
Paper VI: Secure Networked

J2ME Applications: Problems

and Challenges



Secure Networked J2ME Applications:

Problems and Challenges

André N. Klingsheim, Vebjørn Moen, and Kjell J. Hole

Abstract

An increasing number of smartphones support the Java 2, Micro Edi-
tion (J2ME) platform. The authors discuss problems and challenges of
writing secure client-server applications for these phones. In particular,
they explore the security of the current J2ME platform, and examine the
new Security and Trust Services API for J2ME.

1 Introduction

A smartphone is a high-end mobile phone featuring a large color display and
more processing power than regular mobile phones. A key feature is the ability
to install additional applications. The smartphone market is growing fast [1].
The increasing availability of smartphones stimulates the market for rich content
such as games, news, media (audio/video), and adult content. Games for mobile
phones have been around for several years, but lately we've seen a rapid growth
also in this market. Total global revenues in the mobile gaming market were
around 2.6 billion USD in 2005, and is estimated to increase to 11.2 billion USD
by 2010. It is also anticipated that 20.5% of the global revenues in 2010 are
generated by online multi-player games [2].

Many di�erent development platforms exist for smartphones, categorized by
phone manufacturers, mobile operating systems and device capabilities. The
most widespread platform is Java 2, Micro Edition (J2ME, see java.sun.com/
j2me), available on nearly 80% of the smartphones currently on the market.

In this article, the authors discuss experiences gained during a commercial
J2ME development project. They discuss how J2ME technologies are imple-
mented on real devices and provide insights into the problems and challenges
that occurred during the development process. Current and future J2ME se-
curity related functionality is outlined. The reader should be able to make
educated decisions on how to develop secure J2ME applications after reading
this paper.

The rest of the article is organized as follows. Section 2 gives an overview
of the J2ME technologies, Section 3 discusses some of the problems and chal-
lenges on the mobile platform, and Section 4 outlines the current J2ME secu-
rity toolbox. Section 5 discusses how a malicious J2ME client can attack the
server, Section 6 gives an overview of the new Security And Trust Services API
(SATSA), and Section 7 concludes the paper.

97



Pro�le
Con�guration

Host Operating System

Figure 1: J2ME Architecture

2 J2ME technologies

The Java platform has several editions, the reader may be familiar with Java
2, Enterprise Edition (J2EE) for the server side and Java 2, Standard Edi-
tion (J2SE) for desktop systems. J2ME is a highly optimized Java runtime
environment aimed at mobile phones, Personal Digital Assistants (PDAs), and
other small devices. J2ME introduces con�gurations and pro�les, see Figure
1. Con�gurations are intended for devices with similar characteristics in terms
of processors and memory. Pro�les, on the other hand, target devices that are
similar in terms of screen type, input devices and network connectivity, and
complement the low-level functionality of con�gurations by adding support for
e.g. user interface and network connectivity.

A con�guration speci�es the Java Virtual Machine (JVM) features sup-
ported, the included Java programming language features, and supported Java
libraries and Application Programming Interfaces (APIs). Two con�gurations
are widely available on J2ME enabled devices, Connected Limited Device Con-
�guration (CLDC) versions 1.0 and 1.1. Version 1.1 is deployed in newly released
J2ME devices, while version 1.0 has been around for years. The most notable
di�erence between the two is that CLDC 1.1 adds support for �oating point op-
erations. Since CLDC 1.1 is a superset of CLDC 1.0, Java applications built for
CLDC 1.0 will run without problems on CLDC 1.1. Unless any of the additions
in version 1.1 is strictly needed it is therefore recommended that developers
build their applications for CLDC 1.0 to be compatible with as many devices
as possible.

Two pro�les exist that extend the functionality of CLDC, namely Mobile
Information Device Pro�le (MIDP) versions 1.0 and 2.0 [3]. The MIDP pro-
�les add APIs for user interface, network connectivity and persistent storage.
Network connectivity is provided through HTTP connections, and persistent
storage is provided through a record management system. MIDP 2.0 is a super-
set of MIDP 1.0, and includes support for secure HTTP (HTTPS) connections
and more powerful graphics APIs for gaming.

