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Abstract 
 

The purpose of this study is to identify the sedimentology and stratigraphic sequence of the uplifted, 

Quaternary marine terraces in the Corinth Rift, Greece. The area of study is located south of 

Xylokastro and, as opposed to previous work, this project focused on small-scale mapping and 

logging, rather than determining the large-scale morphology of the area, resulting in a more detailed 

map of the area in terms of deposits and their extent. A comparison is then made to conclude whether 

the method used to map the area still holds strong in comparison to detailed fieldwork.  

There is a lot of lateral variation between terraces, sometimes they are depositional and in other areas 

they may be dominantly erosional, and a total of 13 different terrace levels were mapped, some with 

sub-levels. It was found that marine terraces remain highly laterally continuous despite large distances 

unlike their fluvial counterparts. The deposits are the stratigraphically youngest, marine terraces, 

which were deposited between 0.7-0.45 Ma to present. Six marine terrace facies were observed in the 

area, of which they are all consisting of beachface facies, with some shoreface deposits present.  

Cross-sections were made in order to create trajectories, which were then used when considering sea-

level variations and a general vertical succession. With the detail of the study, it has been observed 

that within terrace levels there are small-scale transgressions present as well as across terrace-levels, 

suggesting the need to include changes by transgression into the previous interpretation of terraces, 

which was generated by uplift alone. A correlation between the elevation of the terraces (given by 

age constraints) and a glacio-eustatic sea-level curve suggest an uplift rate of 1.3 mm/year is more 

likely than 1.6 mm/year. However, neither provided a perfect fit, therefore the best fit may more 

likely lie in-between or alternatively the use of a non-linear uplift rate.  
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1. Introduction 
 

1.1. Background and rationale for thesis 

 

The study area is localised in the Gulf of Corinth, south of Xylokastro (figure 1). The area is localised 

on two ridges, Ridge 1 and Ridge 2. Ridge 1 is localised west of Ridge 2 and also nearer Xylokastro, 

Ridge 2 is closer to Sykia and further to the east, extending towards Melissi, although never reaching 

that far. These two ridges should be perfect for studying the lateral variations and the sequence 

stratigraphy of terraces as there should be no major fault intercepting this area. The maximum 

elevation studied is at just above 500 m and the lowest studied terrace level is at roughly 50 m above 

sea-level.  

Largely studies in the area have focused on the rifting as it is a perfect example for studying early 

rifting as well as uplift (e.g. McNeill & Collier, 2004; Bell et al., 2009; Turner et al., 2010; Taylor et 

al., 2011; Nixon et al., 2016). The syn-rift sedimentation has also been studied greatly (e.g. Ford et 

al., 2013; Pechlivanidou et al., 2017; Gawthorpe et al., 2017) Thusly, the terraces have only been 

studied for the purpose of determining uplift rates in the area and therefore the sedimentology was 

not so much of importance as the presence of corals and dateable fossils. A few studies have been 

made regarding the sedimentology and lateral continuity of the terraces, however, not in this study 

area. The only data in this area has been inferred from previous studies performed in other areas in 

the region (Sébrier, 1977; Dufaure & Zamanis, 1980; Keraudren & Sorel, 1987; Doutsos & Piper, 

1990). The overall morphology of the area and the terraces have been inferred from SPOT imagery 

by Armijo et al. (1996) and with a 2 m-resolution Digital Surface Model (DSM) by De Gelder et al. 

(2018), however no fieldwork has been done in the area around the terraces south of Xylokastro. 

From previous research it is clear the terraces follow parallel to the shoreline. 
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Figure 1. Maps obtained from Google Earth of the area present day, an overview map with a white box, which is zoomed 

in in the underlying image of the study area.  

 

Apart from bringing in new knowledge and data about the sedimentology of the marine terraces, 

which will provide an insight to the sequence stratigraphy, this thesis will also compare uplift rates 

to terraces mapped in order to determine the best fit when assuming a constant rate of uplift. The 

sedimentological detail and sequence stratigraphy on its own as well as lateral continuity is 

knowledge which is vital when looking for natural resources and reservoir properties. This can be 

applied to other known areas which have experienced rifting and uplift in the past.  

 

N 
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1.2. Aims and objectives 

 

The purpose of this study is to investigate the sedimentology of the marine terraces in Corinth, as 

well as the sequence stratigraphy. Analysis of the data gathered in the field will be used to determine 

whether the previous mapping method done by Armijo et al. (1996) is still a valid technique for small-

scale mapping and to determine how accurate it is. It should be stressed that Armijo et al. (1996) did 

not focus on the sedimentology of the terraces, only the large-scale geometry and extent of them.  

 

I. Description of facies and facies associations of terrace deposits as well as surfaces found in 

the area. 

II. Map the geometry and extent of the terraces. 

III. Generate a shoreline trajectory, by using the maps, logs and cross-sections. 

IV. Analyse all gathered data and compare it to that of Armijo et al. (1996) and determine whether 

the method previously used to map terraces still holds or whether detailed field mapping 

reveals a different geological story. 

V. Compare the terrace levels with a sea-level curve to determine uplift rates. 

  

1.3. Outline of thesis 

 

Chapter 1, as seen above, is a brief introduction to the background and purpose of this thesis. It is 

followed by chapter 2, which presents the geological setting of the Corinth Rift on a regional and a 

more local scale. The more local scale focuses on the terraces and the uplift, whilst the more regional 

scale focuses on the rifting. As this thesis focuses on the terraces, chapter 3 will emphasise previous 

research and the theoretical background of terraces. Chapter 4 presents the methodology used in order 

to produce this thesis. It presents the different phases of the research and the different programs used 

in order to produce the maps and models created. This chapter is then followed by chapter 5, in which 

the results of data acquisition and subsequent analysis is presented. It is subdivided into three main 

parts: Facies and facies associations, new terraces model, and sequence stratigraphy. The first part 

uses logs and field observations to present the sedimentology of the terraces and the nature of the 

surfaces between underlying beds. Maps created from field mapping in ArcMap are used to present 

the new model of terraces, additionally, this part contains a comparison of my own terrace model to 

that of Armijo et al. (1996). Finally, in this section, the sequence stratigraphy is presented with a 

general vertical succession, a shoreline trajectory, and a sea-level curve. Chapter 6 discusses the 

results presented in chapter 5 and argues whether or not the model by Armijo et al. (1996) is accurate 
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on small-scale and large-scale and, additionally, discusses uplift rates. The thesis is concluded by 

chapter 7, which contains a summary of the thesis and suggestions for further research which could 

be undertaken. 

 

2. Geological setting 
 

This chapter is subdivided into subsections, starting with 2.1. Tectonic setting, which dominantly 

focuses on the regional tectonic setting. The second subdivision, 2.2. Syn-rift stratigraphy and 

sedimentology, briefly presents the phases of sedimentation. Lastly, 2.3. Uplift, a subsection of great 

relevance to the terrace formations is presented.  

 

2.1. Tectonic setting 

 

The study area is located in the Corinth Rift, which is one of the youngest, most active extensional 

structures in the Aegean Region, eastern Mediterranean (Nixon et al., 2016). The area is subjected to 

fault activity and uplift, forming a rather unique combination of structures discussed below. The rift 

itself forms an asymmetric half-graben and it has a set of prominent uplifted marine terraces onshore. 

Regionally, the area is connected to a triple junction by the westward propagation of the North 

Anatolian Fault. The Aegean microplate (Kahle et al., 1998) is part of a triple junction, Karliova 

occurs where the Arabian, Anatolian and Eurasian plate meet, see figure 2a (Armijo et al., 1999). To 

the south, there is the Hellenic subduction zone where Anatolia meets the African plate (figure 2b). 

The Corinth Rift is located in the back-arc region of the Hellenic subduction zone, part of the Hellenic 

mountain belt, which has an NNW-SSE trend. The pre-rift basement of Corinth is composed of a 

nappe complex of Mesozoic age (Rohais et al., 2007a; Skourtsos & Kranis, 2009; Taylor et al., 2011; 

Ford et al., 2013). None of the nappes are exposed in the study area. Rifting in the Corinth was 

initiated less than 5 Ma (Ori, 1989), however, an exact timing has yet to be established. The rift has 

a WNW-ESE strike orientation (Jackson et al., 1982) and is extending at a vast rate of 10 to 16 

mm/year (Bernard et al., 2006; Briole et al., 2000; Clarke et al., 1998). Normal faulting is the 

dominant type of deformation and surface rupture in the Gulf of Corinth and generally extends in a 

north to south orientation (Bell et al., 2008; Jackson et al., 1982; Taylor et al., 2011). The rift is 

currently more than 100 km in length and less than 30 km wide (Armijo et al., 1996; Bell et al., 2006; 

Doutsos et al., 2006). Based on syn-sedimentary deposits it is now widely agreed upon that multi-

phase rifting occurred in the area (Ford et al., 2013; Ori, 1989). 
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Figure 2a. Structural map showing the interactions of the Anatolian plate with surrounding plates. (Armijo et al., 1999) 

 

 

Figure 2b. Structural map zoomed in on the Gulf of Corinth, highlighting faults and a cross-section showing the plate 

movements (Turner et al., 2010).  
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2.2. Syn-rift stratigraphy and sedimentation 

 

There have been many studies both onshore and offshore regarding syn-rift deposits in the Corinth 

rift. This subchapter will focus on the onshore studies as the terraces studied for this thesis are 

currently onshore. The sediments of the former basin are generally referred to as the Corinth Marls, 

which are dominantly freshwater lacustrine to brackish facies, of potentially Plio-Pleistocene age 

(Freyberg, 1973; Sébrier, 1977; Collier, 1990), with interbedded marine marls as well as shoreface 

sands and conglomerates (Kerauden & Sorel, 1987). It is generally accepted that there are four events 

in the evolution of the rift sedimentation. The initial stage of rifting is interpreted by fluvio-lacustrine 

sediments with faults, which were subsiding at slow rates (overall extension rates are less than 1 

mm/year) (Ford et al., 2013). This is followed by an increase in extension rate (2 to 2.5 mm/year) and 

subsidence (fault slip rates 1 to 2 mm/year) and during this time alluvial fans moved forwards into 

Gilbert-type prograding deltas (Demoulin et al., 2015; Rohais et al., 2007a). The third phase is 

characterized by a further increase in extension (3.4 to 4.8 mm/year) with further delta progradation 

and uplift (Ford et al., 2013). Finally, the most recent phase which is dominantly based on uplift as 

well as increase in extension rates from less than 5 mm/year in the east to 16 mm/year to the western 

part of the rift (Avallone et al., 2004; Bernard et al., 2006; Nyst & Thatcher, 2004). These different 

events create syn-rift sediments referred to as the Lower Group, Middle Group and Upper Group 

(Nixon et al., 2016). Onshore, the lower group has an estimated time of deposition of circa 4-3.6 to 

2.5-1.8 Ma (Rohais et al., 2007a), the middle from circa 2.5-1.8 to 0.7-0.45 Ma (Ford et al., 2013; 

Leeder et al., 2012), and the upper group from 0.7-0.45 Ma to present (Ford et al., 2013; Rohais et 

al., 2007a). The upper group is the one which is of interest for this study and is dominantly made up 

of reworked middle group sediments (Rohais et al., 2007b).  

The Lower Group is dominated by facies ranging from alluvial fan to shallow-water lacustrine 

depositional environments (Ori, 1989; Doutsos & Piper, 1990) and can in itself be subdivided into 

three formations: Exochi Formation, Valimi Formation, and Aiges Formation (Rohais et al., 2007b). 

