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Abstract

Scattering phenomena have been of great interest and driving scientific advancement for
centuries. Mie theory outlines a precise way to compute the scattering by spherical particles.
However, the computational labor involved in Mie calculations are very time consuming.
Computer modeling of light intensities often are heavily dependent on calculations of ab-
sorption and scattering of radiation interactions. Maxwell’s equations for such large parti-
cles require very many expansion terms which slow down the computation time. Using Mie
theory, this thesis aims to investigate the use of artificial neural network in order to decrease
computation time for a wide variety of particle size distributions and refractive indices. The
input and output parameters of the Mie code will be used to train an artificial neural network
in an attempt to increase the speed of such calculations, while still being reasonably accurate.

The a single radial basis function neural network with 300-500 neurons is enough to
approximate the scattering coefficient, absorption coefficient and asymmetry parameter with
an mean absolute percentage error of less than 2%. However the potential of outlier errors
of up to 20-30% exists with the currently iteration of neural network. The time save of a
neural network can be enormous with a potential improvement of 10000 times faster than
traditional Mie codes.
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Chapter 1

Introduction

Scattering phenomena have been of great importance, sparking curiosity and driving scien-
tific advancement. One such phenomena is the rainbow which has fascinated people for cen-
turies and given rise to a large variety of theories. Attempts at giving a rational explanation
for the phenomena date back to Aristotle. He proposed that it was due to some unusual kinda
of reflection of sunlight from clouds (Nussenzveig, 1977, p.116). It wasn’t until 1304 when
Theodoric of Freiberg and later René Descartes independently proposed that the rainbowwas
due to light rays entering and reflected by the inside of individual raindrops (Nussenzveig,
1977, p.116).

The reflection and refraction of light by the water droplets was able to explain some of
the main features of the rainbow, however many others still remained a mystery. The colors
of the rainbow could finally be explained when Isaac Newton in 1666 demonstrated the
dispersion effect by splitting white light into its composite colors in his prism experiment.
The continuing advances made in the theory of light kept giving insights intomore features of
the rainbow. The electromagnetic theory of light, which was later proposed by James Clerk
Maxwell, made it possible to give a full mathematical formulation of the problem. Using
Maxwell’s theory Gustav Mie outlined a precise way to compute the scattering of a plane
wave of spherical particles (Mie, 1908).

Atmospheric phenomena such as the rainbow are only one of Mie theory’s many areas
of use. It plays an important role in radiative transfer models which are used in fields such
as climate research, remote sensing, and medical diagnostics among others.

Even though the mathematical solution to the problem has been known for over a hundred
year it was not until the middle of the last century that it started to see a lot of use. This was
mainly due to the computation labor involved in evaluating functions such as Riccati-Bessel
functions (Wriedt, 2012, p.56). With the rapid improvement of computer hardware as well as
increasingly efficient algorithms Mie theory gained a lot of popularity. However computer
programs for modeling the light intensities are often heavily dependent on calculation of
absorption and scattering of radiation interacting with particles that have sizes up to 1000
times the radiation wavelength. Solutions of Maxwell’s equations for such large particles
require very many expansion terms, and these solutions have to be found for many different
particle types, wavelengths, and size distributions, which consequently slow down radiative
transfer models.

In recent years artificial neural networks ANN have grown in popularity and as a result
have seen a number of new areas of application. As Artificial Neural Network are able to
calculate large amounts of data, they could possibly significantly decrease time spent onMie-
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calculations, as suggested by (Lang, 2013). This project aims to investigate this possibility.
I will look at scattering by spheres, and calculate parameters such as scattering efficiency,
absorption and asymmetry factor. This will be done using a c++ code for Mie scattering de-
veloped in the Optics and atomic physics group at the department of physics and technology
at the University of Bergen. Calculations will be done for a wide variety of particle size dis-
tributions and refractive indices. The input and output parameters of the Mie code will be
used to train an artificial neural network in an attempt to greatly increase the speed of such
calculations, while still being reasonably accurate.



Chapter 2

Light Scattering

In nature light can be observed in two ways, directly from the source or indirectly due to in-
teraction with particles in its path. By far the most common way to observe light is indirectly,
which is due to scattering. Scattering can be broadly defined as the redirection of radiation,
such as light, usually due to interactions with molecules and particles (Lelli, 2014). Scat-
tering processes are often divided into elastic and inelastic scattering. For elastic scattering
the frequency of the scattered light is the same as the incident light, while the frequencies
differ for inelastic scattering. In most cases elastic scattering is the dominant process, such
as for energies in the visible range. Due to the scope of this thesis I will solely be considering
the elastic scattering processes. Scattering processes are often accompanied by absorption,
and both processes remove energy from the incident light beam. However, while scattering
does this by redirecting part of the energy into other directions absorption turns the energy
into other forms such as thermal energy. Extinction/attenuation is the sum of scattering an
absorption.

extinction = scattering + absorption (2.1)

There are a number of different theories describing lights interaction with matter. The
physical interpretation of how light interacts with matter can thus vary wildly depending
on which theory it is based on. In this thesis I will consider lights interaction with matter
according to the electromagnetic theory in which light is a propagating wave of electric and
magnetic fields.

The underlying physics of the scattering of electromagnetic waves is the same for any
matter. Matter that interacts with EM-waves is known to be composed of discrete electric
charges, such as electrons and protons for ordinary matter. These charges can be excited to
oscillate by an external EM-field which in turn will radiate EM-waves. The superposition of
secondary waves emitted from the charges in the scattering medium and the incident wave,
is what is observed (Bohren and Clothiaux, 2006, ch.3.1).

Another aspect to be considered is the geometry of the particles. When light interacts
with particles the scattered and absorbed light depends on the properties of the particles. For
known properties of the particles such as shape, size and refractive index, the absorption
can be calculated alongside a variety of properties of the scattered light such as polarization,
angular distribution and intensity.

There are many theories andmodels that describe the elastic interaction between light and
particles. These theories can be categorized into three group: rigorous theories, approximate
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models and numerical methods (Jiang et al., 2012). Rigorous theories, such as Mie theory,
are based on the exact solutions of Maxwell’s equations. The scattering of electromagnetic
waves on spherical particles can thus be analytically solved in the form of an infinite series.
These solutions to Maxwell’s equations are sometimes called Mie Solutions. However, these
exact solutions are only known for a small variety of shapes with strong symmetries such
as spheres, ellipsoids and cylinders. Approximate models on the other hand are often flexi-
ble to shape. However, these models may be restricted in other ways, for example regarding
the size of the particle. The Rayleigh and geometrical optics approximations are for exam-
ple only valid for wavelengths much smaller (λ << r) and larger (λ >> r) than the size
of the particles respectively. In situations where neither exact nor approximate models are
possible to apply, numerical methods can be used to find a solution. Although Mie theories
restrictions to shape, it is widely used because many particles can be modeled to good ap-
proximation as spheres or spheroids. Sphere-like structures are frequent in nature, such that
assuming scattering like a sphere can be a good first approximation. Additionally particles
are often assumed to be randomly oriented such that the accumulative scattering effect of
many such particles can also resemble scattering by spheres. Due to symmetry, scattering by
spheres is much simpler than more complicated structures. However even for spherical parti-
cles light scattering calculations often take up a large bulk of the total computation time, such
as when solving radiative transfer problems. Therefor it is no surprise that many researchers
are assuming spherical particles when measuring scattering effects.

2.1 Inherent Optical properties
The way light interacts with a particle or collection of particles is described by the Inherent
Optical Properties (IOP) of the particles in question. IOPs are properties of the medium and
do not depend on the light field. In the following subsections follow a short summary of these
properties and how they can be defined.

