . In this figure, the background medium is calculated with

Sw0 = 0.5, giving a maximum SH ≈ 0.6.

In Fig. 7.27 c), water-inclusions are used with the WaTrHFrU-model. In the simu-

lations the frequency is 500 kHz and cw = 1500 m/s. A big difference is seen between

figure b) and c) for the 1000 µm inclusions (black curve). This is probably because 1000

µm is close to the half-wavelength in water (1500 µm at 500 kHz) which defines the

resonance frequency of a water-droplet.
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Figure 7.27: Simulated αP using the WaTrHFrU-model detailed in Sec. 2.5.6. a) Cavity

and water-inclusions using a = 100 µm. b) Cavity inclusions using different inclusion

radii. c) Water inclusions using different inclusion radii.

196



From the simulations shown in Fig. 7.27, it’s concluded that pore-sized heterogeneities

are too small to cause significant attenuation due to scattering at 500 kHz. If however,

the heterogeneities are larger, the model predicts significant scattering. It may be argued

that few pores with radius 1000 µm are present in the Bentheim sandstone specimen used

in this work. However, cracks with complex geometries may be present in Bentheim

sandstones, especially at low confining pressures [162]. A scattering model for such

cracks is not provided here but can be found in a previous paper by Hudson [44].

In this work it is assumed that the WaTrHFrU-model using spherical scatterers with

radius a, gives an indication of αP caused by circular cracks with radius a. Thus,

the WaTrHFrU-model indicates that cracks in the Bentheim sandstones must be larger

than the cross-section of the average-sized pore (approximately 100 µm for Bentheim

sandstone) to give significant attenuation.

The attenuation predicted by the WaTrHFrU-model are in the same order of the

attenuation seen in the experiments 1-10 (Figs. 7.19, 7.20, 7.21 and 7.22).

The attenuation measurements results plotted in Figs. 7.19, 7.20, 7.21 and 7.22 are

presented as ∆αP . The simulated attenuation values are presented as αP and can not

be directly compared. However, certain features found in the measurements may be

discussed with the simulations. For experiment 1-2, where the water-content is lowest

(Fig. 7.19), there are no peaks in the measured ∆αP during hydrate growth. As less

attenuation is predicted by the BiSqHFrU-model when Sw0 is low, this gives an indication

that pressure-induced fluid flow is not the dominating attenuation-mechanism. For 1000

µm cavities, the WaTrHFrU-model (Fig. 7.27 b)) predicts a drop in αP of approximately

2.5 dB/cm from SH = 0.2 to 0.5. For 1000 µm water inclusions, the WaTrHFrU-model in

c) predicts a drop in αP of approximate 3.5 dB/cm from SH = 0.2 to 0.5. In experiment

1 and 2 in Fig. 7.19, this drop is approximately 5 and 3 dB/cm, respectively. Some of

this attenuation might be from scattering effects.

Using the the WaTrHFrU-model, it is not possible to conclude whether scattering is

the main attenuating mechanism in the sandstone. This model use spherical scatterers

and can not directly predict attenuation from other inclusion-geometries, such as cracks.

Simulation of αP using combined multiple scattering and fluid flow (WaTr-

BiSqHFrU) during hydrate growth

Both the Watermann and Truell based scattering model (WaTrHFrU) and the fluid-flow

attenuation model (BiSqHFrU) might explain some of the attenuation seen in experiment

1-10 (Figs. 7.19, 7.20, 7.21 and 7.22). The WaTrBiSqHFrU-model (detailed in Sec. 2.5.7)

is a combination of the WaTrHFrU (Sec. 2.5.6) and the BiSqHFrU (Sec.2.5.5)-models
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and considers attenuation to both multiple scattering and pressure-induced fluid flow.

In Fig. 7.28 a), the WaTrBiSqHFrU-model is plotted for different pore radii using

Rsq = 50 µm. In b) the WaTrBiSqHFrU-model is plotted for different pore radii using

Rsq = 170 µm. Nperm = 14 in this model. Neither the WaTrHFrU nor the BiSqHFrU-

model give a precise description of the attenuation mechanisms seen in the experiments

(Figs. 7.19, 7.20, 7.21 and 7.22).

However, by comparing for example the 700 µm inclusions in Fig. 7.28 b) with the

measurements in Figs. 7.22 c) and e), some resemblance is seen from SH = 0.2− 0.6. In

general there are some dips and peaks in the measured ∆αP in experiment 1-10. In Fig.

7.28 a), the WaTrBiSqHFrU-model predicts a peak in αP around SH = 0.45.

In Fig. 7.29, the WaTrBiSqHFrU-model is plotted for different frequencies using

Rsq = 170 µm and a = 500 µm. Fig. 7.29 is analogue to Figs. 7.19, 7.20, 7.21 and 7.22,

describing the measured decrease in αP during hydrate growth. The red curve is equal

to the blue curve in Fig. 7.28 b). In Fig. 7.29 higher frequencies are seen to decrease

more than low frequencies during hydrate growth. This is also a general trend seen in

the measurements. However, in Fig. 7.29, the 600 kHz-curve decreases more compared

with the 350 kHz-curve than for the measurements, Figs. 7.19, 7.20, 7.21 and 7.22.

The numerical models used in this work do not give a precise description of the

αP -measurements. However, due to the resemblance between measurements and the

simulations, the simulations indicate that attenuation mechanisms due to both scattering

and due to pressure-induced fluid are present in the measurements.
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Figure 7.28: Simulated αP using the WaTrBiSqHFrU-model with water inclusions and

Nperm = 14, detailed in Sec. 2.5.7. The frequency is 500 kHz. a) WaTrBiSqHFrU-model

using Rsq = 50 µm. b) WaTrBiSqHFrU-model using Rsq = 170 µm.
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Figure 7.29: Simulated αP using the WaTrBiSqHFrU-model for different frequencies

detailed in Sec. 2.5.7. Rsq = 170 µm, water-inclusions with radii 500 µm and Nperm = 14

are used.

7.3 Dispersion and attenuation spectrum measurements at

SH = 0.2 and SH = 0.5

The results presented in the two previous sections describe how the αP , cP and cS

change with SH . In this section the attenuation spectra and the frequency-dependent

cP (dispersion curves) of the measurements are investigated for frequencies 350 kHz-600

kHz. The attenuation spectrum and dispersion curves are presented at SH 0.2 and 0.5.

Very few data-points are logged for low SH in experiments 1 and 2 due to a program

failure. Also, due to a power outage at the University of Bergen during experiment 6, no

data is available for SH = 0.5. Thus, results from these experiment are omitted. In Ch.

6, the uncertainty of the cP and cS - measurements using the S-wave transducers are seen

to be at least 60 m/s. While the range in the cP − SH and cS − SH -curves presented in

Sec. 7.1 are several hundred m/s, the range of the dispersion curves are typically below

60 m/s. Thus, only dispersion curves for experiment 3-4, where the P-wave transducers

are used, are presented.

Using the Fourier spectrum method, the acquired time signals at SH = 0.2 and

SH = 0.5 are used in the experiments to obtain the attenuation spectra (Eq. (3.51)) and

the dispersion curves (Eq. (3.50)).

Experiment 3-4

In Fig. 7.30 a) and b), the difference in αP and αP at frequency f0 = 350 kHz for

experiment 3 and 4 are shown, respectively. For experiment 3, the increase in the

measured αP from f0 = 350 kHz to f1 = 600 kHz is 4.3 dB/ cm and 3.8 dB/cm at

SH = 0.2 and SH = 0.5, respectively. For experiment 4, the increase in αP from
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f0 = 350 kHz to f1 = 600 kHz is 4 dB/ cm and 3.5 dB/cm at SH = 0.2 and SH = 0.5,

respectively.
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Figure 7.30: Measured αP relative to αP at frequency f0 = 350 kHz for SH 0.2 and 0.5

for a) experiment 3, Sw0 = 0.65 and b) experiment 4, Sw0 = 0.69.

The dispersion curves relative to cP at 350 kHz for SH 0.2 and 0.5 for experiment 3 and

4 are presented in Fig. 7.31. The dispersion curves are steeper at SH 0.2 compared with

SH 0.5 in both experiment 3 and 4. As high attenuation is known to give a frequency

dependent cP , the measurements indicate that αP is higher for SH 0.2 compared with

SH 0.5.
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Figure 7.31: Measured cP relative to cP at frequency f0 = 350 kHz for SH 0.2 and 0.5

for a) experiment 3, Sw0 = 0.65 and b) experiment 4, Sw0 = 0.69.
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Experiment 5 and 7

As for experiment 3 and 4, the difference in αP and αP at frequency f0 = 350 kHz is

measured for experiment 5 and 7. The results are presented in Fig. 7.32. For experiment

5, the increase in αP from f0 = 350 kHz to f1 = 600 kHz is 4.9 dB/ cm and 3.0 dB/cm

at SH = 0.2 and SH = 0.5, respectively. For experiment 7, the increase in αP from

f0 = 350 kHz to f1 = 600 kHz is 3.5 dB/ cm and 2.5 dB/cm at SH = 0.2 and SH = 0.5,

respectively.
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Figure 7.32: Measured αP relative to αP at frequency f0 = 350 kHz for SH 0.2 and 0.5

for a) experiment 5, Sw0 = 0.73 and b) experiment 7, Sw0 = 0.78.

Experiment 8-10

In experiment 8-10, Sw0 of the sandstones are above 0.9. By comparing Fig. 7.33 with

Fig. 7.32 and Fig. 7.30, the attenuation spectrum is seen to increase more moderately

compared with the other experiments.

For experiment 8, the increase in αP from f0 = 350 kHz to f1 = 600 kHz is 1.3

dB/ cm and 0.4 dB/cm at SH = 0.2 and SH = 0.5, respectively. For experiment 9, this

increase is 1.8 dB/ cm and 0.3 dB/cm and for experiment 10 the increase is 1.8 dB/ cm

and 0.8 dB/cm at SH = 0.2 and SH = 0.5, respectively.
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Figure 7.33: Measured αP relative to αP at frequency f0 = 350 kHz for SH 0.2 and 0.5

for a) experiment 8, Sw0 = 0.92, b) experiment 9, Sw0 = 0.94 and b) experiment 10,

Sw0 = 0.95.

Attenuation spectrum measurements for fixed SH for experiment 1-10

To further investigate how water in the pores affect the difference in αP between f0 =

350 kHz and f0 = 600 kHz is plotted for all experiments (except 1, 2 and 6). (αP (f1)−
αP (f0)) is presented for SH = 0.2 in Fig. 7.34 a) and for SH = 0.5 in Fig. 7.34 b).

(αP (f1) − αP (f0)) seem to generally be lower when measuring at SH = 0.5 compared

with measurement at SH = 0.2. (αP (f1) − αP (f0)) is highest for low Sw0. If Sw0 is

known, the measurements indicates that low values of (αP (f1) − αP (f0)) means a high

hydrate content and a high value of (αP (f1)− αP (f0)) indicates a low hydrate content.
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Figure 7.34: Difference between the measured αP at 350 kHz and 600 kHz (αP (f1) −
αP (f0)) at a) SH = 0.2 and b) SH = 0.5.

7.4 Discussion

In this section a discussion of the results in this chapter is provided. The relation

between SH , cS and cP in respect to the hydrate growth pattern is discussed in Sec.

7.4.1. The choice of signal processing method and the influence of frequency on the

measured cP is discussed in Sec. 7.4.2. In Sec. 7.4.3 the measured cS and cP is compared

with literature studies. Attenuation mechanisms and the measured ∆αP during hydrate

growth is discussed in Sec. 7.4.4. In Sec. 7.4.5, the relevance of comparing the results

from this work with data from well logs is discussed briefly.

7.4.1 Relating SH to the measured cP and cS in experiment 1-10 and

identifying hydrate growth patterns with numerical models

In Figs. 7.2, 7.3, 7.5 and 7.6 the measured cP and cS are seen to increase for increasing

SH . The highest absolute cP and cS are measured in the sandstones reaching the highest

SH . This is a well-known results found also in previous studies on hydrate bearing

sediments [22, 21, 30, 31, 32, 33, 34, 35].

The increase in cP from SH = 0 to SH = 0.5 during hydrate growth is measured to

be largest for the sandstones having the lowest Sw0 (Fig. 7.7 b)). Sandstones having

low Sw0 are also seen to have the largest increase in cS from SH = 0 to SH = 0.5 (Fig.