Exochi Formation (between 50 to roughly 600 m in thickness) is dominated by alluvial deposits and 

the most proximal one of the three formations. Valimi (ranging from 50 to 800 m thick) corresponds 

to fluvio-lacustrine sediments and are overall finer than those of the Exochi Formation. Aiges 

Formation (10 m to more than 1000 m thick), is the most distal of the three and represents the distal 

fan delta and turbiditic depositional system (Rohais et al., 2007b). These deposits are overlain by the 

Middle Group conglomerates, either conformably or unconformably.  The Middle Group has been 

interpreted to have been deposited in large and thick alluvial fans in the south and fining northwards 

into fine-grained turbidites (Doutsos et al., 1988; Doutsos & Piper, 1990; Poulimenos, 1993; Zelilidis 
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& Kontopoulos, 1996) and has a thickness ranging from 500 to more than 1000 m, mean thickness 

being ca. 800 m (Rohais et al., 2007b). Similarly to the Middle Group, the Upper Group either 

conformably or unconformably superpose the underlying group. Facies of this group range from 

fluvial to marine environments and they are deposited on perched terraces or alternatively form 

carbonate reefs (Schrøder, 1975; Keraudren & Sorel, 1987; Pirazzoli et al., 2004; Kershaw et al., 

2005). The Upper group is slightly different from the underlying ones as it drapes incised 

palaeomorphology (incision from 1 m to more than 80 m) and also consists of red palaeosoils (up to 

5 m in thickness) and consolidated slope breccias of reworked Middle Group sediments. On a more 

local scale, the Upper Group corresponds to small terraces representing coastlines of the past and 

present (Rohais et al., 2007b).  

 

2.3. Uplift 

 

Palaeoshorelines present in the area have been used as reference markers for coastal landmass 

displacement (Armijo et al., 1996; Turner et al., 2010). Armijo et al. (1996) focused on using three 

levels, which were interpreted as corresponding to Marine Isotope Stage (MIS) 9c, 7e and 5e and 

tracing them parallel to the shoreline in order to examine the uplift variations. The ages were obtained 

by dating of corals (Collier, 1990; Collier et al., 1992) and molluscs (Sébrier, 1977). The basinward 

migration of north-dipping fault systems has created downstepping marine terraces and shoreline 

features from the current coastline up to an elevation of around 800 m (Armijo et al., 1996; McNeill 

& Collier, 2004). The uplift rate of the Late Pleistocene to Holocene vary from around 0.8 mm/year 

in the far west to 2.0 mm/year in the centre and circa 0.3 mm/year in the east (see figure 3). Furthest 

to the east lies the Lechaion Gulf, not considered part of the active rift, however, terraces are present 

along the Gulf shoreline and this is due to isostatic adjustment rather than fault slip (Turner et al., 

2010) and this area also shows the lowest uplift rates in the area. 
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Figure 3. Map of uplift rates and extension rates across the Gulf of Corinth, furthest to the east by Corinth is the minimum 

uplift of 0.3 mm/year, considered to be unrelated to faulting (McNeill & Collier, 2004). 

 

3. Terrace theory and previous work 
 

In this subchapter, terrace formation, as well as some previous work, will be discussed in order to 

better understand chapter 5. Firstly, some theory and terminology will be presented, followed by a 

subsection discussing previous work, introducing amongst others that of Armijo et al. (1996), as it is 

a major paper discussing the terraces studied and will be used for comparison in section 6, the 

discussion. Some more recent studies will also be included, although most base their terraces of the 

study by Armijo et al. (1996). 

 

3.1. Theory and terminology 

 

Terraces can form in either a lake or marine environment as it is the result of fluctuating eustatic sea 

level as well as tectonic uplift (e.g. Chappell 1974; Lajoie 1986; Anderson et al., 1999). There are 

two types of terraces, depositional and erosional (McNeill & Collier, 2004). The depositional terraces 

form by the growth of coral reefs or by progradation of deltas. The latter is formed when, during a 
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highstand, a fan-delta may aggrade and prograde basinward depending on the subsidence rate and 

sediment flux, consequently forming a gently basinward dipping surface. A break in the slope of the 

sub-aerial delta top occurs between the fluvial topset and the beachface/shoreface. In this case, in the 

Corinth, the break is likely between 5 to 10 m below sea-level. This is inferred to be close to the 

terrace outer edge.  

The second type of terrace, the predominantly erosional terraces, are formed when there is a low input 

of sediment, for example between deltas (see figure 4). These terraces are the ones of most interest 

for the purpose of this thesis. They are formed by wave erosion, which moves the shoreline landward, 

see figure 5 (Anderson et al., 1999). This created a planar or gently basinward-dipping surface where 

a thin deposit may be left. The base of the former seacliff/shoreline is represented by the inner edge 

and is considered an accurate proxy for determining the paleo-water level (McNeill & Collier, 2004). 

In this paper, the inner edge is referred to as the back-end of the terrace.  

 

 

Figure 4. A diagram generated for this study to demonstrate where marine terraces are generated in a setting where 

deltas are present.  
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Figure 5. Diagram of terrace formation, the waves cut into the cliff-face and uplift creates a step-like pattern, alternating 

sea-level on its own can also create terraces (Anderson et al., 1999 

 

3.2. Previous studies 

 

The terraces in the Gulf of Lechaio and Corinth have been studied for over a hundred years (Depéret, 

1913), although it is only more recently that they have become of more interest rather than a side-

study alongside faulting and uplift. Sébrier (1977) described six terraces south of Corinth and 

differentiated between them based on the variety of marine fauna and degrees of weathering. The 

terraces consist of an erosion-resistant 2 to 6 m thick caprock, dominantly well-cemented sandstone 

and conglomerates (Sébrier, 1977). Detailed sedimentological descriptions of the terrace edges as 

well as space correlations were made by Dufaure & Zamanis (1980), resulting in the first map of 

terraces. A schematic map by Keraudren & Sorel (1987), slightly modified the space correlations 

made by Dufaure & Zamanis (1980). A sedimentological description and surface morphology 

interpretation was made by Doutsos & Piper (1990), with the conclusion that the terraces are a result 

of a complex interaction between active normal faulting and sedimentary processes. Six marine 

transgressive cycles were described in the Corinth Canal as well as Acropora sp. coral samples were 

dated (Collier, 1990; Collier et al., 1992). The dates were interpreted to correlate with interglacial 

isotope stages 5, 7 and 9 of the marine record and from this, a minimum average uplift of 0.3 mm/year 

for the Corinth Isthmus was deduced. Furthermore, Armijo et al. (1996), used SPOT satellite high 

resolution panchromatic imagery to extend the terraces previously correlated and mapped. This study 
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used contour lines (4 m) to follow the terraces and ensure their consistency, the result is presented as 

a map, see figure 6. However, it did not take into account the sedimentology of the terraces which is 

the purpose of this paper as some of the terraces are topsets, some truncated foresets and some marine 

terrace deposits. 

Further to the west, the Eliki fault area has been studied (McNeill & Collier, 2004) and terrace dating 

has been attempted using corals and shells (Stewart, 1996). The conclusion of the study was that an 

increase in extension rates may have taken place between the late Pleistocene, early Holocene and 

present time (McNeill & Collier, 2004). Furthermore, the elastic geodetic rates over short time periods 

may not be comparable to those of cumulative rates over periods of hundreds of thousands of years, 

especially not when taking into consideration earthquake recurrence intervals (Collier et al., 1998). 

Furthest to the southeast, the Lechaion Gulf, where the Corinth Canal is situated, this area is not 

considered to be part of the active rifting, but still presents terraces due to uplift (Turner et al., 2010). 

Uplift rates since MIS 7 on the north coast of Lechaion Gulf can be explained by footwall fault 

displacement, however, the south coast presents evidence of isostatic uplift, where the isostatic uplift 

rates increase westward in the Corinth Canal where it meets the modern rift, Corinth Gulf (Turner et 

al., 2010).  

De Gelder et al. (2018) used high-resolution topography in order to create a three-dimensional 

analysis of the sequence geometry of the marine terraces mapped by Armijo et al. (1996). This refined 

analysis may change the dating of some terraces, previously considered to be part of MIS 11c (Temple 

II) to be part of MIS 9e, which has previously been debated due to the poor age constraint. Based on 

their analysis, what Armijo et al. (1996) mapped as Laliotis in the area of this study, may be 

considered Temple II by De Gelder et al. (2018). 



3. Terrace theory and previous work 

17 
 

 

 
Figure 6. Map of the marine terraces between Xylokastro and Corinth. The oldest terraces are found further inland, away from the coast and the youngest are found alone the 

coastline. It is based on interpretation of the SPOT images and aerial photographs and different elevations are shown with different shades of grey (darkest shade between 

1000-1300 m, medium shade 700-1000 m, and lightest shade 400-700 m) (Armijo et al., 1996).
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4. Method 
 

The process for producing this thesis can be divided up into two main categories; fieldwork and data 

analysis. Fieldwork is necessary in order to gain all the data needed to produce new maps and to test 

hypotheses. It was split into two field seasons, one in May 2017 (14/05-29/05) and one in October 

2017 (04/10-24/10), a total of 36 field days. Some days were cut short due to the weather during the 

first field season, which was significantly rainier than the second one. A fellow student, Anders 

Hågenvik, was working on the delta deposits in the area and we worked very closely on all deposits 

in the area as the mapping and measure-taking often overlapped.  

 

4.1. Pre-field work 

 

Prior to the first field season, multiple maps were made of the area using ArcMap and ArcCatalog 

(further description of software in section 4.3.3.). The most zoomed in ones were of the scale 1:5000 

and these were used for detailed mapping of boundaries and outcrops. Two main sets of maps were 

made, ones with contour lines and ones with Google Earth Image. Another main set of maps made 

were four different overview maps at a crude scale of 1:26 000. They all had the same base of a 

Google Earth map, overlain with either a slope map generated in ArcMap, a contour map, assumed 

terrace deposits based on initial analysis of generated slope maps, as well as a map with outlined flat 

surfaces. In the appendix the slope map, contour map, as well as the map draped over Google Earth 

can be found as there were used during the process of data analysis and in the field. The ones in the 

Appendix contain the final map version and not the previous ones which were proven to be wrong in 

terms of terraces boundaries.  

 

4.2. Field work 

 

The purpose of the field work was to gain knowledge and data of the area’s geometry and 

sedimentology. In order to do this logs, bed thicknesses, strike-dip measurements, boundaries, as well 

as terrace lateral geometries, were thoroughly mapped and notes were taken. Equipment used to 

obtain the data were a geological hammer, compass-clinometer, GPS, binoculars, tape-measurer, 

brush, University of Leicester grain size chart, hand-lens, mapping board and a DSLR-camera (Canon 

60D). A laser range-finder was borrowed from Dr Martin Muravchik, who also lent a telescope and 

flew a drone to gather data and images of one of the main ridge faces (Cross-section F). Most of the 
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areas were accessible by either car or walking, however, some were fenced off or inaccessible due to 

complications.  

The first field season was dominantly used for reconnaissance and to get an overall understanding of 

the geology of the area as well as the complications present to reach certain outcrops. A few logs 

were made as well as some mapping. Complications discovered were those of sediment wash-over, 

steep cliffs, loose blocks and sediment, scorpions, and thorny vegetation.  

