
Discriminating between surfaces of peripheral membrane

proteins and reference proteins using machine learning

algorithms

Fengming Miao

February 25, 2019

Master’s thesis

Department of Informatics
University of Bergen

1

Abstract

In biology, the cell membrane is an important component of a cell and usually works
as a “fence” to distinguish the inside and outside of a cell. The key role is to protect the
cells from being interfered by their surroundings by preventing the molecules that will
enter into the cell. However as we know, cells need to keep communicating with their
surroundings to acquire nutrition and other necessary molecules in order to stay alive
and grow. Due to this reason, membrane proteins are used as molecular carriers to
participate the molecular communication and regulate the biological activities. There
are two kinds of membrane proteins: integral and peripheral. In this project, we only
focus on the latter.

Unlike the integral membrane proteins which can go across the whole membrane,
peripheral membrane proteins can only attach to the surface of the membrane through
various interactions. Because peripheral proteins are also soluble, it is difficult to
differentiate them from other kinds of proteins (i.e. non membrane-binding) from
sequence or structure. In this project, we will develop a method to predict from its
structure wether a protein is membrane-binding protein or not based on two machine
learning algorithms: k-nearest neighbors(KNN) and support vector machine(SVM).
We use them to train the data and create two models respectively, which will be used
to classify new proteins as well as compare their performance.

By for example collecting different features of proteins, adjusting the parameters
of the algorithms or changing size and structure of the dataset, we can improve the
performances of the algorithms as well as predict the protein type more accurately.
We also use ROC curve and AUC to present the performance in overview, and cross
validation to verify the result.

For the problems in this field, several challenges should be considered as well, such
as collecting of features, analysis and dealing with the huge variety of data, as well as
the choice of machine learning algorithms for a design based on functional requirements,
data structure, efficiency and other factors. In this project, we will encounter these
challenges and solve them by effective methods.

2

Acknowledgement

I would like first to thank my supervisor Professor Nathalie Reuter in the Computational
Biology Unit at the University of Bergen. I can not find a word to express all my gratitude
to her. Thanks for giving me the opportunity to work under her instruction and all the
patient guidance and everlasting optimistic attitude to my scientific work. The door to
Prof. Nathalie’s office was always open whenever I ran into a trouble spot or had a question
about my research or writing. She really gave me so much advice on my project and guided
me to finish the thesis. She would correct me in time every time I had deviations on my
work. Her way of doing science impressed me very much and what I learned from her will
be a great treasure in my life.

I would also say thanks to Takaya Saito who is an associate Professor in UiB and is
extremely experienced in machine learning. He gave me a lot of advice about how to
implement machine learning algorithms on my data. He always answered me patiently
both by e-mails and in person whenever i had questions.

Another I would thank is Edvin Fuglebakk who offered me the original protein dat
sets without reservation. Based on these sets I extracted a part of peripheral membrane
proteins and a part of reference proteins with several features, and finally finished my
research work.

Last, I also want to say thanks to my colleagues in the office: Hanif Muhammad
Khan, Qaiser Waheed and Emmanuel Edouard Moutoussamy. They always gave me help
passionately when I had questions. I really had a nice time with them.

3

Contents

1 Introduction 6
1.1 Background . 6
1.2 Objectives . 6
1.3 Thesis overview . 6

2 Proteins 7
2.1 Biosynthesis and definition . 7
2.2 Categories . 7
2.3 Structures . 7
2.4 Cell membrane . 8
2.5 Peripheral membrane proteins . 9

3 Machine learning 10
3.1 Definition . 10
3.2 Categories . 10

3.2.1 Supervised learning . 10
3.2.2 Unsupervised learning . 10
3.2.3 Reinforcement learning . 12

4 Collecting of data and features 13
4.1 Definitions . 14
4.2 First feature . 14

4.2.1 ASA . 14
4.3 Second feature . 15
4.4 Third feature . 15
4.5 Fourth feature . 17
4.6 Feature summary . 17

5 Algorithm selection 18
5.1 KNN . 18

5.1.1 Principle . 18
5.1.2 Distance function . 18
5.1.3 Factor K . 19
5.1.4 Application . 21

5.2 SVM . 21
5.2.1 Principle . 22
5.2.2 Linear classification . 22
5.2.3 Non-linear classification . 25
5.2.4 γ and C . 28
5.2.5 Applications . 29

4

6 Feature analysis 30
6.1 Why . 31
6.2 Features visualization . 31
6.3 Features selection . 33

7 Algorithm implementation 36
7.1 KNN function . 36
7.2 SVM function . 36
7.3 Noise elimination . 38
7.4 Feature scaling . 38
7.5 Balanced dataset . 38
7.6 Performance formula . 39
7.7 Wrapper method . 40
7.8 KNN performance . 41

7.8.1 Alternative dataset . 41
7.9 SVM performance . 41
7.10 ROC-AUC curve . 44

8 Result verification 47
8.1 Cross-Validation . 47
8.2 Steps . 47
8.3 Cross-Validation on KNN . 47
8.4 Cross-Validation on SVM . 48

9 Conclusion and future work 51
9.1 Conclusion . 51
9.2 Future work . 51

5

1 Introduction

1.1 Background

Along with the development of society and technologies, traditional analysis tools could
not satisfy the requirements of modern data. The volume of data is becoming bigger and
bigger and the quality is becoming more and more complicated. Therefore the choice
of a intelligent analytical method has been a top priority. Machine learning is an ideal
choice for solving this kind of data. It is becoming more and more popular and can be
used in many different fields, such as industry, service, agriculture and so on. In this
article, we will implement machine learning in biology and give an overview about how it
is capable of classifying peripheral membrane proteins based on protein data. The proper
implementation of machine learning can liberate the workforce, save production costs,
improve work efficiency and finally change our world.

1.2 Objectives

Peripheral membrane proteins have complicated and various structures, with more and
more new proteins are found, it is time-consuming to determine the type(peripheral mem-
brane proteins or not) using traditional methods. Moreover, unlike transmembrane proteins
which can be identified by their sequences, peripheral proteins are arduous to detect us-
ing normal detection methods. Therefore we aim at finding an efficient way in which we
can find internal rules and make an accurate prediction of all these new proteins rapidly
through plenty of data collected from thousands of proteins of whose structures are already
known. That is why we chose a machine learning algorithm by which we train the collected
data and form a model to predict new proteins.

1.3 Thesis overview

In this article, first of all we will talk about the definition of proteins, their structures and
functions. In third chapter, we will introduce machine learning as well as its categorization.
In fourth chapter, we collect data and features of proteins from a original dataset. When the
data is ready, suitable algorithms are then picked up according to the structure of dataset
we have created. In sixth chapter, we will carry on features analysis to see which features are
representative and choose those that give us the best performance through machine learning
algorithms. After that, we come to the core part in this article–implementing the machine
learning algorithms, we will try two algorithms in order to compare their performances. A
model validation techniques will be tried as well to estimate how accurately a predictive
model from machine learning will perform in practice. At last, the conclusion analysis will
be included to display the exciting results from our model by various ways. We will also
present the work we will do for potential improvement in the future.

6

2 Proteins

2.1 Biosynthesis and definition

Proteins are large biomolecules and play a critical role in the biological processes. Amino
acids chains are the main components of them. As we know, the formation of proteins
has gone through a complex process. Briefly it follows a central dogma: “DNA makes
RNA and RNA makes protein”[1]. DNA contains two strands which are composed of four
nucleotide bases(A-adenine, T-thymine, G-guanine, C-cytosine) in a certain order. These
two strands are combined together to form the double strands DNA based on pairing rule
of bases(A corresponds T and G corresponds C) and hydrogen bonds. The process from
DNA to RNA is called transcription[2], where one of strands is transcribed into a RNA
single chain according to base complementarity principle[3] by RNA polymerase[4].

The process from RNA to protein is called translation[5], where base sequences of
mRNA are decoded to generate corresponding amino acids. Every amino acid contains
three nucleotide bases and are called a codon[6] in the gene fragment of DNA. Since there
are four bases, therefore the total number of amino acids should be 64(4×4×4). However,
in biology the number of amino acids is 20, which indicates that there is a superabundance
in the representation of bases(some amino acids are represented by more than one codon).
For example: ACT represents Threonine[6], but ACC, ACA, ACG also mean Threonine.

A short sequence of amino acids is called a peptide[7] and a long sequence is called a
polypeptide[7] or a chain. Each protein contains one or more chains. Difference sequences
of amino acids generate different proteins.

2.2 Categories

In biology, there are many kinds of proteins with various functions. For example: anti-
body[8] is a kind of protein and can be used to neutralize viruses, which will keep our
bodies from being infected diseases; Also a part of proteins can work as signaling for bio-
logical processes; and some can help to transport molecules and other materials from one
place to another; In addition, most of enzymes[9] are also proteins which influence plenty
of biological reactions.

2.3 Structures

Most proteins can fold into 3-dimensional structures. There are four different structures:
Primary structure; Secondary structure; Tertiary structure and Quaternary structure.
From figure 2.1, you can see how it looks like for every stage.

