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Abstract

Modelling of wave motion in a fluid is usually based on classical systems which
are obtained by the hypotheses that the flow is irrotational and the bottom is even.
In such a context, the influence of vorticity is entirely disregarded in the formula-
tion of the governing equations. Although this consideration is justified in many
circumstances, there are also a fair number of observed cases in near-shore hy-
drodynamics and open channel flow where this approach is unsuitable. In this
thesis, the influence of constant background vorticity on the properties of shock
waves in a shallow water system is considered and the governing equations are
derived. An analysis of the shock-wave solutions of the system detailed in the
body of this paper shows that stationary jumps can be described in terms of two
non-dimensional parameters, one being the Froude number and the other incorpo-
rating the background vorticity. It is shown that these two parameters completely
determine the strength of the jump. Moreover, in many practical situations, the
assumption of a flat bottom is too restrictive. If this theory is to describe the
physics of an underlying problem adequately, then it is important to introduced
uneven bed in the formulation of the governing equations. This is done in this
thesis where it is shown that the combination of discontinuous free-surface so-
lutions and bottom step transitions naturally lead to singular solutions featuring
Dirac delta distributions. These singular solutions feature a Rankine-Hugoniot
deficit and the method of complex-valued weak asymptotic is used to provide a
firm link between the Rankine-Hugoniot deficit and the singular parts of the weak
solutions.

Furthermore, it is shown that a shallow water system for interfacial waves in
the case of a neutrally buoyant two-layer fluid setup ceases to be strictly hyper-
bolic and the standard theory of hyperbolic conservation laws cannot be used to
solve the Riemann problem. Nevertheless, it is shown that the Riemann prob-
lem can still be solved uniquely using singular shocks which contain Dirac delta
distributions travelling with the shock. The solution is characterized in terms of
the complex-valued weak asymptotic method and it is established that the two
solution concepts coincide.

The thesis also made a significant contribution to the Brio system which is
a two-by-two system of conservation laws arising as a simplified model in ideal
magnetohydrodynamics (MHD). It was found in previous works that the standard
theory of hyperbolic conservation laws does not apply to this system since the
characteristic fields are not genuinely nonlinear on the set v = 0.

In the present contribution, the focus is on such an example, a hyperbolic
conservation law appearing in ideal magnetohydrodynamics. For this conserva-
tion law, solutions cannot be found using the classical techniques of conservation
laws. Consequently, certain Riemann problems have no weak solutions in the



traditional Lax admissible sense. It was argued by some authors that in order
to solve the system, singular solutions containing Dirac masses along the shock
waves might have to be used. Although solutions of this type were exhibited,
uniqueness was not obtained. In this thesis, a nonlinear change of variables which
makes it possible to solve the Riemann problem in the framework of the standard
theory of conservation laws is introduced. In addition, a criterion which leads to
an admissibility condition for singular solutions of the original system is devel-
oped and it is shown that such admissible solutions are unique in the framework
developed in this thesis.
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General Background





Chapter 1

Introduction

The theory of water waves is a fascinating subject which embodies the general
ideas about the generation and propagation of water waves. The theory is one
of the basic features of all physical phenomena which occur in nature and offers
great variety of applications to mathematically and physically related problems.
Waves serve as the means by which information is transmitted between two dis-
tinct points in space and time without necessarily moving the medium across the
two points. Such waves exist in different media but we shall limit the discussion
to the case where the considered medium is water. Water waves are generated due
to the presence of restoring forces and are usually classified into three different
categories namely interface gravity waves, internal gravity waves and compres-
sion and expansion waves. On the one hand, these waves can be cherished in a
non-restrictive way by people with less technical knowledge of the subject. On
the other hand, the theory of water waves can be formulated quantitatively with
rigorous mathematical complexities that can be mostly appreciated by specialists.
In the later case, an earnest attempt at developing feasible mathematical concepts
and techniques to investigate the subject from theoretical point of view lead to the
conception of linear wave theory.

There has been a valuable development of the linear wave theory since Joseph-
Louis Lagrange [44, 45] derived the governing equations for small amplitude
waves. To authenticate the validity of his derivation, he obtained a limiting so-
lution for plane waves in shallow water and found during the process that the
propagation speed of such waves is

√
gh, where h is the fluid depth and g is the

gravitational acceleration. If the wavelength is small compared to the fluid depth,
then the wave speed is independent of the wavelength. Although Lagrange’s lin-
ear wave theory remain valid for modelling water waves, it has been observed
that as waves propagate into shallow water their steepness increase and their pro-
files become nonlinear. Consequently, further assumptions are needed to derive
equations that account for the nonlinearity.
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The conceptually more difficult nonlinear wave theory dates back to the work
of Stokes [71] and Riemann [59]. The theory has seen a considerable develop-
ment and serves as a mathematical tool for modelling shallow water waves. The
purpose of this thesis is to investigate well-posedness for Nonlinear Partial Dif-
ferential Equations appearing in the study of shallow water waves. The theory
of evolution equations is an important field of research within the nonlinear sci-
ences where traditional disciplines of mathematics, physics, chemistry and biol-
ogy merge, interact and change ideas. Even in mathematics it covers several areas
such as fluid mechanics, optics, numerical analysis, dynamical systems and par-
tial differential equations. Evolution equations, particularly Partial Differential
Equations, are present in nature and technology. They arise mainly in physical
problems, typically whenever a wave motion is observed. Electromagnetic waves,
seismic waves, shock waves and many other types of waves can be modelled by
hyperbolic equations. These PDEs occur in mathematical models of conservation
laws and are found in problems such as transport process and wave propagation.
Therefore, a better and deeper mathematical understanding of conservation pro-
cesses is essential. Such knowledge will provide accurate strategies for influenc-
ing and controlling the dynamics of the conservation process.

In the context of surface waves, the shallow-water system describes the flow
of an inviscid fluid in a long channel of small uniform width. The system is used
as a standard model in hydraulics and is also fundamental in the study of bores
and storm surges in rivers and channels [20, 76]. If the bottom of the channel is
flat as is normally done in a laboratory situation, then the system is usually written
in the form

∂th+∂x (uh) = 0,

∂t(uh)+∂x

(
u2h+gh2

2

)
= 0,

(1.1)

where h represents the total fluid depth, u denotes the average horizontal velocity
and g is the gravitational constant. The first equation in (1.1) represents mass
conservation which from physical principles states that the rate of change of the
total mass in a control volume is equal to the net mass flux through the boundary of
the control volume. The second equation in (1.1) denotes momentum conservation
which states that the rate of change momentum is equal to the net momentum
inflow plus the net forces acting on the boundary.

The above system is derived by the assumption that the channel bed is flat.
However, in many practical situations, the assumption of a flat bottom is exces-
sively limiting. The goal is to introduce an uneven bottom bed in the above system
and show that an admissible weak solution that conserves mass and momentum
and dissipates mechanical energy must give rise to a Rankine-Hugoniot deficit for
the conservation equation for the total head. This result is presented fully in Paper
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A which is attached in Part II of this thesis. The system of interest is of the form

∂th+∂x (uh) = 0,

∂t(uh)+∂x

(
u2h+gh2

2

)
= −g∂xb,

(1.2)

where b(x) describes the bottom topography. A courageous attempt is made to
describe how such a singular solution can be understood as a δ-shock wave in the
sense of the complex-valued weak asymptotic method [31, 32]. Complex-valued
approximations which become real-valued in the distributional limit is used to
establish a resolute connection between the singular parts of the weak solutions
and the Rankine-Hugoniot deficit. The interaction of a travelling hydraulic jump
with a bottom step is studied and Lax admissible solutions are found.

Modelling of surface wave motion in shallow water is normally based on clas-
sical systems which are derived in the framework of irrotational flow. In this con-
text, the influence of vorticity is in principle neglected in the formulation of the
governing equations. In spite of the fact that this consideration is justified in many
circumstances, there are a reasonable number of observed cases in open channel
flow and near-shore hydrodynamics where this treatment is unsuitable. As a mat-
ter of fact, there is sufficient evidence that vorticity may have a strong impact on
the propagation of wave in a variety of circumstances. For instance, it was re-
cently shown that vorticity has a major influence on the modulational stability of
quasi-periodic wavetrains [6, 75] as well as the streamline pattern and pressure
profiles in shallow water waves [1, 5, 57, 63, 64, 73]. In addition, the significant
influence of vorticity in the modelling of surface waves has been demonstrated in
recent studies of wave-current interaction [74], the interaction of vortex patches
and point vortices with the free surface [9, 66], the influence of non-constant vor-
ticity on small amplitude waves [37] and the generation of vorticity in long-wave
models [4].

In this work, the interaction of surface waves with an existing shear current
is studied. Such currents are created by the action of viscous stress at the chan-
nel bed, wind stress at the free surface and tidal forcing. Once they are formed,
these shear currents may be taken as background conditions when studying indi-
vidual surface waves. Therefore, it is necessary to make restrictive assumptions
which yield manageable mathematical formulations for modelling the influence of
constant background vorticity on the properties of shock waves. A shallow water
system incorporating constant background shear has been found independently by
a number of authors [2, 24, 41] and written as

∂tH +∂x

(
Γ

2 H2 +uH
)
= 0,

∂t

(
Γ

2 H2 +uH
)
+∂x

(
Γ2

3 H3 +ΓuH2 +u2H + 1
2gH2

)
= 0.

(1.3)
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An analysis of shock wave solutions of the system (1.3), shows that stationary
hydraulic jumps can be described in terms of two non-dimensional parameters,
namely, the Froude number which is suitably defined in the presence of the shear
current and a non-dimensional background vorticity. Moreover, it is shown in
Paper B [35] that stronger background vorticity has the effect of moderating the
strength of the hydraulic jump. The analysis performed on (1.3) is partly moti-
vated by the work in [58] where hydraulic jumps were studied in a meaningful
manner. The authors of [58] were the first to be able to simulate oscillation of
the hydraulic jump toe in a physically reasonable way and obtained a very close
match with experimental data. In the current work, we study hydraulic jumps us-
ing the simplifying assumption of constant background shear. Although (1.3) is
not able to explain the creation of vorticity in a hydraulic jump which featured
prominently in [58], it is able to quantify the dependence of the strength of the
hydraulic jump on the vorticity and also give fairly simple closed-form solutions.

As mentioned earlier, waves can propagate internally at the interface of a two-
fluid system and in this thesis, such waves are studied using a triangular system of
conservation laws of the form

∂tu+∂x

(
u2

2 +gρ1−ρ2
ρ1

η

)
= 0,

∂tη+∂x(u+ηu) = 0.
(1.4)

The interest in this system is physically motivated by considering large pools of
heavy liquid located at the bottom of a deep ocean. It has been reported in [25] that
such pools of heavy liquids may occur naturally and have also been put forward
as a potential long-term site for captured CO2 storage. Climate change and global
warming are understood to result partially from increasing concentration of CO2
in the atmosphere and techniques that aim at stabilizing atmospheric CO2 level
are the focus of recent scientific research. One promising procedure is to capture
the CO2 in fossil-burning processes and sequester it in storage sites such as de-
pleted petroleum and natural gas reservoirs, unminable coal beds, saline aquifers
and the ocean. As a result of ecological and climate considerations, the ocean is
the preferable storage site for undissolved CO2 and it is reported in [21, 68] that at
predominant oceanic temperatures, CO2 condenses to liquid at about 400m depth.
Owing to the relatively higher compressibility of liquid CO2 than seawater, liquid
CO2 become denser than seawater at a depth of about 3000m and it is thus, theo-
retically possible to store CO2 in the ocean at depths exceeding 3000m. It is also
generally known that the interface of CO2 and sea-water is characterized by rapid
nucleation of CO2 and H2O into an ice-like compound. This hydrate layer serves
as a protective membrane which may prevent the liquid CO2 from escaping even
at depths smaller than 3000m (see [25]). As established in [22, 77], modelling the
hydrate layer is accomplished by using surface tension.
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The highly compressible nature of liquid CO2 imply that at certain depth its
density will coincide with that of the surrounding seawater. Furthermore, changes
in the surrounding seawater temperature may render an initially stable configura-
tion unstable by making the CO2 either stable, unstable or neutrally stable. In the
current contribution, the neutrally stable case where the two densities ρ2 and ρ1
are equal is studied and the considerations are restricted to a shallow-water-like
system of equations of the form

∂tu+∂x

(
u2

2

)
= 0,

∂tη+∂x(u+ηu) = 0.
(1.5)

In terms of hyperbolic conservation laws, the characteristic speeds of this sys-
tem coincide in phase space and hence, the classical theory of strictly hyperbolic
conservation laws cannot be used to completely resolve the Riemann problem.
Nevertheless, it is shown in this work (Paper C) that it is possible to construct
a unique solution to the Riemann initial value problem associated with (1.5). In
other words, the Riemann problem can be solved uniquely using singular shocks
containing Dirac delta distributions travelling with the shock. Moreover, it is also
shown that the solution contains a singular δ-shock whose strength is an exact
measure of the corresponding Rankine-Hugoniot deficit. Although non-strictly
hyperbolic systems of conservation laws have no definitive theory which guaran-
tee existence of weak solutions, the interest in studying such systems is partially
motivated by their significant applications in oil reservoir simulation, gas dynam-
ics and magnetohydrodynamics [38, 61, 67].

Magnetohydrodynamics (MHD) is a field that deals with the study of the mag-
netic properties of electrically charged fluids. In other words, it is the study of how
electric currents in a propagating conductive fluid interact with the magnetic field
created by the moving fluid itself. Such magnetofluids include but not limited to
plasma, salt water and liquid metals. The MHD equations are generally coupled
in such a way that make the system highly complex requiring the solution to be
constructed simultaneously. The complexity of the full system imply that one has
to rely on numerical approximation of solutions in order to understand the dy-
namics of the system. To overcome this difficulty, restrictive assumptions were
made in [3] in other to obtain simplified equations which are easier to solve but
preserve some of the important features observed in the full MHD systems. The
resulting system is a two-by-two system of conservation laws with a relatively
simple structure. It was put forth in [19] that in order to resolve the system ade-
quately, singular solutions containing Dirac masses along the shock waves might
have to be used. Such singular solutions were presented in [31, 60] but the authors
fail to obtain uniqueness. The goal in this thesis is to solve the Riemann problem
for the simplified MHD, commonly called the Brio system, in the framework of
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the standard theory of hyperbolic conservation laws by using an approach which
guarantees existence and uniqueness of admissible solutions. The full result is
presented neatly in Paper D (attached in Part II of this thesis).

The thesis is organized as follows: Chapter 1 introduces the wave problem
and describes the various models that govern wave motion in shallow water. In
Chapter 2, the governing equations are derived. Chapter 3 focuses on hyperbolic
conservation laws where admissibility concept for solutions is introduced and ex-
istence and uniqueness of a solution to the Riemann problem is established. In
Chapter 4, the notion of weak asymptotic is presented and δ-shock solution con-
cept is explained.

1.1 Formulation of the wave problem

The theory of water waves is a fascinating subject which incorporates the fun-
damental ideas about the generation and propagation of water waves and other
mathematically and physically related problems. Waves are generated due to the
existence of restoring forces and are commonly classified into three different cate-
gories. These include interface gravity waves where the restoring forces are grav-
ity and surface tension, internal gravity waves where the restoring force is gravity
and compression and expansion waves where the restoring force is due to the com-
pressibility of the fluid. These waves occur in different media but our discussion
shall be restricted in general to the case where the medium is water. Considering
the motion of waves in the x− z plane and suppose that the x-axis is in the hori-
zontal direction and that the waves propagate in this direction only. In addition,
assume that the z-axis is vertically upwards from the free surface located at z = 0.
Assume further that the fluid has a uniform undisturbed depth H and the deflec-
tion of the free surface from its rest state is z = η(x, t) so that the actual surface is
located at z = h = η+H. If the fluid is inviscid, incompressible and homogeneous
with constant density ρ, then following [43], the continuity equation is

∇ ·u = 0, (1.6)

where u = (u,w) is the velocity vector. In the classical case, it is assumed that the
flow is irrotational so that waves propagating at zero initial vorticity remain so for
all times [76]. The velocity potential, ϕ, in this case is defined by

u =
∂ϕ

∂x
, w =

∂ϕ

∂z
. (1.7)

Substituting this equation into the continuity equation (1.6) gives the Laplace
equation

∇
2
ϕ =

∂2ϕ

∂x2 +
∂2ϕ

∂z2 . (1.8)
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To solve this equation one has to specify appropriate boundary conditions at both
the free surface and the bottom. The bottom boundary condition is the zero normal
velocity which is expressed as

w =
∂ϕ

∂z
= 0 at z =−H. (1.9)

As stated in [76], two boundary conditions are required at the free surface, namely,
a kinematic and a dynamic boundary conditions. The reason for this is the fact that
the free surface elevation, η(x, t), and the velocity potential, ϕ, are not yet known.
The kinematic boundary condition of the free surface states that fluid particles at
the surface remain there at any given time so that the expression

∂η

∂t
+

∂ϕ

∂x
∂η

∂x
=

∂ϕ

∂z
at z = η. (1.10)

holds. The dynamic condition on the other hand states that the pressure just be-
low the surface is equal to the atmospheric pressure. If we take the atmospheric
pressure to be zero, then the dynamic boundary condition can be written as

P = 0 at z = η. (1.11)

Since the flow is assumed to be irrotational, the pressure can be calculated from
the Bernoulli equation [43]

∂ϕ

∂t
+

1
2
(u2 +w2)+

p
ρ
+gz = F(t), (1.12)

where F(t) is independent of location and can be absorbed into the term ∂ϕ

∂t by
basically redefining the velocity potential ϕ so that (1.12) becomes

∂ϕ

∂t
+

1
2
(u2 +w2)+gη = 0 at z = η. (1.13)

The equation derived above is nonlinear and finding solution may be demanding.
In addition, the elevation of the free surface, z = η(x, t), from its rest state as
well as the domain in which the velocity potential, ϕ(x,z, t), is to be determined
are not yet known. Moreover, if it is assumed that ϕ(x,z, t) is analytic and uni-
formly bounded throughout the fluid medium, then the solution would possibly
not exist for all times t > 0. The reason for this is the fact that any mathematical
formulation of the problem which would match observed wave occurrence would
certainly require an assumption that singularities exist in an unknown location in
space and time [70]. Consequently, it is necessary to make simplifying assump-
tions that preserve the physical characteristics of the nonlinear equation but lead
to a manageable formulation which is mathematically interesting.
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1.2 The linearised formulation

Simplifying assumptions are imposed on the nonlinear wave equation which is
formulated in the previous section to reduce it to relatively less demanding linear
equation. If the amplitude of the surface wave is assumed small such that the
velocity potential, the free surface elevation and their derivatives are all small
quantities, then the term ∂xϕ∂xη in (1.10) will be significantly small reducing that
equation to

∂tη = ∂zϕ at z = η. (1.14)

Using Taylor series it is possible to evaluate ∂zϕ around z = 0 to get

∂zϕ|z=η = ∂zϕ|z=0 +η∂zzϕ|z=0 +η
2
∂zzϕ|z=0 + · · · .

Approximating the above equation to first order term yields

∂zϕ|z=η ≈ ∂zϕ|z=0

and inserting it into equation (1.14) gives

∂tη = ∂zϕ at z = 0. (1.15)

Since we have assumed that the wave propagates with small amplitude, the nonlin-
ear term u2 +w2 in (1.13) can be disregarded and the equation eventually reduces
to the linear form of the unsteady Bernoulli equation

∂ϕ

∂t
+

p
ρ
+gη = 0 at z = η. (1.16)

Applying the pressure term in (1.11) reduces this equation to

∂ϕ

∂t
=−gη at z = 0. (1.17)

Notice that the terms in (1.17) were evaluated at z = 0 and not at z = η because the
wave amplitude is assumed small. Although an approximation error may occur in
the above calculations, it is significantly small that the linearised formulation is
considered a valid approximation in shallow water theory.

1.3 Elementary solution of the wave problem

The goal of this section is to establish the solution of (1.8)

∂xxϕ+∂zzϕ = 0
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subject to the boundary conditions

∂ϕ

∂z
= 0 at z =−H,

∂ϕ

∂z
=

∂η

∂t
at z = 0,

∂ϕ

∂t
=−gη at z = 0.

Notice that these boundary conditions have already been obtained in the preced-
ing section. In particular, they correspond to equations (1.9), (1.15) and (1.17)
respectively. For frequency ω and wavenumber k, assume an expression for the
surface

η(x, t) = acos(kx−ωt), (1.18)

where a is the wave amplitude. Now express the wavenumber as k = 2π

λ
, where λ

is the wavelength. The dependence of η on (kx−ωt) and the boundary conditions
(1.15) and (1.17) require the velocity potential, ϕ, to be written as a sine function
of (kx−ωt). Eventually, the analysis is based on the assumption that the Laplace
equation (1.8) has a separable solution

ϕ(z,x, t) = f (z)sin(kx−ωt), (1.19)

where f (z) and ω = ω(k) are to be determined. If (1.19) is substituted into the
Laplace equation (1.8), then it becomes

∂zz f − k2 f = 0, (1.20)

which admits a general solution of the form

f (z) = Aekz +Be−kz, (1.21)

where A and B are constants to be determined. Using this equation, the velocity
potential can be written as

ϕ(z,x, t) = (Aekz +Be−kz)sin(kx−ωt). (1.22)

If (1.22) is differentiated with respect to t, then by using the bottom boundary
condition (1.9) it is immediate that

B = Ae−2kH . (1.23)

Substituting (1.18) and (1.22) into the boundary condition in equation (1.15) yield

k(A−B) = ωa. (1.24)
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It is now an easy exercise to determine the constants A and B by solving equations
(1.23) and (1.24) to get

A =
aω

k(1− e−2kH)
, B =

aωe−2kH

k(1− e−2kH)
. (1.25)

Substituting these into (1.23) gives the desired solution

ϕ =
aω

k
cosh(k(z+H))

sin(kH)
sin(kx−ωt). (1.26)

As stated above, the surface elevation must also be found and this is done by
applying the dynamic boundary condition (1.17). Substitution of (1.18) and (1.26)
into (1.17) give

−aω2

k
cosh(kH)

sinh(kH)
cosh(kx−ωt) =−agcosh(kx−ωt).

Algebraic simplification of this equation yields the relation

ω =
√

gk tan(kH). (1.27)

This equation expresses the connection between the frequency and the wave num-
ber and is commonly referred to as the dispersion relation. The phase speed of
the surface wave can be obtained from (1.27) as

c =
ω

k
=

√
g
k

tan(kH) =

√
gλ

2π
tan
(

2πH
λ

)
. (1.28)

This equation shows that the wave speed does not dependent on the wavelength
λ = 2π

k . When the water depth is greater compared with the wavelength, thus
kH � 1, then tan(kH) ≈ 1 and the dispersion relation (1.27) simplifies to ω =√

gk. Waves with this dispersive nature are called deep water waves. However,
when the ratio of the water depth to the wavelength is small, thus H

λ
� 1, the waves

are called shallow water waves. In this case, tan(kH) ≈ kH and the dispersion
relation simplifies to ω = gk2H [43].

1.4 Shallow water theory

In Section 1.2, the assumption leading to the linearisation of the wave equation
is that the amplitude of the surface wave is small. In this section, a different
kind of approximation is obtained by the hypothesis that the depth of the water
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is significantly small when compared to the wavelength. This assumption leads
to an interesting equation which in its lowest order becomes useful in studying
wave propagation in compressible gases [70]. Assume a setup where the y-axis is
pointing vertically upwards and the x-axis is in the flow direction. Suppose that h
represents the undisturbed water depth such that the bottom is located at y =−h.

Nonlinear theory

If u(x,y, t) and v(x,y, t) denote the velocity components, then the continuity equa-
tion can be written as

∂xu+∂yv = 0. (1.29)

By following Stoker [70], the bottom boundary condition is given by

u∂xh+ v = 0 at y =−h. (1.30)

In addition to the bottom boundary condition, free surface conditions must be
specified. These are the kinematic boundary condition

∂tη+u∂xη− v = 0 at y = η, (1.31)

and the dynamic boundary condition

P = 0 at y = η. (1.32)

Integrating the continuity equation (1.29) with respect to y gives∫
η

−h
(∂xu)dy+ v|η−h = 0. (1.33)

From the bottom boundary condition (1.30) and the kinematic condition (1.31),
we have

v|η−h = ∂tη+u|η∂xη+u|−h∂xh.

Substitution of this equation into (1.33) yields∫
η

−h
(∂xu)dy+∂tη+u|η∂xη+u|−h∂xh = 0. (1.34)

If we introduce the relation

∂

∂x

∫
η(x)

−h(x)
udy = u∂xη|y=η +u∂xh|y=−h +

∫
η

−h
(∂xu)dy,
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then equation (1.34) simplifies to

∂

∂x

∫
η

−h
u dy =−∂tη. (1.35)

Given the water density ρ and acceleration due to gravity g, the hydrostatic pres-
sure is written as

P = gρ(η− y), (1.36)

which agrees with the dynamic boundary condition at the surface. Differentiating
this equation with respect to x yields

∂xP = gρ∂xη. (1.37)

This basically means that ∂xP is independent of the y-axis and that the acceler-
ation component of the x-axis is also independent of y. Eventually, the velocity
component of the x-axis is independent of y for all times t, thus, u = u(x, t). By
applying (1.37), the equation of motion in the x-direction can be written in the
Eulerian form

∂tu+u∂xu =−g∂xη. (1.38)

Notice that ∂yu = 0 since u is independent of y. As a result of this observation,
equation (1.35) can be written as

∂x(u(η+h)) =−∂tη. (1.39)

Equations (1.38) and (1.39) are the nonlinear Partial Differential Equations for
u(x, t) and η(x, t) that govern shallow water waves.

Linear theory

The goal of this section is to linearise the nonlinear shallow water equations de-
rived in the previous section. Assume that the hypotheses made in Section (1.2)
hold and that u(x, t) and η(x, t) and all their derivatives are small. Then both u∂xu
and ∂x(uη) will be small compared to the linear terms and equations (1.38) and
(1.39) become

∂tu =−g∂xη,

∂x(uh) =−∂tη,

respectively. If we differentiate the first equation with respect to t and the second
with respect to x, then η can be eliminated to get

∂ttu− c2
∂xxu = 0, (1.40)

where c =
√

gh is the speed of propagation and h is the constant water depth.



Chapter 2

Derivation of shallow water models

The previous chapter presented a theoretical description of the classical shallow
water model and the various formulations that can be obtained by making fur-
ther assumptions. The classical system is obtained from the incompressible Euler
equations [15] which consist of the mass conservation and momentum conserva-
tion. In addition to these conservation equations is the the conservation of energy
which turns out to be useful when analysing the Riemann problem for such sys-
tems. The goal in this chapter is to derive model equations for shallow water flow
over a variable bottom topography and also formulate a model system that gov-
erns the flow in the presence of a constant background vorticity. Furthermore,
a derivation of a shallow-water-like system that models wave propagation at the
interface of a two fluids system having distinct densities is presented.

2.1 Shallow water flow over an uneven bottom bed

Consider a shallow water flow in the x−z plane as depicted in Figure 2.1. Assume
that the x-axis is in the horizontal direction and that the frictionless flow is in this
direction only. The z-axis is along the vertical cross-section of the fluid. The fluid
is assumed to be inviscid, incompressible and homogeneous with constant density
ρ. The flow is over a bottom bed described by the function β(x). The bottom of
the control volume of width w delimited by [x1,x2] at any given time is assumed
to be free from the processes of erosion and sedimentation. The deflection of the
free surface from its rest state is denoted by η(x, t) so that the actual surface is
located at

z(x, t) = h0(x, t)+η(x, t)+β(x).
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Figure 2.1: Shallow water flow over a bottom step

Pressure

This section presents the pressure associated with the balance laws in the control
volume. The pressure is constructed from the primary flow variables and is essen-
tial for the computation of energy and momentum balances. The importance of
the pressure force on the control volume and the work done by the pressure force
is stated in the discussion leading to the derivation of (2.3) and (2.4). The presence
of the bottom step means that the bottom pressure is not the same on either side of
the jump. The net upward force due to pressure difference on the bottom bed and
the free surface must be balanced by the weight of the fluid in the control volume.
This gives the expression

∂P
∂z

=−ρg.

Vertically integrating the above equation along the fluid column and normalizing
the pressure at the surface yields

P = (β(x)+h− z)ρg, (2.1)

where h(x, t) = h0 +η(x, t).

Mass Balance

Consider a control volume bounded by the free surface, the bottom and the fixed
lateral sides x1 and x2 where x1 < x2. Then the total mass of the fluid contained in
the control volume at time t is given by

M =
∫ x2

x1

∫ h+β(x)

β(x)
ρw dz dx,

where w is the average width of the control volume. Mass conservation in this
volume is based on the physical principle that the mass of the fluid particles in the
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volume is constant. This requires that the time rate of change of the total mass
in the control volume is equal to the net mass flux through the boundaries of the
control volume. The mass flux is only through the lateral sides x1 and x2 and the
conservation of mass in terms of the flow variables is given by

∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)
ρw dz dx =−

[∫ h+β(x)

β(x)
ρwu dz

]x2

x1

.