During the second field season, most of the data collection was done such as strike-dip measurements 

of deposits (Map in Appendix), multiple logs were made (see Appendix), and traditional mapping of 

outcrops in order to map the extent of terraces. In order to study steep to vertical cliffs, a telescope 

was used as well as binoculars and for one ridge (Cross-section F), photos and film were taken with 

the aid of a drone. This footage was then processed by Dr Martin Muravchik and given back as a file 

which could be uploaded onto CloudCompare (see section 4.3.2.), where the cliff face could be 

analysed in a 3-D view and measurements could be taken.  

 

4.3. Computer modelling and data analysis 

 

Before being able to write the final thesis and discuss the data, it all had to be digitalised and then 

analysed. The modelling is divided up into separate subsections based on method and software used. 

In order to create the maps in ArcMap, data from digital elevation models (DEM’s) were imported as 

well as coordinate points taken in the field of outcrops and their features. In some cases, the only way 

to correlate logs and terrace outcrops is based on the altitude and contour lines. The terrace deposits 

do extend laterally, however individual beds tend to change and vary in thickness so the only way to 

correlate logs is based on the altitude and the general pattern, which in some terraces is a reverse 

grading pattern and in others, it is just alternating beds of granules and conglomerates. Logs and 

measurements were added and suitable profiles were chosen for cross-sections. LiDAR, 

CloudCompare were used to get features and their geometrical data correctly transferred into the 

model which was digitalised using CorelDraw.  

 

4.3.1. LiDAR (Light Detection And Radar) 

 

LiDAR which was obtained by Dr. Martin Muravchik and his collaborators for their projects partially 

covered the area of interest for this thesis, the eastern cliff-face of the Sythas Valley. LiDAR, being 

a remote sensing tool, is commonly attached to a plane and measures the properties of reflected and 

scattered light to determine information about a target, in this case, precise surface measurements of 



4. Method 

20 

 

the area to build a three-dimensional model. The exact distance of the target is obtained by measuring 

the two-way travel time of the laser pulses (Karp & Stotts, 2013). The data from the Sythas Valley 

was useful for this thesis’ purpose in order to get precise geometrical relationships between different 

surfaces.  

 

4.3.2. Photometry and CloudCompare 

 

As previously mentioned in section 4.2., a drone was used to take footage of the easternmost cliff-

face on Ridge 2. Dr. Martin Muravchik created a virtual outcrop model which could be imported and 

analysed in CloudCompare. The software allowed for dip measurements and bed thicknesses to be 

taken on the vertical surface which was not possible to do in the field. This was all used to build a 

cross-section of the section (Cross-section F). Photographs taken with the drone added detail to the 

relationships between beds later discussed in chapter 5.  

 

4.3.3. ArcGIS 

 

High resolution Pleiades DEM’s were imported to ArcCatalog and then to ArcMap where layers of 

data were added. The Pleiades DEM’s quality greatly improved the terrace interpretation where data 

was lacking from the field by following elevation patterns (De Gelder et al., 2015). Data from the 

field was added as points based on outcrop coordinates sourced from GPS locations. Polygons were 

generated from the points and were compared to the terraces interpreted by Armijo et al. (1996). 

Polylines were created where cross-sections for interpretation purposes were most suitable in terms 

of terrace coverage and quality of data. In ArcMap, however, the polylines can only show elevation 

based on the DEM’s and so in order to get a correct horizontal to vertical scale (1:1), it needs further 

processing, see section 4.3.4. 

 

4.3.4. Adobe Illustrator and CorelDraw 

 

For the purpose of digitalising logs, CorelDraw was used, the majority were digitalised at a scale of 

1:10, except for logs 1 and 21 which were digitalised at a scale of 1:20. CorelDraw was chosen for 

its versatility and ease of editing. It was also used to create diagrams such as the general vertical 

succession of the area. Cross-sections were first created in Adobe Illustrator by importing a polyline 

from ArcMap with the corresponding Digital Elevation Map (DEM) to create a profile with the 

correct horizontal versus vertical scale. Vertically exaggerated versions of the profiles were created 
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due to the thinness of the terrace deposits. These were later imported as PDF’s into CorelDraw where 

digitalisation of outcrops and structures were created based on field sketches, photographs and the 

model created in CloudCompare. It should be noted that the scale of the logs first follows the Udden-

Wentworth sedimentary grain-size scale (mud, silt, very fine sand etc.). When reaching granule-sized 

sediment, the scale is adapted for ease of observing variations in conglomerates after Blair and 

McPherson (1999) and their classification of coarse sediments.  

 

5. Results 
 

The results have been divided up into subsections, where firstly the facies and facies associations will 

be presented and interpreted based on field observations. These are partly the basis for the other 

results, being the new map of terraces (and deltas), which in turn is established from field data 

acquired and analysis of logs. Thirdly to be presented is the sequence stratigraphy of the area. This 

will be a combination of data from cross-sections (based on mapping) creating a sea-level trajectory, 

looking at small sea-level changes within terrace levels and large-scale sea-level changes from one 

level to another. Note this thesis focuses on the marine terraces, deltaic sediments will briefly be 

presented in chapter 5.1 in order to be able to distinguish the differences between the topsets and the 

marine terraces as they can appear similar. A brief description of the foresets is also included as it is 

present at the base of some logs which are used for the interpretations of the sequence stratigraphy. 

As this thesis focuses mainly on the terraces and their deposits, the delta deposits are only briefly 

described in a broader spectrum, for detailed descriptions and analysis please see Hågenvik (2018).  

 

5.1. Facies and Facies Associations  

 

The facies vary a lot in geometry which is why there are two tables, one for deposits and one for 

surfaces. The surfaces are not facies per se, but they are vital to distinguish marine terraces from other 

facies associations which can be similar, in this case predominantly the topsets of the deltas. 

Additionally, included in the surface table is “Lag deposit” for the reason that it can be present beneath 

other strata than just the marine terraces, also it does not always necessarily leave behind a deposit, 

sometimes it is just an irregular surface with some (often larger) clasts. The facies association and 

facies model are comparable to what can be observed in the Corinth Rift at the present day. This is 

due to the fact that the studied deposits are younger than 450,000 years (Keraudren & Sorel, 1987), 

given by dating of corals. Considering the Mediterranean was always closed off from the Atlantic, 
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this explains the lack of tidal influence on the coastline, which has always been wave or river 

dominated. In the Corinth case, the long straight coasts and lack of sediment supply from any rivers 

create a wave-dominated coastline. Any large sediment influx will be due to flash floods and heavy 

rainfall during winter. Additional seasonal changes in sediment deposits are the sand-contents. During 

summer seasons when the weather is calmer, sand is more likely to be deposited causing matrix-

supported conglomerates. Whereas during winter season storms and higher wave action segregate 

sediments better, creating clast-supported and open-work conglomerates (Horrillo-Caraballo & 

Reeve, 2010). 

The subdivision of facies of units is based upon logs produced in the field and therefore a fairly 

objective data source. They are described in table 1, where data is divided into two columns; 

lithology/structure and dimensions/geometry. In the lithology/structure column it is first stated what 

kind of facie is being described (e.g. sandstone), this is followed by information about grain size if 

sandstone, then sphericity, roundness and sorting of clasts/grains. After which clasts are described in 

the same order, then intraclasts if present and matrix. Lastly, structures are described. Whenever clasts 

are described as ‘a (parallel)’, it means the a-axis (long axis) of the clasts follow parallel to the flow. 

The column for dimensions/geometry uses geometry definitions based on Tucker (2011) (Figure 7), 

where small-scale bed units refer to units on metre-scale up to tens of metres. The large-scale 

geometries refer to sediment bodies on a regional or kilometre scale. The final column states potential 

processes which could create the described unit and if possible, an interpretation of the depositional 

environment given the logs and the background knowledge of the area. Table 2 describes and 

interprets surfaces rather than deposits. Instead of having a description of the beds, there is a 

description of the relationship between beds and between which beds the surface can be found.  
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Figure 7. Diagram demonstrating the definition of sedimentary body geometries used to describe features seen in the 

field (Tucker, 2011). 

 

5.1.1. Facies and surfaces 

 

The area is dominated by multiple types of conglomerates. However, the composition of the 

conglomerates is mostly the same, although in some locations it varies – lack of intraclasts, or lack 

of e.g. phyllite. The composition is dominantly quartz, quartzite, chert, phyllite, sandstone, micrite, 

limestone, marl and older metamorphosed basin rocks of various compositions. Intraclasts are often 

coarse sandstone or conglomeritic in composition, containing the same or similar clast compositions 

as the bed. Commonly in a bed, there is one type of intraclast, although in some beds there are up to 

three different types of intraclasts (sandstone and two different conglomeritic intraclasts, one being a 

dark intraclast and the other a lighter coloured one containing intraclasts within itself. Dominantly 

these are intraclasts of conglomeritic underlying units (topsets or foresets of deltas), but occasionally 

some marl or sandstone clasts. In terms of clast size, intraclasts are often larger than the average clasts 

in the units. Generally, fine sediments are rare and only found in thin mm to cm laminae in the units 

of interest for this study. Carbonate cement bands sometimes appear as well as most of the matrix 

contains little carbonate cement.
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Facies 

Association 

Facies 

Name 

Lithology & Structure Dimensions & 

Geometry 

Sedimentary Processes & 

Interpretation 

Marine 

terraces 

MT.1.1 Conglomerate: low sphericity, sub-rounded, 

poorly to well sorted, clast supported/openwork. 

Clasts: max 5 cm, min 0.2 cm, av 0.5 to 0.8 cm  

Matrix: little to none. 

Reverse and normal grading, borings in clasts. For 

image see figure 8A. 

Tabular, 8 to 30 cm 

thick beds. 

Beachface (Swash/Backwash): 

Swash/backwash from waves causing 

grading. Borings indicate a non-fluvial 

environment. (Hart & Plint, 1995; 

Jennings &  Shulmeister, 2002) 

 

MT.1.2 Very coarse grained sandstone to small pebbly 

conglomerate: a(parallel) and a(imbrication), low 

sphericity, sub-angular to rounded, moderately to 

well sorted, clast-supported/openwork, 

occasionally matrix-supported. 

Matrix: little to no cement. 

Planar parallel lamination (PPL) and cross-

bedding. For image see figure 8B. 

Tabular geometry of 

beds. 0.5 to 10 cm 

thick.  

Lower Beachface: Cross-bedding and 

planar parallel lamination common for 

beach. (Hart & Plint, 1995; Reading & 

Collinson, 1996) 

MT.2.1 Conglomerate: clast to matrix supported, rarely 

openwork (dominantly clast supported) 

Tabular, 10 to 70 cm 

thick beds.  

Plunge-step (Lower Foreshore): 

Borings indicate a non-fluvial 
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Matrix: Fine to coarse grained, low sphericity, 

sub-angular to sub-rounded, poorly to moderately 

sorted. Little cement present. 

Clasts: max 15 cm, min 0.3 cm, av 1 to 4 cm 

Intraclast max 25 cm, min 2.5 cm, av 7 cm  

All clasts: low sphericity, sub-rounded to rounded, 

poorly to very poorly sorted. 

Structureless, some bored clasts. For image see 

figure 8C. 

environment. Matrix present could 

suggest a rather low wave-energy as it is 

not able to completely segregate the 

sediments by size. Coarsest clasts can be 

found deposited at the breaker point 

between shoreface and foreshore or the 

upper surf, also where there is almost 

instant deposition causing the lack of 

structure or lack of well-developed 

structure. (Maejima, 1982; Dupré et al., 

1980; Kirk, 1980; Short, 1984; Bardaji et 

al., 1990; Reading & Collinson, 1996) 

MT.2.2 Conglomerate: oblate-shaped clasts, low 

sphericity, sub-rounded, moderately to well 

sorted, clast to matrix supported. 