7.8 b)), however, this trend is not so clear as seen for the P-waves. The absolute value

of cP and cS at SH = 0.5 seem in general to be highest for the sandstone specimen

having lowest Sw0 (Fig. 7.7 a) and (Fig. 7.8 a))). Sw0 has previously been related to

the maximum reached SH in hydrate growth experiments [30]. No studies have been
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found by this author linking Sw0 and cP or cS in different sandstone specimen at the

same fixed SH .

As seen in the experiments (Figs. 7.2, 7.3, 7.5 and 7.6) a high cP or cS does not

necessarily mean a high hydrate content. Different hydrate growth patterns are known

to affect cP and cS in sandstones differently [22, 30, 24]. Numerical models (with no

loss) are thus used to investigate whether hydrates are forming in the pore fluid, forming

and acting as a second type of grain, becoming a load-bearing member of the dry frame,

or forming around grain contacts, acting as cement and stiffening the dry frame. These

numerical models may aid in identifying the hydrate growth pattern and thus determine

the hydrate content. Models including loss are discussed in Sec. 7.4.4.

When hydrates are forming inside the pore fluid, the HFlU-model predicts no change

in cP or cS during hydrate growth in Fig. 7.9 a) and 7.10 a). By zooming in on the

figures, even a small drop is seen in cP and cS from SH = 0 ∼ 0.2. This is because

the density increases while Keff only slightly increase in Eq. (2.21). Only a moderate

increase is seen using the HFlP-model (Fig. 7.9 a) and 7.10 a)).

The models treating hydrates as a second load-bearing grain (HFrU and HFrP) pre-

dict a 700-800 m/s increase in cP from SH = 0 to SH = 0.5 (Fig. 7.11 a) and 7.12

a)). The models treating hydrate as cementing material around the quartz-grains (the

HCU and HCP-models), predict a very rapid increase in cP and cS for low SH , seen in

Figs. 7.13 a) and 7.14 a). The HCU and HCP-models are implementations of Avseth’s

cementation model [27], wich is developed for unconsolidated sand-packs. One could

argue that the change in stiffness due to cementation is larger for sand-packs that for

consolidated sandstones, where the grains are initially slightly cemented. However, even

if the HCU and HCP-models are not directly comparable to a consolidated sandstone,

it is assumed that the dramatic increase in cP and cS predicted by the models (Figs.

7.13 a) and 7.14 a)) are also partly true if hydrates act as cement inside the Bentheim

sandstone.

For sandstones having the the four lowest Sw0 (Figs. 7.2 and 7.3), there is an increase

in cP at low SH . The increase in cP for SH < 0.2 in experiment 1-4 is largest for

experiment 1 and lowest for experiment 4. The increase in cP seem to be more profound

in the experiments having lowest Sw0. In experiment 1 (Sw0 = 0.48), the increase is

higher than the frame building models (HFrP or HFrU) can explain. This indicates that

hydrate cementing processes occur. In experiment 2 (Sw0 = 0.55) the increase in cP is

also clear, however not as clear as for experiment 1. This is also the case for experiment

3 (Sw0=0.65). For experiment 4 (Sw0=0.69) the increase in cP is small and similar to

the increase seen in experiment 5-7.
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In experiment 8-10, where the sandstones have Sw0 > 0.9, there are no measured

increase in cP or cS for SH below 0.2 (Fig. 7.6). A small decrease is measured for

cP from SH = 0 to SH = 0.2. The only hydrate growth model to explain this, is the

HFlU-model (Fig. 7.9 a) and 7.10 a)), which indicates that the hydrates are forming

in the pore fluid for these sandstones at these SH . Hydrates located in the pore space

without appreciable grain-contact are already identified as a possible growth pattern for

specimen having high Sw0 and SH < 0.2 in unconsolidated sediments [46, 34]. For the

sandstones having Sw0 0.73-0.78 (experiment 5-7, Fig. 7.5), a slight increase is seen

during hydrate growth in both cP and cS for SH < 0.2. This increase is too low to be

explained by the frame building model presented in Fig. 7.12 a). Hydrates forming at

low SH are believed to mostly be placed in the pore fluid for experiment 5-7 as well.

After this zero-growth period at low SH , cP is seen to steadily increase until maximum

SH is reached for experiment 5-10 (Figs.7.5 and 7.6). By comparing the results with the

numerical models, the hydrates in frame-models, HFrU or HFrP give the best fit (Fig.

7.17). Overall for experiment 1-10, for SH < 0.2, there is a clear trend towards hydrates

forming in the pore fluid for high Sw0 and growing into the frame for lower Sw0.

7.4.2 Choice of signal processing method and the influence of fre-

quency on the measured cP for hydrate bearing Bentheim sand-

stone

In many studies, the first arrival of the signal is used when measuring the compressional

and shear wave velocity in hydrate bearing sediments [22, 21, 35]. The use of the first

arrival of the signal in cP -measurements is shown in Fig. 7.3 and gives a higher measured

value for cP compared with the Fourier spectrum method. As the measurement frequency

is undefined and the accuracy of measurements using the first arrival is debated [49, 50],

more confidence is given to results presented with the Fourier spectrum method.

As seen in experiment 1-4 (Figs. 7.2 and 7.3), cP is measured to be highest for

600 kHz and lowest for 350 kHz, indicating that dispersion should be detectable. As

the accuracy for the S-wave transducers are given to be 60-65 m/s, dispersion is not

detectable with these. Dispersion and attenuation mechanisms are closely related. Thus

the attenuation mechanisms discussed in Sec. 7.4.4 are believed to cause the measured

dispersion.

Due to few data-points, dispersion curves at fixed SH are only obtained for ex-

periment 3-4 (Fig. 7.31). From these two experiments it seems like a high value for

cP (f) − cP (f0) is measured for low SH and a low value of cP (f) − cP (f0) is measured

for high SH . Investigating dispersion curves from well-logs may thus potentially aid in
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detecting hydrate-rich regions.

7.4.3 Comparing the cP and cS measurements with other studies on

hydrate bearing sediments

As discussed in Sec. 1.5, the measured cP and cS in almost all studies found by this

author on hydrate-bearing sediments are conducted on unconsolidated specimen. In

general, the reported cP and cS on hydrate-bearing unconsolidated sediments found by

this author [22, 32, 164, 33, 35] are lower than cP and cS measured in this work. The

relative change in cP and cS for unconsolidated sediments from zero to maximum SH

are reported to be higher (typically an increase in cP of approximately 2000 m/s) than

found in this work for consolidated Bentheim sandstones. One early laboratory study

growing THF-hydrates (tetrahydrofuran hydrate formation, synthetic hydrate growing at

atmospheric conditions) in consolidated Berea sandstone was found [36]. Exact measures

on Sw0 or SH was not given, but cP was reported to be 4700 m/s at full hydrate growth.

In another study, Hu et al. measured cP and cS in an unidentified porous consolidated

rock. Hu et. al [35] reported an increase in cP from 4240 m/s at baseline condition to

4660 m/s at SH = 0.65 in the consolidated sediment they used in their study. For the

same specimen cS was reported to increase from 2530 m/s to 2725 m/s at maximum

SH . Sw0 was given as 40 %. This give an increase in cP of approximately 400 m/s and

for cS approximately 200 m/s. This increase is comparable to some of the Bentheim

sandstones having high Sw0, for example experiment 8 (Fig. 7.6 a)), which has an

increase of approximately 450 m/s in cP from SH = 0 to 0.65. Hu et al.’s results is not

comparable to experiment 1 (Fig. 7.2), which has more similar Sw0 (0.48).

The hydrate growth pattern has been subject to discussion in studies relating SH

to cP and cS in unconsolidated sediments [22, 32, 164, 33, 35, 34]. Waite et al. [22]

used sediment with Sw0 = 0.31 and found a hydrate cementing regime to best fit their

measurements. Nakagawa et al. [33] used sediment with Sw0 = 0.2 and also believed a

hydrate cementing regime to best explain their measurements. Zhang et al. [34] used

sandy sediments with Sw0 =0.52. The hydrate cementing regime was not able to describe

the measured increase in cP and cS and they concluded that some hydrates were also

forming in the pore fluid and some hydrates acting as load-bearing grains.

Priest et al. [164] used the ”excess water” and ”excess gas” method to manufacture

hydrate-bearing unconsolidated sediment specimen. In the ”excess gas” method, water

is first injected into the specimen, then gas is injected. The amount of water is limiting

the amount of hydrate growth. In the ”excess water” method, gas is first injected into

the specimen, then water is injected. Now, the amount of gas is limiting the amount of
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hydrate growth. By comparing theoretical models with the measured cP and cS , Priest et

al. [164] suggested that for the excess gas specimens, the hydrate exhibited a cementing

behavior. For the excess water specimens, they suggested hydrate exhibiting a frame

supporting behavior. In addition, hydrates formed using the excess water method were

found to have no apparent effect on the measured velocities of the sand for SH < 0.2.

Tohidi et al. [209] showed that methane hydrate forms primarily in the center of

pores in ”water-rich” systems initially containing bubbles of gas. Stern et al. [210] and

Waite et al. [211] found that hydrate cements sediment grains in ”gas-rich” systems

initially containing discrete units of water.

For experiment 5-10 (Sw0 > 0.70, Figs. 7.5 and 7.6), little or no change in cP or cS

is found for SH < 0.2. This is a similar behavior to the ”water-rich” system described

by Tohidi et al. [209], where hydrates form in the pore fluid. For SH > 0.2, cP and

cS increase and the HFrU or HFrP give the best fit for experiment 5-10. Experiment

1, where Sw0 < 0.5, show similarities to the gas-rich system described by Stern et al.

[210] and Waite et al. [211] where cementing occurs for even low hydrate concentrations.

In Experiment 2-4, the development in cP can not be solely described with HFl or the

HFr- model. This indicates that a combination of hydrates growing in the pore fluid and

hydrates acting as load bearing grains is likely. In experiment 2-4, for SH > 0.2, the

HFr-model shows the best fit.

Zhang et al. [34] offers an explanation of the analogue experiment on unconsolidated

sediments: Because hydrate is hydrophilic, hydrates may suspend in water when the

hydrate concentration in the liquid phase is low. However, when the concentration of

hydrate in the liquid phase is high, it will adhere to the sand surface, consolidate the

sand grain and the cP will increase. Zhang et al. [34] found that hydrates only form in

the fluid for SH < 0.3. These considerations seem to be consistent with the results in

experiment 1-10 as well.

A sudden drop in the cP /cS-ratio has previously been used to identify hydrates

cementing unconsolidated sediments [32] in laboratory studies. Another laboratory study

using THF-hydrates showed that the cP /cS-ratio can decrease also when hydrates act

as load bearing grains [212]. Comparing the study of Priest et al. [32] and Yun et al.

[212], the decrease in the cP /cS-ratio was found to be much clearer when hydrates are

acting as cement. This agrees well with the theoretical cP /cS-ratio calculated with the

HC-model (Fig. 7.13 b)) and the HFr-model (Fig. 7.12 b)).

In Figs. 7.6 b), d) and e) a clear drop in the measured cP /cS is seen. However, no

absolute conclusion is reached on whether this is a cementing process. Since the HFrU

or HFrP-models (Fig. 7.17) are fairly well predicting the increase in both cP and cS ,
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thus hydrates growing in the frame are believed to be the main source of the measured

increase in cP and cS . Due to the more rapid increase in cP for experiment 1, cementation

of grains is believed to occur. Unfortunately, cS-measurements are not available for this

experiment and thus no cP /cS-ratio.

7.4.4 Attenuation mechanisms and measured ∆αP during hydrate growth

In the same way as for the wave velocities, the change in αP is measured during hydrate

growth (Figs. 7.19, 7.20, 7.21 and 7.22). Due to possible non-linear effects and the

uncertainities described in Sec. 6.1.3, the compressional wave attenuation is presented

as αP relative to αP at SH = 0.2: ∆αP = αP − αP (SH = 0.2).

The attenuation measurements in experiment 1-10 (Figs. 7.19, 7.20, 7.21 and 7.22)

show a clear trend: αP is decreasing for higher SH . Only one laboratory-study on αP -

measurements of hydrate bearing sediments have been found by this author. Nakagawa

et al. [33] measaured QP and QS in hydrate bearing Ottawa-sand during hydrate growth.

In this study, some unexpected results are reported on the αP - measurements. In the

very start of the hydrate growth (low but undefined SH) αP is increasing rapidly to

a maximum value. From this low (but nonzero) SH to maximum SH , αP decreases

3.5 dB/cm. This decrease in αP is similar to the measured ∆αP in Fig. 7.23. This

laboratory study is seen to be consistent with the measurements conducted in this work.

Guerin et al. [39] did not perform laboratory measurements, but analyzed data from

the Mallik well and found that the attenuation increased with increasing SH . Guerin et

al. do not clearly give the frequency interval other than ”sonic frequencies” are used.