This can be simplified further to get

∂

∂t

∫ x2

x1

ρwh(x, t) dx =− [ρwu(x, t)h(x, t)]x2
x1
.

Algebraic manipulation and rearrangement of terms yield∫ x2

x1

[
∂

∂t

(
ρwh(x, t)

)
+

∂

∂x

(
ρwu(x, t)h(x, t)

)]
dx = 0.

Dividing through by (x2−x1) and taking limit as ∆x→ 0, we obtain the local mass
balance equation

∂h
∂t

+
∂

∂x
(hu) = 0. (2.2)

Notice that the constant density ρ and the uniform channel width cancel out in the
limit.

Momentum Balance

This section is devoted to the formulation of the momentum balance law that
models the flow in the control volume described in the previous section. If the
control volume has a uniform width w and contains a constant density fluid, then
the total horizontal momentum from the bottom to the free surface and delimited
by [x1,x2] such that x1 < x2 is expressed mathematically as

I =
∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)
ρwu dz dx.

The time rate of change of momentum in the control volume is balanced by the
net influx of momentum through the boundaries plus the net work done on the
boundary by the volume. This fundamental hypothesis leads to the expression

∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)
ρwu dz dx+

[∫ h+β(x)

β(x)
ρwu2 dz

]x2

x1

+

[∫ h+β(x)

β(x)
Pw dz

]x2

x1

+
∫ x2

x1

P|z=β(x)∂xβ(x) dx = 0.
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The first term accounts for momentum accumulation in the control volume and
the second term represents momentum outflow. Using equation (2.1) and the fact
that there is no shear stress in a frictionless horizontal flow suggest by logical
necessity that

∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)
ρw dz dx+

[∫ h+β(x)

β(x)
ρwu2 dz

]x2

x1

+

[∫ h+β(x)

β(x)
ρgw

(
β(x)+h− z

)
dz
]x2

x1

+
∫ x2

x1

ρgw(β(x)+h− z)|z=β(x)∂xβ(x) dx = 0.

Using the assumptions that ρ and w are constants yield

∂

∂t

∫ x2

x1

uh dx+
[
u2h
]x2

x1
+
[g

2
h2
]x2

x1
+

∫ x2

x1

gh(x, t)∂xβ(x) dx = 0.

This can be and simplified further to give

∫ x2

x1

[
∂

∂t
(hu)+

∂

∂x

(
hu2 +

1
2

gh2
)
+gh∂xβ(x)

]
dx = 0.

Dividing through by (x2− x1) and taking the limit as ∆x→ 0 give the momentum
conservation equation

∂

∂t
(hu)+

∂

∂x

(
hu2 +

1
2

gh2
)
=−gh∂xβ(x). (2.3)

Energy Balance

This section focuses on the derivation of the total mechanical energy inside the
control volume described above. The total mechanical energy in the control vol-
ume is the sum of the kinetic energy and the potential which is express as

E =
∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)

(
1
2

ρwu2 +ρwgz
)

dz dx.

Physical principles require that the time rate of change of total mechanical energy
in the control volume be balanced by the net energy flux plus the work done by
pressure forces acting on the control volume. Conservation of total energy is given
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by

∂

∂t

∫ x2

x1

∫ h+β(x)

β(x)

(
1
2

ρwu2 +ρwgz
)

dz dx

+

[∫ h+β(x)

β(x)

(
1
2

ρwu2 +ρwgz
)

u dz
]x2

x1

+

[∫ h+β(x)

β(x)
ρwg

(
β(x)+h− z

)
u dz

]x2

x1

= 0.

This can be simplified further by integrating with respect to z to get

∂

∂t

∫ x2

x1

ρw
(

1
2

u2 +
1
2

gh2 +ghβ(x)
)

dx

+

[
ρw
(

1
2

u3h+guh2 +ghuβ(x)
)]x2

x1

= 0.

Since the density and the channel width are constants, the equation can be written
as∫ x2

x1

[
∂

∂t

(
1
2

u2 +
1
2

gh2 +ghβ(x)
)
+

∂

∂x

(
1
2

u3h+guh2 +ghuβ(x)
)]

dx = 0.

Dividing through by (x2− x1) and taking the limit as ∆x→ 0, the integrand must
vanish identically to give energy conservation

∂

∂t

(
1
2

u2h+
1
2

gh2 +ghβ(x)
)
+

∂

∂x

(
1
2

u3h+ugh(h+β(x))
)
= 0. (2.4)

2.2 Shallow water dynamics on shear flow

Modelling of wave motion in a fluid is normally based on classical systems which
are obtained by assuming that the flow is irrotational. Such assumption produces
model equations that are restrictive and unsuitable in certain open channel flows.
To overcome this limitation, the influence of constant background vorticity on
the properties of shallow water flow is studied and mathematical equations that
efficiently model such a flow are formulated. For the purpose of preventing an
undue mathematical complexity, it is assumed that the shallow water waves to
be described are perturbations of an existing background flow with a shear pro-
file that is linear. This procedure has been used in [7, 14, 26, 27, 36, 57] and
it has been indicated to approximate naturally occurring shear flows fairly well
[28]. In particular, the dispersion relation associated with a linear background
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Figure 2.2: Schematic representation of a linear shear flow over an even bottom.

shear efficiently approximates experimentally measured dispersion relation [29].
In addition, it was shown in [73] that linear shear flows can be used as a first
approximation to more general shear profiles in the shallow water wave regime
since the wavelength of such waves is on a different scale than the variation of the
shear profile. The governing shallow water equations that describe the motion of
incompressible and inviscid constant shear fluid are derived in this section. Con-
sider a flat-bottom channel of unit width and even bottom containing a fluid with
undisturbed depth h. Assume that the elevation of the free surface from its equi-
librium state is given by η(x, t) such that the total depth at a point x and time t is
defined by H(x, t) = h+η(x, t). A schematic representation of the problem setup
is shown in Figure 2.2. If the average horizontal velocity is denoted by u(x, t),
then the total velocity component is written as

v(x, t,z)≡U(z)+u(x, t) = Γz+u, (2.5)

where U(z) is the linear shear current and Γ is constant. The mass of the incom-
pressible, inviscid fluid of unit depth is

M =
∫ x2

x1

∫ H(x,t)

0
ρ dz dx.

If the free surface and the flat bottom are impermeable so that no transfer of mass
occur there, then the physical hypothesis of mass conservation requires that the
rate of change of mass per unit time is proportional to the mass flux through the
lateral boundaries. The mathematical idealization of this concept is expressed by
the integral equation

d
dt

∫ x2

x1

∫ H(x,t)

0
ρ dz dx =

∫ H(x,t)

0
ρv(x1, t) dz−

∫ H(x,t)

0
ρv(x2, t) dz.

If the flow variables as well as the domain are smooth, then the above equation
can be written as

d
dt

∫ x2

x1

ρH(x, t) dx+
[∫ H(x,t)

0
ρ(Γz+u(x, t)) dz

]x2

x1

= 0.
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Assume that the density ρ is constant and divide through by (x2− x1)ρ. Then by
letting x2−x1→ 0 will cause the integrand to converge pointwisely to zero on the
arbitrary interval [x1,x2] to give an equation representing mass conservation in the
form

∂tH +∂x

(
Γ

2
H2 +uH

)
= 0. (2.6)

In a similar way, an expression representing momentum conservation in the con-
trol volume can be derived. If we suppose that pressure force is the only force
acting on the control volume, then the conservation of momentum is based on the
physical principle that the fluid is in a hydrostatic balance such that the pressure
p = p(x,z, t) is introduced. Applying this assumption in an arbitrary fluid column
[x1,x2]× [z,z+∆z] gives

(
p(x̄,z+∆z, t)− p(x̄,z, t)

)
(x2− x1) =−(x2− x1)ρg∆z,

where x̄ ∈ [x1,x2]. If the flow variables are smooth, then dividing through by
(x2− x1)∆z and taking the limit as ∆z→ 0 gives

d p
dz

=−ρg.

Integrate and normalize the pressure to be zero at the surface to get

p(x,z, t) = ρg
(
H(x, t)− z

)
. (2.7)

Considering the control volume described above, the total momentum is given by

I =
∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx.

Momentum conservation is obtained from Newton’s second law which requires
that the rate of change of total momentum is equal to the net momentum flux
through the lateral boundaries plus the pressure forces acting on the boundaries.
This is expressed mathematically as

d
dt

∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx =

∫ H

0
ρv2(x1, t) dz−

∫ H

0
ρv2(x2, t) dz

+
∫ H

0
p(x1,z, t) dz−

∫ H

0
p(x2,z, t) dz.

Substituting the total velocity in (2.5) and the pressure term in (2.7) and simplify-
ing yield

d
dt

∫ x2

x1

ρ

[(
Γ

2
H2 +uH

)

t
+

(
Γ2

3
H3 +ΓuH2 +u2H +

g
2

H2
)

x

]
dx = 0
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If we suppose that the density is constant, then dividing through by (x2− x1)ρ
and taking the limit as (x2− x1)→ 0 will make the integrand to vanish at every
point (x, t). This is simply a result of the fact that the interval [x1,x2] is arbitrarily
chosen. The result is momentum conservation equation expressed as

(
Γ

2
H2 +uH

)

t
+

(
Γ2

3
H3 +ΓuH2 +u2H +

1
2

gH2
)

x
= 0. (2.8)

Total mechanical energy in the control volume is expressed as

d
dt

∫ x2

x1

∫ h+η

0
ρ
(1

2 ṽ2 +gz
)

dzdx =
[∫ h+η

0
ρ
(1

2 ṽ2 +gz
)

ṽdz+
∫ h+η

0
ρ
(
h+η− z

)
ṽdz
]x1

x2

.

Substituting (2.5) and integrating in the z-direction gives∫ x2

x1

(
Γ

2 uH2 + Γ2

6 H3 + 1
2u2H + 1

2gH2
)

t
+

(
3Γ

4 u2H2 + Γ

2 gH3 + Γ2

2 uH3 + Γ3

8 H4 + 1
2u3H +guH2

)
x
dx = 0.

Dividing through by (x1− x2) and taking the limit as (x1− x2) −→ 0 yield the
energy conservation equation

(
Γ

2 uH2 + Γ2

6 H3 + 1
2u2H + 1

2gH2
)

t
+

(
3Γ

4 u2H2 + Γ

2 gH3 + Γ2

2 uH3 + Γ3

8 H4 + 1
2u3H +guH2

)
x
= 0. (2.9)

Equations (2.6), (2.8) and (2.9) form the basis of Paper B [35] where it is explained
how to construct a steady state solution for the linear shear flow by analysing a
stationary hydraulic jump. It is also shown in the same paper that the flow-depth
ratio of stationary shocks can be written as a function of two non-dimensional
parameters: the Froude number, suitably defined in the presence of the shear flow,
and a non-dimensional vorticity.

2.3 A shallow water model with vanishing buoyancy

The focus of this section is on waves at the at the interface of a two-fluid setup in
which a finite uniform layer of fluid with density ρ1 and approximate equilibrium
depth h1 is located below an upper fluid layer of density ρ2 and is infinitesimally
deep. Furthermore, assume that ρ1 > ρ2 so that the setup is initially stable. A
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Figure 2.3: Long waves at the interface in a two-layer system of fluids

schematic representation of the setup is shown in Figure 2.3. The bottom is lo-
cated at z =−h1 and the interface, denoted by z = η(x, t), is under the influence of
interfacial tension whose proportionality constant τ is proportional to the curva-
ture of the surface. It is assumed that viscosity is zero and the flow is irrotational
so that it is governed by the Euler equations which can be written in terms of two
velocity potentials; ϕ in the finite lower fluid layer and ψ in the infinite upper
layer. Derivations similar to the one in this section can found in [8, 30, 76]. The
equations that describe the flow are written in the form

ϕ̃x̃x̃ + ϕ̃z̃z̃ = 0, in −h1 < z̃ < η̃, (2.10)
ψ̃x̃x̃ + ψ̃z̃z̃ = 0, in η̃ < z̃ < ∞, (2.11)

ϕ̃z̃ = 0, at z̃ =−h1, (2.12)
ψ̃z̃ = 0, if z̃→ ∞. (2.13)

In addition, the following boundary conditions must be satisfied at the interface

η̃t̃ + ϕ̃x̃η̃x̃− ϕ̃z̃ = 0, at z̃ = η̃, (2.14)
η̃t̃ + ψ̃x̃η̃x̃− ψ̃z̃ = 0, at z̃ = η̃, (2.15)
p1− p2 + τη̃x̃x̃ = 0, at z̃ = η̃. (2.16)

Denote the typical wavelength by λ and let a represent the wave amplitude so that
the following dimensionless parameters are conveniently introduced

α =
a
h1

, β =
h1

λ
, µ =

τ

gλ2(ρ1−ρ2)
. (2.17)

It is assumed that these parameters are small and of the same order. To make clear
the difference in the z-scales in the two fluid layers, a proper nondimensional
formulation of the original equations is necessary. Two distinct normalisations
are used for the purpose of reflecting the problem geometry and bringing to light
the relative significance of terms by the size of appearing coefficients. Thus,

z̃ = λZ, in −h1 < z̃ < η̃, (2.18)
z̃ = h1z, in η̃ < z̃ < ∞. (2.19)
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In addition, the following dimensionless variables are introduced

x̃ = λx, t̃ =
λt
c0
, η̃ = aη, ϕ̃ =

gaλ

c0
ϕ, ψ̃ =

gaλ

c0
ψ, (2.20)

where c0 =
√

gh. In these new variables, the original equations become

β
2
ϕxx +ϕzz = 0, in −1 < z < αη, (2.21)

ψxx +ψZZ = 0, in αβη < Z< ∞, (2.22)
ϕz = 0, at z =−1, (2.23)
ψZ = 0, if Z→ ∞. (2.24)

At the interface, the kinematic boundary conditions (2.14) and (2.15) can be com-
bined as

ϕ̃z̃ = ψ̃z̃ + η̃x̃
(
ϕ̃x̃− ψ̃x̃

)
.

In dimensionless variables, this becomes

ϕz = βψZ +αβ
2
ηx
(
ϕx−ψx

)
. (2.25)

To solve for the velocity potential in the lower fluid, it is written as a formal series
about z =−1

ϕ =
∞

∑
k=0

β
k(z+1)k fk(x, t), (2.26)

which when substituted into (2.21) and the bottom boundary condition (2.23) is
applied yield

ϕ =
∞

∑
n=0

(−1)n
β

2n (z+1)2n

(2n)!
∂2n

∂x2n f (x, t). (2.27)

From this equation, it is not hard to check that

ϕz =−β
2(z+1) fxx +O(β4), (2.28)

so that when substituted into (2.25), it gives

ψZ =−β fxx +O(αβ,β2) at Z = αβη. (2.29)

From (2.22) and (2.24), it is found that

ψtxx +ψtZZ = 0, in Z > 0,

ψtZ =−β ftxx +O(αβ,β2), at Z = 0,
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By applying the Hilbert transform H and the Poisson kernel P , the above bound-
ary value problem can solved and the solution is of the form

ψt =−βH
(
∂
−1
x P (z) fxxt

)
.

This implies that at the interface Z = αβη, it is true that

ψt =−βH fxt +O(αβ,β2). (2.30)

By applying the Bernoulli’s law

p =−ρ

(
ϕt +

1
2
|5ϕ|2 +gη

)

in each fluid layer, the boundary condition (2.16) can be written in normalised
variables as

gρ1

(
η+ϕt +

1
2

αϕ
2
x +

α

2β2 ϕ
2
z

)
−gρ2

(
η+ψt +

1
2

αψ
2
x +

1
2

αψ
2
Z

)
=

τ

λ2 ηxx.

Substituting (2.26)-(2.30) into the equation and keeping terms up to order α and
β yield

gρ1

(
η+ ft +

1
2

α f 2
x

)
−gρ2

(
η−βH fxt

)
=

τ

λ2 ηxx +O(αβ,β2).

Differentiating once with respect to x and setting u = fx give

ut +g
(

ρ1−ρ2

ρ1

)
ηx+αuux+

ρ2

ρ1
βH ut = µ

(
ρ1−ρ2

ρ1

)
ηxxx+O(αβ,β2). (2.31)

The kinematic boundary condition (2.14) in the normalised variables reads

ηt +αϕxηx =
1
β2 ϕz, at z = αη.

Substituting (2.27) and (2.28) into the above equation and simplifying give

ηt +α fxηx +(αη+1) fxx +O(αβ,β2) = 0.

Setting u = fx once more, the above equation can be written as

ηt +
(
(αη+1)u

)
x +O(αβ,β2) = 0. (2.32)

If all terms containing β and higher derivative of η are dropped in (2.31) and
(2.32) and α is set to unity, then the system8 (1.4) appears.





Chapter 3

Hyperbolic conservation laws

The theory of conservation laws is concerned with solutions to time-dependent hy-
perbolic systems of Partial Differential Equations (PDEs) which have the general
form

∂

∂t
u(x, t)+

∂

∂x
f(u(x, t)) = 0, (3.1)

in one dimensional space where u(x, t) is an n-dimensional vector represent-
ing conserved quantities which in this study are mass, momentum and energy.
f(u(x, t)) which is an n×n matrix, is called the flux function for the conservation
laws and is usually a nonlinear function of u. This leads to nonlinear PDEs whose
solutions are in general not exact. Nonetheless, these types of conservation laws
are increasingly popular among scientists and engineers because many practical
problems in these fields are formulated in terms of conservation laws that con-
sequently result in nonlinear PDEs belonging to this class. If (3.1) represents a
scalar conservation law, then integration over the closed interval [x1,x2] gives

∂

∂t

∫ x2

x1

u(x, t) dx =
∫ x2

x1

ut(x, t) dx,

=
∫ x2

x1

f
(
u(x, t)

)
x dx,

= f
(
u(x1, t)

)
− f
(
u(x1, t)

)
.

The first term on the right hand side represents influx through the boundary at x1
whiles the second term denotes outflux through the boundary at x2. The expression
implies that the quantity represented by u is conserved if the inflow is balanced by
the outflow. The equation in (3.1) can be posed as a Cauchy problem. Thus, we
can specify the initial data

u(x,0) = u0(x), x ∈ R, t ∈ R+. (3.2)
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A special case of the Cauchy problem is an initial data with a single discontinu-
ity. Such an initial value problem is called the Riemann problem and it is the
fundamental focus of this chapter.

The concept of hyperbolicity

Consider the n×n system of conservation laws (3.1) in the form

ut +A(u,x, t)ux = 0, (3.3)

where A is an n×n Jacobian matrix

A(u) =




∂ f1
∂u1

∂ f1
∂u2

· · · ∂ f1
∂un

∂ f2
∂u1

∂ f2
∂u2

· · · ∂ f2
∂un

...
... . . . ...

∂ fn
∂u1

∂ fn
∂u2

· · · ∂ fn
∂un



. (3.4)

Let λi, i = 1,2, · · ·n denote the eigenvalues of A. Then the system (3.3) is said to
be hyperbolic if all the λi are real and A is diagonalisable. Thus

A = RΛR−1,

where Λ =diag(λ1,λ2, · · · ,λn) is the diagonal matrix of eigenvalues and
R = [r1|r2| · · · |rn] is the matrix of right eigenvectors. The system (3.3) is strictly
hyperbolic if the real eigenvalues are distinct, thus, λ1 < λ2 < · · ·< λn. The eigen-
values are called characteristics and satisfy the characteristic equation

dx
dt

= λi, i = 1,2, · · · ,n.

In the case of a scalar equation of the form

ut +λux = 0,

with smooth initial data (3.2), the characteristics in the x− t-plane satisfy the
Ordinary Differential Equation (ODE)

dx
dt

= λ, x(0) = ξ.

The solution is given by
u(x, t) = u0(x−λt),

and propagates to the right if λ > 0 and to the left if λ < 0.
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3.1 Generalized weak solution

It is important to note that as time evolves, the solution propagates unchanged
along the characteristic curves, thus,

d
dt

u
(
x(t), t

)
=

d
dt

u
(
x(t), t

)
+

dx
dt

d
dx

u
(
x(t), t

)

= ut +λux

= 0.

This imply that the solution profile remains unchanged over time. In other words,
the solution u(x, t) is constant along the characteristic curves in the x− t-plane
and depends only on the initial data. The solution can be determined uniquely for
small enough time t by following characteristics which are straight lines in the
x− t-plane. However, if

x1 < x2 ⇒ f
(
u0(x1)

)
> f
(
u0(x1)

)
, (3.5)

then the characteristics may cross and uniqueness may no longer be established
[48, 49]. For arbitrary scalar equation

ut + f (u)x = 0, (3.6)

with smooth initial data (3.2) where f (u) is convex, consider characteristics origi-
nating at two initial points ξ and ξ+dx. Since the characteristics are straight lines,
they are given by

x = ξ+ f ′
(
u0(ξ)

)
t, (3.7)

x = ξ+dx+ f ′
(
u0(ξ+dx)

)
t. (3.8)

Taylor expansion of equation (3.8) gives

x = ξ+dx+ f ′
(
u0(ξ)

)
t + f ′′

(
u0(ξ)

)
u′0(ξ)dxt +O

(
(dx)2)t. (3.9)

Subtracting equation (3.7) from equation (3.9) gives

dx =− f ′′
(
u0(ξ)

)
u′0(ξ)dxt,

which implies that

t =− 1
f ′′
(
u0(ξ)

)
u′0(ξ)

.

If we let t∗ represent the minimum time where the characteristics first cross, then
it can be written as

t∗ =− 1

min
−∞<ξ<∞

(
f ′′
(
u0(ξ)

)
u′0(ξ)

) . (3.10)
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Figure 3.1: Changing solution profile leading to shock formation. The initial wave profile
propagates until t∗ when the characteristics first cross and shock forms. At time t > t∗,
classical solutions may not exist.

At t∗, the wave breaks leading to the formation of shocks. A schematic represen-
tation of the solution profile as time evolves is shown in Figure 3.1. Beyond this
time t∗, no classical solutions of the PDE exist but it is possible to find general-
ized weak solutions. If ϕ(x, t) ∈ C1

0(R×R+) is a test function, then integrating
equation (3.6) over space and time yield∫

∞

0

∫
∞

−∞

[
ϕut +ϕ f (u)x

]
dx dt = 0.

Applying integration by parts to the above gives∫
∞

0

∫
∞

−∞

[
ϕtu+ϕx f (u)

]
dx dt =−

∫
∞

−∞

ϕ(x,0)u(x,0) dx. (3.11)

We say that u(x, t) is a weak solution of the conservation law (3.6) if equation
(3.11) holds for all test functions ϕ ∈C1

0 . If the weak solution that is constructed
is not unique, further conditions are imposed on the solution in order to select the
one that is physically meaningful. Such conditions are called entropy conditions.

However, if the initial data is not smooth, thus, if there is a singularity in u0(ξ),
then the solution will have a singularity of the same order along characteristics
emanating from ξ but will remain smooth along characteristics through smooth
portions of the data. In particular, it is generally known that for linear hyperbolic
equations, discontinuities propagate along characteristics. Nevertheless, not all
discontinuities are allowed as part of a weak solution. An acceptable discontinuity
has to satisfy a jump condition. Consider a domain Ω=Ω−∪Ω+ where we define

Ω− = {(x, t) : 0 < t < ∞, −∞ < x < ξ(t)},
Ω+ = {(x, t) : 0 < t < ∞, ξ(t)< x < ∞},

u(x, t) = g(x),
ϕ(x, t) = 0.
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Figure 3.2: The domain Ω

x = ξ(t) is a curve along which the solution is discontinuous. A sketch of the
domain is shown in Figure 3.2. Applying (3.11) on this domain gives∫∫

Ω

[
ϕtu+ϕx f (u)

]
dx dt =∫∫

Ω−

[
ϕtu+ϕx f (u)

]
dx dt +

∫∫
Ω+

[
ϕtu+ϕx f (u)

]
dx dt = 0.

(3.12)

If u,v ∈C1(Ū), then by using the integration by parts formula [16]∫
U

uxiv dx =−
∫

U
uvxi dx+

∫
∂U

uvν
i dS, i = 1,2, · · · ,n,

it is not hard to check that∫∫
Ω−

[
ϕtu+ϕx f (u)

]
dx dt =

−
∫∫

Ω−

[
ϕut +ϕ f (u)x

]
dx dt +

∫
x=ξ(t)

[
ϕulν

2 +ϕ f (ul)ν
1] dS,

where νi, i = 1,2, · · · ,n are the outward unit vectors. The equation above can be
simplified further to get∫∫

Ω−

[
ϕtu+ϕx f (u)

]
dx dt =

−
∫∫

Ω−
ϕ
[
(ul)t + f

(
(ul)
)

x

]
dx dt +

∫
x=ξ(t)

ϕ
[
ulν

2 + f (ul)ν
1] dS.

Notice here that ul is a weak solution of (3.6), thus

(ul)t + f
(
(ul)
)

x = 0,

so that ∫∫
Ω−

[
ϕtu+ϕx f (u)

]
dx dt =

∫
x=ξ(t)

ϕ
[
ulν

2 + f (ul)ν
1] dS. (3.13)
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Similarly, applying integration by parts in the domain Ω+ gives∫∫
Ω+

[
ϕtu+ϕx f (u)

]
dx dt =−

∫
x=ξ(t)

ϕ
[
urν

2 + f (ur)ν
1] dS. (3.14)

Substituting (3.13) and (3.14) into (3.12), one obtains∫
x=ξ(t)

ϕ
[
ulν

2 + f (ul)ν
1−urν

2− f (ur)ν
1] dS = 0.

Since this holds for all test functions ϕ, the integrand must vanish along x = ξ(t),
thus

ulν
2 + f (ul)ν

1−urν
2− f (ur)ν

1 = 0.

Algebraic manipulation of the above equation yields

− ν2

ν1
=

f (ul)− f (ur)

ul−ur
. (3.15)

The curve has a slope which is equal to the negative reciprocal of the normal
vectors, thus

dt
dx

=
1

ξ′(t)
=−ν1

ν2
⇒ ξ

′(t) =−ν2

ν1
.

Consequently, we find that

ξ
′(t) =

f (ul)− f (ur)

ul−ur
≡ [ f ]

[u]
. (3.16)

The expression in (3.16) is called the Rankine-Hugoniot jump condition and holds
for vectors f(u) and u as well. However, in the case of vectors, only jumps for
which [f] and [u] are linearly dependent are allowed as part of the solution.

3.2 The Riemann problem

The Riemann problem is fundamental in the study of hyperbolic conservation laws
and solutions to such a problem consist of elementary waves such as shock waves
and rarefaction curves. In some cases, the solutions may contain contact disconti-
nuities. In what follows, we shall study the properties of these elementary waves
and describe the equations that define them. The Riemann problem is a special
case of the Cauchy problem where the initial data contains a single discontinuity.
In particular, equation (3.6) together with the data

u(x,0) =

{
ul, if x < 0,
ur, if x > 0,

(3.17)
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Figure 3.3: A shock wave propagating to the right

whose solution consists of elementary waves is called the Riemann problem. As
an example to demonstrate the solution profile of a shock wave, we shall consider
the first equation in (1.5) which is repeated below

ut +uux = 0,

and it is called the Burgers’ equation. The solution structure of a shock wave
profile is shown in Figure 3.3 and Figure 3.4. To establish the solution, we shall
prove that

Lemma 3.2.1 The function u(x, t) defined by

u(x, t) =

{
ul, x < λt,
ur, x > λt,

where λ = (ul +ur)/2 represents weak solution of the inviscid Burgers’ equation

∂tu+∂x

(
u2

2

)
= 0,

if ∫
∞

0

∫
∞

−∞

(ϕtu+ϕx f (u)) dx dt =−
∫

∞

−∞

ϕ(x,0)u(x,0) dx (3.18)

is satisfied for all functions ϕ ∈C1
0(R×R+).

Proof For t = 0, we have the initial data

u(x,0) =

{
ul, x < 0,
ur, x > 0.
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Figure 3.4: A shock wave propagating to the left

The right-hand side of (3.18) could be expressed as

−
∫

∞

−∞

ϕ(x,0)u(x,0) dx =−ul

∫ 0

−∞

ϕ(x,0)dx−ur

∫
∞

0
ϕ(x,0) dx.

The left-hand side of (3.18) could also be expressed as∫
∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt =∫

∞

0

∫
λt

−∞

(
ϕtul +ϕx

u2
l

2

)
dx dt +

∫
∞

0

∫
∞

λt

(
ϕtur +ϕx

u2
r

2

)
dx dt,

which when expanded gives∫
∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt = ul

∫
∞

0

∫
λt

−∞

ϕt dx dt

+
u2

l
2

∫
∞

0

∫
λt

−∞

ϕx dx dt +ur

∫
∞

0

∫
∞

λt
ϕt dx dt +

u2
r

2

∫
∞

0

∫
∞

λt
ϕx dx dt.