Clasts: max 2 to 3 cm, min 0.2 to 0.5 cm, av 0.5 to 

1 cm 

Matrix: fine to coarse grained sandstone, low 

sphericity, sub-angular to sub-rounded, poorly to 

well sorted, little cement. 

Inclined bedding, imbricated clasts. For image see 

figure 8D. 

Tabular, sometimes 

wedge-shaped.  

5 to 25 cm thick. 

Upper Foreshore (Berm): Inclined beds 

and imbrication indicate berm accretion 

in the foreshore (Bardaji et al., 1990; 

Hart & Plint; 1995), or transitional Lower 

beachface as it is possible to create 

inclined bedding and imbricated clasts in 

such an environment as well with the aid 

of breaking waves (Massari & Parea, 

1988). 
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MT.3 Coarse grained to small pebbly conglomerate: 

a(parallel) and a(imbrication), low sphericity, sub-

rounded to rounded, moderately to well sorted, 

clast-supported/openwork. 

Matrix: little to no cement. 

Symmetrical ripples, wavy bedding. For image see 

figure 8E. 

Tabular, laterally 

vary in thickness and 

on 10s of metres 

scale, occasionally 

pinch out in a 

wedge-shaped 

manner. 1 to 10 cm 

thick. 

Shoreface:  Oscillation creating 

symmetrical ripples.  

Lack of cement due to segregation of 

grains during wave process. (Hart & 

Plint, 1995; Reading & Collinson, 1996) 

MT.4 Very fine to fine grained sandstone: high 

sphericity, sub-rounded, moderately sorted 

Very few pebbles, max 1 cm clasts, low 

sphericity, sub-angular to rounded. 

Symmetrical ripples: wavelength 10 cm, 

amplitude 0.5 cm, burrows. For image see figure 

8F.  

Tabular, 2 to 10 cm 

thick.  

Storm deposit: Oscillation, not 

necessarily within fair-weather wave 

base, due to the finer grained sediments 

being segregated and moved offshore. 

(Massari & Parea, 1988; Reading & 

Collinson, 1996) 

Silt-fine 

sand 

SF Silt to fine grained sand, occasionally gravel. Very 

varied maturity of grains, silt and sand: mixed 

sphericity, sub-rounded, well to very well sorted. 

Gravel is more varied, low sphericity, angular to 

sub-rounded, moderately sorted.  

Parallel lamination, wavy lamination. See figure 

9A. 

Tabular, 1.5 m to 

possibly up to 20 m 

where thickest. 

Unconsolidated sand and silt fall out of 

suspension during floods or during still 

water, where local flow velocities have 

been reduced (El-Hames & Richards, 

1994). Wavy lamination may be due to 

water escape.  
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Corals C Combination of marl and fine to very fine 

sandstone, high sphericity, subrounded, 

moderately to well sorted. Corals either present in 

colonies or as separate tubes. The individual coral 

tubes are up to 0.7 cm in diameter, averaging in 

0.5 cm. See figure 9B 

Tabular, but appears 

in patches as it is not 

laterally extensive. 1 

to 2 m exposed. 

Corals interpreted as Acropora sp. 

(Collier et al., 1993). Good example is 

log 12. Sandy wavy/silty sediments with 

burrows as well as corals are good 

indicators of a transgression. (Collier, 

1990) 

Delta 

topset 

DT.1 Conglomerate: low sphericity, angular to sub-

rounded, poorly sorted, clast to matrix supported. 

Clasts: max 15 cm, av 1 to 3 cm, min 0.2 cm  

Intraclasts: max 14 cm (a few 30 to 70 cm found 

in log 5) 

Matrix: medium to coarse sand, low sphericity, 

angular to sub-angular, poorly sorted, little to no 

cement. 

Poorly developed internal structure, sometimes 

inclined or horizontal planar bedding, figure 10A. 

30 to 300 cm, tabular 

on small scale.  

Tractional deposition of gravel in braided 

stream channel (Gobo et al., 2015) and 

the lack of well-developed structures 

indicate a high flow regime. (Backert et 

al., 2010) 

DT.2 Sandstone-conglomerate: fine grained to large 

pebbly conglomerate, low sphericity, sub-angular 

to sub-rounded, moderately sorted 

Granules and pebbles: low sphericity, angular to 

sub-angular, poorly sorted. 

Inclined lamination in varying orientations. See 

figure 10B 

Tabular to wedge-

shaped. 5 to 55 cm 

thick. 

Tractional deposition of sandy 

longitudinal bars forming the inclined 

lamination, orientation depending on the 

orientation of the bar in the river. (Gobo 

et al., 2015) 
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DT.3 Sandstone-conglomerate mix: very fine to gravel 

sized grains, low sphericity, sub-angular to sub-

rounded, moderately to well sorted. 

Few pebbles: max 3 cm, av 3 mm to 1 cm, little 

carbonate cement. 

Trough cross-bedding, wavy bedding, 

occasionally normal grading.  Vertical burrows. 

For image see figure 10C. 

Mix of lenticular and 

wedge-shaped on 

small scale. Each 

bed 2 to 30 cm.  

Trough cross-bedding due to wave 

reworking but also small unidirectional 

flows from distributary channel outlet. 

Vertical burrows suggesting a high 

energy environment and the normal 

grading indicating change in flow energy, 

possibly seasonal changes. (Backert et 

al., 2010; Gobo et al., 2015; Reading & 

Collinson, 1996) 

Delta 

foreset 

DF.1 Sandstone: silt to very coarse grained, low 

sphericity, sub-angular to sub-rounded, 

moderately to poorly sorted, carbonate cement, 

bivalves 

Pebbles: rounded, < 1 cm, low sphericity. 

Planar parallel lamination. See figure 10D. 

Generally the 

thinnest bed of 

clinoforms, 2 to 15 

cm, tabular.   

Tb (Turbidity flow in Lowe sequence), 

found between beds of DF.2. High 

energy planar parallel lamination. 

(Backert et al., 2010; Lowe, 1982) 

DF.2.1 Conglomerate: low sphericity, sub-rounded, 

moderately sorted, max 4 cm, min 0.3 cm, av 0.7-

2 cm 

Matrix: same as DF.1 sandstone. 

Often mix of clast to matrix supported, oblate 

shaped clasts. 

Normal grading. For example see figure 10 E 

Cone shaped on 

large scale and 

tabular on small 

scale, 10 to 50 cm 

thick. 

High density flow creating grading in 

conglomerate, could be Ta (Turbidity 

flow in Lowe sequence, where Ta stands 

for traction and ‘a’ stands for first bed 

aka coarsest), non-cohesive. (Lowe, 

1982; Gobo et al., 2015) 
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Table 1. Table of all facies logged and described in the area, special emphasize on marine facies. 

 

DF.2.2 Conglomerate: low sphericity, rounded, poorly 

sorted, clast-supported 

Clasts: max 13 cm, min 0.3 cm, av 1cm, oblate 

shaped, intraclasts present, < 3 cm, shell 

fragments. Sometimes a(p) for small clasts, no 

small-scale structures visible, large-scale bedding. 

See figure 10F for example. 

20 to 100 cm thick 

beds, cone-shaped 

and tabular 

geometry.  

Structureless suggest bedload transport in 

high flow regimes. (Backert et al., 2010) 

The imbrication of clasts could be due to 

sheet floods. (Rohais et al., 2008) 

Delta toe-

set 

DB.1 Sandstone: silt to coarse grained, high sphericity, 

sub-angular to sub-rounded, moderately sorting, 

silt laminae, planar parallel lamination. For image 

see figure 10G. 

Each bed 2 to 10 cm 

thick and each set of 

alternating beds is 

between 0.5 to 1 m. 

Wedge to tabular 

shaped. 

Silt laminae and planar parallel 

suggesting the most distal part of the 

deltas relative to DB.2 and foresets. 

Deposits of low density flow. (Gobo et 

al., 2014) 

 DB.2 Conglomerate: low sphericity, sub-rounded to 

rounded, poorly sorted, min 0.2 cm, av 0.5 to 1 

cm, max 2 cm, 

Matrix: coarse sand and little cement 

some faint parallel, very gently inclined 

lamination, sometimes a(parallel) clasts 

Clasts from underlying bed of Corinth Marls < 15 

cm, low sphericity, sub-angular. Figure 10H. 

Up to 50 cm thick 

beds. 

Tabular to wedge-

shaped.  

Debris flow, non-cohesive, sometimes 

listric shears (the inclined “lamination”). 

(Gobo et al., 2014) 
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Surface type Name Relationships/Geometry Processes/Interpretation 

Transgressive Lag Thin sediments deposited at base of bed. Can 

also show as irregular surface. Lag max 30 cm 

thick and not very extensive. Often thinner or 

barely present. See figure 11A for field 

example. 

Uneven surface of variously sized clasts 

presenting a lag deposit likely created during a 

transgressive event. (Johnson & Baldwin, 1996; 

Tucker, 2011) 

Erosive Scour Irregular surface between sediments, often hard 

to distinguish due to coarse sediments. For 

image see figure 11B. 

Erosive event where current is strong enough to 

erode into underlying sediment. (Johnson & 

Baldwin, 1996; Tucker, 2011) 

Unconformity U.1 Angular unconformity between Rehti-Dendro 

Formation and terraces/deltas. Very clear and 

throughout the area as the Corinth Marls have 

been faulted and therefore the dip is often 

steeper or in a different direction than the 

terraces and deltas. See figure 11C. 

Angular unconformity due to the irregular surface 

and the underlying bed having a distinct dip 

difference. Likely a distinct time period and 

erosion of the Corinth Marls before deposition of 

the terraces/delta deposits. (Armijo et al., 1996; 

Gawthorpe et al., 2017) 

U.2 Disconformity between topsets and terraces. 

Beds parallel, but laterally lower beds turn into 

sigmoidal clinoforms beneath and overlying 

beds remains finely bedded. See figure 11D. 

Transgressive disconformity or ravinement 

surface occasionally overlain by a lag deposit and 

this is a result of sea level rise, marking shoreface 

retreat (Massari and Parea, 1988) 

Table 2. Table of surfaces found in the study area.  
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Figure 8. Marine facies: A) MT.1.1, triangle represents normal grading; B) MT.1.2, parallel lines to highlight some 

of the planar parallel lamination, most left unmarked for reader to be able to distinguish them; C) MT.2.1, generally 

poor structure and can be considered structureless; D) MT.2.2, inclined bedding and some imbrication of clasts 

highlighted by dashed lines; E) MT.3, within the dashed box is gravel ripples, can be difficult to distinguish but clear 

waves are visible; F) MT.4, ripples in sand. 

 

A B 

C D 

E F 
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Figure 9. A) Dashed lines highlighting the near-horizontal bedding of the silt-fine grained unit; B) Remnants of a coral 

colony. 

 

  

  

B 

B 

A 

A 

C D 
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Figure 10. Fluvial facies: A) DT.1, large scale planar bedding shown in black lines, often structureless within; B) 

DT.2, inclined bedding demonstrated by black lines; C) DT.3, black lines highlighting small troughs which have been 

burrowed, can also be found in a marine environment if unidirectional flow is present; D) DF.1, planar laminated 

shown with black lines; E) DF.2.1, normal grading highlighted by a triangle; F) DF.2.2 Large scale beds with no 

internal structures; G) DB.1, dashed lines highlighting the lamination which is a bit crude due to the poor sorting; H) 

DB.2, dashed lines highlighting bedding. 