From the model Guerin et al. used, squirting flow was given as the explanation for the

increasing αP with increasing SH . However, this is a contradiction to the laboratory

results presented by Nakagawa et al. [33] who also used ”sonic frequencies” (frequencies

below 10 kHz). No explanation is given here for the differing results from these two

studies.

For experiment 3 and 4 shown in Figs. 7.20 a) and c), respectively, there are dips

in ∆αP at SH ≈ 0.6. In experiment 3, there is a peak around SH = 0.4, especially for

measurement frequency 600 kHz. There is also a peak at SH = 0.4 for measurement

frequency 350 kHz in experiment 8 (Fig. 7.22 a)). There is a general trend that the sand-

stones having the highest Sw0 (experiment 8-10 shown in Fig. 7.22) only show a small

decrease in ∆αP up to SH ≈ 0.4. The sandstones having the lowest Sw0 (experiment

1-2 shown in Fig. 7.19) show a rapid decrease in ∆αP for low SH .

In Fig. 7.23 a) and b), the decrease in αP from SH = 0.2 to SH = 0.0.5 for experiment

1-10 using 350 kHz and 500 kHz are shown, respectively. It is clear that the drop in

208



αP from SH = 0.2 to SH = 0.5 are largest for the sandstones having the lowest Sw0. If

this is true for a reservoir containing hydrates, it may be argued that hydrates are more

easily detected in reservoirs with low water content. However, it also implies that if the

water content is known to be high in a certain reservoir, a detected decrease in ∆αP

might suggest a higher SH than if the water content is known to be low. It is not further

investigated by this author if these laboratory findings can be used to analyze real data

from well logs. Because the contrast in ∆αP is bigger using 500 kHz compared with 350

kHz (Fig. 7.23 a) and b)), hydrates might be easier to detect using higher frequencies.

However, acoustic meausrements from sonic well-logs, typically use frequencies below 20

kHz [213, 39, 57].

To identify some of the attenuation mechanisms present in the sandstone, several

numerical models are implemented. The BiotHFrU-model (see Sec. 2.5.4), which takes

into account the attenuation at macroscopic levels due to fluid flow, is presented in Fig.

7.24. The BiotHFrU-model is based on the Biot model, which is known to underesti-

mate the attenuation [55, 105, 112]. This underestimation is also seen comparing the

BiotHFrU-model (Fig. 7.24) with the measurements in this work (Figs. 7.19, 7.20, 7.21

and 7.22). By taking attenuation due to squirting flow into account, more attenuation

is predicted. In this work, squirt flow is included in the BiSqHFrU-model (Sec. 2.5.5,

based on Dvorkin and Nur [55]). This model takes both the Biot flow and squirting flow

into account and is shown in Fig. 7.25. The BiSqHFrU-model does not predict enough

attenuation to explain the measurements either. The squirt-flow model of Dvorkin et

al. [55] use a parameter called squirt-length to describe the dimensions of the pores or

cracks in which the squirting flow may flow. Widely used [214, 105], however, Dvorkin’s

Biot-Squirt model has been critizised for not being consistent with Gassmann’s equa-

tions [170]. Another way of implementing the squirt flow is to relate the squirting flow

to cracks and their aspect ratios inside the porous rock [128, 106, 215]. In these models

the attenuation is highly dependent on the crack aspect ratio and the aspect ratios may

be adjusted to fit the observed atenuation. By using a range of different crack-aspect ra-

tios, porous rocks with multiple attenuation modes due to squirt flow have been modeled

[170].

It is well-established that both Biot flow and squirting flow affect the measurements

at the frequencies used in this work [55]. With no fluid inside the sandstone there is

no squirting flow. If attenuation due to pressure induced fluid flow is the only atten-

uation mechanism, measurements conducted on dry rocks should give no attenuation.

No extensive study on the transmission of waves through dry Bentheim specimen is

performed in this work. However, signals are not successfully transmitted and recorded
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through dry Bentheim specimen at 500 kHz in this work. It is concluded that the elastic

waves are heavily attenuated through dry Bentheim sandstones, which means that other

attenuation mechanisms than the squirting flow exist.

In many studies, attenuation due to scattering is assumed to be negligable [124, 216,

217]. Sams et al. [218] investigate the attenuation in sedimentary rocks and find that

intrinsic loss dominates the scattering loss in their VSP logs (30-280 Hz) and sonic logs

(8-24 kHz). Gist et al. [219] report the attenuation in dry Berea sandstone specimen to

be lower than the attenuation in water-saturated Berea sandstone specimen at 1 MHz.

They conclude that the attenuation due to scattering effects are small compared with the

attenuation due to pressure-induced fluid flow. Only a few studies on the attenuation of

elastic waves in Bentheim sandstones are found by this author. Mayr et al. [165] discuss

whether scattering of elastic waves in Bentheim sandstones may be present and whether

the fluid content affect the amount of scattering. They reach no absolute conclusion.

However, attenuation due to scattering of elastic waves are seen as a possible attenuation

mechanism in porous rocks [124, 220, 137], especially for ultrasonic frequencies.

By using WaTrHFrU-model (based on Watermann and Truell [56]), pore-sized hetero-

genities are seen to give no significant attenuation in Fig. 7.27. To describe the attenua-

tion seen in the measurement with scattering, larger heterogeneities than the pores must

be present. Such heterogeneities may be cracks or patches of fluid [44, 137, 136, 43, 221].

Circular fluid inclusions with radii 500-1000 µm are capable of explaining the attenuation

seen in the measurements (Fig. 7.27). However, no measurements are conducted to back

this hypothesis. Another attenuation mechanism discussed in the literature is friction

between grain contacts. However, this attenuation mechanisms is typically neglected

[124].

In Fig 7.28, the WaTrBiSqHFrU-model (Sec. 2.5.7, combination of The Biot-squirt

model [55] and scattering model [56]) is plotted for different squirting flow lengths and

water inclusion-radii. The model is able to explain the general decrease in αP seen in

the attenuation measurements (Figs. 7.19, 7.20, 7.21 and 7.22). It can also qualitatively

explain some of the dips and jumps seen for ∆αP during hydrate growth. No absolute

conclusion is reached whether the attenuation seen in the measurements are due to

scattering or pressure induced fluid-flow. It is believed that both mechanisms are present

for frequencies around 500 kHz in partly saturated hydrate bearing Bentheim sandstones.

In Fig. 7.34, αP (f)−αP (f0), where f0 = 500 kHz is shown for experiment 1-10. The

difference in αP (f) − αP (f0) between SH = 0.2 and 0.5 is clearly bigger for lower Sw0,

indicating that hydrates are easier to detect for sandstones having low Sw0. This agrees

with the cP -measurements (Fig. 7.7) where the change in cP during hydrate growth
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is also higher for lower Sw0. The measurements conducted in this work indicate that

hydrates are more easily detected in sediments having low Sw0. However, if a sediment is

known to have high water content, a measured change from baseline in αP (f)−αP (f0),

∆αP , cP , cP (f)− cP (f0) and cS may indicate a high hydrate content.

For industries trying to extract methane gas from methane-hydrate bearing reser-

voirs, it may not be interesting to know whether the measured attenuation is due to

scattering or fluid flow mechanisms. It is important to know the hydrate growth pattern

so a proper numerical model may be used to estimate the hydrate content. The atten-

uation measurements conducted in this work are related to Sw0 and thus the hydrate

growth growth pattern. By fitting parameters, the WaTrBiSqHFrU-model containing

both squirting flow and scattering mechanisms gives a fair fit with the some of the mea-

surements. This gives however no proof that this model is correct. More work must be

done before such a model could be used to quantitatively predict SH in a reservoir based

on attenuation measurements.

7.4.5 Relevance of comparing the results with data from well logs

Vertical seismic profile (VSP) logs and sonic logs have been used to identify hydrate rich

regions from bore-holes [21, 57, 213, 39]. When drilling down in a well, cP and cS are

typically constant or increasing very slowly with depth due to the increasing pressure

in the sediments. This is called the baseline. Sudden increases in cP and cS indicate

zones of hydrate [57, 213, 39]. Guerin et al. [39] present raw-data from the Mallik-

well. Clear jumps in cP and cS are seen in the raw data. Estimation of SH in the

sediments relies on using an appropriate numerical model and determining the hydrate

growth pattern to relate SH with cP and cS . Knowledge from laboratory studies of

the same sediment type as found in the field may aid in understanding well-logs and

thus estimate the hydrate content [21]. As mentioned, many laboratory studies are

performed on unconsolidated sediments which are present in wells such as the Black

Ridge and he Mallik-well [21]. In this work, cP , cS and ∆αP have been measured for

consolidated sediments. As mentioned above, both the relative and the absolute changes

in cP and cS due to hydrate growth for Bentheim sandstones are found to be differing

from measurements conducted on unconsolidated sediments [22, 32, 164, 33, 35, 34]. The

attenuation measurements conducted in this work are also relative to αP at SH = 0.2.

Thus. the results presented in this work is not suited to be directly compared with field

data from wells such as the Black Ridge and he Mallik-well. No effort is done here to

list potential wells containing more consolidated sediments. However, such wells might

be more relevant to compare with the measurement results from this work.
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Chapter 8

Conclusions and outlook

In this chapter the conclusions and main findings in this work are presented in Sec. 8.1.

Potential further work is discussed in Sec. 8.2.

8.1 Conclusions

Due to the potential for using methane hydrates as an energy source, localizing, mon-

itoring and describing hydrate deposit areas are of interest. This has previously been

attempted by using acoustic methods and thus information on the relation between the

hydrate saturation, SH , and acoustic properties, such as cP , cS and αP is needed.

The overall aim of this PhD thesis is to measure and discuss cP , cS and the change in

αP (∆αP ) in ten Bentheim sandstone specimen having different initial water saturations,

Sw0 as a function of SH , during hydrate growth. To the best of this author’s knowledge,

no laboratory studies on the elastic properties of methane hydrate bearing Bentheim

sandstones have been published.

A pressure-cell is modified so that acoustic measurements may be conducted inside

the cell during hydrate growth. As specific dimensions are required for experimental

equipment to fit inside the pressure cell, transmitting and receiving piezoelectric P-

wave and S-wave transducers are designed and constructed. A pressure tight electrical

feedthrough is designed and constructed for use with the transducers inside the pressure

cell. A robust Matlab logging algorithm able to log the acoustic signal through the Ben-

theim sandstone every 15 minutes for weeks is developed and used in the measurements.

Because of the limited space inside the pressure cell, unwanted acoustic reflections

from sidewalls will affect acoustic measurements, even when short pulses are used. An-

other source of uncertainty is diffraction effects in the buffers and specimen. The solid

buffer method used on plexiglas specimen having approximately the same dimensions
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as the Bentheim sandstone specimen is simulated using finite element simulations and

Fourier synthesis.

The effect of sound diffraction and sidewall-reflections on the simulated cP using

the P-wave transducers are seen to be approximately 4 m/s and 1 m/s, respectively.

cP typically increases approximately 500 m/s in the sandstone during hydrate growth.

If the sound diffraction effects and the sidewall-reflections are approximately the same

for the plexiglas simulations and the solid buffer method measurements, these effects

will not affect the hydrate experiments critically. The effect of sound diffraction and

sidewall-reflections on the simulated αP are approximately 0.1 dB/cm and 0.3 dB/cm,

respectively. In this work it is assumed that the effects of the sidewall-reflections and

the sound diffraction on the measured αP stays approximately the same during hydrate

growth. Thus ∆αP should not be critically affected.

The measured cP and cS are seen to increase for increasing SH in experiment 1-10.

The highest absolute cP and cS are measured in the sandstones reaching the highest SH .

The increase in cP and cS from SH = 0 to SH = 0.5 during hydrate growth is measured

to be largest for the sandstones having the lowest Sw0.

Because the hydrates may form in different ways inside the sandstone, a high mea-

sured cP or cS does not necessarily mean a high hydrate content.

Numerical models based on the work of Dvorkin et al. [26] and Helgerud et al. [24]

are used to model three different hydrate growth scenarios. In the first scenario, hydrates

are forming in the pore fluid of a sandstone (HFl-model), not affecting the dry frame.

In the second scenario, all hydrates are forming and acting as a second type of grain,

becoming load-bearing members of the dry frame (HFr-model). In the third scenario,

hydrates are forming around grain contacts, acting as cement and stiffening the dry

frame (HC-model). The HFr-model suggests an increase in cP and cS of approximately

400-500 m/s and 200-300 m/s, respectively from SH = 0.2−0.5. The HFl model suggests

little or no increase in cP and cS during hydrate growth. The HC-model suggests cP

and cS to increase more than for the HFr-model.

