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Abstract: The present work outlines a method for measuring the cooling efficiency of droplets
impinging onto hot metal discs in the temperature range of 85 ◦C to 400 ◦C, i.e., covering the boiling
regimes experienced when applying water to heated objects in fires. Stainless steel and aluminum
test discs (with 50-mm diameter, 10-mm thickness, and a surface roughness of Ra 0.4 or Ra 3) were
suspended horizontally by four thermocouples that were used to record disc temperatures. The
discs were heated by a laboratory burner prior to the experiments, and left to cool with and without
applying 2.4-mm diameter water droplets to the discs while the disc temperatures were recorded.
The droplets were generated by the acceleration of gravity from a hypodermic injection needle, and
hit the disc center at a speed of 2.2 m/s and a rate of 0.02 g/s, i.e., about three droplets per second.
Based on the recorded rate of the temperature change, as well as disc mass and disc heat capacity,
the absolute droplet cooling effect and the relative cooling efficiency relative to complete droplet
evaporation were obtained. There were significant differences in the cooling efficiency as a function
of temperature for the two metals investigated, but there was no statistically significant difference
with respect to whether the surface roughness was Ra 0.4 or Ra 3. Aluminum showed a higher
cooling efficiency in the temperature range of 110 ◦C to 140 ◦C, and a lower cooling efficiency in the
temperature range of 180 ◦C to 300 ◦C compared to stainless steel. Both metals gave a maximum
cooling efficiency in the range of 75% to 85%. A minimum of 5% cooling efficiency was experienced
for the aluminum disc at 235 ◦C, i.e., the observed Leidenfrost point. However, stainless steel did not
give a clear minimum in cooling efficiency, which was about 12–14% for disc temperatures above
300 ◦C. This simple and straightforward technique is well suited for assessing the cooling efficiency of
water droplets impinging onto heated metal objects. The test rig also worked well for demonstrating
droplet boiling regimes and water droplet cooling efficiency to fire safety engineering students.

Keywords: hot metals; water droplet cooling; heat transfer

1. Introduction

Evaporation processes are of interest in numerous areas such as agricultural [1], industrial [2], and
academic [3] communities, as well as for individuals [4]. When evaporating at room temperature, the
substrate material plays an important role in the evaporation process, as does the ambient air relative
humidity [5]. However, the ambient air relative humidity is less important when droplets evaporate
on substrates at elevated temperatures [6]. In a recent study of a wide range of water droplets sizes in
the transition regime of a boiling crisis, Misyura [7] demonstrated that several material parameters
are important when water droplets hit objects, wet the surface in different ways, and then start
evaporating. Droplet contact angles play a role [8], and may depend on impurities, additives, etc.
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Additives may therefore be used to reduce surface tension and thus improve performance [9,10].
Some researchers have studied the behavior of different droplet parameters such as size, impinging
velocity [11], wall material [12,13], temperature below the Leidenfrost point [14], and the influence of
solid–liquid contact time [15]. A review concerning droplets impinging onto hot metals was conducted
by Liang and Mudawar [16] for all of the involved boiling regimes for water droplets on metal surfaces.
A literature review on the Leidenfrost temperature for water on different heated materials is given
by Bernardin and Mudawar [17]. Water droplet cooling efficiency for droplets hitting Teflon-covered
copper was recorded by Sawyer et al. [18], who reported a cooling efficiency in the range of 50% to
90% at temperatures up to the temperatures associated with a boiling crisis. However, no studies
were identified as covering the whole range from below the boiling point and all the way into the
film-boiling regime.

In the process industry, fire-exposed pressurized pipes and vessels may rupture violently and
release their combustible or poisonous contents if weakened by overheating. Considerable resources
are therefore used for designing and maintaining active fire protection systems, i.e., deluge systems,
fire monitors, etc. The NORSOK standard S-001 [19] devotes multiple pages to active fire protection.
For process areas, the design criteria is 10 L/min·m2. However, studies of the performance of these
systems are scarce, and would need to cover all of the involved boiling regimes. Full-scale experiments
were performed by Kazemi [20] and Drange [21] in standardized 0.3 kg/s jet fire scenarios. Deluge
and fire monitors in large-scale jet fires were studied by Opstad [22]. None of these studies reported
water droplet cooling efficiency.