 

E F 

G H 
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Figure 11. Surfaces: A) Lag shown with dashed lines of large clasts; B) Scour with infill of poorly sorted conglomerate 

highlighted by a black line following the scour; C) Angular unconformity between Rehti-Dendro Formation and a 

marine terrace highlighter by black lines; D) Disconformity between a marine terrace and a topset shown with a black 

line. 

 

5.1.2. Facies Association 

  

This study looks at the deposits above the faulted and distorted Corinth Marls, with a particular focus 

on the marine terraces. Other facies associations are briefly discussed for the purpose of 

understanding the overall geology in order to create a sea-level trajectory and a general vertical 

succession. Composition-wise terrace deposits and topsets are similar, however, generally terraces 

have better-defined beds as well as better sorting (see facies table for details). When referring to 

younger and older terraces, older terraces are generally considered T1 to T6, T7 to T13 are considered 

younger. This definition is mostly based on the quality of outcrops, weathering and how laterally 

extensive the deposits are.  

 

Marine Terrace (deposits) 

Description 

The thickness of the deposits vary from 50 cm to 5 m but are frequently around 1 to 3 m thick. The 

terrace deposits do extend laterally, however individual beds tend to change and vary in thickness as 

well as pinch out laterally, for example, follow T12 on the map (figure 14). T12 forms a thick clear 

B A 

C D 
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terrace in locality of log 2 but pinches out to what appears to be only truncated foresets at the 

northwesternmost point of ridge 2 (just east across the valley of log 5). The back-end of terraces, best 

presented in the cross-sections in chapter 5.3, show which terraces have a pinch-out back-end and 

which have a more concave back-end. Generally, the younger terraces superposing deltas tend to 

pinch out, and the older terraces tend to have a more concave back-end if the back-end is visible. In 

some cases, e.g. T1 (log 21), the back-end is not visible as the terrace is the only outcrop still 

remaining at that elevation.  

The marine terrace beds are distinguished by their alternating granule-conglomeratic beds, with a lot 

of small clast size variations. Also, the clasts are commonly semi-mature and oblate-shaped. In good 

fresh exposures, it is often possible to see organisation such as imbrication or parallel a-axis in clasts 

and often the alternating beds change orientation and are of mm to cm in size. Borings are found in 

clasts in beds (see table x1, MT.2.1) and in the matrix, and burrows are generally found in the 

sandstone beds. The beds are overall horizontal to near horizontal (< 5 º dip) and the dip direction can 

vary from northwest to northeast (see map in Appendix with strike/dip data). Facie DT.3, despite 

being considered a topset facie, does appear on occasion in marine terraces as a marine facie, see log 

1.  

Interpretation 

It is difficult to determine the depth at which the facies were deposited (specifically MT.3 and MT.4), 

but based on grain size and burrows the relative depth to one another can be interpreted, see figure 

13. In coarse-grained beaches, wave action may cause smaller sediments (e.g. sand) to move further 

offshore, however when the wave energy is very low the different grain sizes may not be as well 

segregated and matrix supported conglomerates will be more prominent (Emery, 1955; Clifton, 1973; 

Hart & Plint, 1995). Open framework and clast-supported conglomerates are formed during high 

energy action. The sorting of clasts is generally better in shoreline deposits than in fluvial deposits, 

which furthermore indicate that the well-sorted conglomerates are of nearshore marine origin 

(Zenkovitch, 1967; Hart & Plint, 1995). Cross-bedding found may be a product of the influence of 

fluvial currents or alternatively, asymmetrical wave motion, rip current, longshore current or tidal 

currents. Given the presence of deltas it is quite likely to have an impact on the beach structures 

(Dupré et al., 1980; Massari & Parea, 1988).  

Gravel ripples found in facie MT.3 are a typical nearly shore parallel feature, although it can be found 

in deeper water (Leckie & Walker, 1982; Hart & Plint, 1995). It is always hard to determine whether 

the sand in the conglomerates was deposited after or at the same time as the clasts. According to Hart 

& Plint (1995), if there is no sand matrix in the granule-sized to large clast conglomerate then it was 
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likely deposited later. A combination is also possible where the terrace deposits thin landwards until 

there is just a truncation or lag left.  

Based on the morphology of the terrace beds, the beaches used to be a combination of what Jennings 

& Shulmeister (2002) referred to as Mixed sand-and-gravel beaches and Composite beaches, with a 

combination of sand and gravel, where gravel is found higher in the beach face and sand is found in 

the shoreface or up to lower foreshore, see figure 12. It can be considered a combination due to the 

high segregation in some beds, however when matrix-supported conglomerates with a relatively high 

sand content are common, this could potentially be seasonal changes, changing the dynamics of the 

beaches. In this case, the higher energy and better-segregated beds would occur during winter and the 

poorly sorted beds occur during the summer periods (Jennings & Shulmeister, 2002; Komar, 2005). 

To offer an interpretation of the terrace back-ends, pinch-outs represent a gentler sea-level change 

and a more concave back-end indicate a more abrupt change in sea-level. 
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Figure 12. Four different types of beaches described by Jennings & Shulmeister (2002), one of particular interest is type 

B. Mixed Sand and Gravel.  
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Figure 13. Diagram placing the marine terrace facies relative to one another, note how MT2.2 vary in location depending 

on which interpretation is used, see Table 1, MT.2.2 (Edited figure by Kirk, 1980). 

 

Silt-fine sand 

Description 

These deposits are the finest grained deposits in the study area. Dominantly silt to very fine sand, 

with a few occasional clasts. The deposit may appear tabular where it is at its thickest, but laterally 

pinches out in lenses and often very localised. Parallel and wavy lamination is frequently present. 

Interpretation 

The deposits have been interpreted as suspension fall-out due to the nature of the sediment (Backert 

et al., 2010). Given the present day coastline, it is likely to have been deposited in a more protected 

environment covered by a cusp. Also, the thickness of the deposit suggests a deeper marine/lake 

environment.  

 

Corals 

Description 

A coral colony (figure 9B) is only found in one locality, a few metres from log 12. Otherwise, it is 

only sediment with individual loose coral tubes. Individual tubes are generally of better quality than 

the coral colony. The carbonate has mostly been replaced and the remnants were not dateable in either 

coral colony or tubes.  
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Interpretation 

There is a temporary break in clastic supply or alternatively no clastic supply reaching this area as it 

is not laterally extensive. The ones found in this particular area were unfortunately not dateable, 

however, the dating of the corals by Armijo et al. (1996) can be used as a correlation since the bed 

has been inferred to be of the same terrace level. This corresponds to the Middle to Late Pleistocene, 

interglacial stage 5e (Armijo et al., 1996). This would further match up with terraces and corals dated 

in Cyprus, where corals dated at the same interglacial stage were found (Siddall et al., 2003; Frébourg 

et al., 2012). 

 

Delta Topset 

Description 

Structures found are highly variable from structureless to trough cross-beddings, occasionally channel 

bodies are present. These deposits are laterally not very extensive or similar, or in other words, they 

change in thickness or feature. Log 3 and Log 4 are very typical topsets where trough cross-bedding 

is not present, but in these cases, the topsets can be traced to clinoforms. Log 12 has a lot of vertical 

burrows, however, the top metres of the topset have a clear channel feature of roughly 6 m across, 

potentially larger but hard to determine under the vegetation and angle of exposure. The facies are 

dominantly conglomerates with a few sandstone beds. There is not much in terms of bioturbation, but 

1 cm thick vertical burrows are present in some sandstone beds. Individual beds vary from 0.05 to 1 

m in thickness and the overall topsets vary from 1 to 5 m in thickness. The strike of beds is that of 

the foresets, but with near horizontal dip (< 5 º) and the dip direction range from north to east, 

northeast being the most prominent dip direction, same as foresets.  

Interpretation 

Log 12 is interpreted as a topset with marine influence hence the bioturbation. The normal-graded 

trough cross-bedding (log 12) suggests unidirectional flow and the observed structure could be the 

result of migration and accretion of bars in a braided distributary channel (Massari and Parea, 1990; 

Breda et al., 2007). The tabular conglomeritic topsets are interpreted as an indication of interaction 

of fluvial and wave processes (Leithold & Bourgeois, 1984), generally referred to as the transition 

zone (Backert et al., 2010).  

 

Delta Foreset 

Description 

There are two main types of clinothems found in the area: sigmoidal and oblique, of which the latter 

is the dominant one, especially in larger clinoforms. In this area, sigmoidal clinoforms are commonly 
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in thinner sets compared to the oblique ones. The exact thickness of the foresets is rarely possible to 

make out as the base and top are rarely both present, but it is in the 10 to nearly 100 m scale and the 

individual beds are 10 to 100 cm thick. Fossils found in this unit are large oyster shells, occasionally 

whole 7 cm shells and other times undistinguishable fragments. Sediments found are generally 

conglomeratic, with a few thin sandier beds. The sandier beds are either sandstone with pebbles or 

silt- to sand-stone. The more intact shells are frequently found in the sandstone beds. The 

conglomerate clinothems are dipping northeast in general, although there is a variety of dip directions 

from north to east. Dip variations range from 7 to 36 º, average being around 15 to 25 º.  

Interpretation 

The majority of the foresets are very small. Of the six deltas analysed (see general vertical succession 

and Hågenvik (2018) for more details), only two are on the 100 m or larger scale. Delta 1, 4, 5 and 6 

are all less than 50 m in thickness. Some foresets show alternating sigmoidal and oblique geometries 

and these likely represent varying stages: sigmoids being deposited when there is more sediment and 

more accommodation space available (sea-level rise) and oblique (sea-level stand-still or fall) 

clinoforms when there is progradation, but not as much accommodation space (Helland-Hansen & 

Martinsen, 1996; Gobo et al., 2015). 

 

Delta Toe-set 

Description 

The base and the top are not visible and individual beds are 10 to 100 cm thick. Beds are alternating 

between finer and coarser beds. Toe-set deposits are very rare throughout the area, but where present 

they were mapped and logged Only one good example of a good toe-set exposure was accessible and 

describable in the Sythas Valley (see photos figure 10G and 10H). There are no fossils or burrows 

found in these beds and the dip is nearly horizontal. Slumping and scour features are relatively 

common.  

Interpretation 

The toe-sets are partially interpreted as toe-sets due to the large-scale clinoforms they are part of, 

which can be seen in cross-section A-A’, where clinoforms descend into toe-sets. Also, they are finer 

grained than the overall foresets or topsets and have a more horizontal bedding. Furthermore, the 

change of flow and the slumping indicate a transitional deposit into toe-set (Postma and Roep, 1985; 

Leszczyński and Nemec, 2014).  
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Surfaces 

Description 

Lag is found throughout the area, either above an angular unconformity, disconformity or even in 

scours-fills. Scour and fill are a bit trickier to recognise in the coarse sediment, but are clearly present 

(see picture for example). Generally, they are quite small (less than 10 cm), but sometimes they are 

large and clearly visible. There is a large angular unconformity between the Rehti-Dendro formation 

and the deltaic deposits or terraces, as well as angular unconformities between foresets and terrace 

deposits. Disconformity is rather rare and only found where both topset and marine terrace are 

present. There are only a few good examples of this, log 6 is one where the sigmoidal clinoforms, 

topsets and marine terraces are visible, albeit log 6 only show the uppermost of the topset and the 

marine terrace as the purpose of this thesis is to analyse the marine terraces.   