Assume that the shock speed λ > 0 (noting that the same procedure works for the
case λ < 0). Using the appropriate limits for the first and the third integrands, we
obtain ∫

∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt =

ul

(∫ 0

−∞

∫
∞

0
ϕt +

∫
∞

0

∫
∞

x
λ

ϕt

)
dt dx+

u2
l

2

∫
∞

0

∫
λt

−∞

ϕx dx dt

+ur

∫
∞

0

∫ x
λ

0
ϕt dt dx+

u2
r

2

∫
∞

0

∫
∞

λt
ϕx dx dt.
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Figure 3.5: Left panel: Rarefaction solution of Burgers equation. Right panel: corre-
sponding characteristics.

This equation can be simplified to yield

∫
∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt =

−ul

∫ 0

−∞

ϕ(x,0)dx−ul

∫
∞

0
ϕ

(
x,

x
λ

)
dx+ur

∫
∞

0

(
ϕ

(
x,

x
λ

)
−ϕ(x,0)

)
dx

+
u2

l
2

∫
∞

0
ϕ(λt, t) dt− u2

r
2

∫
∞

0
ϕ(λt, t) dt.

By letting y = λt in the above equation, we obtain

∫
∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt =−ul

∫ 0

−∞

ϕ(x,0) dx−ur

∫
∞

0
ϕ(x,0) dx

−(ul−ur)
∫

∞

0
ϕ

(
x,

x
λ

)
dx+

(u2
l −u2

r )

2λ

∫
∞

0
ϕ

(
y,

y
λ

)
dy.

Using the expression for the shock speed, λ, defined in the Lemma reduces the
equation to

∫
∞

0

∫
∞

−∞

(
ϕtu+ϕx

u2

2

)
dx dt =−ul

∫ 0

−∞

ϕ(x,0)dx−ur

∫
∞

0
ϕ(x,0) dx,

which is exactly the same as the right hand side of (3.18).

�
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The next group of elementary wave solutions that are of interest to our discussion
are rarefaction waves which take the form [20, 48]

u(x, t) =





ul,
x
t ≤ λ(ul),

u
( x

t

)
, λ(ul)≤ x

t ≤ λ(ur),

ur,
x
t ≥ λ(ur),

where λ(ul) ≤ λ(ur). A schematic representation of a rarefaction wave profile is
shown in Figure 3.5.

Furthermore, we focus on the nonlinear properties of the system of equations
given in (1.5) which we recall here

ut +(u2/2)x = 0, (3.19)

ηt +
(
(η+1)u

)
x = 0. (3.20)

In particular, we study the shock curves of these equations and their properties by
noting first that the system (3.19), (3.20) can be written in the general form

Ut +F(U)x = 0,

where

U =

(
u
η

)
and F(U) =

(
g(u,η)
h(u,η)

)
=

(
u2/2

(η+1)u

)
.

The flux Jacobian of F(U) is given by

J =
∂F
∂U

=

(
u 0

η+1 u

)
, (3.21)

which has the repeated eigenvalue

λ1,2 = u,

with the corresponding right eigenvector

r1 =

(
0
1

)
.

It is well-known that the classical theory of hyperbolic laws in one dimensional
space usually demands that the system be strictly hyperbolic with either genuinely
nonlinear or linearly degenerate characteristic fields. In this case, existence of en-
tropy weak solutions can be found when the initial data have small total variation
[17, 47, 51, 65]. Weak solutions of this type are usually discontinuous and consist
of elementary Lax-admissible waves. Nevertheless, many nonlinear hyperbolic
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Figure 3.6: Left panel: Shock solution of Burgers equation. Right panel: corresponding
characteristics.

systems used by physicists and engineers to model physical phenomena do not
satisfy the above hypotheses entirely. For example, modelling a two-phase flow
of a mixture of steam and water in a cooling process of conventional nuclear re-
actors by water under pressure is described by a system of equations which do
not satisfy the basic assumptions of the theory of nonlinear hyperbolic systems
[69]. In contrast to strictly hyperbolic conservation laws, non-strictly hyperbolic
systems do not have a definitive theory which guarantees existence of weak so-
lutions. An interesting feature of (3.19), (3.20) is that the characteristic speeds
coincide in phase space. Consequently, the classical theory of strictly hyperbolic
conservation laws does not apply. However, it is shown in this work that it is possi-
ble to construct a unique solution to the Riemann initial value problem associated
with (3.19), (3.20).

For an arbitrary constant left state (uL,ηL) and a right state (uR,ηR), the
Rankine-Hugoniot jump conditions for (3.19), (3.20) are respectively

−c[u]+ [u2/2] = 0, (3.22)
−c[η]+ [(η+1)u] = 0, (3.23)

where [u] = uR−uL and [η] = ηR−ηL. The shock speed in (3.22) is well known
and is written as

c = (uL +uR)/2≡ ū, (3.24)

and satisfies the Lax entropy condition

λi(uR)≤ c≤ λi(uL), i = 1,2.

For [u] 6= 0, a piecewise continuous function u(x, t) with a single discontinuity
travelling with speed ū and having uL and uR on opposite side of the discontinuity
is a weak solution of (3.19). Thus, we obtain the following lemma:
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Lemma 3.2.2 The function u(x, t) defined by

u(x, t) =

{
uL, if x < ūt,
uR, if x > ūt,

(3.25)

where ū is given in (3.24), represents a weak solution of (3.19) if∫
∞

0

∫
∞

−∞

(
φtu+φx

u2

2

)
dxdt +

∫
∞

−∞

φ(x,0)u(x,0)dx = 0,

holds for all functions φ ∈C1
0(R×R+)

Remark Lemma (3.2.2) represents the case where uL > uR and is illustrated in
Figure 3.6. Similarly, if uL < uR then the solution of (3.19) is given by a rarefac-
tion wave

u(x, t) =





uL, if x≤ uLt,
x/t, if uLt < x < uRt,
uR, if x≥ uRt,

(3.26)

which is illustrated in Figure 3.7.

Note also that weak solutions of (3.19),(3.20) satisfy (3.23), so that with the
help of (3.24) we can obtain the condition

−c(ηR−ηL)+(ηR +1)uR− (ηL +1)uL = 0
ηR(uR− c)−ηL(uL− c)+uR−uL = 0

ηR(uR−uL)+ηL(uL−uR)+2uR−2uL = 0

which can be simplified further to obtain

ηR =−(ηL +2). (3.27)

However, this last relation does not hold for singular solutions. For constant states
uL,uR,ηL and ηR, let the initial data for (3.19), (3.20) be given by

u(ξ,0) =

{
uL, if ξ < 0,
uR, if ξ > 0,

η(ξ,0) =

{
ηL, if ξ < 0,
ηR, if ξ > 0,

(3.28)

respectively. The main goal here is to solve the Riemann problem for (3.19),
(3.20) subject to the initial data (3.28).

Theorem 3.2.3 Assume that the constant states uL,uR,ηL and ηR are given such
the (3.28) represents Riemann initial data for the system (3.19), (3.20).
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Figure 3.7: Left panel: Rarefaction solution of Burgers equation. Right panel: corre-
sponding characteristics.

(a) If uL > uR, then u has a single shock given in (3.25), whereas η has a single
jump

η(x, t) =

{
ηL, if x < ūt,
ηR, if x > ūt,

together with a propagating Dirac mass whose strength is given by

[w] = (t/2)
(
(uL−uR)(ηL +ηR +2)

)
. (3.29)

(b) If uL < uR, then the weak solution of u is a rarefaction given by (3.26)
whereas η has two jump discontinuities given by

η(x, t) =





ηL, if x < uLt,
−1, if uLy≤ x≤ uRt,
ηR, if uRt < x.

(3.30)

Proof To prove this theorem we define a function w(x, t) by

w(x, t) =
∫ x

−κ

η(s, t)ds, (3.31)

for an arbitrary positive constant κ. From this equation the following are obtained

∂w
∂x

= η,
∂2w
∂x2 = ηx,

∂3

∂x3 = ηxx,
∂2w
∂t∂x

.

By using these derivatives, the system (3.19), (3.20) transforms into

ut +uux = 0, (3.32)
wt +uwx =−u. (3.33)
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The first equation (3.32) in the new system is the well known Burgers’ equa-
tion which together with the Riemann initial data in u given in (3.28) admits shock
and rarefaction solutions which are given in (3.25) and (3.26). Moreover, it is
found that

w(ξ,0) =
∫

ξ

−κ

η(s,0)ds,

so that

ξ < 0 ⇒ w(ξ,0) =
∫

ξ

−κ

ηL ds = ηL(ξ+κ),

ξ > 0 ⇒ w(ξ,0) =
∫ 0

−κ

w(s,0) ds+
∫

ξ

0
w(s,0) ds = ηLκ+ηRξ.

Notice that the second equation (3.33) is a nonhomogeneous transport equation in
w and has the Riemann initial data

w(ξ,0)≡ w0(ξ) =

{
ηLκ+ηLξ, if ξ≤ 0,
ηLκ+ηRξ, if ξ≥ 0.

(3.34)

It is quite clear that this initial data is linear and piecewise continuous. How-
ever, the nonhomogeneous part, as well as the variable coefficient u(x, t) in equa-
tion (3.33), contains a discontinuity which may lead to the development of dis-
continuities in w(x, t). The propagation of w is along curves x(t) which satisfy the
characteristic equation

dx
dt

= u(x, t), x(0) = ξ. (3.35)

Nevertheless, w(x, t) is not constant along these curves but satisfies the differential
equation

d
dt

w(x, t) =−u(x, t), (3.36)

and is found by solving the ODEs (3.35) and (3.36) [48]. In the first case where
uL > uR, the solution of (3.32) is given by a shock wave (3.25) propagating at
a speed given in (3.24). The technique used here is to substitute this travelling
shock wave into (3.33) and solve the resulting equation by using the method of
characteristics. If ξ≤ 0, then (3.33) simplifies to

wt +uLwx =−uL,

so that
dx
dt

= uL ⇒ x = uLt +C. (3.37)
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Figure 3.8: Schematic representation of the characteristics for w (dashed) when uL < uR.
The rarefaction fan in u (solid lines) is bounded by x = uLt and x = uRt.

At (ξ,0), it is easy to see that ξ =C. In a similar way, if ξ ≥ 0, then (3.33) takes
the form

wt +uRwx =−uR,

such that
dx
dt

= uR ⇒ x = uRt +C.

Just as done above, it is easy to find that ξ =C at (ξ,0). The characteristics in this
case are

x(t) =

{
uLt +ξ, if ξ < (ū−uL)t,
uRt +ξ, if ξ > (ū−uR)t,

and they propagate into the shock. If ξ≤ 0, then u(x, t) = uL and (3.33) becomes

wt +uLwx =−uL,

which has the solution

w(x, t) = w0(x−uLt)−
∫ t

0
uL ds

= ηL(x−uLt +κ)−uLt.

Similarly, if ξ≥ 0, then u(x, t) = uR and (3.33) becomes

wt +uRwx =−uR,

which has the solution

w(x, t) = ηLκ+ηR(x−uRt)−uRt,
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such that w(x, t) is given by

w(x, t) =

{
ηLκ+ηL(x−uLt)−uLt, if x < ūt,
ηRκ+ηR(x−uRt)−uRt, if x > ūt.

The solution η(x, t) in (a) is obtained by evoking the expression in (3.31).
Since the initial assumption is that uL > uR, the characteristics emanating from
ξ < 0 will propagate values of w(x, t) which are different from those propagated
by the characteristics originating from ξ > 0. Consequently, if the jump in u(x, t)
is large, then it will lead to a jump discontinuity in w(x, t) across the shock. The
characteristics together with the initial Riemann data (3.34) give

wL = ηLκ+
(
ηL(ū−uL)−uL

)
t,

wR = ηLκ+
(
ηR(ū−uR)−uR

)
t.

where wL and wR represent respectively the left and right limits of w(x, t) at
the shock x = ūt. From these expressions, we obtain the jump in w(x, t) whose
strength is given by

[w] = wR−wL =
(
ηR(ū−uR)−uR

)
t−
(
ηL(ū−uL)−uL

)
t

=

(
ηR

(uL−uR

2

)
−uR

)
t−
(

ηL

(uR−uL

2

)
−uL

)
t,

which simplifies to

[w] =
t
2
(
uL−uR

)(
ηL +ηR +2

)
. (3.38)

In the second case where uL < uR, the characteristics emanating from ξ < 0
propagate at a speed of the rarefaction tail whereas those originating at ξ > 0
propagate parallel to the rarefaction head of the wave as shown in Figure 3.9. The
characteristic equations in this case are given by

x(t) =





uRt +ξ, if ξ > 0,
γt, if ξ = 0,
uLt +ξ, if ξ < 0,

where γ is an arbitrary constant only subject to the constraint uL < γ < uR. It is
not hard to find the solution w(x, t) in each of the three regions in Figure 3.9 as the
process is identical to the previous calculations. A graphical representation of the
characteristics is shown in Figure 3.8. By applying (3.34), the solution of (3.33)
is

w(x, t) =





ηLκ+ηL(x−uLt)−uLt, if x < uLt,
ηLκ− x, if uLt ≤ x≤ uRt,
ηlκ+ηR(x−uRt)−uRt, if uRt < x.
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Figure 3.9: The rarefaction tail described by x = uLt and its head is given by x = uRt.

A partial derivative with respect to x gives the solution η(x, t) of (3.20) defined in
(3.30).

�

3.3 Stationary hydraulic jump

A shallow water system incorporating constant background shear has been given
in Chapter 1, equation (1.3) and we recall it here

∂tH +∂x

(
Γ

2 H2 +uH
)
= 0,

∂t

(
Γ

2 H2 +uH
)
+∂x

(
Γ2

3 H3 +ΓuH2 +u2H + 1
2gH2

)
= 0.

(3.39)

The first equation in this system represents mass conservation and the second
represents momentum conservation. If the flow variables are smooth so that the
solutions are also smooth, then an equivalent system has the form

∂tH +∂x

(
Γ

2 H2 +uH
)
= 0, (3.40)

∂tu+∂x

(
1
2u2 +gH

)
= 0. (3.41)

The purpose of this section is to analyse the above equations and explain how to
construct a steady state solution. The analysis of the hydraulic jump is done using
the Froude number which is defined in such a way that it takes into account the
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Figure 3.10: The momentum function M/g is plotted against the flow depth for various
strengths of vorticity. The dashed line shows the irrotational case Γ = 0. The other curves
show the respective cases of the strengths of the vorticity Γ.

average flow velocity (see equation (2.5)) over the entire fluid depth. In dimen-
sionless variables, the depth averaging integral is defined as

Fr =
1
H
∫ H

0 U +udz√
gH

,

which simplifies readily to

Fr =
u+ Γ

2 H√
gH

.

The analysis is based on the assumption that the hydraulic jump is stationary
and that the velocity and water depth increase across the jump. If Λ represents the
volume flow rate per unit width, then the conservation of mass necessitates that

Λ = uLHL +
Γ

2
H2

L = uRHR +
Γ

2
H2

R, (3.42)

be satisfied. Subscript L indicates upstream variables and subscript R represents
downstream variables. Using the concept of momentum conservation explained
in the previous chapter, an expression for the momentum conservation across the
discontinuity is obtained as

Γ2

3
H3

L +ΓuLH2
L +u2

LHL +
1
2

gH2
L =

Γ2

3
H3

R +ΓuRH2
R +u2

RHR +
1
2

gH2
R. (3.43)

Specifically, if we define M = Γ2

3 H3 +ΓuH2 +u2H + 1
2gH2, then the quantity

M/g is the analogue of the momentum function used in hydraulic engineering.
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Figure 3.11: The momentum function M/g is plotted against the flow depth H for constant
vorticity Γ = 1.5 and different values of the flow rate per unit width Λ.
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Figure 3.12: The ratio of right to left Froude numbers α plotted against the left Froude
number FrL for various strengths of vorticity Ω. The dashed curve depicts the irrotational
case.

Since M needs to be preserved through a stationary jump, for a given volume flow
rate per unit width Λ, it is possible to find the conjugate flow depths by plotting
the curve

M =
1

12
Γ

2H3 +
Λ2

H
+

1
2

gH2.

The plot is shown in Figure 3.10 for Λ= 10 and a variety of background vorticities
ranging from Γ = 0 to Γ = 3. On the other hand, Figure 3.11 shows the graphs for
a fixed Γ = 1.5 but for a variety of values of Λ.

If the expression for Λ is substituted into relation (3.43), it yields

Λ
2
(

1
HR
− 1

HL

)
=

Γ2

12
(
H3

L −H3
R
)
+

1
2

g
(
H2

L −H2
R
)
. (3.44)

Substituting the expression for the Froude number stated above and doing fur-
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ther algebraic simplification, the cubic function

Γ2

6g
HLα

3 +

(
1+

Γ2

6g
HL

)
α

2 +

(
1+

Γ2

6g
HL

)
α−2Fr2

L = 0, (3.45)

appears where α = HR/HL is the ratio of depths. Notice that the strength of the
vorticity depends on the non-dimensional parameter Ω = HLΓ2/6g so that we can
write the equation in the final form

Ωα
3 +(1+Ω)α

2 +(1+Ω)α−2Fr2
L = 0. (3.46)

The cubic equation can be solved for any value of Ω. Figure 3.12 shows a plot
of α as a function of FrL for a number of values of the vorticity Γ. It is apparent
that larger values of Ω have the effect of moderating the strength of the hydraulic
jump. This result is published in Paper B [35].



Chapter 4

The weak asymptotic method

The method of weak asymptotic is used on conservation laws to establish singular
solutions which can contain Dirac-δ distributions and the goal in this section is to
apply the method to find a unique δ-type solution to the Brio system

∂tu+∂x
(u2+v2

2

)
= 0,

∂tv+∂x
(
v(u−1)

)
= 0.

(4.1)

This system is obtained from the highly complex and mathematically challeng-
ing ideal MHD system which requires numerical approximation of solutions in
order to understand its dynamics. An interesting feature of this system is that the
quantities u and v denote the velocity components of the fluid whose dynamics is
determined by MHD forces. This feature implies that the system represents the
conservation of the velocities. However, it is worth noting that velocity conser-
vation in this form holds only in idealized situations in which the solutions are
smooth. This means that in the physical world, this assumption is restrictive and
the limitation is manifested in the fact that the system cannot be adequately solved
even for the simplest piece-wise constant Riemann initial data

u|t=0 =

{
UL, x≤ 0
UR, x > 0

, v|t=0 =

{
VL, x≤ 0
VR, x > 0

. (4.2)

Furthermore, the characteristic fields of this system are neither genuinely nonlin-
ear nor linearly degenerate in certain regions in the (u,v)-plane as pointed out in
[19]. This implies that the standard theory of hyperbolic conservation laws which
can be found in [10, 20, 48] does not entirely apply and the classical Riemann so-
lution admissible in the sense of Lax [46] or Liu [50] cannot be found. In order to
resolve the problem of non-existence of solutions to the Riemann problem for cer-
tain conservation laws, the concept of singular solutions admitting δ-distributions
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along shock curves was proposed in [42]. This solution technique was advanced
further in [40] where singular solution for the Riemann problem for strictly hyper-
bolic system of conservation laws was found for states which are sufficiently close
together. Some authors have defined theories of distribution products in order to
incorporate the δ-distributions into the concept of weak solutions [10, 23, 60]. For
the purpose of finding admissibility conditions for such singular solutions, some
authors have relied on the weak asymptotic method [12, 13, 53, 54]. To deal with
the nonlinearity which features in the system (4.1), the weak asymptotic method
was extended to include complex-valued approximations [31]. The authors of [31]
convincingly showed that it was possible to construct singular solutions of (4.1)
even in cases which could not be resolved earlier. However, the authors did not
succeed in proving uniqueness. Existence of singular solutions to (4.1) was also
proved in [60] using the theory of distribution products but uniqueness could not
be obtained. In the current work, a nonlinear change of variables which makes it
possible to resolve the Riemann problem in the framework of the standard theory
of conservation laws is introduced. In addition, a criterion which leads to an ad-
missibility condition for singular solutions of the original system is developed and
it can be shown that admissible solutions are unique in the framework developed
in this work.

It is worth noting that there are a number of systems which could be resolved
only by introducing the δ-solution concept. These systems are usually nonlinear
with respect to both of the variables such as in the Chaplygin gas system [52] or
the chromatography system [72]. In all these systems, it was possible to control
the nonlinear operation over an approximation of the δ-distribution. However, this
is not the case with (4.1) since the term u2 + v2 will necessarily tend to infinity
for any real approximation of the δ-function. This problem can be dealt with by
introducing complex-valued approximations of the δ-distribution.

4.1 Complex-valued approximations

Let us now define what we mean by a complex-valued weak asymptotic solution
and emphasize some techniques to restrict the solution concept with the goal of
establishing uniqueness. Firstly, define D(R) to be the standard space of test
functions and denote by D ′(R) the dual space of distributions (see e.g. [56]). In
order to define complex-valued weak asymptotic solutions of (4.1), we recall the
definition of a vanishing family of distributions.

Definition 4.1.1 Let fε(x) ∈D ′(R) represent a family of distributions depending
on ε ∈ (0,1). We say that fε = oD ′(1) if for any test function ϕ(x) ∈ D(R), the
estimate

〈 fε,ϕ〉= o(1), as ε→ 0, (4.3)
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holds.

Thus a family of distributions disappears in the sense of definition (4.1.1) if for
a given test function ϕ, the pairing 〈 fε,ϕ〉 tends to zero with ε. For families
of distributions depending on t, we say that fε = oD ′(1) ⊂ D ′(R) if (4.3) holds
uniformly in t. In other words, fε vanishes if

〈 fε(·, t),ϕ〉 ≤CT g(ε) for t ∈ [0,T ],

for a function g depending on ϕ(x, t) and tending to zero with ε→ 0, and where
the constant CT should only depend on T [31, 34]. Using the weak asymptotic
approach, a somewhat general theory can be developed by considering the system

∂tu+∂x f (u,v) =0,
∂tv+∂xg(u,v) =0.

(4.4)

Next we define solutions of (4.4) in the weak asymptotic sense.

Definition 4.1.2 The collection of smooth complex-valued distributions (uε) and
(vε) represent a weak asymptotic solution to (4.4) if there exist real-valued distri-
butions u,v ∈C(R+;D ′(R)), such that for every fixed t ∈ R+

uε ⇀ u, vε ⇀ v as ε→ 0,

in the sense of distributions in D ′(R), and

∂tuε +∂x f (uε,vε) =oD ′(1),
∂tvε +∂xg(uε,vε) =oD ′(1).

(4.5)

In addition, if initial data are given, we require

uε(x,0)⇀ u(x,0) and vε(x,0)⇀ v(x,0), (4.6)

where the weak convergence denotes convergence in the framework of distribu-
tions as ε converges to 0.

4.2 Generalised weak solution

Suppose Γ = {γi | i ∈ I} is a graph in the closed upper half plane, containing
Lipschitz continuous arcs γi, i ∈ I, where I is a finite index set. Let I0 be the
subset of I containing all indices of arcs that connect to the x-axis. Furthermore,
let ∂ϕ(x,t)

∂l represent the tangential derivative of a function ϕ on the graph γi and
let

∫
γi

denote the line integral over the arc γi with respect to arclength. Then the
following definition gives the concept of δ-shock solution to system (4.4).
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Definition 4.2.1 The pair of distributions

u =U +α(x, t)δ(Γ) and v =V +β(x, t)δ(Γ) (4.7)

where α(x, t)δ(Γ) = ∑i∈I αi(x, t)δ(γi) and β(x, t)δ(Γ) = ∑i∈I βi(x, t)δ(γi) are
called a generalized δ-shock wave solution of system (4.4) with the initial data
U0(x) and V0(x) if the integral identities∫

R+

∫
R
(U∂tϕ+ f (U,V )∂xϕ) dx dt

+∑
i∈I

∫
γi

αi(x, t)
∂ϕ(x, t)

∂l
+

∫
R

U0(x)ϕ(x,0) dx = 0, (4.8)

∫
R+

∫
R
(V ∂tϕ+g(U,V )∂xϕ) dx dt

+∑
i∈I

∫
γi

βi(x, t)
∂ϕ(x,t)

∂l +
∫
R

V0(x)ϕ(x,0) dx = 0, (4.9)

hold for all test functions ϕ ∈D(R×R+).

This definition may be interpreted as an extension of the classical notion of
weak solutions. The definition agrees with the concept of measure solutions pro-
posed in [11, 23] in the sense that the two singular parts of the solution coin-
cide whereas the regular parts are dissimilar on a set of Lebesgue measure zero.
Nonetheless, Definition 4.2.1 can be applied unreservedly to any hyperbolic sys-
tem of conservation laws while the notion of solution defined in [11] only applies
in a special situation when the δ-distribution is connected to an unknown which
appears linearly in the flux f or g or when nonlinear operations on δ can somehow
be controlled in another way.

Although Definition 4.2.1 is quite general and allows a combination of initial
jumps and δ-distributions, its effectiveness is demonstrated by considering the
Riemann problem with a single jump. Consider the Riemann problem for (4.4)
with initial data u(x,0) =U0(x) and v(x,0) =V0(x), where

U0(x) =

{
u1, x < 0,
u2, x > 0,

V0(x) =

{
v1, x < 0,
v2, x > 0.

(4.10)

Then, the following theorem holds:

Theorem 4.2.2 a) If u1 6= u2 then the pair of distributions

u(x, t) = U0(x− ct), (4.11)
v(x, t) = V0(x− ct)+β(t)δ(x− ct), (4.12)
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where

c =
[ f (U,V )]

[U ]
=

f (u2,v2)− f (u1,v1)

u2−u1
, and β(t) = (c[V ]− [g(U,V )])t, (4.13)

represents the δ-shock wave solution of (4.4) with initial data U0(x) and V0(x) in
the sense of Definition 4.2.1 with α(t) = 0.

b) If v1 6= v2 then the pair of distributions

u(x, t) = U0(x− ct)+α(t)δ(x− ct), (4.14)
v(x, t) = V0(x− ct), (4.15)

where

c =
[g(U,V )]

[V ]
=

g(u2,v2)−g(u1,v1)

v2− v1
, α(t) = (c[U ]− [ f (U,V )])t (4.16)

represents the δ-shock solution of (4.4) with initial data U0(x) and V0(x) in the
sense of Definition 4.2.1 with β(t) = 0.

Proof Only the first part of the theorem is proved as the second part can be
proved in a similar way. It is immediate to see that u and v given in (4.11) and
(4.12) satisfy equation (4.8) since the propagation speed c is given exactly by the
Rankine-Hugoniot condition derived from that system. By substituting u and v
into (4.9), and performing standard transformations we obtain∫

R+

(c[V ]− [g(U,V )])ϕ(ct, t) dt−
∫
R+

β
′(t)ϕ(ct, t) dt = 0.

It is now an easy algebraic exercise to check that from here and the fact that
α(0) = 0, the conclusion follows immediately.

�

As the solution framework of Definition 4.2.1 is very weak, one might expect non-
uniqueness issues to arise. This is indeed the case and the proof of the following
proposition is an easy exercise and hence omitted.

Proposition 4.2.3 System (4.4) with the zero initial data: u|t=0 = v|t=0 = 0 admits
δ-shock solutions of the form:

u(x, t) = 0, v(x, t) = βδ(x− c1t)−βδ(x− c2t),

for arbitrary constants β, c1 and c2.
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4.3 Energy-velocity conservation

In this section, the necessity of δ-type solutions for (4.1) shall be explained by
following considerations from [39] where it was debated (in a quite different set-
ting) that the wrong variables are conserved. In other words, the presence of a
δ-distribution in a weak solution actually signifies the inadequacy of the corre-
sponding conservation law in the case of weak solutions. A similar consideration
was recently put forward in the case of singular solutions in the shallow-water
system [34].

To introduce the new conservation law, we define an energy function

q(u,v) =
u2 + v2

2
, (4.17)

which is a mathematical entropy for the system (4.1). Then using the transforma-
tion

(u,v)→
(
u, u2+v2

2

)
,

equation (4.1) can readily be transformed into the new system

∂tu+∂xq = 0,

∂tq+∂x
(
(2u−1)q+ u2

2 − 2u3

3

)
= 0.

(4.18)

The system (4.1) and the transformed new system (4.18) are equivalent for differ-
entiable solutions. Nonetheless, the introduction of the nonlinear transformation
changes the character of the system. It shall be shown that while (4.1) is not al-
ways genuinely nonlinear, the new system (4.18) is always strictly hyperbolic and
genuinely nonlinear making it possible to apply the standard theory of hyperbolic
conservation laws without reservations.

In what follows, the mathematical properties of (4.18) are analysed and ele-
mentary wave solutions are found. The flux function of the new system is given
by

F =

(
q

(2u−1)q+ u2

2 − 2u3

3

)

with flux Jacobian

DF =

(
0 1

2q+u−2u2 2u−1

)
.