New J2EE/J2SE/J2ME components are developed through the Java Com-
munity Process (JCP) program. Java technology speci�cations are created by
�rst submitting a Java Speci�cation Request (JSR) that must be accepted by an
executive committee. Once a JSR is accepted, an expert group is formed to take
responsibility for the speci�cation development. The speci�cation draft must
�rst pass a community review, and then a public review. Finally, a proposed
�nal draft is presented, and a �nal approval ballot decides if the speci�cation is
suitable for a �nal release.

An expert group typically consists of many parties. As an example, the
MIDP 2.0 expert group included, amongst others, Ericsson Inc., Motorola,
Nokia, Siemens, Sun Microsystems Inc., Samsung, and Symbian Ltd. The for-
mation of an expert group enables large industrial parties to collaborate in order

98 Paper VI: Secure Networked J2ME Applications: Problems and Challenges



to specify new functionality for the Java platform. Hence, competition between
di�erent vendor speci�cations is minimized, increasing the likelihood of wide
adoption of a speci�cation. All CLDC versions and MIDP versions are results
of JSRs, as well as several other J2ME components such as SATSA (JSR-177),
the Wireless Messaging API (JSR-120), and the Java APIs for Bluetooth Wire-
less Technology (JSR-82). All speci�cations are freely available at the JCP
website (www.jcp.org).

3 Current problems and challenges

J2ME developers face several problems and challenges. Our experience with
J2ME enabled smartphones is that the implementations generally have some
quality issues. Developers are likely to spend time solving problems that occur
because of the varying quality of the J2ME implementations. Speci�c phone
models can have their own bugs, forcing developers to maintain several paral-
lel versions of their source code to support as many devices as possible. This
situation is not consistent with the Java philosophy of �Write Once, Run Any-
where,� and severely increases the complexity of mobile software development
and maintenance. In our experience, MIDP 2.0 implementations have less bugs
than MIDP 1.0 implementations. However, to cover as much of the market as
possible developers have to consider all the existing MIDP 1.0 devices already
out there. MIDP 2.0 devices still constitute a minority of all J2ME devices sold
in recent years.

3.1 Insu�cient testing

Many developers fail to recognize that J2ME devices can behave inconsistently.
It is of utmost importance that J2ME applications are tested on many di�erent
devices. We have seen some businesses base their testing on 4�5 devices, only
to be really surprised when their application does not run correctly on other
devices. In our opinion, too many businesses neglect the testing face, and let
their customers do the beta testing. To survive with such a strategy, you need a
pretty unique application and your customers have to be both enthusiastic and
understanding.

In order to get a real understanding of how J2ME phones operate, several
devices from each major vendor must be tested and each version of a vendor's
development platform must be represented in the set of test devices. Of course,
testing 40�50 (or even more) devices will cost you. Businesses therefore need
to carefully consider how much resources to spend on testing, versus the risk
involved in releasing an application to customers with devices that have not
been tested.

3.2 Permanent bugs

On the desktop, we're used to download patches from Microsoft Windows Up-
date or similar systems, to solve security issues and �x bugs in our software.
How is bug �xing handled on mobile phones? The short answer is that it's not.
Mobile phone vendors release new software versions for their mobile phones, but
these do not reach consumers that have already bought phones. The majority

3 Current problems and challenges 99



of mobile phones must be handed in to a repair shop to perform a software
upgrade. Only hardcore mobile phone geeks actually do this, hence the bugs
you get when buying a mobile phone usually stay there for the phone's lifetime.
However, if you buy the same phone a year later, you will probably get a newer
software version. As mobile phone viruses have started to appear, we really see
the need for a solution to the patching problem that enables consumers to up-
grade the phone software themselves, similarly to what they hopefully do with
their desktop computers.

3.3 Resource management

The mobile platform di�ers from regular desktop computers, by having limited
amounts of memory, processing power, network bandwidth, and disk space avail-
able to application developers. Though smartphones have more resources than
regular mobile phones, they should still be considered a resource constrained
platform compared to the desktop. In addition to the traditional functionality
focus, mobile developers must consider e�ective resource utilization to make
user-friendly mobile applications.