Interpretation 

Scour can be a result of various factors, though due to the nature of the beds of interest it is likely to 

be wave erosion in the terrace case. Reworking of sediment may leave a lag deposit behind followed 

by a marine or terrace deposit (Bergman & Walker, 1987). The unconformity between the Rehti-

Dendro formation and the younger deltaic units and terraces is interpreted as a longer period of break 

in deposition, uplift and erosion due to the difference in dip angles as a result of faulting (Armijo et 

al., 1996; Gawthorpe et al., 2017). The disconformity between terraces and topsets is due to shoreface 

retreat and formation of terraces, which are shoreline parallel, nearly the same strike as the average 

topset. Depending on the delta the strike is different but whenever both are present it is nearly 

impossible to distinguish the difference without the clear lag surface or topsets turning sigmoidal 

(Massari and Parea, 1988). 

 

5.2. Geometry of marine terraces 

 

This subchapter presents the final map of revised terraces in the area. The differences from that of 

Armijo et al. (1996) will be discussed in section 6. Given my subdivision of terraces is slightly 

different, they have been given simplified names and their equivalent according to Armijo et al. 

(1996) can be found in table 3. The area is mainly divided into two ridges, Ridge 1 being the northern-

western ridge covered by cross-sections A-A’, B-B’ and C-C’. Ridge 2 is further east and covered by 

cross-sections D-D’, E-E’ and F-F’. 
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5.2.1. Extension of marine terraces 

 

The purpose of this subchapter is to present the revised model of the area, the differences from the 

previous model will be discussed in section 6. Some ‘flat’ areas which have previously been 

considered terrace deposits have shown to be either truncated foresets or topsets after fieldwork in 

the area. Also presented in this subchapter is a table which explains which Armijo et al. (1996) terrace 

is referred to when using the system used to subdivide them for the purpose of this thesis. 

Furthermore, composition and division of marine terraces will be presented as they have slightly 

different compositions and structures.  
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Figure 14. Generated map with key from field data. The Rehti-Dendro Formation has not been marked out, but essentially covers the background area not highlighted in colour.
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Terrace name used in this paper Equivalent terrace used by Armijo et al. 

T1 Nicoletto* 

T2 Laliotis  

T3 Temple  

T4 Old Corinth 

T5 Old Corinth 

T6 Sataika 

T7 New Corinth 

T8 New Corinth 

T9 Melissi 5 

T10 Passio 2 

T11 Passio 2 

T12 Kariotika 2 

T13 Kariotika 1 

Table 3. Table of terraces mapped for the purpose of this paper in comparison with equivalent terrace names used by 

Armijo et al. (1996).  

*T1 has been referred to as the Nicoletto terrace even though Armijo did not map terraces that far inland in this particular 

area. But as Nicoletto is the following terrace in the succession nearer the Corinth Canal, it may be inferred to extend as 

far as to this area mapped.  

 

5.2.2. Terrace composition and features 

 

Not all terraces have individual logs due to poor outcrop quality or inaccessibility, however they were 

defined as terrace deposits either with the aid of telescopes or based on description and geometry of 

the bed as well as a lack of evidence indicating the presence of deltaic beds (T1 to T12 on Ridge 1 

and T1 to T7 on Ridge 2). Attempts for logs were always made, however, in some cases, the outcrop 

was simply too weathered to make out good structures. All 21 logs can be found in the Appendix. 

Laterally, some terraces are grouped together despite having a slight elevation difference (generally 

no more than 6 m elevation difference), e.g. T11 at location of log 6 on Ridge 2. Additionally, on the 

map, when highlighting truncated foresets, it refers to a relatively horizontal surface with a truncation 

of foresets rather than a slope. This could potentially be a period where terrace deposits could have 

occurred but were not preserved or occurred elsewhere.  
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T1: Only small raised outcrops remain of T1 (see log 21). Intraclasts found are dominantly sandy or 

marly. The outcrop of T1 on ridge 1 is more of a grass-covered mound, with a few small exposures 

of terrace deposits.  

 

T2: Very small and poor outcrops, on Ridge 2 there is T2a and T2b, of which T2a is a clear outcrop 

in situ, where the log 21 was made, it also lines up perfectly with T2 on Ridge 1. T2b is composed of 

large loose terrace blocks which may or may not be in situ, but show distinct terrace features such as 

similar to those of log 2 and log 16. Overall, T2b demonstrate a more typical terrace deposit and has 

been grouped as T2 due to the overall slopey-ness of the whole older section. 

 

T3: T3 is also divided up into a and b, similarly to T2. On Ridge 1, T3b is only present as one 

consistent deposit, superposing a delta (cross-section A & C later presented), however, laterally on 

Ridge 2, T3a and T3b are both present. The topmost subsection could potentially be what is referred 

to as Temple 2 by De Gelder et al. (2018). However, due to the two outcrops being either above or 

below the elevation of T3 on Ridge 1, they were grouped together as one terrace. On Ridge 2, the 

lower part of the terrace has two subdivisions, which are at level with the delta and represent a period 

of erosion into Rehti-Dendro Formation, followed by sea-level rise causing erosion of the existing 

terrace (see figure 15 zoomed photo from the terraces from Ridge 2, cross-section E). 

 

 

Figure 15. Image from CloudCompare of T3b, where the older underlying part of the terrace has been eroded away and 

replaced further landward by a newer terrace.  
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T4: This terrace has a lot of lateral variations due to delta build-out on Ridge 1. Terrace exposures 

are thin and small on Ridge 1 (log 19 and 20) as it is dominated by topsets, whilst on Ridge 2 they 

are slightly wider.  

 

T5: Slightly below T4 is T5 (log 18), which is not always present as a terrace deposit, but sometimes 

just a flat surface of truncated foresets. T5 is also a more sloped terrace than say T3 or T4.  

 

T6: It forms a clear and extensive terrace deposit on Ridge 2, however, on Ridge 1 it is very ‘slopey’ 

and lacks good outcrop exposure besides the locality where log 17 was generated. It does not extend 

all the way to Sythas, however, as seen on cross-section A, there is a break in the foresets where T6 

is to be expected and resedimentation of a foreset is present. This terrace could potentially be sub-

divided into two after how De Gelder et al. (2018), who divided it up so that the lower one is Sataika 

1 and the upper part is Sataika 2. Nevertheless, due to the overall sloping nature of the whole bed, it 

was decided that it would remain as one bed instead of two as there is no clear step.  

 

T7: The lateral thickness of T7 varies a lot and is not always present at all, though at log 16, it is one 

of the best terrace exposures in the area. The lack of T7 on Ridge 2 may be due to delta build-out, 

only a small lag at the back-end of the topsets is marked as marine terrace T7 on Ridge 2.   

 

T8: Similarly to T7, a small exposure of T8 can be located on Ridge 2, traced as T8 with contour 

lines. A better outcrop of T8 was logged on Ridge 1 (log 14), log 15 is also from this terrace, although 

not the best outcrop.  

 

T9: This is one of the more interesting terrace deposits as it has a lot of lateral variation depending 

on the presence of deltas. The thickest marine deposit found and logged is log 9, however, log 10 and 

11 allow for a good idea of lateral variety. Log 10 is based on a small heavily weathered outcrop, but 

overall they all have similar patterns. Both log 9 and 11 start with a shoreface facie which gradually 

shallows upwards until beachface, and locality of log 10 remain somewhat in the middle of transition 

between these two logs.   

 

T10: T10 and T11 were previously grouped together but given the clear distinction found between 

them on Ridge 2 and a clear small drop between them found on Ridge 1 they have been split into two 

separate terraces, although the change was likely minor. Laterally T10 is very broken up and only 
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present at the easternmost and westernmost side and anything in between is topset or an extended 

T11.  

 

T11: Subdivided into two smaller terraces on Ridge 2, with minor elevation differences of max 6 m 

difference, often less than 3 m. Likely a smaller sea level fall which is more prominent on ridge 2 

than Ridge 1 due to the underlying material being softer to erode than the delta-build out found on 

Ridge 1, giving a more step-like formation on Ridge 2, whereas it is more ‘slopey’ on Ridge 1. T11 

is also, just like T10, not laterally extensive throughout the area as there is a topset building out on 

the eastern flank of Ridge 1, extending slightly onto Ridge 2. See log 6 for an example of terrace 

superposing a small topset and delta. 

 

T12: Subdivided into two smaller terraces on ridge 2, with minor elevation differences of max 6 m, 

often less than 3 m. This is likely due to a smaller sea level fall. Log 2 is one of the best terrace 

exposures, as well as a very thick and well-preserved terrace (see figure 16). As seen in the figure 

there is what can be interpreted as a small rise in sea-level, given that MT.3 becomes the dominant 

facies with its ripples. Each terrace is different as some coarsen upwards and some fine upwards.  

Other logs were made on Ridge 2, log 7 and 8. Occasionally, a terrace deposit is not present but can 

be laterally inferred over a flat surface where truncated foresets are exposed, see westernmost side of 

Ridge 2 on map. Log 7 and 8 are very similar to the lower part of log 2, potentially the upper part of 

log 2 was not preserved in localities of log 7 and 8.  
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Figure 16. Typical marine terrace log with many alternating (often thin) beds with varying structures.  

 

T13: Youngest terrace mapped in the area and also most laterally extensive, without breaks of topsets 

or foresets. Log 1 was made where the best exposure was present and as previously mentioned this is 

one case where DT.3 is considered a marine facie with deltaic influence, likely a small distributary 

channel influencing the shoreline (see figure 4 and 10C, as well as Appendix for log).   
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5.2.3. Cross-sections 

 

A total of six cross-sections were made, three on Ridge 1 (A-A’, B-B’ and C-C’) and three on Ridge 

2 (D-D’, E-E’ and F-F’). The B and E cross-sections are of the older terraces without delta build-outs 

and the A, C, D and F cross-sections are of either side of both ridges. It was easier to split it into 6 to 

get better details as the terrace deposits are thin. This is why each cross-section has an additional 

cross-section with a vertical exaggeration of 3x. 
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Figure 17. Map of cross-sections followed by cross-sections alphabetic order (A to F), also follows the order from west to east, with exception for the older terraces.
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5.3. Sequence stratigraphy 

  

This subchapter presents the interpretations of data presented in subsection 5.2.3 in forms of a sea-

level trajectory and a general vertical succession. Each cross-section (figure 17) has a trajectory and 

each trajectory has highlighted points. Each point is firstly named based on the terrace they are 

associated with and then followed by subsequent points explaining sea-level variations. In a few cases 

there is an alternative explanation given for the terrace formation, marked by a dashed line and this 

dashed line is a cumulative interpretation of all trajectories rather than a separate analysis of each 

trajectory. Lateral variations are common due to the local variations, such as small delta build-outs. 

 

5.3.1. Trajectory 

 

The following subsection presents all the trajectories, then goes through each terrace level and their 

corresponding points. 
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Figure 18. Trajectories of cross-sections in alphabetic order A to F. Profiles are the same as cross-sections, see map in figure 17 for details.
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T1: The point T1.1 found on both ridges represent the formation of the oldest terrace, T1. This is 

followed by sea-level fall either due to uplift and/or eustatic sea-level change. 

 

T2: Point T2a.1 represent the back-end of T2 deposits and this is followed by a further drop in sea-

level until T2b.1. 

 

T3: T3a.1 is only present in Ridge 2, followed by a sea-level fall. On Ridge 1, T3b.1 is represented 

by progradation and aggradation of sigmoidal clinoforms until point T3b.2 where there is a small 

transgression creating the back-end of T3b, T3b.3. On Ridge 2, due to the lack of delta build-out, 

there is a small terrace forming prior to that of T3b.3, likely during the phase of T3b.1 until T3b.2. 