The characteristic velocities are given by

λ−,+ =
2u−1∓

√
8q−4u2 +1
2

. (4.19)
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A direct consequence of (4.17) gives the relation 2q ≥ u2 ≥ 0 which means that
the quantity under the square root is non-negative. That is, 8q−4u2 +1 > 0 and
the eigenvalues are real and distinct which make the system strictly hyperbolic.
The right eigenvectors in this case are

r− =

(
1

u− 1
2 −
√

2q−u2 + 1
4

)
,

r+ =

(
1

u− 1
2 +
√

2q−u2 + 1
4

)
.

(4.20)

It is not hard to verify that these eigenvectors are linearly independent and span
the (u,q)-plane. The corresponding characteristic fields

∇λ− · r− = 2+
1√

8q−4u2 +1
, (4.21)

∇λ+ · r+ = 2− 1√
8q−4u2 +1

, (4.22)

are genuinely nonlinear and admit both shock and rarefaction waves. If a shock
profile connects a constant left state (u,q) = (uL,qL) to a constant right state
(u,q) = (uR,qR), then the Rankine-Hugoniot jump conditions for (4.18) are given
by

c(uL−uR) = (qL−qR), (4.23)

c(qL−qR) =
(
(2uL−1)qL +

u2
L

2 −
2u3

L
3 − (2uR−1)qR− u2

R
2 +

2u3
R

3

)
, (4.24)

where c is the shock speed. The speed in (4.23), (4.24) must satisfy the Lax
admissibility condition which is stated here as

λ∓(uL,qL)≥ c≥ λ∓(uR,qR). (4.25)

In order to determine the set of all states which can be connected to a fixed left
state (uL,ql), the shock speed, c, is eliminated from the above equations so that
the shock curves

(qR)1,2 =
2qL− (uL−uR)(2uR−1)

2
±

√
[−2qL +(uL−uR)(2uR−1)]2 +4

[
(uL−uR)

(
(2uL−1)qL +

u2
L

2 −
u2

R
2 −

2u3
L

3 +
2u3

R
3

)
−q2

L

]

2
.
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Figure 4.1: (a) Shock waves of the first and the second families at the left state (uL,qL) =
(1,5). (SW1) is indicated by the upper curve, while (SW2) is the lower curve. The blue
dotted curve shows the critical curve q = u2/2. (b) Rarefaction waves of the first and the
second families at the left state (uL,qL) = (1,5). (RW1) is indicated by the lower curve
while (RW2) is the upper curve.

are obtained. This can be simplified by performing basic algebraic manipulations
to obtain

(qR)1,2 = qL−
1
2
(uL−uR)(2uR−1)

± | uL−uR |
√

2qL +
1
4 +

1
2(uL−uR)− 1

3

(
2u2

L +2uLuR−u2
R
)

(4.26)

From this expression, equation (4.25) and by taking (uR,qR) in a small neighbour-
hood of (uL,qL), it is reasonable to conclude that the shock wave of the second
family (SW2), the shock wave of the first family (SW1), the rarefaction wave of
the second family (RW2) and the rarefaction wave of the first family (RW1) are
given as follow:

(SW1) qR = qL−
1
2
(
uL−uR

)(
2uR−1

)

+ | uL−uR |
(

2qL +
1
2(uL−uR)− 1

3

(
2u2

L +2uLuR−u2
R
)
+ 1

4

) 1
2
,

(4.27)

if uR < uL. To prove that this equation is indeed the shock wave of the first family,
we obtain from (4.23) and (4.25) that

λ−(uL,qL)≥ c =
2uR−1−

√
8qL +1+ 4u2

R
3 − 8uLuR

3 − 8u2
L

3 −2uR +2uL

2
.
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Using the expression for λ− given above, it follows immediately from the above
equation that

2(uL−uR)≥
√

8qL +1−4u2
L−

√

8qL +1+
4u2

R
3
− 8uLuR

3
− 8u2

L
3
−2uR +2uL.

This can be further simplified to get

2≥ −4
3(uL−uR)−2

√
8qL +1−4u2

L +

√
8qL +1+ 4u2

R
3 − 8uLuR

3 − 8u2
L

3 −2uR +2uL

,

which is obviously correct. The second part of the Lax admissibility condition,

λ−(uR,qR)≤ c,

can be verified in a similar manner. Furthermore, it is not hard to verify the ad-
ditional inequality λ+(uR,qR) ≥ c, which ensures that three characteristic curves
enter the shock trajectory and one characteristic curve leaves the shock.

(SW2) qR = qL−
1
2
(
uL−uR

)(
2uR−1

)

− | uL−uR |
(

2qL +
1
2(uL−uR)− 1

3

(
2u2

L +2uLuR−u2
R
)
+ 1

4

) 1
2
,

(4.28)

if uR < uL. The proof is omitted since it is identical to the (SW1) above. Next, we
have s.

The rarefaction curve fo the first family (RW1), is obtained using the method from
[10, Theorem 7.6.5] and this wave can be written as

dq
du

=
2u−1−

√
8q−4u2 +1
2

= λ−(u,q), q(uL) = qL, (4.29)

for uR > uL. It is quite obvious that if uR < uL, then one cannot have (RW1) since
in this domain, states are connected by (SW1) as shown above. To prove that
(4.29) indeed provides RW1, one has to show that

λ−(uL,qL)< λ−(uR,qR) if uR > uL. (4.30)

By introducing the change of variables q̃ = 8q− 4u2 + 1, it is possible to rewrite
(4.29) in the form

dq̃
du

=−4(1+
√

q̃)< 0.
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Figure 4.2: Shock and rarefaction wave curves of the first and the second families: (a)
shows SW1 (dashed) and RW1 (solid) at the left state (uL,qL) = (1,5). (b) shows inverse
SW2 (dashed, red) and inverse RW2 (solid, red) at the right state (uR,qR) = (0.7,7).

From here, it is clear that q̃ is decreasing with respect to u such that if uL < uR,
then the relation

8qL−4u2
L +1 = q̃L > q̃R = 8qR−4u2

R +1,

holds. This relation together with the inequality uL < uR immediately implies
(4.30).

(RW2) Using [10, Theorem 7.6.5] one more time, we have

dq
du

=
2u−1+

√
8q−4u2 +1
2

= λ+(u,q), q(uL) = qL, (4.31)

for uR > uL. It can be shown that (4.31) gives the rarefaction wave (RW2) in
the same way explained above for (RW1). The wave fan issuing from the left
state (uL,qL) is shown in Figure 4.1(a), Figure 4.1(b) and Figure 4.2(a) while the
inverse wave fan issuing from the right state (uR,qR) is given in Figure 4.2(b).

The next goal is to prove existence of solution for arbitrary Riemann initial
data without necessarily assuming a small enough initial jump. The essential
hypothesis that must be fulfilled is that both left and right states are above the
critical curve qcrit = u2/2:

qL ≥ u2
L/2, qR ≥ u2

R/2. (4.32)

This assumptions is of course natural if the change of variables q = u2+v2

2 is con-
sidered. However, this condition makes it a bit complicated to prove the task since
it must also be shown that the Lax admissible solution to a Riemann problem re-
mains in the region q ≥ u2/2. To this end, the following lemma will be useful.
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Lemma 4.3.1 The function qcrit(u) = u2

2 satisfies (4.31).

The proof is obvious and therefore omitted. The above lemma is important
since, according to the uniqueness of solutions to the Cauchy problem for ordinary
differential equations, it shows that if the left and right states (uL,qL) and (uR,qR)

are above the curve qcrit(u) = u2

2 , then the simple waves (SW1, SW2, RW1, RW2)
connecting such states will also remain above it and this implies that we can use
the solution to (4.18) to obtain the solution of (4.1) since the square root which
gives the function v =

√
2q−u2 will be well defined. Concerning the Riemann

problem, we have the following theorem.

Theorem 4.3.2 Given a left state (uL,qL) and a right state (uR,qR), so that both
are above the critical curve qcrit(u) = u2

2 i.e. we have qL ≥ u2
L/2 and qR ≥ u2

R/2,
the states (uL,qL) and (uR,qR) can be connected Lax admissible shocks and rar-
efaction waves via a middle state belonging to the domain q > u2/2.

The proof of this theorem and the one on the admissible δ-type solution are
presented neatly in Paper D [33] which is attached in Part II of this thesis.



Future work

As mentioned earlier, a shallow water system incorporating constant background
shear has been found independently by a number of authors [2, 24, 41] and written
as

∂tH +∂x

(
Γ

2 H2 +uH
)
= 0,

∂t

(
Γ

2 H2 +uH
)
+∂x

(
Γ2

3 H3 +ΓuH2 +u2H + 1
2gH2

)
= 0.

(F1)

The derivation was based on a flow whose total velocity component is

v(x, t,z)≡U(z)+u(x, t) = Γz+u, (F2)

where U(z) is the linear shear current and Γ is constant. An analysis of shock
wave solutions of the system (F1), shows that stationary hydraulic jumps can
be described in terms of two non-dimensional parameters, namely, the Froude
number which is suitably defined in the presence of the shear current and a non-
dimensional background vorticity. Moreover, it is shown in Paper B [35] that
stronger background vorticity has the effect of moderating the strength of the hy-
draulic jump. It is important to notice that the velocity profile leading to the deriva-
tion of (F1) is linear. However, an observation of the velocity distribution, at least
as far as the time-averaged velocity and pressure fields are concerned, described in
[55, 62] indicates that at certain time and location, the velocity profile is parabolic.
To solidify this observation, experimental results on velocity distribution given by
Hager [18] were analysed. The figure below shows the time-averaged velocity
distribution of a 50cm wide channel:

Hager’s data include five runs with 4.3 < Fr < 8.9 as shown below:
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It is noted from the above figures that out of the hydraulic jump the distribution of
the velocity profile of the flow is parabolic. Based on this observation, we seek to
reformulate the mathematical model by defining the velocity profile as

v(x, t) = u(x, t)+U(z) = u−Γz2−Γ0z (F3)

This velocity profile gives the following conservation laws:
Mass conservation:

Ht +

(
uH− Γ

3
H3− Γ0

2
H2
)

x
= 0 (F4)

Momentum conservation:
(

uH− Γ

3
H3− Γ0

2
H2
)

t
+

(
u2H− 2Γ

3
uH3−Γ0uH2 +

Γ2

5
H5 +

ΓΓ0

2
H4 +

Γ2
0

3
H3 +

1
2

gH2
)

x
= 0

(F5)

It would be interesting to analyse (F4), (F5) in a similar as in done for (F1) in
Paper B and compare the two results. Unlike (F1) where the stationary hydraulic
jumps can be described in terms of two non-dimensional parameters, namely, the
Froude number and a non-dimensional background vorticity, the initial analysis
performed on (F4), (F5) shows that the strength of the hydraulic jump is described
by four non-dimensional parameters: the Froude number and the following three
parameters

Ω =
8Γ2

45g
H3

L , Ω1 =
Γ0Γ

3g
H2

L , Ω0 =
Γ2

0
6g

HL. (F6)
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Even the Riemann problem can be solved for these systems in a similar as done
in Paper A and Paper D. Some preliminary work has been done on these systems
but no conclusive results have been established.
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The shallow-water equations for two-dimensional hydrostatic flow over a bottom bathymetry b(x) are

ht + (uh)x = 0,

ut + (
gh + u2/2+ gb

)
x = 0.

It is shown that the combination of discontinuous free-surface solutions and bottom step transitions 
naturally lead to singular solutions featuring Dirac delta distributions. These singular solutions feature a 
Rankine–Hugoniot deficit, and can readily be understood as generalized weak solutions in the variational 
context, such as defined in [13,22]. Complex-valued approximations which become real-valued in the 
distributional limit are shown to extend the range of possible singular solutions. The method of complex-
valued weak asymptotics [22,23] is used to provide a firm link between the Rankine–Hugoniot deficit and 
the singular parts of the weak solutions. The interaction of a surface bore (traveling hydraulic jump) with 
a bottom step is studied, and admissible solutions are found.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The standard theory of hyperbolic conservation laws in one spa-
tial dimension can be applied to systems which are strictly hyper-
bolic and genuinely nonlinear. If initial data are given which have 
small enough total variation, then it can be shown that there is a 
solution which exists for all times [16,18,33]. This solution will in 
general be discontinuous, featuring a number of jumps. However, if 
one of the above hypotheses is not satisfied, the initial-value prob-
lem cannot in general be resolved (see e.g. [4–6,8,11,27,19,29,34]) 
and further restrictions on the data need to be introduced, such 
as for example in [34]. In fact, in some cases, even the Riemann 
problem cannot be solved.

Starting with the work reported on in [26], existence of so-
lutions was shown to be possible if the space of solutions was 
extended to include Radon measures. In particular, such non-
standard solutions were shown to contain Dirac δ-distributions 
attached to the location of certain discontinuities. As was shown 
in [25], the incorporation of such δ-shocks is equivalent to relaxing 
one or more of the required Rankine–Hugoniot conditions for clas-

* Corresponding author.
E-mail addresses: henrik.kalisch@uib.no (H. Kalisch), 

darko.mitrovic.mne@gmail.com (D. Mitrovic), vincent.teyekpiti@uib.no
(V. Teyekpiti).

sical shocks, and it may be shown that the strength of the Dirac 
δ-distribution associated to a certain shock is a precise measure of 
the deficit in the Rankine–Hugoniot conditions which are required 
to obtain a solution.

In the present work, we consider the shallow-water system, and 
show how δ-shocks arise naturally if this theory is to describe the 
physics of the underlying problem adequately. Indeed, unlike the 
situation from [23] where the δ-distribution was adjoined to the 
surface excursion, here we shall see that δ-naturally appears as 
part of the velocity as a measure of the Rankine–Hugoniot deficit. 
An alternative approach for physical explanation of the appearance 
of delta functions and Rankine–Hugoniot deficits in this context 
was given in [14], where a localized jet is considered. Singular so-
lutions may also occur in shallow-water systems for two-layer flow 
[7,21] and in mixing closures for two-layer systems [20].

In the context of surface waves, the shallow-water system de-
scribes the flow of an inviscid fluid in a long channel of small 
uniform width, is used as a standard model in hydraulics, and is 
fundamental in the study of bores and storm surges in rivers and 
channels [18,35]. If the bottom is flat (such as in a laboratory situ-
ation), the system is usually written in the form

∂th + ∂x (uh) = 0, (mass conservation), (1.1)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= 0, (momentum balance), (1.2)

http://dx.doi.org/10.1016/j.physleta.2017.02.007
0375-9601/© 2017 Elsevier B.V. All rights reserved.
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Fig. 1. Left panel: Surface profile of a traveling hydraulic jump (undular bore). Right panel: shallow-water approximation.

Fig. 2. Left panel: Surface profile over a bottom transition. Right panel: shallow-water approximation.

where h denotes the total flow depth, u represents an average hor-
izontal velocity, and g is the gravitational constant. For smooth 
solutions, an equivalent system is

∂th + ∂x (uh) = 0, (1.3)

∂tu + ∂x

(
u2

2 + gh
)

= 0, (1.4)

and it is immediately clear that mass and momentum conserva-
tion in discontinuous solutions lead to a Rankine–Hugoniot deficit 
in (1.4). One might conclude that it would therefore be best to 
avoid the system (1.3)–(1.4) in favor of the system (1.1)–(1.2). The 
theory for this system is well developed, and both the initial-value 
problem and the Riemann problem can be solved [18]. It is well 
known that the conservation of energy is formulated as

∂t

(
h u2

2 + g h2

2

)
+ ∂x

(
guh2 + h u3

2

)
= 0 (1.5)

and this then serves as a mathematical entropy [2,3,35].
On the other hand, in many practical situations, the assumption 

of a flat bottom is too restrictive. If an uneven bed is introduced, 
the equations take the form

∂th + ∂x (uh) = 0 (mass conservation) (1.6)

∂tu + ∂x

(
gh + u2

2

)
= −gbx (1.7)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= −ghbx (momentum balance) (1.8)

∂t

(
h u2

2 + g h2

2 + bh
)

+ ∂x

(
guh(h + b) + h u3

2

)
= 0

(energy balance) (1.9)

In this system, the function b(x) measures the rise of the bed 
above a certain reference level at z = 0. The function h(x, t) mea-
sures the flow depth of the fluid, so that b(x) + h(x, t) measures 
the position of the free surface relative to the reference point z = 0
(see Fig. 1 and Fig. 2).

Again, for discontinuous solutions, mass and momentum con-
servation are to be satisfied, so that (1.7) and the energy equa-
tion (1.9) will feature a Rankine–Hugoniot deficit. In the case of a 
shock over a bottom step, momentum is not conserved because of 
the lateral pressure force appearing in (1.8), and in this case en-
ergy conservation needs to be specified. Therefore, in this case a 
Rankine–Hugoniot deficit will be introduced in (1.8).

In this paper we will address the relatively simple situation 
of a flow of a shock wave over a bottom step. The shock wave 

is governed by the Rankine–Hugoniot conditions originating from 
mass and momentum conservation, i.e. by (1.6) and (1.8). On the 
other hand, as explained above, a discontinuity over a bottom step 
is governed by the Rankine–Hugoniot conditions originating from 
mass and energy conservation, i.e. by (1.6) and (1.9). Thus it is 
plain that it is not possible to resolve the underlying physical prob-
lem with the use of only two governing equations. If the goal is 
to maintain the classical modeling approach of describing a situ-
ation with a certain fixed set of equations so that the number of 
equations and unknowns is the same, it is necessary to allow for 
Rankine–Hugoniot deficits and the corresponding incorporation of 
singular delta shocks.

Thus in order to salvage the classical modeling approach, we 
propose the following procedure. Use the system (1.6)–(1.7) as the 
system to be solved, and use the corresponding Rankine–Hugoniot 
conditions for momentum or energy conservation in the appro-
priate places. Since these can be made explicit via delta-shock 
waves, the system is self-sufficient. For further study, the system 
(1.6)–(1.7) can be cast in conservative form by writing

∂th + ∂x(uh) = 0,

∂tu + ∂x

(
gh + u2

2 + gb
)

= 0.

}
(1.10)

The plan of the present paper is as follows. In Section 2, sur-
face discontinuities over a flat bottom are studied, and it is shown 
that if these discontinuous solutions satisfy mass and momentum 
conservation, and the required energy loss, then the total head 
1
2g u

2 + h cannot be conserved. Thus a Rankine–Hugoniot deficit 
is needed in the second equation in (1.10). The solution is verified 
both in the weak asymptotic context, and in the weak variational 
context. In Section 3, bottom step transitions are studied. In Sec-
tion 4, the interaction of a discontinuous moving surface profile 
with a bottom step is investigated.

2. Surface discontinuities

In this section, we briefly review the theory surrounding dis-
continuous solutions of the shallow-water system, and we show 
that an admissible weak solution conserving mass and momentum, 
and dissipating mechanical energy must give rise to a Rankine–
Hugoniot deficit for the conservation equation for the total head. 
Then, it is described how such a singular solution can be under-
stood as a delta shock wave in the framework of the weak asymp-
totic method, and in the generalized variational framework.
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2.1. Traveling hydraulic jump

A traveling hydraulic jump traveling over an even bottom must 
respect the conservation of mass (1.1) and momentum (1.2). In the 
shallow-water theory, it is useful to consider the jump as having 
a discontinuity at the bore front. This modeling approach leads to 
the Rankine–Hugoniot conditions

c(hr − hl) = urhr − ulhl,

c(urhr − ulhl) =
(
u2
r hr + 1

2
gh2r

)
−

(
u2
l hl +

1

2
gh2l

)
.

(2.1)

Here the subscripts l and r indicate the left and right states of 
the shock, respectively. From these relations, the velocity can be 
expressed as

c = urhr − ulhl
hr − hl

=
(
u2
r hr + 1

2 gh
2
r

)
−

(
u2
l hl + 1

2 gh
2
l

)
urhr − ulhl

. (2.2)

Algebraic manipulation of equation (2.2) gives the expression

ur − ul = ±(hr − hl)

√
g

2

(
1

hr
+ 1

hl

)
. (2.3)

In particular, we see from this relation that ur �= ul if and only if 
hr �= hl . Inserting this relation into (2.2) gives

c = ul ± hr

√
g

2

(
1

hr
+ 1

hl

)
= ur ± hl

√
g

2

(
1

hr
+ 1

hl

)
. (2.4)

It is clear that solving the square root gives rise to two possible 
solutions. In order to pick the one which is physically reasonable, 
use is made of the conservation of mechanical energy (1.5).

Mass conservation through the jump discontinuity is derived 
from the first equation in (2.1) and equation (2.4) as

m = hr(ur − c) = hl(ul − c) = ∓hrhl

√
g

2

(
1

hr
+ 1

hl

)
. (2.5)

Momentum conservation through the discontinuity is derived sim-
ilarly from the second equation in (2.1) and equation (2.4) in the 
form

hr(ur − c)ur + 1

2
gh2r = hl(ul − c)ul + 1

2
gh2l .

Using the expression in (2.5) simplifies this equation to

mur + 1

2
gh2r =mul + 1

2
gh2l . (2.6)

The mechanical energy dissipates in the jump but remains bal-
anced in areas where the solution is smooth. Using the Rankine–
Hugoniot condition for equation (1.9) which has the form

c

[(
1

2
u2
r hr + 1

2
gh2r

)
−

(
1

2
u2
l hl +

1

2
gh2l

)]

=
(
1

2
u3
r hr + gurh

2
r

)
−

(
1

2
u3
l hl + gulh

2
l

)
,

an expression for the mechanical energy loss per unit time is

1

ρY
�E =

(
1

2
u2
r + 1

2
ghr

)
hr(ur − c) −

(
1

2
u2
l + 1

2
ghl

)
hl(ul − c)

+ g

2
(urh

2
r − ulh

2
l ).

This can be simplified further by using equations (2.5) and (2.6) to 
obtain1

1

ρY
�E = −mg(hr − hl)3

4hrhl
. (2.7)

This shows that the mechanical energy, which should be chosen as 
the entropy condition for picking the valid solution, decreases as 
the solution passes through the discontinuity. As a consequence of 
(2.7), it is noted that

�E < 0 if m(hr − hl) > 0. (2.8)

Since energy gain is impossible, it is clear that these inequalities 
together with the expression in equation (2.5) lead to the relations

hr > hl ⇒ ur > c and ul > c,

hr < hl ⇒ ur < c and ul < c.
(2.9)

What is not yet established is the relation between the left state, 
ul , and the right state, ur , variables. From equations (2.3) and (2.5)
it is found that

ur − ul = −m(hr − hl)

hrhl
, (2.10)

and the inequalities in equation (2.8) require that this expression 
obeys the condition

ur < ul. (2.11)

This condition plays an important role in analyzing the Rankine–
Hugoniot jump condition for the equation (1.4). Indeed, as it turns 
out, energy per unit mass cannot be constant through the shock, 
and we have the following theorem.

Theorem 2.1. An admissible shock-wave solution satisfying the Rankine–
Hugoniot conditions arising from mass and momentum conservation, 
and featuring the required energy loss must feature a Rankine–Hugoniot 
deficit in equation (1.4).

Equation (1.4) can be interpreted as a balance equation involv-
ing horizontal velocity and total hydraulic head H = u2

2g + h, and it 
is convenient to state the result in the following form:

g�H = (ur − c)ur − (ul − c)ul + 1

2
(u2

l − u2
r ) + g(hr − hl).

Using the expression for m in (2.5) gives2

g�H =m

(
ur

hr
− ul

hl

)
+ 1

2

(
u2
l − u2

r

)
+ g(hr − hl). (2.12)

Considering different cases for hr and hl and using the above in-
equalities, it is not hard to check that �H cannot be zero. From 
the above equation we obtain the expression

g�H = 1

2

(
(ur − c)2 − (ul − c)2 + 2g(hr − hl)

)
. (2.13)

To simplify this expression further we obtain from (2.5) the fol-
lowing relations

(ur − c)2 = gh2l
2

(
1

hr
+ 1

hl

)
,

(ul − c)2 = gh2r
2

(
1

hr
+ 1

hl

)
.

1 Note that the quantity on the left has been divided by the density ρ and the 
width of the channel Y in order to get the units of energy per unit time. It will be 
convenient in the following to assume that both ρ and Y are unity.
2 It appears most convenient here to present this quantity as head loss �H per 

unit time. The quantity has been multiplied by g in order to get the right units.
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Insert these expressions into (2.13) to obtain

g�H = 1

2

(
g

2
(h2l − h2r )

(
1

hr
+ 1

hl

)
+ 2g(hr − hl)

)
,

which is simplified by algebraic manipulations to

g�H = g(hl − hr)3

4hlhr
. (2.14)

From this expression it is obvious that g�H is nonzero so long as 
hl �= hr .

2.2. Weak asymptotics

One available tool for the description of singular shock waves 
is the method of weak asymptotics [9,10,12,15,28,30,32]. This 
method was recently extended to the case where complex-valued 
approximations are allowed which significantly extended its range 
of applicability [22–24].

Define D(R) to be the standard space of test functions, and let 
D′(R) be the dual space of distributions (see e.g. [31]). In order 
to define complex-valued weak asymptotic solutions of (1.10), we 
first recall the definition of a vanishing family of distributions.

Definition 2.1. Let fε(x) ∈ D′(R) be a family of distributions de-
pending on ε ∈ (0, 1). We say that fε = oD′(1) if for any test 
function φ(x) ∈D(R), we have the estimate

〈 fε,φ〉 = o(1), as ε → 0. (2.15)

Thus a family of distributions vanishes in the sense defined 
above if for a given test function φ, the pairing 〈 fε, φ〉 converges 
to zero with ε. For families of distributions depending on t , we say 
fε = oD′(1) ⊂ D′(R) if (2.15) holds uniformly in t . In other words, 
fε vanishes if

〈 fε(·, t),ϕ〉 ≤ CT g(ε) for t ∈ [0, T ],
for a function g depending on ϕ(x, t) and tending to zero with 
ε → 0, and where the constant CT should only depend on T . Next 
we define solutions of (1.10) in the weak asymptotic sense.

Definition 2.2. The collection of smooth complex-valued distribu-
tions (uε) and (hε) represent a weak asymptotic solution to (1.10)
if there exist real-valued distributions u, v ∈ C(R+; D′(R)), such 
that for every fixed t ∈R+

uε ⇀ u, hε ⇀ h as ε → 0,

in the sense of distributions in D′(R), and

∂thε + ∂x (uεhε) = oD′(1),

∂tuε + ∂x

(
ghε + u2

ε
2 + gb

)
= oD′(1).

}
(2.16)

In addition, if initial data are given, we require

uε(x,0) ⇀ u(x,0) and hε(x,0) ⇀ h(x,0), (2.17)

where the weak convergence designates convergence in the sense 
of distributions as ε tends to 0.

In order to state an existence theorem in the context of the 
above definitions, we define the functions

H0(x) =
{
hl, if x < 0,

hr, if x > 0,
(2.18)

and

U0(x) =
{
ul, if x < 0,

ur, if x > 0.
(2.19)

Theorem 2.2. If the constants hl, hr , ul and ur are chosen such that the 
functions H0(x − ct) and U0(x − ct) (with c given by (2.2)) represent an 
admissible (energy-dissipating) shock wave which conserves both mass 
and momentum, then there are weak asymptotic solutions hε and uε of 
the system (1.3)–(1.4), such that the families (hε) and (uε) have distri-
butional limits

h(x, t) = H0(x− ct), (2.20)

u(x, t) = U0(x− ct) + α(t)δ(x− ct), (2.21)

where

α′(t) = g�H.

In order to prove this theorem, let ρ ∈ C∞
c (R) be non-negative, 

smooth, compactly supported even function such that

supp ρ ⊂ (−1,1),
∫
R

ρ(z)dz = 1, ρ ≥ 0.

Let Cρ,2 = ∫
R ρ2(z)dz, and take

δε(x, t) = 1

2ε
ρ

(
x− ct − 4ε

ε

)
+ 1

2ε
ρ

(
x− ct + 4ε

ε

)
,

Rε(x, t) = i

2ε
ρ

(
x− ct − 2ε

ε

)
− i

2ε
ρ

(
x− ct + 2ε

ε

)
,

Sε(x, t) = 1√
ε

1√
Cρ,2

ρ

(
x− ct

ε

)
.

Now let the functions Uε and Hε be defined by

Uε(x, t) =

⎧⎪⎨
⎪⎩
ul, x < ct − 30ε,

0, ct − 20ε ≤ x ≤ ct + 20ε,

ur, x ≥ ct + 30ε,

Hε(x, t) =

⎧⎪⎨
⎪⎩
hl, x < ct − 30ε,

0, ct − 20ε ≤ x ≤ ct + 20ε,

hr, x ≥ ct + 30ε.

Notice in particular that we have

Rε ⇀ 0, and Sε ⇀ 0.

Moreover, we also have the identities

Uεδε = 0, UεRε = 0, Uε Sε = 0, δεRε = 0, δε Sε = 0, and

Rε Sε = 0.

Furthermore, it is not hard to check that

Hεδε = 0, HεRε = 0, and Hε Sε = 0.