We focus on the protein tertiary structure in this project. Our extraction of protein
features is based on this.

7

Figure 2.1: The four different levels of protein structures.(Source: “The Four Levels of
Protein Structure”[10])

Figure 2.2: Integral proteins and peripheral proteins: Integral proteins are fully embedded
in the bilayer of membrane, while peripheral proteins only attach on its surface. (Source:
“Integral and peripheral membrane proteins”[15])

2.4 Cell membrane

As we know, cell membrane[11] is the “fence” to separate the interior of cells from their
exterior. In addition, it also participates many biological processes and serves as the
attachment points for peripheral proteins.[12]

The main component of a cell membrane is phospholipids[13] which contain both a
hydrophilic head and a hydrophobic tail. Hydrophobic tails usually gather together to
form a ’sheet’ via non-covalent interactions[14]. Two ’sheets’ then compose a lipid bilayer
with their tails facing inward and heads outward(see figure 2.2). The area between two
layers works as a barrier to protect the cell.

8

2.5 Peripheral membrane proteins

Membrane proteins are proteins that interact with membranes. There are two different
membrane proteins in the lipid bilayer: integral membrane proteins[16] and peripheral
membrane proteins. Integral membrane proteins are placed across the whole lipid bilayer,
while peripheral membrane proteins(PMP) only attach on the surface of the membranes(see
figure 2.2).[17][18] This kind of attachment plays an important role for many intracellular
and extracellular activities.

Membrane proteins are very common in protein families. A lot of genes in genomes are
used to encode membrane proteins.[19][20]

9

3 Machine learning

3.1 Definition

Machine Learning (ML) covers a large and diverse range of methods involving algorithm,
probability and statistics etc. It shows how computers learn the regular pattern of existing
knowledge in different fields and apply the obtained rules on new knowledge. It is the
central part of artificial intelligence(AI)[21].

3.2 Categories

It can be divided into the following three categories.

3.2.1 Supervised learning

Supervised learning is a kind of learning based on both input and output values of samples.
It trains a model based on samples by finding out the rules in the data, and use this model
to predict new samples.

For instance, let’s say you want to decide if you will do an outdoor activity one day
according to the weather situation, such as temperature, humidity, wind power, traffic
condition etc. Then your model will be trained on historical data with these features and
use this model to decide a new day on which you will do a outdoor activity or not. Hence
the model is supervised.

Typical supervised learning algorithms: Support vector machine, Naive Bayes, Decision
Tree, Neural network, K-Nearest Neighbors and Gradient boosting.[22]

3.2.2 Unsupervised learning

In contrast, unsupervised learning is a learning where we only have input values and don’t
have output values in the dataset. The purpose of unsupervised learning is to find out
the distribution pattern of data. It contains two types: clustering problem and association
problem[23]. Figure 3.2 is a example of clustering.

For a clustering problem, we take the same example as we used for supervised learning.
This time we will automatically partition people into different groups(people in this group
like this kind of activity and people in another group like other activities) according to
several variables like their hobbies, weather condition, traffic condition etc, based on an
unsupervised learning algorithm. For an association problem, we further want to know the
possibility that they will do another activity based on what they like.

The main algorithms for unsupervised learning are k-means and Association Rules.[23]

10

Figure 3.1: The figure above shows a classification problem for samples. There are two
classes(C1 and C2). The straight line represents a linear boundary(left) and the curve
represents a quadratic boundary(right), which are used to define the regions C1 and C2.
New observations will be classified into the class C1 or C2 depending on which region they
will fall into. Classifiers are not perfect, because they can not classify the points totally,
some points are classified wrongly.

Figure 3.2: There are three different groups in the data, they can be partitioned clearly
using unsupervised learning

11

3.2.3 Reinforcement learning

Reinforcement learning[24] is the main learning of artificial intelligence(AI). The machine
based on this learning needs to make different decisions. For instance, a self-driving car is
driving on the road and needs to decide when and where it should turn or when it must
be stopped. By continuously collecting information from environment to train models for
itself using this learning, the car can make accurate decisions.

The most typical algorithm of this learning is Q-Learning, Deep Adversarial Net-
works.[23]

12

Figure 4.1: The original protein structure dataset with features.(Source: “A model for
hydrophobic protrusions on peripheral membrane proteins”[25])

4 Collecting of data and features

In order to implement machine learning algorithms, we obviously need to collect data from
the structure of proteins. Since data is the basis of any data analysis, it is also ideal that
we have enough data for machine learning algorithms to learn and form a model that can
reflect the pattern of the data. Moreover, the data we collect must reflect the essential
structure of proteins and should be obviously different between peripheral proteins and
reference proteins(those are not membrane-binding proteins).

In this article, we use protein structure dataset collected by Edvin Fuglebakk who was
a former member of the research group. He formulated a model for protrudings on protein
surface using properties of the vertices of a convex hull defined by the cα and cβ atoms of
the protein in the dataset.

This dataset contains amino acids from a set of peripheral membrane proteins and a set
of reference proteins and lists many features of proteins. Figure 4.1 shows how the dataset
looks like.

There are 17 features in the original dataset. According to the advice from my super-
visor, we have chosen 6 features that we will use in this project:

A: structure is the code of protein in OPM database, which is consistent with PDB
file. It specifies which protein the amino acid belongs to.

B: type is three letter code of residue.
C: exposed is 1 if this residue is exposed on the surface, otherwise 0.
D: neighbours is the number of cα and cβ atoms this residue has within 1 nm. It

reflects the protein density around the amino acid.
E: convhull is 1 if residues is on the convex hull, otherwise 0.
F: facet-neighbours-ww-if is the number of vertices that share a facet with this

residue on the convex hull. ’None’ means the residue is not on the convex hull. Here we

13

only restrict to co-insertable hydrophobic protruding residues. We will interpret all these
items in the following except A and B which we have expounded in chapter 2.

We take the dataset of Edvin Fuglebakk as an original dataset. The following part will
show you how we transform these 6 features from this original dataset into 4 new features
in the new dataset.

4.1 Definitions

Before we start, we need to introduce several concepts in order to understand the new
features.

Cα and Cβ -atoms In organic molecules, “Cα refers to the first carbon atom that attaches
to a functional group, such as a carbonyl, and the carbon next to it is called Cβ atom.”[26]
The definitions of Cα and Cβ -atoms can also be applied to proteins and amino acids. All
the amino acids contain Cα and Cβ -atoms except glycine.

Convex hull: In mathematics, “the convex hull of a set of points(we call this set X) is
the smallest convex set that contains X.[27] It can be considered as the set of all convex
points in X ”.[28] For the convex hull of proteins, it is defined as the smallest possible set
of atoms cα and cβ in the protein domain.

Protruding residues Intuitively, the protrusion is a part that protrudes from an object.
We identify protruding residues “via the calculation of the convex hull of the Cα and Cβ
coordinates in the protein. The residues whose Cβ atom is a vertex of this convex hull
are defined as vertex residues and vertex residues are defined as protruding residues if they
have low local protein densities which are defined as the number(n) of neighboring Cα and
Cβ atoms within a distance c(= 1nm) of their Cβ atom”.[25]

4.2 First feature

As the first feature, we are going to calculate the frequency of five amino acids(Phenylalanine,
Tryptophan, Cysteine, Leucine and Methionine) on the surface of tertiary structure of pro-
teins. The reason why we choose this property as a feature is that these amino acids are
hydrophobic and membranes also have a hydrophobic core. The frequency of these five
amino acids is higher in the set of peripheral proteins than in the reference set(R).

4.2.1 ASA

We need to define solvent-accessible surface area in order to count the amino acids on the
surface.

14

The accessible surface area (ASA) is the surface area of a protein molecule that is
accessible to a solvent. It is normally decided by rolling a ball with a specific radius to
’probe’ the surface of the molecule.[29] The radius of the ball used here is 0.14nm.

Another feasible solution is that you can filter the amino acids by calculating the
ASA values based on softwares, such as: Freesasa,[30] VMD,[31] NACCESS[32] etc. After
calculating the ASA values, a threshold should be set up to identify wether the residue is
exposed on the surface or not according to the value. If the ASA value is bigger than this
threshold, it is; otherwise, it’s not.

We pick up original feature A, B and C to build this new feature. For every protein
we calculate the number of those five amino acids that are exposed on the surface(the one
whose value is 1 for feature C in original dataset), and divide it by the total number of
residues on the surface. The outcome is treated as the value of the first feature in our
training set.

4.3 Second feature

As the second feature, we calculate the number of hydrophobic protruding residues. Ac-
cording to the experimental result of Edvin Fuglebakk, there are much more hydrophobic
protruding residues on the surface of peripheral proteins than reference proteins.