See figure 15 for details of T3b.  

 

T4: On Ridge 1, T4 is dominated by gently sloping topsets up until point T4.1, which represents the 

back-end of a small pinch-out marine terrace deposit. On Ridge 2, T4 is superposing the Rehti-Dendro 

Formation.  

 

T5: The point T5.1 represent the back-end of the terrace and is present on Ridge 1 as either a marine 

deposit superposing foresets or present as truncated foresets. On Ridge 2 it is present as a marine 

terrace overlying the Rehti-Dendro Formation.  

 

T6: Sea-level fall to point 6.1 represent the first phase of the terrace formation, either generating a 

marine terrace deposit, a topset or a break in an existing foreset (Figure 19 and 20). This is further 

followed by another sea-level drop continuing the marine terrace formation, or in other cases creating 

the back-end for T6 marine terrace, depending on locality in the area. The SF facies found in two 

areas (see map) could potentially have been deposited during this interval as it is older than T7, and 

most likely deposited in either protected shallow or deep marine/lake environment given the grain 

size and features present. 
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Figure 19. Figure from across Sythas Valley looking to the east, the white box is zoomed in in figure 20 and the yellow 

box is zoomed in in figure 23.  

 

 

Figure 20. White box from Figure 19 zoomed in to show the foresets which are cut and eroded. The break is laterally 

continuous with T6. Figure 18A, point T6.1. 

 

T7: Point T7.1 represent a drop in sea-level, with a gentle basinward sloping build-out of topset 

deposits until point 7.2. This is followed by a progradation and aggradation of delta build-out until it 

reaches its peak at T7.3, which is then followed by a transgression and formation of a marine terrace 

T7.4. See Figure 21 for details of delta overlying the silt-fine sand facie.   
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Figure 21. Image from CloudCompare of delta beneath T7 on Ridge 2. white arrow beneath the lowest back line indicate 

the boundary between the Rehti-Dendro Formation.  

 

T8: Point T8.1 indicate the back-end of T8 after a small sea-level drop from T7. On the western-most 

part of the area, the back-end of T8 appear intertwined with the front of T7. T8 only being a short 

sea-level drop from T7 creating a small concave back-end. See figure 22 for details of features.  

 

 

Figure 22. Boundary between T7 (red deposit to the right) and T8 (thin red deposit to the left) where the thin silt-fine 

sand facie is present. the surface appears reworked or oddly laminated before the deposition of T8. Figure 18A, point 

T8.1. 

 

T9: T9.1 indicate a sea-level drop without much impact on the overall sedimentary deposition of the 

area, except one clear downlap (Figure 23) created at cross-section D. This is followed by point T9.2, 

which represent the back-end of T9 and laterally vary a lot in terms of what unit it is overlying. In the 

far east it is superposing silt-fine sand, in the centre where present foresets are found below and in 
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the far west a combination of both, thin silt-fine sand at the back-end and below the overall bed are 

delta foresets. The extent of the silt-fine sand to this level from T7.1 suggests that there is a large sea-

level drop to first deposit the silt-fine sand, followed by a sea-level rise. The silt-fine sand deposit 

itself is most likely a more localised deposit and not a laterally continuous deposit like the marine 

terraces.  

 

 

Figure 23. Downlap onto a sigmoidal clinoform, figure 18D, point T9.1. 

 

T10: Point T10.1 represent the back-end of T10, a fairly steep sea-level drop from previous terraces.  

 

T11: A small sea-level drop followed T10.1 to point T11.1, which indicate the back-end of T11. 

Laterally the marine terrace is replaced by a topset.  

 

T12: Point T12.1 represent the back-end of the T12, which is a thin, laterally discontinuous marine 

terrace.  

 

T13: Point T13.1 indicate the back-end of the youngest studied marine terrace T13. 

 

T?: Represent sea-level fall to a lower level which has not been studied. 
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5.3.2. General vertical succession 

 

With the aid of the cross-sections a general vertical succession was generated in order to place the 

terraces and deltas in order of relative age to one another. For a lot of terraces there is a lack of time 

constraints as they superpose the Rehti-Dendro Formation and do not interact with other terrace 

deposits laterally. In these cases, the generally accepted idea of constant uplift and regression is 

applied.  
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Figure 24. A general vertical succession of the formations in the study area. the dashed lines represent the terrace extent 

as laterally some marine terraces are found above deltas as well as laterally continuous and other times, they are only 

present on one ridge (commonly Ridge 2 as it has not nearly as many deltas or as big deltas as Ridge 1). For example, 

T3 has arguably 3 terrace parts on Ridge 2, whilst on Ridge only one is present due to the underlying delta.  
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The general vertical succession generated is not vertically accurate, e.g. Delta 2 is the largest one in 

the area and Delta 1 is closer to one tenth in size (figure 24). The reasoning for the scaling used is as 

the focus is on the marine terrace deposits and the exact ages between each deposit is not currently 

known and therefore they are evenly spaced as of now. T1, being the oldest formation is at the base 

and the succession is younging upwards. Given that the most recent sediments are greatly impacted 

by uplift and forced regression, without evidence of transgressions (e.g. within T3 on Ridge 2), they 

are presumed to be downstepping. It is completely possible that e.g. T13 is older than T12 as they 

never overlap or interact in any way, making it impossible to determine relative age. The relative time 

of deposition for the silt-fine sandstone found on both ridges, which due to being deposited on the 

same elevation is considered the same deposit, just not a laterally continuous one. Therefore, the SF 

deposits is considered to be younger than delta 2, even though on Ridge 2, the thickness gives the 

impression of a deep marine/lake environment. It is older than T7, potentially younger than T6 or 

deposited at a similar time as T6.1 was deposited, when there is an overall reworking of sediments 

across the area. These localised areas of protected water, potentially by a cusp (look at present-day 

shoreline and how similar it is to the terrace morphology, can be assumed to have been similar in the 

past). 

 

6. Discussion 
 

This chapter will discuss the data presented and analysed in chapter 5 and compare it with previous 

research and models. The first subsection will present correlations of logs in various localities of the 

area to discuss the lateral continuity as well as variations in a response to one of the key aims of the 

thesis - to determine the sedimentology of the marine terraces. This knowledge may be vital for 

anyone working offshore when having identified terraces in a seismic section. Secondly, a 

comparison will be made between the division of terraces used in this thesis and the division made 

by Armijo et al. (1996), whose interpretation is still widely used as a base when interpreting terrace 

levels (e.g. De Gelder et al., 2018). As previously mentioned, and continuously stressed, it should be 

highlighted that the paper by Armijo et al. (1996) focused on large-scale aerial mapping, not localised 

field mapping and the sedimentological division of units into marine and fluvial deposits. The section 

will mainly focus on the additional detail field mapping found and provide insight to how the 

sedimentology and the local detail may prove beneficial to the overall interpretation of the sea-level 

variations through time. This is done by discussing the revised sea-level trajectory, previously only 

considered to be uplift and regression/forced regression to now also include periods of transgression. 
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Lastly, the marine terraces will be used in an attempted correlation with an interglacial sea-level curve 

of the past 800 Ma (by Spratt & Lisiecki, 2016) in order to tie the marine terrace formation to 

highstands. The elevation at present time can then be used in order to determine uplift rates and 

variation through time. 

 

6.1. Sedimentology of terraces and lateral variations 

 

In general, wave-worked gravels tend to be more laterally continuous than fluvial, which are more 

lenticular than sheet-like (Clifton, 1973; Leithold & Bourgeois, 1984; Massari & Parea, 1988; Hart 

& Plint, 1989). Logs of the same marine terrace were taken at different locations to compare with 

logs taken from the same topset. The correlations between logs and the comparison of the two 

correlations will determine if the case of lateral continuity within marine terrace levels is accurate in 

this area of active faulting and uplift. It is important to remember that the delta build-outs may cause 

lateral interference with longshore drift, distributary channels as well as breaks in terraces. A 

correlation is attempted between logs of T12 (logs 2, 7 and 8) as they represent clear distinct beach-

shoreline features. The variations and similarities will be compared to those of a different kind of 

terrace, a depositional one of T11 (log 3 and log 4). The purpose of this is to examine the differences 

as the sedimentology and environment of the deposit may greatly affect its properties when thinking 

from an economic stand-point in the hydrocarbon industry or even water reservoirs.  

 

6.1.1. Correlations 

 

Logs used for correlation from left to right: Log 7, Log 8, Log 2 (marine terrace), Log 3 and Log 4 

(topset). 
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Figure 25. Correlation of logs, marine terrace logs to the left and to the rift delta topset logs. Note the difference in distance between logs, the deltas present in the area were 

small, therefore the short distance between topset logs. 
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Despite the distance between the logs (log 7 and 8 being from the same terrace area and not far apart 

unlike log 2), there are a few striking similarities such as the facies and thickness, given the 2.8 km 

distance between the outcrops. Log 2 has a better-preserved outcrop with a large, fresh surface to 

work from and, therefore, it may be more precise than log 7 and 8. The uppermost part of log 2 is 

missing in log 8 as well as log 7, this could either be due to erosion or a lack of preservation or 

alternatively, it never extended this far east. All three logs are expressing the similar facies as well as 

dominantly clast-supported or open framework conglomerates. Clast-size is slightly coarser in the 

west and this may be due to it being closer to a delta or clast source. As seen in figure 1 the shoreline 

in present day is very long and wave-dominated and all deltas are of very a small scale and have little 

influence on the shoreline, the present shoreline is a very good analogue for the past shoreline in this 

area.  

As for the depositional terraces, even at a short distance the depositional terrace differs greatly, one 

expressing a lot of internal structural variations such as wavy laminations and inclined bedding, and 

the other appears generally structureless or the features are too indistinct. What they both share, 

however, is the presence of intraclasts.  

The bounding surfaces below the marine terraces are frequently transgressive ravinement surfaces 

based on the lag and presence of intraclasts. However, this is not always the case, in some cases it 

would appear uplift is enough to create a sequence boundary and sub-aerial erosion morphologically 

changes the surface, e.g. a pinch out terrace like 6.1. Overall if one were to look at the shore from the 

rift centre, the marine terraces would have a straight bounding surface, unlike those of fluvial origin 

which would prove more difficult to traces. Additionally, some may even have a more incised outline, 

although the deltas in the area are generally small and the only large deltas follow a palaeovalley. 

There are a few isolated cases of incisions on Ridge 1, T6 in the Rehti-Dendro Formation which have 

been filled in by conglomerates of unknown origin. These are likely fluvial given the extent of small 

delta build-outs on Ridge 1 at this age. Beneath the terraces of fluvial origin, the foresets are 

commonly eroded by more recent topsets, unless the topset can be followed down to a clinothem in 

which case they are connected, and this is possible for some of the smaller deltas.  

 

6.1.2. Significance for other studies 

 

This knowledge can be implemented in other areas which have experienced similar rifting and likely 

formed terraces, e.g. in the North Sea and the Gulf of Suez (Ravnås & Steel, 1998; Gawthorpe & 

Leeder, 2000). The marine terraces show a lateral continuity unlike that of the topsets and this may 

be most beneficial when applied to resource geology. One issue which arises if implemented to 
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subsurface geology is the thinness of the beds, they would be difficult to distinguish on seismics. The 

difference in permeability and porosity is unlikely high enough if superposing a topset, although if 

superposing a foreset or similar formation to the Rehti-Dendro Formation, the boundary may be 

noticeable, as a change in acoustic impedance creating a surface. This surface may provide useful as 

a sequence boundary or other bounding surface, depending on surrounding beds and the nature of the 

surface, creating an understanding of the sequence stratigraphy in the subsurface.  