2.1.1 Cross sections and coefficients
Consider a beam incident on a particle, the scattering and absorption properties of the particle
will change the characteristics of the beam after it passes the particle. For a monochromatic,
monodirectional light beam with electromagnetic powerW0 incident on a homogeneous par-
ticle, the power in the same direction after the particle can be measured to be W1, where
W0 > W1. This difference represents the energy being removed out of the direction of the
beam, we say that the particle has resulted in extinction of the beam. The rate at which the
energy is removed from the beam is proportional to the incident irradiance F (Bohren and
Clothiaux, 2006)

W0 −W1 = Wext = CextF. (2.2)

The proportionality constant Cext is the extinction cross section, which may be thought of as
the effective area of the particle contributing to the removal of energy out of the beam. This
attenuation must be either due to absorption or scattering.

Wext = Wabs +Wsca (2.3)
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Hence it useful to also define the absorption and scattering cross sections such that the power
removed due to each is

Wabs = CabsF, (2.4)
and

Wsca = CscaF, (2.5)
so that

Cext = Cabs + Csca. (2.6)
Similarly as the cross sections describe, the effect a single particle has on the incident

radiation may also describe the effect of a collection of such particles. Consider a collection
of particles arranged in such a way that the irradiance on each particle can be assumed equal,
then we may simply sum the contributions of each individual particle. This total contribution
to absorption is given by the absorption coefficient

κ =
∑
j

NjCabs,j, (2.7)

and equally for scattering by the scattering coefficient

β =
∑
j

NjCsca,j, (2.8)

whereNj are the number of particles of type j per unit volume. More specifically Eq.2.7-2.8
may be rewritten for the specific problem of this thesis, namely the scattering of a collection
of spheres. All particles in the collection equal, except a continuous distribution of radii a
such that we replace the sum with an integral over radii

κ =

∫ ∞

0

N(a)Cabs(a)da. (2.9)

Substituting the number distribution N with a volume distribution V given by

V (a) =
4πa3

3
N(a) (2.10)

gives

κ =
3

4π

∫ ∞

0

V (a)Cabs(a)

a3
da. (2.11)

By then separating the distribution function V into a probability density function PDF and a
scaling factor f given by

f =
4π

3

∫ ∞

0

a3N(a)da =

∫ ∞

0

V (a)da =

∫ ∞

0

fPDF (a)da (2.12)

which is just the total volume of occupied by all particles per unit volume. Eq. 2.11 then
becomes

κ =
3

4π
f

∫ ∞

0

PDF (a)Cabs(a)

a3
da. (2.13)

The scattering coefficient in Eq.2.8 can then be written in the same manner as

β =
3

4π
f

∫ ∞

0

PDF (a)Csca(a)

a3
da. (2.14)
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Figure 2.1: scattering by spherical particles (Lelli, 2014)

2.1.2 The phase function
The phase function, p(Ω), is a dimensionless function describing the angular dependence of
the scattered radiation. It may be thought of as a probability density function, which gives
the chance of scattering in a given direction. This requires the normalization condition∫

4π

p(Ω)dΩ = 1 (2.15)

where Ω is the solid angle spanned by the azimuthal angle ϕ and the scattering angle θ. The
scattering angle is measured from the direction of incident radiation see Figure 2.1, and the
azimuthal angle determines the scattering plane.

The phase function may be defined in terms of the differential scattering cross section
which is the energy scattered per unit time into a unit solid angle about a direction Ω′ for unit
incident irradiance (Bohren and Huffman, 2008). In terms of the scattered irradiance Fs(Ω

′)

at a distance r from the scatterer and the incident irradiance Fi

dCsca

dΩ
=
r2Fs

Fi

. (2.16)

The phase function is then
p(Ω) =

1

Csca

dCsca

dΩ
. (2.17)

The asymmetry factor g is the average cosine of the scattering angle

g =

∫
4π

p(Ω) cos(θ)dΩ. (2.18)

It specifies the degree of asymmetry between forward and backward scattering. The asym-
metry factor varies from -1 for pure backscattering (θ > π) to 1 for pure forward scattering
(θ < π).

2.2 Mie theory
Mie, Lorenz-Mie or sometimes even Lorenz-Mie-Debye theory are all different names for
the the theory. Mie and Debye worked on scattering by spheres around the same time and
independently solved the problem, however they were both not the first to do so. Lorenz
was the the first when he published a paper concerning the calculations on the scattering
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of radiation by spheres in 1890 (Bohren and Huffman, 2008). However the publication was
in danish and did therefore not get a lot of attention at the time. The calculations made by
Lorenz where not written in the framework of Maxwells theory of electromagnetism which
was included in Mie’s treatment of the problem a few year later Mie (1908). In this theis I
will use the term Mie theory for brevity.

Mie theory describes the scattering of electromagnetic radiation by spherical particles. In
particular plane waves scattering by a spherical particle is exactly described by classical Mie
theory in terms of an infinite series (Mie, 1908). Similar solutions are however also known
for cylinders, due to the form of the solution this is also sometimes called Mie theory.Worth
noting, generalized Mie theory describes spherical particle interaction with arbitrary waves
shapes although this is not a focus in this paper.

The Mie theory describes the interaction between a homogeneous sphere and an elec-
tromagnetic plane wave. In more detail it describes an incident plane wave interacting with
a sphere in a transparent, homogeneous and isotropic surrounding medium. For instance
Mie used gold colloids in water as an example. Incident wave induces forced oscillations of
charges which are synchronous with the applied field which induces a secondary electric and
magnetic field both inside and outside the sphere. The solution then reduces to a boundary
value problem for ordinary differential equations. The solution gives the scattered field as a
spherical wave composed of two groups of partial waves.

The following eqations are based on the derivation by Bohren and Huffman (2008), for
a more complete overview of the derivations see chapter 4 in their book or any of the many
other resources on Mie theory.

Denoting the scattered electromagnetic field vector by (Es,Hs) and the incident field
(Ei,Hi) where the incident plane parallel wave is

Ei = E0ei(kx−ωt)

Hi = H0ei(kx−ωt)
(2.19)

The fields must satisfy Maxwell’s equation

∇ · E = 0

∇ ·H = 0

∇× E = iωµH
∇×H = −iωϵE

(2.20)

at all points where where the permittivity ϵ and permeability µ is continuous. Taking the curl
of the curl equations above they reduce to Helmholtz equation

∇2E+ k2E = 0

∇2H+ k2H = 0
(2.21)

where k = ϵµω2. Additionally the internal fields inside the particle (Eint, Hint) and outside
the particle (Eout, Hout) have to satisfy the following boundary conditions; the tangential
components of the electric and magnetic field must be continuous across the boundary of the
particle

(Eout(x)− Eint(x))× n̂ = 0

(Hout(x)−Hint(x))× n̂ = 0
(2.22)
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where x is on the surface of the particle and n̂ is the outward directed normal to the sur-
face. The electromagnetic fields outside the particle are given by the sum of the incident and
scattered field

Eout = Ei + Es, Hout = Hi +Hs (2.23)

The incident fields (Ei,Hi) are known and the internal (Eint,Hint) and scattered fields (Es,Hs)

are to be determined. Equations and boundary conditions are linear so superposition of so-
lutions is a solution.

In a linear, isotropic, homogeneous medium the electric and magnetic fields must satisfy
the wave equation. Two Vector functions,M and N, are constructed in such a way that they
satisfy the requirements for valid electric and magnetic fields. The first of which is chosen
to be

M = ∇× (cψ) (2.24)

for scalar function ψ and arbitrary vector c Using the fact that the divergence of the curl
of any vector function is zero it can be shown thatM satisfies the vector wave equation if ψ
satisfies the scalar wave equation.