In addition, the following limit is obtained:

S2ε ⇀ δ. (2.22)

Now make the ansatz

hε(x, t) = Hε(x− ct),

uε(x, t) = Uε(x − ct) + α(t)(δε(x − ct) + Rε(x− ct))

+ √
2cα(t)Sε(x− ct),

and substitute it into equations (1.10). Notice first of all that

u2
ε(x, t) = U2

ε + α2(t)(R2
ε + δ2ε) + cα(t)S2.

Focusing on the expression R2
ε + δ2ε , we take ϕ ∈ C∞

c (R) and con-
sider the integral
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∫
R

(R2
ε + δ2ε)ϕ dx.

Noting the relation∫
R

1
ε2

(
ρ2((x− ct + αε)/ε) + ρ2((x− ct − βε)/ε)

)
ϕ(x) dz

=
∫
R

1
ε ρ2(z) (ϕ(ct + ε(z − α)) + ϕ(ct + ε(z + β))) dz

=
∫
R

1
ε ρ2(z)

(
2ϕ(ct) + εϕ′(ct)(β − α)

)
dz +O(ε),

for α,β ∈R,

which follows by making the changes of variables (x − ct + αε)/

ε = z and (x − ct − βε)/ε = z, and observing that 
∫
zρ2(z)dz = 0

since ρ is an even function, the above integral can be rewritten as

1

4

∫
R

1
ε2

(
− ρ2((x − ct + 2ε)/ε) − ρ2((x− ct − 2ε)/ε)

+ ρ2((x− ct + 4ε)/ε) + ρ((x − ct − 4ε)/ε)
)
ϕ dx = O(ε).

Finally, collecting terms, we have

∂tUε + 1

2
∂xU

2
ε + ∂xHε + α′(t)δε − cα(t)δ′ + cα∂x S

2
ε = oD′(1).

(2.23)

Note that the last two terms on the left cancel by (2.22). There-
fore, taking into account Definition 2.2, we see that the Rankine–
Hugoniot deficit is

α′(t) = (ur − ul)c + 1

2
(u2

l − u2
r ) + g(hr − hl) = g�H.

From Theorem 2.1, we see that α′(t) must be nonzero. The first 
equation in (2.16) is verified in a similar fashion, but this is even 
simpler thanks to the choice of the constant c which was found 
from the Rankine–Hugoniot condition corresponding to the first 
equation.

2.3. Generalized weak solutions

We will show that the weak asymptotic solutions constructed 
above represent solutions to the shallow-water system also in the 
framework introduced in [13]. Following [13], we let � = {γi |
i ∈ I} be a graph in the closed upper half plane, consisting of Lip-
schitz curves γi , i ∈ I , with I a finite index set. I0 is the subset 
of I containing the indices of all curves which touch the x-axis, 
and �0 = {x0k | k ∈ I0} is the set of initial points of the curves 
γk with k ∈ I0. We denote the singular part of the solution by 
α(x, t)δ(�) = ∑

i∈I αi(x, t)δ(γi). The expression ∂ϕ(x,t)
∂l designates 

the tangential derivative of a function ϕ on the arc γi , and 
∫
γi

de-
notes the line integral over the set γi .

Definition 2.3. A graph � and a couple of distributions (h, u)

where U is given by

u(x, t) = U (x, t) +
∑
i∈I

αi(x, t)δ(γi),

with h, U ∈ L∞(R × R+), αi ∈ C1(�), i ∈ I , is called a generalized 
δ-shock wave solution of system (1.10) with initial data h0(x) and 
U0(x) + ∑

I0
αk(x

k
0, 0)δ

(
x − x0k

)
if the integral identities

∫
R+

∫
R

(h∂tϕ + (Uh)∂xϕ)dxdt +
∫
R

h0(x)ϕ(x,0) dx = 0, (2.24)

∫
R+

∫
R

(
U∂tϕ +

(
U2

2 + g(h + b)
)

∂xϕ
)
dxdt (2.25)

+
∑
i∈I

∫
γi

αi(x, t)
∂ϕ(x,t)

∂l +
∫
R

U0(x)ϕ(x,0) dx

+
∑
k∈I0

αk(x
0
k ,0)ϕ(x0k ,0) = 0,

hold for all test functions ϕ ∈D(R ×R+).

It is straightforward to check the solutions defined by (2.20)
and (2.21) satisfy this weak definition. Indeed, the requirement 
(2.24) is exactly of the same form as the usual definition of a weak 
solution. Requirement (2.25) contains the more interesting singu-
lar part. As above, consider the case of a flat bed at b = 0. Using 
(2.20) and (2.21), standard computations lead to the identity∫
R+

(
c[U ] − [U2/2+ gh]

)
ϕ(ct, t) dt −

∫
R+

α′(t)ϕ(ct, t) dt = 0,

where [U ] = ur − ul and similarly [U2/2 + gh] = (
u2
r /2+ ghr

) −(
u2
l /2+ ghl

)
. Since α(0) = 0, the conclusion follows from the form 

of α(t) defined in (2.14). Thus we have the following theorem:

Theorem 2.3. If the constants hl, hr , ul and ur are chosen such that the 
functions H0(x − ct) and U0(x −ct) (with c given by (2.2)) represent an 
admissible (energy-dissipating) shock wave which conserves both mass 
and momentum, and α(t) is given by (2.14), then the functions defined 
in (2.20) and (2.21) represent a solution of the Riemann problem corre-
sponding to the system (1.10) in the sense of Definition 2.3.

3. Bottom step transitions

Consider a smooth bottom topography function defined by

b(x) =
{
bl, if x < 0,

br, if x > 0.
(3.1)

For this bottom step, in the shallow-water approximation, the mass 
and energy of a flow have to be conserved. Since the shock-wave 
solution over a bottom step is stationary, the Rankine–Hugoniot 
conditions are written as

ulhl = urhr (3.2)

gurhr(hr + br) + hr
u3
r

2
= gulhl(hl + bl) + hl

u3
l

2
. (3.3)

As it turns out, the second condition can be replaced by the sim-
pler condition

g(hr + br) + u2
r

2
= g(hl + bl) + u2

l

2
, (3.4)

and the conditions (3.2) and (3.4) are the standard relations in 
hydraulic theory [17]. Since the hydraulic fall over a step does 
not require a Rankine–Hugoniot deficit in the second equation of 
(1.10), it is clear that this is a weak solution in the classical sense, 
and satisfies Definition 2.3 without the singular part.
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4. Flow of a bore over a bottom step

To be concrete, we study a bore (traveling hydraulic jump) ap-
proaching a bottom step from the left. In order to describe the 
interaction of the traveling jump with the bottom step, we need 
to solve the Riemann problem over a bottom step. In [1], it was 
found that there are 26 different solutions, but the authors did not 
investigate the admissibility of these solutions. Here, we find ad-
missible solutions involving two shocks, one propagating to the left 
and the other propagating to the right of the step.

Definition 4.1. The shock defined by

u(x, t) =
{
ul, if x < ct,

ur, if x > ct,
(4.1)

connecting a left state (hl, ul) and a right state (hr, ur) is i-admis-
sible if the shock speed c satisfies the Lax entropy conditions

λi(hr,ur) ≤ c ≤ λi(hl,ul), (4.2)

for i = 1, 2.

Consider a bottom step function where bl = 0 and br = 1 and 
the initial data

h |t=0 =
{
4, if x < −1,

1, if x > −1,
u |t=0 =

{
5.14, if x < −1,

−2.29, if x > −1.

(4.3)

For the given initial data the shock

h(t, x) =
{
4, if x < c1t − 1,

1, if x > c1t − 1,

u(t, x) =
{
5.14, if x < c1t − 1,

−2.29, if x > c1t − 1,
(4.4)

where c1 = 7.61 is a 2-shock and reaches the step at t = 1/c1. At 
that moment we need to solve the system (1.10) at the step. It 
is important to note that out of the step the process is still gov-
erned by (1.1) and (1.2). The shock (4.4) will be split into a 1-shock 
corresponding to (1.1) and (1.2), a 2-shock corresponding to (1.1)
and (1.2) and a stationary shock (SS) corresponding to (1.10). The 
goal is to obtain one system which describes the entire flow phe-
nomenon. This can be done through the δ-shock concept where δ
will actually describe deficiency of the model. To achieve this we 
consider the system (1.10) with initial data given in (4.3). The next 
task is to find two constant states (h2, u2) and (h3, u3) which are 
located to the left and right of the bottom step respectively. These 
states are obtained by simultaneously solving the equations

u2 − ul = −(h2 − hl)

√
g

2

(
1

h2
+ 1

hl

)
,

ur − u3 = (hr − h3)

√
g

2

(
1

hr
+ 1

h3

)
,

g(h2 + bl) + u2
2

2
= g(h3 + br) + u2

3

2
,

u2h2 = u3h3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

The first two equations in (4.5) are obtained from the Rankine–
Hugoniot conditions that describe the relations between the states 
on both sides of the left and right going shocks and the last two 

Fig. 3. Flow of a bore over a bottom step. The incoming shock δS2 meets the bot-
tom step at time t0 = 1/c1. For t > t0, δS1 is a left going delta shock, the bottom 
transition is at x = 0, and δS2 is a right going delta shock.

Fig. 4. A 1-shock moving left, a stationary step transition located at x = 0 and a 
2-shock moving right.

equations describe the bottom condition. To the left of the bottom 
step, the constant state (h2, u2) is connected to (hl, ul) by a left 
going 1-shock whereas to the right of the step the constant state 
(h3, u3) is connected to (hr, ur) by a right going 2-shock and a sta-
tionary shock is located at the step x = 0 as shown in Fig. 3. The 
state-wave diagram for this case is

(hl,ul)
δS1−−→ (h2,u2)

SS−−→ (h3,u3)
δS2−−→ (hr,ur). (4.6)

The flow pattern corresponding to the above diagram is shown 
in Fig. 4. The undisturbed water surface is located at η(x, t) = h j +
b(x) for j ∈ {l, r, 2, 3}. The left going shock is travelling at the speed 
c2 = −2.62 and the right going shock has the approximate speed 
c3 = 7.07. The physically relevant solution has the form

h(t, x) = χ[0,t0](t)
{
4, if x < c1t − 1,

1, if x > c1t − 1,

+ χ(t0,+∞)(t)

{
4, if x < c2(t − t0),

5.28, if c2(t − t0) < x < 0,

+ χ(t0,+∞)(t)

{
3.76, if 0 < x < c3(t − t0),

1, if c3(t − t0) < x,
(4.7)

and

u(t, x) = χ[0,t0](t)α1δ(x− c1t − 1)
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+ χ[0,t0](t)
{
5.14, if x < c1t − 1,

−2.29, if x > c1t − 1,

+ χ(t0,+∞)(t)

{
5.14, if x < c2(t − t0),

3.25, if c2(t − t0) < x < 0,

+ χ(t0,+∞)(t)

{
4.58, if 0 < x < c3(t − t0),

−2.29, if c3(t − t0) < x,

+ χ(t0,+∞)(t)α2δ(x− c2(t − t0))

+ χ(t0,+∞)(t)α3δ(x− c3(t − t0)), (4.8)

where the Rankine–Hugoniot deficits are given by

α1 =
(
c1[u] − [gh + u2/2+ gb]

)
t,

α2 =
(
c2[u] − [gh + u2/2]

)
(t − t0)

+
(
c2[u] − [gh + u2/2+ gb]

)
t0,

α3 =
(
c3[u] − [gh + u2/2+ 1]

)
(t − t0).

That is

α1 =
(
c1(ul − ur) − (ghl + u2

l /2) + (ghr + u2
r /2+ 1)

)
t,

α2 =
(
c2(ul − u2) − (ghl + u2

l /2) + (gh2 + u2
2/2)

)
(t − t0)

+
(
c2(ul − ur) − (ghl + u2

l /2) + (ghr + u2
r /2+ 1)

)
t0,

α3 =
(
c3(u3 − ur) − (gh3 + u2

3/2+ 1) + (ghr + u2
r /2+ 1)]

)
× (t − t0).

It is now straightforward to show that these functions define a 
solution in the sense of Definition 2.3. Moreover, evaluating the 
eigenvalues of the derivative matrix for the states (hl, ul), (h2, u2), 
(h3, u3) and (hr, ur) reveals that all three delta shocks δS1, δS2
and δS3, are admissible, and so is the bottom step transition.
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In this work, the influence of constant background vorticity on the properties of shockwaves in a shallow
water system are considered. It is shown that the flow-depth ratio of stationary shocks can bewritten as a
function of two non-dimensional parameters: the Froude number, suitably defined in the presence of the
shear flow, and a non-dimensional vorticity. Some properties of these hydraulic jumps are explored, and
it is shown that stronger background vorticity has the effect of moderating the strength of the hydraulic
jump.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Modeling of surface wave motion in a fluid is normally based
on classical systems which are obtained in the framework of ir-
rotational flow. In such a context, the influence of vorticity is
completely disregarded in the formulation of the governing equa-
tions. Although this consideration is justified in many circum-
stances, there are also a fair number of observed cases in near-
shore hydrodynamics and open channel flow where this approach
is unsuitable.

Indeed, there is ample evidence that vorticity may have a large
impact on wave motion in a variety of situations. For example, it
was recently shown that vorticity has significant influence on the
modulational stability of quasi-periodic wavetrains [1,2] as well as
the streamline pattern and pressure profiles in long waves [3–8].
The importance of vorticity in the modeling of free surface waves
has also been exhibited in recent studies of wave–current interac-
tion [9], the interaction of point vortices and vortex patches with
the free surface [10,11], the influence of non-constant vorticity on
small amplitude waves [12] and the creation of vorticity in long-
wave models [13].

In the current work, we are concerned with the interaction
of surface waves with an existing shear current. Such currents
are created by the action of wind stress at the free surface and
viscous stress at the bed, as well as tidal forcing. Once established,
these shear currents may be taken as background conditions when
studying individual surface waves. For example, the time scales
needed to create such currents through wind forcing are typically
much larger then the typical interaction time of a single wave with
such a current. Moreover, on small time scales, surface waves are

* Corresponding author.
E-mail addresses: henrik.kalisch@math.uib.no (H. Kalisch),

vincent.teyekpiti@math.uib.no (V. Teyekpiti).

relatively unaffected by viscosity, so that an inviscid theorymay be
used.

In order to avoid unduemathematical complexity, it is assumed
that the longwaves to be described are perturbations of an existing
background flow with a linear shear profile. This approach has
been used by a number of authors (see for example [6,14–19]),
and it has been indicated to approximate naturally occurring shear
flows fairly well [20]. In particular, it was shown in [21] that the
dispersion relation associatedwith a linear background shear gives
rather good agreement with experimentally measured dispersion
relation. It was also argued in [5] that linear shear flows can be
used as a first approximation to more general shear profiles in the
long-wave regime since the wavelength of the waves is then on a
different scale than the variation of the shear profile.

Very recently, a new shallow-water system incorporating con-
stant background shear has been found independently in [22–24].
Supposing a background shear flow of the form U(z) = Γ z, the
system is written in terms of the total flow depth H and horizontal
velocity perturbation u as

Ht +

(
Γ
2 H

2
+ uH

)
x
= 0, (1.1)(

Γ
2 H

2
+ uH

)
t
+

(
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2
)
x
= 0. (1.2)

The first of these equations describes mass conservation, and the
second arises from momentum conservation.

In the present contribution, this new system is used to un-
derstand the influence of vorticity on the properties of hydraulic
jumps. An analysis of shock-wave solutions of the system (1.1),
(1.2) detailed in the body of this paper shows that stationary
jumps can be described in terms of two non-dimensional numbers,
one being the Froude number, and the other incorporating the
background vorticity Γ . To be more precise, if HL is the upstream
flow depth and uL is the fluid velocity upstream of a stationary

https://doi.org/10.1016/j.euromechflu.2018.08.005
0997-7546/© 2018 Elsevier Masson SAS. All rights reserved.
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Fig. 1. Schematic representation of a linear shear flow over an even bottom.

jump, we define the Froude number by

Fr =
uL + Γ /2

√
gHL

,

and the non-dimensional vorticity by

Ω =
Γ 2H
6g

,

where g is the gravitational constant, and the factor 6 is chosen for
the sake of reaching a tidy expression in the final relation. These
two parameters completely determine the strength of the jump,
which is describedmathematically as the ratio α = HR/HL through
the cubic equation

Ωα3
+ (1 + Ω) α2

+ (1 + Ω) α − 2Fr2L = 0.

The derivation of this equation will be given in Section 4.
Our work is motivated in part by [25], where hydraulic jumps

were studied in the presence of variable vorticity. This paper made
an important contribution in the understanding of hydraulic jumps
as transient phenomena, and the authors of [25] were the first to
be able to simulate oscillation of the jump toe in a physically rea-
sonable way, obtaining a very closematch with experimental data.
While hydraulic jumps are classically compartmentalized using
the Froude number, one of the findings of [25] was that a hydraulic
jump does not simply depend on a single parameter, the upstream
Froude number, but also on the vorticity in the flow. In the current
work, we study hydraulic jumps using the simplifying assumption
of constant background shear. While our model is not able to
explain the creation of vorticity in a hydraulic jumpwhich featured
prominently in [25], we are able to quantify the dependence of
the strength of the hydraulic jump on the vorticity, and give fairly
simple closed-form solutions which we hope will prove useful in
practical studies investigating the influence of background shear
on the properties of hydraulic jumps.

A schematic representation of the problem setup is shown in
Fig. 1 where a channel of unit width and even bottom containing
a fluid with undisturbed depth h is considered. The elevation of
the free surface from its rest state is given by η(x, t) so that the
total depth at a point x and time t is given by H(x, t) = h + η(x, t).
The average horizontal velocity is denoted by u(x, t) and the total
velocity component is

v(x, t, z) ≡ U(z) + u(x, t) = Γ z + u, (1.3)

where U(z) is the linear shear current and Γ is constant. As shown
in [22–24], if the waves at the free surface are long enough com-
pared to the fluid depth h, the appropriate equations describing
the shear flow are given by (1.1) and (1.2). If the flow variables are
smooth so that the solutions are also smooth, then an equivalent
system has the form

∂tH + ∂x

(
Γ
2 H

2
+ uH

)
= 0, (1.4)

∂tu + ∂x

(
1
2u

2
+ gH

)
= 0. (1.5)

It is well known that in the case of discontinuous solutions, mass
andmomentumconservation could introduce a Rankine–Hugoniot
deficit in (1.5) which may raise an argument against the use of
(1.4)–(1.5) in favor of the system (1.1)–(1.2). However, (1.4)–(1.5)
is mathematically interesting and the theory contributing to the
progress of this system is fully elaborated and the Riemann prob-
lem and the initial value problem for this system can be resolved
adequately [26–28]. An analysis of these systems in the case of
zero vorticity is neatly presented in [29] where it is shown that
the combination of discontinuous free-surface solutions and bot-
tom step transitions naturally lead to singular solutions featuring
a Rankine–Hugoniot deficit. While the Eqs. (1.1) and (1.2) were
found in theworks [22–24], these authors did not consider the total
mechanical energy equation which must be considered in order to
provide a physical selection criterion on the admissibility of shock
waves. In the currentwork,we derive the energy equations and use
it to discard non-admissible shocks. As will be shown in Section 2,
energy conservation for the shear flow is formulated as(

Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
= 0.

(1.6)

The plan of the paper is as follows: In Section 2, we formulate
the free surface problem for a shear flow over a flat bottom. The
derivation is based on the Euler equations for an incompressible
and inviscid fluid. In Section 3, the equations are analyzed and
mathematical properties of the flow variables are presented. Ex-
plicit expressions representingmass conservation andmomentum
conservation are obtained and it is shown that a shallowwater flow
over a flat bed in the presence of a linear shear current features
energy loss. In Section 4,we explain how to construct a steady state
solution for the linear shear flow by defining the Froude number in
terms of a depth-averaged integral.

2. Linear shear flow over flat bottom topography

The governing shallow water equations that describe the mo-
tion of incompressible and inviscid fluid are derived in this section.
We consider a flat-bottom channel with uniform width and set
the x-coordinate in the flow direction whilst the z-coordinate is
vertically upwards.

Consider a control volume of unit width enclosed by the flat
bottom, the free surface and the interval [x1, x2] such that x1 < x2
on the lateral sides. The mass of the incompressible, inviscid fluid
of uniform depth contained in the control volume is

M =

∫ x2

x1

∫ H(x,t)

0
ρ dz dx.

If the free surface and the flat bottom are impermeable so that no
transfer of mass occur there, then the physical hypothesis of mass
conservation requires that the rate of change of mass per unit time
is proportional to the mass flux through the lateral boundaries.
The mathematical idealization of this concept is expressed by the
integral equation

d
dt

∫ x2

x1

∫ H(x,t)

0
ρ dz dx

=

∫ H(x,t)

0
ρv(x1, t) dz −

∫ H(x,t)

0
ρv(x2, t) dz.

If the flow variables as well as the domain are smooth, then the
above equation can be written as

d
dt

∫ x2

x1

ρH(x, t) dx +

[∫ H(x,t)

0
ρ(Γ z + u(x, t)) dz

]x2

x1

= 0.
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If we have constant density ρ, we can divide through by (x2 −x1)ρ.
Then by letting x2−x1 → 0,we see that the integrandmust be zero,
so that we obtain the equation representing mass conservation in
the form

∂tH + ∂x

(
Γ

2
H2

+ uH
)

= 0.

In a similar manner, an expression representing momentum con-
servation in the control volume can be derived. If we suppose
that pressure force is the only force acting on the control volume,
then conservation of momentum is based on the physical principle
that the fluid is in a hydrostatic balance so that the pressure p =

p(x, z, t) is introduced. Applying this assumption in a fluid column
[x1, x2] × [z, z + ∆z] gives(
p(x̄, z + ∆z, t) − p(x̄, z, t)

)
(x2 − x1) = −(x2 − x1)ρg∆z,

for x̄ ∈ [x1, x2]. If the flow variables are smooth, then dividing
through by (x2 − x1)∆z and taking the limit as ∆z → 0 gives

dp
dz

= −ρg.

Integrating and normalizing the pressure to be zero at the surface
yields the relation

p(x, z, t) = ρg
(
H(x, t) − z

)
(2.1)

for the hydrostatic pressure. Considering the control volume de-
scribed above, the total horizontal momentum in the control vol-
ume is

I =

∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx.

Momentum conservation is obtained from Newton’s second law
which requires that the rate of change of total momentum is equal
to the net momentum flux through the lateral boundaries plus
the pressure forces acting on the boundaries. This is expressed
mathematically as

d
dt

∫ x2

x1

∫ H(x,t)

0
ρv(x, t) dz dx

=

∫ H

0
ρv2(x1, t) dz −

∫ H

0
ρv2(x2, t) dz

+

∫ H

0
p(x1, z, t) dz −

∫ H

0
p(x2, z, t) dz.

Substituting the total velocity in (1.3) and the pressure term in (2.1)
and simplifying yield

d
dt

∫ x2

x1

ρ

[(
Γ

2
H2

+ uH
)

t

+

(
Γ 2

3
H3

+ Γ uH2
+ u2H +

g
2
H2

)
x

]
dx = 0

Dividing through by (x2 − x1)ρ and taking the limit as (x2 −

x1) → 0 shows that the momentum conservation equation can
be expressed as(

Γ

2
H2

+ uH
)

t
+

(
Γ 2

3
H3

+ Γ uH2
+ u2H +

1
2
gH2

)
x
= 0.

As can be readily seen, for smooth solutions an equivalent for-
mulation is obtained by further algebraicmanipulation to yield the
variant form (1.4) and (1.5). Finally, we turn to the conservation of
energy. Totalmechanical energy in the control volume is expressed

as

d
dt

∫ x2

x1

∫ h+η

0
ρ

( 1
2 ṽ

2
+ gz

)
dzdx

=

[∫ h+η

0
ρ

( 1
2 ṽ

2
+ gz

)
ṽdz +

∫ h+η

0
ρ
(
h + η − z

)
ṽdz

]x1

x2

Substituting (1.3) and integrating in the z-direction gives∫ x2

x1

(
Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
dx = 0.

Dividing through by (x1−x2) and taking the limit as (x1−x2) −→ 0
yield the energy conservation equation(

Γ
2 uH

2
+

Γ 2

6 H3
+

1
2u

2H +
1
2gH

2
)
t
+(

3Γ
4 u2H2

+
Γ
2 gH

3
+

Γ 2

2 uH3
+

Γ 3

8 H4
+

1
2u

3H + guH2
)
x
= 0,

which is the same as (1.6).

3. Mathematical description of the flow properties

We provide a discussion on the flow properties associated with
waves propagation in shallowwater in the presence of linear shear.
The characteristics in this case are found by first putting the equa-
tion in characteristic form. In conservative variables U = (H, u)T ,
(1.4) and (1.5) are expressed in matrix notation as

Ut + F(U)x = 0, (3.1)

where F(U)x = F′(U)Ux. The flux Jacobian F′(U) is

F′(U) =

(
Γ H + u H

1 u

)
. (3.2)

The eigenvalues of the Jacobian matrix are

λ− = u +
1
2
Γ H −

√
H +

( 1
2Γ H

)2
and

λ+ = u +
1
2
Γ H +

√
H +

( 1
2Γ H

)2
,

(3.3)

with λ− < λ+ for H ̸= 0 so that the system is strictly hyperbolic.
The corresponding right eigenvectors

r− =

⎛⎜⎝ 1

−
1
2
Γ −

1
H

√
H +

(
1
2
Γ H

)2

⎞⎟⎠ and

r+ =

⎛⎜⎝ 1

−
1
2
Γ +

1
H

√
H +

(
1
2
Γ H

)2

⎞⎟⎠ ,

(3.4)

are linearly independent and therefore, span the eigenspace in
the (H, u)-plane. Both characteristic fields are genuinely nonlinear
with

∇λ−(H, u) · r−(H, u) = −
6gH + 2Γ 2H2√
4gH + Γ 2H2

< 0

∇λ+(H, u) · r+(H, u) = +
6gH + 2Γ 2H2√
4gH + Γ 2H2

> 0.

(3.5)

It is well-known that a traveling hydraulic jump over a flat
bottom obeysmass conservation andmomentum conservation. To
describe the relation between the state variables on each side of
the jump, we assume that the discontinuity is located at the bore
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front. If we consider two constant states (H, u) = (HL, uL) and
(H, u) = (HR, uR), thenwe obtain from (1.1) and (1.2) the Rankine–
Hugoniot conditions

− s[H] +

[
Γ
2 H

2
+ uH

]
= 0, (3.6)

− s
[

Γ
2 H

2
+ uH

]
+

[
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2
]

= 0. (3.7)

Define [H] = HR−HL and [u] = uR−uL, where the subscripts L and
Rdenote the left and right states of thehydraulic jump respectively.
Then we can explicitly write

s(HR − HL) =
(

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

)
,

s
(

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

)
=

(
Γ 2

3 H3
R + Γ uRH2

R + u2
RHR

+
1
2gH

2
R −

Γ 2

3 H3
L + Γ uLH2

L + u2
LHL +

1
2gH

2
L

)
.

The shock speed, s, satisfies the Lax entropy condition [26,30]

λ−(HR, vR) < s < λ−(HL, vL), s < λ+(HR, vR), (3.8)

for a 1-shock and

λ+(HR, vR) < s < λ+(HL, vL), s > λ−(HL, vL), (3.9)

for a 2-shock and is expressed as

s =

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

HR − HL

=

Γ 2

3 H3
R + Γ uRH2

R + u2
RHR +

1
2 gH

2
R −

Γ 2

3 H3
L + Γ uLH2

L + u2
LHL +

1
2 gH

2
L

Γ
2 H

2
R + uRHR −

Γ
2 H

2
L + uLHL

.

(3.10)

Considering the expressions on both sides of the last equality, we
obtain

(uR − uL)2 =
Γ 2

12HLHR
(HR − HL)4 + Γ (HR − HL)(uL − uR)

+
g
2
(HR + HL)(HR − HL)2

Simplifying this expression further gives the relation

uR − uL =
Γ

2

(
HR − HL

)
×

(
−1 ±

√
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
.

(3.11)

It is obvious to see that the relation between the states uR and uL
is either positive or negative and is dependent on the fluid depths
HR and HL on each side of the shock. It shall be shown how the
state variables H, u and s are related on each side of the hydraulic
jump but firstly, we write the shock speed in terms of the above
expression. Substituting this relation into Eq. (3.10) gives

s = uR +
Γ

2
HR ±

Γ

2
HL

√
1
3 +

1
HL

( HR
3 +

2g
Γ 2

)
+

1
HR

( HL
3 +

2g
Γ 2

)
= uL +

Γ

2
HL ±

Γ

2
HR

√
1
3 +

1
HL

( HR
3 +

2g
Γ 2

)
+

1
HR

( HL
3 +

2g
Γ 2

)
.

