
Interaction of the hydrogen atom with
laser fields: a study of relativistic effects

in ionization processes

Thesis for degree of Master of Science

Ingunn Koren Rossland

Department of Physics and Technology
University of Bergen

2018



1



Acknowledgements

To complete such a project without good support would not have been possible. Most
important I would like to express my endless gratitude to my supervisor Morten Førre for
his guidance; especially for being so patient, dedicated and helpful throughout this whole
project. His exceptional ability to explain and teach is a great inspiration to me.

I also want to thank Thore Espedal Moe for convincing me to apply to this master’s pro-
gram in the first place and also for providing helpful advice along the way. Furthermore,
all the people ”in the hallway”, more specifically the students and faculty of the optics
and atomic physics group, deserve a big thanks for always smiling and creating a positive
environment. Together with all the great students and staff at the Department of Physics
and Technology you have made the University feel like a second home.

I want to thank my family: my parents Ragnhild and Per Kjell and my brother Vetle for
always being so supportive. Lastly, thank you to my friends and especially my boyfriend
Espen for providing smiles and laughs in my everyday life.

2



3



Contents

List of Figures 5

1 Introduction 6

2 Quantum Mechanics 10
2.1 The wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 The time independent Schrödinger equation . . . . . . . . . . . . . 13
2.3.2 The Schrödinger equation as an eigenvalue problem . . . . . . . . 13

2.4 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The fine structure of hydrogen . . . . . . . . . . . . . . . . . . . . 17

3 Hydrogen in an Electromagnetic Field 21
3.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The semi-classical approximation . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 The dipole approximation . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Velocity gauge and length gauge . . . . . . . . . . . . . . . . . . . 24

4 Numerical Approach to Solving the Schrödinger Equation 26
4.1 Solving the non-relativistic Schrödinger equation numerically . . . . . . . 26
4.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Using B-splines to solve the radial equation . . . . . . . . . . . . . 28
4.3 Calculation of the relativistic corrections . . . . . . . . . . . . . . . . . . . 30

5 Photoionization of Hydrogen
- a Time Independent Study 33
5.1 Finding an expression for the cross section in length gauge . . . . . . . . . 33
5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Multiphoton Ionization of Hydrogen - a Time Dependent Study 42
6.1 Calculating the matrix elements of the velocity gauge Hamiltonian . . . . 43
6.2 Describing the electromagnetic field . . . . . . . . . . . . . . . . . . . . . 46
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Summary 53

Bibliography 55

4



List of Figures

4.1 An example of a set of B-splines . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Photoionization cross section for non-relativistic and relativistic Schrödinger
equation calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Photoionization cross section for relativistic Schrödinger equation and Dirac
equation calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Photoionization cross section for the Schrödinger equation using relativis-
tic and non-relativistic Hamiltonians and the Dirac equation calculations
showing parallel and anti-parallel angular momentum and spin . . . . . . 40

6.1 Probability of ionization for hydrogen . . . . . . . . . . . . . . . . . . . . 49
6.2 Differential probability of ionization for relativistic TDSE and TDDE . . 50
6.3 Differential probability of ionization for non-relativistic TDSE and rela-

tivistic TDSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



Chapter 1

Introduction

Light-matter interactions have been a subject of interest for scientists and philosophers as
far back as 5-400 B.C. The idea that everything must consist of elementary particles is as
old as the philosopher Demokrit who lived around 460-370 BC. He named these elemen-
tary particles ”atoms” which means ”indivisible” [1]. When they were first discovered,
atoms were believed to be the elementary building blocks of the universe, and they were
named accordingly. Today we know that this is not the case, but the name remains un-
changed. Considering that light-matter interactions play a crucial role in processes that
make life on Earth possible and also is one of the main ways we obtain information about
the world, the desire to understand these processes speaks for itself. With technological
advances and the theoretical knowledge on electromagnetic radiation and quantum me-
chanics it is now possible to study atomic systems and processes in great detail.

The laser was invented by Theodore Maiman in 1960 [2] and has since been an important
tool for experimental study of atomic systems. Brilliant x-ray laser sources called free-
electron lasers allow us to generate coherent light at short wavelengths [3, 4, 5]. Laser
technology is advancing fast, and as lasers are approaching intensities and photon ener-
gies that can accelerate electrons to relativistic velocities these effects become relevant to
study. Relativistic effects have been studied theoretically in atomic systems [6, 7, 8, 9, 10]
and they are the effects under study in this thesis. We will perform our study on hydro-
genic systems. Hydrogenic systems are the simplest atomic systems to study, consisting
of a nucleus and only one orbiting electron. In this thesis the interaction of a hydro-
gen atom subjected to x-ray radiation is studied, specifically looking for the effects of
the relativistic corrections to the Schrödinger equation. The most important question is
whether it is possible to observe any relativistic effects at all, considering that the ef-
fects are small. Another goal is to compare the ionization dynamics of the relativistic
time dependent Schrödinger equation with results from other calculations and see if the
Schrödinger equation is applicable in the relativistic regime. A study of the time inde-
pendent Schrödinger equation with relativistic corrections has also been done in order to
examine relativistic effects on photoionization cross section.

The processes under study are still complex at an atomic level which causes the need for
approximations. The dipole approximation is a common approximation to apply to the
electromagnetic field interacting with the atomic system, and will be used throughout
this thesis. This approximation assumes the wavelength of the field to be much larger
than the extension of the atomic system. By using this assumption, the spatial depen-
dence of the field can be neglected. Furthermore, the magnetic field is neglected. It has
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been shown that this approximation breaks down for high frequencies and intense fields
[11, 12, 13, 14, 15, 16].

The results have been obtained by solving both the time-independent and the time-
dependent Schrödinger equation numerically, modelling the interaction between the laser
and the atom. A MATLAB program was written to calculate the matrix elements of
the Hamiltonian to solve the time independent Schrödinger equation. All results will be
shown both for a relativistic and a non-relativistic system. Time independent results
include energy level calculations and plots of photoionization cross section. Afterwards,
we propagate the system forward in time to study the dynamics initiated by an intense
laser pulse and these results are in the form of ionization yields and probability density
functions.
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Useful Constants

Some constants appear frequently in atomic physics calculations, so much that it is con-
venient to set them to unity. In atomic units we set h̄ = e = me = a0 = 1. When
atomic units are applied the notation is shortened to a.u. The table shows an overview
of the constants used in this thesis in SI-units and atomic units, including some useful
conversion factors of relevant units to atomic units.

Name of constant Unit Symbol Value in SI units Value in a.u.

Speed of light Velocity c 2.997 925 · 108 m/s 137.036 a.u.

Reduced Planck’s constant Angular momen-
tum

h̄ 1.054 571 Js 1 a.u.

Mass of electron Mass me 9.109 384 · 10−31 kg 1 a.u.

Bohr radius for atomic hydrogen Length a0 5.291 772 · 10−11 m 1 a.u.

Electron charge Charge e 1.602 177 · 10−19 C 1 a.u.

Permittivity in vacuum Farads per metre ε0 8.854 188 · 10−12 F/m ε0 = 1
4π = 1

µ0c2
a.u.

Permeability in vacuum Newton per Am-
pere squared

µ0 1.256 637 · 10−6 N/A2 µ0 = 1
ε0c2

a.u.

Fine structure constant Seconds per me-
tre

α 0.007 297 s/m 1
c = 1

137.036 a.u.

Conversion factors

1 atomic unit of energy corresponds to:

• energy in electronvolt of 27.2114 eV

• energy in SI-units of 4.359 76 · 10−18 J

• frequency of 6.579 69 · 1015 Hz

• wavelength of 4.556 33 · 10−8 m
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Chapter 2

Quantum Mechanics

”Erwin with his psi can do
Calculations quite a few.
But one thing has not been seen:
Just what does psi really mean?”

- Verse about Schrödinger [17].

It is said that after a colloquium that Schrödinger held about de Broglie’s thesis on the
association of waves with particles and how to obtain the quantization rules, Peter Debye
made a remark to Schrödinger saying that this way of thinking was childish and that to
deal with waves one needs to have a wave equation. Apparently Schrödinger gave this
some thought and after a few weeks at another talk he said he had found one! It was
published in Annalen der Physik in 1926 under the title ”Quantization as an Eigenvalue
Problem”. Since then, the wave function has proved to be a strong tool in quantum
mechanics [17].

In this chapter an overview of important concepts in quantum mechanics will be given.
This includes sections on the wave function, operators and the Schrödinger equation.
The Schrödinger equation for hydrogen and its relativistic corrections will be studied in
some detail. Information on these topics can be found in books on introductory quantum
mechanics such as [18, 19, 20, 21].

2.1 The wave function

In classical mechanics if we want to determine the position along the x-axis of a particle
at a given time; we look for the position function of time: x(t). To find x(t) we are
using Newton’s second law (or maybe the Euler-Lagrange equations) and the system’s
initial conditions. In quantum mechanics the state of things are quite different. If we
want to determine the position of a particle we will first need the wave function ψ(x, t)
for the particle. To find it we must solve the Schrödinger equation. By finding the wave
function ψ(x, t) though, we have not determined the particle’s position. The wave func-
tion is a rather curious thing. By itself it does not represent a physical observable, but if
we know the wave function we can calculate the expectation value of physical observables.

Since the wave function is spread out in space for a given time t, we can only find the
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probability of finding the particle at an interval x ∈ [x0, x0 + dx] at time t0:

|Ψ(x0, t0)|2dx . (2.1)

Max Born formulated this probability representation in 1926. The particle must be some-
where so if we look for the particle along the whole x-axis,∫ ∞

−∞
|Ψ(x, t)|2dx = 1 , (2.2)

naturally, the total probability must be 1.

The wave function lives in Hilbert space. As opposed to Euclidian space with its two
or three dimensions Hilbert space is an N-dimensional complex space where the rules of
linear algebra and calculus are extended to be valid for a finite or infinite number of
dimensions.

2.2 Operators

For every observable physical quantity in classical mechanics there is a corresponding
operator in Hilbert space for quantum mechanics. There are some requirements for the
operators and observables. All expectation values must be real numbers so that our
operators does not give complex values for observable quantities, i.e., the expectation
value of an observable must be equal to that of its complex counterpart,

〈O〉 = 〈O〉∗. (2.3)

This requirement is fulfilled when our operators are hermitian which means that they
fulfil the requirement:

〈O〉 =

∫
Ψ∗1ÔΨ2dx =

∫
Ψ2(ÔΨ1)∗dx . (2.4)

The determinate states can be found by solving the eigenvalue problem

ÔΨ = λΨ . (2.5)

If the wave function Ψn is an eigenfunction of the hermitian operator Ô then there exists a
real eigenvalue λn to each eigenfunction. In practice this means that if we are conducting
an experiment to measure a quantity O with corresponding operator Ô then the result of
the measurement will be one of the eigenvalues λn.

Which observables can be measured and at what accuracy depends on the commutative
properties of the operators. A commutator is defined as:

[Ô1, Ô2] ≡ Ô1Ô2 − Ô2Ô1 . (2.6)

Two operators commute if [Ô1, Ô2] = 0. If two operators commute it means that we can
determine the two observables simultaneously. An example of non-commuting operators
are the position operator x̂ and the momentum operator p̂x = −ih̄ ∂

∂x . If we operate on a
function ψ(x) using the momentum operator first and then the position operator it yields
one result:
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x̂p̂xψ(x) = −ih̄x∂ψ(x)

∂x
. (2.7)

Changing the order in which we operate with the two operators,

p̂xx̂ψ(x) = −ih̄ψ(x)− ih̄x∂ψ(x)

∂x
, (2.8)

and then subtract the two results

(x̂p̂x − p̂xx̂)ψ(x) =− ih̄ψ(x) (2.9)

x̂p̂x − p̂xx̂ =− ih̄ (2.10)

we get a non-zero commutator. Because these operators do not commute there is a
restriction on the accuracy of the values of the position and the velocity. We know it
from the Heisenberg’s uncertainty principle,

∆x∆px ≥
h̄

2
, (2.11)

where ∆x and ∆px is the standard deviation for the two observables. For a general
observable O the standard deviation is defined by:

∆O =
√
〈O2〉 − 〈O〉2 , (2.12)

where 〈O2〉 is the average of the squares and 〈O〉2 is the square of the average. Heisenberg’s
uncertainty principle implies that we cannot determine the values of the position and the
momentum of the particle at the same time. For a plane wave that spans over all of space,
∆x = ∞, the momentum (and therefore its wavelength), ∆px = 0 can be determined.
Trying to improve the accuracy of the position of the particle will result in reducing
the accuracy for the momentum. More generally the uncertainty relation between two
physical properties O and P is given by:

∆O∆P ≥ 1

2

∣∣∣〈[Ô, P̂ ]〉
∣∣∣ . (2.13)

If the two operators commute then ∆O∆P = 0 and both these properties can be deter-
mined simultaneously.