The purpose of the present study was to develop a method for measuring the cooling efficiency of
water droplets impinging onto hot stainless steel and aluminum in the temperature range of 80–400 ◦C.
This temperature range covers the different boiling regimes that are associated with water droplets on
metal substrates. These water droplet boiling regimes are presented in Section 2. The apparatus that
was developed for the study is presented in Section 3. The theory and calculative method to reveal the
cooling efficiency based on temperature versus time measurements with and without water cooling is
outlined in Section 4. Statistical analysis in order to reveal the differences in cooling efficiency as a
factor of surface roughness is described in Section 5, and the overall results are discussed in Section 6.
The possibility for using the test rig for teaching purposes regarding water droplet boiling regimes
and water droplet efficiency is also discussed.

2. Water Droplet Boiling Regimes

At ambient pressure, relative humidity below 100%, and temperatures below the boiling point,
water droplets evaporate by mass diffusion [5]. Boiling starts when the surface temperature is just
above 100 ◦C, i.e., typically 104 ◦C [23]. At this temperature, bubble formation within the saturated
fluid starts and results in very slow boiling. The involved mechanism is called nucleate boiling. For a
metal surface at 104 ◦C, the heat flux to a sessile water droplet is limited. Increasing the metal surface
temperature increases the heat flux until it reaches a maximum, i.e., the critical heat flux, as shown in
Figure 1. Beyond this temperature, increasing the surface temperature reduces the heat flux due to a
vapor film partially forming below the droplet. This boiling regime is called transition boiling, and is
characterized by violent sizzling and droplet breakup. Further increasing the temperature induces a
stable vapor film below the droplet. Thereafter, heat flux from the hot surface to the levitated droplet
increases slightly with increasing surface temperature due to the increasing temperature difference
between the hot surface and the levitated droplet. The starting temperature for this final boiling regime
is called the Leidenfrost temperature [24,25]. The boiling regimes are summarized in Figure 1.
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rates, with and without water cooling. The disc surface color (emissivity) was stabilized by successive 
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3.2. Disc Positioning and Temperature Measurements 

Ideally, there should be as few heat losses as possible to a fixture, keeping the disc in position. 

Thin metal rods for supporting the disc were considered. This lead to the decision to combine disc 

support with temperature recordings, i.e., suspend the disc by four standard 1.6-mm diameter type 

K (chromel–alumel) mantel thermocouples, as shown in Figure 2. This solution minimized contact 

between the disc and neighbor objects. The disc was aligned horizontally with a leveler, and heated 

Figure 1. Droplet evaporation/boiling regimes: film evaporation, nucleate boiling, transition boiling,
and film boiling. Adapted from [16,17,26].

3. Experimental Setup

3.1. The Discs

Stainless steel (AISI 316) and aluminum were the selected metals in the present study, with room
temperature thermal conductivities of about 15 W/m·K and 150 W/m·K, respectively. The arithmetical
mean roughness (Ra) used for both discs were Ra 0.4 (polished/smooth surface) and Ra 3, as defined
by [27]. Disc sizes of 50-mm diameter and 10-mm thickness (Figure 2) resulted in convenient cooling
rates, with and without water cooling. The disc surface color (emissivity) was stabilized by successive
complete measurement cycles (explained later in the present chapter) prior to the measurements
reported in the present work.
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Figure 2. Sketch of metal disc with four inserted type K mantle thermocouples (with 1.6-mm diameter)
at 90◦ horizontal separation.

3.2. Disc Positioning and Temperature Measurements

Ideally, there should be as few heat losses as possible to a fixture, keeping the disc in position.
Thin metal rods for supporting the disc were considered. This lead to the decision to combine disc
support with temperature recordings, i.e., suspend the disc by four standard 1.6-mm diameter type K
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(chromel–alumel) mantel thermocouples, as shown in Figure 2. This solution minimized contact
between the disc and neighbor objects. The disc was aligned horizontally with a leveler, and heated
to about 430 ◦C prior to the measurements, as shown in Figure 3. The heater was then removed and
the disc was let to cool to 410 ◦C, ensuring time for the internal temperature gradients to spatially
equilibrate prior to each measurement. The experiment as such started when the disc had cooled to
temperatures below 410 ◦C. The disc temperatures were recorded at a frequency of 1 s−1 by a data
logger (National instruments NI cDAG-9184, Austin, TX, USA).
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3.3. Droplet Generation

Droplets of distilled water were formed at the tip of a medical infusion hypodermic stainless
steel needle (25G*1). The arrangement allowed the droplet rate to be regulated in order to obtain a
particular flow rate. This simple injection needle system performed well, and represented an ultimate
low-cost droplet generator, which has also been used by other researchers [14]. The water droplets
detached due to gravity. The chosen impingement height was 25 cm, resulting in an impact velocity of
2.2 m/s.

