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Abstract
Phylogenetic niche conservatism implies that sister taxa will have similar niches, al-
though the niches of disjunct subspecies may evolve differently. This study uses 
Macaca assamensis, subspecies assamensis and pelops, to investigate the similarities 
of realized climatic niches of two disjunct subspecies (separated by the Brahmaputra 
River) along with a similarity analysis of their respective regions’ climate. Modeled 
distributions were used to quantify their potential distribution under current and 
future climate scenarios. The climatic similarity between regions of each subspecies 
was tested with principal component analysis (PCA), and the realized climatic niche 
overlap between two subspecies was tested with a multivariate analysis of variance 
(MANOVA) on a subset of the least correlated variables out of 24 publicly available 
topo-bioclimatic variables. Tukey’s honest significance difference (HSD) was used to 
test the range differences (on all 24 variables) between subspecies. The potential 
distribution of both taxa in the current climate and projected future climate was 
model-predicted using MaxEnt and Random Forest. We found significantly different 
climatic ranges for 21 predictors (HSD; p < 0.05) for the two subspecies, significantly 
different climatic conditions for their regions (using PCA; p < 0.001), and significantly 
different realized climatic niches for the two subspecies (MANOVA; p < 0.001). The 
distribution models generated a larger potential area than the currently known distri-
butions. Although literature show that the Brahmaputra River is an effective disper-
sal barrier, we found some of the neighboring geographic range for both subspecies 
appears to be potentially suitable for the other taxon. The projected future potential 
areas indicate that some parts of the currently occupied geography, mostly southern 
parts, may become climatically unsuitable, whereas other new geographical areas 
may become suitable. Most of these new potential areas will be toward the north 
where higher and fragmented mountains, which has conservation implications.
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1  | INTRODUC TION

Phylogenetically closely related sister species and subspecies are 
expected to show similarities in their niches (Losos, 2008; Peterson, 
2011; Peterson, Soberón, & Sánchez-Cordero, 1999). However, 
there is some empirical evidence that contradicts this expectation 
(Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Peterson & Holt, 
2003). Subspecies that live in different geographical locations (allo-
patric distribution), or in different zones along mountain slopes, may 
have different niches (Nakazawa et al., 2010; Vetaas, 2000). Niche is 
an n-dimensional environmental space (fundamental niche) which is 
constricted (realized niche) by species interactions, dispersal limita-
tions, and land use (Hutchinson, 1957; Sax, Early, & Bellemare, 2013; 
Zhao, Ren, Garber, Li, & Li, 2018). “Climatic niche” is the climatic 
space occupied by a species in a realized geographic distribution 
(Peterson et al., 2011).

Species distribution can be characterized by climatic variables 
including precipitation and temperature, their interaction, and to-
pography (Bell, Bradford, & Lauenroth, 2014; Margules, Nicholls, & 
Austin, 1987); these variables are part of the principal dimensions 
of a species’ fundamental niche (Hutchinson, 1957). The principal 
dimensions of fundamental niches tend to overlap between closely 
related species and subspecies, as suggested by phylogenetic niche 
conservatism (Losos, 2008; Peterson et al., 1999). However, this 
concept is complex and cannot be studied and expressed well with 
parsimony (Drew & Perera, 2011) because the realized niche of a 
species has many more determining factors such as predator–prey 
relationships, food availability, disturbance, and other behavioral 
and ecological processes, in addition to climatic variables (Cushman, 
Littell, & McGarigal, 2010; Hutchinson, 1957). Ecological niche mod-
els (ENMs) without such range-constraining factors do not really 
represent the “true” realized niche of a species. Species distribution 
models (SDMs) based on such ENMs with only topo-climatic vari-
ables tend to produce a potential distribution, rather than the real-
ized geographic distribution of species (Jiménez-Valverde, Lobo, & 
Hortal, 2008; Sax et al., 2013).

The climate forecast in the “business-as-usual” scenario 
(defined as future development trends following those of the 
past without any change in policy (Metz, 2001)), also known as 
Representative Concentration Pathways (RCP) 8.5, projects the 
average surface temperature to be 2.6°C to 4.8°C warmer by 
the end of this century compared with the 1986 to 2005 period 
(Collins et al., 2013). The change in average surface temperature 
and precipitation regime may generate a novel climate in the fu-
ture (Collins et al., 2013; Pendergrass & Hartmann, 2014; Williams, 
Jackson, & Kutzbach, 2007). A globally coherent “fingerprint” of 
current climate change impacts on species has been recorded 
by different meta-analyses (Chen et al., 2011; Parmesan & Yohe, 
2003), and similar impacts on species are projected under future 
climate conditions (Bedia, Herrera, & Gutiérrez, 2013; Peterson 
et al., 2002; Zhang et al., 2015).

Most studies on niche similarity are carried out within species 
and between species, and between hybridizing parents and their 

decedent species (Nakazawa et al., 2010; Peterson et al., 1999; 
Suwal & Vetaas, 2017; Vetaas, 2002). The intraspecies (e.g., sub-
species) fundamental niches are expected to overlap to some ex-
tent, because fundamental niches are conserved over time (Losos, 
2008). However, intraspecies realized niches may differ because 
of geographic isolation (such as allopatric or parapatric distribu-
tion), dispersal limitation, and competitive exclusion (Garcia-Ramos, 
Sanchez-Garduno, & Maini, 2000).