2.3 The Schrödinger equation

The famous time dependent Schrödinger equation (TDSE),

ih̄
∂Ψ

∂t
= ĤΨ , (2.14)

is as fundamental as Newton’s second law and it is stated as one of the postulates for
quantum mechanics. It describes the changes over time for a quantum mechanical sys-
tem. The Schrödinger equation can only be solved analytically for quite simple systems.
Otherwise, we must solve it approximately. The Ĥ is the Hamiltonian operator. For some
systems it is the sum of the kinetic and potential energy. When we are setting up the
Hamiltonian we are including all interactions of the system. Below, the Hamiltonian for
a particle with non-relativistic kinetic energy in one dimension exposed to a space depen-
dent potential V (x) is stated. In this case the Hamiltonian represent the total energy of
the system Ek + Ep
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Ĥ = − h̄2

2m

∂2

∂x2
+ V (x) . (2.15)

m is the particle’s mass, h̄ is the reduced Planck’s constant, i is the imaginary unit i2 = −1
and V (x) is the potential.

2.3.1 The time independent Schrödinger equation

It is useful to solve the Schrödinger equation as a stationary system as well as a time
dependent one. To show that the Schrödinger equation can be separated into a solely
time dependent and a space dependent part we first separate the wave function:

Ψ(x, t) = ψ(x)φ(t) . (2.16)

Assuming that the potential V (x) is time independent is required in order to perform the
separation. Then the time dependent Schrödinger equation is given by:

ih̄
∂

∂t
ψ(x)φ(t) = − h̄2

2m

∂2

∂x2
ψ(x)φ(t) + V (x)ψ(x)φ(t) . (2.17)

We divide by the wavefunction on both sides and obtain:

ih̄
1

φ(t)

∂

∂t
φ(t) = − h̄2

2m

1

ψ(x)

∂2

∂x2
ψ(x) + V (x) . (2.18)

Now, the left side of the equation is only time dependent and the right side is only space
dependent. For this equality to hold they must be equal to a constant. This constant will
be called E. The left side of equation (2.18) is set equal to E and can be written:

∂

∂t
φ(t) =

E

ih̄
φ(t) . (2.19)

The general solution for the time dependent equation is

φ(t) = e−
iE
h̄
t . (2.20)

The space dependent equation can be stated

− h̄2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x) (2.21)

and if Ĥ = − h̄2

2m
∂2

∂x2 + V (x) we can write

Ĥψ(x) = Eψ(x) , (2.22)

which is known as the time independent Schrödinger equation (TISE). The solutions to
the time independent Schrödinger equation are known as stationary states.

2.3.2 The Schrödinger equation as an eigenvalue problem

Before Schrödinger’s formulation of quantum mechanics Werner Heisenberg’s matrix me-
chanics representation was already established. He published a paper on the matrix
mechanics of quantum mechanics in 1925. Heisenberg’s method is more suitable when
solving the Schrödinger equation numerically. For this section the more convenient Dirac
notation has been used. The wave function describes a certain state of a system and we
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can represent it by a vector: |ψ〉. The components of the vector depend on the basis
we are using. A state vector component can be written as a product of an amplitude
coefficient and the corresponding basis vector component. The total vector is the sum of
these. Our wave function can therefore be written as:

|ψ〉 =
∑
i

ci|ei〉 (2.23)

where ci are a set of coefficients that tell you how much of |ei〉 is contained in |ψ〉. |ci|2 is
the probability of measuring the eigenvalue of |ei〉 if the eigenfunction is orthonormalized.
The particular basis {|ei〉} we are operating with is discrete. If it was continuous the sum
would be replaced by an integral and it would have an infinite number of components. For
obvious reasons we must restrict ourselves to discrete vectors when working numerically.
Operators transform vectors and these transformations are linear:

Ô|ψ〉 = |φ〉 , (2.24)

where

|φ〉 =

n∑
i=1

di|ei〉 . (2.25)

We express operators as matrices where matrix elements are represented with respect to
our basis,

Oji = 〈ej |Ô|ei〉 . (2.26)

The matrix elements show how the vector components transform from one state to an-
other. Now, we apply this method on the time independent Schrödinger equation. To
find the energy states of the system we must solve the eigenvalue problem

Ĥ|ψ〉 = E|ψ〉 . (2.27)

Inserting the expansion from equation (2.23) yields

Ĥ
n∑
i=1

ci|ei〉 = E
n∑
i=1

ci|ei〉 , (2.28)

and multiplying from the left by 〈ej | gives

n∑
i=1

ci〈ej |Ĥ|ei〉 = E
n∑
i=1

ci〈ej |ei〉 . (2.29)

This can be written in matrix form as a system of equations where we write 〈ej |Ĥ|ei〉 =
Hji and 〈ej |ei〉 = Sji

H11 H12 . . . H1n

H21 H22 . . . H2n
...

...
. . .

...
Hn1 Hn2 . . . Hn,n



c1

c2
...
cn

 = E


S11 S12 . . . S1n

S21 S22 . . . S2n
...

...
. . .

...
Sn1 Sn2 . . . Sn,n



c1

c2
...
cn

 (2.30)
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In shorter notation:

Hc = ESc . (2.31)

The matrix S is called the overlap matrix and is necessary when the basis functions are
not orthogonal. If they were orthogonal then S = In.

2.4 Hydrogen

Hydrogen, the simplest of elements and also the most common element in the universe,
is the element under study in this section. In its most common form the hydrogen atom
consists of only a positively charged proton with an orbiting negatively charged electron.
The proton has a mass much larger than the electron and is assumed located at the origin;
the center of mass. As such, the proton is assumed to be stationary while the electron is
orbiting it. This section will describe the Schrödinger equation for a field-free hydrogen
atom. The relativistic corrections to the field-free Schrödinger equation will be described,
the so-called fine structure.

2.4.1 Separation of variables

A system like the hydrogen atom is best described using spherical coordinates. The
electron is moving in a Coulomb potential, V (r), because of the positively charged proton.
Apart from this we do not take into account the properties of the proton. The time
independent Schrödinger equation can be written:

− h̄2

2m
∇2Ψ(r) + V (r)Ψ(r) = EΨ(r) , (2.32)

where m is the mass of the electron and the momentum is p̂ = −ih̄∇. The Laplacian
operator ∇2 in spherical coordinates is given by:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2

)]
. (2.33)

The wave function Ψ(r) can be separated into a product of a radial part and an angular
part:

Ψ(r) = R(r)Ylm(θ, φ) . (2.34)

The part inside the square brackets in equation (2.33) can be recognized as the operator

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2

)]
(2.35)

which is the orbital angular momentum squared. The angular momentum operator is
given from classical mechanics: L̂ = r̂ × p̂ = r̂ × −ih̄∇. The expression for the wave
function (2.34) is substituted into (2.32) and then divided by the wave function. In

addition we write the expression in the square brackets of (2.33) as − L̂2

h̄2 and get the
following Schrödinger equation:

− h̄2

2mr2

1

R(r)

∂

∂r

(
r2∂R(r)

∂r

)
+ V (r) +

1

Ylm(θ, φ)

L̂2

2h̄2mr2
Ylm(θ, φ) = E . (2.36)

15



The operator L̂2 commutes with all the individual components of the angular momentum
L̂: L̂x, L̂y and L̂z, but the individual components does not commute with each other. We
shall therefore consider only the eigenvalues of the operator L̂z:

L̂z = −ih̄ ∂

∂φ
. (2.37)

Only the third term of the equation (2.36) describes the angular part of the Schrödinger
equation. The operators L̂2 and L̂z has known eigenfunctions:

L̂2Ylm(θ, φ) = h̄2l(l + 1)Ylm(θ, φ) (2.38)

L̂zYlm(θ, φ) = h̄mYlm(θ, φ) . (2.39)

The eigenfunctions Ylm(θ, φ) are called spherical harmonics and they are eigenfunctions of
both operators L̂2 and L̂z. Because of the nature of the solutions l must take non-negative
integer values and for each l there are (2l + 1) possible values for m. The integers l and
m in the eigenvalues are called the orbital angular momentum quantum number and the
magnetic quantum number, respectively, and they can take the values stated below:

l = 0, 1, 2, 3... (2.40)

m = −l,−l + 1, ...,−1, 0, 1, ..., l − 1, l . (2.41)

Now that the solutions for the angular equation are obtained, reducing the radial wave
function is convenient,

U(r) ≡ rR(r) . (2.42)

Since the eigenvalues of the angular part is known, the eigenvalues can be inserted in
(2.36) and the so-called radial equation is acquired:

− h̄2

2m

d2U(r)

dr2
+

[
V (r) +

h̄2

2m

l(l + 1)

r2

]
U(r) = E U(r) . (2.43)

Solving the radial equation gives the famous Bohr formula for the allowed energy values
of the hydrogen atom,

En = − 1

n2

(
m

2h̄2

(
e2

4πε0

)2
)

=
E1

n2
, (2.44)

where n is the principal quantum number and ε0 is the vacuum permittivity. E1 is the
energy of the electron in the ground state; also called the binding energy because it is the
amount of energy needed to ionize the atom from the ground state,

E1 ' 13.6 eV . (2.45)
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2.4.2 The fine structure of hydrogen

Based on the non-relativistic Schrödinger equation (2.32) for hydrogen the Hamiltonian
can be written as:

Ĥ0 =
p̂2

2m
+ V (r) . (2.46)

Still, there are effects in the atomic system that we have not accounted for. These are the
relativistic effects and they can be implemented as correction terms to our Hamiltonian.
First of these are the correction to the kinetic energy, coming from special relativity as
the electron reaches speeds comparable to the speed of light. The second is the spin-orbit
coupling arising from the fact that the electron’s and proton’s charges are the sources of
magnetic fields. The last correction is the Darwin term, only occurring when the spin-
orbit coupling is not present i.e., l = 0 states.

The corrections we are dealing with in this chapter can be found to be of order

α2 =
1

(c)2
' 1

1372
(2.47)

in atomic units. These additional terms have the effect that they are splitting the energy
levels further and they give the hydrogen energy spectrum a fine structure, this is why they
have been named the fine structure. The constant α is appearing in all the corrections and
for this reason it has been named the fine structure constant. Even though we are getting
a much more complex and correct result adding these terms, there are still effects that
we have not taken into account. These are the Lamb shift and the hyperfine structure.
These corrections are of order 1000 smaller than our relativistic corrections and we choose
to ignore them here.

Correction to the Kinetic Energy

The first relativistic correction term can be found by studying Einstein’s famous equation

E =
√
p2c2 +m2c4 (2.48)

for the total energy of a free particle where p is the momentum and m is the rest mass.
The relativistic expression for the kinetic energy is found by subtracting the rest mass
energy:

Ek =
√
p2c2 +m2c4 −mc2 . (2.49)

As p becomes an operator in quantum mechanics the square root expression is inconvenient
for numerical approximation. Therefore, we want to make an expansion. First, taking
mc2 out of the root,

Ek = mc2

√
1 +

p2

mc2
−mc2 , (2.50)

and then applying the binomial theorem to expand the root yields:

Ek = mc2

(
1 +

p2

2m2c2
− p4

8m4c4
+

p6

16m6c6
− ...

)
−mc2 . (2.51)

.
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The first and last term cancels.