Since we have defined what are protruding residues above, now we designate the local
protein density(d) to be low if d < n. Here the values of c and n are 1nm and 22 respectively,
“which were manually chosen based on a set of six different families of peripheral membrane
proteins (C2-domain, PX-domain, Discodin domain, ENTH domain, Lipoxygenases and a
Bacterial Phospholipase C)”.[25](See figure 4.2)

Moreover, “an amino acid is defined to be hydrophobic if it contributes to membrane in-
terface partitioning of peptides. These amino acids are: leucine, isoleucine, phenylalanine,
tyrosine, tryptophan, cysteine and methionine”.[25]

Original features D and E are chosen to create the second feature. For every protein,
we check every residue if it is on the convex hull and if the number of neighboring Cα and
Cβ -atoms is less than 22. In addition, we also have to restrict to those listed seven amino
acids above. As a result, the count of residues under these three limitations works as the
value of this feature.

4.4 Third feature

The third feature is extracted partly based on the definition of second feature. We further
restrict only to count the number of co-insertable hydrophobic protruding residues(figure
4.3). This kind of residues are “hydrophobic protruding residues that connect at least one
other residue using a straight line which is an edge of the convex hull”.[25]

We use feature F for this feature. Only the residues values greater than zero are selected
and counted.

15

Figure 4.2: Protruding hydrophobes are found on the membrane binding sites of mem-
brane binding domains. The figure shows the convex hull (in blue) of the Cα and Cβ
atoms of several peripheral membrane binding domains. The Cβ atoms of the likely in-
serted hydrophobe are shown as orange spheres and Cβ atoms of experimentally identified
membrane-binding residues as gray spheres. 1RLW: C2 domain of human phospholipase
A2;[33] 1H6H: PX domain of P40PHOX;[34] 1POA: snake phospholipase A2;[35] 1PTR:
C1 domain of protein kinase C delta;[36] 1H0A: Epsin ENTH domain;[37] 1VFY: FYVE
domain of yeast vacuolar protein sorting-associated protein 27.[38] (Source: “A model for
hydrophobic protrusions on peripheral membrane proteins”[25])

16

Figure 4.3: Panel A shows a cartoon representation of the C2 domain of human phos-
pholipase A2 (PDB ID: 1RLW), and panel B show the convex hull for the same protein.
Co-insertable protruding hydrophobes are connected by orange lines.(Source: “A model for
hydrophobic protrusions on peripheral membrane proteins”[25])

4.5 Fourth feature

The net charge of the amino acids on the surface of protein is our last feature.[39]
As we know, the quantity of amino acids that make up the proteins is 20, among which

only 4 are charged. They are: lysine (+), arginine (+), aspartate (-) and glutamate (-).
Thus the net charge is the sum of charged amino acids on the surface of protein.

4.6 Feature summary

Until now, we have extracted 4 features for both peripheral proteins and reference proteins
from the original dataset. The first feature is the frequency of those 5 amino acids on the
surface of protein; the second feature is the number of hydrophobic protruding residues;
the third feature is the number of co-insertable hydrophobic protruding residues and the
fourth feature is the net charge of amino acids on the surface. In chapter 6, you will see an
example of the new dataset. We will also analyze these features and present an overview
of how much they can contribute to the model in that chapter.

17

5 Algorithm selection

As we have stated in chapter 1, our goal is to develop a method to predict from structure
whether a given protein is membrane-binding or not, apparently this is a classification
problem. Therefore the machine learning algorithms we choose should be powerful for
classification. In addition, the protein dataset on which our classification problem is based
has label values and all the feature values are continuous. So the machine learning algorithm
we consider for our specific issue should be supervised. Moreover, another factor that need
to be considered is that the size of dataset we have created is not so large.

Therefore based on the situations mentioned above, we pick up two algorithms KNN
and SVM to implement and compare their performances. Although each learning algorithm
fits a specific dataset, they still have some properties in common. So that both of them
can be used for this project:

1) Both of them can be used for both classification and regression problems in various
fields.

2) For classification problems, both of them can be used either for two classes or multi
classes.

3) Both of them are suitable for datasets with small sizes.

5.1 KNN

5.1.1 Principle

The k-nearest neighbor (KNN)[40] algorithm is one of the most traditional algorithms for
both classification and regression. Based on the purpose of this project, we only focus on
its classification.

As described before, the output values in our dataset are classes(YES means membrane-
binding protein and NO means non membrane-binding protein). For every new-added
sample, the KNN algorithm will calculate the distance between this sample and all other
samples in the dataset through the feature space to find its k-nearest neighbors. Then the
class with most samples among these neighbors will be assigned to this new sample.

5.1.2 Distance function

Since KNN is based on calculating the distances between new sample and each of the
training samples to decide the final classification output. So how can we calculate the
distance between two samples? A feasible solution is: we imagine that for every new
sample with N features, the values of features are the coordinates in N-dimensional space
and are used to calculate the distance according to distance formula. In figure 5.1, the
new sample(* star) will be classified positive(if we take small squares as positive samples
and small circles as negative samples). Because among its 5 nearest neighbors, the number

18

Figure 5.1: k-Nearest neighbor classification. The new sample will be classified into a
positive sample.

of positive samples is larger than the number of negative samples based on the voting
mechanism.

There are many different functions for calculating the distance, among which Euclidean
distance function is used widely and fits our dataset:

Euclidean distance:

dist(A,B) =

√
Σm
i=1(xi − yi)

2

m
(5.1)

where A = (x1 , x2, ..., xm), B = (y1, y2, ..., ym) and m is the dimensionality of the
space. However, it is worth to try all of them in case another function could give better
performance.

5.1.3 Factor K

After learning the principle of KNN, maybe someone would ask: does the choice of k really
affect the result? And how to find the optimal k in order to get the best performance of
KNN?

Firstly, the choice of the parameter k is very crucial and is somehow the most important
parameter in this algorithm, and the choice strictly relies on what kind of data you have.

If you implement KNN with different k values on a two-classes dataset, you will get
different boundaries which separate two classes and the boundary will become more and
more gentle if k is increased gradually. Figure 5.2 shows this change.

19

Figure 5.2: The influence of different k to boundaries which separate the two classes.

20

Figure 5.3: The cross-validation accuracy plot with different values of k. In this plot the
interval of x-axis(the range of k) is [1 20].

Secondly, there are multiple methods to find the optimal k, such as K-Fold Cross
Validation[41] which we will talk about later. The best k value can be found by plotting the
cross-validation accuracy with different k. As you can see in figure 5.3 which is calculated
using 15 repeats of 10-fold cross-validation. By visualizing the plot, the k value with highest
accuracy seems to be located between 15 and 20. Figure 5.4 gives you the resampling
results across tuning parameters, where k = 18 corresponds to the highest cross-validation
accuracy. You can also extend the range of k values(X-axis in figure 5.3) to give you a
more accurate k value, but the running time will be prolonged accordingly.

5.1.4 Application

KNN is an powerful algorithm to solve real world problems in many fields. For instance,
KNN can be used for “visual pattern recognition to scan and detect hidden packages in the
bottom of a shopping cart at check-out”.[42] Another application is to for example predict
the incidence of some diseases by collecting the medical data of patients. Proper usage of
machine learning algorithms can really bring you surprisingly effects.

5.2 SVM

Support vector machine (SVM)[43] is another popular machine learning algorithm for both
classification and regression.

21

Figure 5.4: The resampling results across tuning parameters where we can find the optimal
k.

5.2.1 Principle

The principle of SVM for classification is: we consider the features of samples as coordi-
nates and map them into a N-dimensional space(N is decided by the number of features).
According to the data and the kernel function in the algorithm, SVM will train a model
and classify samples into different classes with the help of a margin and its boundaries. A
new sample will be assigned the class where it falls in. Similar with KNN, we need to find
the optimal parameters(margin and boundaries).

There are two forms of classifications in SVM: Linear classification and Non-linear
classification.[43]

5.2.2 Linear classification

Linear classification indicates that two classes can be divided by a “margin hyperplane”.
It has two situations: Linear separable and Non-linear separable.[43]

Linear separable Let us first see a simple example in which positive samples and neg-
ative samples can be separated totally using a straight line or a hyperplane. We call this
situation linear separation. See figure (5.5).

In this situation, you can draw so many multiple separating lines or hyperplanes as
you want. Figure (5.6) illustrates this situation. All the straight lines in this figure are
meaningful since they can separate the classes totally. In fact there is an infinity. Now the
question is: which one is the best?

22

Figure 5.5: In this example red points and blue points can be easily separated using a
straight line between them.

Figure 5.6: Multiple separation lines. More than one straight line can separate the data
totally, but only one of them is optimal.

23

Figure 5.7: In this figure, the two dashed lines are optimal boundaries which satisfy the
shown equations respectively, where all points locating on and above the upper boundary
belong to one class and all points locating on and below the lower boundary belong to
another class. The solid line is the optimal hyperplane which separates two classes. X
represents the data point in the feature space and w is its vector to that line. There
will always be some points (from both sides) that are closest to the optimal boundaries
(the red points in the figure), these points are called support vectors[43]. The straight
distance between support vectors and the hyperplane is 1

‖w‖ , which can be calculated by
mathematical methods.