The primary aim of this study was to predict the potential climate 
niche for Macaca assamensis M’Clelland 1840 (Assamese macaque, 
Figure 1) based on species distribution modeling. Macaca assamensis 
diverged from M. radiata when M. radiata expanded its distribution 
from the Indian peninsula towards the Himalayas (Fooden, 1988). 
Macaca assamensis has since been divided into two subspecies; 
M. assamensis ssp. pelops (western population) and M. assamensis 
ssp. assamensis (eastern population; further taxonomic details can 
be found in the “Taxa” section; Fooden, 1988; Roos et al., 2014). We 
study the within-species climatic niches and distribution overlap of 
these two subspecies of Macaca assamensis under the current cli-
mate and under a future projected climate using topo-climatic vari-
ables. The eastern population became isolated from the western 
population (source) because of glacial retreat in a warm period during 
the late Pleistocene to Holocene, which transformed the glacier into 
a major river, creating the current barrier at the eastern end of the 
Himalayan mountain chain (Fooden, 1988; Khanal et al., 2018). This 
gives rise to the question: Do the subspecies have a high degree of 
similarity in their realized climatic niches, as explained by phyloge-
netic niche conservatism (Losos, 2008; Peterson et al., 1999), or do 
they have differently realized climatic niches because of climatic 
context from disjunct distributions since the last maximum glacia-
tion (ca. 18,000 years ago)? To answer this question, here we set 
out to investigate (a) whether climatic conditions are similar between 
the respective regions of the two subspecies of M. assamensis, (b) 
whether quantified realized climatic niches are similar between the 
taxa, and (c) where the potential distributional areas under current 
and future climate scenarios are located?

F IGURE  1 Western Assamese macaque (Macaca assamensis 
pelops) in the moist broad-leaved forest of eastern Nepal, at 
elevation approx. 2, 700. Photograph by coauthor GRR
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2  | METHODS

2.1 | Study area

The study area ranges between 77°E to 117.3°E and 5.6°N to 
36.5°N and covers most of the Hindu-Kush Himalayan region includ-
ing Nepal, Bhutan, Bangladesh, Myanmar, Laos, Thailand, Cambodia, 
Vietnam, as well as northern parts of India and southern parts of 
China (Figure 2). We considered a study area larger than the cur-
rently known distribution of Macaca assamensis (Fooden, 1980, 
1988; Roos et al., 2014; Timmins & Duckworth, 2013; Wada, 2005), 
so that models may reveal any peripheral potential areas that are not 
yet known. Given such a large study area, there is high topographi-
cal diversity including floodplains, valleys, gentle to steep mountain 
slopes, and small streams to very large rivers.

Most of the study area is dominated by monsoon climate, 
where a high proportion of the precipitation occurs during sum-
mer with a minor cycle of precipitation during the winter (Yihui 
& Chan, 2005). The eastern region has more evenly distributed 
precipitation throughout the year compared to the western region 
(http://sdwebx.worldbank.org/climateportal). The study area of-
fers tropical, subtropical, and temperate climatic regions as well 
as alpine.

Rapid urbanization and extension of agriculture in the last few 
decades have led to considerable transformation of forest in this 
region (Giri, Often, Pradhan, Kratzschmar, & Shrestha, 1998; Zhao 
et al., 2006), making agriculture the dominant land-use type in the 
region (Stibig et al., 2007). This transformation has fragmented the 
habitats of the macaque species (Boonratana, Chalise, Das, Htun, & 
Timmins, 2008).

2.2 | Taxa

Assamese macaque (Macaca assamensis Integrated Taxonomic 
Information System Taxonomic Serial Number (TSN) 573018) is a 
member of the sinica group. It is categorized as “Near Threatened” in 
the Red List compiled by the International Union for Conservation of 
Nature (IUCN). The species inhabits the mountain regions of the cen-
tral and eastern Himalaya, and adjoining south and southeast Asian 
mountain chains (Boonratana et al., 2008; Fooden, 1980, 1982). The 
eastern population is said to range from Arunachal Pradesh in India 
to Thailand, Laos, Vietnam, and the Yunnan and Guangxi provinces 
in China; the western population is described as being distributed 
from West Bengal in India to central Nepal (Groves, 2001). Two 
subspecies of M. assamensis are distinguished as the southeast 
Asian Macaca assamensis ssp. assamensis (TSN 945194) and the sub-
Himalayan Macaca assamensis ssp. pelops (TSN 945195). The two 
parapatric subspecies are separated by a described zoogeographical 
barrier (defined here as a physical obstacle that prevents migration of 
M. assamensis); the Brahmaputra river in northeastern India (Fooden, 
1982; Roos et al., 2014). The distribution of the two subspecies is 
fairly well-known, but quantitative mapping and the characteristics 
of their niche and distribution are lacking (Regmi et al., 2018).

2.3 | Occurrence data and pseudo-absence data

We used open-access species occurrence data from Regmi et al. 
(2018; collection from 1998 to 2013) and Fooden (1982; museum 
records from 1849 to 1980; n = 186 for M. assamensis ssp. pelops 
and n = 184 for M. assamensis ssp. assamensis) to generate the mod-
els. These are “occurrence only” data, and we therefore generated 

F IGURE  2 Map of the study area and 
recorded locations of eastern and western 
populations of Macaca assamensis. The 
IUCN range map was extracted from 
the IUCN Red List portal (http://www.
iucnredlist.org), accessed on 27 November 
2016

http://sdwebx.worldbank.org/climateportal
http://www.iucnredlist.org
http://www.iucnredlist.org


4  |     SUWAL et al.

background data randomly throughout the study area at a minimum 
of 5 km linear distance (to avoid possible clustering of multiple points; 
5 km is an arbitrary value equivalent to approximately five times the 
pixel size, which is meaningful in landscape scale) between any two 
points in ArcGIS 10.3 (ESRI; total background data points = 39,884) 
to produce the niche models and the species distribution models.

