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Abstract 20 

Knowledge of the relationship between vegetation and modern pollen deposition is necessary 21 

to improve the interpretation of fossil pollen samples. We compared the cover of plant species 22 

and the modern pollen deposition in surface moss samples in 49 plots in rich-fen vegetation 23 

from the boreal vegetation zone in Norway in two areas (one oceanic and one more 24 
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continental). These rich fens were used for traditional hay cutting until ca. 1950. Three 25 

management regimes are used: 1) biennial mowing 2) quadrennial mowing and 3) unmown. 26 

The unmown areas were traditional hay fens, with no management since the 1950s. Of the 89 27 

plant taxa and corresponding 65 taxa of pollen and spores, 29 and 22, respectively, were 28 

sufficiently represented in both vegetation and as pollen, to allow direct comparisons of the 29 

two data sets. Most of the plant and pollen taxa were found in the plots from both study areas 30 

and in plots with different mowing frequency. Therefore, quantitative differences in 31 

vegetation cover and pollen percentages were the main focus in this investigation of plant-32 

pollen relationships in mown and unmown vegetation. The relative difference in plant cover 33 

was largest between biennially and unmown plots. 12 species showed a significant positive 34 

correlation with difference in plant cover between mown and unmown areas (p<0.05; 35 

Wilcoxon signed rank test), most pronounced for Molinia caerulea (most common in 36 

unmown plots), and Carex dioica and Thalictrum alpinum (most common in mown plots). A 37 

significant positive plant-pollen correlation (Spearman rank-correlation) was found for 10 38 

pollen taxa. Thalictrum alpinum is a very good pollen indicator, and Cyperaceae, 39 

Eriophorum-type and Pedicularis-type are good pollen indicators of mowing. 40 

Poaceae/Molinia caerulea and Succisa pratensis are negatively correlated with mowing. The 41 

impact of mowing on species composition was similar in both study areas. Mown and 42 

unmown areas were differentiated in the vegetation data and could be identified by modern 43 

pollen data. These results will improve the interpretation of past land-use practices using 44 

pollen analysis of rich-fen vegetation.  45 

1. Introduction 46 

All over northern Europe fens have, for centuries, been important for production of hay for 47 

winter fodder. The fertile infields were often of limited extent, so the outfields were of great 48 

importance for haymaking, grazing and summer farming (e.g. Ellenberg, 1988; Hjelle et al., 49 
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2012; Solem et al., 2012). This long-term regular harvesting has influenced the fens, turning 50 

large areas into open semi-natural landscapes. The traditional use of the fens ceased many 51 

decades ago in most countries in western and central Europe, including southern 52 

Fennoscandia. In parts of central boreal Norway the traditional use of fens, including our 53 

study areas, lasted until the 1950s (Moen, 1990; Tretvik and Krogstad, 1999).  54 

 55 

Cultural landscapes leave contemporaneous traces in the form of pollen assemblages in 56 

accumulating deposits. Pollen analysis is thus a widely used approach for reconstructing the 57 

history of past cultural practices and landscapes (e.g. Berglund, 1991). Investigations of the 58 

modern local plant-pollen relationship in areas with documented land-use regimes are a basis 59 

for reconstructing these practices back in time. The taphonomy of pollen in modern moss 60 

samples is comparable to pollen analytical data from peat cores. Pollen assemblages from 61 

vegetation dominated by dwarf-shrubs, graminoids or herbs reflect local sources of non-tree 62 

pollen (NAP) and thus small-scale vegetation variations (Hjelle, 1999a; Bunting 2003; 63 

Bunting and Hjelle, 2010; Pardoe, 1996). The relationship between number of deposited 64 

pollen grains and the corresponding plant cover is complex (e.g. Sugita, 1994), and the pollen 65 

taphonomy must be taken into account when interpreting pollen assemblages (e.g. Fægri and 66 

Iversen, 1989).  67 

 68 

Mowing leads to disturbance and changes in available resources and competition between 69 

species (Crawley, 1997; Grime, 2001). Species resilient to mowing will be favoured and 70 

plants with low and rosette growth forms, with meristems close to the ground or clonal 71 

growth, are tolerant to mowing (Klimešová et al., 2008). In addition, stress-tolerant species 72 

are less affected by mowing (Grime, 2001; Øien & Moen, 2001). Thus mowing affects the 73 

composition of vegetation and species abundance. For example the plant cover of Thalictrum 74 
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alpinum and several Carex and Eriophorum species increases with mowing in boreal fens 75 

(Moen, 1995).  76 

 77 

In order to reconstruct past vegetation communities from pollen data the relationship between 78 

the vegetation community and the pollen produced and deposited within it must be known. If 79 

good pollen–plant relationships exist and the plant community is reflecting a type of land use 80 

today, pollen types/species may be identified as indicator taxa for that land-use (cf. Behre 81 

1981). The present study aims to produce indicator taxa for mown fens which may be of 82 

international value when interpreting pollen diagrams. Also the whole pollen assemblage may 83 

be used in a comparative approach (Birks and Birks, 1980) to aid in the identification of past 84 

vegetation communities or land-use practices. The results from the present study will be 85 

combined with plant-pollen data from mown and grazed vegetation types in Western Norway 86 

(Hjelle, 1999a) to form a larger data set. This data will aid the interpretation of possible land-87 

use practices (e.g. Gaillard et al., 1994; Hjelle, 1999b) for pollen diagrams from the rich fens 88 

in Tågdalen and Sølendet. The data set should also be useful as part of future pollen–plant 89 

databases, e.g. the European Pollen Database 90 

(http://www.europeanpollendatabase.net/index.php). 91 

 92 

The aim of the present study is to assess the modern pollen–plant relationships in rich fens in 93 

two study areas. The areas are situated at the transition between the middle and northern 94 

boreal vegetation zones, but in different vegetation sections (regional differences oceanity–95 

continentality, Moen 1999). Both study areas were used for traditional haymaking until ca. 96 

1950. Regular mowing (with a scythe) of permanent plots was reintroduced in early 1970s 97 

and they have been mown regularly for nearly 40 years. The plant communities vary between 98 

the study areas, but with the same dominant species, where the impact of mowing on different 99 
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species is similar (Moen et al., 2012). Further, differences between mowing regimes and 100 

unmown areas facilitate various species, giving mainly quantitative differences in plant cover 101 

(Moen et al., 2012). We study the correlation between the plants growing in fen vegetation 102 

and pollen deposited on a local scale. Three hypotheses are thus put forward: 1) There is a 103 

close connection between the taxa in fen vegetation and local pollen deposition, 2) There are 104 

small differences in local pollen–plant relationships between the two studied rich fens 105 

(regional differences), and 3) Differences between mown and unmown vegetationcan be 106 

detected from the contemporary pollen assemblages. The modern plant–pollen relationship in 107 

fens will provide a basis for interpretations of palaeoecological investigations of past land-use 108 

in the study areas.  109 

2. Study areas and plant communities 110 

The two study areas (Fig. 1) are both situated at the transition between the middle boreal and 111 

northern boreal vegetation zones of central Norway (Moen, 1999). Tågdalen is an oceanic 112 

inner-fjord area nature reserve and Sølendet is a continental nature reserve. Tågdalen is part of 113 

the markedly oceanic vegetation section while Sølendet is situated on the transition between 114 

the indifferent and slightly continental vegetation sections (sensu Moen, 1999). The 20 115 

localities with 49 study plots presented in this paper were established as permanent plots 40 116 

years ago, and vegetation and plant populations dynamics are described in a number of papers 117 

(e.g. Moen, 1990, 1995, 2000; Aune et al., 1996; Moen et al., 1999, 2012, 2015; Øien and 118 

Moen, 2001; Sletvold et al., 2010; Lyngstad et al., 2016). 10 localities are situated along a line 119 

over a distance of 940 m in Tågdalen (Fig. 2a). In Sølendet the 10 localities are situated in an 120 

area of just below 1 km2 (Fig. 2b). 121 

 122 

The duration of the growing season is similar in both areas, from the end of May until the first 123 

part of September. Tågdalen has an oceanic climate with high annual precipitation and a 124 
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thick, long-lasting snow cover, while Sølendet has a more continental climate with less 125 

precipitation and cold winters (Table 1). The distance between the study areas is 145 km. In 126 

both areas calcareous Cambro-Silurian bedrock (Sigmond et al., 1984) is overlaid with base-127 

rich till (Follestad, 1995).  128 

 129 

The dominant rich-fen vegetation at Tågdalen and Sølendet forms a mosaic with birch 130 

woodland (Betula pubescens). Sloping fens (slope >3°) cover large areas. At Tågdalen the 131 

slopes are between 3 and 12° and at Sølendet 3 to 5°. The depth of the underlying peat layer 132 

exceeds 50 cm at Tågdalen, and 20 cm at Sølendet. The study areas have the same historical 133 

land-use, where the traditional hay cutting declined during the 1930s, and ended in the 1950s. 134 

Experimental scything (hereafter called mowing) of permanent plots started in 1973 and was 135 

carried out in August, allowing flowering, seed production and dispersal to take place for 136 

important species. The localities were established in homogenous fen areas, and the studied 137 

plots have been mown regularly biennially or quadrennially since 1970s, or they have been 138 

left unmown for ca. 60 years. The hay crop of the studied communities was estimated to about 139 