Ek =
p2

2m
− p4

8m3c2
+

p6

16m5c4
− ... (2.52)

We shall only include the first order correction, i.e. the term ∝ p4. As can be seen the
third term is proportional to α4 and is neglected here. Our Hamiltonian (2.46) gets the
correction term:

Ĥ1 = − p̂4

8m3c2
. (2.53)

From first order perturbation theory the correction of the energy levels due to this cor-
rection term is given by [21],

∆E1 = |En|
α2

n

(
1

l + 1
2

− 3

4n

)
. (2.54)

En is given by the Bohr formula, see equation (2.44). l is the orbital angular momentum
quantum number, which partly lifts the degeneracy of the energy levels.

Spin-orbit Coupling

From the reference frame of the electron the nucleus is orbiting it. The positive charge
moving in a loop creates a magnetic field that exerts a torque on the electron. The energy
associated with the torque is given by the Hamiltonian:

Ĥ2 = −µ ·B . (2.55)

µ is the dipole moment of the electron and B is the magnetic field of the proton. The
magnetic field arises because the orbiting proton creates a current. The relationship
between the two can be found using Biot-Savart’s law [22]:

B =
µ0I

4π

∫
dl′ × r̂

r2
=
µ0I

2r
. (2.56)

The integral gives 2πr when a circular orbit of radius r has been assumed. I is the current
and µ0 is the permeability of free space. A charge e is orbiting with a certain period T
and the current can be stated I = e

T . Returning to the proton’s frame of reference, the
electron has orbital angular momentum that can be expressed using the orbiting period:

L = mvr =
2πmr2

T
→ I =

eL

2πmr2
, (2.57)

where m is the mass of the electron. Both B and L are pointing in the same direction
and we can write the magnetic field using the new expression for the current,

B =
µ0e

4πmr3
L , (2.58)

replacing µ0 with 1
ε0c2

gives:

B =
1

4πε0

e

mc2r3
L . (2.59)

The magnetic dipole moment created by a current loop is defined as:

µ ≡ Ia , (2.60)
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where a is the vector area of the loop being a = πr2 for an electron orbiting in a plane
and I is the current. The current being I = e

T as before yields:

µ =
eπr2

T
. (2.61)

If we now consider the spin orbital angular momentum of the electron

S = r× p =
2πmr2

T
→ T =

2πmr2

S
. (2.62)

Replacing T in (2.61) with the right hand expression in (2.62) yields:

µ = − e

2m
S . (2.63)

The electron magnetic moment is twice the classical value of the magnetic moment of a
spherical object with charge e. This factor cancels out with a kinematic correction known
as the Thomas precession [19]. Inserting the results from (2.59) and (2.63) into (2.55)
gives the term called the spin-orbit coupling :

Ĥ2 =
e2

8πε0

1

m2c2r3
L̂ · Ŝ . (2.64)

The Hamiltonian (2.46) does not commute with the spin orbit term (2.64). Still, Ĥ2

commutes with L̂2, Ŝ2 and the square of the total angular momentum Ĵ2 and its z-
component Ĵz. To the total angular momentum operator Ĵ belongs another quantum
number j. Therefore, a change in set of quantum numbers is convenient when working
with the spin-orbit coupling. On the Hamiltonian term (2.64) we perform a small trick
to find a substitution for L̂ · Ŝ:

Ĵ2 = (L̂ + Ŝ) · (L̂ + Ŝ) = L̂2 + Ŝ2 + 2L̂ · Ŝ (2.65)

L̂ · Ŝ =
1

2
(Ĵ2 − L̂2 − Ŝ2) , (2.66)

and obtain a set of eigenvalues:

h̄2

2

[
j(j + 1)− l(l + 1)− s(s+ 1)

]
=
h̄2

2

[
j(j + 1)− l(l + 1)− 3

4

]
. (2.67)

The spin of the electron is always s = 1
2 .

A correction to the energy levels is a consequence of the spin orbit interaction; splitting
the levels depending on the value of the quantum number l. From perturbation theory
this shift in energy levels for hydrogen is given by [21]:

∆E2 = |En|
α2

n

(
1

j + 1
2

− 1

l + 1
2

)
where j = l ± 1

2
, l 6= 0 . (2.68)

For l = 0 the spin orbit interaction vanishes.
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Darwin Term

The last of the fine structure correction terms is the Darwin term. This correction only
applies in the case l = 0, the s-state where the wave function is not zero at the origin,
which means that there is a probability that the electron and the proton is at the same
position. For all l > 0 states the wave function is zero at the origin and the Darwin term:

Ĥ3 =
πh̄2

2m2c2

e2

4πε0
δ(r) (2.69)

disappears. For l = 0 the correction to the relativistic energy takes the form:

∆E3 =
πh̄2

2m2c2

e2

4πε0
〈ψn00|δ(r)|ψn00〉 (2.70)

=
πh̄2

2m2c2

e2

4πε0
|ψn00(0)|2 . (2.71)

Where |ψn00(0)|2 is the probability of finding the electron at the origin. The total rela-
tivistic Hamiltonian including the terms from equations (2.46), (2.53), (2.64) and (2.69)
now reads:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 (2.72)

Ĥ =
p̂2

2m
+ V (r)− p̂4

8m3c2
+

e2

8πε0

1

m2c2r3
L̂ · Ŝ +

πh̄2

2m2c2

e2

4πε0
δ(r) . (2.73)

Taking all the energy corrections from the fine structure terms (equations (2.54) and
(2.68)) and adding them together with the Bohr energy formula (2.44) gives the total
energy for hydrogen:

ETISEnj = |En|+ |En|
α2

n

(
1

j + 1
2

− 3

4n

)
, (2.74)

because the 1
l+1/2 terms cancel. Comparing this to the energy formula we get from solving

the Dirac equation for a hydrogen atom [21]

EDiracnj =
mc2√

1 + α2[
n−j− 1

2
+
√

(j+ 1
2

)2−α2
]2 −mc2

=|En|+ |En|
α2

n

(
1

j + 1
2

− 3

4n

)
+O(α4) (2.75)

where n and j are the principal quantum number and total angular momentum quantum
number, respectively. α is the fine structure constant. We see that the energies are the
same to order α2

EDiracnj = ETISEnj +O(α4) . (2.76)
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Chapter 3

Hydrogen in an Electromagnetic
Field

In this chapter we shall study the interaction between the hydrogen atom and an electro-
magnetic field. To take on such a task we will first present an overview of electrodynamics
and the semi-classical approximation. A short introduction to the dipole approximation
will be given before we study two different gauges for quantum mechanics: the so-called
velocity gauge and length gauge. Our goal is to obtain relativistic Hamiltonians for hy-
drogen in an external field. The first section deals with the fundamentals of classical
electrodynamics. The reader is referred to [22] for a good overview of the subject.

3.1 Maxwell’s equations

It is impossible to talk about classical electrodynamics without introducing Maxwell’s
equations. James Clerk Maxwell was a Scottish physicist born in 1831. He was a multi-
faceted physicist, his publications spanning many fields from statistical physics to colour
theory and optics. His first paper was published when he was only 14 years old [23].
When he published his famous equations he had 20 of them, in modern form they are
reduced to 4 [24, 25]. Together with the force law,

F = q(E + v×B) (3.1)

the Maxwell’s equations,

i) ∇· E =
ρ

ε0
ii) ∇· B = 0 (3.2)

iii) ∇× E +
∂B

∂t
= 0 iv) ∇× B− µ0ε0

∂E

∂t
= µ0J

summarize our theoretical knowledge of electrodynamics. Here, they are stated for waves
in vacuum. The Maxwell’s equations describe how fields arise and depend on each other
and the force law describes how charges move in electric and magnetic fields. Here, ρ is
charge density, E and B are the electric and magnetic fields, respectively and J is the
current area density. The constants µ0 and ε0 are the permeability and permittivity of
vacuum, respectively. The Maxwell’s equations describe how electric fields are produced
either by the presence of charges or by changing magnetic fields. These properties are
given by equation i) and iii). Magnetic fields are produced by currents or changing elec-
tric fields, described by equation ii) and iv). Writing the Maxwell’s equations in this form
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we keep the fields to the left and the sources of the fields to the right.

It is possible to reduce the four Maxwell’s equations into two by using two substitutions:
φ, the electric or scalar potential, and A, the vector potential. We call these equations
the potential representation

B(r, t) =∇×A(r, t) (3.3)

E(r, t) =−∇φ− ∂A(r, t)

∂t
. (3.4)

The equations (3.3) and (3.4) satisfy the Maxwell’s equations (3.2) ii) and iii). Inserting
equation (3.4) into i) and both (3.4) and (3.3) into iv) we get:

∇2φ+
∂

∂t
(∇ ·A(r, t)) =− ρ

ε0
(3.5)(

∇2A(r, t)− µ0ε0
∂2A(r, t)

∂t2

)
−∇

(
∇ ·A(r, t) + µ0ε0

∂φ

∂t

)
= −µ0J . (3.6)

Now we have reduced the information in Maxwell’s 4 equations down to just 2 equations.

3.2 The semi-classical approximation

Studying the interaction of electromagnetic fields with atomic systems purely quantum
mechanically requires the knowledge of quantum electrodynamics. To simplify the prob-
lem we use the semi-classical approximation, which means that we treat the electromag-
netic fields classically by Maxwell’s equations while the atomic system in question is
treated quantum mechanically. We can apply this approximation because we are dealing
with high photon densities from a laser. Even if the field is weak the photon density
can be very high. For processes involving only a single photon, such as e.g. spontaneous
emission, we must apply quantum field theory [26].

When applying an electromagnetic field to a charged particle there must be an alteration of
the Hamiltonian. To find the Hamiltonian we need to know the Lagrangian of the system.
A particle of mass m, charge q and velocity v in an electromagnetic field expressed by A,
is subjected to the Lorentz force given by equation (3.1). Inserting the equations (3.3)
and (3.4) into (3.1) gives:

F = q
(
−∇φ− ∂A

∂t
+ v× (∇×A)

)
. (3.7)

We require that the Lagrangian produces the equations of motion satisfying (3.7). This
is accomplished by the Lagrangian:

L = T − V =
1

2
mv2 − qφ+ qv ·A . (3.8)

If we work with Cartesian coordinates; our generalized coordinates are q1 = x, q2 = y
and q3 = z. The generalized momentum is defined as:

pi =
∂L

∂q̇i
, (3.9)
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where p1 = px, p2 = py and p3 = pz make up the components of p. By inserting the
Lagrangian and performing the derivation, the generalized momentum and an expression
for the velocity can be found

p = mv + qA → v =
p− qA
m

. (3.10)

Since the Hamiltonian is defined as:

H =

3∑
i=1

piq̇i − L , (3.11)

inserting the Lagrangian (3.8) and substituting in the expression for v from (3.10) the
Hamiltonian in terms of p, A and φ becomes [21]:

H =
1

2m
(p− qA)2 + qφ . (3.12)

The term qφ is set to zero when there are no charges affecting the field. This coupling
between the momentum and the vector potential is called minimal coupling. The same
result can be obtained by direct substitution of

p→ p− qA (3.13)

in a field free Hamiltonian. The charge affected by the field is the charge of the electron:
q = −e. From classical mechanics the angular momentum is: L = r× p and the momen-
tum being coupled to the electromagnetic field gives L = r × (p − qA). If we perform
these substitutions on the relativistic Hamiltonian (2.73) for hydrogen from the previous
chapter we obtain:

Ĥrel =
(p̂ + eA)2

2m
+ V (r)− (p̂ + eA)4

8m3c2

+
e2

8πε0

1

m2c2r3

(
r× (p̂ + eA)

)
· Ŝ +

πh̄2

2m2c2

e2

4πε0
δ(r) . (3.14)

In the non-relativistic limit, the correction terms vanish and the Hamiltonian can be
written:

Ĥnonrel =
(p̂ + eA)2

2m
+ V (r) (3.15)

3.2.1 The dipole approximation

A common approximation used when modeling atoms in an electromagnetic field is the
dipole approximation. For this approximation we assume that the wavelength of the laser
field is much longer than the extent of the whole atom so that the field can be accounted
as uniform over our system i.e. λ� 1Å. Thus, the field becomes space-independent:

A(r, t)→ A(t) . (3.16)

This also requires that the laser intensity is not too high. Neglecting space dependence
in A also means neglecting the magnetic field, a consequence of equation (3.3).
Expanding the parenthesis in the Hamiltonian (3.15) yields:
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Ĥnonrel =
p̂2

2m
+
e(A · p̂)

m
+
e2A2

2m
+ V (r) , (3.17)

where we have imposed the so-called Coulomb gauge where p̂ ·A = A · p̂. Within the
dipole approximation the so-called diamagnetic term e2A2

2m disappears if we perform the
following gauge transformation on our wave function:

Ψ(r, t)→ Ψ(r, t)e−i
e2

2m

∫ t
0 A2(t′)dt′ . (3.18)

After this transformation has been performed; the non-relativistic Hamiltonian,

Ĥnonrel =
p̂2

2m
+
e(A · p̂)

m
+ V (r) , (3.19)

is now said to be in the velocity gauge. The name velocity gauge comes from the fact that
the field is coupled to the velocity operator p̂

m .