Here we define the strategy of finding the best straight line or hyperplane: we first need
to find the maximum margin whose vertical distance from its boundaries to the nearest
data point is minimized. In another word, the vertical distance from its hyperplane(In
geometry, hyperplane locates in the center of margin and has equal distance to both parallel
boundaries) to the nearest data point is maximized. This kind of hyperplane is considered
to be optimal. Figure (5.7) gives you an overview.

It is easy to see that the max-margin hyperplane depends only on those support vectors.
This means that unlike other classification algorithms, this classifier does not rely on other
points in the dataset.

Although the above separation is great, the data in practice is not so perfect as we
expect and it can not be separated linearly. So, what can we do when we deal with these
kinds of datasets?

24

Figure 5.8: Non-linear separation. You can see that several points are misclassified. One
blue point locates on the red side and one red point locates on the blue side.

Non-linear separable Another situation is non-linear separation in which it is feasible
for some points to be misclassified because of the complexity of data. As you can see in
5.8

The hyperplane in this situation can be represented by the following equation[43]:[
1

n

m∑
i=1

max(0, 1− yi(~w · ~xi + b))

]
+ λ‖~w‖2 (5.2)

where λ is a parameter that controls the hyperplane(Source: “https://en.wikipedia.
org/wiki/Support-vector_machine.”).

5.2.3 Non-linear classification

Notice that the separation boundaries which are produced by the previous process in linear
calssification do not always work because of the complexity in real life data(See figure 5.9).
A way to “create non-linear classifiers by applying the kernel trick (originally proposed
by Aizerman et al.[43]) to maximum-margin hyperplanes was suggested by Bernhard E.
Boser, Isabelle M. Guyon and Vladimir N. Vapnik”.[44] As mentioned in the principle
of SVM part, we mapp the features of samples into a N-dimensional space and use the
number of features as the dimension of space. For the data points that can not be linearly
separated(5.9), the strategy of kernel function is to increase the dimension of space, which
can greatly reduce the complexity of the problem(as you can see in figure 5.10).

Some common kernels functions[45] include:

25

https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine

Figure 5.9: Non-linearly separable data. The points in this set can not be separated by a
straight line.

26

Figure 5.10: The transformed space. In this space, the number of space dimensions in-
creased from 2 to 3, which greatly simplifies the complexity of the problem, because the
data can be separated by a linear hyperplane in the new space.

27

Linearl:
K (Xi, Xj) = Xi

TXj (5.3)

Polynomial:

K (Xi, Xj) =
(
γXi

TXj + r
)d
, γ > 0 (5.4)

Radial basis function(RBF):

K (Xi, Xj) = exp
(
−γ‖Xi −Xj‖2

)
, γ > 0 (5.5)

Sigmoid:
K (Xi, Xj) = tanh

(
γXi

TXj + r
)

(5.6)

The first is used for linear separation and the last three for non-linear separation.
Furthermore, RBF has been proven to be most effective among these functions and has
been applied most frequently in practice. We will test all these three functions and give
their corresponding performance in the following part.

5.2.4 γ and C

Parameter γ In equation 5.5, parameter γ controls the separation boundaries. Intu-
itively, it decide the distance between the samples and the boundaries, Low γ leads to long
distance and high γ can lead to short distance. If the γ is too high, the kernel function will
shrink and will not recapitulate the data totally, and thus will cause a risk of underfitting.
On the other hand, if the γ is too low, the kernel function will extend and more data
points will be included in the margin, so that it will work like a linear separation, and will
obviously have a hazard of overfitting.

Parameter C Another important factor in kernel functions is C, which is the number
of misclassified data points and can be seen as “the penalty of making an error”.[46] The
increasing of C indicates that the margin is becoming bigger and bigger, so that we penalize
more and more points. In contrast, the decreasing of C means that the margin is getting
smaller and smaller, and we are penalizing less points. We don’t want to penalize too many
points in order to have more data points to train and get an accurate model, and in the
meanwhile we also want to get a big enough margin to generalize the dataset as much as
possible. So it’s a tradeoff between having more data points to train and generalizing the
dataset as much as possible.

Both parameter λ and parameter C are pivotal to SVM. Therefore we need to find the
optimal γ and C in order to exert the best performance of this algorithm.

28

5.2.5 Applications

As one of the most popular ML algorithms, SVM can be used in various fields:
1) SVM can be used to solve various real world problems.
2) SVM are useful for text categorization and image identification.
3) Hand-written characters can also be recognized through SVM[47].

29

Figure 6.1: The new dataset on which machine learning algorithms are based. This set
contains four protein features and a part of data.

6 Feature analysis

Normally when you implement a machine learning algorithm on data, several procedures
should be followed.

1) Data collection.
2) Data transformation.
3) Algorithm selection.
4) Feature analysis and extraction.
5) Data preprocessing(noise elimination and data normalization).
6) Implementation(of machine learning algorithm).
7) Result analysis and verification.
The original dataset has been provided by Edvin Fuglebakk, so we don’t need to collect

data. We have finished step 2 in chapter 4 and step 3 in chapter 5. In this chapter, we
will carry out features analysis and extraction. In chapter 7, we will go through the data
preprocessing as well as Implementation, and carry on the result verification in chapter 8.

First of all, let’s see the new dataset we have created in chapter 4(figure 6.1). There
are 5 columns which represent different implications: first column refers the protein code
which is consistent with protein databases such as OPM[48] and PDB,[49] the remaining
four columns correspond to the four new protein features we have created in chapter 4.
We extracted 1000 peripheral proteins and 1000 reference proteins totally from the original
dataset and stored them in CSV files.

30

Figure 6.2: The scatter plot matrix. This matrix shows the correlation between every two
features.

In this chapter, we will analyze these features and select those that are representative
and can improve the model instead of keeping all features no matter if they are useful or
not.

6.1 Why

The primary purpose of feature analysis is to do the feature selection. The following reasons
explain why we need a feature selection:

1) More features might contain more noise in the data, which will influence the per-
formance of model. Reducing irrelevant features can improve the performance and avoid
overfitting.

2) The simplified data structure can reduce the running time so that you can try more
complicated algorithms.

3) The simplified data structure can also make it easy for people to understand. A
dataset with 5 features is surely more succinct than with 10.

6.2 Features visualization

Before we do the selection, it is necessary to visualize the features to get more insights of
them. In R a package ggplot2 can be used to plot features in different forms. Such as:

31

Figure 6.3: The density plot.

Figure 6.4: The box plot.

32

scatter plot, density plot and box plot.
In scatter plot(figure 6.2), the correlation between every two features is shown in every

cell. For example, the scatter plot on leftmost in first row implies the correlation of
feature 1 and feature 4. It is not hard to see that most of samples(both positive and
negative) gather together disorderly, which means feature 4 does not have obvious change
along with increment of values in feature 1, and anyone of them don’t actually influence
another. Same interpretation in other cells except cell(2, 2) that shows a special correlation
between feature 2 and 3, where samples show an increasing trend(if you put an approximate
imaginary straight line in the middle), which suggests that the relationship between them
is proportional.

In contrast to the scatter plot matrix that shows the correlation between features.
density plot in figure 6.3 and box plot in figure 6.4 indicate the properties within every
feature. In figure 6.3, The blue parabola visualises the distribution of negative samples
over a continuous interval and the red one visualises the distribution of positive samples.
We take feature 3 as an example, notes that the directrix for blue parabola is far away from
the one for red parabola, which means the main distribution interval of negative samples
has an offset to the main distribution interval of positive samples even through there is a
small overlapping interval in feature 3. The bigger offset between the two directrix, the
more representative the feature is and the better model it forms. For feature 1 and 2, there
also exist offset from positive samples to negative more or less while in feature 4, their
main distribution intervals are almost overlapping. Figure 6.4 has a more clear display, the
two rectangles represent the main distribution intervals of negative and positive samples
within every feature. Less common area tell us they have less overlapping distribution
interval, which means this feature is more representative. In above figure, we can easier to
see feature 3 is the best and feature 4 is the worst.

All the analysis above only depends on the visualization of features. We don’t have
any credible evidences to support which features we should select and which one we should
discard. In the next paragraph we will carry out data analysis for the selection to see if
the result is consistent with the visualization.

6.3 Features selection

We first filter features by computing specific scores using statistical methods.

Table 1: Feature analysis methods based on different type of features.
(Source: ’Introduction to Feature Selection methods with an example’)[50]

Features\Response Continuous Categorical

Continuous Pearson’s Correlation LDA
Categorical Anova Chi-Square

33

Figure 6.5: LDA output. This method is used to find a linear combination of variables
that can separate different classes.