∇2M+ k2M = ∇×
[
c(∇2ψ + k2ψ)

]
(2.25)

The second vector function N is then constructed fromM

N =
∇×M
k

. (2.26)

Both M and N satisfy the vector wave equation, have zero divergence and the curl of
each is proportional to the other, so they satisfy all required properties of an electromagnetic
field.

The problem of finding the solution to the field equations can therefore be reduced to
solving the scalar wave equation. Since our problem involves spherical symmetry it is useful
to use spherical coordinates. The generating functions ψ is therefore chosen such that they
satisfy the scalar wave equation in spherical coordinates

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ∂ψ

∂θ

)
+

1

r2 sin θ
∂2ψ

∂ϕ2
+ k2ψ = 0 (2.27)

and the guiding vector c from Eq. 2.24 is chosen to be the radius vector r.M and N then
become the solutions to the vector wave equation in spherical coordinates. A particular set
of solutions to Eq. 2.27 can be found to be

ψemn = cos(mϕ)Pm
n (cos θ)zn(kr)

ψomn = sin(mϕ)Pm
n (cos θ)zn(kr)

(2.28)

where Pm
n (cos θ) are the associated Legendre functions of the first kind and zn(kr) is any

of the spherical Bessel functions. Due to completeness of these functions any other solution
to Eq. 2.27 can be expanded as an infinite series in the functions ψemn and ψomn (2.28).

Mie coefficients: an and bn to compute the amplitude of the scattered field. cn and dn for
the internal field.
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an =
µm2jn(mx)[xjn(x)]

′ − µ1jn(x)[mxjn(mx)]
′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

bn =
µ1jn(mx)[xjn(x)]

′ − µjn[mxjn(mx)]
′

µ1jn(mx)[xh
(1)
n (x)]′ − µh

(1)
n (x)[mxjn(mx)]′

(2.29)

cn =
µ1jn(x)[xh

(1)
n (x)]′ − µ1h

(1)
n (x)[xjn(x)]

′

µ1jn(mx)[xh
(1)
n (x)]′ − µh

(1)
n (x)[mxjn(mx)]′

dn =
µ1mjn(x)[xh

(1)
n (x)]′ − µ1mh

(1)
n (x)[xjn(x)]

′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

(2.30)

where prime denotes derivative with respect to the arguments, size parameter x, relative
refractive index m, permeability µ1 and µ of particle and medium respectively. jn spherical
Bessel function (of the first kind) and h(1)n spherical Hankel function (of the first kind).

2.2.1 Extracting physical quantities
To obtain quantitative results from Mie theory we need to calculate the mie coefficients an
and bn and the angular functions πn and τn then sum the series associated with the quantity of
interest (Bohren and Huffman, 2008, p.126). Parameters used in radiative transfer depend on
an and bn while cn and dn are only needed when the internal field is of interest. The internal
field is of interest when calculating absorption properties, however this can also be calculated
from the scattering and extinction (Cabs = Cext−Csca) (Mätzler, 2002, p.3-4). Below follows
a set of equations which can be used to calculate scattering and absorption properties of the
particle from the mie coefficients as derived by Bohren and Huffman (2008). The scattering
cross section is given by

Csca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (2.31)

and similarly the extinction cross section is

Cext =
2π

k2

∞∑
n=1

(2n+ 1)Re{an + bn}. (2.32)

The non-zero elements of the scattering matrix (Mueller matrix) for spherical particles,
which relates the scattered to incident irradiance of arbitrarily polarized light can be calcu-
lated from S1 and S2.

S1 =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn)

S2 =
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn)

(2.33)
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The relationship between incident and scattered field amplitudes in the far field is then(
E∥s
E⊥s

)
=
eik(r−z)

−ikr

(
S2 0

0 S1

)(
E∥i
E⊥i

)
(2.34)

and assumes asymptotic relation.
If we are interested in the polarization of light it is common to use the Stokes vector,

which completely describes the polarization state of a light. The Mueller matrix provides the
most general and complete description of the response of a medium to excitation by polarized
light. 

Is
Qs

Us

Vs

 =
1

k2r2


M11 M12 0 0

M12 M22 0 0

0 0 M33 M34

0 0 −M34 M33



Ii
Qi

Ui

Vi

 (2.35)

where the matrix elements are given in terms of S1 and S2 as follows

M11 = S2
1 + S2

2 , M12 = S2
1 − S2

2 ,

M33 = S∗
2S1 + S∗

1S2 , M34 = S∗
2S1 − S∗

1S2 ,
(2.36)

2.2.2 Mie code
Almost no one used Mie theory before computers, due to computational labor involved in
computing each term. This is a likely part of the reason why Mie’s paper (Mie, 1908) didn’t
get a lot of recognition until many years after it was first published. In the 1950s and 60s
when computers started to be able to do increasingly complex tasks, Mie’s paper started to
gain interest. Among the first publicly available Mie codes was the code created by J.V. Dave
in 1968 (Wiscombe, 1979). Many possibilities arose as a product of the increased process-
ing capabilities of computers. The processing capabilities of computers, accompanied by
an increased interest in light scattering in many fields, contributed to Mie theory becoming
popular after years of scarcely being used.

Therefore Mie’s paper (Mie, 1908) is sometimes called Dornröschen (sleeping beauty)
(Hergert and Wriedt, 2008). However, even with the increased computational capabilities
of computers, the development of stable algorithms took some time (Wriedt, 2012). There
are some essential points which should be addressed by every Mie algorithm (Cachorro and
Salcedo, 1991). A few of these essentail point are how to determine the number N for trun-
cating the Mie series (e.g. Wiscombe criterion), whether the (Riccati-)Bessel functions will
be computed by upward or downward recursion, how downward recursion is initialized if it
is used and how to structure the algorithm in an efficient way.

Wiscombe described in an interview on scientific programming and his contributions to
atmospheric science tool making, that ”Mie series is kind of weird series. It doesn’t actually
converge. It converges, and then diverges when you keep going because calculations you use
to calculate some of the functions there, some of the Bessel functions, start to diverge. One
has to cut it off very precisely. (Flatau, 2013, p.5). Instabilities such as these contributed to
early programs having many problems, such as numerical instabilities and overflow errors.



Chapter 3

Neural networks

In this chapter a short introduction to neural networks is given. As artificial neural networks
are modelled after biological neural networks, I will start with an introduction to biological
neural networks. Then the typical building blocks of anArtificial Neural Network (ANN)will
be described along with how they relate to the biological neural networks, which inspired
their early development. Lastly a special type of neural network, known as a radial basis
function networks, is described.

3.1 Biological neural networks
The human nervous system is built up of billions of neurons (Basheer and Hajmeer, 2000).
These neurons are a special type of biological cells, which are responsible for information
transfer in the human body. Neurons are composed of three main parts: soma (cell body),
axon and dendrites (Jain et al., 1996), as shown in Figure 3.1. Similarly to other cells in the
human body, the soma of a neuron contains organelles, such as a nucleus and mitochondria.
The difference between neurons and other cells is their signal processing capability. The
axon and dendrites are branch like structures which extend for the cell body (soma), these
function as signal processing devices. The axon is responsible for transmitting signals from
the cell body to other neurons. As the axons are transmitting signals, the dendrites receive
these signals and send them on to the cell body. When comparing the biological model to
an artificial neural network, we can say hat the axon can be considered the neurons output
while the dendrites are the neurons inputs (Gurney, 1997, p.22).

The signal transfers between an axon and dendrite occurs at the synapses, which are at the
interface of a neurons axon and the target neurons dendrite. Each synapse, signal transfer, has
three components: a presynaptic element, synaptic cleft and a postsynaptic element (Squire
et al., 2012, p.64). The presynaptic elements are spezialised parts of the axon, whereas the
postsynapic elements are specialized parts the dendrite. The synaptic cleft is a small gap be-
tween the two elements, which is of the order of approximatesly 20 nanometers wide (Gur-
ney, 1997, p.23).