2.4 | Environmental variables

On a broad scale, species distribution is usually correlated with the 
two principal climate factors: precipitation and temperature (Bell 
et al., 2014; Thomas, 2010), which also applies to mammals (Li et al., 
2013). In addition, different ecological processes such as predator–
prey dynamics and food availability also govern mammalian spe-
cies distributions (Li et al., 2013; McPherson & Jetz, 2007; Trainor, 
Schmitz, Ivan, & Shenk, 2014). Theoretically, all ecological processes 
are required for an informed study of the realized niche and real-
ized distribution, but potential niche and potential distributions can 
be estimated based on just climatic variables (Bobrowski, Gerlitz, & 
Schickhoff, 2017; Bobrowski & Schickhoff, 2017; Drew & Perera, 
2011).

The predictive performance of species distribution depends also 
on the magnitude of climate change as well as partly on the choice 
of input data and their resolution (Bobrowski & Schickhoff, 2017; 
Trivedi, Berry, Morecroft, & Dawson, 2008). Hence, as a test we used 
two different sources of bioclimatic variables: Climatologies at High 
resolution for the Earth’s Land Surface Areas (CHELSA; Average of 
1979–2013; Karger et al., 2016, 2017) and WorldClim (Version 1.4, 
average of 1960 to 1990; Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005). This allows for a comparative study similar to the one done in 
Bobrowski and Schickhoff (2017). Both climate datasets are derived 
from the same source of data with a few but fundamental differ-
ences in their preparation. The CHELSA dataset is more recent and 
meant to be an improvement derived from statistical downscaling 
with gains in mountain regions, whereas the earlier WorldClim data-
set is based on weighted spatial interpolation and widely established 
(Bobrowski & Schickhoff, 2017). This study is among the few, which 
have started to use the CHELSA data in a comparative fashion. The 
CHELSA data have only recently been released, whereas WorldClim 
has been in use for more than a decade unchanged. The CHELSA 
data are not fully tested yet by the global user community, but claim 
to correct a weakness of WorldClim data in orographic precipita-
tion values (Karger et al., 2016). Orographic precipitation correction 
is particularly important for studies modeling species distributions 
in mountainous areas such as the Himalaya (Bobrowski et al., 2017; 
Singh & Kumar, 1997). The variables with CHELSA data will be called 
“CHELSA-predictors,” and the variables with WorldClim data will be 
called “WorldClim-predictors” hereafter.

Here, we used 24 predictors, which include 21 bioclimatic 
variables (bio01 to bio19, annual biotemperature (ABT; Holdridge, 
1947; Li, Wen, Guo, & Du, 2015), the Ellenberg climatic quotient 
(EQ; Ellenberg, 1988; Mellert et al., 2016); ABT and EQ have a con-
sistent time period and resolution with other bioclim variables) as 

well as three topographic variables (Supporting Information Table 
S1). The topographic variables are elevation (SRTM 90 m digital el-
evation model [Jarvis, Reuter, Nelson, & Guevara, 2008]), derived 
slope, and aspect in ArcGIS 10.3 (ESRI). Although land cover is an 
important variable in the distribution of species, its unavailability for 
future periods meant we did not include it in our model preparation. 
Climatic variables, however, should compensate for its absence. The 
high-resolution topographic data were not aggregated to match the 
coarse climate data because we did not use the raster file but instead 
used a point-based method where raster values were extracted to 
points and analyzed (Kandel et al., 2015; Regmi et al., 2018). All 
the data used in this study are open access, and the variables we 
prepared (ABT, EQ, slope, aspect) as well as occurrence data have 
been made open access via a university repository http://hdl.handle.
net/1956/16960.

In a traditional approach, one of the problems when working 
with multiple variables is multicollinearity (Alin, 2010), which is 
reduced by omitting highly correlated variables (Elith, Kearney, & 
Phillips, 2010; Fox & Weisberg, 2010). Here, we followed this ap-
proach and to assess which variables were highly correlated, variable 
clusters were plotted using the varclus function (Harrell, 2013) in R 
(R Core Team, 2017) for both CHELSA- and WorldClim-predictors 
(Supporting Information Figure S1). We also calculated variance 
inflation factors (VIF) for all variables using the R package usdm 
(Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014). We selected 
one variable with the smallest VIF value among the farthest cluster 
members from each cluster. When there was a single variable in a 
clade, the variable was also selected. This resulted in 17 CHELSA-
predictors and 15 WorldClim-predictors. Next, the variance infla-
tion factor (VIF) function (vifstep) in the usdm R package was used 
to select the final list of least correlated variables, using a thresh-
old of VIF < 5.0 (Guisan, Thuiller, & Zimmermann, 2017). This gave 
seven common and two specific variables for both CHELSA-  and 
WorldClim-predictors (Supporting Information Table S1). These sub-
sets of variables were used to analyze realized climate niche differ-
ences between taxa and generate species distribution models.

2.5 | Future climate scenario selection for potential 
distribution

The global warming trend in the past century, particularly the last 
few decades, has been at a higher rate compared to previous cen-
turies (IPCC, 2007; Stocker et al., 2014). The Himalayan region has 
been warming more rapidly over the past few decades compared 
to average global warming (IPCC, 2007; Shrestha, Gautam, & Bawa, 
2012; Shrestha, Wake, Mayewski, & Dibb, 1999). Recent monthly 
mean and annual mean temperatures have broken previous re-
cords (GISTEMP Team, 2016; Hansen, Ruedy, Sato, & Lo, 2010), and 
Friedrich, Timmermann, Tigchelaar, Timm, and Ganopolski (2016) 
consider that current climate projections are possibly underesti-
mated. Further evidence of this has been reported from all polar re-
gions (Comiso & Hall, 2014; Pachauri et al., 2014), including the “third 
pole,” the Himalaya (Armstrong, 2010; Huettmann, 2012; Pachauri 

http://hdl.handle.net/1956/16960
http://hdl.handle.net/1956/16960
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et al., 2014). Given the current governance of climate-related issues, 
we have adopted a precautionary approach to our choice of climate 
change scenario and have chosen the representative concentration 
pathway 8.5 (RCP8.5, “business-as-usual”) as a future climate sce-
nario, which we consider to be the most realistic for our study area.