Defensive programming is the key to create a well functioning application.
For example, available runtime memory and the amount of storage memory
on the device can be queried during program execution. The developer should
always make sure that there is enough memory to carry out the operations of
the program. If the device runs out of memory it will show an error message and
terminate the application, giving the user the impression that an error occurred,
while the real problem was that the application did not adapt to the amount of
available resources.

3.4 Responsive applications

Applications must be responsive to provide a positive user experience. To
achieve this goal, intimate knowledge of the inner workings of J2ME devices
is very helpful, since di�erent devices behave in di�erent ways. One example is
if the developer actively triggers a garbage collection to reclaim memory from
unused objects. The garbage collector should then run in the background, with
minor impact on the application. However, some devices will �freeze� for a few
seconds while memory is collected, which is probably not what the developer
wanted or expected.

Multi-threading is important when developing applications for mobile phones.
A program's execution �ow is event-driven, so the main thread must be idle and
ready to handle events. Time consuming operations such as lengthy calculations
or network communication should therefore take place in a separate thread to
retain a responsive user interface. This should be familiar for developers with
experience from developing graphical User Interface (UI) applications on the
desktop, as the same considerations of UI- versus non-UI threads apply.

4 MIDP 2.0 security framework

MIDP 2.0 includes several mechanisms to secure an application and provide
secure communication channels. This section gives an overview of these mech-

100 Paper VI: Secure Networked J2ME Applications: Problems and Challenges



anisms, and explain why some of them have weaknesses.
Applications can be signed in order to obtain authenticity and integrity. Se-

cure communication channels are realized by HTTPS connections, which in most
cases rely on SSL (Secure Sockets Layer) or TLS (Transport Layer Security). In
addition, MIDP 2.0 ensures that an application is not able to read other J2ME
applications' persistent data unless it is explicitly allowed. However, since en-
crypted storage is not provided, hardware attacks exist to read application data.
Even easier, on some devices you can install a �le system explorer, locate the
�les used by J2ME, and use Bluetooth to send them to another device. It's
clear that you cannot trust the storage system in J2ME with sensitive data.

Developers will probably have high hopes after reading the MIDP 2.0 spec-
i�cation, but sometimes things look better than they are. As we shall see,
by studying the details of MIDP 2.0 one realizes that some critical security
functionality is actually optional to implement on J2ME enabled devices, or
can be based on insecure mechanisms. Also, once testing has commenced on
real devices, developers will be disappointed to realize that mandatory security
functionality is not implemented correctly on some mobile phones.

4.1 Application signing

Application signing based on an X.509 Public-Key Infrastructure (PKI) [4] is an
optional part of the MIDP 2.0 speci�cation and enables the device to verify the
origin and integrity of J2ME application. Application signing is a good idea,
but what should developers do when several mobile phones lack support for
signed applications? Such a situation is highly unsatisfactory for m-commerce,
or mobile governmental services since parts of your security architecture crumble
if your application is installed on certain devices.

We tested two newly released Samsung smartphones during our project and
both of them refused to install signed J2ME applications. The J2ME appli-
cations were signed with a code-signing certi�cate obtained from Verisign Inc.
The Nokia devices we tested validated the certi�cate and applications without
problems. This illustrates that to support all devices, both signed and unsigned
versions of applications must be published to customers, e�ectively making the
�signed application� feature of the security architecture optional. Since the val-
idation of signed applications depends on a pre-installed list of root certi�cates
(belonging to Certi�cate Authorities) other issues surface, which we'll discuss
later.

4.2 Secure communication

Secure connections in MIDP 2.0 must be implemented by one or more of the
following speci�cations:

• HTTP over TLS (RFC 2818) with TLS Protocol version 1.0 (RFC 2246)

• SSL version 3.0 [5]

• WTLS (Wireless Transport Layer Security) [6]

• WAP (Wireless Application Protocol) TLS Pro�le and Tunneling Speci�-
cation [7]

4.1 Application signing 101



Note that a developer cannot know which speci�cations are implemented on a
speci�c device, without actually testing it. In the case where WTLS is used, end-
to-end encryption is not provided. Secure connections will then exist between
the phone and the WAP gateway, and further from the gateway to the �nal
destination. Hence, the gateway has access to unencrypted data and must be
fully trusted. This is not acceptable for a high security system, as the gateway
is usually operated by the mobile network provider.