110 g/m2 and 140 g/m2 (dry matter) in plots mown biennially and quadrennially, respectively 140 

(Moen, 1990; Moen et al., 2015; Lyngstad et al., 2016). Biennial mowing represents the 141 

traditional practice, where the harvest output was maximized in relation to labour invested. 142 

Quadrennial mowing is a possible equivalent to the mowing frequency during periods of 143 

extensive mowing, and during the period when hay-cutting was declining. 144 

 145 

The terminology of mires follows the Fennoscandia tradition in mire ecology (sensu Sjörs, 146 

1948), separating units related to the main local vegetation gradients. Rich fens are peat-147 

forming mire sites with characteristic vegetation dominated by brown mosses (e.g. 148 

Campylium stellatum), and with base-rich water (pH above 6). Lawn communities of 149 
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extremely rich fen vegetation (Sjörs, 1948; Moen et al., 2012; Jiménez-Alfaro et al., 2013) 150 

cover the study localities. Phytosociological analyses of the permanent study plots were 151 

included in multivariate analyses of 134 rich fen plots from the two study areas (Moen et al., 152 

2012; the plots in this paper mainly belong to their communities II – IV). In the 153 

phytosociological classification system (e.g. Dierssen, 1982; Rybniček, 1985), the studied 154 

mires belong to the alliances Caricion davalianae Klinka 1934 at Tågdalen, and at Sølendet 155 

Caricion atrofuscae Nordh. 1936. The mean number of species in plots with an area of 12.5 156 

m2 ranged between 30 and 37 (Table 2 and Supplementary A in Moen et al., 2012). The most 157 

common vascular plant species in both areas are Andromeda polifolia, Dactylorhiza spp., 158 

Equisetum palustre, Euphrasia wettsteinii, Parnassia palustris, Pinguicula vulgaris, 159 

Potentilla erecta, Selaginella selaginoides, Succisa pratensis, Thalictrum alpinum, Tofieldia 160 

pusilla, Carex dioca, C. flava, C. hostiana, C. lasiocarpa, C. panicea, C. rostrata, 161 

Eriophorum angustifolium, E. latifolium, Molinia caerulea and Trichophorum cespitosum. 162 

The bottom layer was dominated by Campylium stellatum, with Aneura pinguis, 163 

Barbilophozia rutheana, Fissidens adianthoides, Gymnocolea borealis and Scorpidium 164 

cossonii occurring in all or a large majority of the plots. At Tågdalen the western/lowland 165 

species Drosera longifolia, Narthecium ossifragum and Schoenus ferrugineus were present in 166 

some plots. At Sølendet a number of alpine/inland species were present, the most common 167 

being Pedicularis oederi, Saxifraga aizoides and Kobresia simpliciuscula.  168 

3. Material and methods 169 

3.1. Research design and vegetation plots 170 

Ten localities with permanent experimental plots with and without mowing within each study 171 

area in similar vegetation units of rich fens were chosen for the present research design (Fig. 172 

3). Each locality consisted of two or more permanent plots of 2.5×5 m (total 49 plots). The 173 



 8 

field work for this study was carried out in 2008. Inside each permanent plot one sample plot 174 

of 1×1 m was placed in the centre, thus reducing potential edge effects. The minimum 175 

distance from a sample plot to an area with different management regime was 0.75 m. The 176 

minimum distance between the border of two sample plots was 1.5 m. Initial studies of 177 

different sizes of sample plots (from 0.25 m2 to 4 m2) revealed that intermediate-sized plots of 178 

1 m2 were representative of the plant composition of the stand (e.g. Mueller-Dombois and 179 

Ellenberg, 1974).  180 

 181 

Three management regimes have been maintained since the 1970s: 1) biennial mowing, 2) 182 

quadrennial mowing and 3) unmown since 1950s (Fig. 3). Management regimes 1) and 3) 183 

were present in all investigated localities. Six localities at Tågdalen and three localities at 184 

Sølendet included management regime 2). For management regime 1) mowing was done one 185 

year prior to investigation of plant cover and sampling; for management regime 2) mowing 186 

was done three years prior to investigation. The intensive mowing practice 1) represents the 187 

traditional mowing, and 2) reflects extensive mowing.  188 

 189 

Plant nomenclature follows Lid and Lid (2005) for vascular plants and Frisvoll et al. (1995) 190 

for mosses (Table 2). The species cover was visually recorded using the following cover 191 

classes [percent range of cover – cover class mean]: 1 [1-2 plants – 0,25%], 2 [0-1% – 0,5%], 192 

3 [1-2,5% – 1,75%], 4 [2,5-5% – 3,75%], 5 [5-10% – 7,5%], 6 [10-20% – 15%], 7 [20-30% – 193 

25%], 8 [30-40% – 35%] and so on up to 14. For each taxon the mean plant cover from each 194 

management regime was calculated from the average of cover class means from all plots of 195 

similar management regime (Table 3). Species recorded in the vegetation are equivalent to the 196 

taxa included in “local terrestrial pollen” (see 3.3). 197 
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3.2. Surface pollen sampling 198 

Moss polsters were collected from the sample plots as traps for pollen deposition (e.g. Hicks, 199 

1977; Hjelle, 1998). Each moss sample consisted of five merged sub-samples, one from the 200 

centre of the plot and four in each direction out from the centre and half way to the sample 201 

plot border (Fig. 3). The result, a minimum distance of 1 m between a pollen sub-sample and 202 

different land-use, reduces the risk of strong plot-edge effects. If moss was absent, sampling 203 

was done as close as possible to these points. The modern analogue to a fossil sample from a 204 

peat core is a single moss sample, but collecting several sub-samples reduce the potential 205 

effect of outliers and of micro-scale differences in pollen content in moss polsters from 206 

neighbouring samples (Pardoe, 1996; Hicks, 2001). Moss samples were collected in late July 207 

2008. The moss sample consisted of the whole moss turf from the top down to the soil 208 

surface. Thus several years of pollen deposition were probably included in the sample (e.g. 209 

Mulder and Janssen, 1999; Pardoe et al., 2010), integrating observed year to year fluctuations 210 

in fertility and pollen production (Hicks, 2001; Nielsen et al., 2010). Such samples are 211 

comparable to the vegetation community when single-year effects can be evened out, as well 212 

as to a peat pollen sample reflecting several years. By far the most frequently sampled moss 213 

in all localities was Campylium stellatum. Among other common species were Scorpidium 214 

cossonii, Scorpidium scorpioides, Drepanocladus spp. and Sphagnum spp.  215 

 216 

3.3. Pollen processing and analysis 217 

Moss samples were thoroughly rinsed through 450 µm sieves to remove the moss. Pollen 218 

preparation of the material passing through the sieve followed standard methods, with KOH 219 

and acetolysis (Fægri and Iversen, 1989), but without hydrofluoric acid treatment because the 220 

minerogenic content was negligible in all samples. The residue was mounted in glycerol for 221 

pollen counting. At least 500 terrestrial-plant pollen (range 563-1349) including more than 222 
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100 local terrestrial pollen (range 164-724) were counted per sample. Taxa were identified to 223 

the lowest possible taxonomic level by the use of keys (Moe, 1974; Fægri and Iversen, 1989; 224 

Moore et al., 1991; Beug, 2004) and the modern pollen reference collection at the University 225 

of Bergen. Pollen data-analysis was made using TILIA (Grimm, 1990). When possible, 226 

Cyperaceae pollen was identified to Dulichium-type, representing Carex spp., and 227 

Eriophorum-type pollen (sensu Fægri and Iversen, 1989).  228 

 229 

The percentage calculation sum is the sum of local terrestrial pollen (∑ LP). The pollen 230 

calculation sum for other pollen and microfossils is ∑P+X, where X is the microfossil in 231 

question. Local terrestrial pollen and spores represent pollen and spores from taxa belonging 232 

to the studied rich fen vegetation (e.g. Janssen, 1966). In this sense extra-local taxa are only or 233 

mainly recorded as growing on nearby mineral soil, such as Ericaceae, Calluna vulgaris, 234 

Juniperus communis, Salix spp. and Betula spp., which occur at low abundances or are absent 235 

in the fen plots (Moen et al., 2012). Pollen from Betula spp. is mainly a part of the regional 236 

pollen deposition, along with pollen from species not represented in the fen localities, like 237 

Pinus sylvestris. As the yearly moss growth rates may vary between and within moss taxa, as 238 

well as with mowing (Moen, 1995), the pollen trapping ability and concentration values will 239 

not be directly comparable between samples. Therefore percentages based on the sum of local 240 

pollen were used. The use of local terrestrial pollen as the calculation basis will minimize the 241 

problems of absolute variations in extra-local and regional pollen related to percentage 242 

calculations. Such variations are not related to the vegetation on the fen nor the local mowing.  243 