Filter Methods There are many methods to achieve it. Table 1 can guide your choice.
The methods in this table try to find the correlation or association between features.
Since all our features are continuous and outputs are categorical, therefore LDA(linear
discriminant analysis) is the matching one. The R output based on this method is displayed
as follows(figure 6.5):

The first part in this figure tells us that the sizes of positive samples and negative
samples are equal. Second part demonstrates the mean values of these two categories in
every feature. It is necessary to mention that the difference of mean values between the
two groups in feature 3 is obvious, which means that this feature will have an apparent
impact on the model comparing with other features. In the last part, coefficient indicates
the relationship between every feature and its corresponding output, and represents the
slope of the linear equation.

y = coefficient ∗ feature

Another way in which we evaluate features is to select those features that have the
strongest relationship with the output values by calculating the feature scores. The scikit-
learn library in Python provides the SelectKBest class that can be used to do that. Be-
low(figure 6.6) are functions and result, where f classif is one of internal functions.

By using score function fit(X, Y), we got the scores of four features. The feature with
highest score is the best and has the strongest relationship with output.

34

Figure 6.6: The Python code for calculating feature scores. SelectKBest is a class. fit(X,
Y) is the score function. X and Y indicate input and output value respectively.

Wrapper Methods Again filter methods can show us comparison of features. It seems
like we should drop the last feature since it got the lowest score. However, a tricky issue is
how we should define the threshold with which we filter features? Do we need to filter the
first feature as well? We require a robust and powerful method to decide that.

A direct method is wrapper[50] that relies on the performance of machine learning
models. We train a model by adding features one by one to see if it helps to improve the
performance. If it does, then we keep it; otherwise, we drop it. We will implement this
method after we introduce the main functions of KNN and SVM in the next chapter.

Some common methods are: forward feature selection, backward feature elimination
and recursive feature elimination etc.[50]

35

7 Algorithm implementation

In this chapter we will introduce the main functions of KNN and SVM in R and display
results by adjusting different parameters.

7.1 KNN function

knn model← knn(Trainset.scaled, Testset.scaled, labels train,

k = 6,prob = TRUE,

algorithm = c(“kd tree”, “cover tre”, “brute”))

Tthe KNN function used in the project is shown above. Where:
• Trainset.scaled: iscaled training set;
• Testset.scaled: scaled testset;
• labels train: label values of training set;
• k: number of neighbours we take. See chapter 5.1.3. The K value here is just a

default value;
• prob: If it is true, the algorithm will also calculate the voting ratio of winning class;
• algorithm: is the strategy to search nearest neighbors.

7.2 SVM function

SVM model← svm(trainset.scale$label .,data = trainset.scale, scale = TRUE,

tolerance = 0.001, epsilon = 0.1,

cross = 0, nu = 0.5,probability = FALSE,

na.action = na.omit, degree = 3, coef0 = 0,

gamma = 1/4, cost = 1, class.weights = NULL,

method = ”C-classification”, kernel = ”sigmoid”)

Above shows the SVM function[51] used in the project. Where:
• trainset: the dataset we used to train the model.
• V8: the output values in the training set.
• scale: indicating if the data should be scaled.
• tolerance: the termination point of iteration for calculating the error rate in order

to find the optimal solution to SVM. This iteration would never stop without this setting
because of the floating point type of errors.
• epsilon: the model goes through a process of gradual optimization to be good enough

by calculating the loss using the loss function in the algorithm, parameter epsilon in that
function is used to stop the optimization process.
• cross: k-fold cross validation that is used to verify the model. We will talk about it

in details in the following chapter.

36

• nu: a parameter for nu-classification, nu-regression, and one-classification. Our prob-
lem is c-classification.
• probability: indicating whether the model will calculate the class probability of new

samples or not.
• na.action: specifying what the function will do if there are NA values in the training

set. “na.omit” means that it will reject samples with missing values, while “na.fail” means
that it will cause an error.
• gamma: parameter that is used to control the margin for all kernel function except

linear. See the section 5.2.4.
• cost: specifying the number of misclassified points. Also see the section 5.2.4.
• degree and coef0: parameters for polynomial and sigmoid kernel functions. We will

not talk about them in details since they didn’t performance very well for our dataset
• class.weights: indicating whether the training set is balanced or not. If it is, this

parameter is NULL; otherwise, the ratio of classes should be supplied.
• method: indicating the type of task(classification or regression) depending on the

output values.
• kernel: kernel function.
Note that in SVM function, we used default values for gamma and cost. Recall chapter

5 where we have declared that optimal gamma and cost need to be found in order to
avoid underfitting and overfitting, Therefore, a tune function is used to find the optimal
parameter gamma and cost, in other words to capture the best performance of model. See
the equation below.

tune out← tune.svm(x = trainset.scale[,-train ColNum],

y = factor(trainset.scale[,train ColNum]),

sampling = ”Bootstrapping”,

gamma = 10 ∧ (−3 : 3), cost = 10 ∧ (0 : 3),

kernel=”radial”)

Where:
• x: the variables of training set.
• y: the output of training set.
• sampling: how to sample for the dataset. Some typical methods are cross, Bootstrap-

ping, Bagging and Ensembling.
• gamma: the grid of gamma, the function will find the optimal gamma in this range.
• cost: the grid of cost, the function will find the optimal cost in this range.
• kernel: kernel function.

37

7.3 Noise elimination

Noise elimination is critical as well if your data contains noise. In machine learning, the
quality of data will greatly affect the model performance. For example: noise can influence
the distribution of data points, especially the data in the domain area of dataset, and thus
will affect the performance of model.

As we know, noise can appear both in input value and output value, where subjective
judgments, typing errors, information insufficient, missing values or incomplete values can
be common.

Noise elimination is really tough. Different noise requires different techniques. It is hard
to clean up all the noise, and is also hard to distinguish between noisy and true exceptions.
Despite this, several methods can be proposed to avoid or deal with noise to some extent.

1) All the label values and feature values should be acquired through scientific ways or
theories instead of subjective assumptions.

2) Training models like Regression or Bayes with normal data to predict label values
can be an approach.

3) Copying values from a similar normal sample in the dataset to fill the missing values
is also possible.

4) For feature noise, we may replace it with a specific value such as mean or median,
or according to a voting mechanism based on the type of features.

5) We can also implement algorithms that are tolerant to noise. Such as deep neural
network.[52]

7.4 Feature scaling

Feature scaling is a method that is used to scale the features and is usually considered as
a data preprocessing step. It is also called data normalization.[53]

Some machine learning algorithms would not work properly without normalization
because of the diversity of features. For example, some classifiers calculate the distance
between two data points through a kernel function. If the range of one feature is extremely
bigger than others, then the distance will be dominated by this feature. Therefore, all
features should be normalized ahead of time so that each feature contributes proportionally
to the model.

We use min-max normalization[53] to scale the data. See the equation 7.1

x́ =
x−min(x)

max(x)−min(x)
(7.1)

7.5 Balanced dataset

Balanced dataset refers to a dataset in which the classes are distributed equally. This is an
unignored factor which can influence the final result. Imbalanced dataset might produce

38

a bias classifier, which means the result will be dominated by the majority class. For
instance, you have 200 samples in a dataset in which 150 samples belong to class A and
others belong to class B. The ratio of these two classes is 3:1. Thus even though you got
a excellent performance from this model, this performance may only reflects the dominant
class distribution instead of entire data.

However in real-world data, imbalanced data is inevitable, such as medical data from
patients, or real-time data from production. They are either expensive or difficult to collect.
How can we implement the machine learning in this situation and meanwhile ensure the
reliability of the model? So in case you have an imbalanced dataset, several measures can
be attempted. For example:

1) Try as many different algorithms as possible. Some of them might perform better
on imbalanced dataset.

2) Try to collect more data. A larger dataset can make the imbalance less obvious.
3) Use other performance analysis. Such as sensitivity-precision curve.[54]
4) Resample dataset. This may help you to get more samples in minority class or get

rid of samples from majority class.[55]
We prepared 2000 protein samples(1000 peripheral membrane proteins and 1000 ref-

erence proteins) and two algorithms(KNN and SVM). We will run both algorithms with
different data sizes and parameters. In order to guarantee the accuracy, we will use bal-
anced dataset.

7.6 Performance formula

In this chapter we will get to the core part of this article: the implementation of machine
learning based on dataset we have created and preprocessed.

As we have said before we divide the dataset into training set and test set. The training
set is used to train a model and test set to test performance. The proportion of training
set and test set is adjustable. Popular options can be 0.7/0.3, 0.8/0.2 or 0.9/0.1. If you
have a big dataset, then you can use more data as test set; otherwise, less samples can also
be feasible.

We display performance by calculating accuracy, sensitivity, specificity and precision.
They can be achieved via the following formula:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (7.2)

Sensitivity = TP/(TP + FN) (7.3)

Specificity = TN/(TN + FP) (7.4)

39

Precision = TP/(TP + FP) (7.5)

where:
True positive(TP): is the number of positive samples that were classified into positive

in test set.
False negative(FN): is the number of positive samples that were classified into negative

in test set.
True negative(TN): is the number of negative samples that were classified into neg-

ative in test set.
False positive(FP): is the number of negative samples that were classified into positive

in test set.
Thus in classification problems:
Accuracy: is the ratio of correctly classified samples by the model over the whole test

set.
Sensitivity: is the ratio of correctly classified samples within positive class over all

the positive samples in the test set.
Specificity: is the ratio of correctly classified samples within negative class over all

the negative samples in the test set.
Precision: is the ratio of correctly classified samples within positive class over all the

classified positive samples.
The matrix in Table 2 can help to understand.