3.3 Gauge transformations

Quantum mechanics is gauge invariant, which means that any gauge must produce the
same results for the observables. Certain changes of the electric potential and the vector
potential can be done as long as they do not cause the physical fields to change. Trans-
formations of the potentials that are non-observable are called gauge transformations.
For the electric potential this means that we can add the time derivative of any real
differentiable scalar function χ(r, t),

φ(r, t)→ φ(r, t)− ∂χ(r, t)

∂t
. (3.20)

Substituting this into (3.4) we see that the gradient of a time derivative is zero and the
electric field remains unchanged.

Similarly for the vector potential, we can perform the gauge transformation:

A(r, t)→ A(r, t) +∇χ (3.21)

and we see from equation (3.3) that the curl of a gradient is zero and the magnetic field
is unchanged.

3.3.1 Velocity gauge and length gauge

The relativistic Hamiltonian (3.14) can be transformed using the gauge transformation
[21]:

A(r, t) =A′(r, t) +∇χ(r, t) (3.22)

φ(r, t) =φ′(r, t)− ∂

∂t
χ(r, t)

Ψ(r, t) =Ψ′(r, t)eiqχ(r,t)/h̄ .
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Since we are working in the dipole approximation the scalar potential and the vector
potential in the velocity gauge are:

φ = 0 (3.23)

A = A(t) .

By performing a gauge transformation with the following properties:

χ(r, t) = A(t) · r (3.24)

E(t) =− dA(t)

dt
,

we can see from using the equations (3.22) that the relations become the following now
that A(r, t)→ A(t):

A′(t) =A(t)−∇ (A(t) · r) = 0 (3.25)

φ′(r, t) =φ(r, t) +
∂

∂t
A(t) · r = −E(t) · r

Ψ′(r, t) = Ψ(r, t)e−iqA(t)·r/h̄ .

Looking back at the relativistic Hamiltonian (3.14) in velocity gauge we see that all the
terms involving A(t) become zero but the term qφ is no longer zero because φ′(r, t) =
−E(t) · r. This transformation gives us the following relativistic Hamiltonian:

Ĥ ′rel =
p̂2

2m
+ V (r)− p̂4

8m3c2
+

e2

8πε0

1

m2c2r3
L̂ · Ŝ +

πh̄2

2m2c2

e2

4πε0
δ(r) + eE(t) · r , (3.26)

for hydrogen. The field is no longer present in the spin-orbit coupling like in the velocity
gauge. This gauge is the so-called length gauge because the interaction term couples the
electric field and the position. In the non-relativistic limit the correction terms vanish
and we get the Hamiltonian:

Ĥ ′nonrel =
p̂2

2m
+ V (r) + eE(t) · r , (3.27)

for hydrogen in length gauge. The motivation for obtaining the Hamiltonian in the two
different gauges (3.14) and (3.26), respectively, will be clarified in a later chapter.

25



Chapter 4

Numerical Approach to Solving
the Schrödinger Equation

Quantum mechanical systems are notorious for their complex and lengthy calculations for
even quite simple systems. The possibility of solving the Schrödinger equation analytically
quickly fades and we must enter into the realm of numerical methods. In this chapter the
numerical methods used for the calculations in this thesis will be presented. This includes
a section on B-splines as basis functions, the Gauss-Legendre integration method and the
calculation of the relativistic corrections’ matrix elements.

4.1 Solving the non-relativistic Schrödinger equation nu-
merically

The time independent Schrödinger equation,

Ĥψ = Eψ , (4.1)

can be solved as an eigenvalue problem. Analytically, the set of wave functions and
eigenstates is infinite. Numerically, we truncate our set at a finite number of energy
states, k ∈ {1, 2, ..., Nmax}, per value of the quantum numbers l ∈ {0, 1, ..., lmax} and
m ∈ {−l,−l + 1, ..., 0, ..., l − 1, l}. Separation of variables gives the following expression
for the wave function:

ψklm(r) =
Ukl(r)
r

Ylm(θ, φ) , (4.2)

where Ylm(θ, φ) is the spherical harmonic function and the R(r) = Ukl(r)
r is the radial

function, which is a solution of equation (2.43) from the second chapter:[
− h̄2

2m

d2

dr2
+ V (r) +

h̄2

2m

l(l + 1)

r2

]
Ukl(r) = E Ukl(r) . (4.3)

As discussed in chapter 2 the problem can be expressed as a matrix equation,
H11 H12 . . . H1q

H21 H22 . . . H2q
...

...
. . .

...
Hp1 Hp2 . . . Hp,q



U1

U2
...
Uq

 = E


U1

U2
...
Uq

 (4.4)
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where the matrix elements can be written as:

Hpq =

∫ ∞
−∞
U∗p (r) Ĥ Uq(r, ) dr . (4.5)

Diagonalization of the Hamiltonian matrix gives the energy eigenvalues and the corre-
sponding eigenstates of the system. To shorten the notation the indices p = {kl} and
q = {k′l′} are adopted. p and q contain the energy state and quantum number l of the
electron and describes the placement in the matrix. It will only be necessary to calculate
the radial integrals numerically while the angular integrals can be calculated analytically.
As a consequence of this we do not need to resolve the spherical harmonics numerically,
but the radial functions must be computed in order to solve the radial integrals. The
radial functions will be expressed as a linear combination of basis functions.

4.2 B-splines

For our calculations of the radial function we shall use a basis of B-splines [27]. B-splines
are polynomial functions non-zero and non-negative at a certain interval. They are dis-
tributed over the box in which we define our wave functions. The box is defined by the
interval I = [0, rmax] where the radial coordinate r vary between 0 and the extent of the
box, rmax. More information on B-splines and their application in atomic physics can be
found in [28].

The box interval, I = [0, rmax], is divided into subintervals {0, r1, ..., rn, ..., rmax=Nr} by a
sequence of breakpoints. To each breakpoint we assign a number of knots. The endpoints
of the box are given a multiplicity of k knots. For the inner breakpoints we restrict
ourselves to one knot per breakpoint. In total there is a set of m knots: {ti}i=1,2...m.
Each B-spline is defined over an interval [ti, ti+k] of k+ 1 knots. An interval between two
consecutive knots therefore contain k number of B-splines. The total number of B-splines
NB is then NB = m − k. They are normalized such that the sum of the B-spline values
at a point r is 1 i.e.

∑
iBi(r) = 1.

The first order spline is defined to be 1 or 0 depending on whether our point is located
in the B-splines’ defined interval.

B1
i (r) = 1 if ti ≤ r < ti+1 and B1

i = 0 otherwise. (4.6)

Note that this corresponds to a zeroth order polynomial. The higher order splines are
then generated by the following recursion relation using the splines of previous order:

Bk
i (r) =

r − ti
ti+k−1 − ti

Bk−1
i (r) +

ti+k − r
ti+k − ti+1

Bk−1
i+1 (r) . (4.7)

The splines derivatives can also be calculated using a similar recursion relation:

d

dr
Bk
i (r) =

k − 1

ti+k−1 − ti
Bk−1
i (r)− k − 1

ti+k − ti+k
Bk−1
i+1 (r) . (4.8)

Repeating the process using the new obtained derivatives gives higher order derivatives.
For our calculations we only require first and second order derivatives.
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Figure 4.1 shows a set of m− k = 17− 4 = 13 B-splines on the interval [0, rmax] = [0, 10]
with spacing 1 between the breakpoints. The end breakpoints have a multiplicity of 4
knots and the intermediate points have 1 knot each.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 4.1: [B-splines 0,rmax]=[0,10] with 17 knots and order 4.

In all calculations we shall remove the first and last B-spline in order to satisfy the
boundary conditions. The proper number of B-splines is then NB = m− k − 2.

4.2.1 Using B-splines to solve the radial equation

Our mission is to solve the Schrödinger equation and the first step is to obtain the energy
levels for hydrogen. We start by examining the radial equation from (4.3) and insert the

Coulomb potential V (r) = − e2

4πε0r
:[

− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2mr2
− e2

4πε0r

]
Ukl(r) = Ek Ukl(r) . (4.9)

The boundary conditions are Ukl(r = 0) = 0 and
Ukl(r = rmax) = 0. The solution can now be expanded on the B-spline basis set:

Ukl(r) =

NB∑
i=1

ckli Bi(r) . (4.10)

Inserting this into equation (4.9) yields:[
− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2mr2
− e2

4πε0r

] NB∑
i=1

ckli Bi(r) = Ek

NB∑
i=1

ckli Bi(r) . (4.11)

The basis depends on the following parameters: the box size, the order of the basis set k
and the number of B-splines, NB, on the interval I. These parameters must be chosen in
accordance with the problem we want to solve.
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If we are considering a specific angular momentum l the problem can be recognized as an
eigenvalue problem:


H11 H12 . . . H1NB

H21 H22 . . . H2NB
...

...
. . .

...
HNB1 HNB2 . . . HNB ,NB



c1

c2
...

cNB

 = E


S11 S12 . . . S1NB

S21 S22 . . . S2NB
...

...
. . .

...
SNB1 SNB2 . . . SNB ,NB



c1

c2
...

cNB

 ,
(4.12)

which is equivalent to solving a system of NB linear equations. The matrix S is the
overlap matrix; which is needed because the B-splines do not form an orthonormal set of
basis functions. The matrix elements for a certain l are calculated from the integrals

H l
ij =

∫ rmax

0
Bi(r)

[
− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2m

1

r2
− e2

4πε0

1

r

]
Bj(r)dr , (4.13)

and the overlap matrix is calculated from the integrals

Sij =

∫ rmax

0
Bi(r)Bj(r)dr . (4.14)

The integrals are calculated using the Gauss-Legendre integration method, also called the
Gauss-Legendre quadrature. The approach of the method is to approximate an integral
by performing a finite sum given by the equation:∫ rn+1

rn

f(r)dx ≈ rn+1 − rn
2

k∑
a=1

waf

(
rn+1 − rn

2
λa +

rn + rn+1

2

)
, (4.15)

where rn and rn+1 are two consecutive breakpoints. For the Gauss-Legendre quadrature
the idea is to pick a set of weights, wa, and a set of nodes, ra, to get the most optimal
result. For the above integral: if f(r) is any polynomial of degree d and we are using k
(order) integration points which satisfies d ≤ 2k − 1, then the finite sum gives the exact
value of the integral. A product of two B-splines will give polynomials of degree d = 2k−2
at most and the condition is satisfied. The optimal set of nodes and weights are obtained
from the zeroes of the Legendre polynomial. We set up the k × k Jacobi matrix J for
Legendre polynomials. The entries of the matrix J are described in [29] as:

αa = 0, βa =
1

2

(
1− (2a)−2

)− 1
2 . (4.16)

where α1, ..., αk are diagonal elements and β1, ...βk−1 are tridiagonal elements. The Jacobi
matrix can be written J = V DV T , where V is the matrix containing the eigenvectors,
va, and D is a diagonal matrix of the eigenvalues, λa. From the following relations; the
nodes are calculated from the eigenvalues of the Jacobi matrix and the weights are found
using the eigenvectors:

ra =
rn+1 − rn

2
λa +

rn + rn+1

2
(4.17)

wa =2(va)
2
1 a = 1, 2, ..., k , (4.18)

where (va)1 is the first element of each eigenvector. The B-splines are generated using
the nodes, ra, for each knot interval. Further, the integration over the entire box is
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performed by summing the integrations over each knot point interval. The integrations
are performed using the Gauss-Legendre integration with the weights. Equations (4.13)
and (4.14) then become:

H l
ij =

m−1∑∫ tn+1

tn

Bi(r)

[
− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2m

1

r2
− e2

4πε0

1

r

]
Bj(r)dr , (4.19)

Sij =
m−1∑∫ tn+1

tn

Bi(r)Bj(r)dr . (4.20)

The integrals containing the kinetic energy term can be calculated exactly using this
method, but the Coulomb potential term and the centrifugal term are rational functions
for which the above statement does not hold. Although these integrals will not be com-
puted exactly, they still prove to be very accurate.