3.4. Data analyses 244 

In the data analysis comparing vegetation and pollen data, only the local terrestrial taxa are 245 

included. A comparison of species occurrences and pollen data requires comparable 246 

taxonomic groups. Therefore, the plant species were grouped according to the pollen taxa that 247 
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represent them. Analyses of some species were carried out for both single plant species and 248 

for the corresponding palynological taxonomic groups, see Table 2. 249 

 250 

3.4.1. Gradients in the data - ordination 251 

Principal components analyses (PCA) implemented in CANOCO for Windows 4.5 (ter Braak 252 

and Šmilauer, 2002) was used to ordinate the 49 vegetation plots according to the pollen taxa 253 

they contained. Species centring with square-root transformed data was used. Species scores 254 

were divided by their standard deviation to obtain inter-species correlations. Pollen 255 

percentages (square-root transformed) from the same plots and taxa and the three 256 

management regimes were added as passive samples and environmental variables, 257 

respectively, and projected on the ordination diagram. The results were drawn using 258 

Canodraw for Windows 4.5 (Fig. 4a and b).  259 

 260 

3.4.2. Paired comparisons from mown and unmown vegetation  261 

A paired test was carried out comparing the vegetation composition in pairs of mown-262 

unmown plots within each locality. The Wilcoxon signed rank test was used for the 263 

nonparametric data to identify taxa with a statistically significant difference in mean 264 

percentage plant cover between land-use regimes. It was run in R version 2.11.1 (R 265 

Development Core Team, 2010). An exact Wilcoxon signed-rank test was chosen as the 266 

grouped data-set has a potential for ties for the pairs. The data from Tågdalen and Sølendet 267 

were analysed jointly providing a maximum of 20 pairs. Three sets of tests were run: 1) plots 268 

from biennially mown and unmanaged plots, 2) Plots mown biennially and quadrennially, 3) 269 

Plots mown quadrennially and unmown plots. Taxa with plant cover registrations in ≥6 plots 270 

were included. 271 

 272 
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3.4.3. Analyses of differences in species plant cover between management regimes 273 

The indices of difference (ID), equation (1), show whether and how often each taxon 274 

increases, displays no change, or decreases in cover from the unmown to the mown pairs of 275 

plots: 276 

(nA(1)+nB(0)+nC(-1)) (nA+nB+nC)-1    (nA-nC) (nA+nB+nC)-1  (1) 277 

Where nA is the number of pairs of plots where each taxon has larger vegetation cover in the 278 

mown plot than in the unmown plot, nB is the number of pairs of plots with no difference, and 279 

nC displays the number of pairs of plots where the taxa has lower vegetation cover in the 280 

mown plot than in the unmown plot.  281 

 282 

3.4.4. Correlation between vegetation and pollen data 283 

To investigate whether plant cover is correlated with the corresponding pollen percentages in 284 

the surface samples, the nonparametric Spearman rank-correlation coefficient, ρ (rho) (e.g. 285 

Webb et al., 1978), was used to measure statistical dependence between pollen percentages 286 

and plant cover for taxa in all plots for the three management regimes. The test was carried 287 

out in R version 2.11.1 (R Development Core Team, 2010), examining the absolute 288 

percentage differences of paired plots. The statistical significance level was set to 0.05. The 289 

data-set of 49 plots from both Tågdalen and Sølendet was used. The correlation test was run 290 

for only one study area when plant cover or pollen was absent from the other area. The tests 291 

were run for all taxa recorded in ≥6 pairs of plots in each paired comparison. 292 

 293 

3.4.5. Indices of pollen association and representation 294 

Based on presence/absence data of vegetation and pollen from all investigated plots, 295 

calculations of indices of association with coincidence (A), over-representation (O) and 296 
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under-representation (U) (Davis, 1984; Hjelle, 1997; Bunting, 2003; Mazier et al., 2006) were 297 

made for each taxon. The definitions of the three indices are: 298 

A = B0 (P0 + P1 + B0)-1; O = P0 (P0 +B0)-1; U = P1 (P1 + B0)-1 (2) 299 

where B0 is the number of plots where the pollen or spore type and the associated taxon is 300 

present, P0 represents the number of plots where the pollen or spore type is recorded but this 301 

taxon is not present in the vegetation, and P1 is the number of plots where the pollen or spore 302 

type is absent in the surface sample but the taxon is present in the vegetation. Based on the 303 

indices, taxa were grouped into associations: strongly associated types (SAT, A> 0.65), 304 

associated types (AT, A between 0.65 and 0.5), weakly associated types, (WAT, A<0.5, 305 

positive O and U), over-represented type (ORT, A<0.5, U=0), under-represented type (URT, 306 

A<0.5, O=0) and unassociated type (UT, A=0, positive O and U). 307 

4. Results  308 

89 plant species (77 vascular plant species and 12 moss species) were recorded from Tågdalen 309 

and Sølendet. Taxa present in both the vegetation data-set and the pollen and spore analyses 310 

were considered (Table 2). Thus 57 vascular plant taxa were represented in the pollen 311 

assemblages and grouped into 26 pollen taxa (Table 2).  312 

 313 

Taxa only recorded in the vegetation, like Dactylorhiza spp., Equisetum spp. and most moss 314 

species, and taxa only identified in the pollen record, e.g. several tree species, were excluded. 315 

4.1. Vegetation data 316 

The most frequent species in both study areas were: Trichophorum cespitosum ssp. 317 

cespitosum, Thalictrum alpinum, Molinia caerulea, Potentilla erecta, Eriophorum latifolium, 318 

Carex flava, C. panicea, C. rostrata and Succissa pratensis (Table 3). Molinia caerulea, 319 
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Thalictrum alpinum, Eriophorum latifolium, Betula nana and several Carex taxa displayed a 320 

large difference in plant cover between biennually mown and unmown plots (Table 3).  321 

 322 

Twelve plant taxa had significantly different cover values in biennially mown and unmown 323 

plots (Table 4 a). Highest cover values in biennially mown plots were found for: four Carex 324 

species, Thalictrum alpinum, Pinguicula vulgaris, Eriophorum latifolium, E. angustifolium 325 

and Pedicularis palustris. Molinia caerulea was much more abundant in unmown plots, and 326 

this was the only plant taxon displaying a difference in plant cover between all the 327 

management regimes. Betula nana and Succisa pratensis were more abundant in unmown 328 

plots than in biennially mown plots. Combining the plant taxa into pollen groups resulted in 329 

Dulichium-type (i.e. Carex spp.) displaying a difference in vegetation cover between all 330 

management regimes, whereas Eriophorum, Cyperaceae and Poaceae only displayed a 331 

difference between the two mown and the unmown plots (Table 4 b). The difference in plant 332 

cover in biennially mown and unmown plots represented the main variation in plant cover in 333 

fen vegetation (Table 4 a), most pronounced for Molinia caerulea, Carex dioica and 334 

Thalictrum alpinum.  335 

4.2. Ordination of vegetation and pollen data 336 

The first two axes of the PCA-ordination of the 49 plots (Fig. 4) had eigenvalues of 0.25 and 337 

0.23 respectively. The other axes had eigenvalues lower than 0.10 (not shown). The 338 

vegetation samples representing different mowing frequencies were spread along the whole 339 

range of the first axis (Fig. 4a), but were separated on the second axis, reflected in both the 340 

dispersal of samples and the mean scores for the environmental variables. On axis 2 the 341 

variable representing biennial mowing had a high negative mean score, while quadrennial 342 

mowing had a small negative mean score and unmown had a high positive mean score. The 343 

majority of pollen samples (passive data) had low scores on both axes. The pollen samples 344 
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showed a similar pattern as the vegetation samples, where the pollen samples from the 345 

unmown plots to a large extent are separated from the plots with the two mowing frequencies, 346 

most pronounced for unmown and biennially mown plots. 347 

 348 

Pedicularis-type had a negative score on the first axis of the PCA ordination of plant taxa (as 349 

pollen taxa groups, Fig. 4b) whereas Potentilla erecta, Rhinanthus-type and Succisa pratensis 350 

had high scores. Dulichium-type, Thalictrum, Cyperaceae and Eriophorum had lowest scores 351 

on the second axis whereas Poaceae had the highest score followed by Sphagnum.  352 

4.3. Pollen data in relation to management regimes 353 

Of the 65 palynological taxa found at Tågdalen and Sølendet, only 26 pollen and spore taxa 354 

represented the investigated, contemporary vegetation (Table 2). Pollen taxa present in >4 355 

plots are displayed in Table 5.  356 

 357 

At Tågdalen Thalictrum and Eriophorum-type pollen had their largest pollen percentages in 358 

mown plots, especially seen for Thalictrum in biennially mown plots in Tågdalen. Poaceae 359 

and Potentilla-type had largest pollen percentages in unmown plots. Dulichium-type pollen 360 

had largest pollen percentages in unmown plots, but in Tågdalen the differences are small. 361 

Cyperaceae had generally small relative changes to no differences between management 362 

regimes, and the standard error is large. Succisa pratensis had also small to no differences 363 

between management regimes in Tågdalen, where at Sølendet the largest pollen percentages 364 

were registered in unmown plots. Pedicularis-type pollen had a general low pollen presence. 365 

The Pedicularis-type pollen percentages were slightly higher in biennially mown than in 366 

unmown plots in Sølendet, and where absent in unmown plots in Tågdalen.  367 

 368 
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From Sølendet only three plots represent quadrennially mown fen, giving a potential for 369 

uncertainties regarding the result. In Sølendet the pollen data does not always follow the trend 370 

from Tågdalen, as for Thalictrum and Poaceae. 371 

 372 

4.4. Pollen-vegetation relationships  373 

Spearman rank-correlation coefficients relating plant cover to pollen percentages are 374 

presented in Table 6, along with the indices of association and association types which reflect 375 

relationships between presence/absence of plants and their pollen. As Molinia caerulea 376 

formed the majority of the Poaceae plant cover (Table 3), both M. caerulea and Poaceae plant 377 

cover were individually correlated to the Poaceae pollen data. Eriophorum-type pollen was 378 

compared to both Eriophorum spp. and Eriophorum-type vegetation. 379 

 380 

Most of the strongly associated plant-pollen types (SAT) and the associated plant-pollen type 381 