Table 2: Confusion matrix.
Predicted\Test set Pos Neg

Pos TP FP
Neg FN TN

7.7 Wrapper method

As we promised above, we will implement the common wrapper method based on a model
for feature selection. By adding one feature each time, we calculate the model’s perfor-
mance. The final results from KNN are illustrated in the Table 3.

In the Table 3, all the results are based on a dataset with 500 proteins(250 peripheral
membrane proteins and 250 reference proteins) in which 400 proteins are for training set
and 100 proteins for test set. We calculated accuracy, sensitivity, specificity and precision
by adding features one by one. There is an obvious upward trend on these performances
along with the accumulation of features except feature 4. The including of feature 4 leads

40

Table 3: Wrapper method based on a KNN model. See section 4.2 - 4.5 for feature
description.

Performance Accuracy Sensitivity Specificity Precision k value

Feature 1 0.68 0.72 0.64 0.67 5
Feature 1, 2 0.74 0.76 0.72 0.73 10

Feature 1, 2, 3 0.85 0.82 0.84 0.84 10
Feature 1, 2, 3, 4 0.82 0.82 0.82 0.82 16

to the decay of model’s performance in overall. This conclusion is consistent with the
feature analysis in chapter 6. The K values in last column are optimal K values for every
implementation. In the following analysis, we will exclude feature 4(net charge of amino
acids exposed on the surface) and focus on rest of them.

7.8 KNN performance

This time we will extend the dataset size to see any changes on performance. We also use
a different ratio of training set and test set, the test set occupies 1/10 of whole set, and
this test set is an independent set and is not used to train the model. So that we can keep
more data for both training set and validation set which we will talk about in the result
verification section. See the performances in figure 7.1.

7.8.1 Alternative dataset

In figure 7.1 four performance curves are displayed for KNN. Along with the growing of
dataset, they would decline. What caused this diversification? A possible reason is: In
order to collect more data to train a reliable model as well as have a balanced dataset, we
collected many proteins from a alternative dataset as a part of reference proteins. This
dataset was collected with different criterions and has more exceptions, which means that
the features values we transformed from this alternative dataset are not so representative
for reference proteins as what we did from the original reference dataset.

Therefore, it shows an overall decline with the extending of dataset. their values of
accuracy, sensitivity, specificity and precision at size 2000 are 0.85, 0.89, 0.80 and 0.82
correspondingly.

7.9 SVM performance

We first assay all the kernel functions except Linearl. The comparison based on 500 proteins
is shown in Table 4. Obviously, RBF has the best performances among them.

The SVM’s performance based on RBF and the extending of data is shown in figure
7.2. Each plot contains the comparison of ’before tune’ and ’after tune’.

41

Figure 7.1: KNN performance with 3 features.

42

Figure 7.2: SVM performance with 3 features.

43

Table 4: The comparison of kernel functions

Kernel Accuracy Sensitivity Specificity Precision

Polynomial 0.82 0.96 0.68 0.75
RBF 0.88 0.88 0.88 0.88

Sigmoid 0.7 0.8 0.6 0.67

Note that these four performance plots have downward trends after tuning. This also
validates the characteristic of our dataset which we have stated in previous paragraph. The
values of accuracy, sensitivity, specificity and precision after tuning at size 2000 are 0.85,
0.89, 0.81 and 0.82.

The confusion matrix(figure 7.3) offers a panoramic view of the SVM performance at
size 2000 where 200 proteins are used as a independent test set.

7.10 ROC-AUC curve

Another method that can be used to evaluate the performance of model is ROC-AUC(receiver
operating characteristic-area under the curve) curves.[56]

In statistics, ROC curves show the trend of model performance with different thresh-
olds for classifying the classes. It reflects the mutual relationship between true positive
rates(TPR) and false positive rates (FPR) in the model, where true positive rate is actu-
ally the sensitivity and false positive rates can be acquired by equation: TN/(TN+FP).
You can see the curve in figure 7.4.

AUC can be used to get the whole performance of classifier. By running statistical
function in R, the area under this curve is 0.86. The higher, the better.

With the development of technology, ROC-AUC analysis has been applied in medicine,
agriculture, commerce and bioinformatics etc, and is widely used in machine learning and
data analysis.

However, it is worth to mention that if you have unbalanced classes(unequal number
of positive and negative samples), ROC curves can be misleading and should not be used,
a sensitivity-precision curve can be more reasonable. An example is given in figure 7.5.

44

Figure 7.3: Confusion Matrix of the SVM output.

45

Figure 7.4: ROC curve.

Figure 7.5: Sensitivity-Precision plot.

46

8 Result verification

Having obtained the results from both KNN and SVM. We are now going to use a method
to verify them.

8.1 Cross-Validation

Since we obtained good performances, we now use a method to verify this result. We
still use SVM performance as our verification object. A popular verification method is
Cross-validation.

Cross-validation is a model validation technique to evaluate the model we get when we
apply it to a totally different dataset. Intuitively, it is used to estimate the accurateness
of the model. For a machine learning prediction problem, we prepare a training set and a
test set. We aim at testing this model by cross-validation to avoid bias.

8.2 Steps

The Cross-Validation can be divided into several steps.
1) Partition the training set into K groups with equal sizes. Each group has N/K

samples(we assume the total size of training set is N). The K value is normally 10.
2) We define these groups as group 1, group 2, ..., group K, then choose one of them

as a validation set one by one starting from group 1 and rest groups as training set.
3) Every time when we get a new training set and validation set, we will train a model

using this training set and test on the validation set.
4) Keep iterating K times, we get K best performances from those models.
5) We average these performances and get ultimate result.
Figure 8.1 can give you an overview about how we divide the data for Cross-Validation.

8.3 Cross-Validation on KNN

We choose the function that is used to find the optimal K to implement the cross-validation.
The function is illustrated below.

model← train(labels train .,

method = ”knn”,

tuneGrid = expand.grid(k = 1 : 50),

trControl = trainControl(method = ”repeatedcv”, number = 10, repeats = 15),

metric = ”Accuracy”,

data = Trainset.scaled)

47

Figure 8.1: Cross-Validation.

Where:
• labels train: is the label values of dataset which is used for cross-validation.
• method: is the machine learning algorithm.
• tuneGrid: is the tuneGrid for K.
• trControl: is the train control. Where the method is cross-validation, we divide data

into 10 groups to run the cross-validation and repeat the operation15 times.
• metric: indicating we will calculate the accuracy performance of cross-validation.
• data: is scaled dataset.
See the output depending on 1800 training samples and 3 features in figure 8.2, where

the accuracies for 10-fold cross-validation is listed and the average accuracy is 0.845.

8.4 Cross-Validation on SVM

Remember that in the SVM function there is a parameter “cross” which is defined to
implement the cross-validation. The outcome based on 1800 training samples and 3 features
is illustrated in figure 8.3. The average accuracy is 0.848.

We notice that the performances from cross-validation for both KNN and SVM are
slightly lower than those from test set. This is normal. Cross-validation almost always
lead to lower estimated errors on an unseen test set. The reason is that the model is not
so generalized. It is specalized to the structure of the training set.

48

Figure 8.2: KNN Cross-Validation output.

Figure 8.3: SVM Cross-Validation result.

49

The small deviation between test set and validation set indicates that this model is
reliable. Big deviation means the model you have trained is overfitting. However if your
cross-validation performance is higher than test performance, the reason can be various,
such as data size or splitting ratio.

50

9 Conclusion and future work

9.1 Conclusion

Till now we have implemented these two algorithms based on the data we have collected
in chapter 4. By visualizing the results, we can summarize that:

1) After the feature visualization and feature selection, we believe that feature1, feature2
and feature3 we created in chapter 4 are positive for building the model, while feature4 is
harmful to the model.

2) KNN and SVM have similar performance track on the data. Both of their perfor-
mances declined along with the extending of data because of the characteristic of dataset(As
we have mentioned in 7.8, the data from alternative dataset contains more exceptions).

3) They also have approximative performances in accuracy, sensitivity, specificity and
precision, since both are typical for classification problems.

4) More specifically, SVM is slightly higher in specificity and precision, but KNN is
better in sensitivity, and they have equal accuracy.

5) Their cross-validation accuracies are also proximate and a little bit lower than their
models.

6) Another need to be mentioned is that RBF gave the best performance among those
kernel functions in SVM based on our data.

7) After verifying the model using cross-validation, we see that the models we have
trained are accurate. Because validation accuracy is close to test accuracy.

9.2 Future work

So far we have completed the necessary steps for a machine learning algorithm. From the
data collecting in the beginning to feature selection and visualization, from the choice of
algorithm to implementation, and from result display to verification, every step refers to
different methods. It is unrealistic to attempt every method, but we used the most suitable
one for every step.