We took an average of five downscaled general circulation 
models, namely ACCESS1-0, BCC-CSM1-1, GISS-E2-R, MIROC-
ESM-CHEM and MPI-ESM-LR, to reduce model-wise variations 
(Beaumont, Hughes, & Pitman, 2008; Suwal & Vetaas, 2017). We 
predicted for a single worst case scenario (i.e., RCP8.5) and a single 
future period 2070 (average of 2060 to 2080; Hijmans et al., 2005).

2.6 | Analysis, distribution model 
preparation, and validation

The values of all environmental variables were extracted at occur-
rence points, background data points, and lattice points (points that 
are arranged in a grid at 3 arc minutes distance in the study area, 
total = 177,938, on which current and future distributions were pre-
dicted). All the analyses were performed as a point-based analysis 
(using environmental values extracted at points instead of raster 
files; e.g., Kandel et al., 2015; Regmi et al., 2018).

We used the following analytical path: We applied constrained 
principal component analysis (PCA) for the eastern and western 
regions’ climatic difference; Tukey’s honest significant difference 
(HSD) test for climatic range differences for all 24 variables; mul-
tivariate analysis of variance (MANOVA) for niche differences be-
tween taxa; the “background test” to analyze niche similarity with 
available climate; and, finally, distributions of species were modeled 
with MaxEnt and Random Forest (details below). This was done with 
both climate datasets, that is, CHELSA- and WorldClim-predictors.

The climatic similarity between the eastern region (of M. as-
samensis spp. assamensis) and western region (of M. assamensis spp. 
pelops) was evaluated using PCA in the R package vegan (Oksanen 
et al., 2013). An equal number of random points (15,000 for each 
region; note: Density of points is not equal here) was used from the 
eastern and western regions, on which raster values of nine least 
correlated topo-climatic variables were extracted from raster files. 
Then, constrained PCA was performed on the values (separately for 
CHELSA and WorldClim-predictors), and “region” was treated as a 
predictor to analyze climatic similarity between regions (999 permu-
tation tests).

Post hoc Tukey’s HSD with a 0.95 confidence interval was used 
(for occurrence data) to test the difference in the realized climate 
range of all variables (square root-transformed) between the two 
subspecies. A variable range graph was plotted by standardizing all 
the variables to values between 0 and 2 to aid range comparisons be-
tween the taxa. A MANOVA (Pillai, 1985) was used to test whether 
the realized climatic niches of the two subspecies were statistically 
similar. We used a subset of nine selected independent variables (cf. 
above), and the taxa were coded as a fixed factor.

The background test evaluates whether the distribution (or 
niches) of two species is more or less similar than expected based 

on the environmental background of where they occur (Warren, 
Glor, & Turelli, 2010). This will indicate whether the realized niche 
of one subspecies is more or less similar to the realized niche of 
another subspecies based on the environmental conditions the-
oretically available to them (i.e., ignoring the barrier). In this test, 
we used the environment of the whole study area as background 
because M. assamensis ssp. assamensis is a descendant of M. as-
samensis ssp. pelops, which dispersed to new areas in the past and 
is not yet fully evolved into a new species. This asymmetric back-
ground test was performed for both taxa, and similarity measures 
D (Schoener, 1968) and I (Warren, Glor, & Turelli, 2008) are re-
ported along with their respective statistics. This is an additional 
test to the MANOVA as MANOVA was used to test differences in 
the realized niche between taxa based on occurrence data, while 
the background test assesses whether the realized niche is more 
or less similar than random expectation given the climate of the 
study area.

To answer the third research question, species distribution 
models (SDMs) were developed using MaxEnt (Phillips, Anderson, 
& Schapire, 2006) and Random Forest (Breiman, 2001a; Liaw & 
Wiener, 2002) algorithms, which are among the most commonly 
used machine learning methods (Aguirre-Gutiérrez et al., 2013; Mi, 
Huettmann, Guo, Han, & Wen, 2017). The models were fitted with 
binary response data (occurrence data with background data) in the 
R package sdm (Naimi & Araújo, 2016). Although it is claimed that 
both algorithms are not much affected by multicollinearity (Breiman, 
2001a; Elith et al., 2011), the models were run on subsets of the nine 
least correlated predictor variables, because higher dimensionality 
may cause poor model extrapolation and transferability (Peterson, 
2011; but see Breiman, 2001a,b)

Models were fitted separately for each subspecies with CHELSA- 
and WorldClim-predictors. The models were set to the default set-
tings, except replication, which was set as fivefold cross-validation 
(CV) for 10 times, regularization multiplier, which was set to 1.0 for 
M. assamensis ssp. assamensis and 0.5 for M. assamensis ssp. pelops 
(based on AIC scores tested between 0 and 10 at 0.5 intervals in 
ENMTools (Warren & Seifert, 2011)) in MaxEnt, and using out-of-bag 
(OOB) sampling in Random Forest. Models were trained with 70% of 
binary response data and remained 30% was used for model eval-
uation. We used one threshold-independent evaluation measure—
area under the curve (AUC) of the receiver operating characteristic 
(ROC; Bradley, 1997; Hanley & McNeil, 1982) and two threshold-
dependent evaluation measures—true skill statistic (TSS; Allouche, 
Tsoar, & Kadmon, 2006) and omission error with “maximum sum of 
sensitivity and specificity” threshold.