(AT) had a statistically positive correlation between plant cover and pollen percentages (Table 382 

6). These were Rosaceae, Potentilla–type, Pedicularis, Thalictrum/Thalictrum alpinum, 383 

Selaginella selaginoides, Eriophorum-type/Eriophorum spp., Poaceae/Molinia caerulea and 384 

Cyperaceae. Succisa pratensis and Menyanthes trifoliata had significant plant-pollen 385 

correlations, but had weak associations with their corresponding pollen types as they 386 

displayed a trend towards pollen under-representation.  387 

 388 

The remaining taxa in Table 6 did not have a significant relationship between the vegetation 389 

cover and pollen percentages. However, common species in the vegetation, such as Poaceae, 390 

Eriophorum spp. and Carex spp., were also common in the pollen assemblages, reflected in a 391 

strong association. Underrepresented taxa were insect pollinated species which were poorly 392 

presented in the pollen assemblages, but they were present in the vegetation when present as 393 
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pollen, e.g. Drosera rotundifolia-type, Bistorta vivipara-type and Saxifraga oppositifolia-394 

type. 395 

5. Discussion 396 

Rich fen vegetation is widely distributed in Europe. Vegetation plots from our two study areas 397 

are included in a European study, and are classified as boreal fens (Jiménez-Alfaro et al., 398 

2013, cluster 3a). The relationships between vegetation and pollen assemblages in our two fen 399 

areas add to the database of surface-pollen samples from a variety of vegetation types and 400 

land-use regimes (e.g. Gaillard et al., 1994; Hjelle, 1999a; Mazier et al., 2006; Ejarque et al., 401 

2011; Waller et al., 2017). These data contribute to modern-pollen studies and long-term 402 

investigations. However, there are few studies that consider rich fens. An exception is the 403 

nemoral rich fens of Waller et al. (2005, 2017) which include a number of species in common 404 

with our studied fens; e.g. Potentilla erecta, Carex nigra, C. panicea, C. rostrata and Molinia 405 

caerulea. These are among the most common species in our two study areas as well as in the 406 

two study areas in southern and eastern England. The annually cut “Sedge fen” included in 407 

Waller et al. (2017) has many features in common with our fens, and represent a community 408 

with close relationship between vegetation and local pollen deposition. 409 

 410 

Comparable to our study, Waller et al. (2017) found that nemoral rich fen vegetation subject 411 

to different types of management, including different cutting regimes, produce distinctive 412 

pollen signatures. Their study area is in nemoral vegetation zone, with somewhat different 413 

plant communities and species, compared to our boreal rich sloping fens. Also, de Klerk et al. 414 

(2017), in arctic fens, state that pollen deposition reflects vegetation, and that regional pollen 415 

deposition relate to different biogeographical regions.  416 
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5.1. Plant cover and pollen deposition 417 

The pollen recovery from moss samples is a measure of plant representation based on fertility 418 

and pollen production, and not only plant cover. However, there is a close connection 419 

between plant cover, plant biomass and flowering of a large number of species, as shown in 420 

the long-term population and vegetation studies in the two study areas (Moen, 1990, 1995; 421 

Aune et al., 1996; Lyngstad et al., 2016). Mowing leads to a reduction in above ground 422 

biomass and plant cover and a reduction in flowering for several tall-growing species, e.g. 423 

Molinia caerulea and shrubs (Table 3). A number of low growing species, with most of the 424 

above-ground biomass close to the surface (not reached by the scythe) increased in biomass, 425 

cover and flowering, e.g. Thalictrum alpinum and Carex dioica. Thus pollen recovery is 426 

regarded an approximation of plant cover of a taxon.  427 

 428 

There can be a large variation in annual flowering, pollen production and pollen deposition 429 

between years (e.g. Hicks, 2001; Hättestrand et al., 2008), and several years of pollen 430 

deposition should be sampled (Pardoe et al., 2010). Although moss samples may contain only 431 

one or two years of pollen deposition (Räsänen et al., 2004), it is generally assumed that moss 432 

polsters contain several years of pollen deposition (Bunting et al., 2013). The annual pollen 433 

productivity for species of boreal trees such as Pinus, Betula, and Picea has been found to be 434 

related to summer temperature of the year prior to pollen emission (Autio and Hicks, 2004). 435 

Our moss samples were gathered in late July 2008. The meteorological stations in the two 436 

study areas recorded summer temperatures close to the 30-year normal for the summers 2007 437 

and 2008 (Lyngstad et al., 2016). Both 2007 and 2008 were normal/good flowering years for 438 

most of the studied species; e.g. for Eriophorum latifolium (Lyngstad et al., 2016), indicating 439 

that even if only a few years are represented in the moss samples, the pollen data are probably 440 

representative. 441 



 19 

 442 

The investigated plots are designed for vegetation studies (e.g. Lyngstad et al., 2016), where 443 

different management regimes (and collected moss polsters) are very close, but still there 444 

were differences between pollen assemblages taken 1-4 m apart. The differences in pollen 445 

percentages corresponded well with the vegetation from different management regimes, 446 

indicating that a substantial part of pollen was derived locally and that rich fens are suitable 447 

for local-scale plant-pollen studies. Comparable studies have also demonstrated a strong 448 

correspondence between local vegetation and pollen assemblages for herbs and dwarf-shrubs 449 

(e.g. Pardoe, 1996; Hjelle, 1999a; Waller et al., 2017) and a relevant pollen source area (sensu 450 

Sugita, 1994) of only a few meters is found within mire communities (Bunting 2003; Bunting 451 

and Hjelle, 2010).  452 

5.2. Identification of management regimes by modern pollen assemblages 453 

Most plant species occurred in both study areas, and in plots with different mowing regimes. 454 

Those with high cover in all plots were Trichophorum cespitosum, Thalictrum alpinum and 455 

Molinia caerulea. Six other vascular plant species occurred in at least 80% of the plots: Carex 456 

dioica, C. panicea, Eriophorum angustifolium, E. latifolium, Potentilla erecta and Selaginella 457 

selaginoides. Many bryophytes occurred in the plots, e.g. the dominant and constant rich-fen 458 

species Campylium stellatum and Scorpidium cossonii (Moen et al., 2012). Several rare 459 

species distinguish between the fens of the two areas, leading to the classification of the 460 

oceanic and the more continental fens in different alliances in the phytosociological system 461 

(Moen et al., 2012). All of these species had low pollen percentages, and they are not included 462 

in this discussion.  463 

 464 

The differences in plant cover and pollen assemblages between the management regimes were 465 

mainly quantitative. Earlier studies from these localities have shown that the variation in 466 
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vegetation cover of plots from similar land-use between localities can be larger than between 467 

plots from different management regimes within the same locality, and that permanent plots 468 

with different management regimes inside each locality belong to the same plant 469 

community/vegetation cluster (Moen et al., 2012; Lyngstad et al., 2016). The differences 470 

between vegetation plots from different managemental regimes were more pronounced than 471 

the differences between pollen samples from these regimes (Fig. 4a). Generally, the plant 472 

compositions in plots mown biennially and quadrennially were more similar than to unmown 473 

vegetation (Fig. 4a and b), whereas this to a lesser degree was found for pollen data (Fig. 4a). 474 

Similar results for plant cover were found in the same areas (e.g. Aune et al., 1996), as well as 475 

for plant and pollen data from other studies of mown vegetation (e.g. Hjelle, 1999a).  476 

 477 

Palynological studies of rich fens have received little attention in comparison to lakes and 478 

raised bogs (Waller et al., 2017). Our results are a contribution to knowledge established in 479 

earlier studies from fen vegetation (e.g. de Klerk et al., 2017; Waller et al., 2017) 480 

demonstrating that fen vegetation produce distinctive pollen signatures with indicator taxa 481 

and should be used also for palaeoecological studies.  482 

 483 

To detect past types of land use and changes in land use by pollen analysis, taxa that show 484 

responses to land use regimes, in the present case mowing, and have pollen deposition that 485 

correlate with plant cover, must be identified. Here five groups of pollen taxa with different 486 

potential for land-use reconstruction were identified (Table 7). 487 

 488 

5.2.1. Very good and good pollen indicators for managemental regimes 489 

In rich fens Thalictrum is sensitive to land-use changes, and the contemporary pollen 490 

percentages correlate with the local plant cover. Thalictrum alpinum occurred in all plots, 491 
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with highest cover in biennially mown plots compared with unmown plots (Fig. 4b), 492 

absolutely (Table 3) and relatively (Table 4a). This is in accordance with previous studies 493 

from Sølendet, which also report increased biomass, cover and flowering with mowing 494 

frequency (Moen, 1995; Aune et al., 1996). A difference in cover of T. alpinum between 495 

biennially and quadrennially mown plots is not clear from this study. Its growing point is at 496 

the soil surface and is little affected by mowing, so it becomes more abundant in mown fens 497 

where competition is reduced. The effect of competition was demonstrated by Klanderud and 498 