Observe also that secure connections in MIDP 2.0 require the server to have
a valid certi�cate for authentication. However, there is no support for certi�cate
based authentication of the client, hence the client must be authenticated on
the application level by other means.

4.3 Certi�cate management and veri�cation

All certi�cate veri�cation procedures on a mobile phone rely on a set of pre-
installed root certi�cates on the phone, equivalent to what we see in web browsers.
Of course, di�erent mobile phones may have di�erent root certi�cates installed.

Self-signed certi�cates can be installed on smartphones, which is very useful
during a test phase. We successfully installed a self-signed X.509v3 certi�cate
on the Nokia 6600 by publishing it to a web server and then downloading it
to the phone via WAP. A certain level of user interaction was needed after the
certi�cate was installed, as all certi�cates in the Nokia 6600 have properties
describing their area of use. A certi�cate installed by the user must therefore
be enabled for veri�cation of signed applications or server authentication before
it can be put to use.

An important requirement when working with certi�cates is the ability to
validate a certi�cate. Time limited validity is one mechanism, but support for
certi�cate revocation is much more critical in order to establish a certi�cate's
validity. The MIDP 2.0 speci�cation states that �Certi�cate revocation can
be performed if the appropriate mechanism is implemented on the device. Such
mechanisms are not part of MIDP implementation and hence do not form a part
of MIDP 2.0 security framework.� Consequently, the validity of a certi�cate can
only be established based on the assumption that none of the certi�cates in its
certi�cate chain have been revoked.

One interesting observation we did was that the Samsung SGH-E720 had
Verisign class 1, 2, 3 and 4 root certi�cates installed that were all reported valid
from 1. October 1999 to 1. January 1970. Other installed certi�cates showed
sensible validity intervals. We located the very same Verisign root certi�cates
on the Nokia 6600, and they all had expiry date 01.10.2049. We give Samsung
the bene�t of doubt, and assume that the invalid expiry date is not the value
actually stored in the certi�cate, but more of a presentation problem. However,
since the date is not presented correctly, the expiry date might not be interpreted
correctly during the certi�cate validation process. Unfortunately, we were not
able to verify this, since it is not a trivial task to �nd a website that uses a
certi�cate signed by a speci�c root certi�cate.

4.4 Secure storage

Encrypted storage is not supported in MIDP 2.0. An adversary may therefore
use equipment to read the memory in your mobile phone and get access to

102 Paper VI: Secure Networked J2ME Applications: Problems and Challenges



your data. Cryptographic libraries for Java exist, and may be a solution to the
plaintext storage problem. One example is Bouncy Castle's lightweight cryp-
tography API supporting several symmetric ciphers. However, the availability
of cryptographic APIs does not automatically solve the plaintext storage prob-
lem. Encryption is a computational intensive task, and encryption implemented
in Java can prove to be time consuming since low-level optimizations (e.g. for
CPU architecture) is impossible. Native libraries or cryptographic hardware are
likely to perform encryption more e�ciently.

Another important issue is the lack of sources of randomness in J2ME imple-
mentations. A strong cipher can be used, but it is essential that the encryption
key is impossible to guess. MIDP 2.0 does not provide a cryptographically strong
Pseudo Random Number Generator (PRNG) similar to the SecureRandom in
J2SE. Hence, the PRNG in J2ME is not suitable for generating encryption keys.
Still, developers use the PRNG for di�erent purposes which can have a major
impact on the security of a system, especially since developers tend to seed the
PRNG with the current time [8, Ch. 10]. One example is an attack on SSL in
Sun's MIDP reference implementation [9].

4.4.1 Homemade crypto

Since MIDP 2.0 does not provide encrypted storage, and MIDP 1.0 does not
provide HTTPS links, some J2ME development companies decide to specify
their own �lightweight� crypto schemes. Well-meaning e�orts to create new,
cryptographic algorithms usually result in solutions that keep data hidden from
average users, but the solutions are very seldom cryptographically strong. Such
initiatives usually rely on the secrecy of the encryption algorithm, which is
considered very bad practice [8, p. 268].