4.3 Calculation of the relativistic corrections

The Hamiltonian matrix in (4.12) can now be diagonalized to obtain the energy eigen-
values, E0

k , for the non-relativistic hydrogen atom for both bound and pseudo-continuum
states. The eigenvectors or reduced radial functions U0

kl(r) are also obtained. The total

non-relativistic wave function is described as ψ0
klm(r) =

U0
kl(r)
r Y 0

lm(θ, φ). The diagonaliza-
tion of the Hamiltonian is performed using the eig-function in MATLAB. The number of
eigenvalues equal the number of B-splines, NB, used in the calculation. Truncation of the
number of eigenvalues is determined by how high energies we want to study.

Starting off with NB eigenvalues after the diagonalization; not all these are considered
reliable due to the B-splines not being able to approximate fast oscillating functions very
well. As a rule of thumb we then use: Nl ≈ NB

2 . The orbital angular momentum quantum

number is truncated at lmax, thus obtaining the total Hamiltonian matrix Ĥ in equation
(4.4) of dimension (lmax + 1) ·Nl × (lmax + 1) ·Nl.

We now return to the relativistic Hamiltonian (2.73) stated in chapter 2:

Ĥ =
p̂2

2m
+ V (r)− p̂4

8m3c2
+

e2

8πε0

1

m2c2r3
L̂ · Ŝ +

πh̄2

2m2c2

Ze2

4πε0
δ(r) . (4.21)

The first two terms have now been implemented and the remaining terms are the three
relativistic corrections. They all provide corrections to the energy levels of the hydrogen
atom as seen in chapter 2 from equations (2.54), (2.68) and (2.71). We start with the
implementation of the correction to the kinetic energy of the hydrogen atom:

Ĥ1 = − p̂4

8m3c2
. (4.22)

The optimal approach for the calculation of these integrals was to make the substitution:

p̂2

2m
= Ĥ0 − V (r) . (4.23)
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Applying this yields:

Hp4

pq = − 1

2mc2

〈(
Ĥ0 − V (r)

) U0
kl

r
Y 0
lm

∣∣∣∣ (Ĥ0 − V (r)
) U0

k′l′

r
Y 0
l′m′

〉
(4.24)

We already know that Ĥ0 acting on the wave function produces the energy eigenvalues
E0
n. Further calculations and separation of the wave function yields:

Hp4

pq = − 1

2mc2
δll′ δmm′

∫ rmax

0

[
E0
kE

0
k′ +

E0
k

r
+
E0
k′

r
+

1

r2

]
U0
kl U0

k′l′ dr . (4.25)

The δ are the Kronecker delta; taking the value 1 when the value of the indices are equal
and 0 when they are different. From the Kronecker delta we see that this term only
couples states of the same orbital angular momentum and magnetic quantum number.

The Darwin term does not require us to perform any integral because it depends only on
the value of the wave function at the origin,

HD
pq =

πh̄2

2m2c2

e2

4πε0
|ψk00(0)|2 , (4.26)

which is found by extrapolating the wave function to origo using the MATLAB spline-
function. Note that the Darwin term only provides a correction when l = 0.

When l > 0 the LS-coupling takes over. The eigenvalues to the LS-coupling are known
from chapter 2 in equation (2.67)

h̄2

2

[
j(j + 1)− l(l + 1)− s(s+ 1)

]
. (4.27)

The total integral for the calculation of the LS-coupling matrix elements become:

HLS
pq =

h̄

16πε0m2c2

[
j(j + 1)− l(l + 1)− s(s+ 1)

] ∫ rmax

0

1

r3
Ukl Uk′l′dr , (4.28)

where j is the total angular momentum quantum number. The permitted values for j is
given by the Clebsch-Gordan series [18]:

j = j1 + j2, j1 + j2 − 1, ..., |j1 − j2| , (4.29)

where for a particle like the electron we have j1 = l, the orbital angular momentum, and
j2 = s, the spin. The spin being known gives the following possible values for j:

j =
1

2
for l = 0 , (4.30)

j+ = l +
1

2
, j− =

∣∣∣∣l − 1

2

∣∣∣∣ for l > 0 . (4.31)

Two sets of energy eigenvalues, one for each j, is obtained when l > 0. To include the total
angular momentum j we must make a change of scheme to where it can be determined.
So far we have essentially been working in the so-called uncoupled picture. The two
different pictures (coupled and uncoupled) have different sets of quantum numbers that
can be specified. In the uncoupled picture we are assuming that the quantum numbers
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l, s,ml,ms can be determined, but the total angular momentum j cannot be specified in
this picture. We write the uncoupled states as

|l,ml〉|s,ms〉 . (4.32)

Turning to the coupled picture we can determine j and the sum of the magnetic quantum
number and the spin projection quantum number: mj = ml +ms, but not the individual
components ml and ms. The coupled states can be written:

|ls, jmj〉 . (4.33)

The relation between the coupled and uncoupled states is given by:

|jmj , ls〉 =
∑
ml,ms

C(ml,ms)|l,ml〉|s,ms〉 , (4.34)

where the coefficients C(ml,ms) are the Clebsch Gordan coefficients [18] given by the
inner product:

C(ml,ms) = 〈lml, sms|jmj , ls〉 . (4.35)

We perform a second diagonalization of the new Hamiltonian containing the previously
calculated energy values along the diagonal and the new obtained matrix elements from
the integrals above. New energy eigenvalues, Ek, with relativistic correction and corrected
wave functions ψklm = Ukl

r Ylm are obtained.

Table (4.1) show the energy levels of hydrogen for the s-states, l = 0, for the non-
relativistic and the relativistic calculation. The calculation has been performed using
a box of size 160 a.u. and 900 6th order basis functions.

Comparing the calculated energies with the energies obtained from the formulas in chapter
2, (2.44), (2.74) and (2.75), we can see that our obtained energies are in good agreement
with the results from the formulas at least down to 8 decimals. The non-relativistic
energies have shown to be precise to 13 decimals. In the table we use 9 decimals, this is
the order of agreement between the formulas (2.74) and (2.75).

Non-relativistic,
Bohr energy (2.44)

Non-relativistic cal-
culated

Relativistic from for-
mulas (2.74) (2.75)

Relativistic calcu-
lated

1s -0.5 -0.500000000 -0.500006656 -0.500006664

2s -0.125 -0.125000000 -0.125002080 -0.125002081

3s -0.055555556 -0.055555556 -0.055556295 -0.055556296

4s -0.03125 -0.031249999 -0.031250338 -0.031250338

5s -0.02 -0.020000000 -0.020000181 -0.020000181

Table 4.1: Non-relativistic and relativistic energy levels in hydrogen.
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Chapter 5

Photoionization of Hydrogen
- a Time Independent Study

The results section will be split into two separate parts. This part presents a time inde-
pendent study of the photoionization cross section of the electron in a weak field. Cross
section describes the area in which all the projectile particles that enter through said area
will be scattered off the target in some direction. In other words, the area of the target
particle as experienced by the projectile particle. A photon of energy E might hit our
electron and cause it to either be excited to a higher bound state or ionize the atom. We
shall study the interaction between 1s and kp states; the electron’s transition from the
ground state to continuum states that have orbital quantum number l = 1. This is a
single photon interaction and only transitions with ∆l = ±1 are allowed.

Inspecting the two Hamiltonians with relativistic corrections in the two different gauges
that we found in chapter 3 i.e., the velocity gauge relativistic Hamiltonian (3.14) and the
length gauge relativistic Hamiltonian (3.26), we note that the length gauge Hamiltonian
has some advantages for this type of calculations, in that it has only one interaction term,

Ĥint = eE(t) · r . (5.1)

The relativistic length gauge Hamiltonian (3.26):

Ĥ =
p̂2

2m
+ V (r)− p̂4

8m3c2
+

e2

8πε0

1

m2c2r3
L̂ · Ŝ

+
πh̄2

2m2c2

e2

4πε0
δ(r) + eE(t) · r , (5.2)

will therefore be used in the calculation of the photoionization cross section.

5.1 Finding an expression for the cross section in length
gauge

To find an expression for the cross section we turn to time dependent perturbation theory.
In the study of the single photon absorption process we will treat the interaction term
(5.1) as a small perturbation. The transitions we are studying have well defined initial
and final states α and β. Starting with the time dependent Schrödinger equation:
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ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t) =

(
Ĥ0 + Ĥint

)
Ψ(r, t) , (5.3)

where Ĥ0 is the Hamiltonian (2.73) and the eigenvalues of the Hamiltonian Ĥ0 are known,

Ĥ0ψk = Ekψk . (5.4)

The general solution of the time dependent Schrödinger equation can be written:

Ψ(r, t) =
∑
k

ck(t)ψk(r)e−iEkt/h̄ . (5.5)

The general solution is inserted in the TDSE and the perturbation is switched on at t = 0.
The transition amplitude for the final state, β, in first order time dependent perturbation
theory is given by:

cβ(t) =
1

h̄

∫ t

0

〈
ψβ

∣∣∣Ĥint

∣∣∣ψα〉 eiωβαt′dt′ , (5.6)

where the energy difference of the initial and final state of the electron equals the energy of
the absorbed photon, Eβ −Eα = ωβαh̄. Since we are applying the dipole approximation,
the electric field in our perturbation is described as a plane wave,

E(t) = E0 sin(ωt) , (5.7)

i.e. our perturbation is harmonic and the electric field can be written as:

E0 sin(ωt) =
E0

2i

(
eiωt − e−iωt

)
. (5.8)

The process of solving harmonic perturbations is described in [20].
When (5.8) is inserted in (5.6) we get:

cβ(t) =
1

ih̄

〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉∫ t

0
ei(ωβα+ω)t′dt′

= − 1

ih̄

〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉∫ t

0
ei(ωβα−ω)t′dt′ , (5.9)

and the integrals in the transition amplitude can be solved so that we obtain:

cβ(t) =

〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉 1− ei(ωβα+ω)t

h̄ωβα + h̄ω

−
〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉 1− ei(ωβα−ω)t

h̄ωβα − h̄ω
(5.10)

where the first part can be neglected when we are dealing with absorption where h̄ωβα '
h̄ω. If we take the square of the absolute value of the transition amplitude we get the
transition probability:

P (t) =
∣∣∣cβ(t)

∣∣∣2 =

∣∣∣∣∣
〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉

∣∣∣∣∣
2 ∣∣1− ei(ωβα−ω)t

∣∣2
(h̄ωβα − h̄ω)2 . (5.11)
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Using trigonometric identities gives:

P (t) = 4

∣∣∣∣∣
〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉

∣∣∣∣∣
2 sin2

[
(h̄ωβα−h̄ω)t

2h̄

]
(h̄ωβα − h̄ω)2 . (5.12)

We make the substitution x =
h̄ωβα−h̄ω

2h̄ and multiply by π
π . The transition rate, W (t) =

P (t)
t can be written:

W (t) = 4π

∣∣∣∣∣
〈
ψβ

∣∣∣eE0

2i
· r
∣∣∣ψα〉

∣∣∣∣∣
2

sin2(xt)