(3.12)

Schematics of shocks of the first and the second families and the
characteristic curves are shown in Figs. 2 and 3. As mentioned
earlier, a discontinuity propagating over a flat-bottom at a speed
s, given in (3.12), must respect mass conservation. In what fol-
lows, a mathematical expression representing mass conservation
through the discontinuity is obtained in terms of the shock speed.
From Eq. (3.6) we get

µ ≡
Γ

2
H2

R + (uL − s)HL =
Γ

2
H2

L + (uR − s)HR. (3.13)

Inserting the shock speed in (3.12) gives

µ = ∓
Γ

2
HLHR

√
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

)
. (3.14)

In a similar manner, conservation of momentum through the
hydraulic jump is derived from (3.7) as(

Γ
2 H

2
R + uRHR

) (
uR − c

)
+

Γ

2
uRH2

R +
Γ

3
H3

R +
1
2
gH2

R

=
(

Γ
2 H

2
L + uLHL

) (
uL − c

)
+

Γ

2
uLH2

L +
Γ

3
H3

L +
1
2
gH2

L .

Inserting (3.13) into the above expression leads to

µ
(

Γ
2 HR + uR

)
+

Γ

12
H3

R +
1
2
gH2

R

= µ
(

Γ
2 HL + uL

)
+

Γ

12
H3

L +
1
2
gH2

L . (3.15)

The Rankine–Hugoniot condition for Eq. (1.6) is

−s
[

Γ 2

6 H3
+

Γ
2 uH

2
+

1
2u

2H +
1
2gH

2
]

+

[
Γ 3

8 H4
+

Γ 2

2 uH3
+

3Γ
4 u2H2

+
Γ
2 gH

3
+

1
2u

3H + guH2
]

= 0.
(3.16)

The mechanical energy associated with the above Rankine–
Hugoniot condition dissipates in the discontinuity. Out of the dis-
continuity where the solution is smooth, the mechanical energy
is conserved. The hydraulic jump can therefore, be interpreted as
heat dumpwhich absorbs the excess energy of the fluid.We derive
in what follows a mathematical expression that represents the
energy loss. In order words, we show that an admissible shock
wave solution that satisfies the Rankine–Hugoniot condition in
(3.16) dissipates mechanical energy. From (3.16) we have

∆E = ER − EL, (3.17)

where

ER =

(
Γ 3

6 H4
R +

Γ 2

2 uRH3
R − s Γ 2

6 H3
R +

3Γ
4 u2

RH
2
R +

Γ
2 gH

3
R − s Γ

2 uRH2
R +

1
2u

3
RHR + guRH2

R − s 12u
2
RHR − s 12gH

2
R

)
,

(3.18)

and

EL =

(
Γ 3

6 H4
L +

Γ 2

2 uLH3
L − sΓ 2

6 H3
L +

3Γ
4 u2

LH
2
L +

Γ
2 gH

3
L − sΓ

2 uLH2
L +

1
2u

3
LHL + guLH2

L − s 12u
2
LHL − s 12gH

2
L

)
.

(3.19)

ER and EL represent the energy on the right and the left of the
hydraulic jump. It is obvious from (3.12) that the discontinuity can
propagate either to the right or to the left. For a right going shock
for instance, ER represents the mechanical energy after the discon-
tinuity while EL symbolizes the energy before the discontinuity.
Through the jump, we have

∆E =
( 1
2u

2
R +

1
2gHR

) (
(uR − s)HR +

Γ
2 H

2
R

)
−

( 1
2u

2
L +

1
2gHL

) (
(uL − s)HL +

Γ
2 H

2
L

)
+

Γ 3

8

(
H4

R − H4
L

)
+

Γ 2

2

(
uRH3

R − uLH3
L

)
−

sΓ 2

6

(
H3

R − H3
L

)
+

Γ
2

(
u2
RH

2
R − u2

LH
2
L

)
−

sΓ
2

(
uRH2

R − uLH2
L

)
+

gΓ

4

(
H3

R − H3
L

)
+

g
2

(
uRH2

R − uLH2
L

)
.

Applying the expressions for mass conservation and momentum
conservation through the discontinuity (see Eqs. (3.13) and (3.15))
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Fig. 2. Schematic representation of a linear shear flow over an even bottom. S2 is a shock of the second family.

Fig. 3. Schematic representation of a linear shear flow over an even bottom. S1 is a shock of the first family.

give

∆E =
µ

2

((
(uR − s) +

Γ
2 HR

)2
−

(
(uL − s) +

Γ
2 HL

)2
+

Γ 2

4 (H2
R − H2

L ) + 2g(HR − HL)
)

.

By focusing on the first two terms on the right hand side, it is noted
from (3.13) that(
(uR − s) +

Γ
2 HR

)2
=

(
Γ
2 HL

)2 (
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
,(

(uL − s) +
Γ
2 HL

)2
=

(
Γ
2 HR

)2 (
1
3 +

1
HL

(
HR
3 +

2g
Γ 2

)
+

1
HR

(
HL
3 +

2g
Γ 2

))
.

Substituting these relations into the preceding expression for the
energy loss, we get

∆E = −µ(HR − HL)3
(

Γ 2(HL + HR) + 6g
24HLHR

)
. (3.20)

Notice firstly, that the fractional term on the right hand side is
strictly positive. It is noted also that HL ̸= HR if and only if
vL ̸= vR. Consequently, the mechanical energy loss through the
discontinuity requires that

µ(HR − HL)3 > 0. (3.21)

This inequality together with mass conservation through the dis-
continuity (see Eq. (3.13)) and the total velocity component (1.3)
give the following conditions

HR > HL ⇐⇒ vR > s and vL > s,

HR < HL ⇐⇒ vR < s and vL < s.
(3.22)

The first condition in (3.22) simply describes a hydraulic jump
in which the fluid depth on the right is larger than that on the left.
In this case, the propagating shock speed s is greater than the fluid
velocities on both sides of the jump. In other words, we say that

the shear flow traveling at speed vL hit the shock from the left and
become mitigated as they emerge from the shock with traveling
speed vR. The same explanation holds for the second condition.
From the mass conservation through the hydraulic jump given in
(3.13) and Eqs. (3.11) and (3.12), it is found that the relation

vR − vL = −
µ(HR − HL)

HRHL
, (3.23)

holds. Applying the strictly positive inequality in (3.21) gives the
relation

vR < vL. (3.24)

In Fig. 3, a propagating 1-shock moving to the left is shown
where the shock speed is larger than the characteristic speeds
on left side of the shock but lower than those on the right. The
characteristics emanating from x > 0 and x < 0 propagate into
the shock. The conditions (3.22) and (3.24) play an important role
in analyzing the Rankine–Hugoniot jump condition for the shear
flow. In fact it can be shown that the shock given in (3.12) satisfies
these conditions. For HR > HL, we have a 1-shock, s = S1, such
that

vR > uR +
Γ

2
HR > uR +

Γ

2
HR

−

√
1
3

+
1
HL

(
HR

3
+

2g
Γ 2

)
+

1
HR

(
HL

3
+

2g
Γ 2

)
= S1.

The inequality vL > s is proved in like manner and justifies the
first condition in (3.22) Similarly, HR < HL gives a 2-shock, s = S2,
satisfying

vR < uR +
Γ

2
HR +

Γ

2
HL

< uR +
Γ

2
HR

+
Γ

2
HL

√
1
3

+
1
HL

(
HR

3
+

2g
Γ 2

)
+

1
HR

(
HL

3
+

2g
Γ 2

)
= S2.
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Fig. 4. The momentum function M/g is plotted against the flow depth for various
strengths of vorticity. The dashed line shows the irrotational case Γ = 0. The other
curves show the respective cases of the strengths of the vorticity Γ .

4. Steady state solution

We analyze the hydraulic jump by using the Froude number
which is defined in such a way that it takes into account the
average flow velocity over the entire fluid depth. In dimensionless
variables, the depth averaging integral gives

Fr =

1
H

∫ H
0 U + u dz
√
gH

.

By using (1.3), the Froude number simplifies to

Fr =
u +

Γ
2 H

√
gH

.

The analysis is based on the hypothesis that the hydraulic jump
is stationary and that the velocity and water depth increase across
the jump. Ifwe letΛ represent the volume flow rate per unitwidth,
then the conservation of mass necessitates that

Λ = uLHL +
Γ

2
H2

L = uRHR +
Γ

2
H2

R , (4.1)

be satisfied. Using the concept of momentum conservation ex-
plained above, an expression for the momentum conservation
across the discontinuity is obtained in the form

Γ 2

3
H3

L + Γ uLH2
L + u2

LHL +
1
2
gH2

L

=
Γ 2

3
H3

R + Γ uRH2
R + u2

RHR +
1
2
gH2

R . (4.2)

In particular, if we define M =
Γ 2

3 H3
+ Γ uH2

+ u2H +
1
2gH

2

the quantityM/g is the analogue of the momentum function used
in hydraulic engineering. Since M needs to be preserved through
a stationary jump, for a given volume flow rate per unit width Λ,
one can find the conjugate flow depths by plotting the curve

M =
1
12

Γ 2H3
+

Λ2

H
+

1
2
gH2.

Such a plot is shown in Fig. 4 for Λ = 10 and a variety of
background vorticities ranging from Γ = 0 to Γ = 3. On the other
hand, Fig. 5 shows the graphs for a fixed Γ = 1.5 but for a variety
of values of Λ.

Fig. 5. The momentum function M/g is plotted against the flow depth H for
constant vorticity Γ = 1.5 and different values of the flow rate per unit width
Λ.

Fig. 6. The ratio of right to left Froude numbers α plotted against the left Froude
number FrL for various strengths of vorticity Ω . The dashed curve depicts the
irrotational case.

If we substitute the expression forΛ into relation (4.2), thenwe
get

Λ2
(

1
HR

−
1
HL

)
=

Γ 2

12

(
H3

L − H3
R

)
+

1
2
g
(
H2

L − H2
R

)
. (4.3)

Substituting the expression for the Froude number stated above
and carrying out further algebraic simplification gives the cubic
function

Γ 2

6g
HLα

3
+

(
1 +

Γ 2

6g
HL

)
α2

+

(
1 +

Γ 2

6g
HL

)
α − 2Fr2L = 0, (4.4)

where α = HR/HL is the ratio of depths. Note that the strength
of vorticity depends on the non-dimensional parameter Ω =

HLΓ
2/6g , so that we can write the equation in the final form

Ωα3
+ (1 + Ω) α2

+ (1 + Ω) α − 2Fr2L = 0. (4.5)

The cubic equation can be solved for any value of Ω . Fig. 6 shows
a plot of α as a function of FrL for a number of values of the
vorticity Γ . It is apparent that larger values of Ω have the effect
of moderating the strength of the hydraulic jump.
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Abstract

In this work, a shallow-water system for interfacial waves in the case of a neutrally
buoyant two-layer fluid system is considered. Such a situation arises in the case of
large underwater lakes of compressible liquids such as CO2 in the deep ocean which
may happen naturally or may be man-made. Depending on temperature and depth,
such deposits may be either stable, unstable or neutrally stable, and in the current
contribution, the neutrally stable case is considered.

The motion of the long waves at the interface can be described by a shallow-water
system which becomes triangular in the neutrally stable case. In this case, the system
ceases to be strictly hyperbolic, and the standard theory of hyperbolic conservation laws
may not be used to solve the initial-value or even the Riemann problem.

It is shown that the Riemann problem can still be solved uniquely using singular
shocks containing Dirac delta distributions traveling with the shock. We characterize
the solutions in integrated form, so that no measure-theoretic extension of the solution
concept is needed. Uniqueness follows immediately from the construction of the solution.
We characterize solutions in terms of the complex vanishing viscosity method, and show
that the two solution concepts coincide.

Keywords: Rankine-Hugoniot deficit; singular solutions; weak asymptotics; travelling
waves; Riemann problem

1 Introduction

In this paper we study a triangular system of conservation laws of the form

ut + uux = 0, (1.1)

ηt + h1ux + (ηu)x = 0. (1.2)

This system is derived as a model for internal waves at the interface of a two-fluid system
where a finite uniform layer fluid of density ρ1 and approximate depth h1 is located below
an upper layer of density ρ2 and very large depth as shown in Figure 1. The interest in
this system is physically motivated by considering large pools of heavy liquid located at the
bottom of a deep ocean. Such pools of heavy liquids may occur naturally [15], and have
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also been put forward as a possible long-term storage site for CO2 captured from fossil fuel
combustors.

As global warming and climate change are now understood to be in part due to larger
and larger concentrations of CO2 in the atmosphere, stabilizing the level of CO2 in the
atmosphere has been the focus of a large body of research. One potential method of reducing
the rise of atmospheric CO2 levels is to capture it in fossil-burning processes and sequester
it elsewhere. Potential storage sites include depleted petroleum and natural gas reservoirs,
saline aquifers, unminable coal beds and the world’s oceans. While the oceans are the
largest potential reservoir for dissolved CO2, it appears to be preferable from ecological and
climate considerations to store CO2 in undissolved form.

It is well established (see [34, 12]) that at predominant oceanic temperatures, CO2

condenses to the liquid phase at depths of about 400m. Due to the relatively higher com-
pressibility of liquid CO2 than seawater, liquid CO2 is denser than seawater at about 3000m
depth. Storage of liquid CO2 in the deep ocean is thus at least theoretically possible at
depths exceeding 3000m. However, it is also well known that the interface of CO2 and sea-
water is characterized by the rapid nucleation of H2O and CO2 into an icelike compound.
This hydrate layer acts as a membrane which may prevent the CO2 from escaping even at
depths smaller than 3000m (see [15]). The hydrate layer is sometimes modeled physically by
introducing interfacial tension (cf. [13, 39]). However, as experiments show, this approach
may not be optimal since the hydrate layer is highly non-uniform and behaves more like a
brittle solid, breaking up if a certain threshold stress is exceeded due to wave motion at the
interface.

The changes in the CO2 density imply that at a certain depth it will coincide with the
density of the ambient seawater. Moreover, unexpected large changes in the temperature
of the ambient seawater may render a previously stable configuration unstable by making
the CO2 buoyant or neutrally buoyant. In the present work we focus on the borderline case
of vanishing buoyancy which leads to a two-fluid system with fluids of equal density. For
a large underwater pool of CO2, long waves will be the dominant wave phenomenon, and
the effects of the hydrate layer and interfacial tension will be mostly felt on a smaller scale
than that of a long wave, so we restrict our considerations to a shallow-water-like system
of equations of the form

ηt + h1ux + (ηu)x = 0,

ut + g ρ1−ρ2
ρ1

ηx + uux = 0.

Such a system can be obtained by by following the analysis of Craig et al. [4], Section 5.4,
or the derivation of a long-wave system used in [16]). In the neutrally buoyant case, the
densities ρ2 and ρ1 will be equal, and the system reduces to (1.1), (1.2).

As is well-known, the classical theory of hyperbolic laws in one space dimension usually
requires that the system be strictly hyperbolic with either genuinely nonlinear or linearly
degenerate characteristic fields. In this case, existence of entropy weak solutions can be
obtained when the initial data have small total variation [10, 24, 26, 33]. Such weak solutions
are usually discontinuous and consist of elementary Lax-admissible waves. However, many
nonlinear hyperbolic systems used by physicists and engineers to model physical phenomena
do not satisfy the above hypotheses entirely. For instance, modelling a two-phase flow of
a mixture of steam and water in a cooling process of conventional nuclear reactors by
water under pressure is described by a system of equations which do not satisfy the basic
assumptions of the theory of nonlinear hyperbolic systems [35]. In contrast to strictly
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Figure 1: Long waves at the interface in a two-layer system of fluids

hyperbolic conservation laws, nonstrictly hyperbolic systems have no definitive theory which
governs existence of weak solutions and the interest in studying such systems is partially
motivated by their significant applications in gas dynamics, magnetohydrodynamics, high
pressure cavitating liquid jets and oil reservoir simulation [31, 32, 21].

An interesting feature of (1.1), (1.2) is that the characteristic speeds coincide in phase
space. Consequently, the classical theory of strictly hyperbolic conservation laws does not
apply. Nevertheless, in this work we show that it is possible to construct a unique solution
to the Riemann initial value problem associated with (1.1), (1.2). We also show that the
solution contains a singular δ-shock whose strength is an exact measure of the corresponding
Rankine-Hugoniot deficit. In particular, the exact construction of the solution coincides
with the solution provided by the weak asymptotic method [17, 18] which in a sense validates
the weak asymptotic method. An extension of the weak asymptotic method to complex-
valued approximation has been shown to be essential for the correct physical interpretation
of delta shock waves [20].

In context of δ-shock solutions, our results are similar in spirit to the work of Hayes and
LeFloch [11]. In their paper, they established a Riemann solution to the system

ut + (u2/2)x = 0,

vt +
(
(u− 1)v

)
x

= 0,

by introducing an integrated variable V (x, t) defined by

V (x, t) =

∫ x

−C
v(τ, t)dτ =⇒ ∂V

∂x
= v,

where C > 0 is an arbitrary constant. This variable transforms the system into an equiva-
lent homogeneous system but the initial data for V are now piecewise linear and continuous.
Our case requires rigorous computations and care to arrive at the desired result due to the
structure of our system. In fact, our construction is more difficult because of an inhomoge-
neous term appearing in the integrated equation.

Similar systems of equations have also been studied in [23], [37], [5] and [3], where
various regularizations were explored. In particular, in [37] parabolic regularizations were
used, and uniqueness was obtained, while the weak asymptotic method was used in [5].
The general initial-value problem was considered in [14] and [9]. As mentioned above, the
system considered here differs from the equations in all the above works since the integrated
equations are inhomogeneous. Recently, there has also been some interest in interactions of
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delta shock waves, for example in [2, 3, 36, 38], and in some cases uniqueness can also be
proved [27, 28].

The plan of the paper is as follows: In Section 2, we solve the Riemann problem for (2.1),
(2.2) and show that a unique solution can be constructed in all cases. The construction
corresponds exactly to the weak asymptotic approach in a formalized way. In Section 3,
we present a δ-shock solution as a combination of a Dirac-δ distribution and a shock wave
and verify the solution in the context of the weak asymptotic method and in the weak
variational formulation. Finally, in Section 4, we explain how a regularized system can be
solved exactly in terms of a travelling wave profile.

2 The Riemann Problem

This section focuses on the nonlinear properties of the system of equations

ut + (u2/2)x = 0, (2.1)

ηt +
(
(η + 1)u

)
x

= 0, (2.2)

which is obtained from (1.1), (1.2) by an appropriate rescaling. Specifically, we study the
shock curves of these equations and their properties by noting first that the system (2.1),
(2.2) is of the general form

Ut + F(U)x = 0,

where

U =

(
u
η

)
and F(U) =

(
g(u, η)
h(u, η)

)
=

(
u2/2

(η + 1)u

)
.

The flux Jacobian of F(U) is given by

J =
∂F

∂U
=

(
u 0

η + 1 u

)
, (2.3)

which has the repeated eigenvalue
λ1,2 = u,

with the corresponding right eigenvector

r1 =

(
0
1

)
.

For an arbitrary constant left state (uL, ηL) and a right state (uR, ηR), the Rankine-Hugoniot
conditions for (2.1), (2.2) are respectively

−c[u] + [u2/2] = 0, (2.4)

−c[η] + [(η + 1)u] = 0, (2.5)

where [u] = uR−uL and [η] = ηR− ηL. The shock speed in (2.4) is well known and has the
form

c = (uL + uR)/2 ≡ ū, (2.6)

and satisfies the Lax entropy condition

λi(uR) ≤ c ≤ λi(uL), i = 1, 2.
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Figure 2: Left panel: Shock solution of Burgers equation. Right panel: corresponding characteris-
tics.

For [u] 6= 0, a piecewise continuous function u(x, t) with a single discontinuity travelling
with speed ū and having uL and uR on opposite side of the discontinuity is a weak solution
of (2.1). Thus, we obtain the following lemma:

Lemma 2.1. The function u(x, t) defined by

u(x, t) =

{
uL, if x < ūt,

uR, if x > ūt,
(2.7)

where ū is given in (2.6) represents weak solution of (2.1) if

∫ ∞

0

∫ ∞

−∞

(
φtu+ φx

u2

2

)
dxdt+

∫ ∞

−∞
φ(x, 0)u(x, 0)dx = 0,

holds for all functions φ ∈ C1
0 (R× R+)

Remark 2.1. Lemma (2.1) represents the case where uL > uR and is illustrated in Figure 2.
Similarly, if uL < uR then the solution of (2.1) is given by a rarefaction wave

u(x, t) =





uL, if x ≤ uLt,
x/t, if uLt < x < uRt,

uR, if x ≥ uRt,
(2.8)

which is illustrated in Figure 3.

Note also that weak solutions of (2.1),(2.2) satisfy (2.5), so that with the help of (2.6)
we can obtain the condition

ηR = −(ηL + 2). (2.9)

However, this last relation does not hold for singular solutions. For constant states uL, uR, ηL
and ηR, let the initial data for (2.1), (2.2) be given by

u(ξ, 0) =

{
uL, if ξ < 0,

uR, if ξ > 0,
η(ξ, 0) =

{
ηL, if ξ < 0,

ηR, if ξ > 0,
(2.10)

respectively. The main objective is to solve the Riemann problem for (2.1), (2.2) subject to
the initial data (2.10).
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Figure 3: Left panel: Rarefaction solution of Burgers equation. Right panel: corresponding char-
acteristics.

Theorem 2.2. Let the constant states uL, uR, ηL and ηR be given such the (2.10) represents
Riemann initial data for the system (2.1), (2.2).

(a) If uL > uR, then u has a single shock given in (2.7), whereas η has a single jump

η(x, t) =

{
ηL, if x < ūt,

ηR, if x > ūt,

together with a propagating Dirac mass whose strength is given by

[w] = (t/2)
(
(uL − uR)(ηL + ηR + 2)

)
. (2.11)

(b) If uL < uR, then the weak solution of u is a rarefaction given by (2.8) whereas η has
two jump discontinuities given by

η(x, t) =





ηL, if x < uLt,

−1, if uLy ≤ x ≤ uRt,
ηR, if uRt < x.

(2.12)

Proof. To prove this theorem we define a function w(x, t) by

w(x, t) =

∫ x

−κ
η(s, t)ds, (2.13)

for an arbitrary positive constant κ. It is not hard to check that w(x, t) is related to η(x, t)
by wx = η. With this relation the system (2.1), (2.2) transforms into

ut + uux = 0, (2.14)

wt + uwx = −u. (2.15)

The first equation (2.14) in this system is the well known Burgers’ equation which to-
gether with the Riemann initial data in u given in (2.10) admits shock and rarefaction
solutions which are specified in (2.7) and (2.8). The second equation (2.15) is a nonhomo-
geneous transport equation in w and has the Riemann initial data

w(ξ, 0) ≡ w0(ξ) =

{
ηLκ+ ηLξ, if ξ ≤ 0,

ηLκ+ ηRξ, if ξ ≥ 0.
(2.16)
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It is obvious that this initial data is linear and piecewise continuous. However, the
nonhomogeneous part, as well as the variable coefficient u(x, t) in (2.15), contains a dis-
continuity which may lead to the development of discontinuities in w(x, t). The progressive
evolution of w is along curves x(t) which satisfy the characteristic equation

dx

dt
= u(x, t), x(0) = ξ. (2.17)

However, w(x, t) is not constant along these curves but satisfies

d

dt
w(x, t) = −u(x, t), (2.18)

and is found by solving the ODEs (2.17) and (2.18) [25]. In the first case where uL > uR
the solution of (2.14) is given by a shock wave (2.7) travelling at a speed given in (2.6).
The technique we used is to substitute this travelling shock wave into (2.15) and solve the
resulting equation by the method of characteristics. The characteristics in this case are

x(t) =

{
uLt+ ξ, if ξ < (ū− uL)t,

uRt+ ξ, if ξ > (ū− uR)t,

and they propagate into the shock. Consequently, the solution for w(x, t) is given by

w(x, t) =

{
ηLκ+ ηL(x− uLt)− uLt, if x ≤ ūt,
ηRκ+ ηR(x− uRt)− uRt, if x > ūt.

The solution η(x, t) in (a) is obtained by evoking the expression in (2.13). Since the
initial assumption is that uL > uR, the characteristics emanating from ξ < 0 will propagate
values of w(x, t) which are different from those propagated by the characteristics originating
from ξ > 0. Consequently, if the jump in u(x, t) is large, then it will lead to a jump discon-
tinuity in w(x, t) across the shock. The characteristics together with the initial Riemann
data (2.16) give

wL = ηLκ+
(
ηl(ū− uL)− uL

)
t,

wR = ηLκ+
(
ηR(ū− uR)− uR

)
t.

where wL and wR represent respectively the left and right limits of w(x, t) at the shock
x = ūt. From these expressions, we obtained the jump in w(x, t) whose strength is given by

[w] = wR − wL =
t

2

(
uL − uR

)(
ηL + ηR + 2

)
. (2.19)

In the second case where uL < uR, the characteristics originating at ξ < 0 propagate at
a speed of the rarefaction tail whereas those emanating from ξ > 0 propagate parallel to
the rarefaction head of the wave. The characteristic equations in this case are given by

x(t) =





uRt+ ξ, if ξ > 0,

γt, if ξ = 0,

uLt+ ξ, if ξ < 0,
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Figure 4: Schematic representation of the characteristics for w (dashed) when uL < uR. The
rarefaction fan in u (solid lines) is bounded by x = uLt and x = uRt.

where γ is an arbitrary constant only subject to the constraint uL < γ < uR. A graphical
representation of the characteristics is shown in Figure 4. By applying (2.16), the solution
of (2.15) is

w(x, t) =





ηLκ+ ηL(x− uLt)− uLt, if x < uLt,

ηLκ− x, if uLt ≤ x ≤ uRt,
ηlκ+ ηR(x− uRt)− uRt, if uRt < x.

A partial derivative with respect to x gives the solution η(x, t) of (2.2) defined in (2.12).

3 Weak asymptotic solution

In this section, we present a delta-shock solution to the system (2.1), (2.2) in the context
of weak asymptotics defined in [1, 6, 8]. What is interesting about this method is that
it allows the approximate solutions to be complex-valued thereby expanding the range of
possible singular solutions as demonstrated in [17, 18, 19]. In [18] it was shown that the
method can be used to construct solutions which accommodate combinations of Dirac-δ
distributions and shock waves. The goal of this section is to present a δ-shock wave solution
in the framework of the weak asymptotics method.

In order to construct a δ-shock solution to (2.1), (2.2), we first review the notion of weak
asymptotic and define vanishing family of distributions. Let D denote the space of smooth
functions with compact support and D′ represent the space of distributions as defined in
[29].

Definition 3.1. Let fε(x, t) ∈ D′(R) denote a collection of distributions which depend on
ε ∈ (0, 1). If the estimate

〈fε(x, t), ϕ(x)〉 = o(1), as ε→ 0, (3.1)

holds uniformly for any test function ϕ(x) ∈ D(R), then we have fε = oD′(1).

Definition 3.1 is equivalent to saying that a collection of distributions approaches zero in
the context defined above if the pairing 〈fε(x, t), ϕ(x)〉 converges to zero for a given smooth,
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compactly supported function ϕ. For the collection of distributions fε(x, t), we say that
fε = oD′(1) ⊂ D′(R) if (3.1) holds uniformly in t ∈ R+. Essentially, we require that

〈fε(·, t), ϕ(·)〉 ≤ CT gε(·) for t ∈ [0, T ],

where CT is a constant which depends on T and gε(·) depends on the ϕ(x, t) and vanishes
as ε→ 0.

Definition 3.2. The family of smooth, complex-valued (real-valued) distributions (uε) and
(ηε) is a weak asymptotic solution to the system (2.1), (2.2) if u, η ∈ C

(
R+;D′(R)

)
are

real-valued distributions such that

uε ⇀ u, ηε ⇀ η as ε→ 0,

holds for any fixed t ∈ (0,∞) in the sense of distributions in D′(R) and

∂uε
∂t

+
1

2

∂u2ε
∂x

= oD′(1), (3.2)

∂ηε
∂t

+
∂
(
(ηε + 1)uε

)

∂x
= oD′(1). (3.3)

In the case of complex-valued distributions, it is obvious in this definition that the
imaginary part of the solution vanishes in the limit as ε→ 0. Moreover, it is required that
convergence to the initial data be satisfied so that

uε(ξ, 0)→ u(ξ, 0) and ηε(ξ, 0)→ η(ξ, 0),

in the sense of distributions as ε→ 0 where u(ξ, 0) and η(ξ.0) are defined in equation (2.10).
The weak asymptotic method admits a solution comprising of a combination of jump

discontinuities and delta distributions in the context of the above definitions and we have
the following theorem:

Theorem 3.1. Let the constant states uL, uR, ηL and ηR be given such that (2.10) represents
Riemann initial data for the system (2.1), (2.2) and c is the admissible shock speed given
in (2.6). Then there exist weak asymptotic solutions uε and ηε such that the families (uε)
and (ηε) have distributional limits given by

u(x, t) = uL + (uR − uL)H(x− ct), (3.4)

η(x, t) = ηL + (ηR − ηL)H(x− ct) + α(t)δ(x− ct), (3.5)

where H is the Heaviside function, δ is the Dirac delta distribution, and

α(t) = [w].