In many countries there are laws regulating how private data must be pro-
tected during transportation over a medium not controlled by the two commu-
nicating parties. These laws often require that the data is encrypted with an
algorithm of strength equal to or better than 3DES. The Advanced Encryption
Standard (AES) ful�ll this requirement, but usually homemade crypto solutions
will not have the strength of well tested encryption algorithms such as 3DES or
AES.

5 Using clients to attack the server

We'll not consider well-known Internet server attacks from viruses and worms,
or DDoS attacks [10]. Instead, we'll brie�y discuss how a client application can
attack the server application.

Client applications should be assumed to be evil by nature, even though
you wrote them yourself. Several approaches can be used to attack a server
application. Two examples are clients sending commands out of order or send-
ing unexpectedly large data chunks as input to an application. We've talked
to several businesses that develop client-server applications, and they all seem
to completely trust their client software. Their arguments are along the line
of: �Hey, we wrote it. Why shouldn't we trust it?� In our opinion, this is a
dangerous approach as trust is easily misplaced unless a careful analysis of the
trust model is carried out [8, Ch. 12].

5 Using clients to attack the server 103



The client software may be handed out to all kinds of people, including the
ones that cannot resist trying to break it. Software can be reverse engineered,
and the source code can be studied. Reverse engineering might not even be
necessary, the binary code could just as well be tampered with. The gaming
industry is experiencing this on a daily basis, as games are cracked to avoid
license key checks. Another approach is to use a network sni�er, �gure out the
application protocol, and write your own malicious client that behaves similarly
to the original client. Several measures can be taken to increase the level of
security in an application, but it all starts with the attitude of the developers.
For developers interested in building secure software we recommend [8].

6 J2ME security in the future

Several of the shortcomings in the MIDP 2.0 security architecture are addressed
by SATSA, the new Security and Trust Services API for J2ME [11]. SATSA
relies on a Security Element (SE), implemented in either software or hardware.
This implies that the SE can take di�erent forms such as a software component,
dedicated hardware in the device, or a removable smart card. Several SEs can
be available in one device. The exact form of the SE is transparent to the
application developer, the interaction with the SE is handled by the SATSA
implementation.

The support for cryptographic smart cards is of particular interest to de-
velopers writing J2ME applications for smartphones. Keys and certi�cates can
be stored on the smart card, and data can be signed without the private key
ever leaving the card. High-end smart cards are tamper resistant and provide
authentication schemes, such as requiring a PIN or a password before access to
the smart card is granted. This way, security is dependent on the smart card
not being compromised. Private keys do not have to be stored on diverse inse-
cure clients, enabling vendors to focus on keeping the smart card secure from
physical tampering and, just as important, smart card API exploitation [12].

An interesting observation is that many banks are already giving their cus-
tomers smart cards, which also have a magnetic strip in order to be compatible
with old ATMs. By giving customers smart cards with cryptographic tools, a
bank could have client software for mobile phones, PDAs, and desktop comput-
ers, all relying on the customer's smart card, hence giving (nearly) the same
level of security for key storage on all platforms. Of course, di�erent OSs have
di�erent levels of security, so a careful analysis of each platform must be carried
out to make sure that the smart card is accessed in a controlled manner.

6.1 SATSA APIs

The SATSA speci�cation de�nes four APIs, SATSA-APDU, SATSA-JCRMI,
SATSA-PKI, and SATSA-CRYPTO. The �rst two APIs add functionality for
smart card interaction. SATSA-APDU enables communication with smart cards
using the Application Protocol Data Unit (APDU) protocol de�ned by the
ISO7816-4 speci�cation. SATSA-JCRMI enables high level communication with
smart cards through the Java Card Remote Method Invocation Protocol (JCRMI).

SATSA-PKI enables applications to request digital signatures from an SE,
hence providing authentication and possibly non-repudiation [4, pp. 32�33] by

104 Paper VI: Secure Networked J2ME Applications: Problems and Challenges



using keys stored on a smart card. Client certi�cate management is also pro-
vided by SATSA-PKI, giving an application the opportunity to add or remove
certi�cates from an SE. The most interesting part of the certi�cate management
is the possibility to request generation of a new key-pair and then produce a
Certi�cate Signing Request. The fact that the client generates its own keys is
one of the key factors needed to support non-repudiation in a system. Note that
key generation is dependent on the SE, the SE might not support key genera-
tion at all. Hence, the SE must be chosen with care, considering the application
requirements.