These models simplify the complex nature of a sandstone and do not consider loss

of acoustic energy or dispersion effects. A thorough analysis on the accuracy of these

models on describing the three different hydrate growth scenarios is not performed in

this work. However, models based on the same principles as the HFl, HFr and HC

- models are widely used to model cP and cS in hydrate bearing sediments for both

low measurement frequencies (<20 kHz) [164] and for higher measurement frequencies

(approximately 500 kHz) [22, 21, 34].

By comparing these models with the measurements, it is indicated that for exper-
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iments 4-10, where Sw0 > 0.69, for SH > 0.2, hydrates act as a second type of grain,

becoming a load-bearing member of the dry frame. For SH < 0.2, it is indicated that

hydrates are forming primarily in the pore fluid.

For experiment 1, where Sw0 = 0.48, a rapid increase is measured in cP during

hydrate growth, indicating that, at least partly, the hydrates are cementing the quartz

grains. For experiments 2-3 (Sw0 = 0.55 − 0.65), it seems like hydrates mainly act as

load-bearing members of the dry frame. However, the numerical models indicate that

some cementing of the quartz grains occur for SH > 0.2.

Overall, for experiment 1-10, for SH < 0.2, there is a clear trend towards hydrates

forming in the pore fluid for high Sw0 and growing into the frame for lower Sw0. For

SH > 0.2 there is a trend towards hydrates forming in the frame for high Sw0 and acting

more as cement for lower Sw0. This finding has also been reported in the literature

[164, 210, 34, 209].

A drop in the cP /cS-ratio is indicated in the measurements for Sw0 > 0.9 around

SH = 0.4. Of the three hydrate mentioned above, only the HC-model may explain such

a drop in the cP /cS-ratio. However, no absolute conclusion is given in this work of the

mechanism behind the drop.

In the literature, laboratory studies typically focus on measuring cP and cS in uncon-

solidated hydrate bearing sediments using the ”first arrival of the pulse,” which means

that the measurement frequency of the elastic wave is not defined [22, 21, 31]. Only a few

laboratory studies are found by this author to measure acoustic properties for hydrate

bearing sediments for defined frequencies [35, 32]. The Fourier spectrum method is able

to determine the frequency content of short measured signals and is used as the main

signal processing method in this work (for frequencies 350 kHz-600 kHz). To the best

of this author’s knowledge, no laboratory studies have measured the dispersion or the

attenuation spectrum in porous rocks or sediments during hydrate growth.

In this work, ”the first arrival of the pulse method” gives a higher measured cP

compared with the Fourier spectrum method. cP is measured to be highest for 600

kHz and lowest for 350 kHz, indicating that dispersion should be detectable. Due to

the measurement uncertainty in this work, only the P-wave transducers are able to

detect dispersion. From these experiments it seems like a high value for cP (f)− cP (f0)

is measured for low SH and a low value of cP (f) − cP (f0) is measured for high SH .

f0 = 350 kHz.

Pressure induced fluid flow is known to affect αP -measurements in sandstones for

the frequencies used in this work. This attenuation mechanism is not present in dry

sandstones. In dry Bentheim sandstone specimen used in this work, signals are not
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successfully transmitted and recorded at 500 kHz, giving a strong indication that other

attenuation mechanisms than pressure induced fluid flow are present. Also the numerical

models used in this work including pressure induced fluid flow, are not able to explain

the levels of attenuation seen in the measurements.

Multiple scattering of elastic waves is also known to be an attenuation mechanism

inside porous rocks, especially for higher frequencies. The numerical models used in this

work show some resemblance between the simulations and the measurements of ∆αP

when multiple scattering (Waterman and Truell’s multiple scattering theory) is included

in the model.

For the attenuation measurements in experiment 1-10, αP is decreasing during hy-

drate growth. αP is decreasing more for frequency 500 kHz compared with 350 kHz.

Also, there is a clear trend towards αP decreasing more for the sandstone specimen hav-

ing low Sw0. A decreasing αP during hydrate growth in hydrate bearing sediments has

also been found in another laboratory study [33]. However, data from well-logs have also

indicated a increase in αP for higher hydrate saturations [39]. No discussion is provided

in this work regarding this apparent inconsistency.

The attenuation spectrum, αP (f) − αP (f0), where f0 = 350 kHz is measured for

experiment 1-10. The difference in αP (f) − αP (f0) between the two distinct hydrate

saturations SH = 0.2 and SH = 0.5 is clearly bigger for lower Sw0. This agrees with the

cP -measurements, where the change in cP during hydrate growth is also higher for lower

Sw0.

In this work, the measured acoustic parameters cP , cS , ∆αP , αP (f) − αP (f0) and

cP (f) − cP (f0) are more sensitive to changes in SH at lower Sw0. This might indicate

that hydrates are more easily detected in sediments having low Sw0. Whether these

laboratory findings may be used to aid in analyzing field data from well-logs is not

discussed further in this work.

From previous measurement on hydrate bearing unconsolidated sediments, cP and cS

are known to increase for increasing SH [22, 34, 32, 33]. The change in cP and cS during

hydrate growth is also found to be higher for lower Sw0. One laboratory study is also

report a decrease in αP for increasing SH [33]. Previous studies in unconsolidated sandy

sediments have reported that for SH < 0.2, there is a trend towards hydrates forming

in the pore fluid for high Sw0 and growing into the frame for lower Sw0. For SH > 0.2

there is a trend towards hydrates forming in the frame for high Sw0 and acting more as

cement for lower Sw0. [164, 210, 34, 209].

In this study, it is shown that these findings are also true for consolidated Bentheim

sandstones. However, the increase in cP and cS during hydrate growth for Bentheim
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sandstone is not so high as for the unconsolidated sediment measurements reported in

the literature [22, 34, 32, 33].

By using the Fourier spectrum method, P-wave dispersion seems to be detectable in

the experiments conducted in this work (cP (f)− cP (f0)). Use of the basic pulse method

and ”the first arrival of the pulse” give a systematic higher measured cP compared with

the Fourier spectrum method. The relative compressional wave attenuation spectrum

(αP (f) − αP (f0)) is increasing for higher frequencies. As for cP , and cS , the measured

parameters ∆αP , αP (f)−αP (f0) and cP (f)−cP (f0) seem to be more sensitive to changes

in SH at lower Sw0.

8.2 Further work

There are several improvements that may be addressed for future work. In addition to

cP and cS , absolute values of αP and αS can be measured in Bentheim sandstones during

hydrate growth for a wider range of Sw0.

Better control over the uncertainty of the shear wave measurements may be achieved.

Especially uncertainities due to the the shear wave diffraction correction, rotation of the

transducers and uncertainites due to the couplant between the buffers and specimen

should be investigated further. With less uncertainty in the measurements, shear wave

dispersion may be measured and the measured cP /cS-ratio may be more reliable. To be

able to compare experiments having different Sw0 better, more control over the confining

pressure of the sandstone and the applied torque is needed.

In this project, the limited space inside the available pressure cell gave rise to un-

wanted sidewall reflections, interfering with the measurement signal. Such unwanted

reflections may be avoided by designing a pressure cell with larger lateral dimensions.

Like cP and cS , the attenuation in Bentheim sandstones changes during hydrate

growth. However, the numerical models used for discussing the loss mechanisms do not

give a precise description of the measurements. A more accurate theoretical model is

needed able to describe scattering and pressure induced fluid flow due to cracks of various

dimensions, and thus to achieve a better understanding of the attenuation mechanisms.

More information may also be gained on the relations between cP , cS , αP , αS and

Sw0 and SH by using lower frequencies (< 50 kHz). Frequencies below 50 kHz are closer

to the frequencies typically used in well-logs [218, 32]. To do this, the resonance method

may be used [32, 33]. Transducers able to transmit lower frequencies may potentilaay

be designed using bender elements [35, 222, 223].

217



218



Bibliography

[1] G. J. Moridis, T. S. Collett, R. Boswell, M. Kurihara, M. T. Reagan, C. Koh, and

E. Sloan, “Toward production from gas hydrates”, SPE Reservoir Evaluation and

Engineering 12(5), pp. 745–771 (2009).

[2] G. Moridis, T. S. Collett, M. Pooladi-Darvish, S. H. Hancock, C. Santamarina,

R. Boswell, T. J. Kneafsey, J. Rutqvist, M. B. Kowalsky, and M. T. Reagan,

“Challenges, uncertainties, and issues facing gas production from gas-hydrate de-

posits”, SPE Reservoir Evaluation and Engineering 14(1), pp. 76–112 (2011).

[3] A. V. Milkov, “Global estimates of hydrate-bound gas in marine sediments: how

much is really out there?”, Earth-Science Reviews 66(3), pp. 183–197 (2004).

[4] J. B. Klauda and S. I. Sandler, “Global distribution of methane hydrate in ocean

sediment”, Energy & Fuels 19(2), pp. 459–470 (2005).

[5] K. A. Kvenvolden, “Gas hydrates -geological perspective and global change”, Re-

views of geophysics 31(2), pp. 173–187 (1993).

[6] G. Holder, V. Kamath, and S. Godbole, “The potential of natural gas hydrates as

an energy resource”, Annual Review of Energy 9(1), pp. 427–445 (1984).

[7] K. Hayhoe, H. S. Kheshgi, A. K. Jain, and D. J. Wuebbles, “Substitution of natural

gas for coal: Climatic effects of utility sector emissions”, Climatic Change 54(1),

pp. 107–139 (2002).

[8] M. Nixon and J. L. Grozic, “Submarine slope failure due to gas hydrate dissoci-

ation: a preliminary quantification”, Canadian Geotechnical Journal 44(3), pp.

314–325 (2007).

[9] R. E. Kayen, “The mobilization of Arctic Ocean landslides by sea level fall-induced

gas hydrate decomposition”, Ph.D. thesis, California State University, Hayward,

California, 1988.

219



[10] K. J. Campbell, “Deepwater geohazards: How significant are they?”, The Leading

Edge 18(4), pp. 514–519 (1999).

[11] W. P. Dillon, W. Danforth, D. Hutchinson, R. Drury, M. Taylor, and J. Booth,

“Evidence for faulting related to dissociation of gas hydrate and release of methane

off the southeastern United States”, Geological Society, London, Special Publica-

tions 137(1), pp. 293–302 (1998).

[12] D. Archer, “Methane hydrate stability and anthropogenic climate change”, Bio-

geosciences Discussions 4(2), pp. 993–1057 (2007).

[13] G. R. Dickens, J. R. O’Neil, D. K. Rea, and R. M. Owen, “Dissociation of oceanic

methane hydrate as a cause of the carbon isotope excursion at the end of the

paleocene”, Paleoceanography 10(6), pp. 965–971 (1995).

[14] F. McDonal, F. Angona, R. Mills, R. Sengbush, R. Van Nostrand, and J. White,

“Attenuation of shear and compressional waves in Pierre shale”, Geophysics 23(3),

pp. 421–439 (1958).

[15] F. N. Tullos and A. C. Reid, “Seismic attenuation of Gulf Coast sediments”, Geo-

physics 34(4), pp. 516–528 (1969).

[16] A. M. Trehu, P. E. Long, M. Torres, G. Bohrmann, F. Rack, T. Collett, D. Gold-

berg, A. Milkov, M. Riedel, P. Schultheiss, et al., “Three-dimensional distribution

of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204”,

Earth and Planetary Science Letters 222(3), pp. 845–862 (2004).

[17] G. Ersland, J. Husebø, A. Graue, and B. Kvamme, “Transport and storage of CO2

in natural gas hydrate reservoirs”, Energy Procedia 1(1), pp. 3477–3484 (2009).

[18] J. Husebø, G. Ersland, A. Graue, and B. Kvamme, “Effects of salinity on hydrate

stability and implications for storage of CO2 in natural gas hydrate reservoirs”,

Energy Procedia 1(1), pp. 3731–3738 (2009).

[19] T. Xu, J. A. Apps, and K. Pruess, “Numerical simulation of CO2 disposal by

mineral trapping in deep aquifers”, Applied geochemistry 19(6), pp. 917–936

(2004).

[20] R. Korbøl and A. Kaddour, “Sleipner vest CO2 disposal-injection of removed CO2

into the Utsira formation”, Energy Conversion and Management 36(6), pp. 509–

512 (1995).

220



[21] W. J. Winters, I. A. Pecher, W. F. Waite, and D. H. Mason, “Physical properties

and rock physics models of sediment containing natural and laboratory-formed

methane gas hydrate”, American Mineralogist 89(8-9), pp. 1221–1227 (2004).