Proof. In order to construct the required approximate solution that satisfies (3.4) and
(3.5), we define an approximate delta distribution

δε(x, t) =
1

2ε
ρ

(
x− ct− 3ε

ε

)
+

1

2ε
ρ

(
x− ct+ 3ε

ε

)
.
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In addition, we define a regularized smooth function

Hε(x, t) =





1, if x ≤ ct− 10ε,
1
2 , if ct− 5ε < x < ct+ 5ε,

0, if x ≥ ct+ 10ε,

which continuous smoothly in (−10ε,−5ε) and (5ε, 10ε). Notice in particular that

δε(x− ct) ⇀ δ(x− ct) as ε→ 0. (3.6)

The interaction between the Heaviside function and the delta function gives the weak limit

Hε(x− ct)δε(x− ct) ⇀
1

2
δ(x− ct). (3.7)

Furthermore, the following asymptotic expansion holds

Hε(x, t)
∂Hε(x, t)

∂x
=

1

2
δε(x, t) + oD′(1). (3.8)

We start with the singular ansatz:

uε(x, t) = uL + (uR − uL)Hε(x− ct), (3.9)

ηε(x, t) = ηL + (ηR − ηL)Hε(x− ct) + α(t)δε(x− ct). (3.10)

Now, it remains to insert this ansatz into (2.1) and (2.2). Focussing first on (2.2), we get

(ηR − ηL)∂tHε + α′(t)δε − cα(t)δ′ + (uR − uL)∂xHε + uL(ηR − ηL)∂xHε + uLα(t)δ′

+ηL(uR − uL)∂xHε + (uR − uL)(ηR − ηL)∂xH
2
ε +

α(t)

2
(uR − uL)δ′ = oD′(1).

All terms containing δ′ cancel out by equation (3.7). By using (3.6)–(3.8), it follows from
Definition 3.2 that

α′(t) =
1

2

(
uL − uR

)(
ηL + ηR + 2

)
,

which can be interpreted as the measure of the rate of change of the strength of the dis-
continuity given in (2.11). Indeed, we have α′(t) = ∂t[w], so that it is clear that the weak
asymptotic method yields the same solution as the direct construction used in Section 2.
Equation (2.1) is verified similarly and the choice of the shock speed c which is obtained
from the Rankine-Hugoniot condition associated with (2.1) gives the desired result readily.

4 Generalized weak solutions

In what follows, we generalize the weak asymptotic solution constructed above by following
the solution concept introduced in [7]. This concept is an extension of the traditional
framework of weak solutions, such as used for example in Lemma 2.1, which essentially
allows the inclusion of singular δ-shocks.

Suppose that Γ = {γi | i ∈ I} is a graph in the upper half plane containing Lipschitz
continuous arcs γi for i ∈ I, where I denotes a finite index set. Let I0 represent a subset of
I containing all arcs that originate at points on the x-axis and assume Γ0 = {x0k | k ∈ I0} is
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the set of initial points of the arcs γk, where k ∈ I0. We also denote by
∫
γi

the line integral

over the arc γi whiles ∂ϕ(x,t)
∂l denotes the tangential derivative of a function ϕ(x, t) on the

graph γi. Define

U0(x) =

{
uL, if x < 0,

uR, if x > 0,
(4.1)

and

G0(x) =

{
ηL, if x < 0,

ηR, if x > 0,
(4.2)

and define δ-shock initial data by

u0(x) = U0(x), (4.3)

η0(x) = G0(x) +
∑

k∈I0
αk(x0k, 0)δ(x− x0k) (4.4)

where x0k and αk(x0k, 0) are real constants. We denote the singular part of a solution by

α(x, t)δ(Γ) =
∑

i∈I
αi(x, t)δ(γi).

Now we can make the following definition:

Definition 4.1. The graph Γ together with the pair of distributions (u(x, t), η(x, t)) defined
such that

u(x, t) = U(x, t),

η(x, t) = G(x, t) + α(x, t)δ(Γ),

for piecewise continuous functions U(x, t) and G(x, t) is called a generalized δ-shock wave
solution of (2.1), (2.2) with the initial data (u0(x), η0(x)) if the integral identities

∫

R+

∫

R

(
U∂tϕ+ (U2/2)∂xϕ

)
dxdt+

∫

R
U0(x)ϕ(x, 0) dx = 0, (4.5)

∫

R+

∫

R
(G∂tϕ+ ((G+ 1)u) ∂xϕ) dxdt

+
∑

i∈I

∫

γi

αi(x, t)
∂ϕ(x,t)

∂l +

∫

R
G0(x)ϕ(x, 0) dx+

∑

k∈I0
αk(x0k, 0)ϕ(x0k, 0) = 0, (4.6)

hold for all test functions ϕ ∈ D(R× R+).

The integral identities (4.5) and (4.6) in Definition 4.1 can be interpreted as natural a
generalization of the classical weak solution integral identity given in Lemma 2.1. It is not
hard to check that the solution (3.4) and (3.5) defined in Theorem 3.1 satisfy Definition
4.1. Consequently, we have the theorem:

Theorem 4.1. Let the constant states uL, uR, ηL and ηR be given such that (2.10) represents
Riemann initial data for the system (2.1), (2.2). If c is the admissible shock speed given
in (2.6), then the functions u and η defined in (3.4) and (3.5) represent a weak solution to
the Riemann problem associated with the system (2.1), (2.2) in the framework of Definition
4.1.
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5 Wavefront profile

The goal in this section is to establish a wave front solution for (2.1), (2.2) by introducing
viscous terms into the equations describing the flow. That is, we study a non-travelling
wave profile of the system

ut + (u2/2)x = ν1uxx, (5.1)

ηt +
(
(η + 1)u

)
x

= ν2ηxx, (5.2)

where ν1 and ν2 are small viscosity coefficients. We shall show that there exists a non-
travelling wave solution that is bounded at −∞ by the left state (uL, ηL) and at +∞ by
the right state (uR, ηR).

Theorem 5.1. For a given left state (uL, ηL) and right state (uR, ηR), there exists non-
travelling wave solutions to (5.1), (5.2) for certain values of the viscous ratio ν1

ν2
= n

2 , for
n ∈ Z+.

Proof. We seek a wavefront type solution of the form

u(x, t) = U(x− ct) = U(s),

η(x, t) = H(x− ct) = H(s),

where the travelling wave speed c, is given in (2.6). Substituting this ansatz into the system
(5.1), (5.2) gives

−cU ′ +
(U2

2

)′
= ν1U ′′ (5.3)

−cH′ +
(
(H+ 1)U

)′
= ν2H′′, (5.4)

which satisfy the asymptotic conditions

U(−∞) = uL, U(+∞) = uR,

H(−∞) = ηL, H(+∞) = ηR.

Solving (5.3) gives the familiar wave solution

U(s) = c− uL − uR
2

tanh

((
uL − uR

) s

4ν1

)
.

Denoting the shock strength by γ = (uL − uR)/2 simplifies the solution to

U(s) = c− γ tanh

(
γ

2ν1
s

)
. (5.5)

Next, we integrate (5.4) once with respect to s to obtain a first order ODE

ν2
dH
ds

= −c
(
H− ηL

)
+
(
H+ 1

)
U −

(
ηL + 1

)
uL.

Substituting U(s) given in (5.5) and simplifying the structure of the equation by the change
of variable s = ν2ξ give

dH
dξ

+ γ tanh(βξ)H = −
(
γ(ηL + 1) + γ tanh(βξ)

)
,
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where β = γν2/2ν1. We solve this equation by using the integrating factor

I(ξ) = exp

(∫ ξ

γ tanh(βτ)dτ

)
=
(

cosh(βξ)
) γ

β , (5.6)

to obtain the solution

H(ξ) = −γ
(

cosh(βξ)
)− γ

β

(
(ηL + 1)

∫ ξ (
cosh(βτ)

) γ
β dτ +

∫ ξ (
cosh(βτ)

) γ
β tanh(βτ)dτ

)
.

We can obtain unreserved expression for H(ξ) if the exponent γ
β is an integer n. Thus, an

explicit solution can be found if the viscosity relation

ν2
ν1

=
2

n
, for n ∈ Z,

holds. This leads to the wave profile

H(ξ) = −γ(ηL + 1)

(
n∑

k=0

(
n
k

)
e(2k−n)βξ

)−1( n∑

k=0

(
n
k

)
e(2k−n)βξ

(2k − n)β
+ 2−nµ

)
− 1, (5.7)

where µ is a constant of integration. It is obvious that the solution converges only if γ 6= 2kβ
so we consider two different cases for the solution.

(a) If γ < 2kβ, then the estimate

e(2kβ−γ)ξ → 0 as ξ → −∞,

holds in (5.7) and the ideal choice of the constant that guarantees bounded solution
is µ = 0. This choice simplifies the solution to

H(ξ) = −γ(ηL + 1)

(
n∑

k=0

(
n
k

)
e(2k−n)βξ

)−1( n∑

k=0

(
n
k

)
e(2k−n)βξ

(2k − n)β

)
− 1.

We next find the limits ofH(ξ) by noting first that as ξ → −∞, the term eγξ dominates
and corresponds to the term k = 0. Consequently, we have

lim
ξ→−∞

H(ξ) = −γ(ηL + 1)
1

−γ − 1 = ηL. (5.8)

In like manner as ξ → +∞, the term e2kβξ = eγξ, for n = 2k, dominates and corre-
sponds to the term k = n. This gives the estimate

lim
ξ→+∞

H(ξ) = −γ(ηL + 1)
1

γ
− 1 = ηR, (5.9)

where the relation in equation (2.9) is used.

(b) If γ > 2kβ, then we have

e(2kβ−γ)ξ → 0 as ξ → +∞.

In this case, the appropriate choice of the integration constant which gives a bounded
solution is µ = 0, just as in the above case and the left and right limits in (5.8) and
(5.9) apply.
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Figure 5: A graphical representation of the solution H(ξ) for uL = 2, uR = 1, ηL = 3 and ηR = −5.

Note that the asymptotic boundary conditions of these viscous solutions satisfy the
relation (2.9) as though they are approximating a weak solution of the system. However,
it appears that as ν1 and ν2 approach zero, the solutions do not tend to weak solutions of
the system (2.1), (2.2). Indeed, as shown in Figure 5, the viscous system always features a
non-monotonic profile. Moreover, as shown in Sections 2 and 3, the system does not admit
weak solutions, but necessitates the inclusion of the delta singularity in the shock wave
such as in (3.4), (3.5). As the strength of the delta distribution grows linearly in time (cf.
(2.19)), this solution cannot be described in terms of a traveling-wave profile.

6 Conclusion

In this paper, a hyperbolic system arising in the study of long waves in two-fluid systems
has been studied. This system (1.1), (1.2) is relevant for example in the neutrally buoyant
case of a large pool of liquid located at the bottom of a deep ocean. The system is given in
terms of an average velocity u in the lower layer, and in terms of the vertical displacement
of the interface from the rest position, denoted by η.

As the flux Jacobian (2.3) of the system has repeated eigenvalues, the system is not
strictly hyperbolic, and the standard theory of hyperbolic conservation laws cannot be used
to find admissible weak solutions. However, thanks to the special structure of the system,
it is possible to reformulate the second equation in terms of the primitive w of the unkown
η.

Using the fact that the system is triangular, solving the first equation (Burgers’ equation)
explicitly, and using the transformed equation for the the second unknown, an exact weak
solution to the Riemann problem associated to the original system (1.1), (1.2) has been
found in Section 2. Since this solution is constructed explicitly by solving a transport
equation, the solution is automatically unique. Depending on the disposition of the Riemann
data, the unknown w may be given by a shock wave. Since w is the primitive of the original
unknown η, the jump in w may be interpreted as a Dirac delta distribution traveling with the
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shock in η. Thus we have proved that in certain cases, the unique solutions to a hyperbolic
but not strictly hyperbolic system is given by a singular solution featuring a Dirac delta
distribution traveling with the discontinuity, or in other words, a so-called Delta shock.

In Section 3, we have defined the solution of the original system (1.1), (1.2) in terms of
weak asymptotic solutions, such as defined for example in [8]. Using this theory also leads
to a Delta shock with a strength α(t), where the derivative α′(t) represents the Rankine-
Hugoniot deficit as defined by various authors [23, 22, 17]. The solution also displays the
reassuring feature that α(t) matches the amplitude of the Dirac delta distribution obtained
in Section 2 exactly.

In Section 4, a more general type of weak solution is defined. This definition is given
along the lines of the definition fond in [8, 17], and the solution obtained in Section 3 also
satisfies the equation in terms of this more general definition. Finally, Section 5 investigates
the problem in the framework of a viscous regularization. Using the resulting nonlinear
parabolic system, steady traveling wave profiles may be found in exact form using extensive
computations. These solutions feature smoothed spikes, such as may be expected from the
Delta shocks found in the previous sections. However, as the viscous parameters tend to
zero, the spikes do not grow in size which shows that the solutions found in the previous
sections cannot be framed in terms of traveling wave solutions. Indeed these solutions
feature growing Delta singularities, and therefore cannot be approximated by smooth steady
profiles.
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Abstract

The Brio system is a two-by-two system of conservation laws arising as a sim-
plified model in ideal magnetohydrodynamics (MHD). The system has the form

∂tu+ ∂x
(
u2+v2

2

)
= 0,

∂tv + ∂x
(
v(u− 1)

)
= 0.

It was found in previous works that the standard theory of hyperbolic conservation
laws does not apply to this system since the characteristic fields are not genuinely
nonlinear on the set v = 0. As a consequence, certain Riemann problems have no
weak solutions in the traditional Lax admissible sense.

It was argued in [8] that in order to solve the system, singular solutions con-
taining Dirac masses along the shock waves might have to be used. Solutions of
this type were exhibited in [11, 23], but uniqueness was not obtained.

In the current work, we introduce a nonlinear change of variables which makes it
possible to solve the Riemann problem in the framework of the standard theory of
conservation laws. In addition, we develop a criterion which leads to an admissibility
condition for singular solutions of the original system, and it can be shown that
admissible solutions are unique in the framework developed here.

1 Introduction

Conservation laws have been used as a mathematical tool in a variety of situations in order
to provide a simplified description of complex physical phenomena which nevertheless
keeps the essential features of the processes to be described, and the general theory
of hyperbolic conservation laws aims to provide a unified set of techniques needed to
understand the mathematical properties of such equations. However, in some cases,
the general theory fails to provide a firm mathematical description for a particular case
because some of the assumptions needed in the theory are not in place.

1Department of Mathematics, University of Bergen, PO Box 7800, 5020 Bergen, Norway
2Faculty of Mathematics, University of Vienna, Oscar Morgenstern Platz 1, 1090

Wien, Austria
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In the present contribution we focus on such an example, a hyperbolic conservation law
appearing in ideal magnetohydrodynamics. For this conservation law, solutions cannot be
found using the classical techniques of conservation laws, and a new approach is needed.

Magnetohydrodynamics (MHD) is the study of how electric currents in a moving
conductive fluid interact with the magnetic field created by the moving fluid itself. The
MHD equations are a combination of the Navier-Stokes equations of fluid mechanics
and Maxwell’s equations of electromagnetism, and the equations are generally coupled
in such a way that they must be solved simultaneously. The ideal MHD equations are
based on a combination of the Euler equations of fluid mechanics (i.e. for an inviscid and
incompressible fluid) and a simplified form of Maxwell’s equations. The resulting system
is highly complex and one needs to rely on numerical approximation of solutions in order
to understand the dynamics of the system.

As even the numerical study of the full system is very challenging, it can be convenient
to introduce some simplifying assumptions – valid in some limiting cases – in order to
get a better idea of the qualitative properties of the system, and in order to provide some
test cases against which numerical codes for the full MHD system can be tested.

The emergence of coherent structures in turbulent plasmas has been long observed
both in numerical simulations and experiments. Moreover, the tendency of the magnetic
field to organize into low-dimensional structures such as two-dimensional magnetic pan-
cakes and one-dimensional magnetic ropes is well known. As a consequence, in certain
cases it makes sense to use simplified one or two dimensional model equations. Such sim-
plified equations will be easier to solve, but nevertheless preserve some of the important
features observed in MHD systems. In [1], a simplified model system for ideal MHD was
built using such phenomenological considerations. The system is written as

∂tu+ ∂x
(
u2+v2

2

)
= 0,

∂tv + ∂x
(
v(u− 1)

)
= 0.

(1)

The quantities u and v are the velocity components of the fluid whose dynamics is de-
termined by MHD forces, and the system represents the conservation of the velocities.
Velocity conservation in this form holds only in idealized situations in the case of smooth
solutions, and the limitation of this assumption manifests itself in the non-solvability of
the system even for the simplest piece-wise constant initial data, i.e. for certain disposi-
tions of the Riemann initial data

u|t=0 =

{
UL, x ≤ 0

UR, x > 0
, v|t=0 =

{
VL, x ≤ 0

VR, x > 0
. (2)

From a mathematical point of view, the characteristic fields of this system are neither
genuinely nonlinear nor linearly degenerate in certain regions in the (u, v)-plane (see [8]).
In this case the standard theory of hyperbolic conservation laws which can be found in
e.g. [3] does not apply and one cannot find a classical Riemann solution admissible in
the sense of Lax [17] or Liu [18].

In order to deal with the problem of non-existence of solutions to the Riemann
problem for certain conservation laws, the concept of singular solutions incorporating
δ-distributions along shock trajectories was introduced in [16]. The idea was pursued fur-
ther in [8, 15], and by now, the literature on the subject is rather extensive. Some authors
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have defined theories of distribution products in order to incorporate the δ-distributions
into the notion of weak solutions [4, 10, 23]. In other works, the need to multiply δ-
distributions has been avoided either by working with integrated equations [9, 13], or by
making an appropriate definition of singular solutions [6]. In order to find admissibil-
ity conditions for such singular solutions, some authors have used the weak asymptotic
method [5, 6, 21, 22] or simply look for the limit of the vanishing viscosity approximation
[15, 24, 25]. With the aim of dealing with the nonlinearity featured by the system (1), the
weak asymptotic method was also extended to include complex-valued approximations
[11]. The authors of [11] were able to provide singular solutions of (1) even in cases
which could not be resolved earlier. However, even if [11] provides some admissibility
conditions, the authors of [11] did not succeed to prove uniqueness. Existence of singular
solutions to (1) was also proved in [23] using the theory of distribution products, but
uniqueness could not be obtained.

Therefore, it was natural to ask whether the Brio system should be solved in the
framework of δ-distributions as conjectured in [8] where the system was first considered
from the viewpoint of the theory of hyperbolic conservation laws. The authors of [8]
compared (1) with the triangular system

∂tu+ ∂x
(
u2

2

)
= 0,

∂tv + ∂x
(
v(u− 1)

)
= 0.

(3)

which differs from (1) in the quadratic term v2. However, the system (3) is linear with
respect to v and it naturally admits δ-type solutions (obtained e.g. via the vanishing
viscosity approximation). To this end, let us remark that most of the systems admitting
δ-shock wave solutions are linear with respect to one of the unknown functions [4, 6, 8,
10, 15]. There are also a number of systems which can be solved only by introducing the
δ-solution concept and which are non-linear with respect to both of the variables such as
the chromatography system [25] or the Chaplygin gas system [20]. However, in all such
systems, it was possible to control the nonlinear operation over an approximation of the
δ-distribution. This is not the case with (1) since the term u2 +v2 will necessarily tend to
infinity for any real approximation of the δ-function. This problem can be dealt with by
introducing complex-valued approximations of the δ-distribution. Using this approach, a
somewhat general theory can be developed as follows. Consider the system

∂tu+ ∂xf(u, v) =0,

∂tv + ∂xg(u, v) =0,
(4)

Suppose Γ = {γi | i ∈ I} is a graph in the closed upper half plane, containing Lipschitz
continuous arcs γi, i ∈ I, where I is a finite index set. Let I0 be the subset of I containing
all indices of arcs that connect to the x-axis. Let ∂ϕ(x,t)

∂l
denote the tangential derivative

of a function ϕ on the graph γi, and let
∫
γi

denote the line integral over the arc γi with
respect to arclength.

The following definition gives the notion of δ-shock solution to system (4).

Definition 1.1. The pair of distributions

u = U + α(x, t)δ(Γ) and v = V + β(x, t)δ(Γ) (5)
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where α(x, t)δ(Γ) =
∑

i∈I αi(x, t)δ(γi) and β(x, t)δ(Γ) =
∑

i∈I βi(x, t)δ(γi) are called a
generalized δ-shock wave solution of system (4) with the initial data U0(x) and V0(x) if
the integral identities

∫

IR+

∫

IR

(U∂tϕ+ f(U, V )∂xϕ) dxdt

+
∑

i∈I

∫

γi

αi(x, t)
∂ϕ(x,t)
∂l

+

∫

IR

U0(x)ϕ(x, 0) dx = 0, (6)

∫

IR+

∫

IR

(V ∂tϕ+ g(U, V )∂xϕ) dxdt

+
∑

i∈I

∫

γi

βi(x, t)
∂ϕ(x,t)
∂l

+

∫

IR

V0(x)ϕ(x, 0) dx = 0, (7)

hold for all test functions ϕ ∈ D(IR× IR+).

This definition may be interpreted as an extension of the classical notion of weak
solutions. The definition is consistent with the concept of measure solutions as put
forward in [4, 10] in the sense that the two singular parts of the solution coincide, while
the regular parts differ on a set of Lebesgue measure zero. However, Definition 1.1 can
be applied to any hyperbolic system of equations while the solution concept from [4] only
works in the special situation when the δ-distribution is attached to an unknown which
appears linearly in the flux f or g, or when nonlinear operations on δ can somehow be
controlled in another way.

Definition 1.1 is quite general, allowing a combination of initial steps and delta distri-
butions; but its effectiveness is already demonstrated by considering the Riemann problem
with a single jump. Indeed, for this configuration it can be shown that a δ-shock wave
solution exists for any 2× 2 system of conservation laws.

Consider the Riemann problem for (4) with initial data u(x, 0) = U0(x) and v(x, 0) =
V0(x), where

U0(x) =

{
u1, x < 0,

u2, x > 0,
V0(x) =

{
v1, x < 0,

v2, x > 0.
(8)

Then, the following theorem holds:

Theorem 1.2. a) If u1 6= u2 then the pair of distributions

u(x, t) = U0(x− ct), (9)

v(x, t) = V0(x− ct) + β(t)δ(x− ct), (10)

where

c =
[f(U, V )]

[U ]
=
f(u2, v2)− f(u1, v1)

u2 − u1
, and β(t) = (c[V ]− [g(U, V )])t, (11)

represents the δ-shock wave solution of (4) with initial data U0(x) and V0(x) in the sense
of Definition 1.1 with α(t) = 0.
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b) If v1 6= v2 then the pair of distributions

u(x, t) = U0(x− ct) + α(t)δ(x− ct), (12)

v(x, t) = V0(x− ct), (13)

where

c =
[g(U, V )]

[V ]
=
g(u2, v2)− g(u1, v1)

v2 − v1
, α(t) = (c[U ]− [f(U, V )])t (14)

represents the δ-shock solution of (4) with initial data U0(x) and V0(x) in the sense of
Definition 1.1 with β(t) = 0.

Proof. We will prove only the first part of the theorem as the second part can be proved
analogously. We immediately see that u and v given by (9) and (10) satisfy (6) since
c is given exactly by the Rankine-Hugoniot condition derived from that system. By
substituting u and v into (7), we get after standard transformations:

∫

IR+

(c[V ]− [g(U, V )])ϕ(ct, t) dt−
∫

IR+

β′(t)ϕ(ct, t) dt = 0.

From here and since α(0) = 0, the conclusion follows immediately.

As the solution framework of Definition 1.1 is very weak, one might expect non-
uniqueness issues to arise. This is indeed the case, and the proof of the following propo-
sition is an easy exercise.

Proposition 1.3. System (4) with the zero initial data: u|t=0 = v|t=0 = 0 admits δ-shock
solutions of the form:

u(x, t) = 0, v(x, t) = βδ(x− c1t)− βδ(x− c2t),

for arbitrary constants β, c1 and c2.

As already alluded to, a different formal approach for solving (1) was used by [23].
However, just as in [11] the definition of singular solutions used in [23] is so weak that
uniqueness cannot be obtained. Another problem left open in [11, 23] is the physical
meaning of the δ-distribution appearing as the part of the solution. Considering systems
such as the Chaplygin gas system or (3), the use of the δ-distribution in the solution
can be justified by invoking extreme concentration effects if we assume that v represents
density. However, in the case of the Brio system, u and v are velocities and unbounded
velocities cannot be explained in any reasonable physical way.

In the present contribution, we shall try to explain necessity of δ-type solutions for (1)
following considerations from [14] where it was argued (in a quite different setting) that
the wrong variables are conserved. In other words, the presence of a δ-distribution in a
weak solution actually signifies the inadequacy of the corresponding conservation law in
the case of weak solutions. Similar consideration were recently put forward in the case
of singular solutions in the shallow-water system [12].

Starting from this point, we are able to formulate uniqueness requirement for the Rie-
mann problem for (1). First, we shall rewrite the system using the energy q = (u2 +v2)/2
as one of the conserved quantities (which is actually an entropy function corresponding to
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(1)). Thus, we obtain a strictly hyperbolic and genuinely nonlinear system which admits
a Lax admissible solution for any Riemann problem. Such a solution is unique and it will
give a unique δ-type solution to the original system. The δ-distribution will necessarily
appear due to the nonlinear transformation that we apply.

The paper is organized as follows: In Section 2, we shall rewrite (1) in the new
variables q and u, and exhibit the admissible shock and rarefaction waves. In Section 3,
we shall introduce the admissibility concept for solutions of the original system (1), and
prove existence and uniqueness of a solution to the Riemann problem in the framework
of that definition.

2 Energy-velocity conservation

As mentioned above, conservation of velocity is not necessarily a physically well defined
balance law, and it might be preferable to specify conservation of energy for example.
Actually, in some cases, conservation of velocity does give an appropriate balance law,
such as for example in the case of shallow-water flows [7]. In the present situation, it
appears natural to replace at least one of the equations of velocity conservation. As will
be seen momentarily, such a system will be strictly hyperbolic with genuinely nonlinear
characteristic fields, so that the system will be more amenable to standard method of
hyperbolic conservation laws. To introduce the new conservation law, we define an energy
function

q(u, v) =
u2 + v2

2
, (15)

and note that this function is a mathematical entropy for the system (1). Then we use
the transformation

(u, v)→
(
u, u

2+v2

2

)
,

to transform (1) into the system

∂tu+ ∂xq = 0,

∂tq + ∂x
(
(2u− 1)q + u2

2
− 2u3

3

)
= 0.

(16)

System (1) and the transformed system (16) are equivalent for differentiable solutions.
However, as will be evident momentarily, the nonlinear transformation changes the char-
acter of the system, and while (1) is not always genuinely nonlinear, the new system (16)
is always strictly hyperbolic and genuinely nonlinear.

In the following, we analyze (16), and find the elementary waves for the solution of
(16). The flux function of the new system is given by

F =

(
q

(2u− 1)q + u2

2
− 2u3

3

)

with flux Jacobian

DF =

(
0 1

2q + u− 2u2 2u− 1

)
.

The characteristic velocities are given by

λ−,+ =
2u− 1∓

√
8q − 4u2 + 1

2
. (17)
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A direct consequence of (15) gives the relation 2q ≥ u2 ≥ 0 which implies that the
quantity under the square root is non-negative. Thus, 8q−4u2+1 > 0 and the eigenvalues
are real and distinct so that the system is strictly hyperbolic. The right eigenvectors in
this case are given by

r− =

(
1

u− 1
2
−
√

2q − u2 + 1
4

)
,

r+ =

(
1

u− 1
2

+
√

2q − u2 + 1
4

)
.

(18)

It can be verified easily that these eigenvectors are linearly independent and span the
(u, q)-plane. The associated characteristic fields

∇λ− · r− = 2 +
1√

8q − 4u2 + 1
, (19)

∇λ+ · r+ = 2− 1√
8q − 4u2 + 1

, (20)

are genuinely nonlinear and admit both shock and rarefaction waves. For a shock profile
connecting a constant left state (u, q) = (uL, qL) to a constant right state (u, q) = (uR, qR),
the Rankine-Hugoniot jump conditions for (16) are

c(uL − uR) = (qL − qR), (21)

c(qL − qR) =
(
(2uL − 1)qL +

u2L
2
− 2u3L

3
− (2uR − 1)qR − u2R

2
+

2u3R
3

)
, (22)

where c is the shock speed. We want the speed in (21), (22) to satisfy the Lax admissibility
condition

λ∓(uL, qL) ≥ c ≥ λ∓(uR, qR). (23)

To determine the set of all states that can be connected to a fixed left state (uL, ql), we
eliminate the shock speed, c, from the above equations to obtain the shock curves

(qR)1,2 =
2qL − (uL − uR)(2uR − 1)

2
±

√
[−2qL + (uL − uR)(2uR − 1)]2 + 4

[
(uL − uR)

(
(2uL − 1)qL +

u2L
2 −

u2R
2 −

2u3L
3 +

2u3R
3

)
− q2L

]

2
.