Predictions from models were made on lattice files prepared 
as above from each run for each subspecies and separately for 
CHELSA-  and WorldClim-predictors. Future predictions from 
CHELSA-predictor-trained models were not performed because the 
future scenario of CHELSA is not available at the moment. The aver-
age of 50 replications (5 CV * 10 runs) predicting the relative index 
of occurrence (RIO) was used for further analysis. The average (of 50 
replications) variable importance based on the AUC test score was 
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extracted from MaxEnt and Random Forest models and illustrated 
graphically.

To plot a two-dimensional realized climatic niche for each sub-
species, we selected one temperature and one precipitation variable 
because they are the key dimensions of climatic niches (Bell et al., 
2014; Margules et al., 1987; Vetaas, 2002). From the WorldClim-
predictors, the most important precipitation and temperature vari-
ables are bio18 and bio09, respectively, for both taxa. With the 
CHELSA-predictors, bio18 was the most important precipitation 
variable in three of four cases (two taxa, two models), and hence, 
it was chosen. However, for the temperature variable, both bio03 
and bio08 were top in two of four cases. For simplicity, we chose 
bio08 over bio03, because bio03 is more complex (ratio of bio02 and 
bio07) than bio08. The two selected variable sets were used to plot 
two-dimensional realized climatic space with density isolines using 
the R package ggplot2 (Wickham, 2010).

2.7 | Analysis of prediction similarity of 
CHELSA and WorldClim-predictors

The similarities in the predictions (Breiman, 2001b) from CHELSA- 
and WorldClim-predictors were analyzed using both MaxEnt and 
Random Forest models from raster files (in ASCII format, prepared 
by inverse distance weighted method from RIO value) supplied to 
the ENMTools software (Warren et al., 2008). The range overlaps 
between taxa were analyzed with the respective threshold “maxi-
mum sum of sensitivity and specificity” (e.g., Jiménez-Valverde & 
Lobo, 2007) from each model. The similarity of the predictions be-
tween eastern and western populations, and between MaxEnt and 
Random Forest for future geographical distributions, was estimated 

by ENMTools using two indices D and I. Both D and I indices range 
between 0 (no similarity) and 1 (identical prediction). The D and I 
are calculated by taking the difference between the relative indices 
of occurrence score for each grid cell (for details see Warren et al., 
2008; Warren, Glor, & Turelli, 2009).

3  | RESULTS

3.1 | Climatic similarity between the eastern and 
western regions

The similarity analysis of the climatic conditions using constrained PCA 
shows significantly different climatic conditions between the eastern 
and western regions with both CHELSA-  (r2 = 0.194, p < 0.001) and 
WorldClim-predictors (r2 = 0.198, p < 0.001). The PCA plots show a 
partly overlapping distribution of points from the two regions (details 
in Supporting Information Figure S2). Although the overall climatic 
conditions are significantly different between the eastern and west-
ern regions, there are patches with similar climate among the two.

A “background test” was performed for each subspecies with 
respect to the total climatic background available to them (in-
cludes both eastern and western regions). The background test 
for the eastern population in ENMTools suggests that its realized 
climate is less similar to the background than random expectation 
(i.e., given the background climate available; CHELSA: D = 0.14, 
p < 0.05; I = 0.35, p < 0.05; WorldClim: D = 0.22, p < 0.05; I = 0.49, 
p < 0.05; Supporting Information Figure S3A), while the back-
ground test for the western population shows that the realized 
climate does not significantly differ from the background cli-
mate (CHELSA: D = 0.29, p > 0.05; I = 0.56, p > 0.05; WorldClim: 

F IGURE  3 The two-dimensional realized climatic niche (CHELSA: bio08 (mean temperature of wettest quarter) versus bio18 
(precipitation of warmest quarter; left panel); WorldClim: bio09 (mean temperature of driest quarter) versus bio18 (right panel)) shows that 
the climatic niche of the western population (Macaca assamensis ssp. pelops) overlaps with the core climatic niche of the eastern population 
(M. assamensis ssp. assamensis) and the climatic niche of the eastern population overlaps a peripheral area of the climatic niche of the 
Western population
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D = 0.27, p > 0.05; I = 0.54, p > 0.05; Supporting Information 
Figure S3B).

3.2 | Climatic niche overlaps between the 
two subspecies

Tukey’s HSD test reveals significantly different ranges of 21 vari-
ables between the two subspecies (except bio14, bio19, and aspect 

for CHELSA-predictors, and bio12, bio16, and aspect for WorldClim-
predictors; Supporting Information Table S2 and Figure S4). The 
MANOVA test shows significantly different realized climatic niches 
between the two subspecies (CHELSA: Pillai’s trace = 0.86882, 
p < 0.001; WorldClim: Pillai’s trace = 0.7629, p < 0.001). The climatic 
niche difference is also visible in the two-dimensional niche plots 
(Figure 3), where the density isolines of the two subspecies have a 
distinct orientation.

Method AUC TSS
Omission error 
(in %) Subspecies

CHELSA

MaxEnt 0.921 0.71 14.08 M.a.assamensis

Random Forest 0.930 0.73 12.78 M.a.assamensis

MaxEnt 0.992 0.94 2.41 M.a.pelops

Random Forest 0.989 0.92 4.48 M.a.pelops

WorldClim

MaxEnt 0.924 0.74 12.84 M.a.assamensis

Random Forest 0.938 0.76 13.24 M.a.assamensis

MaxEnt 0.994 0.94 2.92 M.a.pelops

Random Forest 0.993 0.94 2.70 M.a.pelops

Note. Higher area under the curve (AUC) and true skill statistic (TSS) values indicate a better model, 
as do lower values of omission error.