Totland (2005), who removed neighbouring vegetation in an alpine community and found 499 

increases in the number and cover of leaves and reduction in the length of the flowering stems 500 

of T. alpinum. However, T. alpinum is also present in grazed communitites in outfields, as in 501 

Budalen, located between our two study areas (Austrheim et al. 1999), and without comparing 502 

mown and grazed communities one cannot exclude Thalictrum as indicator of more than one 503 

land-use practice. The strong association of the presence of both plant and pollen and absence 504 

of pollen when plants are lacking, indicates a limited pollen-dispersal distance from these 505 

plots with a minimum distance of 1 m. T. alpinum is wind dispersed, but dispersal can be 506 

limited by the short flower stems. This means that Thalictrum pollen is a good indicator of 507 

local plant presence, and an increase in plant cover can indicate land use like mowing (Table 508 

7). Increased percentages of Thalictrum pollen in peat profiles have been used as an indicator 509 

of mowing in vegetation history studies of rich fens in boreal areas of central Norway 510 

(Gunnarsdóttir, 1999; Solem et al., 2012).  511 

 512 

The interpretation of the pollen representation of Cyperaceae undiff. is more challenging. The 513 

family is generally well adapted to mowing, although with variations and opposite trends for 514 

single species, as for Carex species (Table 4 a) (e.g. Moen, 1990, 1995). Both mowing 515 

regimes differed from unmown plots in total Cyperaceae plant-cover percentages, but the 516 
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differences between mowing intensities could not be detected in modern pollen samples. The 517 

differences in the Cyperaceae pollen percentages between management regimes are small. 518 

The strong plant-pollen correspondence from these closely situated plots suggests a limited 519 

dispersal distance for Cyperaceae, which was reported by Bunting and Hjelle (2010) to be 520 

between 1.5 and 3.5 m. The present investigation has shown the value of separating 521 

Dulichium-type pollen, which in our area consists of Carex spp., from Cyperaceae undiff. 522 

pollen. 523 

 524 

Eriophorum-type pollen includes three Eriophorum species and two Trichophorum species. 525 

Eriophorum spp. and Trichophorum spp. (included in Cyperaceae) were most abundant in 526 

vegetation mown biennially (Fig. 4b). E. angustifolium, E. vaginatum and the more 527 

widespread species E. latifolium, were well adapted to mowing, which also promoted 528 

increased flowering according to Moen (1990, 1995), Aune et al. (1996) and Lyngstad et al. 529 

(2016). Trichophorum cespitosum ssp. cespitosum, the dominant species in the rich fens, was 530 

indifferent to mowing, as found in earlier studies (e.g. Moen, 1995; Aune et al., 1996) and the 531 

difference between management regimes was relatively small.  532 

 533 

There was a positive plant-pollen correlation between Eriophorum-type pollen and total 534 

Eriophorum species, but not for the pollen type and all five individual species. Most of the 535 

pollen type might be from Eriophorum if Trichophorum pollen deposition was reflecting the 536 

small variation in Trichophorum vegetation cover. The difference in Eriophorum spp. plant 537 

cover between the two mowing regimes and unmown plots could be detected from pollen 538 

analysis, as found from other studies (Hjelle, 1998), indicating that Eriophorum-type pollen 539 

should be separated from Cyperaceae undiff. if possible to increase its value in the 540 

interpretation of past communities.  541 
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 542 

Molinia caerulea is the most abundant grass in the plots but the pollen taxon Poaceae can also 543 

include Deschampsia cespitosa, Festuca ovina and Nardus stricta. M. caerulea is clearly 544 

most abundant and very fertile in unmown plots (Moen, 1990, 1995; Aune et al., 1996). The 545 

plant cover of M. caerulea decreased with the intensity of mowing, whereas the cover of 546 

Poaceae only differed clearly between the mowing regimes and unmown plots (Table 3 and 547 

4). The main reason for the decrease of M. caerulea in mown fens is the exposure of the 548 

elongation zone to the mower (scythe), strongly reducing the plants. Under moist conditions 549 

grazing also reduces plant cover of M. caerulea (Hume et al., 1999). In boreal shrub-550 

dominated plant communities and in areas with mowing every 5-10 years (Aune et al., 1996) 551 

and in temperate tall-growing fen communities (Rowell et al., 1985) M. caerulea increases in 552 

biomass and cover with mowing. On the generally nutrient-poor boreal fens M. caerulea 553 

suffers from the removal of reserves by intensive cutting during a short growing season (Øien 554 

and Moen, 2001). In more fertile localities, strong competitors like shrubs and tall herbs are 555 

removed by mowing. In such areas, and under mowing with higher stubble, the Molinia 556 

tussocks can develop. In addition, the fertility of M. caerulea is reduced in mown plots on 557 

boreal rich fens (Moen, 1995). The modern Poaceae pollen percentages correlated with the 558 

plant cover of Molinia, but not with all Poaceae species (Table 6). This indicates that most of 559 

the Poaceae pollen originated from M. caerulea. Molinia caerulea/Poaceae displays a 560 

difference in plant cover and pollen percentages between areas mown biennially and 561 

quadrennially from Tågdalen, whereas the data from quadrennially mown areas in Sølendet 562 

are few and difficult to interpret. Overall, mowing of the rich fens results in a reduction of 563 

Poaceae plants and pollen and an increase of Cyperaceae plants and pollen. This is in 564 

accordance with investigated fen communities in UK where Cyperaceae (including Carex 565 

nigra, C. panicea and C. rostrata) have high values in intensively managed communities and 566 
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decrease with longer cutting rotation when Poaceae (including Molinia) increases (Waller et 567 

al., 2017). The results from fens seem therefore to contrast to pollen assemblages from dry 568 

meadows dominated by high Poaceae pollen values and relatively low values of Cyperaceae 569 

(Hjelle, 1999a).  570 

 571 

Succisa pratensis was present throughout the rich fens, with its largest cover in unmown 572 

plots, as reported in Moen (1995) (Fig. 4b, Table 3 and 4). In other communities a decrease in 573 

competition following mowing allows an increase in plant cover of S. pratensis (Moen 1995). 574 

However, with relatively little competition in the boreal rich-fens the effect of reduced 575 

biomass had an important impact on this species. In mesic to dry grasslands S. pratensis 576 

increase in cover with grazing (Herben et al., 2006), making both vegetation type and type of 577 

land use important for S. pratensis plant cover. The cover of S. pratensis in the plots was low 578 

and the differences between management regimes were small. It is insect-pollinated and has a 579 

limited dispersal distance (Hjelle, 1997, 1998), reflected also in this study by a strong plant-580 

pollen relationship, but with a tendency of being under-represented. This makes the species 581 

suited for interpretation of local vegetation, but less important for differentiating the 582 

investigated management regimes in the present study.  583 

 584 

Pedicularis-type pollen included Pedicularis palustris and P. sylvatica at Tågdalen and 585 

mainly P. palustris and P. oederi, in addition to the rare P. sceptrum-carolinum at Sølendet 586 

(Moen, 1990, 2000). The pollen percentages of Pedicularis-type related well to the cover for 587 

Pedicularis spp., possibly because P. palustris is the main pollen source as well as the main 588 

plant in the studied vegetation. As an associated type Pedicularis species were common, but 589 

not dominant in either vegetation or in pollen deposits. Both Pedicularis spp. and P. palustris 590 

had greatest cover in mown plots, with a trend to greater abundance in quadrennially mown 591 

plots. Only biennially mown and unmown plots displayed a difference even if the percent 592 
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values are small. Earlier studies (e.g. Moen, 1995) confirm this, along with increased 593 

flowering frequency in mown plots. Pedicularis has a very low pollen representation, so even 594 

small differences in pollen percentages may represent substantial differences in number of 595 

plants between plots. P. palustris is a biennial species mainly occurring in mud bottoms and 596 

carpets with a scattered field layer, i.e. localities with low competition. P. oederi, a common 597 

species in lawns and open fen margins at Sølendet (Moen, 1990) occurred in only 11 of 49 598 

plots. This species shows reduced plant biomass and lower flowering frequency in response to 599 

mowing, especially intensive mowing, and is also reduced by abandonment during 600 

succession. The pollen data showed a correlation with plant cover, in contrast to the usually 601 

rare occurrence of Pedicularis in pollen diagrams. Bunting (2003) found no association 602 

between plant and pollen in surface studies of heathland communities in UK. Our results 603 

indicate that P. palustris has a larger potential of being recorded than the other species, which 604 

may indicate that Pedicularis may be regarded as an indicator of mown fens. 605 

 606 

There are short distances between areas of different land-use in the investigated plots. The 607 

strong plant-pollen relationship and strong association of presence indicate a local pollen 608 

source area of approximately 1 to a few meters for taxa defined as very good and good pollen 609 

indicators for managemental regimes.  610 

 611 

5.2.2. Potential pollen and spore indicators for managemental regimes 612 

Within the homogenous rich-fen community a wide distribution of both plants and pollen 613 

gave a high probability of association for many taxa (cf. Hjelle, 1997; Mazier et al., 2006). 614 