4πh̄2x2t
. (5.13)

From appendix B in [20] when time approaches infinity the expression:

lim
t→∞

1

πt

sin2(xt)

x2
= δ(x) , (5.14)

can be approximated to the delta function. We therefore set the time to approach infinity
for the transition rate:

W = lim
t→∞

P (t)

t
=

π

h̄2

∣∣∣∣∣
〈
ψβ

∣∣∣∣eE0

2i
· r
∣∣∣∣ψα〉

∣∣∣∣∣
2

δ

(
h̄ωβα − h̄ω

2h̄

)
. (5.15)

Using appendix B in [20] again to find that δ
(
h̄ωβα−h̄ω

2h̄

)
= 2h̄δ (h̄ωβα − h̄ω) we get the

following expression:

W =
2π

h̄

∣∣∣∣∣
〈
ψβ

∣∣∣∣eE0

2i
· r
∣∣∣∣ψα〉

∣∣∣∣∣
2

δ (h̄ωβα − h̄ω) . (5.16)

This is the probability per unit time of a transition from the state α to the state β. We
shall study transitions from the well defined ground state, 1s, to the continuum states by
absorption of a photon of frequency ω. However, the number of continuum states on any
energy interval in the continuum is infinite, but in order to be able to apply the transition
rate formula we will define a number of states in our so-called pseudo-continuum. We
define a number ρ(E)dE of states on an interval [E,E+dE], where the ρ(E) is the density
of states. To obtain the total transition rate we must integrate over all possible end states
β:

Wβα =

∫ ∞
−∞

W (Eβ)ρ(Eβ)dEβ (5.17)

=
2π

h̄

∫ ∞
−∞

∣∣∣∣∣
〈
ψβ

∣∣∣∣eE0

2i
· r
∣∣∣∣ψα〉

∣∣∣∣∣
2

ρ(Eβ)δ (h̄ωβα − h̄ω) dEβ . (5.18)

This yields the famous Fermi’s Golden Rule which describes the transition rate from a
bound state to the continuum:

Wβα =
2π

h̄

∣∣∣∣∣
〈
ψβ

∣∣∣∣eE0

2i
· r
∣∣∣∣ψα〉

∣∣∣∣∣
2

ρ(Eβ) , (5.19)

where Eβ = Eα + h̄ωβα. The cross section is defined as the transition rate times photon
energy divided by the intensity:
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σβα =
Wβαh̄ωβα
I(ωβα)

, (5.20)

The intensity of an electric field can be written I(ωβα) = 1
2ε0cE

2
0(ω). Taking the constants

out of the squared matrix element and expressing the matrix element as:

Mβα = 〈ψβ|r|ψα〉 , (5.21)

yields the following expression for cross section:

σβα =
e2πωβα
ε0c

|Mβα|2ρ(Eβ) . (5.22)

Substituting in the fine structure constant α = e2

4πε0h̄c
gives the final expression for pho-

toionization cross section:

σβα = 4π2αh̄ωβα|Mβα|2ρ(Eβ) . (5.23)

Our wave functions can be described by their set of quantum numbers:

|ψ〉 = |k j mj , l s〉 . (5.24)

The transitions under study are from α = 1s to β = kp. For these transitions we have:
l′ = 0, l = 1 and s′ = s = 1

2 . The spin being known gives only two possible values for j

j+ = l +
1

2
=

3

2
, j− =

∣∣∣∣l − 1

2

∣∣∣∣ =
1

2
. (5.25)

For the combinations of quantum numbers we shall assume the magnetic quantum number
to be ml = 0 and that the spin quantum number is ms = +1

2 , both before and after the
interaction. The possible value for the projection of the total angular momentum quantum
number mj = ml +ms is now mj = 1

2 . Since we have fixed our system to ms = 1
2 we can

picture that in the two cases of different j, orbital angular momentum and spin vectors
are either parallel or anti-parallel. The matrix elements for interactions between 1s and
kp states become:

M j+
kp,1s =

〈
k

3

2

1

2
, 1

1

2

∣∣∣∣ r ∣∣∣∣ 1
1

2

1

2
, 0

1

2

〉
(5.26)

M j−
kp,1s =

〈
k

1

2

1

2
, 1

1

2

∣∣∣∣ r ∣∣∣∣ 1
1

2

1

2
, 0

1

2

〉
. (5.27)

Writing our states in the coupled picture; the Clebsch-Gordan coefficients have been
included in the final states when computing the matrix elements from (5.26) and (5.27).
The coefficients for the case j+ = 3

2 and j− = 1
2 , respectively are given by [20]:

C+ =

√
l + 1

2 +mj

2l + 1
=

√
2

3
, (5.28)

C− = −

√
l + 1

2 −mj

2l + 1
= −

√
1

3
. (5.29)
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The photon energy being Ekp−E1s = h̄ωkp,1s and h̄ = 1 in atomic units, the implemented
formula is:

σkp,1s = 4π2αEkp,1s
∣∣M j±

kp,1s

∣∣2ρ(Ekp) , (5.30)

where the density of states is given by:

ρ(Ekp) =
2

E(k+1)p − E(k−1)p
. (5.31)

5.2 Results and discussion

A study of the photoionization cross section for both the non-relativistic case and the
relativistic case will be presented. To account for relativistic effects, relativistic correction
terms in the Hamiltonian have been implemented. The two Hamiltonians applied in the
calculations are:

Ĥnonrel =
p̂2

2m
+ V (r) + eE(t) · r , (5.32)

Ĥrel =
p̂2

2m
+ V (r)− p̂4

8m3c2
+

e2

8πε0

1

m2c2r3
L̂ · Ŝ +

πh̄2

2m2c2

e2

4πε0
δ(r) + eE(t) · r (5.33)

The following questions are attempted answered:

– Can relativistic effects be observed for the photoionization cross section?

– Do cross section results obtained from solving the Dirac equation agree
with results obtained from the Schrödinger equation with relativistic
corrections?

– Will the orientation of the spin and angular momentum have an effect
on the cross section?

A basis of ≈ 1400 splines in a box of size rmax = 30 a.u. were used for this calculation. Of
the 1400 eigenstates Nmax = 900 were kept. Using these parameters we will show results
for energies up to E = 2500 a.u. The unit of cross section is megabarn, 1Mb = 10−18cm2,
a unit much used in nuclear physics.
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Figure 5.1: The figure shows photoionization cross section with respect to photon energy.
Unit of cross section is in megabarn, where 1 Mb = 10−18cm2. The solid black line
represents the calculation using the Hamiltonian (5.32) for the non-relativistic system.
The red solid line shows the calculation using the Hamiltonian (5.33) for the relativistic
system. It can be observed that the relativistic effects cause the cross section to be smaller
than for the non-relativistic system.

First, the photoionization cross section for the non-relativistic case is presented and com-
pared to the relativistic case. Both calculations are performed using the Schrödinger
equation using the Hamiltonians (5.32) and (5.33). Figure (5.1) shows the calculation
using the non-relativistic Hamiltonian (5.32) represented by the black line. The red line
shows the relativistic calculation using the Hamiltonian (5.33). Generally, the cross sec-
tion decreases with increasing energy of the incoming photon. The cross section being
proportional to the transition rate, Wβα (5.20), indicates that the probability of ioniza-
tion will decrease with photon energy as well. Relativistic effects can be noticed from
photon energies of about 1000 a.u., which is about 27.2 keV, and the effect becomes more
distinguished with increasing photon energy. The effect manifests itself in that it gives a
smaller cross section than for the non-relativistic calculation.

38



0 500 1000 1500 2000 2500
Energy of photon (a.u.)

10-13

10-12

10-11

10-10

10-9

10-8
C

ro
ss

 s
e
ct

io
n
 (

M
b
)

Cross section for transitions 1s to kp

Relativistic Schrödinger
 Dirac [30]

Figure 5.2: The red solid line is the same relativistic Schrödinger photoionization cross
section calculation from the previous figure (5.1). Overlapping the red line is the green
dashed line representing the Dirac equation calculation for cross section. The Dirac data
were obtained from [30]. The two sets of results overlap nicely until we reach energies of
1500 a.u. and higher, then a small difference can be noticed.

Figure (5.2) presents the relativistic photoionization cross section solved by the Schrödinger
equation, using the relativistic Hamiltonian (5.33), and the Dirac equation. Dirac equa-
tion results have been obtained from [30]. The two approaches yield very similar results,
although a difference is observable at photon energies of 1500 a.u. and higher. The differ-
ence is nevertheless small and there seem to be good agreement between the relativistic
Schrödinger equation approach and the Dirac equation approach.
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Figure 5.3: The solid lines represent cross section calculations from the Schrödinger equa-
tion using the relativistic Hamiltonian (5.33) and the dashed cyan and magenta lines
represent calculations from the Dirac equation (obtained from [30]). Dashed lines in the
colors green and red are the non-relativistic Schrödinger equation calculations using the
Hamiltonian (5.32). Cross section for the two different values of j, the total angular mo-
mentum, have been separated. For the relativistic results their sum equal the curves in
the previous figure, (5.2). Figure (5.1) show the sum of the non-relativistic results by its
black solid line. The dashed green and magenta line, together with the solid blue line
all show cases where the electron’s final state has parallel spin and angular momentum,
j+ = 3/2. For the three remaining lines: the red and cyan dashed lines and the black
solid line, they all show cases where the spin and angular momentum are anti-parallel,
j−, for the electron in the final state.

Figure (5.3) shows the separation of the cases with parallel, j+ = 3
2 , and anti-parallel,

j− = 1
2 , angular momentum and spin. The solid lines show the photoionization cross sec-

tion calculated using the Schrödinger equation where the relativistic Hamiltonian (5.33)
has been implemented. For these calculations the matrix elements of the interaction are
given by (5.26) and the cross section is represented by the blue solid line for the parallel
case. Similarly for the anti-parallel case; the matrix elements are given by (5.27) and
the cross section is depicted by the black solid line. Represented by the dashed lines are
the photoionization cross section results from the Dirac equation and the non-relativistic
Schrödinger equation. j+ = 3

2 is shown in figure (5.3) by the dashed magenta line for Dirac
and by the dashed green line for non-relativistic Schrödinger. j− = 1

2 is represented by
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the dashed cyan line for Dirac and by the dashed red line for non-relativistic Schrödinger.
The sum of the blue and black solid lines yield the solid red curve in figure (5.2) and the
sum of the dashed magenta and cyan lines yield the dashed green curve in figure (5.2).
Lastly, the sum of the dashed green and red line yields the black solid curve in (5.1)

From figure (5.3) a profound difference between j+ and j− is observable. As a consequence
of the Clebsch-Gordan coefficients (5.28) and (5.29) there is generally a smaller probability
for an electron to end up with anti-parallel spin and angular momentum. It can thus be
seen that the j− calculation yields a smaller cross section than the j+ case with parallel
spin and angular momentum. From photon energies of 500 a.u. and higher a difference
between the Dirac and the relativistic Schrödinger results can be observed. For the j+ case
in figure (5.3) the Dirac result is generally a little higher when compared to the relativistic
Schrödinger calculation. For the j− case the Dirac result is generally a little lower. This
leaves the apparent agreement of the result in figure (5.2) somewhat debatable. Since the
difference between the non-relativistic Schrödinger calculation and the Dirac calculation
is of the same magnitude as the difference between the Dirac and relativistic Schrödinger
equation for the j+ case a further investigation of these effects is necessary to draw any
conclusions. It is not certain why we get these differences between the Dirac and the
relativistic Schrödinger equation but possible sources are errors in the programming or
effects from other correction terms such as the second order correction to the kinetic
energy:

p6

16m5c4
. (5.34)

Although it must be noticed that this term is proportional to α4 and thus is very small,
it leaves a possibility for further investigation. As the dipole approximation has shown to
break down for high photon energies, performing the calculation including beyond dipole
effects is also an option for further exploration.
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Chapter 6

Multiphoton Ionization of
Hydrogen - a Time Dependent
Study

A study of ionization of the hydrogen atom will now be presented. The hydrogen atom
is exposed to an intense laser field and the probability of ionization will be studied for
both the non-relativistic case and when we consider relativistic effects in the calculations.
Plots showing the differential probability of ionization will be shown, where results from
the non-relativistic and relativistic Schrödinger equation will be compared to results from
solving the Dirac equation as was calculated by [34].