SATSA-CRYPTO o�ers cryptographic tools like message digests, digital sig-
nature veri�cation, and ciphers. The API enables applications to store data
encrypted and signed on a mobile device, ensuring both con�dentiality and in-
tegrity. Applications that require secure storage of highly sensitive information
can therefore be realized. Note that it is up to the implementor to decide which
ciphers and digest algorithms to include. The SATSA speci�cation recommends
DES, 3DES, and AES as symmetric ciphers, RSA as asymmetric cipher, and
SHA-1 as the digest algorithm. SHA1withRSA is the recommended algorithm
for digital signatures.

6.1.1 Security issues

SATSA is distributed as a part of the Java Runtime Environment (JRE) in some
smartphones. The OS of the mobile phone must therefore be fully trusted, as the
JRE depends on services from the OS. The SATSA speci�cation states that both
SATSA and the application using SATSA must trust the OS. The speci�cation
further states that when SATSA is taking over UI control, e.g. when asking
the user for the smart card pin code, the UI must be �distinguishable from a
UI generated by external sources� in order to prevent a malicious application
from mimicking the SATSA UI. Another requirement is that �external sources
are not able to retrieve or insert PIN data�. These requirements put a lot of
responsibility on the OS. We see three scenarios that could cause trouble.

Since the PIN is entered on the device through the keypad, a keylogger appli-
cation could possibly obtain the PIN. Hence, the OS must limit the distribution
of key pressed events to the SATSA implementation exclusively. Keyloggers ex-
ist for Symbian OS versions prior to version 9, so this may be an issue. Another
approach would be to read the PIN from memory. When a PIN is entered, it
must be stored in memory somewhere before it is handed over to the smart card.
It could be possible for other applications to read this memory.

J2ME applications use a per-application dedicated logical channel to com-
municate with the smart card. This channel could be hijacked using low-level
functionality of the OS. If access to the smart card is acquired on a level below
the SATSA implementation, requests could be sent to the smart card circum-
venting the SATSA implementation. If this functionality was included in e.g. a
Trojan horse, an attacker could have full access to your smart card without your
knowledge.

We do not know if these scenarios actually apply, but they illustrate some
problems with the complete trust in the OS. In our opinion, an application
cannot be more secure than the OS it runs in. It remains to be seen how the
mobile platform copes with viral threats, as we've only seen the beginning of
viruses for mobile phones.

6.1 SATSA APIs 105



The Trusted Computing Group has an initiative to make OSs on mobile
devices more secure (www.trustedcomputinggroup.org/groups/mobile). In
the future, we expect that mobile devices will become more trustworthy, making
it easier for developers to create secure applications.

6.1.2 SATSA shortcomings

Client certi�cates generated by the SATSA implementation cannot be used for
authentication during setup of HTTPS links using SSL or TLS. Developers must
therefore handle certi�cate-based authentication of clients themselves. One al-
ternative is to open an SSL connection to a server, which authenticates the
server and provides a secure communication channel. Client authentication can
then be carried out using a certi�cate provided by the client application, and
having the client sign a challenge from the server. This scheme is more ro-
bust than the widely used password authentication, as dictionary or brute-force
attacks are avoided. Consequently, SATSA can improve the level of security
in current server-client applications by replacing old-fashioned authentication
schemes. However, it would be convenient if client certi�cates stored by the
SATSA implementation could be used by SSL or TLS implementations found
in most newer smartphones.

Signature veri�cation with SATSA is not as easy as signature creation.
SATSA generates signed messages on the Cryptographic Message Syntax (CMS)
format, but does not easily validate these messages. To verify a signature, the
application needs to split a message into respective data and signature parts,
and must supply a public key to be used for veri�cation. Libraries exist for
handling CMS messages, so developers need not implement parsing of CMS
messages themselves. However, it would be easier if SATSA could verify its own
signed messages.