[22] W. F. Waite, W. J. Winters, and D. H. Mason, “Methane hydrate formation in

partially water-saturated ottawa sand”, American Mineralogist 89(8-9), pp. 1202–

1207 (2004).

[23] M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous

solid. I. Low-frequency range”, The Journal of the Acoustical Society of America

28(2), pp. 168–178 (1956).

[24] M. Helgerud, J. Dvorkin, A. Nur, A. Sakai, and T. Collett, “Elastic-wave velocity

in marine sediments with gas hydrates: Effective medium modeling”, Geophysical

Research Letters 26(13), pp. 2021–2024 (1999).

[25] J. Dvorkin, A. Nur, and H. Yin, “Effective properties of cemented granular mate-

rials”, Mechanics of materials 18(4), pp. 351–366 (1994).

[26] J. Dvorkin and A. Nur, “Elasticity of high-porosity sandstones: Theory for two

North Sea data sets”, Geophysics 61(5), pp. 1363–1370 (1996).

[27] P. Avseth, J. Dvorkin, G. Mavko, and J. Rykkje, “Rock physics diagnostic of North

Sea sands: Link between microstructure and seismic properties”, Geophysical Re-

search Letters 27(17), pp. 2761–2764 (2000).

[28] P. Avseth, T. Mukerji, G. Mavko, and J. Dvorkin, “Rock-physics diagnostics of

depositional texture, diagenetic alterations, and reservoir heterogeneity in high-

porosity siliciclastic sediments and rocks—a review of selected models and sug-

gested work flows”, Geophysics 75(5), pp. 75A31–75A47 (2010).

[29] M. Helgerud, W. F. Waite, S. Kirby, and A. Nur, “Elastic wave speeds and moduli

in polycrystalline ice IH, SI methane hydrate, and SII methane-ethane hydrate”,

Journal of Geophysical Research: Solid Earth 114, pp. B02212 (2009).

[30] W. J. Winters, W. F. Waite, D. H. Mason, L. Y. Gilbert, and I. A. Pecher,

“Methane gas hydrate effect on sediment acoustic and strength properties”, Jour-

nal of Petroleum Science and Engineering 56(1), pp. 127–135 (2007).

[31] M. B. Rydzy and M. L. Batzle, “Ultrasonic velocities in laboratory-formed gas

hydrate-bearing sediments”, in 23rd EEGS Symposium on the Application of Geo-

physics to Engineering and Environmental Problems, Society of Exploration Geo-

221



physicists and Environment and Engineering Geophysical Society, Keystone, Col-

erado, (2010).

[32] J. A. Priest, A. I. Best, and C. R. Clayton, “A laboratory investigation into the

seismic velocities of methane gas hydrate-bearing sand”, Journal of Geophysical

Research: Solid Earth 110(B4), pp. B04102 (2005).

[33] S. Nakagawa, T. Kneafsey, et al., “Split Hopkinson Resonant Bar test and its ap-

plication for seismic property characterization of geological media”, in Proceedings

of the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics

Symposium, American Rock Mechanics Association, Salt Lake City, Utah, (2010).

[34] Q. Zhang, F.-G. Li, C.-Y. Sun, Q.-P. Li, X.-Y. Wu, B. Liu, and G.-J. Chen,

“Compressional wave velocity measurements through sandy sediments containing

methane hydrate”, American Mineralogist 96(10), pp. 1425–1432 (2011).

[35] G. Hu and Y. Ye, Ultrasonic Waves on Gas Hydrates Experiments, INTECH Open

Access Publisher, (2012).

[36] C. Pearson, J. Murphy, and R. Hermes, “Acoustic and resistivity measurements on

rock samples containing tetrahydrofuran hydrates: laboratory analogues to natural

gas hydrate deposits”, Journal of Geophysical Research: Solid Earth 91(B14), pp.

14132–14138 (1986).

[37] A. E. Peksa, K.-H. A. Wolf, and P. L. Zitha, “Bentheimer sandstone revisited for

experimental purposes”, Marine and Petroleum Geology 67, pp. 701–719 (2015).

[38] J. M. Carcione and U. Tinivella, “Bottom-simulating reflectors: Seismic velocities

and AVO effects”, Geophysics 65(1), pp. 54–67 (2000).

[39] G. Guerin and D. Goldberg, “Modeling of acoustic wave dissipation in gas

hydrate–bearing sediments”, Geochemistry, Geophysics, Geosystems 6(7), pp.

2005GC000918 (2005).

[40] M. Lee and T. Collett, “Gas hydrate saturations estimated from fractured reser-

voir at site NGHP-01-10, Krishna-Godavari basin, India”, Journal of Geophysical

Research: Solid Earth 114(B7), pp. B07102 (2009).

[41] K. W. Winkler and W. F. Murphy III, “Acoustic velocity and attenuation in

porous rocks”, Rock physics and phase relations: A Handbook of physical constants

(collection of articles) , pp. 20–34 (1995).

222



[42] F. Gassmann, “Elastic waves through a packing of spheres”, Geophysics 16(4),

pp. 673–685 (1951).

[43] R. Galvin and B. Gurevich, “Effective properties of a poroelastic medium contain-

ing a distribution of aligned cracks”, Journal of Geophysical Research: Solid Earth

114(B7), pp. B07305 (2009).

[44] J. Hudson, “Attenuation due to second-order scattering in material containing

cracks”, Geophysical Journal International 102(2), pp. 485–490 (1990).

[45] S. Crampin, “Effective anisotropic elastic constants for wave propagation through

cracked solids”, Geophysical Journal International 76(1), pp. 135–145 (1984).

[46] M. Jakobsen, J. A. Hudson, T. A. Minshull, and S. C. Singh, “Elastic properties of

hydrate-bearing sediments using effective medium theory”, Journal of Geophysical

Research: Solid Earth 105(B1), pp. 561–577 (2000).

[47] M. Sæther, P. Lunde, and G. Ersland, “Sound velocity measurement methods for

porous sandstone. measurements, finite element modelling, and diffraction correc-

tion”, in Proceedings of the 39th Scandinavian Symposium on Physical Acoustics,

Geilo, Norway, , (2016).

[48] W. I. Futterman, “Dispersive body waves”, Journal of Geophysical Research

67(13), pp. 5279–5291 (1962).

[49] J. B. Molyneux and D. R. Schmitt, “First-break timing: Arrival onset times by

direct correlation”, Geophysics 64(5), pp. 1492–1501 (1999).

[50] J. B. Molyneux and D. R. Schmitt, “Compressional-wave velocities in attenuating

media: A laboratory physical model study”, Geophysics 65(4), pp. 1162–1167

(2000).

[51] K. W. Winkler and T. J. Plona, “Technique for measuring ultrasonic velocity and

attenuation spectra in rocks under pressure”, Journal of Geophysical Research:

Solid Earth 87(B13), pp. 10776–10780 (1982).

[52] E. P. Papadakis, K. A. Fowler, and L. C. Lynnworth, “Ultrasonic attenuation by

spectrum analysis of pulses in buffer rods: Method and diffraction corrections”,

The Journal of the Acoustical Society of America 53(5), pp. 1336–1343 (1973).

[53] J. Wu, “Determination of velocity and attenuation of shear waves using ultrasonic

spectroscopy”, The Journal of the Acoustical Society of America 99(5), pp. 2871–

2875 (1996).

223



[54] D. H. Green and H. F. Wang, “Shear wave diffraction loss for circular plane-

polarized source and receiver”, The Journal of the Acoustical Society of America

90(5), pp. 2697–2704 (1991).

[55] J. Dvorkin and A. Nur, “Dynamic poroelasticity: A unified model with the squirt

and the biot mechanisms”, Geophysics 58(4), pp. 524–533 (1993).

[56] P. C. Waterman and R. Truell, “Multiple scattering of waves”, Journal of Mathe-

matical Physics 2(4), pp. 512–537 (1961).

[57] S. Chand, T. A. Minshull, D. Gei, C., and M. José, “Elastic velocity models for
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analyser”, Master thesis, University of Bergen, Dept. of Physics and Technology,

Bergen, Norway (2009), (In Norwegian).

[189] A. R. Selfridge, “Approximate material properties in isotropic materials”, IEEE

Transactions on Sonics and Ultrasonics 32(3), pp. 381–394 (1985).

[190] C. Sayers and C. Tait, “Ultrasonic properties of transducer backings”, Ultrasonics

22(2), pp. 57–60 (1984).

[191] M. G. Grewe, T. Gururaja, T. R. Shrout, and R. E. Newnham, “Acoustic properties

of particle/polymer composites for ultrasonic transducer backing applications”,

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 37(6),

pp. 506–514 (1990).

[192] Meggitt, “Product Data: Type Pz37”, https://www.meggittferroperm.com/,

[Online; accessed 02-June-2018].

[193] M. Aanes, “Interaction of piezoelectric transducer excited ultrasonic pulsed beam

with fluid-embedded viscoelastic plate. Finite element modeling, angular spectrum

modeling and measurements”, PhD thesis, Department of Physics and Technology,

University of Bergen, Bergen, Norway (2014).

[194] ANSI/IEEE standard 176-1987, IEEE Standard on Piezoelectricity, Institute of

Electrical and Electronics Engineers Inc., New York, (1987).

[195] Mitutoyo Europe, “Product Data: Type Mitutoyo High accuracy digimatic mi-

crometer”, https://www.mitutoyo.com, [Online; accessed 02-June-2018].

[196] Ted Pella Inc., “Product Data: Type Pelco Conductive Liquid Silver Paint”,

https://www.tedpella.com, [Online; accessed 02-June-2018].

[197] Struers, “Product Data: Type Epofix kit”, https://e-shop.struers.com, [On-

line; accessed 02-June-2018].

[198] 3M, “Product Data: Type 3M Scotch-Weld 2216”, https://www.3m.com/, [On-

line; accessed 02-June-2018].

[199] Scorpion Oceanic, “Product Data: Type Solres-01”, http://www.

scorpionoceanics.co.uk/polyurethane-resin, [Online; accessed 02-June-

2018].

235



[200] M. Vestrheim, “Phys373 - Acoustic Measurement Systems”, University of Bergen,

Dept. of Physics, Bergen, Norway (2007).

[201] J. Kocbach, “Finite element modeling of ultrasonic piezoelectric transducers”,

Ph.D. thesis, University of Bergen, Norway (2000).

[202] A and D LTD, “Product Data: Type A and D Ltd GF-3000”, https://www.

aandd.jp/products/manual/balances/gf.pdf, [Online; accessed 02-June-2018].

[203] L. Hauge, J. Gauteplass, M. Høyland, G. Ersland, A. Kovscek, and M. Fernø,

“Pore-level hydrate formation mechanisms using realistic rock structures in high-

pressure silicon micromodels”, International Journal of Greenhouse Gas Control

53, pp. 178–186 (2016).

[204] S. Almenningen, E. Iden, M. A. Fernø, and G. Ersland, “Salinity effects on pore-

scale methane gas hydrate dissociation”, Journal of Geophysical Research: Solid

Earth (2018).

[205] W. F. Waite, J. C. Santamarina, D. D. Cortes, B. Dugan, D. Espinoza, J. Ger-

maine, J. Jang, J. Jung, T. J. Kneafsey, H. Shin, et al., “Physical properties of

hydrate-bearing sediments”, Reviews of Geophysics 47(4), pp. RG4003 (2009).

[206] T. Chen, D. C. Lawton, and F. Peterson, “Physical parameter estimation for sand-

stone reservoirs”, Consortium for Research in Elastic Wave Exploration Seismology

Research Report 1991, pp. 291–305 (1991).

[207] C. Ecker, J. Dvorkin, and A. Nur, “Sediments with gas hydrates: Internal structure

from seismic AVO”, Geophysics 63(5), pp. 1659–1669 (1998).

[208] S. Almenningen and G. Ersland, “Water permeability measurements on hydrate-

saturated sandstone cores with immobile gas”, in 31th International Symposium

of the Society of Core Analysts, The Society of Core Analysts, Vienna, Austria,

(2017).

[209] B. Tohidi, R. Anderson, M. B. Clennell, R. W. Burgass, and A. B. Biderkab,

“Visual observation of gas-hydrate formation and dissociation in synthetic porous

media by means of glass micromodels”, Geology 29(9), pp. 867–870 (2001).

[210] L. A. Stern, S. H. Kirby, W. B. Durham, S. Circone, and W. F. Waite, “Laboratory

synthesis of pure methane hydrate suitable for measurement of physical proper-

ties and decomposition behavior”, in Natural Gas Hydrate, pp. 323–348, Springer,

(2000).