To obtain these results we must solve the time dependent Schrödinger equation

ih̄
∂

∂t
Ψ(t, r) = ĤΨ(t, r) (6.1)

numerically. Truncating the wave function at a number of states Nmax per angular mo-
mentum states l, up to lmax, gives the following expression for the wave function:

Ψ(r, t) =

Nmax∑
k=1

lmax∑
l=0

ckl(t)ψkl(r) . (6.2)

Multiplying by Ψ∗(r, t) from the left in equation (6.1) and taking the integral over all of
space yields an only time dependent set of differential equations, which we can solve as a
matrix equation:

ih̄


ċ1(t)
ċ2(t)

...
ċq(t)

 =


H11 H12 . . . H1q

H21 H22 . . . H2q
...

...
. . .

...
Hp1 . . . . . . Hpq



c1(t)
c2(t)

...
cq(t)

 . (6.3)

The matrix elements of the Hamiltonian is computed before the Hamiltonian can be
propagated forward in time. The time propagation is performed using a Fortran program
based on a numerical method from [31].
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6.1 Calculating the matrix elements of the velocity gauge
Hamiltonian

Computing the matrix elements of the Hamiltonian in (6.3) is an arduous task. We want
to solve the problem for intense laser fields, where the photoelectron reaches relativistic
velocities, therefore we shall consider the velocity gauge Hamiltonian (3.14) from chap-
ter 3. It has been shown that when solving the time-dependent Schrödinger equation
for intense fields the velocity gauge proves more efficient than the length gauge [32, 33].
Quantum mechanics is gauge invariant, but the two gauges present different computa-
tional properties. A higher lmax is required for calculations in length gauge; it is therefore
more convenient to apply the velocity gauge Hamiltonian for this task.

The non-relativistic Hamiltonian is then the Hamiltonian (3.19) from chapter 3.

Ĥnonrel =
p̂2

2m
+
e(A · p̂)

m
+ V (r) , (6.4)

Expanding the parentheses for the relativistic velocity gauge Hamiltonian (3.14) gives the
following extensive expression:

Ĥrel =− p̂2

2m
− e2

4πε0r
+
ep̂zA

m
+
e2A2

2m
− p̂4

8m3c2
− ep̂2p̂zA

2m3c2
(6.5)

− 1

4

e2p̂2A2

m3c2
− e2(p̂z ·A)(p̂z ·A)

2m3c2
− e3p̂zA

3

2m3c2
− e4A4

8m3c2

+
e2

8πε0

1

m2c2r3

(
r× (p̂ + eA)

)
· Ŝ +

πh̄2

2m2c2

e2

4πε0
δ(r)

In the discussion about the dipole approximation in chapter 3 we performed a gauge
transformation on the wave function (3.18) that caused the diamagnetic term e2A2

2m to

disappear. For similar reasons the term e4A4

8m3c2
also disappears. For an intense field the

field strength is high and the terms proportional to high orders of A become important.
We assume therefore that the LS-coupling and Darwin term can be neglected in the
calculation. The LS-coupling is proportional to the field of the first order and the Darwin
term is only a structural correction. The Hamiltonian used for calculations is now:

Ĥcalc
rel =− p̂2

2m
− e2

4πε0r
+
ep̂zA

m
− p̂4

8m3c2
− ep̂2p̂zA

2m3c2
(6.6)

− 1

4

e2p̂2A2

m3c2
− e2(p̂z ·A)(p̂z ·A)

2m3c2
− e3p̂zA

3

2m3c2
.

The calculation of the matrix elements of the 5 remaining field dependent terms will be
shown. The coupling of the field with the momentum will be set aside for now and the
spatial Hamiltonian will be calculated, considering only the z-component of the momen-
tum. All the remaining terms contain only the hermitian operators p̂2 and p̂z. When
these operators work on our wave function ψ(r) = Ukl

r Ylm they yield:
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p̂zψ(r) =− ih̄ ∂
∂z

(
Ukl(r)
r

Ylm(θ, φ)

)
=

−i

((
1

r

dUkl
dr
− l + 1

r2
Ukl
)
bl+1,mYl+1,m +

(
1

r

dUkl
dr

+
l

r2
Ukl
)
blmYl−1,m

)
(6.7)

p̂2ψ(r) =− h̄2∇2

(
Ukl(r)
r

Ylm(θ, φ)

)
=

−h̄2

(
1

r

d2Ukl
dr2

Ylm −
l(l + 1)

r3
UklYlm

)
. (6.8)

The blm factors are the Clebsch-Gordan coefficients. They are calculated using the rela-
tion:

blm =

√
l2 −m2

(4l2 − 1)
(6.9)

where m = 0.

The terms:

Ĥpz =
p̂z · eA
m

and ĤpzA3
= −e

3p̂zA
3

2m3c2
(6.10)

of the Hamiltonian (6.6) both operate like (6.7). They yield the following integrals for
their matrix elements, respectively:

Hpz
pq = − ieh̄

m
bl+1,mδl′,l+1δmm′

∫ rmax

0
Ukl

dUk′l+1

dr
+
l + 1

r
UklUk′l+1dr , (6.11)

HpzA3

pq =
ie3h̄

2m3c2
bl+1,mδl′,l+1δmm′

∫ rmax

0
Ukl
Uk′l+1

dr
+
l + 1

r
Ukl Uk′l+1 dr , (6.12)

when only taking into account the terms that satisfy l′ = l+ 1. The matrix is symmetric
so there is no need to calculate the same elements twice. The Jacobien r2 have been
included in all the integrals since we are working with spherical coordinates. For the term
∝ p̂2p̂z of (6.6),

Ĥp2pz = −ep̂
2p̂zA

2m3c2
, (6.13)

we operate from both left and right. Operating with p2 from the left and pz from the
right gives the following integral for the matrix elements:

Hp2pz
pq = − ieh̄3

2m3c2
bl+1,mδl′,l+1δmm′

∫ rmax

0

d2Ukl
dr2

dUk′l+1

dr
+
l + 1

r

d2Ukl
dr2
Uk′l+1

− l(l + 1)

r2

dUk′l+1

dr
Ukl −

l(l + 1)2

r3
Uk′,l+1Ukl dr .

(6.14)
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The term

Ĥp2
= −e

2p̂2A2

4m3c2
(6.15)

in (6.6) yields the following integral for its matrix elements:

Hp2

pq = − e2h̄2

4m3c2
δll′δmm′

∫ rmax

0

d2Uk′l
dr2

Ukl −
l(l + 1)

r2
Ukl Uk′l dr . (6.16)

Lastly, the term

Ĥpzpz = −e
2(p̂z ·A)(p̂z ·A)

2m3c2
(6.17)

of the Hamiltonian (6.6) requires us to operate with p̂z twice so here we will also work
from both right and left. Working with p̂z from the left means we must take the complex
conjugate on the momentum operator; changing it from −ih̄ ∂

∂z to +ih̄ ∂
∂z . These matrix

elements are the most extensive to calculate; coupling both states of l′ = l and also
l′ = l + 2.

Hpzpz
pq = − e2h̄2

2m3c2

(
bl+1,mbl′+1,m′δll′δmm′

∫ rmax

0

(
dUkl
dr

dUk′l
dr
− l + 1

r

dUkl
dr
Uk′l

− l + 1

r

dUk′l
dr
Ukl +

(l + 1)2

r2
Ukl Uk′l

)
dr

+ bl,mbl′,m′δll′δmm′

∫ rmax

0

(
dUkl
dr

Uk′l
dr

+
l

r

dUkl
dr
Uk′l

+
l

r

dUk′l
dr
Ukl +

l2

r2
Ukl Uk′l

)
dr

+bl+1,mbl+2,m′δl,l+2δmm′

∫ rmax

0

(
dUkl
dr

dUk′l+2

dr
+
l + 2

r

dUkl
dr
Uk′l+2

− l + 1

r

dUk′l+2

dr
Ukl −

(l + 1)(l + 2)

r2
Ukl Uk′l+2

)
dr

)
(6.18)

All the integrals are calculated using the Gauss-Legendre integration method. The total
Hamiltonian matrix is relatively sparse: it forms a coordinate system where horizontally
in the matrix we increase the integer value of l′ and downwards vertically we increase the
integer value of l. For each combination of quantum numbers l′ and l there is a Nl ×Nl

submatrix within the Hamiltonian, which is apparent in the subscript of the factor δll′ .

From Hpz
pq (6.11),HpzA3

pq (6.12) and Hp2pz
pq (6.14) we get elements placed in the submatrices

where l′ = l+ 1, and l′ = l− 1 . The elements from the first two integrals of Hpzpz
pq (6.18)

are placed together with elements from Hp2

pq (6.16) in submatrices along the diagonal
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where l = l′ is satisfied. The remaining elements from the third integral of Hpzpz
pq (6.18)

have the condition l′ = l + 2 and l′ = l − 2.

Below we show the structure of a Hamiltonian matrix for the case lmax = l′max = 7. Inside
each Nl ×Nl submatrix the corresponding quantum number l and l′ is stated. Since no
integrals give non-zero values beyond l′ = l + 2 or below l′ = l − 2 the matrix gets a
diagonal stripe of width 5 ·Nl non-zero elements:



[
l = 0
l′ = 0

][
l = 0
l′ = 1

][
l = 0
l′ = 2

]
[
l = 1
l′ = 0

][
l = 1
l′ = 1

][
l = 1
l′ = 2

][
l = 1
l′ = 3

]
0[

l = 2
l′ = 0

][
l = 2
l′ = 1

][
l = 2
l′ = 2

][
l = 2
l′ = 3

][
l = 2
l′ = 4

]
[
l = 3
l′ = 1

][
l = 3
l′ = 2

][
l = 3
l′ = 3

][
l = 3
l′ = 4

][
l = 3
l′ = 5

]
[
l = 4
l′ = 2

][
l = 4
l′ = 3

][
l = 4
l′ = 4

][
l = 4
l′ = 5

][
l = 4
l′ = 6

]
[
l = 5
l′ = 3

][
l = 5
l′ = 4

][
l = 5
l′ = 5

][
l = 5
l′ = 6

][
l = 5
l′ = 7

]
0

[
l = 6
l′ = 4

][
l = 6
l′ = 5

][
l = 6
l′ = 6

][
l = 6
l′ = 7

]
[
l = 7
l′ = 5

][
l = 7
l′ = 6

][
l = 7
l′ = 7

]



6.2 Describing the electromagnetic field

The vector potential describes our electromagnetic field. It is originally both space and
time dependent and can be written:

A(r, t) = A0(ω)ε̂f(r, t) cos(k · r− ωt+ δ) (6.19)

where A0 is the amplitude of the field and ε̂ is the unit vector pointing in the direction of
polarization. k is the wave vector pointing in the direction of propagation. If the direction
of propagation is perpendicular to the polarization direction k · ε̂ = 0 then the waves are
transverse. ω is the angular frequency, δ is the phase and the function f(k · r−ωt) is the
so-called envelope function, determining the shape of the field. The cosine term is called
the carrier term and it describes the oscillations within the pulse.

We are choosing the polarization direction as the z direction and the propagation direction
to be in the x direction. The propagation direction is perpendicular to the polarization
direction so that the wave is transverse. Adopting the dipole approximation that was
discussed in chapter 3 and neglecting the space dependence of the field yields:

A(r, t)→ A(t) = A0(ω)ẑf(ωt) cos(ωt+ δ) . (6.20)

The envelope function is expressed as f(ωt) = sin2
(

πt
Tpulse

)
. The duration of the pulse is

determined by the frequency and the number of cycles from the relation Tpulse = N ·2π
ω .