TABLE  1 Model performance 
measures of MaxEnt and Random Forest 
for two subspecies of Macaca assamensis

F IGURE  4 Variable importance based on area under the curve (AUC) test scores from MaxEnt and Random Forest models. Bio02 = mean 
diurnal range, bio03 = isothermality, bio08 = mean temperature of wettest quarter, bio09 = mean temperature of driest quarter, 
bio13 = precipitation of wettest month, bio14 = precipitation of driest month, bio15 = precipitation seasonality, bio18 = precipitation of 
warmest quarter, bio19 = precipitation of coldest quarter, eq = Ellenberg climatic quotient



8  |     SUWAL et al.

3.3 | Potential distribution of sister taxa under 
current climatic conditions

The distribution models for the western population consist-
ently have better AUCs, TSSs, and omission errors compared 
to the eastern population models (Table 1). The most important 
variable of the different analyses with respect to subspecies, 

methods, and climate data source varies with the analysis (details 
in Figure 4).

The predicted potential distribution areas are wider than 
their currently known distribution areas for both subspecies 
(Figure 5a). This is particularly true for the eastern subspecies. 
Although the realized climatic niches of the two subspecies are 
statistically different, the distribution models show that the 

F IGURE  5 Potential distribution of two subspecies of Macaca assamensis based on MaxEnt and Random Forest models. The maps 
illustrate relative index of occurrence (RIO) predictions for M. assamensis ssp. assamensis and M. assamensis ssp. pelops distributions in (a) the 
current climate, using CHELSA-predictors (left) and WorldClim-predictors (right), and (b) a future (2070) climate scenario (from WorldClim-
predictors only)
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neighboring areas bordering the ranges of each and some core ge-
ography areas appear to be broadly suitable for both subspecies 
(Figures 5a and 6). The western area shows comparatively more 
potential area that could be occupied by the eastern population 
(Figure 5a). The result also agrees with the background test (cf. 

above). It suggests that both regions have some potential area for 
both subspecies.

The predicted overlaps of potential area between subspecies 
using an average of ‘maximum sum of sensitivity and specificity” 
threshold (Table 2) vary among methods and datasets. The overlap 

F IGURE  6 Potential area of distribution based on binary predictions (suitable/unsuitable) with maximum sensitivity plus specificity 
thresholds for CHELSA-predictors and WorldClim-predictors, as modelled by MaxEnt and Random Forest under current climate conditions. 
In the figure, the white background inside the study areas is predicted as not potential area. The IUCN range map was extracted from the 
IUCN Red List portal (http://www.iucnredlist.org), accessed on 27 November 2016. The figure implies uncertainty of predictions related to 
climate data source and modelling methods

CHELSA-predictors WorldClim-predictors

MaxEnt Random Forest MaxEnt Random Forest

M. a. ssp. pelops 0.055689 0.014217 0.049471 0.009709

M. a. ssp. 
assamensis

0.172274 0.005475 0.138802 0.007842

Average 0.113981 0.009846 0.094136 0.008775

TABLE  2 The “maximum sum of 
sensitivity and specificity” threshold for 
MaxEnt and Random Forest for CHELSA 
and WorldClim data sources and the two 
subspecies of Macaca assamensis to 
estimate their range overlaps under the 
current climate

http://www.iucnredlist.org
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between subspecies is 1.6% and 4.8% for MaxEnt and Random 
Forest, respectively, for CHELSA-predictors. Similarly, overlap of 
subspecies for WorldClim-predictors is 5.6% and 6.9% for MaxEnt 
and Random Forest, respectively.

MaxEnt models based on CHELSA-predictors predict 6.6% 
more potential area for the eastern population and 3.6% more area 
for the western population compared to WorldClim-predictors 
under the current climate. Random Forest models with CHELSA-
predictors predict 48.1% more potential area for the eastern popu-
lation and 10.1% more area for the western population compared to 
WorldClim-predictors.

3.4 | The potential distribution of the two 
subspecies under a projected future climate

The comparison between MaxEnt and Random Forest on future 
potential areas for the two subspecies shows that predictions are 
method-dependent. The similarity between future predictions (D 
and I similarity indices) by MaxEnt and Random Forest is between 
43 and 84% (Figure 7), respectively. The similarity in the potential 
areas in the future climate for the eastern and western populations 
is between 26 and 58% (Figure 7). The predicted potential distribu-
tion using WorldClim-predictors is depicted in Figure 5b. In the fu-
ture projected climate, the number of potential patches is greater 
compared to current climatic conditions (Figure 5a,b). This suggests 
fragmentation of the potential area under future climate and may 
cause loss of connectivity between the patches, thus threatening 
the species survival and having implications for conservation.

3.5 | Prediction similarity test of CHELSA- and 
WorldClim-predictors

We created four models using the CHELSA-predictors and another 
four using WorldClim-predictors. The AUC is always marginally 
greater for the WorldClim-predictors than for the CHELSA-predictors. 
Similarly, based on the TSS scores, the WorldClim-predictors are 
generally better than the CHELSA-predictors (three of four mod-
els and one equal). The omission error supports two of four mod-
els for both data sources. Based on the majority of results from the 
AUC, TSS, and omission error, WorldClim-predictors outperform the 
CHELSA-predictors (Table 1).

4  | DISCUSSION

4.1 | Climatic similarity between eastern and 
western regions

PCA shows that climatic conditions in the eastern region and west-
ern region are different. The difference in climate is possibe because 
of the positions of landmasses. The eastern region has compara-
tively more area in the warmer south, whereas the western region 
has higher mountains, resulting in a colder climate. In the western 
region, about 75% of precipitation occurs during the monsoon pe-
riod (June to September) while in the eastern region, about the same 
amount of precipitation falls between May and November (http://
sdwebx.worldbank.org/climateportal).