We will stop this project here, However we still have a lot of work to do in the future
even through we got good models and performances based on our data. We want to further
improve the model. Thus the following work can be done to improve the model.

First of all, try to collect more proteins. The original dataset contains only 1000
peripheral membrane proteins and over 2000 reference proteins. So next we can collect
more peripheral proteins from protein databases such as PDB(Protein data bank) and
OPM(Orientations of Proteins in Membranes (OPM) database) to support our model.
The more data you have, a more reliable model you will get.

Second, try to use different protein data to test and verify the model, since the model
is specalized to the training set. By this way we can test if the model er reliable.

Last, based on a larger dataset, we can try different machine learning algorithms and
compare their performance extensively.

51

List of Figures

2.1 The four different levels of protein structures.(Source: “The Four Levels of
Protein Structure”[10]) . 8

2.2 Integral proteins and peripheral proteins: Integral proteins are fully embed-
ded in the bilayer of membrane, while peripheral proteins only attach on its
surface. (Source: “Integral and peripheral membrane proteins”[15]) 8

3.1 The figure above shows a classification problem for samples. There are two
classes(C1 and C2). The straight line represents a linear boundary(left) and
the curve represents a quadratic boundary(right), which are used to define
the regions C1 and C2. New observations will be classified into the class
C1 or C2 depending on which region they will fall into. Classifiers are not
perfect, because they can not classify the points totally, some points are
classified wrongly. 11

3.2 There are three different groups in the data, they can be partitioned clearly
using unsupervised learning . 11

4.1 The original protein structure dataset with features.(Source: “A model for
hydrophobic protrusions on peripheral membrane proteins”[25]) 13

4.2 Protruding hydrophobes are found on the membrane binding sites of mem-
brane binding domains. The figure shows the convex hull (in blue) of the
Cα and Cβ atoms of several peripheral membrane binding domains. The
Cβ atoms of the likely inserted hydrophobe are shown as orange spheres
and Cβ atoms of experimentally identified membrane-binding residues as
gray spheres. 1RLW: C2 domain of human phospholipase A2;[33] 1H6H:
PX domain of P40PHOX;[34] 1POA: snake phospholipase A2;[35] 1PTR:
C1 domain of protein kinase C delta;[36] 1H0A: Epsin ENTH domain;[37]
1VFY: FYVE domain of yeast vacuolar protein sorting-associated protein
27.[38] (Source: “A model for hydrophobic protrusions on peripheral mem-
brane proteins”[25]) . 16

4.3 Panel A shows a cartoon representation of the C2 domain of human phospho-
lipase A2 (PDB ID: 1RLW), and panel B show the convex hull for the same
protein. Co-insertable protruding hydrophobes are connected by orange
lines.(Source: “A model for hydrophobic protrusions on peripheral membrane
proteins”[25]) . 17

5.1 k-Nearest neighbor classification. The new sample will be classified into a
positive sample. 19

5.2 The influence of different k to boundaries which separate the two classes. . 20
5.3 The cross-validation accuracy plot with different values of k. In this plot

the interval of x-axis(the range of k) is [1 20]. 21
5.4 The resampling results across tuning parameters where we can find the op-

timal k. 22

52

5.5 In this example red points and blue points can be easily separated using a
straight line between them. 23

5.6 Multiple separation lines. More than one straight line can separate the data
totally, but only one of them is optimal. 23

5.7 In this figure, the two dashed lines are optimal boundaries which satisfy the
shown equations respectively, where all points locating on and above the
upper boundary belong to one class and all points locating on and below
the lower boundary belong to another class. The solid line is the optimal
hyperplane which separates two classes. X represents the data point in the
feature space and w is its vector to that line. There will always be some
points (from both sides) that are closest to the optimal boundaries (the
red points in the figure), these points are called support vectors[43]. The
straight distance between support vectors and the hyperplane is 1

‖w‖ , which
can be calculated by mathematical methods. 24

5.8 Non-linear separation. You can see that several points are misclassified. One
blue point locates on the red side and one red point locates on the blue side. 25

5.9 Non-linearly separable data. The points in this set can not be separated by
a straight line. 26

5.10 The transformed space. In this space, the number of space dimensions in-
creased from 2 to 3, which greatly simplifies the complexity of the problem,
because the data can be separated by a linear hyperplane in the new space. 27

6.1 The new dataset on which machine learning algorithms are based. This set
contains four protein features and a part of data. 30

6.2 The scatter plot matrix. This matrix shows the correlation between every
two features. 31

6.3 The density plot. 32
6.4 The box plot. 32
6.5 LDA output. This method is used to find a linear combination of variables

that can separate different classes. 34
6.6 The Python code for calculating feature scores. SelectKBest is a class. fit(X,

Y) is the score function. X and Y indicate input and output value respectively. 35
7.1 KNN performance with 3 features. 42
7.2 SVM performance with 3 features. 43
7.3 Confusion Matrix of the SVM output. 45
7.4 ROC curve. 46
7.5 Sensitivity-Precision plot. 46
8.1 Cross-Validation. 48
8.2 KNN Cross-Validation output. 49
8.3 SVM Cross-Validation result. 49

53

List of Tables

1 Feature analysis methods based on different type of features. 33
2 Confusion matrix. 40
3 Wrapper method based on a KNN model. See section 4.2 - 4.5 for feature

description. 41
4 The comparison of kernel functions . 44

54

List of Equations
5.1 Euclidean distance . 19
5.2 Equation for computing the (soft-margin) SVM classifier 25
5.3 Linear kernel . 28
5.4 Polynomial kernel . 28
5.5 RBF kernel . 28
5.6 Sigmoid kernel . 28
7.0 KNN function . 36
7.0 SVM function . 36
7.0 tune.svm function . 37
7.1 Normalization function . 38
7.2 Accuracy function . 39
7.3 Sensitivity function . 39
7.4 Specificity function . 40
7.5 Precision function . 40
8.0 train function . 47

55

References

[1] Central Dogma, https://en.wikipedia.org/wiki/Central_dogma_of_molecular_

biology.

[2] Transcription, https://en.wikipedia.org/wiki/Transcription_(biology).

[3] Base Complementarity Principle, https://en.wikipedia.org/wiki/

Complementarity_(molecular_biology).

[4] RNA Polymerase, https://en.wikipedia.org/wiki/RNA_polymerase.

[5] Translation, https://en.wikipedia.org/wiki/Translation_(biology).

[6] Codon, https://en.wikipedia.org/wiki/DNA_codon_table.

[7] Peptide and Polypeptide, https://en.wikipedia.org/wiki/Peptide.

[8] Antibody, https://en.wikipedia.org/wiki/Antibody.

[9] Enzymes, https://en.wikipedia.org/wiki/Enzyme.

[10] Mckenzie, ”The Four Levels of Protein Structure”. http://kenzie-skye.weebly.

com/blog/the-four-levels-of-protein-structure. 9/11/2012

[11] Cell Membrane, https://en.wikipedia.org/wiki/Cell_membrane.

[12] Peripheral Proteins, https://en.wikipedia.org/wiki/Peripheral_membrane_

protein.

[13] Phospholipids, https://en.wikipedia.org/wiki/Phospholipid.

[14] Non-covalent Interaction, https://en.wikipedia.org/wiki/Non-covalent_

interactions.

[15] Integral and Peripheral Membrane Proteins, https://www.slideshare.net/

Medical_PPT_Images/integral-and-peripheral-membrane-proteins-medical-

images-for-power-point. SlideShare. Jul 18, 2014

[16] Integral Membrane Proteins, https://en.wikipedia.org/wiki/Integral_

membrane_protein.

[17] Johnson JE, Cornell RB (1999). ”Amphitropic proteins: regulation by re-
versible membrane interactions (review)”. Mol. Membr. Biol. 16 (3): 217-235.
doi:10.1080/096876899294544. PMID10503244.

56

https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
https://en.wikipedia.org/wiki/Transcription_(biology)
https://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
https://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
https://en.wikipedia.org/wiki/RNA_polymerase
https://en.wikipedia.org/wiki/Translation_(biology)
https://en.wikipedia.org/wiki/DNA_codon_table
https://en.wikipedia.org/wiki/Peptide
https://en.wikipedia.org/wiki/Antibody
https://en.wikipedia.org/wiki/Enzyme
http://kenzie-skye.weebly.com/blog/the-four-levels-of-protein-structure
http://kenzie-skye.weebly.com/blog/the-four-levels-of-protein-structure
https://en.wikipedia.org/wiki/Cell_membrane
https://en.wikipedia.org/wiki/Peripheral_membrane_protein
https://en.wikipedia.org/wiki/Peripheral_membrane_protein
https://en.wikipedia.org/wiki/Phospholipid
https://en.wikipedia.org/wiki/Non-covalent_interactions
https://en.wikipedia.org/wiki/Non-covalent_interactions
https://www.slideshare.net/Medical_PPT_Images/integral-and-peripheral-membrane-proteins-medical-images-for-power-point
https://www.slideshare.net/Medical_PPT_Images/integral-and-peripheral-membrane-proteins-medical-images-for-power-point
https://www.slideshare.net/Medical_PPT_Images/integral-and-peripheral-membrane-proteins-medical-images-for-power-point
https://en.wikipedia.org/wiki/Integral_membrane_protein
https://en.wikipedia.org/wiki/Integral_membrane_protein

[18] Alenghat, Francis J.; Golan, David E. (2013). ”Membrane Protein Dynamics and
Functional Implications in Mammalian Cells”. Current Topics in Membranes. Current
Topics in Membranes.