Signals that are sent from the presynaptic element are received at the postsynaptic ele-
ment in the form of neurotransmitters. The neurotransmitters initiate a chemical process. This
chemical process changes the electrical potential across the neuron’s cell membrane. When
the sum of all these membrane potentials exceeds a certain threshold the neuron is said to fire,
and an action potential is created which sends new signals to neighboring neurons (Gurney,
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Figure 3.1: Schematic drawing of a biological neuron (Kravtsov et al., 2011)

1997, 25).
The biological neural network structure functions as a massive set of hubs transferring

signals all over the network in a seemingly chaotic manner. What it creates is a network
with strong collaborations between many units (e.g. cells) enabling successfully processing
of complex calculations, situations, choices etc. This process makes the human mind one of
the wonders of the biological world. Hence it is has been a established mission to try to recre-
ate the human mind in an artificial setting (e.g. computer processing). The most promising
method to do so is Artificial Neural Networks, also known as machine-learning, artificial
intelligence etc.

3.2 Artificial neural networks
Artificial neural networks (ANNs) are structures comprised of densely interconnected adap-
tive simple processing elements, called artificial neurons. These neurons are capable of per-
forming massively parallel computations for data processing and knowledge representation
(Basheer and Hajmeer, 2000). The concept of ANNs arose in hopes of harvesting the ex-
traordinary problem solving ability of the human brain. Early ANNs models therefor natu-
rally tried to mimic their biological counterpart (Jain et al., 1996). The first to try this were
McCulloch and Pitts (1943) and subsequent ANNs are based on their model.

3.2.1 Artificial neurons
The artificial neuron as it was first introduced by McCulloch and Pitt in 1943 was based on
the basic properties of how the biological neuron fires. Thus the artificial neuron follows the
threshold-principle based on the biological neurons properties (Maan et al., 2017, p.1734).
The artificial neurons as described byMcCulloch and Pitt are therefore binary threshold units,
which generate an output of one if the weight sum of all inputs exceed a certain threshold.
However, if the sum of all inputs do not exceed this threshold, the output wold be zero. Ever
since the first artificial neuronswere proposed, a number of differing type of artificial neurons
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Figure 3.2: Schematic of a generalized McCulloch and Pitts neuron
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Figure 3.3: Schematic of a RBF neuron

have emerged. The scope of this thesis does not however allow for a detailed account of these.
The two examples which I will describe in more detail are the generalized McCulloch and
Pitt neuron and Radial basis function neuron.

Generalized McCulloch and Pitt neuron

A commonly used neuron model today is a generalized version of the McCulloch and Pitts
neuron. Their inputs are processed in 3 steps; First the inputs xi are scaled based on a weight
parameter wi. Then the weighted inputs are summed together and a bias is added. Lastly
the resulted sum is sent through an activations function σ which produces the output of the
neuron. The schematic of a generalized neuon is shown in Figure 3.2.

y = σ

(
n∑

i=1

wixi + b

)
(3.1)

The bias can be thought of as the output of a fictitious neuron becoming input x0 with
corresponding weight w0. Equation 3.1 can then be written in vector form

y = σ(w · x) (3.2)

where w = [w0, w1, . . . , wn] and x = [x0, x1, . . . , xn].
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Radial basis function neuron

A second type of neuron is the Radial Basis Function neuron, as shown in Figure 3.3. Acti-
vation of these neurons depends on the distance between the input vector x and the center of
the RBF µ.

y = ϕ (∥x− µ∥) (3.3)

As the name suggests the activation function used in these neurons are radial basis func-
tions. By far the most common RBF used in ANNs is the Gaussian function (Marsland, 2015,
113).

ϕ = e−
∥x−µ∥2

σ (3.4)

here the weights represent the center of the bell curve (maximum activation) and σ con-
trols the width.

Each artificial neuron receives inputs either from other neurons or outside stimuli simi-
larly to biological neurons. The result is then sent to connected nodes, which are either other
neurons or an output node.

3.2.2 Activation functions
The activation function is one of the most important parts of a neural network. The main pur-
pose of the activation function is to transform the input signal of a neuron to its output signal.
In general, activation functions can be categorized into linear and non-linear. Although there
are infinitely many possible activation functions, only a few have become popularly used.
Non-linear activation functions are the most commonly used activation functions. This is the
case for all but the simplest relationships, where the input-output mapping is non-linear. To
be able to model non-linear input, a non-linear activation function has to be used. This is due
to the fact that a linear combination of linear functions also is linear. In the hidden layers the
activation function is used to apply non-linearity to the input-output mapping to make the
ANN able to approximate arbitrary functions. This requires a non-linear activation function.
However output layer also commonly uses linear activation simply to scale the output. For
the hidden layer some of the most common activation functions are the sigmoid, tanh, ReLU
and RBF. Output layer also regularly uses linear or softmax activation depending on the type
of output the network should provide.

3.2.3 Network architecture
The architecture of a ANN is determined by the interconnection of the neurons. Two com-
monly used architectures are Feed Forward Neural Network (FFNN) and RNN. Both these
network architectures are named after how the information flows through the nodes of the
network. In FFNN each neurons input comes from a previous layer. For RNN on the other
hand the inputs can be sent back to previous layers to cycle through them again with new
processed inputs.
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Figure 3.4: Feedforward neural network

The acyclic nature of FFNNsmake them the simplest type of network architecture (Mars-
land, 2015, p.73). Allthoug the structure of a FFNN is simpler than the structure of a RNN,
the neural network trained for the purpose of this paper is a FFNN. One of the most common
NN is the Mulitlayer Perception (MLP) which is a type of FFNN. A MLP neural network
usually consists of a input layer, one or more hidden layers and an output layer (Wang et al.,
1999).

Figure 3.4 represents a multilayer perception feed forward neural network. Each node
in the hidden layers and output layer of Figure 3.4 represents a artificial neuron. The lines
to and from these nodes can be thought of as analogies to the dendrite and axons of the
biological neurons respectively. Additionally the weights can represent the synapses and the
activation function approximates the activity i the soma (Jain et al., 1996, p.34). In recent
years however, a different type of feed forward neural networks have become increasingly
popular, the Radial Basis Neural Network (RBFNN).

3.2.4 Radial basis function neural network

The RBFNN is a type of FFNN, and was proposed by Lowe and Broomhead (1988). It is
based on the theory for RBFs in multivariable interpolation (Powell, 1987). RBFNNs are
three layer FFNN , and structured in the sameway as theMulitlayer Perception Feed Forward
Neural Network, Figure 3.4. In contrast to the Mulitlayer Perception (MLP) Feed Forward
Neural Network (FFNN) which functions with the basic neuron 3.2, the Radial Basis Neural
Network (RBFNN) functions with hidden neurons H given by Figure 3.3. The input layer
just distributes the inputs to the various neurons in the hidden layer without any weight factor
(unlike in a standard MLP). The hidden layer consists of RBF neurons (Eq. 3.3). The output
layer computes the weighted sum of the RBF output (Equation 3.1). The complete input-
ouput mapping for a RBFNN is therefore
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yj = σ

(
n∑

i=1

wjiϕi (∥x− µ∥) + b

)
(3.5)

where there are n number of neuron in the hidden layer, k input parameters and j outputs.
For RBFNNs the activation function in the output layer σ(·) is usually either a linear function
if the network is used for function approximation or a sigmoid in the case of a classification
problem. For function approximation the equation can then be simplified to

yj =
n∑

i=1

wjiϕi + b, (3.6)

and the full output of the RBFNN takes the form

yj =
n∑

i=1

wjiexp
(

ni∑
k=1

(xk − µik)
2

σ

)
+ bi (3.7)

Creating and using a RBFNN involves four main things; determining the number of neu-
rons in the hidden layer, the centers and width of the RBFs and the weights for the output
layer. The main difficulty in designing a MLP for a problem is choosing an appropriate num-
ber of hidden layers and the size of these layers. In RBFNNs this is seemingly easier as we
generally only have one hidden layer which we have to specify the size of. However, due to
the localized activation of the RBF neurons, choosing the location and width of the RBFs has
a large impact on the performance of the network whereas for MLPs the activation is global.