However, for several of these taxa there was no identified plant response to different 615 

managemental regimes. From other studies Potentilla erecta displays larger cover and 616 

increased flowering in unmanaged plots compared to mown fens (Moen, 1995; Aune et al., 617 



 26 

1996). A reduction in plant cover of P. erecta has been documentet from grazed vegetation on 618 

moist soil (Hulme et al., 1999). With the high cover, the relatively coarse resolution for 619 

abundant taxa in the chosen cover scale (e.g. Bunting and Hjelle, 2010), and substantial 620 

variations between and within managemental regimes, potential vegetation trends were not 621 

identified in the present study (Fig. 4b). Rosaceae undifferentiated pollen correlated with P. 622 

erecta, its only species in the vegetation, thus Rosaceae pollen was interpreted to mainly 623 

representing P. erecta. With a good plant-pollen correlation P. erecta reflects local 624 

vegetation, it is a good indicator of grazing (e.g. Hjelle, 1999; Mazier et al., 2006) and can, in 625 

the present study, represent a pollen indicator type of open vegetation more than mowing. 626 

High moisture levels might limit the plant cover of P. erecta on these rich fens, playing a 627 

more important role in plant distribution than land use. 628 

 629 

Selaginella selaginoides is known to be favoured in mown fens (Moen, 1995; Aune et al., 630 

1996). In the studied fens the spore recovery was a good indicator of its plant presence, but no 631 

statistical relationship between plant cover and management regime has been identified. With 632 

low percentages on the investigated fens, any trends have been difficult to decipher. There 633 

was a tendency of increased plant presence with mowing from pairwise comparisons (Table 3 634 

and 4), even if the general tendency in the plots is a slight decrease with mowing (Fig. 4b). If 635 

its land-use response is identified from further studies, S. selaginoides could be an indicator-636 

type of mowing. 637 

 638 

5.2.3. Pollen types reflecting unidentified factors or not reflecting plant cover 639 

Menyanthes trifoliata was rare but still demonstrated a positive plant-pollen correlation on 640 

these rich fens. Its main distribution on the fens was outside the investigated localities, in the 641 

wettest places in the fens and in small lakes (Moen et al., 2012). However, in lawn and carpet 642 
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communities, the cover of Menyanthes increases and flowering decreases with mowing 643 

(Moen et al. unpublished data).  644 

 645 

Two sub-groups of pollen types not reflecting plant cover were identified:  646 

a) Mowing regime affected the species cover, but there was no significant plant-pollen 647 

correlation. The strong association between plant and pollen was due to their large abundance. 648 

Carex species display a variety of plant responses to mowing regarding biomass, cover and 649 

fertility (Moen, 1995). Several Carex species and the genus as a whole were most abundant in 650 

mown plots (Fig. 4b; Moen, 1990; Aune et al., 1996). The low taxonomic precision of 651 

Dulichium-type pollen and variations in pollen production within the genus (Randall et al., 652 

1986; Hjelle, 1998) were probable reasons for a lack of plant-pollen correlation. Dulichium-653 

type pollen has a potential in palaeoreconstruction if the plant-pollen relationship can be 654 

interpreted locally. Betula species as a whole, and the main species B. nana and B. pubescens 655 

were mainly found in relation to succession on the fen, along the margins and as surrounding 656 

vegetation (e.g. Moen, 1990). The over-represented and variable pollen recovery from Betula 657 

was probably from the extra-local and the regional vegetation. Thus Betula pollen has 658 

limitations in reconstructing local vegetation, but an increase in pollen may indicate fen 659 

succession and increased tree cover on extra-local and regional scales. The cover of Drosera 660 

spp. at Tågdalen and Pinguicula vulgaris at Sølendet increased with mowing, as shown by 661 

Moen (1995). As entomophilous and cleistogamous species, respectively, their strongly 662 

under-represented and unassociated pollen document the presence of the plant, but they are 663 

not suitable to represent variation in the vegetation.  664 

 665 

b) The second sub-group includes taxa with no identified plant response to different land-use 666 

and no plant-pollen correlation on the rich fens (Table 7). These were rare in this vegetation 667 
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type, but could be common in nearby herb and heather woodland (Moen, 1900, 2000). The 668 

pollen might mainly be extra-local. These taxa are of limited value in local land-use 669 

reconstructions in such boreal fens, but can be valuable in reconstructions of extra-local 670 

vegetation, succession and fen dynamics.  671 

 672 

Changes in climate and fen characteristics might change the effect mowing plays on single 673 

taxa through time as well as geographically. Still, the ecological effect of mowing will be 674 

similar for many taxa under various conditions, and thus comparable between regions (e.g. 675 

Hjelle, 1999a).  676 

6. Conclusion 677 

The differences in plant cover between mown and unmanaged plant communities on the 678 

boreal rich-fens were mainly quantitative, where the same taxa are present in the vegetation in 679 

mown and unmown fens, but in varying amounts (Table 3). For several taxa managemental 680 

regimes explained a substantial part of the plant-cover variation on the boreal rich-fens. The 681 

relative changes of several taxa in the vegetation rather than the presence or absence of any 682 

single pollen-indicator taxon indicate land-use changes on these fens.  683 

 684 

A correlation between the plant cover of taxa constituting the majority of the vegetation on 685 

the rich fen and their contemporary, deposited pollen on a local scale was documented. The 686 

short distances between different managemental regimes in this study indicate a local pollen 687 

source area from 1 and up to a few meters for important taxa in the mown fens, like 688 

Thalictrum alpinum, Cyperaceae and Succisa pratensis. Thus, presences of their pollen in 689 

peat samples can generally be assumed to reflect presence in the vegetation.  690 

 691 



 29 

Modern pollen assemblages, with correlation to plant cover, display a difference in pollen 692 

percentage between biennially mown and unmown vegetation. Further, several taxa have a 693 

potential for indicating mowing quadrennially, even if the two mowing regimes are not 694 

clearly separated in the present study. A modern pollen assemblage indicating mowing on 695 

these rich fens has high percentages of Thalictrum, Eriophorum-type and Cyperaceae undiff. 696 

pollen. Pedicularis pollen percentages are generally higher than in unmown vegetation, and 697 

Poaceae (Molinia caerulea) and Succisa pratensis pollen percentages are lower than in 698 

unmown vegetation. Potentilla-type and Rosaceae, pollen together representing Potentilla 699 

erecta, decrease with mowing of the fens, whereas an increase in Selaginella selaginoides 700 

spores potentially indicates mowing. In combination, these changes in pollen percentages 701 

from such species can be considered a fingerprint for mowing regimes on rich fens. In other 702 

vegetation types and under different land use, some of these species would display a different 703 

combination of increase and decrease in plant cover and pollen deposition.  704 

 705 

This study emphasises the importance of identification of pollen to as low a taxonomic level 706 

as possible. The separation of Eriophorum- and Dulichium-type (i.e. Carex spp.) pollen from 707 

Cyperaceae undiff. is essential as the two former, partly in different ways, are important taxa 708 

in identifying land-use regimes. 709 

 710 

This study has shown a close connection between taxa in fen vegetation and the local pollen 711 

deposition in the two contrasting climate regimes (oceanic and continental) of the middle and 712 

northern boreal vegetation zones, confirming hypothesis 1. Boreal rich-fens in the two areas 713 

have the same dominant species and the same species producing the majority of the pollen, 714 

supporting hypothesis 2. The difference between mown and unmown vegetation can be 715 

detected from the contemporary pollen assemblages, particularly between biennial mown and 716 
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unmown vegetation, supporting hypothesis 3. In this study Molinia caerulea/Poaceae display 717 

a difference in plant cover and pollen percentages between areas mown biennially and 718 

quadrennially. This difference between biennially and quadrennially mown areas was not 719 

identified for most taxa, and should be further investigated. The results from the present paper 720 

contribute to a better understanding of vegetation-pollen relationships on rich fens and 721 

separation of mown and unmown fens, based on pollen assemblages. Our findings will aid in 722 

the interpretation of fossil pollen assemblages in terms of local land use on fens in the boreal 723 

zone.  724 
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Figure legends 896 

 897 

Fig. 1. The location of the two study areas, Tågdalen in the inner fjord area and the inland 898 

area Sølendet. Vegetation sections in central Norway after Moen (1999). 899 
 900 
Fig. 2. The location of investigated localities in a) Tågdalen Nature Reserve and b) Sølendet 901 

Nature Reserve. The reserves are marked with black solid borders. Numbering of the plots 902 

follows the permanent plots in long-term studies from the reserves (Moen, 1990, 2000).  903 

 904 

Fig. 3. Schematic presentation of a typical locality with permanent plots, investigated plots of 905 

1 m2 for the present study and collection points for moss samples. A= mown biennially, C= 906 

mown quadrennially and B= unmown.  907 

 908 

Fig. 4. PCA showing a) vegetation samples, pollen samples and environmental variables. 909 

Pollen samples and environmental variables are treated as passive samples and variables 910 

respectively. Veg. = vegetation samples, Pollen = pollen samples, 2nd = mown biennially, 4th 911 

= mown quadrennially. Grey triangles = environmental variables, three mowing regimes, b) 912 

plant species grouped into pollen taxa according to Table 2, based on 26 plots from Tågdalen 913 

and 23 plots from Sølendet. Pollen types close to the center are not shown to increase 914 

readability. Abbreviations: t = type, Menyanthes tri = Menyanthes trifoliata, Saxifraga opp = 915 