[19] Krogh, A.; Larsson, B. R.; Von Heijne, G.; Sonnhammer, E. L. L. (2001). ”Predicting
transmembrane protein topology with a hidden markov model: Application to complete
genomes”. Journal of Molecular Biology. 305 (3): 567-580. doi:10.1006/jmbi.2000.4315.
PMID11152613.

[20] Liszewski, Kathy (1 October 2015). ”Dissecting the Structure of Membrane Pro-
teins”. Genetic Engineering & Biotechnology News (paper). 35 (17): 1, 14, 16?17.
doi:10.1089/gen.35.17.02.

[21] AI, https://en.wikipedia.org/wiki/Artificial_intelligence.

[22] Sunil Ray ”Essentials of Machine Learning Algorithms (with Python and
R Codes)”. https://www.analyticsvidhya.com/blog/2017/09/common-machine-

learning-algorithms/. Analytics Vidhya. September 9, 2017

[23] David Fumo ”Types of Machine Learning Algorithms You Should Know”.
https://towardsdatascience.com/types-of-machine-learning-algorithms-

you-should-know-953a08248861. Towards Data Science. Jun 15, 2017

[24] Reinforcement Learning, https://en.wikipedia.org/wiki/Reinforcement_

learning.

[25] Edvin Fuglebakk, Nathalie Reuter. ”A model for hydrophobic protrusions on peripheral
membrane proteins”. PLOS Computational Biology. July 26, 2018

[26] Alpha and beta carbon, https://en.wikipedia.org/wiki/Alpha_and_beta_

carbon#endnote_Hackhb.

[27] de Berg et al. (2000), p. 3.

[28] Convex Hull, https://en.wikipedia.org/wiki/Convex_hull.

[29] Accessible Surface Area, https://en.wikipedia.org/wiki/Accessible_surface_

area.

[30] Freesasa. https://freesasa.github.io/doxygen/.

[31] Theoretical and Computational Biophysics Group, ”VMD(Visual Molecular Dynam-
ics)”. http://www.ks.uiuc.edu/Research/vmd/.

[32] NACCESS. http://wolf.bms.umist.ac.uk/naccess/.

57

https://en.wikipedia.org/wiki/Artificial_intelligence
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Alpha_and_beta_carbon#endnote_Hackhb
https://en.wikipedia.org/wiki/Alpha_and_beta_carbon#endnote_Hackhb
https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/Accessible_surface_area
https://en.wikipedia.org/wiki/Accessible_surface_area

[33] Perisic O, Fong S, Lynch DE, Bycroft M, Williams RL. ”Crystal structure of a calcium-
phospholipid binding domain from cytosolic phospholipase A2”. J Biol Chem. 1998 Jan;
273(3):1596-1604.

[34] Bravo J, Karathanassis D, Pacold CM, Pacold ME, Ellson CD, Anderson KE, Butler
PJ, Lavenir I, Perisic O, Hawkins PT, Stephens L, Williams RL. ”The crystal structure
of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate”. Mol Cell.
2001 Oct; 8(4):829?839.

[35] Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. ”Interfacial catal-
ysis: the mechanism of phospholi- pase A2”. Science. 1990 Dec; 250(4987):1541?1546.

[36] Zhang G, Kazanietz MG, Blumberg PM, Hurley JH. ”Crystal structure of the cys2
activator-binding domain of protein kinase C delta in complex with phorbol ester”. Cell.
1995 Jun; 81(6):917-924.

[37] Ford MGJ, Mills IG, Peter BJ, Vallis Y, Praefcke GJK, Evans PR, McMahon HT.
”Curvature of clathrin-coated pits driven by epsin”. Nature. 2002 Sep; 419(6905):361-
366.

[38] Misra S, Hurley JH. ”Crystal structure of a phosphatidylinositol 3-phosphate-specific
membrane-targeting motif, the FYVE domain of Vps27p”. Cell. 1999 May; 97(5):657-
666.

[39] Nitin Bhardwaj, Robert V. Stahelin, Robert E. Langlois, Wonhwa Cho, and Hui
Lu. ”Structural Bioinformatics Prediction of Membrane-Binding Proteins”. Journal of
molecular biology. Volume 359, Issue 2, 2 June 2006, Pages 486-495

[40] KNN, https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

[41] K-Fold Cross ValidationNN, https://en.wikipedia.org/wiki/Cross-validation_
(statistics).

[42] Lillian Pierson, ”Solving Real-World Problems with Nearest Neighbor Algorithms”.
https://www.dummies.com/programming/big-data/data-science/solving-real-

world-problems-with-nearest-neighbor-algorithms/. Data Science For Dum-
mies.

[43] SVM, https://en.wikipedia.org/wiki/Support-vector_machine.

[44] Aizerman, Mark A.; Braverman, Emmanuel M. & Rozonoer, Lev I. (1964). ”Theo-
retical foundations of the potential function method in pattern recognition learning”.
Automation and Remote Control. 25: 821-837.

58

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://www.dummies.com/programming/big-data/data-science/solving-real-world-problems-with-nearest-neighbor-algorithms/
https://www.dummies.com/programming/big-data/data-science/solving-real-world-problems-with-nearest-neighbor-algorithms/
https://en.wikipedia.org/wiki/Support-vector_machine

[45] DataFlair Team, ”Kernel Functions-Introduction to SVM Kernel & Examples”.
https://data-flair.training/blogs/svm-kernel-functions/. DataFlair. August
12, 2017

[46] Kailash Awati, ”A gentle introduction to support vector machines using R”.
https://eight2late.wordpress.com/2017/02/07/a-gentle-introduction-to-support-vector-
machines-using-r/. Eight to Late. February 7, 2017

[47] DeCoste, Dennis (2002). ”Training Invariant Support Vector Machines”. Machine
Learning. 46: 161-190.

[48] University of Michigan, ”Orientations of Proteins in Membranes (OPM) database”.
https://opm.phar.umich.edu/.

[49] Cambridge Crystallographic Data Centre, Brookhaven National Laboratory, ”Protein
Data Bank”. https://www.rcsb.org/.

[50] Saurav Kaushik, Introduction to Feature Selection methods with an

example (or how to select the right variables?).

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-

selection-methods-with-an-example-or-how-to-select-the-right-variables/.

Analytics Vidhya. December 1, 2016

[51] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, Friedrich
Leisch, Chih-Chung Chang, Chih-Chen Lin, ”Package ’e1071’(PDF)”. https: //

cran. r-project. org/ web/ packages/ e1071/ e1071. pdf . January 21, 2019

[52] Deep Neural Network, https://en.wikipedia.org/wiki/Deep_learning.

[53] Min-max Normalization, https://en.wikipedia.org/wiki/Feature_scaling.

[54] Precision and recall, https://en.wikipedia.org/wiki/Precision_and_recall.

[55] Jason Brownlee, ”Tactics to Combat Imbalanced Classes in Your Machine
Learning Dataset”. https://machinelearningmastery.com/tactics-to-combat-

imbalanced-classes-in-your-machine-learning-dataset/. August 19, 2015 in
Machine Learning Process

[56] Receiver Operating Characteristic, https://en.wikipedia.org/wiki/Receiver_

operating_characteristic.

59

https://data-flair.training/blogs/svm-kernel-functions/
https://opm.phar.umich.edu/
https://www.rcsb.org/
https://cran.r-project.org/web/packages/e1071/e1071.pdf
https://cran.r-project.org/web/packages/e1071/e1071.pdf
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feature_scaling
https://en.wikipedia.org/wiki/Precision_and_recall
https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

	Introduction
	Background
	Objectives
	Thesis overview

	Proteins
	Biosynthesis and definition
	Categories
	Structures
	Cell membrane
	Peripheral membrane proteins

	Machine learning
	Definition
	Categories
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Collecting of data and features
	Definitions
	First feature
	ASA

	Second feature
	Third feature
	Fourth feature
	Feature summary

	Algorithm selection
	KNN
	Principle
	Distance function
	Factor K
	Application

	SVM
	Principle
	Linear classification
	Non-linear classification
	 and C
	Applications

	Feature analysis
	Why
	Features visualization
	Features selection

	Algorithm implementation
	KNN function
	SVM function
	Noise elimination
	Feature scaling
	Balanced dataset
	Performance formula
	Wrapper method
	KNN performance
	Alternative dataset

	SVM performance
	ROC-AUC curve

	Result verification
	Cross-Validation
	Steps
	Cross-Validation on KNN
	Cross-Validation on SVM

	Conclusion and future work
	Conclusion
	Future work