Due to the capabilities of the RBFNNs over MLP, the former has been chosen in the
experiments described in 4.

3.2.5 Neural network training
MLP usually trained with backpropogation algorithms, which is often slow. RBF on the other
hand can be trained in many different ways, typically in a two-phase process (Schwenker
et al., 2001). The weights of the RBF layer and the output layer are trained separately, which
is generally faster than simultaneous training of multiple layers. In the first phase the RBF
weights, i.e the centers µ and width σ Eq. 3.3, are trained. The second phase then only trains
the weights in the output layer.

3.2.6 Data normalization
Data normalization is often done before the data is used in the training process. While this
step is not always necessary it can often help with performance. Normalization involves
the rescaling of the data to values appropriate for the model it will be used in. When non-
linear output activation functions such as sigmoid or hyperbolic tangent are used, the neural
network will only be able to produce outputs in the interval (0,1) and (-1,1) respectively.
The desired outputs must therefor be transformed into the appropriate range for the outputs
of the network. However even when using a linear output function it may still be useful to
transform the outputs as well as the inputs.
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For RBF the norm between the input vector and it weight vector (kernel center) deter-
mines the activation of the neuron Eq. 3.3. For the most common case of using the Euclidean
distance as the norm (Eq. 3.8), different scales can have a large impact on the performance.

∥x− y∥ =

√√√√ n∑
i=1

(xi − yi)2 (3.8)

Since every dimension in the input vector is given the same importance in the calculation of
the distance, a specific input with much higher variability can easily dominate the result. It
is therefor useful to scale the input and output parameters in RBFNNs. There are multiple
ways to scale the data, one common way is to log-transform it so that the transformed value
xt is given in terms of the initial value x by

xt = log(x). (3.9)

This method is only possible for positive values and is common if they span multiple orders
of magnitude.
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Chapter 4

Method

The aim of this thesis is to build an artificial neural network to improve the speed of Mie
calculations. Previous work has demonstrated that a single layer FFNN can indeed be used
to significantly improve the computation time for Mie calculations (Lang (2013)). Based on
the findings described in previous chapters regarding neural networks I have chosen to use
the RBFNN for this purpose.

Figure 4.1: Basic flow chart for designing ANN models

The procedure of designing of any neural network can generally be split into 5 basic
steps (Al Shamisi et al., 2011), see Figure 4.1. The first step is to collect the relevant data.
In this case the data is computer generated by a Mie code. It is necessary to define the input
parameters which are to be used in the Mie calculation when generating the data set.

Next the data is preprocessed, which involves possible removal of outliers and scaling/-
transforming the data for better training. The third step is building the network with the
chosen architecture, RBFNN in this thesis, and selecting the different parameters such as
number of neurons. Next the built network is trained on the preprocessed data, where the
different weights are adjusted for optimal performance. Lastly the trained network must be
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tested again on unseen data to evaluate its generalization capabilities. Depending on the re-
sults a new network may be created. In this chapter follows a description of how the Radial
Basis Neural Network was created and applied.

4.1 Selecting inputs and outputs
Light scattering by small particles plays an important role in many areas of science. The
IOPs of the particles in a medium are necessary for modeling how radiation is transferred in
that medium. These include the scattering and absorption coefficient β and κ as well as the
scattering phase function p.

cos(θ)
κ+ β

dL(Ω)
dz = −L(Ω) + β

κ+ β

∫
4π

p(Ω′)L(Ω′)dΩ′ + S(Ω) (4.1)

Before the radiative transfer equation (Eq. 4.1) can be used the IOPs need to be calculated.
This is often done using Mie theory. The particles of interest, such as aerosols in atmosphere,
are often large compared to the wavelength of the light used in the calculations. Additionally
the calculation time of Mie solution increases with size parameter so a large portion of time
is often spend on the calculation of the IOPs.

So the neural network needs to give us some information about these three IOPs. The
scattering and absorption coefficients can be used in a straight forward manner in the training
of the neural network as they are just single values.The scattering phase function changes at
every scattering angle and some more thought has to be put into how this one should be
represented. One option is to use values of the phase function at some number of angles
and then later interpolate between the points to give a representation for the phase function.
Alternatively the reverse option, interpolate first and then train the network on the polynomial
coefficients. However, then you may need many points for good representation of phase
function. A simple option would be to use the asymmetry factor, g, which may then be use
to give an approximation for the phase function from it, such as e.g. Henyey-Greenstein
phase function (Henyey and Greenstein, 1941). This only requires the network to give one
output related to the phase function, and would presumably make the network easier to train.
However, it is important to keep in mind that resulting phase function will be inherently
flawed, as it just represents a model of the general shape of these functions. The asymmetry
factor was chosen as the output representing the phase function, and other options where
tested after the initial consideration.

The inputs for the RBFNN are more straight forward and where chosen from the input
variables for the Mie code. The Mie code takes as inputs the wavelength, radius and relative
refractive index of the particle and surrounding medium. For scattering by a distribution
of different particle sizes the radius will vary so information about the distribution is also
necessary. Lastly the calculation of the scattering and absorption coefficients also depend
on the volume fraction of particles per volume, this was kept at 1, in order to make the
scaling of the coefficient to the desired volume fraction as simple as possible. Since the
Mie calculations don’t depend on the wavelength directly but only on the relative size of
the particle to the wavelength, it was kept constant at 500nm for all calculations. If one is
interested in different wavelengths a scaled radius may be used. However the size depends
on the particle size distribution.
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Aerosol size distributions in the atmosphere are often bimodal and can be approximated
by the sum of two lognormal distributionsAhmad et al. (2010). These lognormal distributions
depend on the geometric mean radius and the geometric standard deviation. These distribu-
tions differ depending on a number of parameters such as, if they are based on a number,
mass or volume distribution etc. In this case we use the volume size distribution

dV (r)

d ln r =
Vo

σ
√
2π
exp

(
− ln r − ln rvo

σ
√
2

)
, (4.2)

where Vo is the volume of particles, rvo the volume geometric mean radius and σ the geo-
metric standard deviation following the notation by Ahmad et al. (2010). The center of the
distribution depends on rvo, from here on just referred to as the mean radius, and the width is
controlled by σ. These two values were chosen as the input variables describing the size of
the particles. This still describes scattering by different wavelengths, but by simply scaling
the size to the same amount as the wavelength, the size parameter kan be kept constant.

The relative refractive index which is a complex value is split into it’s real and imaginary
part. The real part of which is used as inputs.. The refractive index of the surroundingmedium
is chosen to be unity such that the relative refractive index used in the calculations is simply
the refractive index of the particle.