Although the overall climate between the eastern and western 
regions is statistically different, both regions may have some patches 
that are climatically similar, for instance a river valley or mountain 
slope. Such areas are probably predicted as being suitable for both 
taxa in our models in both regions. This is supported by the back-
ground test. The available background environment is not signifi-
cantly different from the environment of the western population. 
The western population, therefore, successfully colonized and es-
tablished in the eastern region in the past when the zoogeographic 
barrier was not effective (Fooden, 1988).

4.2 | Climatic niche overlaps between the 
two subspecies

The realized climatic ranges of most of the variables are signifi-
cantly different between the eastern and western populations, as 
suggested by Tukey’s HSD test (Supporting Information Table S2). 
The MANOVA also reveals that the climatic niches of the two taxa 
are significantly different, possibly due to local climatic context. It 
is obvious that when climates of two regions are significantly dif-
ferent, the realized climate niches of two taxa also show significant 
difference. It is the same case with two parapatric subspecies of 
M. assamensis in this study. This result aligns with previous find-
ings, for instance the distinct realized niches of six different sister 
taxa of Hanuman Langur (Semnopithecus spp.) in Peninsular India 
(Chetan, Praveen, & Vasudeva, 2014), and the distinct distribution 

F IGURE  7 Graph of similarity indices D and I from ENMTools 
for predictions by MaxEnt and Random Forest for future climatic 
conditions with WorldClim-predictors. The value 0 means 
completely dissimilar and 1 is totally identical conditions. The 
graph shows the predicted similarity between Macaca assamensis 
ssp. assamensis (MAA) and M. assamensis ssp. pelops (MAP) from 
Random Forest (RF) modelling (first pair of columns) and MaxEnt 
(MX; second pair of columns) and illustrates the prediction 
similarity between MaxEnt and Random Forest in reference to both 
taxa (third and fourth pairs of columns)

http://sdwebx.worldbank.org/climateportal
http://sdwebx.worldbank.org/climateportal
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and different realized niches of a subspecies of Californian scrub jay 
(Aphelocoma californica) in Mexico (Peterson & Holt, 2003). These 
previous findings and our results suggest that closely related taxa do 
not necessarily have similar realized niches (but see Peterson, 2011). 
The macaque subspecies are geographically isolated and living in dif-
ferent climatic conditions, which may promote speciation (Matute, 
Novak, & Coyne, 2009; Schluter, 2009).

The combined two-dimensional realized climatic niche of both 
subspecies (Figure 3) shows their distinct orientation. Many points 
(and isodensity lines too in the case of WorldClim-predictors) of the 
western population overlap with the core area of the eastern popu-
lation, while a few points of the eastern population overlap with the 
core realized climate niche of the western population. This suggests, 
assuming the occurrence data are representative, that although the 
climate of two regions is significantly different, the climate of the east-
ern population is comparatively more suitable for the western pop-
ulation than vice versa, as is also supported by the background test.

4.3 | The potential distribution of both subspecies 
in the current climate

Based on the AUC values, all MaxEnt and Random Forest models are 
considered good (>0.9) and the TSS measures suggest that MaxEnt 
and Random Forest models for M. assamensis ssp. pelops are excel-
lent (>0.9) and good (>0.7) for M. assamensis ssp. assamensis (Swets, 
1988; Zhang et al., 2015). Our models can thus be considered valid 
and allow for good inference (Table 1). However, the omission error 
of both MaxEnt and Random Forest for the eastern population is 
notably high. This is probably because of the wide geographic distri-
bution that is a challenge for the model-training procedure (Franklin, 
Wejnert, Hathaway, Rochester, & Fisher, 2009; McPherson & Jetz, 
2007; Suwal & Vetaas, 2017).

There are some model-wise variations in the predicted potential 
distributions of both sister taxa. MaxEnt and Random Forest models 
suggest that there are more potential areas than are currently occu-
pied or reported for both subspecies. In the absence of the true area 
occupied by the species, we could not accurately estimate the total 
potential area that is not occupied by them. The prediction maps 
(Figures 5 and 6) show that the eastern population has compara-
tively more potential area outside its currently known distribution, 
while the western population has fewer suitable areas beyond its 
currently reported localities. Some of the areas are beyond the IUCN 
range map of the species (Boonratana et al., 2008; Figure 6).

The IUCN range maps lack clear reproducible codes and are 
essentially based on expert knowledge of species occurrences and 
models. They do not use recent predictive modeling tools and docu-
mentation, and hence lack meaningful quantitative error estimates. 
Here, we produced, for the first time, a model-based quantitative po-
tential distribution map using the best-available data for M. assamen-
sis, which is more transparent and repeatable compared with expert 
maps. The IUCN range map of M. assamensis (Boonratana et al., 
2008) is broader than the currently known distribution (Fooden, 
1980, 1988; Timmins & Duckworth, 2013; Wada, 2005), particularly 

in the northern area. There are, however, a few occurrence points 
in Myanmar and Thailand that are outside the IUCN boundary and 
the range map is much wider than the climatically potential area pre-
dicted by our models. In contrast, Herkt, Skidmore, and Fahr (2017) 
demonstrated that their potential distribution map for bats in Africa 
was much larger than the IUCN-expert map. We agree with their 
observation that the IUCN maps differ considerably from SDMs, 
but the IUCN maps are normally based on documented occurrences 
whereas SDMs often find the potential distribution based on predic-
tor variables. SDMs can be complementary to the currently available 
IUCN species’ range maps; thus, they could aid species conservation 
by highlighting the potential range of a species (Herkt et al., 2017). 
If applied correctly, this approach can contribute to better species 
management and serve as an improved tool for future conservation 
in areas where human population pressures are rising steeply (Mace 
et al., 2010). This option is technically easy, but has been widely ig-
nored for over a decade in the times of the Anthropocene.