Prior to and after each water-cooling measurement, 20 droplets were generated from the
arrangement and collected in a small laboratory dish. The mass of the 20 droplets was determined using
a balance (AG204DR METTLER TOLEDO, Columbus, OH, USA). Thus, the mass of the individual
droplet was determined. Very low variation was observed in the collective mass of succeeding 20 new
droplets that were weighed when checking for the reproducibility. Assuming that the droplets were
spherical, the droplet diameter was calculated to be 2.4 mm. The mass flow was 0.02 g/s, i.e., about
three droplets/s.

3.4. Shielding the Setup from Air Currents

In laboratories, the ventilation currents may disturb experiments significantly. Inspired by Log
and Heskestad [28], who studied small-scale fire plumes, the influence of air ventilation was minimized,
as well as the influence of personnel movements. This was done by making an open wood frame,
1.1 m × 0.55 m × 1.55 m height, and covering this frame with a fine mesh screen. A simple roll-up
door was made to give access to the interior for setting up experiments, heating the discs, etc. The
principle setup is shown in Figure 3.
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3.5. Metal Disc Dimensions

It was decided to have a disc diameter that could be quite evenly preheated by a Bunsen burner
prior to the experiments without introducing major temperature gradients. If temperature gradients
did result from the preheating, they should have time to spatially even out between the preheating
and the start of the experiments. A diameter of 50 mm was found to be convenient in this respect.

The measurements of the disc cooling without, and with, water droplet cooling, relied on
exhausting the heat stored in the disc after the preheating. The disc thickness therefore had to
be selected such that it allowed for a convenient time period for temperature recordings in both these
cases. By trial and error, it was found that a disc thickness of 10 mm resulted in a proper cooling time
both without and with droplets impacting onto the disc.

4. Determining Cooling Efficiency

The temperature versus time during disc cooling, with and without impinging water droplets,
was recorded for disc temperatures between 85–400 ◦C. In order to explain the procedure, data from a
preliminary aluminum disc cooling experiment is used. The same calculative procedure was used for
the final tests presented in Section 6.

4.1. Water Droplet Cooling Efficiency

Data from the two reference measurements without applying water droplets, sandwiching the
water droplet experiment, were used to calculate the average reference cooling curve. The heat losses
were in these cases mainly associated with heat radiation and convective heat losses, with some minor
heat loss through the four thermocouples suspending the disc. Between these reference measurements,
the droplet-cooling test was done with water droplets applied to the hot metal discs at a constant
rate. Typical temperature versus time curves are shown in Figure 4. The respective cooling rates
(dT/dt) versus temperature are shown in Figure 5. It is clearly seen that at certain temperatures, the
cooling rate is more significant when water droplets were applied to cool the disc. Based on the
differences in cooling rates, disc mass, and specific heat, the heat flow to the impinging water droplets
was calculated.
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Subtracting the temperature versus time derivatives presented in Figure 5 gives the net water
droplets’ disc-cooling rate, i.e.,

{
dT
dt

}
Net

(K/s). Knowing the mass, m (kg), of the disc, which is in this

case 52.9 g, and the specific heat of aluminum as a function of temperature, CP(T) (J/kg K), the water
droplet cooling heat flow can be calculated by:

.
QDrops(T) = mDisc·CP(T)·

{
dT
dt

}
Net

(W), (1)

where the specific heat as a function of temperature is given by the NIST-JANAF Thermochemical
Tables [29] as:

CP(T) = A + B·τ + C·τ2 + D·τ3 + E/τ2 (J/kg K), (2)

where A = 28.08920, B = −5.414849, C = 8.560423, D = 3.427370, E = −0.277375 and τ = T(K)/1000.
Ignoring the heat flow that is needed to heat the water droplets to 100 ◦C and possibly heating the
steam above 100 ◦C, the heat flow that is needed to evaporate the droplets at a rate of

.
mDrops (kg/s) is

given by:
.

QMax =
.

mDrops·∆Hvap (W), (3)

where the heat of vaporization at 100 ◦C, ∆Hvap, is 2571 kJ/kg.

The droplet cooling rate as a function of temperature and the droplet cooling potential,
.