4.2 Generating training data
The data sets containing the input and output parameters discusses in section 4.1 above where
generated with the Mie code developed at the University of Bergen, based on the implemen-
tation described by Hong Du.The selected upper and lower bounds on the input values where
roughly based on the measured values for atmospheric aerosols (Ahmad et al., 2010). The
most notable difference is the increase of the maximum mean radius up to 1mm, to include
small water droplets. The generated training data sets uses values selected from within the
range in Table 4.1 and their corresponding outputs where computed. One attempt was made
with a reduced range, where the maximum mean particle radius and imaginary refractive
index was lowered to the values in Table 4.2,

Table 4.1: Range of input parameters for generating data set
Input parameters Min. Value Max. Value
Mean Radius 10−7 10−3

Width 0.3 0.5

Real refractive index 1.3 1.7

Imaginary refractive index 10−9 0.5

Table 4.2: Reduced range of input parameters for generating data set
Input parameters Min. Value Max. Value
Mean Radius 10−7 10−4

Imaginary refractive index 10−9 10−6

How the input is selected in the chosen range of values makes a difference, as it changes
distribution of inputs for the network to train on. Two different ways were attempted, uniform
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and log-uniformly (uniform in the log domain) distributions. It should be mentioned that
the natural logarithm was used. For both of these, the same uniformly distributing random
number generator was used. Based on these values the data sets was created such that.

4.3 Creating the RBFNN
The RBFNN were generated and trained with Matlab’s inbuilt function ”newrb” from the
neural network toolbox. The best performing RBFNN can be found online (Stremme, 2019).
The function requires a data set of inputs and its corresponding outputs, selected based on
the purpose of the network described in the section above. New RBF neurons are iteratively
added to the network. This is done by calculating the mean square error (MSE) between the
RBFNN and the true outputs, and then centering the new RBF neuron on the input vector
that minimizes this error. The RBFNN created with

n e t = newrb ( P , T , Goal , Spread ,MN,DF)

where P is the R × Q input matrix of Q input vectors of length R, similarly T is the S × Q

output matrix containing Q output vectors of length S. Goal represents a stopping criterion
for training which is reached when the MSE is lower than the specified goal. The maximum
number of neuronsMN represents a second stopping criterion. The spread controls the width
of each RBF neuron and is related to σ from Equation 3.4 by

σ =
spread√
− ln(0.5)

. (4.3)

Lastly DF specifies how many neurons need to be added before the training error display is
updated.

The generated RBFNN will minimize the MSE between the networks outputs and the
target outputs, corresponding to the true values associated with the given inputs. This er-
ror can be made arbitrarily small with a RBF center on each input vector if the widths are
small enough not to overlap. The result of this is a ”perfect” performance on the training
data. However, when this occurs it often result in poor performance on unseen data and is
commonly referred to as overfitting. To avoid this certain parameters can be adjusted, such
as using a stopping criterion in order to stop training before all parameters are perfect for the
training set, or adjusting the spread of the RBF to interpolate between points. To check the
effect of these changes, sets of data the trained RBFNN has not seen before must be used for
the test set. The error on both the training and test set where taken into consideration when
adjusting these values.

4.3.1 Stop criterion

The chosen stop criterion in this case is the maximum number of neurons as opposed to a
set MSE. This was based on personal preference to give more control over the size of the
networks. Additionally the training data is scaled down and the MSE is calculated on these
scaled values, which are very different from the goal of reducing the relative error of the true
values.
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4.3.2 Spread
Spread is a parameter that needs to be changed to based on how fast the outputs are changing,
as well as with the number of neurons. Lower number of neurons generally require larger
spreads to fit the whole input space. Finding a good spread value is one of the most diffi-
cult parts of creating a RBFNN, and can have a huge effect of its performance. The spread
determines the width of the Radial Basis Function, thereby determining the size of the area
where the neuron responds with significant outputs. If the spread is too big, a larger number
of neurons are required to adapt to a rapidly changing function. Additionally it will gener-
ally only be able to represent the general trend of the function, resulting in what is known
as underfitting. On the other hand if the spread is too small, more neurons are required for
a slowly changing function. This would result in a poor representation of the general trend
of the function, even though the error might be low at the training data points, known as
overfitting (Wang and Xu, 2013). In these tests, mostly trial and error was used to identify
good spreads.

4.4 Number of neurons
In order to create a functional Neural Network training parameters have to be chosen. Simi-
larly to the spread the number of neurons can also have a negative effect on performance if
there are either too few or too many. For each selected spread a variety of different neuron
numbers where tested. Based on the change in performance with a given set of neurons the
next was chosen. If the network stopped performing better or alternatively started to perform
worse the spread was lowered and the number of neuron selection started over. As the spread
decreased the minimum neuron number was increased based on experience with the previ-
ous test, e.g if spread 5, 50 neurons performs poorly and gets better with more neurons than
lower spread is also expected to follow this trend.

4.5 Error analysis
After each iteration, parameters were changed in order to see which results the network pro-
duced. Several iterations were done and numerous selections of max neuron number and
spread were chosen in order to obtain lower error. As results become more promising, that
is the error got lower, this narrowed down the parameter window. There are multiple ways
of analyzing the performance of the RBFNN, whether to decide if the model works or which
changes have to be made. After each new network was trained its performance was checked
on the the training data as well as unseen test data, sometimes called validation set. The
percentage error (PE)

PEi = 100
(Ti −Oi)

Ti
(4.4)

was calculated for each output in both sets, where the correct target output is Ti and its
corresponding network output is Oi. It is worth noting that the values T and O used in the
error calculations are the values rescaled. Meaning that the values were scaled back to their
true value, before any data transformation was done in the preprocessing step. This is very
important as the error on the transformed data may be very different. The mean absolute
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percentage error (MAPE) was calculated from the PE

MAPE =
1

n

n∑
i=1

|PE| (4.5)

as well as the maximum absolute percentage error (MAXAPE)

MAXAPE = max(|PE|) (4.6)

and the standard deviation (SD)

SD =

√√√√ 1

n− 1

n∑
i=1

(PEi − PE)2 (4.7)

The error values on these two sets signify possible problems or strength of the networkmodel,
e.g. much larger errors on the test set shows that the network does not generalize well to new
data.
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Results

5.1 Log-uniform data set

The first data set was generated using a log-normal distributed set of the input parameters
from Table 4.1. Figure 5.1 shows the distribution of points as used in the Mie code. The
values used in the NN however, where scaled down to similar orders of magnitude by taking
the natural logarithm of all parameters. Such that the Figure 5.2 shows the distribution of
points that the NN get as inputs. The ith row and column represent the ith input parameters
as seen in the order of Table 4.1.

The first set of RBFNN and their performance on the training and test set can be seen in
Table 5.1. We can see some initial values for number of neurons and RBF spread used to cre-
ate the RBFNN and their corresponding mean absolute percentage error (MAPE), maximum
absolute percentage error (MAXAPE) and standard deviation of the errors (SD). Further, we
can see the increase of number of neurons for a set of different spread values. For each spread
the number of neurons were increased until either the improvements in the mean square er-
ror (MSE), used as the optimisation parameter flattened out, or until the error on the test sets
started getting worse.

For the largest spread values we can see the that the network stops improving already
around 150 neurons, while the errors are still high. With too large spread the network can
only show a rough trend and not change quickly enough to the actual variation in values,
resulting in overfitting. The smaller spreads on the other hand keep reducing the error for
over the double amount of neurons, and with an overall lower error. The network seems to
generalize well giving similar error for both training and test data set.

The general trend is decreasingMAPE for decreasing spreads with an appropriate number
of neurons, this continues until around a spread of 2-3, after which the error increases again.
For example comparing the 400 neuron example for spread 2 with the same for spread 1, the
MAPE andMAXAPE is significantly larger for the latter. Overall theMAXAPE never seems
to go down much lower than around 10-20% for the scattering and absorption coefficient,
and around 5-10% for the asymmetry factor. This stays true even on the training data.