Signature generation and signature veri�cation is not handled in the same
way in terms of how information is presented to the user. When data is signed
by the user, the underlying SATSA implementation takes control of the UI and
presents the user with the certi�cate to be used for signing, along with the data
to sign. The user can then be con�dent that he signs the intended data, and
not something else. Signature veri�cation is just as important, but here the
application must present details about the signature to the user. This means
that you trust SATSA when signing data, while you trust the application to
show you correct information when verifying signatures. We would like to trust
SATSA on both occasions.

Note also that SATSA does not provide veri�cation of certi�cates. The
developer must implement the certi�cate veri�cation process and public key
extraction from the certi�cate, along with presenting the certi�cate and signed
data to the user. SATSA provides the most basic building blocks for PKI
enabled applications, but does not include any certi�cate validation functionality
present in J2SE.

Private keys stored on the smart card cannot be used for decryption, as
they are accessible only for signing. SATSA supports asymmetric crypto, and
it would be convenient if a certi�cate (and its corresponding private key) could
be selected for decryption. Data could then be decrypted on the smart card,
without exposing the private key to the application nor the operating system.

106 Paper VI: Secure Networked J2ME Applications: Problems and Challenges



7 Conclusions

The security model in J2ME has its limitations and may not be adequate for
all purposes. In addition, hurdles exist because of the bugs and limitations
in various J2ME implementations on real devices. A proper analysis of the
security requirements for an application must be carried out considering these
limitations and di�culties.

SATSA empowers the mobile platform with cryptographic capabilities and
is therefore a much needed library for secure application development. Local
encryption is possible, and authentication schemes can rely on public key cryp-
tography instead of the usual username and password authentication. Storage
of user certi�cates and support for digital signatures in smart cards open up
possibilities for applications that require a high level of security. SATSA �ts
perfectly in a scenario where strong authentication of the client is needed, as
well as digital signatures on behalf of the client. However, SATSA provides only
the basic cryptographic building blocks to build a PKI. Important functionality
found in J2SE such as certi�cate parsing, validation, and storage is left to the
developer to implement. Hence, implementing signature validation and public
key cryptography based on public keys in certi�cates can prove to be complex
tasks.

Acknowledgment

We'd like to thankWorld Medical Center for their cooperation during the project
and for giving us access to the mobile phones needed to carry out the security
related tests.

References

[1] Canalys, �Worldwide smart phone market soars in q3,� last visited: March
26, 2006. [Online]. Available: http://www.canalys.com/pr/2005/r2005102.
htm

[2] telecoms.com, �Mobile games industry worth usd 11.2 billion by 2010,�
last visited: March 26, 2006. [Online]. Available: http://www.telecoms.
com/itmgcontent/tcoms/search/articles/20017303052.html

[3] JSR 118 Expert Group,Mobile Information Device Pro�le for Java 2 Micro
Edition, Version 2.0, 2002.

[4] C. Adams and S. Lloyd, Understanding PKI, 2nd ed. Addison-Wesley,
2003.

[5] Netscape Communications, The SSL Protocol,Version 3.0, 1996.

[6] Open Mobile Alliance, Wireless Transport Layer Security Speci�cation.
WAP 1.2.1 conformance release, 2000.

[7] Open Mobile Alliance, WAP TLS Pro�le and Tunneling Speci�cation.
WAP 2.0 conformance release, 2001.

7 Conclusions 107



[8] J. Viega and G. McGraw, Building Secure Software. Addison-Wesley, 2002.

[9] K. I. F. Simonsen, V. Moen, and K. J. Hole, �Attack on sun's MIDP ref-
erence implementation of SSL,� in 10th Nordic Workshop on Secure IT-
systems (Nordsec 2005), 2005.

[10] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service Attack and Defense Mechanisms. Prentice Hall, 2005.

[11] Sun Microsystems, �Security And Trust Services API for J2ME,� last
visited: March 26, 2006. [Online]. Available: http://java.sun.com/
products/satsa/

[12] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, �Cryp-
tograpic processors�a survey,� University of Cambridge, Tech. Rep.
641, 2005. [Online]. Available: http://www.cl.cam.ac.uk/TechReports/
UCAM-CL-TR-641.pdf

108 Paper VI: Secure Networked J2ME Applications: Problems and Challenges