Saxifraga oppositifolia.  916 
  917 
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 918 
Fig. 1.  919 
 920 
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 921 
Fig. 2a.  922 
 923 
  924 
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Table 1  925 
Characteristics of the two study areas. Climatic data from Norwegian Meteorological Institute 926 
(see Lyngstad et al., 2016, including Supplementary Material) for the study areas at Tågdalen 927 
nature reserve and Sølendet nature reserve. Vegetation zones and sections after Moen (1999). 928 
 929 

 Tågdalen Sølendet 
Latitude (N)  63°03’ 62°40’ 
Longitude (E) 9°05’ 11°50’ 
Altitude (m a.s.l.) 440-460 715-785 
Mean annual precipitation 
(mm) 

1583 637 

Mean annual temperature 
(°C) 

3.0 0.6 

Mean July temperature (°C) 11.2 10.5 
Mean January temperature 
(°C) 

- 2.7 - 9.5 

Vegetation zone middle/ northern 
boreal 

middle/ northern boreal 

Vegetation section markedly oceanic 
(O2) 

indifferent (OC)/slightly 
oceanic (O1) 

 930 
931 
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Table 2 932 
The 26 pollen and spore taxa with their corresponding 57 plant species present in the studied 933 
localities. Only taxa registered in both vegetation and pollen samples are included. T = pollen 934 
or plant only present in Tågdalen; S = pollen or plant only present in Sølendet. Nomenclature 935 
for pollen taxa follows Fægri and Iversen (1989), plant taxa follow Frisvoll et al. (1995) and 936 
Lid and Lid (2005). 937 

Pollen/spore taxa  Plant species in the vegetation plots  
Anemone Anemone nemorosaT 
Asteraceae Cichorioideae Crepis paludosaS, Leontodon autumnalisS 
Betula Betula nana, Betula nana x pubescens, Betula pubescens 
Bistorta vivipara-type Bistorta vivipara 
Calluna vulgaris Calluna vulgarisS 
Cyperaceae Carex spp., Eleocharis quinqueflora, Eriophorum spp., Kobresia 

simpliciusculaS, Schoenus ferrugineusT, Trichophorum spp., 
Drosera rotundifolia-typeT Drosera longifoliaT ,Drosera rotundifolia,  
Dulichium-type Carex capillaris, Carex chordorrhizaT, Carex dioica, Carex 

echinata, Carex flava, Carex flava x hostianaS, Carex hostiana, 
Carex lasiocarpa, Carex limosaT,Carex nigra, Carex panicea, 
Carex paucifloraT, Carex rostrata, Carex vaginataS 

Ericaceae Andromeda polifolia, Calluna vulgarisS, Erica tetralixT, Vaccinium 
uliginosum ssp. uliginosum 

Eriophorum-type Eriophorum angustifolium, Eriophorum latifolium, Eriophorum 
vaginatumS, Trichophorum alpinum, Trichophorum cespitosum ssp. 
cespitosum 

Galium-typeT Galium boreale 
Juniperus communis Juniperus communis 
Menyanthes trifoliataT Menyanthes trifoliataT 
Pedicularis-type Pedicularis oederiS, Pedicularis palustris  
Pinguicula-typeS Pinguicula vulgarisS 
Poaceae Deschampsia cespitosaS, Festuca ovinaS, Festuca viviparaT, 

Molinia caerulea, Nardus stricta 
Potentilla-type Potentilla erecta 
Rhinanthus-typeS Bartsia alpinaS, Euphrasia wettsteinii  
Rosaceae  Potentilla erecta 
SalixS Salix glaucaS 
Saxifraga oppositifolia-type Saxifraga aizoidesS 
Selaginella selaginoides Selaginella selaginoides 
Solidago-type Solidago virgaureaS 
Sphagnum Sphagnum warnstorfii, Sphagnum Section Subsecunda 
Succisa pratensis  Succisa pratensis  
Thalictrum Thalictrum alpinum 

 938 
939 
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Table 3  940 
Number of plots with plant recorded (n), mean plant cover in vegetation plots based on 26 941 
plots from Tågdalen (T) and 23 from Sølendet (S), and differences in cover between plots 942 
mown biennially (M2) and unmovn (U). T = only from Tågdalen; S = only from Sølendet; – = 943 
not present. The difference in % values displays absolute differences on a % scale between 944 
plots mown biennially and unmown plots. 945 

Plant taxa  n 
T, 

mean 
% 

S, 
mean 

% 

Difference in 
% values M2 
– U (T & S) 

Bartsia alpina 29 2.5 0.5 -1.6 
Betula nana 16 0.01 2.9 -5.7 
Bistorta vivipara 19 0.1 0.6 -0.5 
Carex capillaris 20 0.7 0.8 0.3 
Carex dioica 40 2.2 1.1 2.2 
Carex echinata 9 0.7 0.01 2.1 
Carex flava 35 2.6 6.1 5.9 
Carex hostiana 22 4.3 0.01 4.9 
Carex limosaT 25 2.8 – 2.4 
Carex nigra 11 0.02 1.8 2.1 
Carex panicea 48 2.2 4.0 1.2 
Carex rostrata 30 3.1 2.3 4.8 
Drosera longifoliaT 13 2.0 – 4.0 
Eriophorum angustifolium 43 0.7 0.8 0.9 
Eriophorum latifolium 44 7.8 6.4 5.7 
Eriophorum vaginatumS 10 – 0.3 -0.5 
Euphrasia wettsteinii 25 0.8 1.4 0.0 
Festuca ovinaS 12 – 0.7 -0.7 
Menyanthes trifoliata 9 0.4 1.6 -5.4 
Molinia caerulea 49 8.3 7.4 -13.6 
Pedicularis oederiS 11 – 0.5 -0.3 
Pedicularis palustris 26 0.2 3.0 3.1 
Pinguicula vulgaris 13 1.7 0.9 2.6 
Potentilla erecta 44 9.2 5.2 0.4 
Selaginella selaginoides 43 1.5 1.9 0.2 
Succisa pratensis 32 3.5 1.6 -1.9 
Thalictrum alpinum 49 10.8 13.9 10.6 
Trichophorum alpinum 22 1.7 0.1 -0.4 
Trichophorum cespitosum 
ssp. cespitosum 49 18.4 14.5 -1.9 

 946 
947 



 43 

Table 4 948 
Results (p-values) from paired comparisons of differences in a) mean percentage cover of 949 
plant taxa and b) sum of mean percentage cover of pollen taxa between management regimes 950 
in Tågdalen and Sølendet using the Wilcoxon signed rank test. The test was run for plots 951 
mown biennially and unmown plots (M2 & U), plots mown biennially and quadrennially (M2 952 
& M4), and plots mown quadrennially and unmown plots (M4 & U). Numbers in bold display 953 
values statistically significant at a 0.05-level. -- = not enough plots to compute the test. The 954 
rightmost column displays indices of difference (ID), range +1.0 to -1.0, between plots mown 955 
biennially and unmown (M2 & U). Positive values refer to taxa with an increase in plant 956 
cover with mowing, negative values vice versa.  957 

 p-values ID 

a) Plant taxa  M2 & U M2 & M4 M4 & U M2 & U 

Molinia caerulea <0.0001 0.047 0.010 -0.95 
Carex dioica <0.0001 0.25 0.22 0.89 
Thalictrum alpinum <0.0001 0.50 0.06 0.90 
Pinguicula vulgaris 0.001 0.031 0.38 0.65 
Carex hostiana 0.002 0.50 0.06 1.00 
Carex flava 0.002 >0.99 0.13 0.60 
Eriophorum latifolium 0.003 0.50 0.06 0.72 
Eriophorum angustifolium 0.012 0.06 0.13 0.44 
Pedicularis palustris 0.017 >0.99 0.50 0.58 
Betula nana 0.027 -- -- -0.60 
Succisa pratensis 0.036 >0.99 >0.99 -0.38 
Carex limosaT 0.047 >0.99 0.38 0.60 
Carex echinata 0.06 -- -- 0.83 
Drosera longifoliaT 0.06 >0.99 0.25 0.83 
Bartsia alpina 0.18 0.63 0.25 -0.40 
Carex nigra 0.19 -- -- 0.50 
Eriophorum vaginatumS 0.22 -- -- -0.57 
Carex panicea 0.23 0.25 0.25 0.40 
Bistorta vivipara 0.27 -- 0.38 -0.40 
Carex rostrata 0.31 0.06 >0.99 0.25 
Trichophorum alpinum 0.34 0.31 0.63 -0.29 
Festuca ovinaS 0.38 -- -- -0.29 
Trichophorum cespitosum 
ssp. cespitosum 0.44 0.38 0.50 -0.15 

Menyanthes trifoliata 0.50 0.75 0.88 -0.25 
Carex capillaris 0.67 -- -- 0.10 
Euphrasia wettsteinii 0.70 -- -- -0.07 
Selaginella selaginoides 0.72 0.06 0.25 0.05 
Potentilla erecta 0.87 0.13 0.31 0.11 
Pedicularis oederiS 0.94 -- -- -0.17 
     
b) Plant taxa in pollen 
taxa group     

Dulichium-type <0.0001 0.047 0.039 1.00 
Cyperaceae <0.0001 0.06 0.012 1.00 
Poaceae <0.0001 0.09 0.008 -0.95 
Eriophorum spp. 0.002 0.14 0.039 0.60 
Betula 0.002 -- 0.38 -0.69 
Pedicularis-type 0.023 >0.99 0.13 0.38 
Drosera.T 0.031 0.38 0.25 0.75 
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Eriophorum-type (incl. 
Trichophorum)  0.040 0.77 0.35 0.30 