Another set of RBFNN with spread 3 but with higher number of neurons is shown in
Table 5.2. Here we can see that there is hardly any change in performance and that while the
network performs very slightly better on the training set, the performance decreases on the
test set. The network tries to fit the training data better at the cost of its generalization ability
to the unseen test data.
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Figure 5.1: Log-uniform data set before log transformation: Distribution of all input plotted
against each other. From top to bottom and left to right the inputs are: mean size, width, real
and imaginary refractive index.

Figure 5.2: Log-uniform data set after log transformation: Distribution of all input plotted
against each other. From top to bottom and left to right the inputs are: mean size, width, real
and imaginary refractive index.
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Table 5.1: Full scale overview for Radial Basis Neural Network training and test data sets
for the log-uniform data. Showing max neurons (between 50 and 400) in spread 1, 2, 3, 5, 10
and 20, with results for MAPE, MAXAPE and SD by parameters for scattering, absorption
and asymmetry.
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Table 5.2: Overview of Radial Basis Neural Network training and test data sets for the log-
uniform data for spread 3 with higher max neurons (500, 750 and 1000). Results for MAPE,
MAXAPE and SD by parameters for scattering, absorption and asymmetry

Figure 5.3: Error histogram: From left to right percentage errors for scattering coefficient,
absorption coefficient and asymmetry factor. Here all errors, training and test error, combine
corresponding to RBFNN with spread 3 and 500 neurons.

Each of the NN created with this log-uniform data set have a Gaussian distribution of
errors similar to Figure 5.3. While most of them have some outlier MAXAPE, the standard
deviation is still a fairly good representation of the how the errors are distributed. While the
figure only shown the combined distribution of errors, the test and training set error look
similar individually.

5.1.1 Lower input ranges
A few test where done where the range of mean radius and imaginary refractive index was re-
duced by lowering their maximum value. The reduced values Table 4.2 where chosen some-
what arbitrarily so that they only vary over 3 orders of magnitude. This was done in order to
see if this had any effect on the performance of the network. The results for this data set, as
can be seen in Table 5.3, are very similar to the full range Table 5.1. Still having the same
problems with highMAXAPE. Once again there is a very clear increase in performance from
decreasing the spread, with the best results at spread value of 2. Comparing MAPE for the
same number of neurons and spread between this smaller data set and the full one, Table 5.3
and 5.1 respectively, we can see that less neurons are required to achieve a similar error for
the smaller set. Additionally we can see that for the best performing networks the MAXAPE
for the scattering coefficient is lower for smaller range data set, down from 14-15% to 9-10%
on the test set. It is however the opposite for the absorption coefficient, where the MAXAPE
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Table 5.3: Radial Basis Neural Network training and test data sets for the log-uniform data
set with lower input ranges. Showing max neurons in spread 1, 2, 3, 5, 10 and 20, with results
for MAPE, MAXAPE and SD by parameters for scattering, absorption and asymmetry.
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Figure 5.4: Uniform data set before log transformation: Distribution of all input plotted
against each other. From top to bottom and left to right the inputs are: mean size, width,
real and imaginary refractive index.

increases from around 20% to almost 40%.

5.2 Uniform data set

Similarly to the log-normally distributed data set the uniformly distributed data set was also
generated on the full range of inputs as can be seen in Table 4.1. The distribution of points
before and after log-transformation an be seen in Figure 5.4 and 5.5.We can see that the mean
radius and imaginary refractive index, which ranger over multiple orders of magnitude, are
very affected by the choice of distribution.While the inputs are uniformly distributed initially
(Figure 5.4), after the log transform (Figure 5.5). We can see that there are actually very few
inputs with low mean radius and imaginary refractive index. Especially on the plots where
distribution of size and imaginary refractive index is shown simultaneously, we see that this
set is prone to outliers. The results in Table 5.4 illustrates the problem this creates nicely, with
a very large discrepancy between the performance on the training and test set. The errors on
the training set are much lower than for the log-uniform training sets. On the training set the
RBFNN with 150 neurons and spread of 3 has a mean error under 0.04%, max of 0.7% for
the scattering and absorption coefficients and the asymmetry factor 10 times more accurate
than those. Even the smallest networks that where tested with only 50 neurons perform well
on the training data. However, the max error on the test set is much higher with at least one
outlier of over 100% for each RBFNN.
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Figure 5.5: Uniform data set after log transformation: Distribution of all input plotted against
each other. From top to bottom and left to right the inputs are: mean size, width, real and
imaginary refractive index.

Table 5.4: Full scale overview for Radial Basis Neural Network training and test data sets
for the uniform data. Showing max neurons (between 50 and 150) in spread 3, 5, 10 and
20, with results for MAPE, MAXAPE and SD by parameters for scattering, absorption and
asymmetry.



32 5. Results

5.3 Combined data set
The last data set used for training the RBFNN was a combination of the uniform set, Figure
5.5, and log-uniform set Figure 5.2.The results of the combined data set can be seen in Table
5.5.

Table 5.5: Overview for Radial Basis Neural Network training and test data sets for the
combined set of log-uniform and uniform data. Showing max neurons (between 100 and
300) in spread 2, 3, 5 and 10, with results for MAPE, MAXAPE and SD by parameters for
scattering, absorption and asymmetry.

5.4 Closer look at the errors
Most calculations by the RBFNNs are very accurate however the presence of those few high
errors motivated a closer look at trying to find where those are located. The absolute value
of the percentage error for the 500 neuron RBFNN from Table 5.2 was color mapped onto
a scatter plot of the log-transformed values of imaginary refractive index and mean radius
of the particle size distribution. The results for the error in scattering coefficient, absorption
coefficient and asymmetry factor can be seen in Figure 5.6, 5.7 and 5.8 respectively. For
the scattering and asymmetry error there is a clear trend of the largest errors being between
a mean radius of e−16 and e−14 which is exactly on the order of the wavelength used to
compute the outputs (500 ·10−9). The large absorption errors are clustered similarly, however
a bit maybe a bit more towards slightly larger mean radius and also towards mostly small
imaginary refractive index values.

Similar plots for the for the uniform data set is not as interesting as it only shows the high
errors on the outliers far away from the main cluster of points in Figure 5.5. The error on the
training set here is not large due to almost all the points being clustered around large values
of the input parameters which the RBFNN is good at approximating. The few small values,
of size and imaginary refractive index, that are in the set are calculated exactly by centering a
RBF directly on the point during training. Since the points are to far apart however those type
of points that are in the test set may end up not being activated at all by any of the neurons
and result in a huge MAXAPE.
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5.5 Computation time
Computation time was compared between the c++ Mie code and RBFNN from Table 5.2.
The c++ Mie code was run with a varying mean radius for the particle size distribution, with
a width of 0.4, real part of the refractive index 1.5 and imaginary part 10−4. Each different
computation was timed, which resulted in the a variety of different times for similar particle
sizes. This was likely due to the program dynamically increasing the number of quadrature
points for the integration over particles sizes if the desired accuracy was not reached. The
plotted times in Figure 5.9 are the average time for collection of different mean radii. The c++
Mie code increases approximately linearly on the log-log scale, ranging from approximately
5 ·10−4s for the smallest mean radius to about 100s for the largest. The calculation time of the
RBFNN on the other hand does not vary with the input parameters, staying constant around
at around 8 · 10−3s. As a result the RBFNN is slightly slower for very small particles, with
a dramatic improvement in speed as the radius is increased, by about a factor of 10000. The
point at which the RBFNN becomes equally fast as the c++ code is when the mean radius is
around 10−6.4 which is approximately 4 · 10−7.

The right plot of Figure 5.9 demonstrates the change in computation time betweenRBFNN
with 500, 750 and 1000 neurons. The RBFNNs with more neurons are slightly slower, with
an increase of less than 2 · 10−3s from 500 to 1000 neurons.