After basic algebraic manipulations, we obtain

(qR)1,2 = qL −
1

2
(uL − uR)(2uR − 1)

± | uL − uR |
√

2qL + 1
4

+ 1
2
(uL − uR)− 1

3

(
2u2L + 2uLuR − u2R

)
(24)

From here and (23), by considering (uR, qR) in a small neighborhood of (uL, qL), we
conclude that the shock wave of the first family (SW1), the shock wave of the second
family (SW2), the rarefaction wave of the first family (RW1) and the rarefaction wave of
the second family (RW2) are given as follows:
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Figure 1: (a) Shock waves of the first and the second families at the left state (uL, qL) = (1, 5).
(SW1) is indicated by the upper curve, while (SW2) is the lower curve. The blue dotted curve
shows the critical curve q = u2/2. (b) Rarefaction waves of the first and the second families at
the left state (uL, qL) = (1, 5). (RW1) is indicated by the lower curve while (RW2) is the upper
curve.

(SW1) qR = qL −
1

2

(
uL − uR

)(
2uR − 1

)

+ | uL − uR |
(

2qL + 1
2
(uL − uR)− 1

3

(
2u2L + 2uLuR − u2R

)
+ 1

4

) 1
2
, (25)

for uR < uL. To verify that this indeed is the shock wave of the first family, we obtain
from (21) and (23) that

λ−(uL, qL) ≥ c =
2uR − 1−

√
8qL + 1 +

4u2R
3
− 8uLuR

3
− 8u2L

3
− 2uR + 2uL

2
.

Taking into account the form of λ−, we conclude from the above equation that

2(uL − uR) ≥
√

8qL + 1− 4u2L −
√

8qL + 1 +
4u2R

3
− 8uLuR

3
− 8u2L

3
− 2uR + 2uL.

Further simplification leads to

2 ≥ −4
3
(uL − uR)− 2

√
8qL + 1− 4u2L +

√
8qL + 1 +

4u2R
3
− 8uLuR

3
− 8u2L

3
− 2uR + 2uL

,

which is obviously correct. In a similar way, the second part of the Lax condition,

λ−(uR, qR) ≤ c,

can be verified. Moreover, it is trivial to verify the additional inequality λ+(uR, qR) ≥
c, so that we have three characteristic curves entering the shock trajectory, and one

8



characteristic curve leaving the shock.

(SW2) qR = qL −
1

2

(
uL − uR

)(
2uR − 1

)

− | uL − uR |
(

2qL + 1
2
(uL − uR)− 1

3

(
2u2L + 2uLuR − u2R

)
+ 1

4

) 1
2
, (26)

for uR < uL. We will skip the proof since it is the same as in the case of (SW1). Next,
we have the rarefaction curves.

(RW1), Using the method from [3, Theorem 7.6.5], this wave can be written as

dq

du
=

2u− 1−
√

8q − 4u2 + 1

2
= λ−(u, q), q(uL) = qL, (27)

for uR > uL. Clearly, for uR < uL we cannot have (RW1) since in that domain, states
are connected by (SW1) (see (SW1) above). In order to prove that (27) indeed provides
RW1, we need to show that

λ−(uL, qL) < λ−(uR, qR) if uR > uL. (28)

Introducing the change of variables q̃ = 8q−4u2 + 1 in (27), we can rewrite it in the form

dq̃

du
= −4(1 +

√
q̃) < 0.

From here, we see that q̃ is decreasing with respect to u and thus, for uL < uR, we must
have

8qL − 4u2L + 1 = q̃L > q̃R = 8qR − 4u2R + 1.

This, together with uL < uR immediately implies (28).

(RW2) Using again [3, Theorem 7.6.5], we have

dq

du
=

2u− 1 +
√

8q − 4u2 + 1

2
= λ+(u, q), q(uL) = qL, (29)

for uR > uL. It can be shown that (29) gives the rarefaction wave (RW2) in the same
way explained above for (RW1). The wave fan issuing from the left state (uL, qL) and the
inverse wave fan issuing from the right state (uR, qR) are given in Figure 2(a) and Figure
2(b), respectively.

We next aim to prove existence of solution for arbitrary Riemann initial data without
necessarily assuming a small enough initial jump. The only essential hypothesis is that
both left and right states are above the critical curve qcrit = u2/2:

qL ≥ u2L/2, qR ≥ u2R/2. (30)

This assumptions is of course natural given the change of variables q = u2+v2

2
. Never-

theless, this condition complicates our task since it also needs to be shown that the Lax
admissible solution to a Riemann problem remains in the area q ≥ u2/2. To this end,
the following lemma will be useful.
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Figure 2: Shock and rarefaction wave curves of the first and the second families: (a) shows SW1
(dashed) and RW1 (solid) at the left state (uL, qL) = (1, 5). (b) shows inverse SW2 (dashed,
red) and inverse RW2 (solid, red) at the right state (uR, qR) = (0.7, 7).

Lemma 2.1. The function qcrit(u) = u2

2
satisfies (29).

Proof. The proof is obvious and we omit it.

The above lemma is important since, according to the uniqueness of solutions to the
Cauchy problem for ordinary differential equations, it shows that if the left and right
states (uL, qL) and (uR, qR) are above the curve qcrit(u) = u2

2
, then the simple waves

(SW1, SW2, RW1, RW2) connecting the states will remain above it which means that
we can use the solution to (16) to obtain a solutions of (1) since the square root giving
the function v =

√
2q − u2 will be well defined. Concerning the Riemann problem, we

have the following theorem.

Theorem 2.2. Given a left state (uL, qL) and a right state (uR, qR), so that both are
above the critical curve qcrit(u) = u2

2
i.e. we have qL ≥ u2L/2 and qR ≥ u2R/2, the states

(uL, qL) and (uR, qR) can be connected Lax admissible shocks and rarefaction waves via a
middle state belonging to the domain q > u2/2.

Proof. In order to find a connection between (uL, qL) and (uR, qR), we first draw the waves
of the first family (SW1 and RW1) through (uL, qL) and waves of the second family (SW2
and RW2) through (uR, qR). The point of intersection will be the middle state through
which we connect (uL, qL) and (uR, qR) (see Figure 4 for different dispositions of (uL, qL)
and (uR, qR)). In this case, the intersection point will be unique which can be seen by
considering the four possible dispositions of the states (uL, qL) and (uR, qR) shown in
Figure 4:

• For right states in region I: RW1 followed by RW2;

• For right states in region II: SW1 followed by RW2;

• For right states in region III: RW1 followed by SW2;
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Figure 3: Admissible connections between a given left state (uL, qL) and a right state can be
classified into four regions in the phase plane.

• For right states in region IV : SW1 followed by SW2;

Properties of the curves of the first and second families are provided in a)-d) above. The
growth properties give also existence as we shall show in detail in the sequel of the proof.

Firstly, we remark that SW1 and RW1 emanating from (uL, qL) cover the entire
q ≥ u2/2 domain (see Figure 2(a)). In other words, we have for the curve qR defining the
SW1 by (25):

lim
uR→−∞

q(uR) =∞,

implying that the SW1 will take all q-values for qR > qL. More precisely, for every qR > qL
there exists uR < uL such that qR(uR) = qR where qR is given by (25).

As for the RW1, it holds for q given by (27) that

dq

du
− u ≤ −1 =⇒ dq

du
≤ u− 1,

which means that the RW1 curve emanating from any (uL, qL) for which qL > u2L/2 will
intersect the curve qcrit = u2

2
(since dqcrit

du
= u > u − 1 ≥ dq

du
) at some uR > uL as shown

in Figure 1, b).
Now, we turn to the waves of the second family. Let us fix the right state (uR, qR).

We need to compute the inverse waves (i.e. for the given right state, we need to compute
curves consisting of appropriate left states (see Figure 2(b)). The inverse rarefaction
curve of the second family is given by the equation (29), but we need to take values for
uR < uL (opposite to the ones given in (29)). As for the inverse SW2, we compute from
(21) and (22) the value qL:

qL = qR −
1

2

(
uL − uR

)(
2uL − 1

)

+
(uL − uR)

2

√
8qR + 1 +

4u2L
3
− 8uLuR

3
− 8u2R

3
− 2uL + 2uR, (31)

for uR < uL. Clearly, the RW2 cannot intersect the critical line qcrit = u2

2
since qcrit

satisfy (29) (see Lemma 2.1) and the intersection would contradict uniqueness of solution
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Figure 4: Shock and rarefaction wave curves of the first and the second families. At the left
state L = (uL, qL), the curves SW1 (dashed), SW2 (dashed), RW1 (solid), and RW2 (solid) are
drawn in black. The inverse curves at the right state R = (uR, qR) are indicated in red: SW1
(dashed), SW2 (dashed), RW1 (solid) and RW2 (solid). Panel (a) shows the situation for region
I, Panel (b) shows the situation for region II, Panel (c) shows the situation for region III and
Panel (d) shows the situation for region IV.
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to the Cauchy problem for (29). However, a solution to (29) with the initial conditions
q(uR) = qR > u2R/2 will converge toward the line qcrit = u2/2 since for q given by (29) we
have

dq

du
− u ≥ 0 and

dq

du

∣∣∣
(u,u2/2)

− u = 0,

implying that q will decrease toward qcrit = u2/2 and that they will merge as uL → −∞
(see Figure 2(b)). As for the inverse SW2 given by (31), we see that

lim
uL→∞

q(uL) =∞,

which eventually imply that the 1-wave family emanating from (uL, qL) must intersect
with the inverse 2-wave family emanating from (uR, qR) somewhere in the domain q >
u2/2 (see Figure 4 for several dispositions of the left and right states).

Finally, we remark that according to the previous analysis, it follows that the inter-
section between curves of the first and the second family is unique.

3 Admissibility conditions for δ-shock wave solution

to the original Brio System

Our starting point is that the original Brio system (1) is based on conservation of quan-
tities which are not necessarily physically conserved, and that the transformed system
(16) is a closer representation of the physical phenomenon to be described. The second
principle is that in the present context, a δ-distribution is a manifestation of a deficiency
in the model and therefore it should necessarily be present as a part of non-regular so-
lutions to (1). Moreover, the regular part of a solution to (1) should be an admissible
solution to (16). Guided by these requirements, we are able to introduce admissibility
conditions for a δ-type solution to (1).

Let us first recall the characteristic speeds for (1). Following [8], we see immediately
that

λ1(u, v) = u− 1/2−
√
v2 + 1/4, λ2(u, v) = u− 1/2 +

√
v2 + 1/4. (32)

The shock speed for (1) for the shock determined by the left state (UL, VL) and the right
state (UR, VR) is given by

s =
UL + UR

2
− 1

2
±
√

VL+VR
2

+ 1
4
. (33)

Now we can formulate admissibility conditions for δ-type solution to (1) in the sense of
Definition 1.1. We shall require that the real part of δ-type solution to (1) satisfy the
energy-velocity conservation system (16) and that the number of δ-distributions appearing
as part of the solution to (1) is minimal.

Definition 3.1. We say that the pair of distributions u = U + α(x, t)δ(Γ) and v =
V + β(x, t)δ(Γ) satisfying Definition 1.1 with f(u, v) = u2+v2

2
and g(u, v) = v(u − 1) is

an admissible δ-type solution to (1), (2) if

13



Figure 5: Admissible connection between rarefaction wave curves of the first and second families
in the case VL, VR > 0.

• The regular parts of the distributions u and v are such that the functions U and
q = (U2 + V 2)/2 represent Lax-admissible solutions to (16) with the initial data

u|t=0 = U0, q|t=0 = q0 = (U2
0 + V 2

0 )/2. (34)

• For every t ≥ 0, the support of the δ-distributions appearing in u and v is of minimal
cardinality.

To be more precise, the second requirement in the last definition means that the
admissible solution will have “less” δ-distributions as summands in the δ-type solution
than any other δ-type solution to (1), (2). We have the following theorem:

Theorem 3.2. There exists a unique admissible δ-type solution to (1), (2).

Proof. We divide the proof into two cases:
In the first case, we consider initial data such that both left and right states of the

function V0 have the same sign. In the second case, we consider the initial data where
left and right states of the function V0 have the opposite sign.

In the first case, we first solve (16) with the initial data U0 and q0 = (U2
0 + V 2

0 )/2.
According to Theorem 2.2, there exists a unique Lax admissible solution to the problem
denoted by (U, q). Using this solution, we define V =

√
2q − U2 if the sign of V0 is

positive and V = −
√

2q − U2 if the sign of V0 is negative.
To compute α and β in (5), we compute the Rankine-Hugoniot deficit if it exists at

all. According to Theorem 2.2 there are four possibilities.

• Region I: The states (UL, qL) and (UR, qR) are connected by a combination of RW1
and RW2 via the state (UM , qM). In this situation, we do not have any Rankine-
Hugoniot deficit since the solution (u, q) to (16) is continuous. Thus, we simply
write (u, v) = (u,

√
2q − u2) and this is the solution to (1), (2). The solution is

plotted in Figure 5.

As for the uniqueness, we know that the function u is unique since it is the Lax
admissible solution to (16) with the initial data (34). The function v is determined
by the unique functions u and q via

v = ±
√

2q − u2.
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Thus, v could change sign so that we connect VL by VM1 and then skip to −VM1

on v = −
√

2q − u2 and then connect it by −VM2. From here we connect to VM2

located on the original curve v =
√

2q − u2 and then connect VM2 to VM . Fi-
nally, we connect VM with VR. The procedure is illustrated in Figure 6. However,
since we imposed the requirement that the solutions have a minimal number of δ-
distributions and we cannot connect the states (UM1, VM1) and (UM1,−VM1) using
the δ-shock since such a choice would yield a solutions with a higher number of
singular parts than the previously described solution.

Thus the shock connecting the states (UM1, VM1) and (UM1,−VM1) cannot be sin-
gular, (i.e. there can be no Rankine-Hugoniot deficit). Moreover, these states do
not constitute a jump in the first equation of (1), and therefore the speed c of the
shock must satisfy the Rankine-Hugoniot condition −c[v] + [v(u− 1)] = 0 which is
equivalent to (22) and results in the shock speed

c = UM1 − 1.

On the other hand, the characteristic speeds of (UM1, VM1) and (UM1,−VM1) are
λ1(UM1, VM1) = λ1(UM1,−VM1) 6= c, and since these are equal, the shock connection
between (UM1, VM1) and (UM1,−VM1) is impossible with the Rankine-Hugoniot
condition satisfied.

Similarly, the same requirement makes it impossible to connect (UM2, VM2) and
(UM2,−VM2) by a δ-shock. In this case, the shock speed would have to satisfy the
Rankine-Hugoniot condition

c = UM2 − 1.

Furthermore, we have equality of speeds λ2(UM2, VM2) = λ2(UM2,−VM2), but we
have the contrasting inequality λ2(UM2, VM2) = λ2(UM2,−VM2) 6= c implying that
a shock connection between (UM2, VM2) and (UM2,−VM2) is not possible if the
Rankine-Hugoniot condition is satisfied. The same procedure leads to the conclusion
that a δ-shock connection between (UM , VM) and (UM ,−VM) is impossible with the
Rankine-Hugoniot condition satisfied.

Hence, the only possible connection of (UL, VL) and (UR, VR) is by the combination
RW1 and RW2 via the state (UM , VM). Consequently, we remark that RW1 and
RW2 corresponding to (16) are transformed via (u, q) 7→ (u,

√
2q − u2) into RW1

and RW2 corresponding to (1) (since q is the entropy function for (1), and RW1
and RW2 are smooth solutions to (16)).

• Region II: The states (UL, qL) and (UR, qR) are connected by the combination SW1
and RW2 via the state (UM , qM).

Unlike the previous case, we have a shock wave in (16), and we will necessarily have
a Rankine-Hugoniot deficit in the original system (1). We thus define

(u, v) = (u,
√

2q − u2) + (0, β(t)δ(x− ct)), (35)

where c is the speed of the SW1 connecting the states (UL, qL) and (UM , qM) in (16).
According to (11), the speed c and the corresponding Rankine-Hugoniot deficit β(t):
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Figure 6: Nonadmissible connection between rarefaction wave curves of the first and the second
families

are given in the form

c =

U2
L+V

2
L

2
− U2

M+V 2
M

2

UL − UM
, β(t) = (c(VL − VM)− (VL(UL − 1)− VM(UM − 1))t. (36)

Concerning the other possible solutions, as in the previous item, we can only split
the curve connecting (UL, VL) and (UM , VM) into several new curves e.g. by con-
necting the states (UL, VL) and (UM1, VM1), then the (opposite with respect to
v) states (UM1, VM1) and (UM1,−VM1), then (UM1,−VM1) and (UM2,−VM2), then
(UM2,−VM2) and (UM2, VM2) etc. until we reach (UM , VM). The states (UM1, VM1)
and (UM1,−VM1) can be connected only by the shock satisfying the Rankine-
Hugoniot conditions corresponding to (1) (due to the minimality condition on δ-
shocks, we cannot have a Rankine-Hugoniot deficit).

Since we cannot have a Rankine-Hugoniot deficit, as in the previous item, we must
connect the various states with shock waves satisfying the Rankine-Hugoniot con-
ditions (corresponding to (1)), and at the same time being equal to the speed c
(the speed of the SW1 connecting the states (UL, qL) and (UM , qM) in (16)). In-

deed, according to the admissibility conditions, the states (UL, qL) = (UL,
U2
L+V

2
L

2
)

and (UM1, qM1) = (UM1,
U2
M1+V

2
M1

2
), the states (UM1, qM1) and (UM2, qM2), etc. until

the states (UMk, qMk) and (UM , qM), must be connected by admissible shock waves
lying on the same shock curve (since (u, q) must satisfy the Riemann problem for
(16) with the left state (UL, qL) and the right state (UR, qR) and this is done by at
most two curves – in our case those are SW1 and RW2). Since all the states lie on
the same curve they actually form only one shock which is determined by the end
states (UL, qL) and (UM , qM). Therefore, the shocks connecting the states (UL, VL)
and (UM1 , VM1), then (UM1,−VM1) and (UM2,−VM2) etc. must have the speed c
which is obviously never fulfilled i.e. the only solution in this case is (35).

• Region III:

The states (UL, qL) and (UR, qR) are connected by the combination RW1 and SW2
via the state (UM , qM).
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The analysis for the existence and uniqueness proceeds along the same lines as the
first two cases. The admissible (and thus unique) δ-type solution in this case has
the form:

(u, v) =
(
u,
√

2q − u2
)

+
(
0, β(t)δ(x− ct)

)
, (37)

where c in this case represents the speed of the SW2 connecting the states (UR, qR)
and (UM , qM) in (16). The speed c and the corresponding Rankine-Hugoniot deficit
β(t) are given in (11) and explicitly expressed as in (36).

As in the case of the Regions I and II, notice that it is possible to generate infinitely
many non-admissible (in the sense of Definition 3.1) solutions (in the sense of Defi-
nition 1.1) by partitioning the rarefaction wave of the first family that connects the
states (UL, VL) and (UM , VM) or the shock wave of the second family connecting
the states (UM , VM) and (UR, VR) as done in the considerations for Region II and
Region I, respectively .

Consequently, the only solution admissible in this sense is (37).

• Region IV : The states (UL, qL) and (UR, qR) are connected by the combination
SW1 and SW2 via the state (UM , qM).

The presence of shocks in this case will necessarily introduce a Rankine-Hugoniot
deficit in (1). The solution is constructed by solving (16) for the solution (u, q) and
then go back to (1) to obtain the admissible δ-type solution

(u, v) =
(
u,
√

2q − u2
)

+
(
0, β1(t)δ(x− c1t)

)
+
(
0, β2(t)δ(x− c2t)

)
, (38)

where c1 and c2 given by the expressions

c1 =

U2
L+V

2
L

2
− U2

M+V 2
M

2

UL − UM
and c2 =

U2
M+V 2

M

2
− U2

R+V 2
R

2

UM − UR
, (39)

are the speeds of the shocks SW1 and SW2 respectively. The Rankine-Hugoniot
deficits β1(t) and β2(t) are expressed as in (36) for the appropriate states. The
analysis for uniqueness of (38) is similar to the above cases except that all the
elementary waves involved in this case are shocks.

Next we will treat the case when VL and VR do not have the same sign. Let us focus
on the particular case where VL > 0 and VR < 0. The case where VL < 0 and VR > 0 is
then handled analogously.

It was shown in [8] that in this case, the Riemann problem (1), (2) does not admit a
Lax admissible solution, even for initial data with small variation.

In order to get an admissible δ-type solution, as before, we solve (16) with (U0, q0) as
the initial data. The obtained solution connects (UL, qL) with (UR, qR) by Lax admissible
waves through a middle state (UM , qM). Next, we go back to the original system (1)
by connecting (UL, VL) with (UM ,

√
2qM − U2

M) by an elementary wave containing the
corresponding Rankine-Hugoniot deficit corrected by the δ-shock wave. Then, we connect
(UM ,

√
2qM − U2

M) with (UM ,−
√

2qM − U2
M) by the shock wave whose speed will be

UM − 1 as explained above. Finally, we connect (UM ,−
√

2qM − U2
M) with (UR, VR) by
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Figure 7: Admissible connection between rarefaction wave curves of the first and second families
in the case when the left state has VL > 0 and the right state has VR < 0. In this case, a shock
connecting the states (UM ,−VM ) and (UM , VM ) has to be fitted between the rarefaction curves.
It is shown in the part of the proof pertaining to region I that this shock has the required speed.

an elementary wave containing the corresponding Rankine-Hugoniot deficit corrected by
the δ-shock wave.

Let us first show it is possible to apply the described procedure. We again need to split
considerations into four possibilities depending on how the states (UL, qL) and (UR, qR)
are connected.

• Region I: The states (UL, qL) and (UR, qR) are connected by RW1 and RW2 via the
middle state (UM , qM).

It is clear that we can connect (UL, VL) with (UM ,
√

2qM − U2
M) using RW1 (it is the

same for both equations since RW1 and RW2 are smooth solutions to (16)). Also,
we can connect (UM ,−

√
2qM − U2

M) with (UR, VR) using RW2. We need to prove

that the shock wave connecting (UM ,
√

2qM − U2
M) and (UM ,−

√
2qM − U2

M) has

a speed which is between λ1(UM ,
√

2qM − U2
M) and λ2(UM ,−

√
2qM − U2

M). Note
that since there is no jump in u, and there is no jump in v2, the first equation
of (1) is satisfied in the classical sense, and the shock speed is determined by the
Rankine-Hugoniot condition associated to the second equation in (1), which yields
c = UM − 1.

Thus we need to check whether we have

UM −
1

2
−
√
V 2
M + 1

4
≤ UM − 1 ≤ UM −

1

2
+
√
V 2
M + 1

4

which is obviously correct. This configuration is depicted in Figure 7. We remark
that it is possible to connect the states (UM ,

√
2qM − U2

M) and (UM ,−
√

2qM − U2
M)

using a δ-shock but it would violate the principle of a minimal number of δ-shocks.

• Region IV :

The states (UL, qL) and (UR, qR) are connected by SW1 and SW2 via the middle
state (UM , qM).

As in the previous item, we connect (UL, VL) with (UM ,
√

2qM − U2
M) this time

using the SW1 from (16) which will induce the Rankine-Hugoniot deficit in (1).
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Then, we skip from (UM ,
√

2qM − U2
M) to (UM ,−

√
2qM − U2

M) using the standard
shock wave (the one satisfying the Rankine-Hugoniot conditions), and finally we go
from (UM ,−

√
2qM − U2

M) to (UR, VR) using the SW2 from (16) and corrected with
an appropriate δ-shock. More precisely, the admissible δ-type solution will have the
form:

u(x, t) = UL + (UM − UL)(H(x− c1t)−H(x− ct))
+ (UM − UL)(H(x− ct)−H(x− c2t)) + (UR − UL)H(x− c2t)

v(x, t) = VL + (VM − VL)(H(x− c1t)−H(x− ct))
+ (VM − VL)(H(x− ct)−H(x− c2t)) + (VR − VL)H(x− c2t)
+ β1(t)δ(x− c1t) + β2(t)δ(x− c2t),

(40)

where c1 is the speed of the SW1 connecting (UL, qL) with (UM , qM) in (16), c2
is the speed of the SW2 connecting (UM , qM) with (UR, qR) in (16), while c is the
speed of the shock connecting (UM ,−

√
2qM − U2

M) with (UM ,
√

2qM − U2
M) and it

is given by the Rankine-Hugoniot conditions from (1). The deficits β1 and β2 are
given by Theorem 1.2 (see (36) for the analogical situation).

However, we still need to prove that (40) is well defined, i.e. that c1 ≤ c ≤ c2.
Using (22), the relation to be shown is

2UM − 1−
√

8qL + 1 +
4U2

M

3
− 8ULUM

3
− 8U2

L

3
− 2UM + 2UL

2

≤ UM − 1 ≤
2UM − 1 +

√
8qR + 1 +

4U2
M

3
− 8UMUR

3
− 8U2

R

3
− 2UM + 2UR

2

which is also clearly true.

• Region III: The states (UL, qL) and (UR, qR) are connected by RW1 and SW2 via
the middle state (UM , qM).

This case, as well as the following one, is handled by combining the previous two
cases.

• Region II:

The states (UL, qL) and (UR, qR) are connected by SW1 and RW2 via the middle
state (UM , qM).

Uniqueness is obtained by arguing as in the first part of the proof.

4 Conclusion

The standard theory of hyperbolic conservation laws is concerned with solutions which
are at worst locally integrable. More precisely, if the general system (4) is genuinely
nonlinear and strictly hyperbolic, and if the total variation of the initial data is small
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enough, then the corresponding Riemann problem has a unique solution consisting of
rarefaction waves and compressive shock waves (Lax-admissible waves) [2]. On the other
hand, if these conditions are not fulfilled, then the Riemann problem may not admit a
Lax admissible weak solution or even any weak solution (see e.g. [15, 16, 24, 26]).

In the current contribution, we show that transforming a system using an appropriate
entropy which represents a meaningful physical quantity that is actually conserved (in
this case the energy) may help in the study of the original system. We focus on the
system (1) which arises in the study of magnetohydrodynamics. The system (1) was first
studied in [8], where it was conjectured that in order to find solutions, one would have to
resort to singular shocks. In [11, 23] solutions were found, but the definition of singular
solutions used in these works was extremely weak, and thus uniqueness could not be
obtained.

In the present work, we are able to show the existence of a unique solution to the Rie-
mann problem associated with the system (1) through use of Rankine-Hugoniot deficits
and the related concept of singular shocks given by Dirac δ-distributions copropagating
with shocks. In contrast to a number of previous studies such as [19, 27], where the
δ-distribution represented concentration effects, in the current context it provides a mea-
sure of the discrepancy between using formally equivalent systems with different unknown
variables.

It should be pointed out that the flux function in (1) is nonlinear with respect to both
unknowns, whereas so far virtually all known uniqueness results for singular solutions
have been obtained in the context of flux functions which are linear with respect to
one of the unknowns. For example the uniqueness results obtained in [10, 21] concern
pressureless gas dynamics systems which have a flux function linear with respect to one
of the unknowns.

Whether a general recipe for existence and uniqueness of singular solutions can be
given in a way that works for a general class of systems is unclear at this point. However,
one may surmise that the physical background against which the system is derived may
play a role in the question of whether or not this can be done, and how one should
proceed.
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Addendum

Paper A
There is a minor misprint in Theorem 2.2 (p.1141) which also appears in the
proof on page 1142. The relation for the Rankine-Hugoniot deficit α′(t) = g∆H
is missing a minus sign. The correct expression should be α′(t) = −g∆H . In
addition, equation (2.23) is missing g in the third term. The correct equation
should read

∂tUε +
1
2

∂xU2
ε +g∂xHε +α

′(t)δε− cα(t)δ′+ cα∂xS2
ε = oD ′(1).

Furthermore, the variable v in Definition 2.2 is a misprint and should be h so that
u,v ∈ C(R+;D ′(R)) becomes u,h ∈ C(R+;D ′(R)). These misprints are minor
typos and do not affect the result of the paper.

Paper B
The gravitational constant g is missing in equations (3.2),(3.3) and (3.4). The
correct equations should be as follow:

F′(U) =

(
ΓH +u H

g u

)
, (3.2)

λ−= u+
1
2

ΓH−
√

gH +
(1

2ΓH
)2

and λ+= u+
1
2

ΓH+

√
gH +

(1
2ΓH

)2
. (3.3)

r− =

(
1

−1
2Γ− 1

H

√
gH +

(1
2ΓH

)2

)
and r+ =

(
1

−1
2Γ+ 1

H

√
gH +

(1
2ΓH

)2

)
.

(3.4)
Furthermore, there is a minor misprint in (3.5). The correct equation is

∇λ−(H,u) · r−(H,u) =− 3gH +Γ2H2
√

4gH +Γ2H2
< 0

∇λ+(H,u) · r+(H,u) = +
3gH +Γ2H2
√

4gH +Γ2H2
> 0.

(3.5)

These minor misprints do not affect the results established in the paper.
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