Macaca assamensis is already categorized as “Near Threatened” 
by the IUCN, suggesting the need for much higher priority in its con-
servation. The IUCN has listed habitat destruction due to anthro-
pogenic activities as the major threat to the species; other threats 
are alien invasive species in the habitat, hunting, and trapping (Gray 
et al., 2018). The predicted potential area—which is currently thought 
to be unoccupied—under current climate may allow the extension of 
their distribution or provide suitable sites for their translocation in 
the event that their current localities become subject to the above-
mentioned threats or any kind of disease or human–macaque conflict. 
Our findings and data have direct conservation implications such as 
prioritizing species-specific conservation areas, formulating species 
management and conservation action plans, identifying potential 
translocation sites, and exploring potential areas for new popula-
tions. Our output is open access in the hope that other researchers 
and conservationists can test, re-validate, and use our findings to the 
benefit of the macaques and better habitat conservation overall.

We acknowledge that land use and anthropogenic disturbances 
can shape the geographic distribution and realized niche size of spe-
cies (e.g., Miller & McGill, 2017; Zhao et al., 2018). Landscapes frag-
mented by human land use can interrupt the connectivity between 
habitat patches, which has consequences for the dispersal of spe-
cies (e.g., Miller & McGill, 2017). Additionally, species distribution 
and the realized niche of species are also defined by ecological pro-
cesses including predator–prey relationships and availability of food 
(Cushman et al., 2010; Hutchinson, 1957). However, here we lim-
ited our scope of study to topo-bioclimatic variables and employed 
widely used algorithms to initiate this discussion and assessment. 
This is because data about anthropogenic disturbance, food avail-
ability, biotic interactions, and other ecological processes are com-
plicated to document, although land cover data are available for the 
current period. We overlaid a land cover map on the predicted po-
tential distribution map for current climate (Supporting Information 
Figure S5). The maps show that some of the predicted potential 
areas lie outside the current forest area, and thus, those areas are 
unlikely to be inhabited by M. assamensis as it is primarily a forest 
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species. We did not use the land cover data in our model preparation 
because we aimed to model the potential future distribution of the 
species, which requires predictable variables. At the moment, this is 
not easily achievable for land cover; however, climatic variables can 
predict reasonably. One of the potential consequences of not incor-
porating such variables in ENMs and SDMs is that the models may 
predict a larger realized niche and wider potential distribution than 
is reasonable (Zhao et al., 2018).

4.4 | Potential distribution of the two subspecies 
under projected future climate

There is currently no good way to test whether a future prediction 
is accurate or not (Huettmann & Gottschalk, 2011). Typically, the 
validity of the prediction is estimated from performance measures 
of the models. Based on the AUC and TSS (Table 1), all of our mod-
els are “good,” allowing for robust inferences. However, there are 
some model-wise discrepancies in their predictions (Figure 7). These 
problems are often tackled by making an ensemble of multiple mod-
els (Araújo & New, 2007; Regmi et al., 2018), but we did not do this 
here directly. Instead, we used one of the best algorithms in SDM 
(Aguirre-Gutiérrez et al., 2013; Craig & Huettmann, 2009; Mi et al., 
2017), and, due to bagging, Random Forest being an ensemble model 
(Breiman, 2001a).

Regardless of some geographic differences in the future predic-
tions, a common trend seen in both models is that both subspecies will 
have more potential area in the future. We could not estimate the total 
area because we avoided using any thresholds from the relative index 
of occurrence (RIO) to convert the future prediction into suitable/
unsuitable areas. Continuous RIO values incorporate the uncertainty 
directly to avoid both false-positive as well as false-negative errors 
(Guisan et al., 2013), but there is no way to verify the results. The pre-
dicted potential areas under future climate are, to some extent, outside 
the current geographical distribution of both subspecies. Accessibility 
of those areas and the migration capability of the species may be a 
topic of additional research; it is not ecologically sound to assume any 
type of migration, although it is commonly done. Here, disregarding 
any dispersal ability of the species, we only evaluated the potential 
distribution under a projected future climate, which can inform con-
servation policy for the species such as pro-active planning for assisted 
migration or the allocation of potential areas to protected status.

4.5 | Prediction similarity test on CHELSA- and 
WorldClim-predictors

The comparative study of the modeling using climate data from two 
sources shows that results can depend on, and be sensitive to, the 
source of the climate data. From Tukey’s HSD test, the list of vari-
ables whose ranges are statistically similar varies between the two 
sources of data. Likewise, the prediction maps show that the areas 
predicted depend on the climate data source. This result aligns with 
some previous findings (e.g., Bedia et al., 2013; Pliscoff, Luebert, 
Hilger, & Guisan, 2014). Based on the model performance measures 

(AUC, TSS, omission error) in this study, the CHELSA-predictors are 
outperformed by WorldClim-predictors by a marginal value (for nine 
of 12 variables, one is equal; Table 1). Our climate data findings for 
Asia do not agree with previous findings by Bedia et al. (2013) and 
Bobrowski and Schickhoff (2017), who conclude that the WorldClim 
dataset is inferior to others and that it leads to misleading distribu-
tion models by consistently overpredicting the potential distribution 
(Bedia et al., 2013; Bobrowski & Schickhoff, 2017).

5  | CONCLUSIONS

The climatic niches of two subspecies of Macaca assamensis are 
not as similar as expected by phylogenetic niche conservatism. 
Given the taxonomic subspecies would be valid; the difference in 
climatic niches between the subspecies is most probably due to 
the different climate of the eastern and western regions. Species 
distribution models predict unique as well as some common po-
tential distribution areas for both subspecies. The potential geo-
graphic localities are predicted to change with contemporary 
anthropogenic climate change, which has implications for their 
conservation management.
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