236



[211] W. Waite, B. DeMartin, S. Kirby, J. Pinkston, and C. Ruppel, “Thermal con-

ductivity measurements in porous mixtures of methane hydrate and quartz sand”,

Geophysical Research Letters 29(24) (2002).

[212] T. S. Yun, F. Francisca, J. C. Santamarina, and C. Ruppel, “Compressional and

shear wave velocities in uncemented sediment containing gas hydrate”, Geophysical

Research Letters 32(10), pp. L10609 (2005).

[213] G. Guerin, D. Goldberg, and A. Meltser, “Characterization of in situ elastic proper-

ties of gas hydrate-bearing sediments on the Blake Ridge”, Journal of Geophysical

Research: Solid Earth 104(B8), pp. 17781–17795 (1999).

[214] M. S. Diallo and E. Appel, “Acoustic wave propagation in saturated porous me-

dia: reformulation of the Biot/Squirt flow theory”, Journal of Applied Geophysics

44(4), pp. 313–325 (2000).

[215] T. D. Jones, “Pore fluids and frequency-dependent wave propagation in rocks”,

Geophysics 51(10), pp. 1939–1953 (1986).

[216] S. R. Pride, J. G. Berryman, and J. M. Harris, “Seismic attenuation due to wave-

induced flow”, Journal of Geophysical Research: Solid Earth 109(B1), pp. B01201

(2004).

[217] J. Ba, J. Carcione, and J. Nie, “Biot-Rayleigh theory of wave propagation in

double-porosity media”, Journal of Geophysical Research: Solid Earth 116(B6),

pp. B06202 (2011).

[218] M. Sams, J. Neep, M. Worthington, and M. King, “The measurement of velocity

dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks”,

Geophysics 62(5), pp. 1456–1464 (1997).

[219] G. A. Gist, “Fluid effects on velocity and attenuation in sandstones”, The Journal

of the Acoustical Society of America 96(2), pp. 1158–1173 (1994).

[220] J. Dvorkin and R. Uden, “Seismic wave attenuation in a methane hydrate reser-

voir”, The Leading Edge 23(8), pp. 730–732 (2004).

[221] B. Gurevich, M. Brajanovski, R. J. Galvin, T. M. Müller, and J. Toms-Stewart, “P-

wave dispersion and attenuation in fractured and porous reservoirs–poroelasticity

approach”, Geophysical Prospecting 57(2), pp. 225–237 (2009).

237



[222] L. P. Suwal and R. Kuwano, “Disk shaped piezo-ceramic transducer for P and S

wave measurement in a laboratory soil specimen”, Soils and Foundations 53(4),

pp. 510–524 (2013).

[223] R. O. Deniz, “Bender elements and bending disks for measurement of shear and

compressional wave velocities in large sand specimens”, Ph.D. thesis, Northeastern

University, Boston, Massachusetts (2008).

238



Appendix A

Matlab logging scripts

In this appendix the logging scripts used during the hydrate experiments are presented.

LoggingScript.m is the main program.

LoggingScript.m

vinfo = instrhwinfo(’visa’,’agilent’);

vinfo.ObjectConstructorName

%%%% SCOPPE and Sig gen initialize %%%%

samples = 100e3;

ch=1; % Lese fra kanal 1 på skop

measWaitPause = 5;

SkopString = ’USB0::0x0699::0x0410::C024017::0::INSTR’

ud_skop = visa(’agilent’,SkopString,...

’InputBufferSize’,samples,’OutputBufferSize’,samples);

fopen(ud_skop);

fprintf(ud_skop, ’DATA:ENCDG RIBINARY;WIDTH 1’); % reset command

fclose(ud_skop);

ud_signal = visa(’agilent’, ’GPIB0::6::INSTR’);

%%%%%%%%%%%%%%%%%% 3: Measurement Series %%%%%%%%%%%%%%%%%%%%%

fopen(ud_signal);fopen(ud_skop);
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burst_rate = 50; % Tid(i Hz) mellom hver burst

voltinn_var = [100e-3 100e-3];

ScalingDistinct = [50e-3 50e-3];

SigGenMinMaxSafety = [1e-3 100e-3];

ScopeSafety = [1e-3 10];

ScalingTreshTooLowAmplitude = [2e-3 2e-3];

nonLinPercentTresh = 8;

nonLinearNumberOfCyclesTest = 2;

Gen_or_Scope_or_ScopeNonlinear_Scaling = 1;

measWaitPause = 0.1;

measWaitPauseFinal = 15;

average = 256;

cycles = [1];

freq = [500e3];

MeasuringDays = 40;

minutes_between_meas = 15;

periods_in_excess = 3;

AdjustAmplitude{1} = [1 0 2 500e3];

AdjustAmplitude{2} = [0 55e-6 8];

AdjustAmplitude{3} = [0 50e-6 105e-6];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(ud_signal,’BM:STATe ON’)

fprintf(ud_signal,[’BM:INT:RATE ’ num2str(burst_rate)]);

fprintf(ud_skop,[’ACQ:NUMAV ’ num2str(average)]);

fprintf(ud_skop,[’HOR:RECO ’ num2str(samples)]);

fprintf(ud_skop,’TRIGGER:A:EDGE:SOURCE AUX’);

fprintf(ud_skop,’TRIGGER:A:EDGE:SLOPE rise’);
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fprintf(ud_skop,’:TRIGGER:A:LEVel 1.1000E+00’);

fprintf(ud_skop,’TRIGGER:A:EDGE:COUPLING AC’);

voltinn_init_save = voltinn_var; % Spenning på innsignal fra generatoren

go = 1;

MeasNr = 0;

PickWinMethod = AdjustAmplitude{2};

while go && toc< MeasuringDays*24*60*60

if minutes_between_meas*MeasNr < toc/60;

MeasurementTime = clock;

for ii = 1:length(cycles)

if PickWinMethod(1) == 1;

PickWinMethod(3)= cycles(ii)+periods_in_excess;

elseif PickWinMethod(1) == 3;

PickWinMethod(3)= cycles(ii)+periods_in_excess;

end

AdjustAmplitude{2} = PickWinMethod;

for jj = 1:length(freq)

disp([’Freq’ int2str(jj)])

fprintf(ud_signal,[’BM:NCYC ’, num2str(cycles(ii))]);

fprintf(ud_signal,[’FREQ ’, num2str(freq(jj))]);

voltinn = voltinn_var(jj);

fprintf(ud_signal,[’VOLT ’ num2str(voltinn)]);

Scaling = ScalingDistinct(jj);

fprintf(ud_skop,[’CH’,num2str(ch),’:SCA ’,num2str(Scaling)]);

if Gen_or_Scope_or_ScopeNonlinear_Scaling == 1

Volt_Scale = ScaleLimitSigGenRev02(ud_skop,ud_signal,ch,...

measWaitPauseFinal,SigGenMinMaxSafety,ScalingDistinct(jj),...
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voltinn,AdjustAmplitude{1},ScopeSafety);

voltinn = Volt_Scale(1);Scaling = Volt_Scale(2);

end

[x,wf,tidsskala] = DPOLes_egenRev02(ud_skop,ch,measWaitPauseFinal);

Meas{ii}{jj}{1} = x; % {cycles}{freq}{variable}

Meas{ii}{jj}{2} = wf;

Meas{ii}{jj}{3} = voltinn;

Meas{ii}{jj}{4} = clock;

disp(’One meas taken’)

voltinn_var(jj) = voltinn;

ScalingDistinct(jj) = Scaling;

if voltinn == SigGenMinMaxSafety(1); disp(’on low volt limit’);

end

end

end

name = [’measurements/Meas_’ num2str(MeasNr) ’.mat’];

save(name,’Meas’,’MeasurementTime’,’cycles’,’freq’)

MeasNr = MeasNr+1;

disp(’Finished’)

DPOLes egenRev02.m

function [x,wf,tidsskala] = DPOLes_egenRev02(ud_skop,ch,measWaitPause)

fprintf(ud_skop,[’DAT:SOU CH’ num2str(ch)]); % chose ch 1

fprintf(ud_skop, ’DATA:ENCDG RIBINARY;WIDTH 1’);

pause(.1); % Wait to ensure that the scope wipes its memory.

fprintf(ud_skop,’ACQ:STATE STOP’);% stop old midling

pause(.1); % Wait to ensure that the scope wipes its memory.

fprintf(ud_skop,’ACQ:STATE RUN’);% Start new midling aquisition.

pause(measWaitPause);

fprintf(ud_skop,’CURV?’);

pause(.1)
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ydata = binblockread(ud_skop,’int8’); % reading data curve

pause(.1)

fscanf(ud_skop);

fprintf(ud_skop,’HOR:SCA?’); %ask for tidsskala/div

tidsskala = str2num(fscanf(ud_skop)); %save tidssakal /div

fprintf(ud_skop,’WFMO:XZE?’); % time coordinate of the first point

xze = str2num(fscanf(ud_skop));

%save time coordinate of the first point

fprintf(ud_skop,’WFMO:XIN?’); % time between points (fs)

xin = str2num(fscanf(ud_skop)); % save fs

fprintf(ud_skop,’WFMO:YMU?’);

% vertical scale factor per digitizing level in units

YMU = str2num(fscanf(ud_skop)); %read volts/div

fprintf(ud_skop,’WFMO:YZE?’); % vertical offset

YZE = str2num(fscanf(ud_skop)); % read ofset

x = xze:xin:(xze+(length(ydata)-1)*xin); % time vector

wf = (ydata*YMU) + YZE; % scaling the waveform (wf)

wf = wf’;

adjustAmplitude egenrev02.m

function out = adjustAmplitude_egenrev02(ud_skop,ch,measWaitPause...

,SignalForm,...

AdjustAmplitude,ScalingTresh)

%%%% PROGRAM STARTS %%%%%%

offSetmethodAdjustAmplitude = AdjustAmplitude{1};

PickWin =AdjustAmplitude{2};

PickWinSafety = AdjustAmplitude{3};
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Scaling = str2num(query(ud_skop,[’CH’,num2str(ch),’:SCA?’]));

verticalScalings = [1e-3 10];

screenRows = 4;

HaveBeenTooBig = false;

go = 1;

goCounter = 1;

while go

if offSetmethodAdjustAmplitude(1) == 1 || ...

offSetmethodAdjustAmplitude(1) == 2

fprintf(ud_skop,[[’CH’ num2str(ch)] ’:POS ’ ’0’]);

[x,wf,timeDiv] = DPOLes_egenRev02(ud_skop,ch,measWaitPause);

deleteOffset_tmp = delete_offset(x,wf,offSetmethodAdjustAmplitude);

offset = deleteOffset_tmp{2}/Scaling;

fprintf(ud_skop,[’CH1:POS ’ num2str(-offset)]);

[x,wf,timeDiv] = DPOLes_egenRev02(ud_skop,ch,measWaitPause);

deleteOffsetSafety_tmp = fourier_transform(x,wf,0);

if abs(deleteOffsetSafety_tmp{2}(1)) > 0.5*Scaling;

offSetmethodAdjustAmplitude(1) = 3;

end

end

if offSetmethodAdjustAmplitude(1) == 3

fprintf(ud_skop,[[’CH’ num2str(ch)] ’:POS ’ ’0’]);

[x,wf,timeDiv] = DPOLes_egenRev02(ud_skop,ch,measWaitPause);

deleteOffset_tmp = fourier_transform(x,wf,0);

offset = deleteOffset_tmp{2}(1)/Scaling;

fprintf(ud_skop,[[’CH’ num2str(ch)] ’:POS ’ num2str(-offset)]);

end

if offSetmethodAdjustAmplitude(1) == 4

fprintf(ud_skop,[[’CH’ num2str(ch)] ’:POS ’ ’0’]);

end
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[x,wf,timeDiv] = DPOLes_egenRev02(ud_skop,ch,measWaitPause);

SignalForm{1}= x;

SignalForm{2}= wf;

fs = 1/(x(2)-x(1));

freq = SignalForm{3};

samplesInPeriod = round(1/freq * fs);

%%%%%%%%%%%%%%%%%%%%% picking window samples %%%%%%%%%%%%%%%%%%

if PickWinSafety(1) == 0 ;

RelevantSamplesStartSafety = 1;

RelevantSamplesStopSafety = length(wf);

end

if PickWin(1) == 0

RelevantSamplesStart = 1;

RelevantSamplesStop = length(wf);

absV = max(abs(wf));

elseif PickWin(1) == 1 % input periods

onset_tmp = findOnsetRelZerolineRev02(SignalForm);

onset = onset_tmp{1};

if PickWinSafety(1) == 1 % times safety

RelevantSamplesStartSafety_tmp = find(x>PickWinSafety(2));

if isempty(RelevantSamplesStartSafety_tmp);

RelevantSamplesStartSafety = 1;

else RelevantSamplesStartSafety = RelevantSamplesStartSafety_tmp(1);

end

RelevantSamplesStopSafety_tmp = find(x>PickWinSafety(3));

if isempty(RelevantSamplesStopSafety_tmp);

RelevantSamplesStopSafety = length(wf);

else RelevantSamplesStopSafety = RelevantSamplesStopSafety_tmp(1);

end

elseif PickWinSafety(1) == 2 % time and periods after

RelevantSamplesStartSafety_tmp = find(x>PickWinSafety(2));

if isempty(RelevantSamplesStartSafety_tmp);
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RelevantSamplesStartSafety = 1;

else

RelevantSamplesStartSafety = RelevantSamplesStartSafety_tmp(1);

end

RelevantSamplesStopSafety = RelevantSamplesStartSafety...