 

6.2. Revised terraces, a comparison between small-scale mapping and large-scale mapping 

and the impact it has on sea-level trajectory 

 

This study was done on a small scale and with a hands-on approach with traditional field mapping 

techniques as well as some modern drone footage from one rift edge. Previous mapping of the area 

has all been done as a part of a large-scale project with little to no outcrop studies, and so the 

sedimentology of the beds has been neglected until now. This part will focus on how the different 

scale mapping impacts the interpretation of the sea-level trajectories as well as the extent of terrace 

deposits.  

 

6.2.1. Comparison of terraces 
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Figure 26a. Map of study area by Armijo et al. (1996). 

 

Figure 26b. Map generated for this paper repeated for ease of comparison, previously shown in larger scale in figure 14. 
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As seen in figure 26a and 26b, there are a lot of similarities, once depositional terraces and erosional 

terraces are both considered. The older terraces, T3 to T5 in this case, are similar in the map by Armijo 

et al. (1996) and the one generated by field data from this study. T1 is not included in the area studied 

by Armijo et al. (1996) and T2 is considered to be significantly smaller as the slope is rather steep 

and only a few outcrops were observed and mapped. Most variations lie within the deposits, whether 

they are marine terraces, topsets or truncated foresets. T3 appears the same and some variations to T4 

and T5 (equivalent to the Old Corinth by Armijo et al., 1996). Amongst the younger terraces, the 

main differences are found in T6 and T7 and their lateral continuity. Armijo et al. (1996) extends T6 

all the way to the east, but as shown in chapter 5 with cross-section A and figure 20, no terrace deposit 

is present, neither topset or marine terrace. Therefore, in the version presented in this paper, the extent 

of T6 ends where last seen, in the middle of Ridge 1 in a mini-valley. T7, which is equivalent to the 

New Corinth (Armijo et al., 1996), has been split up into sub terraces and also the size and extent has 

been reduced due to the lack of evidence of terrace deposits or extent. Terraces T8 to T13 do have a 

similar terrace extent, with main variations being sedimentological, which Armijo et al. (1996) did 

not map. The main issue created by these sedimentological differences occur when one attempts to 

create a sea-level trajectory or determine age of terraces as the sedimentological variations are 

important for the sequence stratigraphy, consequently impact the timing and age of deposition. 

 

6.2.2. Impact on previous work 

 

The main previous work for this area is that of Armijo et al. (1996) which does remain fairly accurate 

geomorphologically, with some adjustments. Albeit after close study of the sedimentology and 

sequence stratigraphy it became clear that transgression does occur and some terraces were generated 

by transgression, e.g. T3 and T7. Terraces mapped by De Gelder et al. (2018) provide a slightly better 

fit and an interesting take as it includes subdivisions of T6 (Sataika) and T3 (Temple), however, this 

research did not include the sedimentology or the sequence stratigraphy and focused on high 

resolution imagery and data, similarly to Armijo et al. (1996). In conclusion regarding the impact this 

study has on previous work, the previous theory regarding a constant uplift and a constant downstep 

does not work as evidence shown in the cross-sections, the trajectories and images indicate the 

presence of transgressive periods forming terraces and even cannibalising them before generating a 

new one.  
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6.3. Uplift and implications on sea-level curve 

 

In this subsection, uplift rates are compared to terrace levels in order to determine the best fit uplift 

rate. This is done assuming a constant rate of uplift and the sea-level curve used is that of Spratt and 

Lisiecki (2016). Previous research in the area by Armijo et al. (1996) suggests that only uplift and 

regression take place in the area and does not include events of transgression which have been found 

to have taken place, see section 5.3 and 6.2. The regional sea-level fall is moderated due to the Rion 

Sill, which is a structural high. Implications of this mean the present-day elevation is –70 m to –60 m 

below sea level (Perissoratis et al., 1993; McNeill & Collier, 2004). Given the range of uplift in the 

area has been previously estimated to be between 1.3 to 1.6 mm/year (Armijo et al., 1996), each 

profile will be analysed using two separate uplift interpretations, one being 1.3, and one being 1.6 in 

order to see which is the best fit, or alternatively neither is a great fit and the uplift may be something 

in-between, see figure 26. As the New Corinth has been positively dated in the Corinth Canal, and 

that particular bed corresponds to T7 used in this paper (Armijo et al., 1996), that bed will be used as 

a correlative surface when calculating the uplift for the diagrams. Alternatively, Temple could also 

be used, however, the age of Temple (T3 in this paper) has been disputed from being referred to MIS 

11 (Armijo et al., 1996) to potentially corresponding to MIS 9e, leaving Laliotis (T2) to form during 

MIS 11 (De Gelder et al., 2018), who also consider the Old Corinth to be part of MIS 7e due to U/Th 

coral dating (Collier et al., 1992; Dia et al., 1997; Leeder et al., 2005). Figure 28 provides a sea-level 

curve with the corresponding MIS which is sued for interpretation as well as a comparative sea-level 

curve. 

 

6.3.1. Uplift models 
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Figure 27. All four complete profiles with two uplift rates. The upper diagrams are always of a higher uplift rate (1.6 mm/year) and the lower is of an uplift rate of 1.3 mm/year. 
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Figure 28. Eustatic sea-level curve with MIS marked out by Railbacks (2015). 
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Firstly, it should be noted that terraces in profile A&B are at a slightly higher elevation than their 

lateral counterparts. As to why this is the case is unknown, potentially due to the closeness of the 

Xylokastro fault. When comparing terrace levels to the uplift rate of 1.6 mm/year, of the older terraces 

T1 is a close fit from the profile A&B and B&C. T2 does not fit with any highstand and T3 sometimes 

appear to fit with MIS 7e. As for T4 and T5, either could fit with MIS 7a with a higher uplift rate. 

The terrace T6 never appear to have a good fit, which could explain the sloping nature of it on Ridge 

1 where present, and lack thereof where not. However, there is a large deposit of it on Ridge 2, so 

this may indicate a terrace formation without a transgression. At a higher rate, T7 rarely appears to 

match up with MIS 5e even though it has been interpreted to by others e.g. Armijo et al. (1996). The 

only locality where it is remotely close is in the profile E&F. T10 may have formed during MIS 5c 

and T13 could correlate to a lower highstand during MIS 5a. These are all potential correlations if the 

uplift rate is as high as 1.6 mm/year and remains the same throughout. T4 correlate to MIS 7e 

throughout the area and there is a struggle to find a good correlation for T5, which may be due to it 

being formed by uplift rather than transgression. The following terrace, T6 seem to be either a good 

fit with MIS 7a or 7c depending on where it is observed, potentially both as in cross-section F, it is 

clear that there are two events to this terrace so potentially it was created during two highstands, the 

thinner upper part during 7c, followed by the main body during 7a. T7 fits exactly on the correlation 

for MIS 5e in profile B&C, however, laterally it does not fit nearly as well. T11 and T13 may 

correspond to MIS 5c and 5a respectively. Other terraces not mentioned did not show a great fit and 

may have been formed by uplift alone and not a highstand. 

Alternatively, if a lower uplift rate is considered, 1.3 mm/year, T1 is almost a perfect fit with MIS 

11c, T2 and T3 may then be formed dominantly by uplift, and potentially the increase in sea-level at 

MIS 9c created the erosion of T3b and the small in-terrace transgression (figure 15). 

Overall as seen in figures above and described, uplift models with an uplift rate of 1.3 mm/year 

generally provide a closer fit, although given T7 is the terrace tied to dated corals and it is rarely a 

perfect fit, something like 1.4-1.5 mm/year might give a better fit, when considering a constant rate 

of uplift. Alternatively, one could consider variable rates throughout the time of uplift, but that would 

be very difficult to determine given the terraces do not provide an exact age, only an indication where 

the sea-level has been at some point in time.  
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6.3.2. Implications of this study 

 

Uplift rates have been closely studied further to the west by McNeill & Collier (2004) and by the 

Corinth Canal in the east by Leeder et al. (2003), and the most recent study of uplift rates in the 

Xylokastro area was done by Armijo et al. (1996), which was a very broad study covering a large 

area. With the detailed mapping of terraces and the sequence stratigraphical data taken into account 

when comparing terraces to uplift rates, it becomes clear that either (a) they are formed by different 

events, some uplift and some during a highstand, and/or (b) the uplift rate varies laterally even within 

such a small area or alternatively the uplift rate is slightly higher than 1.3 mm/year. These are the 

conclusions when considering a constant uplift rate as there are no current constraints usable to 

determine a non-linear uplift rate. Most likely it is a combination of (a) and (b), where there are 

different types of terraces (uplift-derived and transgressive terraces) as well as a different or multiple 

different uplift rates. Given the higher altitude of the terraces by the Sythas Valley near Xylokastro, 

it can also be assumed that the closeness to the fault impacts this as it has been shown to do in other 

parts of the Corinth Rift (e.g. Armijo et al., 1996; McNeill & Collier, 2004). 

 

7. Conclusion 
 

With the aid of traditional mapping methods as well as drone photometry, the sedimentology and the 

sequence stratigraphy of the area has been described and interpreted. With the aid of the cross-sections 

and the trajectory built from them, a general vertical succession was generated, and this knowledge 

was used when fulfilling the aims by linking current marine terrace levels with constant uplift rates 

in order to find a best-fit age constraint.  

• A differentiation was made between terraces of depositional (topsets) and erosional (marine) 

origin, a map was made accordingly. 

• At least 13 marine terraces were mapped and described sedimentologically, many of them 

logged in detail and a few were logged laterally in order for a correlation to be made to 

determine the lateral continuity of marine terraces, which was shown to be very high 

compared to terraces of fluvial origin. 

• The marine terraces are predominantly of beachface facies, with some shoreface deposits 

present in a few marine terraces. 

• Trajectories made indicated transgressive events within terraces have occurred, where the 

original terrace was cannibalised and then re-deposited at a slightly higher elevation. 
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Transgression between terraces is a possibility, but no clear evidence of such events was 

found. 

• Armijos method does not work as it does not take into account small-scale sea-level changes 

and may overlook transgressive events.  In a broad spectrum, yes, the large-scale mapping 

Armijo et al. (1996) generated works, however, it is not entirely accurate as it overlooks 

sedimentological variations as well as sequence stratigraphic variations and thusly can leave 

a large margin for error when implicating this model for e.g. the subsurface.  

• Correlations between marine terrace elevations with uplift rates have suggested that not all 

terraces are generated by highstands, in some cases uplift appears to be enough. Correlations 

further indicate that an uplift rate of 1.3 mm/year or slightly higher may be appropriate in this 

area as 1.6 mm/year did not provide the best fit, however, this is when assuming a constant 

uplift rate. 

It would be very interesting if this area was continuously studied, especially the silt-fine sand 

sediment which appears to be localised in a few areas.  The deposits were not of direct relevance for 

the marine terraces and were therefore not extensively studied, although from a sequence stratigraphic 

viewpoint they are most interesting. Furthermore, a study following the terraces laterally, whether the 

depositional terraces or the marine terraces dominate and what impact they would have on a reservoir 

would be intriguing as well as beneficial from an economic stand-point.  Another potential study 

would be to investigate if there is a way to determine if a terrace is formed by uplift or by 

transgression.  
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