The first 1-2 calculations by the RBFNN where constantly slower than the rest. They
were fed the input data in order from smallest to larges mean radius in Figure 5.9. So this
higher value for the smallest radii has nothing to do with the actual input parameters, but
rather an artifact of how the time measurement was done.
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Figure 5.6: Distribution of scattering coefficient absolute percentage error.

Figure 5.7: Distribution of absorption coefficient absolute percentage error
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Figure 5.8: Distribution of asymmetry factor absolute percentage error

Figure 5.9: Average computation time for particle size distributions of varying mean radius.
The mean radius is given in meters and its log base 10 value is shown in the Figure. The
initial higher value for the red, purple and green line, before it flattens out, is due to being
the first values given to the neural network. Left: Blue line represents the c++ Mie code, red
line neural network with 500 neurons. Right: Red, purple and green represent neural network
with 500, 750 and 1000 neurons respectively
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Chapter 6

Discussion

One of the first questions that came up when I started working on the neural networks was
how best to sample the training data. As the ranges for the various inputs (Table 4.1) differ
by multiple orders of magnitude, the decision was made early on to log-transform the values
in order to scale them to comparable ranges. The first data set (see Figure 5.2) followed a
log-uniform distribution, such that the input vectors are evenly spread, which Lang (2013)
demonstrated worked well for a regular FFNN with tanh activation function. This turned out
to also work fairly well for RBFNN. The RBFNN in Table 5.1 and 5.2, specifically those with
spread of 2-3 and more than 300 neurons, achieve similar or for some even slightly better
MAPE error than was previously reported by Lang (2013). While a mean error of about 1%
is likely good enough in many applications, the presence of a few high maximum errors had
to be investigated more.

Initially no exploratory visualisation was done and only a few of the largest errors where
manually investigated. During the training attempts on the log-uniform data set these indi-
vidual values I looked at seemed to often be input vectors with large imaginary refractive
index. This led me to wonder if the low number of data points for high values of mean size
and imaginary part before the log transformation (see row 1 and 4 Figure 5.1) caused this.
In respond which the uniform data set was created. It could have easily been seen that this is
not the solution had I earlier spent more time on visualizing the different data set alongside
the computed errors like in Section 5.4.

The uniform data set while evenly distributed before the transformation is almost entirely
distributed around the top range of the inputs, with a bunch of outlier points, after the trans-
formation. As the transformed data was what the RBFNN was trained on, in hindsight this
should have been expected to not perform well. Since outliers are generally bad for RBFNNs
as the RBFs need to be spread across the entire input space to be able to generalise, however
with outliers typical training algorithms don’t work well. Even though the RBFNN trained
on this data set weren’t able to generalise well over the whole input range, due to a lack of
points for smaller input values, the test results illustrated two important points. Firstly the
importance of a good distribution of data points and that the large values where not cause of
the high MAXAPE.

The main problem of higher error was found to be due to small values of the mean radius
of the particle size distribution. This approximately where the mean radius corresponds to
a size parameter of 1, and the output vary the most. Distribution of input parameters such
that the points are more densely spaced where the output varies rapidly would make sence.
So maybe a data set similar to the log-uniform set with even more points around these mean
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radii, could help reduce the maximum error. Or potentially creating multiple networks, one
for the only smallest mean sizes where the range of is fairly small maybe one orders of
magnitude, and then another for the rest where it seems to be easier to fit the NN.

The scaling of the input parameters is usually advantageous since the output of the RBF
is based on a distance measure between the input vector and the RBF center (Eq. 3.3). If the
size of the different input parameters are not comparable, then the feature with the largest
ranges could completely dominate over those with smaller ranges. However there are many
ways to scale the data, maybe there is some other method used instead of or in combination
with log-transform to produce a data set that is particularly easy to train a RBFNN on.

Different ways to determine RBF centers and training algorithm. Matlabs newrb function
centers the RBFs directly on one of the various inputs. Training algorithm adds new RBFs
such that they reduce MSE which may not be the best way to do it. Additionally same spread
value was used for each RBF neuron in a given RBFNN, the training algorithm used in this
paper did not change the spreads at all. As the spread is one of the most important parameters
in a RBFNN, allowing for different spread throughout the input space likely could increase
approximation performance. The possibility of retrain the RBFNN was considered in order
to change the center and width of each RBF, but in the end no attempted where made as
this added another whole new topic of various training algorithms to consider. However i
suspect such a retraining method is likely to be more effective in combination with a different
technique for RBF center initialization is used. As the newrb method for center selection may
place them in a local minima that new training algorithms don’t manage to move away from.

Asymmetry factor was constantly the most accurate of the output parameters to approxi-
mate. It is however also the parameter with the least variation of possible values. The asym-
metry factor is by definition limited to values between -1 and 1, and in our case varies even
less. This is due to the particle sizes are all comparable with or much larger than the wave-
length, where forward scattering dominates. Maybe more information is possible to be ex-
tracted. An interesting possibility is to replace the asymmetry factor with a values for the
phase function at a set of different angles, to possibly get a more accurate angular distri-
bution of the scattering. Alternatively even do both and use the asymmetry factor for the
general curve and use the other outputs as a way modify phase function approximated by the
asymmetry factor.

Computation time of traditional Mie depend on multiple parameters. The mean radius
was varied in Figure 5.9 which show the expected increase with size, larger size parameters
require more terms in the Mie series. However other effects such as the width also play a
role, large width of the size distribution requires more large particles to be calculated which
take the most time. Additionally the imaginary part of the refractive index can also play a
role in computation time. The results in Figure 5.9 show that average computation time of
the given input parameters, that is constant width and refractive index, is up to 10000 times
slower than the created RBFNN. It should however be noted that depending on the particles
of interest this difference will can be significantly less or even more

For each data set many networks are tested against the same test data, such that picking
the best performing network from the test performance may not actually be the best one to
generalize. This is something that should be considered in the future when trying to fine tune
the best parameters. A validation set should be used to test the individual models, and then
the selected model should be tested on a new test set which is completely independent. This
can be important as there is the possibility of having a good performance on the validation
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set purely by chance, without it actually being the NN that generalises best overall. So its
worth noting that even though the spread 3 and 500 neuron network performs best on the test
set, it has not been thoroughly tested on other data sets that are guaranteed to be completely
independent, this remains to be done in the future. The network as it was trained here can be
found online (Stremme, 2019).
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Chapter 7

Conclusion and outlook

The a single radial basis function neural network with 300-500 neurons is enough to approx-
imate the scattering coefficient, absorption coefficient and asymmetry parameter with an
mean absolute percentage error of less than 2%. Depending on the range of and distribution
of input the network is trained on smaller network could also give similar results. The com-
putational difference a 500 and 1000 neuron RBFNN is however very small, with the larger
network only being 2 · 10−3s slower per calculation. The time save of a neural network can
be enormous for particles much larger than the wavelength, with a potential improvement of
10000 times faster than traditional Mie codes.

The main problem encountered was the potential of outlier errors of up to 20-30% exists
for the best performing RBFNN. Current results show that IOP for particle distributions for
large size parameter are easier for the RBFNN to approximate than for the ones size param-
eters close to one. Potentially creating multiple RBFNN which are each trained for different
ranges of input parameters may be a way to reduce the error even further. Additionally dif-
ferent training algorithms for the selection of RBF center are recommended to investigate.

Between the output parameters used in the RBFNN (scattering coefficient, absorption
coefficient and symmetry factor) the asymmetry factor is the parameter most accurately cal-
culated. It would be interesting to see if RBFNN can be trained to output a more accurate
description of the phase function. This would likely require a much larger number of output
parameters. Investigating how the RBFNN performance changes with increasing number of
output parameters and seeing if such a network could potentially predict atmospheric phe-
nomena such as the rainbow.
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