+ round(PickWinSafety(3) *samplesInPeriod);

if RelevantSamplesStartSafety == 1 ...

|| RelevantSamplesStopSafety > length(wf);

RelevantSamplesStopSafety = length(wf);

end

end

RelevantSamplesStart = onset + round( PickWin(2)*samplesInPeriod);

RelevantSamplesStop = RelevantSamplesStart + ...

round(PickWin(3) *samplesInPeriod);

if RelevantSamplesStart > length(wf) || RelevantSamplesStart < 1 ...

|| RelevantSamplesStop > length(wf) || onset< RelevantSamplesStartSafety ...

|| onset > RelevantSamplesStopSafety ;

absV = max(abs(wf(RelevantSamplesStartSafety:RelevantSamplesStopSafety)));

else

absV = max(abs(wf(RelevantSamplesStart:RelevantSamplesStop)));

end

elseif PickWin(1) == 2 % input times

RelevantSamplesStart_tmp = find(x>PickWin(2));

if isempty(RelevantSamplesStart_tmp);

RelevantSamplesStart = 1;

else

RelevantSamplesStart = RelevantSamplesStart_tmp(1);

end

RelevantSamplesStop_tmp = find(x>PickWin(3));

if isempty(RelevantSamplesStop_tmp);

RelevantSamplesStop = length(wf);

else
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RelevantSamplesStop = RelevantSamplesStop_tmp (1);

end

if RelevantSamplesStart > length(wf) ...

|| RelevantSamplesStop > length(wf);

absV = max(abs(wf));

else

absV = max(abs(wf(RelevantSamplesStart:RelevantSamplesStop)));

end

elseif PickWin(1) == 3 % INPUT START TIME AND PERIODS AFTER

RelevantSamplesStart_tmp = find(x>PickWin(2));

elseif isempty(RelevantSamplesStart_tmp) ;

RelevantSamplesStart = 1;

else

RelevantSamplesStart = RelevantSamplesStart_tmp(1);

end

RelevantSamplesStop =...

RelevantSamplesStart + round(PickWin(3) *samplesInPeriod);

if RelevantSamplesStart == 1 || RelevantSamplesStop > length(wf);

RelevantSamplesStop = length(wf);

end

absV = max(abs(wf(RelevantSamplesStart:RelevantSamplesStop)));

end

if RelevantSamplesStart > length(wf) || RelevantSamplesStart < 1 ...

|| RelevantSamplesStop > length(wf) ...

|| RelevantSamplesStop < RelevantSamplesStart

RelevantSamplesStart = 1; RelevantSamplesStop = length(wf);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Scaling = str2num(query(ud_skop,[’CH’,num2str(ch),’:SCA?’]));

if absV > screenRows*Scaling

if Scaling <= verticalScalings(2)/2
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Scaling = Scaling*2;

fprintf(ud_skop,[’CH’,num2str(ch),’:SCA ’,num2str(Scaling)]);

HaveBeenTooBig = true;

end

if Scaling > verticalScalings(2)/2

fprintf(ud_skop,[’CH’,num2str(ch),’:SCA ’,num2str(verticalScalings(2))]);

HaveBeenTooBig = true;

end

elseif absV < screenRows*Scaling && ~HaveBeenTooBig

if (screenRows*Scaling/2 < max(abs(wf)))

go = 0;

elseif Scaling >= verticalScalings(1)*2

Scaling = Scaling/2;

fprintf(ud_skop,[’CH’,num2str(ch),’:SCA ’,num2str(Scaling)]);

HaveBeenTooWeak = true;

elseif Scaling < verticalScalings(1)*2

Scaling = verticalScalings(1);

fprintf(ud_skop,[’CH’,num2str(ch),’:SCA ’,num2str(Scaling)]);

HaveBeenTooWeak = true;

end

else

go = 0;

end

goCounter = goCounter+1;

end

if (absV > screenRows*Scaling ) ; AmplitudeOK = 3; % clipping

elseif absV < screenRows* ScalingTresh; AmplitudeOK = 2; % very low amplitude

else AmplitudeOK = 1;

end

out{1} = AmplitudeOK;

out{2} = x;

out{3} = wf;

out{4} = [RelevantSamplesStart RelevantSamplesStop];

out{5} = Scaling;
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Appendix B

Matlab scripts for the numerical

models

In this appendix the matlab-codes for the numerical models are presented. For Firable-

Sand.m, the HFr and HFl-models are implemented (Secs. 2.5.1 and 2.5.2). For Dvorkin Nur BISQ rev02 fun.m,

the BiSqHFr-model (Sec. 2.5.5) is implemented and for WaterMannWithSayers rev03 fun.m,

the WaTrHFr-model (Sec. 2.5.6) is implemented.

FirableSand.m

function out = FriableSand_Egen_fun(S_H,S_w0,...

Reuss_Hill_Patchy,Hydrate_Fluid_or_Frame_orSolid)

mu_q = 39.6e9;

K_q = 38.7e9;

rho_q = 2650;

K_w = 2.25e9;

rho_w = 1000;

K_H = 7.7e9;

mu_H = 3.2e9;

rho_H = 850;

BetaQ = 0.24;

K_dry0 = 11e9;

mu_dry0 = 8e9;
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phi_w0 = S_w0*BetaQ;

K_g = 11e6;

rho_g = 70;

phi_g0 = BetaQ-phi_w0;

%%%%%%%%% phi %%%%%%%%%%%%%%%%

phi_H = S_H * BetaQ;

phi_q = 1-BetaQ;

if Hydrate_Fluid_or_Frame_orSolid == 1

phi_s = 1-BetaQ;

phi_f = 1-phi_s;

% phi_Hf = phi_H;

xi_H = phi_H/(phi_f);

w_H = 0;

w_H_end = 0;

w_q = 1;

BetaS = BetaQ;

elseif Hydrate_Fluid_or_Frame_orSolid == 2 ...

|| Hydrate_Fluid_or_Frame_orSolid == 3

phi_s = phi_q+phi_H;

phi_f = 1-phi_s;

% phi_Hf = 0;

xi_H = 0;

w_H = phi_H/phi_s;

w_H_end = 1-phi_q;

w_q = phi_q/phi_s;

BetaS = 1-phi_s;

end

phi_LossWaterToHydrate = S_H/1.26*BetaQ;

phi_w_TOT = phi_w0 - phi_LossWaterToHydrate;

phi_tot = phi_q + phi_H + phi_w_TOT + phi_g0;

if phi_tot - phi_g0 > 1

250



phi_g = 0;

phi_w = 1- phi_q -phi_H -phi_g;

else

phi_w = phi_w_TOT;

phi_g = 1- phi_q -phi_H - phi_w;

end

xi_w = phi_w/(phi_f);

xi_g = phi_g/(phi_f);

%%%%%%%%%%%%%%%% Solid Elastic parameters %%%%%%%%%%%%%%%%%%

K_s = 0.5*(w_q*K_q^-1 + w_H*K_H^-1)^-1 + 0.5 * (w_q*K_q + w_H*K_H);

mu_s = 0.5*(w_q*mu_q^-1 + w_H*mu_H^-1)^-1 + 0.5 * (w_q*mu_q + w_H*mu_H);

rho_s = w_q*rho_q + w_H*rho_H;

K_s_EndPoint = 0.5*((1-w_H_end)*K_q^-1 +...

w_H_end*K_H^-1)^-1 + 0.5 * ((1-w_H_end)*K_q + w_H_end*K_H);

mu_s_EndPoint = 0.5*((1-w_H_end)*mu_q^-1 +...

w_H_end*mu_H^-1)^-1 + 0.5 * ((1-w_H_end)*mu_q + w_H_end*mu_H);

%%%%%%%%%%%%%% Hashin strikman Solid frame %%%%%%%%%%%%%

BetaEnd = BetaQ;

% porosity_s = 0.24

z = mu_dry0/6 *(9*K_dry0 + 8*mu_dry0)/(K_dry0 + 2*mu_dry0);

K_dry = (BetaS/BetaEnd /(K_dry0 + 4/3*mu_dry0) +...

(1-BetaS/BetaEnd) /(K_s_EndPoint + 4/3*mu_dry0) )^-1 - 4/3 *mu_dry0;

mu_dry = (BetaS/BetaEnd /(mu_dry0 + z) +...

(1-BetaS/BetaEnd) /(mu_s_EndPoint + z) )^-1 - z;

if Hydrate_Fluid_or_Frame_orSolid == 3

K_dry = K_dry0;

mu_dry = mu_dry0;

end

%%%%%%%%%%%%%%%%%%% Fluid Effect Reuss or Patchy %%%%%%%%%%%%%%
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rho_f = xi_w*rho_w + xi_g*rho_g+xi_H*rho_H ;

rho_tot = rho_s*phi_s + rho_f*phi_f;

if Reuss_Hill_Patchy == 1

K_f = (xi_w*K_w^-1 + xi_g*K_g^-1 + xi_H*K_H^-1)^-1;

K_sat = K_s * (BetaS*K_dry - (1+BetaS)*K_f*K_dry/K_s +... K_f ) /...

( (1-BetaS)*K_f + BetaS*K_s -K_f*K_dry/K_s );

mu_sat = mu_dry;

if isnan(K_sat)

K_sat = K_dry;

rho_tot = rho_s;

end

elseif Reuss_Hill_Patchy == 2

disp(’Error:: Hill not implemented’)

elseif Reuss_Hill_Patchy == 3

K_WH_Reuss = (xi_w/(xi_w+xi_H)*K_w^-1 + xi_H/(xi_w+xi_H)*K_H^-1)^-1;

Kg_sat = K_s * (BetaS*K_dry - (1+BetaS)*K_g*K_dry/K_s + K_g ) ...

/ ( (1-BetaS)*K_g + BetaS*K_s -K_g*K_dry/K_s );

KwH_sat = K_s * (BetaS*K_dry -(1+BetaS)*K_WH_Reuss*K_dry/K_s + K_WH_Reuss)...

/ ( (1-BetaS)*K_WH_Reuss + BetaS*K_s -K_WH_Reuss*K_dry/K_s );

mu_sat = mu_dry;

M_pathcy = (xi_g/(Kg_sat+4/3*mu_sat) + (xi_w+xi_H)/(KwH_sat+4/3*mu_sat))^-1;

mu_patchy = mu_dry;

K_sat = M_pathcy-4/3*mu_patchy;

end

Vp = sqrt((K_sat + 4/3*mu_sat)/rho_tot);

Vs = sqrt((mu_sat)/rho_tot);

Vp_dry = sqrt((K_dry + 4/3*mu_dry)/(rho_s*phi_s));

Vs_dry = sqrt((mu_dry)/(rho_s*phi_s));

%%%%%%%%%%%%%%%% OUT %%%%%%%%%%%%%%%%%%%%%%%%

out{1} = Vp;

out{2} = Vs;
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out{3} = K_sat;

out{4} = mu_sat;

out{5} = K_dry;

out{6} = mu_dry;

out{7} = [phi_s phi_H phi_w phi_g];

out{8} = [rho_s rho_f rho_w rho_g];

out{9} = [K_s mu_s K_f];

out{10} = [Vp_dry Vs_dry];

% out{9} = V_p_patchy;

Dvorkin Nur BISQ rev02 fun.m

function out = Dvorkin_Nur_BISQ_rev02_fun(S_H,S_w0,freq,R_sq)

mu_q = 39.6e9;

K_q = 38.7e9;

rho_q = 2650;

porosity_0 = 0.24;

K_w = 2.25e9;

rho_w = 1000;

K_H = 7.7e9;

mu_H = 3.2e9;

rho_H = 850;

phi_w0 = S_w0*porosity_0;

K_g = 11e6;

% K_g = 2.5e9;

rho_g = 70;

kappa_s0 = 1.1.* 1e-12;

N_perm = 14;

% r_s = 70e-6;

r_s = R_sq/2;

eta_w = 1.8e-3;

eta_g = 0.021e-3;

% eta_g = 1.8e-3;
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Reuss_Hill_Patchy = 1;

Hydrate_Fluid_or_Frame_orSolid = 2 ;

% 1; Fluid, 2; Frame 3; solid

BISQ = 1;

%%%%%%%%% phi %%%%%%%%%%%%%%%%

out2 = FriableSand_Egen_fun(S_H,S_w0,...