958 
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Table 5  959 
Mean pollen percentages of local terrestrial pollen and spores from the two study areas, 960 
Tågdalen and Sølendet, for each land-use regime. SE= standard error; n= number of samples. 961 
* displays pollen taxa included in the local terrestrial pollen sum. Cyperaceae includes 962 
Dulichium-type and Eriophorum-type, Ericaceae includes Calluna vulgaris, Rosaceae 963 
includes Potentilla-type. Menyanthes trifoliata, Ericaceae, Drosera rotundifolia-type, 964 
Saxifraga oppositifolia-type and Galium-type from Tågdalen and Anemone, Saxifraga 965 
oppositifolia-type, Bistorta vivipara-type, Pinguicula-type and Rhinanthus-type from 966 
Sølendet, were found in few plots and with low percentages and are not included. 967 
 968 

 Mown biennially Mown quadrennially Unmown 

Pollen/spore taxa 
n (of 
10) 

Mean  
%  SE n (of 6) 

Mean  
% SE 

n (of 
10) 

Mean  
% SE 

Tågdalen          
Cyperaceae  10 80.0 1.8 6 78.2 3.2 10 80.8 1.4 
Betula 10 32.7 1.9 6 29.7 3.5 10 29.1 1.3 
Dulichium-type* 10 25.5 1.3 6 25.2 1.6 10 26.7 2.4 
Eriophorum-type* 10 16.2 0.6 6 16.1 2.3 10 9.0 1.3 
Selaginella selaginoides 10 15.1 1.5 6 11.0 2.2 10 17.4 3.7 
Poaceae* 10 7.8 0.5 6 9.3 1.2 10 9.4 0.7 
Thalictrum* 10 4.8 1.0 6 5.9 1.6 10 3.2 0.6 
Rosaceae 9 2.4 0.5 6 2.6 0.4 10 2.9 0.3 
Potentilla-type* 8 1.4 0.3 5 2.0 0.3 10 2.5 0.3 
Juniperus communis 9 0.9 0.2 4 0.5 0.2 9 0.7 0.1 
Sphagnum 7 0.6 0.2 5 0.6 0.1 7 0.6 0.2 
Solidago-type* 3 0.4 0.2 1 0.1 0.1 3 0.1 0.05 
Succisa pratensis* 5 0.2 0.07 1 0.2 0.1 3 0.2 0.1 
Anemone* 4 0.2 0.08 1 0.06 0.04 4 0.2 0.07 
Pedicularis-type* 3 0.2 0.09 3 0.3 0.1 0 0 0 
Menyanthes trifoliataT * 1 0.1 0.03 1 0.08 0.05 2 0.05 0.03 
Sølendet          
Cyperaceae  10 78.5 4.1 3 90.4 2.2 10 83.7 2.8 
Betula 10 32.4 3.0 3 18.2 2.6 10 30.2 2.9 
Eriophorum-type* 10 28.9 2.2 3 35.9 1.9 10 14.9 1.1 
Selaginella selaginoides 10 19.2 3.1 3 9.6 1.2 10 11.3 1.8 
Dulichium-type * 10 18.4 1.2 3 21.6 2.4 10 24.4 1.2 
Thalictrum* 10 12.6 3.9 3 5.4 2.6 10 3.9 1.1 
Poaceae* 10 4.6 0.6 3 2.7 0.5 10 7.2 1.3 
Juniperus communis 8 1.0 0.2 3 0.5 0.1 8 0.6 0.1 
Pedicularis-type* 7 0.6 0.1 2 0.6 0.3 7 0.4 0.1 
Asteraceae CichorioideaeS* 9 0.5 0.1 1 0.1 0.1 5 0.5 0.2 
Sphagnum 6 0.4 0.1 3 0.7 0.2 10 0.5 0.1 
Ericaceae 5 0.3 0.1 1 0.2 0.2 6 0.3 0.1 
Calluna vulgaris 5 0.3 0.1 1 0.2 0.2 4 0.2 0.1 
SalixS 6 0.3 0.1 2 0.3 0.1 7 0.4 0.1 
Rosaceae 8 1.0 0.2 0 0 0 9 2.1 0.5 
Potentilla-type* 7 0.7 0.2 0 0 0 9 2.0 0.5 
Solidago-type* 4 0.2 0.1 0 0 0 4 0.3 0.1 
Succisa pratensis* 4 0.2 0.1 0 0 0 2 0.6 0.3 
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Table 6 970 
Correlation between plant cover (transformed to pollen taxa) percentages and pollen 971 
percentages, and indices of association (A, U, O) based on presence/absence data. 972 
Abbreviations: T = test only from Tågdalen; S = only from Sølendet; ρ(rho) = Spearman rank-973 
correlation coefficient. Correlation coefficient significant at p<0.05 in bold. The indices of 974 
association were classified into SAT = strongly associated types, AT = associated types, 975 
WAT = weakly associated types, ORT = over-represented type, URT = under-represented 976 
type and UT = unassociated type. See section 3.4.5. for further description. Anemone (WAT), 977 
Calluna vulgaris (ORT), Juniperus communis (WAT), Salix (UT) and Solidago-type (WAT) 978 
were present in too few plots with plant or pollen to conduct the test. 979 

Pollen taxon ρ A U O Association 

Rosaceae  0.47 0.83 0.11 0.07 SAT 
Potentilla-type 0.44 0.8 0.16 0.05 SAT 
Pedicularis-type 0.43 0.59 0.34 0.14 AT 
Succisa pratensis  0.43 0.38 0.59 0.13 WAT 
Thalictrum 0.35 1 0 0 SAT 
Menyanthes trifoliata 0.31 0.25 0.67 0.5 WAT 
Selaginella selaginoides 0.30 0.88 0 0.12 SAT 

Eriophorum/Eriophorum spp. 0.25 0.98 0 0.02 SAT 

Poaceae/Molinia caerulea 0.25 1 0 0 SAT 
Cyperaceae 0.24 1 0 0 SAT 
Drosera rotundifolia-typeT 0.21 0.06 0.94 0 URT 
Poaceae 0.20 1 0 0 SAT 
Asteraceae Cichorioideae S 0.18 0.19 0.25 0.8 WAT 
Bistorta vivipara-typeT 0.11 0.06 0.94 0 URT 
Betula 0.05 0.43 0 0.57 ORT 
Rhinanthus-typeS 0.04 0.13 0.87 0 URT 
Ericaceae  0.02 0.19 0.74 0.57 WAT 
Galium-typeT -0.05 0 1 1 UT 
Sphagnum -0.13 0.21 0.11 0.79 WAT 
Dulichium-type -0.16 1 0 0 SAT 
Pinguicula-typeS -0.22 0 1 1 UT 
Saxifraga oppositifolia-type -0.96 0.13 0.88 0 URT 
Eriophorum-type -0.01 1 0 0 SAT 
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Table 7 981 
Pollen indicator taxa for management regimes in boreal rich fens based on the results from the 982 
Wilcoxon signed rank test (relationship between vegetation and management regime) and the 983 
Spearman rank-correlation coefficient (relationship between plant and pollen percentages). 984 
The effect of traditional mowing on the relative vegetation cover (plants expressed as pollen 985 
taxa) in fens is displayed as: + positive effect of traditional mowing, • no effect, - negative 986 
effect). Results from earlier studies in the study areas are displayed in brackets (after Moen, 987 
1990, 1995; Moen et al., 1999); see text for further details.  988 
*Pedicularis-type pollen mainly increases with mowing, but single species are reduced with 989 
mowing. 990 

Pollen-vegetation relationship Pollen/spore taxa Effect of 
mowing 

Very good pollen indicator Thalictrum    + 
 

Good pollen indicators Cyperaceae 
Eriophorum-type 
Poaceae 
Succisa pratensis 
Pedicularis-type 

+ 
+ 
- 
- 

+* 
 

Potential pollen indicators Potentilla-type 
Rosaceae 
Selaginella selaginoides 

(-) 
(-) 
(+) 

 
Pollen type reflecting 
unidentified factors in present 
study 

Menyanthes trifoliata 
 

(+/•) 
 
 
 

Pollen types reflecting plant 
cover in earlier studies 

Anemone 
Asteraceae Cichorioideae (Leontodon spp./Crepis spp.) 
Betula 
Bistorta vivipara-type 
Calluna vulgaris 
Dulichium-type 
Drosera rotundifolia-type 
Ericaceae 
Galium-type  
Juniperus communis  
Pinguicula-type 
Rhinanthus-type (Euphrasia spp./Bartsia spp.) 
Salix 
Saxifraga oppositifolia-type 
Sphagnum 
Solidago-type 

 
(+/-) 

(-) 
(+) 
(-) 

(+/•/-) 
(+) 
(-) 

  
(-) 
(+) 
(+) 

(+/-) 
(+) 
(-) 
(-) 

 991 
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