QMax, for
the test presented in Figure 4 are shown in Figure 6. The temperature of the highest droplet cooling
rate, i.e., 124 ◦C, which corresponds to the critical heat flux, is marked in the figure. It is clearly seen
that the cooling capacity does not reach

.
QMax. This was simply caused by some droplets being lost

from the disc before evaporating completely.
The relative droplet cooling efficiency, i.e.,

.
QDrops(T)/

.
QMax, is shown in Figure 7. The cooling

efficiency relative to heating the steam to the disc temperature is also shown in the figure.
It should be noted that the cooling efficiency at disc temperatures below 100 ◦C is quite high. This

is a result of droplet wetting, i.e., the remains of previous droplets spread out to make a quite substantial
total wet surface area for film evaporation. This was also observed by Pasandideh-Fard et al. [14] in
their study of droplets impinging onto metal surfaces at temperatures between 50–120 ◦C.
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disc temperature (black dashed line). The temperature of the maximum cooling efficiency is marked
(red). Data from Figure 6.

4.2. Confirming Droplet Evaporation Regimes

When studying Figure 6 in detail, it may be seen that at about 104 ◦C, there is an abrupt change in
the water cooling efficiency versus temperature. This abrupt change corresponds to the transfer from
film evaporation below 104 ◦C to nucleate boiling above 104 ◦C. The nucleate boiling regime in this
case continued up to about 124 ◦C, which may be identified as the temperature of critical heat flux,
which is also named the boiling crisis [7]. Above about 124 ◦C, the regime of transition boiling prevails
to about 235 ◦C. Above 235 ◦C, the droplets experienced film boiling, i.e., the Leidenfrost temperature
for the aluminum discs was in this case about 235 ◦C. This result corresponds well with results reported
by other researchers, e.g., the literature review conducted by Bernardin and Mudawar [17] with a
reported Leidenfrost temperature for aluminum in the range of 235–265 ◦C.
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4.3. Classroom Demonstrations

The setup, without the wood frame and the fine mesh screen, was moved to a classroom for
demonstrating water droplet behavior and cooling efficiency for BSc and MSc students in fire safety
engineering. Placed centrally in the room, it allowed for visual and audial observations while the
droplets hit the metal plate and cooled the disc. This allowed the students to observe the droplet
cooling development through the different evaporation regimes.

It was not within the scope of the present work to formally interview students during the
demonstrations. However, they did express increased understanding of water droplet evaporation
regimes as a function of metal surface temperature. The potential of very low water cooling efficiency
in fire scenarios for temperatures above the Leidenfrost temperature was noted; therefore, it looks like
this simple setup may serve both scientific and educational purposes.

5. Results for Stainless Steel and Aluminum with a Surface Roughness of Ra 0.4 and Ra 3

Water droplets impinging onto stainless steel and aluminum discs with a surface roughness of
Ra 0.4 and Ra 3 were studied in the present work to demonstrate the method for recording water
droplet cooling efficiency. A series of five tests with water droplet application, which were sandwiched
by two reference measurements as explained earlier, were needed due to the stochastic variations
observed, especially close to the temperatures associated with critical boiling.

5.1. Results of the Stainless Steel Surface Roughness Measurements

For testing the droplet cooling efficiency for the stainless steel disc, a water application rate of
0.02 g/s and droplet size of 2.4 mm, giving a droplet frequency of 3 s−1, were targeted. The droplet
speed, which was calculated through the fall height and acceleration of gravity, was 2.2 m/s. According
to Pasandideh-Fard et al. [14], this corresponds well to the droplet speed obtained by photographic
methods for similar sized droplets and similar fall heights. The results obtained for surface roughnesses
of Ra 0.4 and Ra 3, are shown in Figures 8 and 9, respectively.
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Figure 8. Average cooling efficiency for water droplets impinging onto the stainless steel disc with
a surface roughness of Ra 0.4 as a function of temperature (black). The dotted lines represent ± one
standard deviation, respectively.