Reuss_Hill_Patchy,Hydrate_Fluid_or_Frame_orSolid);

porosity_s = 1-out2{7}(1);

rho_s = out2{8}(1);

rho_f = out2{8}(2);

phi_s = out2{7}(1);

phi_H = out2{7}(2);

phi_w = out2{7}(3);

phi_g = out2{7}(4);

phi_f = 1-phi_s;

K_s = out2{9}(1);

K_f = out2{9}(3);

mu_s = out2{9}(2);

K_sm = out2{5};

mu_sm = out2{6};

Vp_gas = out2{1};

Vs_gas = out2{2};

Vp_dry = out2{10}(1);

Vs_dry = out2{10}(2);

%%%%%%%%%%%%%%%%%% Program starts %%%%%%%%%%%

rho1 = (1-porosity_s).*rho_s;

rho2 = porosity_s.*rho_f;

rho = rho1 + rho2; % effective density

w = 2.*pi.*freq;

% eta_f0 = f_w*eta_w + f_g*eta_g;

eta_f0 = phi_w/(phi_w+phi_g)*eta_w + phi_g/(phi_w+phi_g)*eta_g;

if isnan(eta_f0)

eta_f0 = 0;
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end

h = r_s *((1+phi_f/phi_s)^(1/3)-1);

xi = h/2*sqrt(w*rho_f/eta_f0);

% xi

if xi < 3.2

F = 1+1/0.7178*exp(0.7178*(xi-3.2))/12 + xi/6*i;

elseif xi >= 3.2

F = 1/2 + 2*xi/12 + exp(-0.7178*(xi-3.2))/12 + xi/6*i;

end

% F

eta_f = eta_f0*F;

% eta_f = eta_f0

% kappa_i0 = 5e-4;

% kappa_s = kappa_s0*(phi_f/porosity_0)^3;

% kappa_i = kappa_i0*(porosity_0/phi_H)^2*(phi_f/phi_s)^3;

% k_rw = (1-S_H)^15;

k_rw = (1-S_H)^N_perm;

prmblty = k_rw*kappa_s0;

% prmblty = 1e-12

% prmblty = kappa_s0*(phi_f/porosity_0)^3;

% prmblty = ((porosity_s-0.0)/(porosity_0-0.1))^10 * kappa_s0;

% prmblty =(1/kappa_s + 1/kappa_i)^-1;

% prmblty =kappa_s0*(phi_f/porosity_s)^3;

% prmblty = 5e-3.* 9.869233e-13;

w_c = eta_f.*porosity_s./prmblty./rho_f;

% R = 500e-6;

% R = 70e-6;

% porosity_s = 0.15

% c1 = K_sm./phi_s./K_s;
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% K_av = ((1-c1).*phi_s./K_s + phi_f./K_f).^-1;

% R12 = (1-c1).*phi_s .* phi_f.*K_av;

r12 = 0.5;

Geom= phi_s/phi_f*r12+1;

rho_12 = -(Geom-1)*porosity_s*rho_f;

rho_a = -rho_12;

% rho_a = 500;

% BIOT HIGH FREQ:

% v=eta_f0/rho_f

% kappa1 = a1*sqrt(alfa/v)

% a1 = radius duct

% alfa = omega;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% c1 = K_sm/(phi_s*K_s);

% K_av = ((1-c1).*phi_s./K_s + phi_f./K_f).^-1;

Q = K_s./(1-porosity_s-K_sm/K_s);

F_biot = (1./K_f + 1./porosity_s./Q).^-1;

% F = K_av*phi_f

lambda = sqrt(rho_f.*w.^2./...

F_biot.*((porosity_s+rho_a./rho_f)./porosity_s + i .* w_c./w));

if BISQ == 1

F_sq = F_biot.*(1-2.*besselj(1,lambda.*R_sq)./...

lambda./R_sq./besselj(0,lambda.*R_sq));

else

F_sq = F_biot;

end

if isnan(F_sq)

F_sq = F_biot;

% rho_sat = rho_s;

end
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alfa = 1-K_sm./K_s;

poisson_frame = (3*K_sm-2*mu_sm)./(2*(3*K_sm+mu_sm));

A = porosity_s.*F_sq.*M_sm./rho2.^2;

B = ( F_sq.*(2.*alfa - porosity_s - porosity_s.*rho1./rho2)...

-(M_sm+F_sq.*alfa.^2./porosity_s).* ( 1+rho_a./rho2+i.*w_c./w))./rho2;

C = rho1./rho2+(1+rho1./rho2).*(rho_a./rho2+i.*w_c./w);

Y_1 = -B./2./A + sqrt((B./2./A).^2 - C./A);

Y_2 = -B./2./A - sqrt((B./2./A).^2 - C./A);

k1_number = sqrt(Y_1)*w;

k2_number = sqrt(Y_2)*w;

k_number = [k1_number k2_number];

%%%%%%%%%%%%%%%%%%%%%%

V = w./(k_number);

[a,b] = max(V);

Vp_fast = V(b); % Vp

dB_cm_fast = imag(k_number(b))*8.7/100;

% dB_cm1 = imag(k_number(1))*8.7/100;

% dB_cm2 = imag(k_number(2))*8.7/100;

out{1} = Vp_fast;

out{2} = dB_cm_fast;

out{3} = k_number;

out{4} = porosity_s;

out{5} = K_s;

out{6} = mu_s;

out{7} = rho_s;

out{8} = K_f;

out{9} = rho_f;

out{10} = Vp_gas;

out{11} = Vs_gas;

out{12} = rho;
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out{13} = [Vp_dry Vs_dry];

out{14} = [phi_s phi_f];

WaterMannWithSayers rev03 fun.m

function out2 = WaterMannWithSayers_rev03_fun(S_H,S_w0,...

freq,a_rad,CavityElasticFluid)

% clear

%

% a_rad = 200e-6;

% S_H = 0.2;

% S_w0 = 0.8;

% freq = 500e3;

% CavityElasticFluid = 2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R_sq = 170e-6;

% R_sq = 50e-6;

out = Dvorkin_Nur_BISQ_rev02_fun(S_H,S_w0,freq,R_sq);

porosity_s = out{4};

K_s = out{5};

mu_s = out{6};

rho_s = out{7};

K_f = out{8};

rho_f = out{9};

c_f = sqrt(K_f/rho_f);

w = 2*pi*freq;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c_long1 = out{1}; % BISQ

c_shear1 = out{11};

rho1 = out{12}; % rho total porous medium

c_long2 = c_f;

c_shear2 = 2000;
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rho2 = rho_f;

%%%%%%%%%%%%% Pao %%%%%%%%%%%%%%%%

mu1 = c_shear1^2*rho1;

mu2 = c_shear2^2*rho2;

p = mu2/mu1;

eta = rho1/rho2;

k_long2 = w/c_long2;

k_shear2 = w/c_shear2;

k_long1 = w/c_long1;

k_shear1 = w/c_shear1;

ka = k_long1*a_rad;

n0 = porosity_s / (4/3*pi*a_rad^3);

A_0k = myFun_n(0,a_rad,k_long1,k_shear1,...

k_long2,k_shear2,p,eta,CavityElasticFluid);

A_1k = myFun_n(1,a_rad,k_long1,k_shear1,...

k_long2,k_shear2,p,eta,CavityElasticFluid);

A_2k = myFun_n(2,a_rad,k_long1,k_shear1,k_long2,...

k_shear2,p,eta,CavityElasticFluid);

A_3k = myFun_n(3,a_rad,k_long1,k_shear1,k_long2,...

k_shear2,p,eta,CavityElasticFluid);

A_4k = myFun_n(4,a_rad,k_long1,k_shear1,k_long2,...

k_shear2,p,eta,CavityElasticFluid);

%%%%%%%%%%%%%%% Multiple scatt WaterMann Truell %%%%%%%%%%%%%%%%%

X0 = [1 3 5 7]/i/k_long1;

Xpi = [1 -3 5 -7]/i/k_long1;

Tok = [A_0k A_1k A_2k A_3k];

f_0 = X0* conj(Tok)’;

f_pi = Xpi*conj(Tok)’;

c1 = w/K_eff1;

c2 = w/real(K_eff1);

alfa1_dbcm = imag(K_eff1)/100*8.68;
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out2{1} = c2;

out2{2} = alfa1_dbcm;

%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function out = myFun_n(n,a,k_long1,...

k_shear1,k_long2,k_shear2,p,eta,CavityElasticFluid)

% p = mu2/mu1;

% eta = rho1/rho2;

phi_0 = 1/((2*n+1)*i^n);

a1 = k_long1;

B1 = k_shear1;

a2 = k_long2;

B2 = k_shear2;

r = a;

j_nz = @(n,z) sqrt(pi/2/z)*besselj(n+.5,z);

y_nz = @(n,z) sqrt(pi/2/z)*bessely(n+.5,z);

h_nz = @(n,z) j_nz(n,z) + i*y_nz(n,z);

E_31 = (n^2 - n - 1/2*B1^2*r^2) * h_nz(n,a1*r) + 2*a1*r*h_nz(n+1,a1*r);

E_32 = -n*(n+1)*((n-1)*h_nz(n,B1*r)-B1*r*h_nz(n+1,B1*r));

E_41 = (n-1)*h_nz(n,a1*r)-a1*r*h_nz(n+1,a1*r);

E_42 = -(n^2 - 1 - 1/2*B1^2*r^2) * h_nz(n,B1*r) - B1*r*h_nz(n+1,B1*r);

E_3 = -i^n*(2*n+1)*((n^2 - n - ...

1/2*B1^2*r^2) * j_nz(n,a1*r) + 2*a1*r*j_nz(n+1,a1*r));

E_4 = -i^n*(2*n+1)*( (n-1)*j_nz(n,a1*r)-a1*r*j_nz(n+1,a1*r) );

E_11 = n*h_nz(n,a1*r)-a1*r*h_nz(n+1,a1*r);

E_21 = h_nz(n,a1*r);

E_12 = -n*(n+1)*h_nz(n,B1*r);

E_22 = -(n+1)*h_nz(n,B1*r)+B1*r*h_nz(n+1,B1*r);

E_13 = n*j_nz(n,a2*r) - a2*r*j_nz(n+1,a2*r);

E_23 = j_nz(n,a2*r);
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E_33 = (n^2 - n - 1/2*B2^2*r^2) * j_nz(n,a2*r) + 2*a2*r*j_nz(n+1,a2*r);

E_43 = (n-1)*j_nz(n,a2*r)-a2*r*j_nz(n+1,a2*r);

E_14 = -n*(n+1)*j_nz(n,B2*r);

E_24 = -(n+1)*j_nz(n,B2*r)+B2*r*j_nz(n+1,B2*r);

E_34 = -n*(n+1)*((n-1)*j_nz(n,B2*r)-B2*r*j_nz(n+1,B2*r));

E_44 = -(n^2 - 1 - 1/2*B2^2*r^2) ...

* j_nz(n,B2*r) - B2*r*j_nz(n+1,B2*r);

E_1 = -i^n*(2*n+1)*(n*j_nz(n,a1*r)-a1*r*j_nz(n+1,a1*r) );

E_2 = -i^n*(2*n+1)*j_nz(n,a1*r);

E_33f = -1/2/eta*B1^2*r^2*j_nz(n,a2*r);

if CavityElasticFluid ==1

Matrix_n = [E_31 E_32; E_41 E_42];

b_vec = phi_0*[E_3;E_4];

elseif CavityElasticFluid ==2

Matrix_n = [E_11 E_12 E_13 E_14;...

E_21 E_22 E_23 E_24;...

E_31 E_32 E_33*p E_34*p;...

E_41 E_42 E_43*p E_44*p] ;

b_vec = phi_0*[E_1;E_2;E_3;E_4];

elseif CavityElasticFluid ==3

Matrix_n = [E_11 E_12 E_13;...

E_31 E_32 E_33f;...

E_41 E_42 0] ;

b_vec = phi_0*[E_1;E_3;E_4];

end

XX_n = linsolve(Matrix_n,b_vec);

out = (XX_n(1));

end

end
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