The amplitude is A0 = E0
ω where E0 is the strength of the electric field
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A(t) =
E0

ω
ẑ sin2

( πt

Tpulse

)
cos(ωt+ δ) . (6.21)

As the field is z-polarized it interacts only with the z-component of the momentum in
minimal coupling. A frequency of ω = 50 a.u. and N = 15 cycles have been applied for
all calculations in this thesis. The phase shift φ between the envelope and the carrier has
been set to 0. For a frequency of ω = 50 a.u., the energy of the photons are 1360 eV.

6.3 Results and discussion

Our goal is to study the relativistic effects in photoionization of hydrogen. To reach this
goal the TDSE using a velocity gauge Hamiltonian has been solved with and without
relativistic corrections. The goals can be summarized in the following questions:

– Does the Schrödinger equation, where relativistic corrections of first or-
der have been included, produce results that coincide with results from
the Dirac equation?

– Compared to the results from the non-relativistic Schrödinger equation
how can relativistic effects be observed in ionization dynamics?

– Which of the relativistic correction terms are of importance?

When the matrix equation (6.3) has been solved the values |ckl(Tpulse)|2 give the prob-
ability of finding the electron in a state k for a quantum number l. The probability of
finding the electron having energy Ek can be found by taking the sum over all l-states
with probability of energy Ek after the duration of the pulse Tpulse

P (Ek) =
∑
l

|ckl(Tpulse)|2 . (6.22)

Imposing the condition that E ≤ 0 gives us the probability for the electron to be in a
bound state after the interaction. If we sum over all the probabilities when the energy is
above zero we get the probability of the atom being ionized,

Pion = P (E > 0) =
b∑

k=a

∑
l

|ckl(Tpulse)|2 . (6.23)

where a and b are the first and last ionized states, respectively. The condition E > 0
imposed on the equation below gives us the differential probability for ionization with
respect to energy:

dP

dE
= P (E)ρ(E) . (6.24)

Where ρ(E) is the density of states:

ρ(E) =
2

Ek+1 − Ek−1
. (6.25)

Now that we know how to obtain the ionization probability we can move on to the time
propagation results. Two different sets of parameters have been used for the basis. They
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will be called the small basis and large basis for future reference and the parameters are
listed in table (6.1). We will use both bases for our time dependent Schrödinger equation
calculations and which basis is used will be specified in each case. Good convergence of
the results for both basis sets were reached at lmax = 14. Variation of the parameters
was performed until satisfactory convergence was reached. All B-splines are distributed
equally over the box.

Parameter Large Small

rmax 65 a.u. 55 a.u.

lmax 14 14

Nmax 710 485

Emax 580 a.u. 380 a.u.

Table 6.1: The parameters for the large basis and the small basis.
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Figure 6.1: Ionization probability for hydrogen in a field of frequency ω = 50 a.u. Rela-
tivistic and non-relativistic time dependent Schrödinger equation are represented by the
solid green and black lines respectively. They are interpolations of points calculated with
step size 50 a.u. for the electric field. The blue points show the results from the time
dependent Dirac equation. The TDSE with relativistic corrections seem to agree with the
results from the TDDE [34].

Figure 6.1 shows the ionization probability for absorption of one or more photons in
the energy regime 0 < E < 380. The TDSE has been solved using the non-relativistic
Hamiltonian (6.4) depicted by the solid black line and the relativistic Hamiltonian (6.6)
depicted by the solid green line. The curves are interpolations of calculated points for
field strengths between 0 and 1000 with step size 50 for the TDSE. The large basis was
used obtaining these results. The blue circles are the calculated points from the time de-
pendent Dirac equation (TDDE). A stepsize of 100 has been used for the Dirac equation
calculations and they were obtained from [34]. A basis corresponding to the small basis
was used for calculation of the time dependent Dirac equation points.

Despite the difference in basis the results from the relativistic TDSE and the TDDE are
in good agreement. For field strengths > 500 a.u. a lower ionization probability for the
relativistic case is evident. This difference in probability of ionization has been observed
by others before, for hydrogen [6, 10] and for helium(+) and boron(4+) [9].
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Figure 6.2: Comparison of the differential probability of ionization of hydrogen by simula-
tions of the relativistic TDSE and the TDDE [34]. The intensity of the laser is E0 = 1000
a.u. and the frequency is ω = 50 a.u. Results from the relativistic Schrödinger equation
using the Hamiltonian (6.6) are represented by the solid blue line and the red dashed
line shows the results from the time dependent Dirac equation. Both TDSE and TDDE
give the same probability density functions. Since the LS-coupling and the Darwin term
are not considered in the TDSE calculation this is an indication that these terms are not
important for the ionization dynamics.

Figure (6.2) shows the kinetic energy distribution of the photoelectron for the laser inten-
sitiy E0 = 1000. The solid blue line represents the calculation using the TDSE with the
relativistic Hamiltonian (6.6). The dashed red line show the calculations from using the
Dirac equation. Again, Dirac equation results were obtained from [34]. Both calculations
were performed using the small basis. The two sets of results overlap nicely, indicating
that solving the relativistic Schrödinger equation works as well as the Dirac equation in
these cases. Even though the LS-coupling and Darwin term is not included in the Hamil-
tonian (6.6) the results from the TDSE and TDDE seem to agree. It can also be shown

that excluding the − p̂4

8m3c2
term in the Hamiltonian (6.6) does not cause any displacement

of the curve, which indicates that structural effects are not so important. The peaks of
the curve are located in the vicinity of multiples of the photon energy n · ω = n · 50,
representing absorption of one or more photons.
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Figure 6.3: Non-relativistic TDSE probability density compared to results from the rel-
ativistic TDSE for laser intensity of E0 = 1000 a.u. and frequency ω = 50 a.u. The
black solid curve shows the result from using the non-relativistic Hamilton (6.4). Results
from the dashed blue line is using the Hamiltonian (6.6). The large basis is used for this
calculation. The relativistic curve is shifted towards higher kinetic energies.

In figure (6.3) the black solid curve show the result from solving the non-relativistic
TDSE with the Hamiltonian (6.4). Solving the TDSE with the Hamiltonian (6.6) gives
the dashed blue line representing the relativistic calculation. The large basis has been
used for these calculations allowing us to go to higher energies. Relativistic effects are
pronounced in figure (6.3). Having already found that the Dirac equation and the rela-
tivistic Schrödinger equation give the same probability density we see that the relativistic
calculations separate from the non-relativistic. As the photoelectron reaches kinetic ener-
gies of about 200 a.u. a displacement between the relativistic and non-relativistic curves
becomes visible. The displacement is towards higher energies for the relativistic calcula-
tion. As more photons are absorbed the shift increases. This effect is probably due to
the increased inertia of the electron as discussed in [10]. The momentum of a relativistic
particle increases because of relativistic effects. And we see these effects in our results

p =
mv√
1− v2

c2

. (6.26)

Similar figures to figure (6.2) and (6.3) were produced where the interaction terms:

ep̂2p̂zA

2m3c2
− 1

4

e2p̂2A2

m3c2
− e2(p̂z ·A)(p̂z ·A)

2m3c2
− e3p̂zA

3

2m3c2
, (6.27)
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were added to the Hamiltonian,

Ĥ = − p̂2

2m
− e2

4πε0r
+
ep̂zA

m
− p̂4

8m3c2
, (6.28)

one at a time. Considering that we are working with intense fields one should maybe
expect the term proportional to A3 to have a big effect. However, the results showed
that this term and the first term of (6.27) did not affect the energy spectrum to any
mentionable degree. The second and third term each showed to cause about half of the
total displacement seen in figure (6.3). Both these terms are proportional to A2. It seems
that terms proportional to odd powers of A does not affect the system very much. This
might be because they are oscillating with alternating sign and effectively cancel out.
Noticing that the LS-coupling also is of an odd power of A:

L = r× (p + eA) , (6.29)

it is reasonable to consider that it would not have caused much alteration of our results
had it been implemented in the calculation.

It has been shown by [11, 12, 13, 14, 15, 16] that the dipole approximation breaks down for
intense laser fields, and we know that the non-dipole effects in the ionization probability
are much greater than the relativistic effects found here. An option for further study
could then be to go beyond the dipole approximation and then study the effects of the
relativistic interaction terms retaining the space-dependence of the field.
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Chapter 7

Summary

The goal of this thesis is twofold: the first objective is to study relativistic effects in
photoionization cross section. The second objective is to study relativistic effects in the
ionization processes of hydrogen in super-intense laser fields. The results have been ob-
tained by solving both the time independent (TISE) and time dependent Schrödinger
equation (TDSE).

To solve the TISE numerically a MATLAB program was written where the starting pa-
rameters are: the box size, the truncation of orbital angular momentum quantum number,
number of basis functions or eigenvalues and the order of the basis functions. The matrix
elements of the Hamiltonian for the TISE has been calculated using this program. The
matrix elements were then used as input in a Fortran time propagation program solving
the TDSE. The system under study is the hydrogen atom subjected to an intense laser
pulse of frequency ω = 50 a.u. with a sine squared envelope pulse with a 15-cycle carrier.
The dipole approximation of the field has been applied for all calculations.

The results have been divided into two parts: the time independent photoionization cross
section results and the time dependent ionization results. Photoionization cross section
for the transitions between 1s and kp states have been examined and the results show
that the cross section is decreasing with the incoming photon energy. As such, a high
energy photon must come closer to the electron for there to be an interaction. A rel-
ativistic effect is observed when reaching high photon energies of about 1000 a.u. The
total cross section for the relativistic case is lower than for the non-relativistic case and
the effect is increasing with increasing photon energy. The relativistic Schrödinger cross
section results have been compared to results from calculating the cross section using the
Dirac equation [30]. The two different approaches seemed to be in agreement for photon
energies up to 1500 a.u. Although we can not conclude this. For photon energies above
this value a small deviation can be noticed. In addition, it has been found that the cross
section is depending on the total angular momentum quantum number, j. The cross
section is generally smaller for j− = 1

2 when spin and orbital angular momentum vectors
are anti-parallel than for j+ = 3

2 when the two vectors are parallel.

Results from solving the time dependent Schrödinger equation with relativistic correc-
tions have been compared to the non-relativistic TDSE and the time dependent Dirac
equation. The ionization probability is seen to be lower for the relativistic than for the
non-relativistic calculation. This effect is starting to be noticeable at intensities of about
E0 = 500 a.u. and it is increasing with electric field strength. This is concurrent with
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previous observations solving the Dirac equation [6, 9, 10]. The TDDE and the relativistic
TDSE seem to be in agreement. Kinetic energy spectra for the emitted photoelectron at
high intensities have been studied as well. Specifically, the case where the electric field
strength is E0 = 1000 a.u. which is about 3.5 · 1019 W/cm. In such a field the elec-
tron is expected to reach relativistic velocities. The quiver velocity corresponding to the
given electric field strength of E0 = 1000 a.u. and photon frequency of ω = 50 a.u. is
vquiv = 0.15c. We have compared the results from the relativistic TDSE and the TDDE
and found that they are in good agreement. When comparing energy spectra calculated
from the relativistic TDSE with non-relativistic TDSE a shift towards higher kinetic en-
ergies is observed. The shift is increasing with kinetic energy. It is expected that the shift
is caused by the relativistic correction of the electron’s momentum [10].

The time propagation has been performed activating only certain terms of the relativistic
Hamiltonian at a time. The results show that it is the terms proportional to even powers
of the field, A2, that cause the shift towards higher energies. The terms proportional to
odd powers of the field, A and A3, do not alter the energy spectrum noticeably and these
terms can possibly be neglected in the dipole approximation. A possible reason why these
terms do not give any effect might be that they cancel out because they oscillate with
alternating sign.

In super-intense fields we know that the dipole approximation breaks down and that
beyond dipole effects become important [14, 11, 13, 12, 16]. However, the dipole approxi-
mation yields interesting results for the processes studied here, and relativistic effects are
clearly noticeable. Suggestions for further work could thus include implementing beyond
dipole corrections and study the relativistic effects when retaining the space dependence
of the field. Also, a way of implementing the LS-coupling in velocity gauge, which has
been neglected in this thesis, would be interesting to explore in order to study the effects
of the electric field on the spin-orbit coupling.
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