The standard deviation of the efficiency recorded for the surface roughnesses studied, i.e., Ra 0.4
and Ra 3, is shown in Figure 10 as a function of temperature. The average results for the stainless steel
discs with surface roughnesses of Ra 0.4 and Ra 3 are compared in Figure 11.
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A Student’s t-test was used to evaluate whether the efficiency recorded for the stainless steel discs
with surface roughnesses of Ra 0.4 and Ra 0.3 were significantly different. Checking through the whole
temperature range from 85 ◦C to 400 ◦C and requiring an alpha <0.05 indicated that the difference in
efficiency as presented in Figure 11 was not statistically valid.
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5.2. Results of the Aluminum Surface Roughness Measurements

For recording the droplet cooling efficiency of the aluminum discs, similar water application rates,
droplet sizes, droplet frequencies, and droplet speeds as for the stainless steel tests were used, i.e.,
respectively 0.02 g/s, 2.4 mm, 3 s−1, and 2.2 m/s. The results obtained for surface roughnesses of
Ra 0.4 and Ra 3 are shown in Figures 12 and 13, respectively.
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The standard deviation of the efficiency recorded for the surface roughnesses studied, i.e., Ra 0.4
and Ra 3, is shown in Figure 14 as a function of temperature. The average results for the aluminum
discs with surface roughnesses of Ra 0.4 and Ra 3 are compared in Figure 15.

The average results for the aluminum discs with surface roughnesses of Ra 0.4 and Ra 3 are
compared in Figure 15.

For aluminum, the Student’s t-test (alpha <0.05) showed that the recorded difference in efficiency
for surface roughnesses of Ra 0.4 and Ra 3 was significant only for temperatures between 220–310 ◦C.
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5.3. Comparing the Results for Stainless Steel and Aluminum

The results for droplets impinging onto the stainless steel and aluminum discs with surface
roughnesses of Ra 0.4 and Ra 3 are compared in Figures 16 and 17, respectively. It is clearly seen
from these figures that there are quite significant differences in the water droplet efficiency between
the respective metals. However, for both of these metals, quite low droplet cooling efficiencies were
recorded at temperatures above 300 ◦C.
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5.4. NORSOK Requirements versus Spray Efficiency

Applying a certain spray flux
.

m′′ (kg/s·m2) with a cooling efficiency of ξ to a hot surface above
the boiling point of the liquid, the cooling potential is given by:

.
Q

”
Cool = ξ· .

m′′ ·∆Hvap

(
W/m2

)
(4)

Assuming that at e.g., 400 ◦C the cooling efficiency is about 0.10, a NORSOK [19] spray application
rate of 10 L/min·m2, i.e., 0.167 kg/s·m2, would be able to withdraw 43 kW/m2 from the fire exposed
surface. This is much lower than the heat flux from an industrial fire to an exposed object at 400 ◦C.
Dependent on the fire scenario, this object may experience net heat flux levels between 200–350 kW/m2.

The low cooling efficiency experienced above the Leidenfrost temperature explains why it is very
important to activate deluge systems early in order to cool pressurized pipes and process equipment
in order to keep the temperature development under control. If not, the water spray may have limited
effects, and may not be able to prevent hot spot formation and a possible loss of containment, possibly
resulting in a severely increased fire scenario.

5.5. Error Analysis

It was not possible to get exactly the same water application rate and exactly the same droplet
diameters for each measurement series with the current setup. However, the standard deviation
was within 2% for the water application rate and within ±1% for the droplet diameter. The 25.0-cm
elevation for droplet acceleration was measured to be within 1 mm, i.e., representing less than 1% error
in the droplet speed. Given the rather large standard deviations observed for the stainless steel discs,
the droplet diameter, application rate, and droplet speed can be considered sufficiently constant for
comparing the results from the different measurement series.

The discs were aligned horizontally to within 0.5◦ before each measurement series. However,
there may be some slight misalignment during the heating and cooling cycles. This may to some extent
influence the results. However, misalignment larger than 1◦ after the completion of each measurement
series was not discovered. It is therefore reasonable to assume that the differences recorded in the
water droplet cooling efficiencies were due to the different metals used, and for some temperature
regions, the surface roughness.

The reason for the larger standard deviation in the recorded efficiency for stainless steel compared
with aluminum may be due to the lower thermal conductivity/diffusivity of the stainless steel. When
two consecutive droplets hit exactly the same spot, which ideally was the goal, the stainless steel
surface did not recover thermally as much between each droplet impact as was the case for the
aluminum discs. If a droplet then hit just off the impact point of the previous droplets, it would be



Appl. Sci. 2018, 8, 953 13 of 16

partly exposed to a higher surface temperature. The one order of magnitude higher heat transport
properties of aluminum better evened out the cooling impacts by the previous droplets. When the
temperature gradients for aluminum were less steep, it did not make much difference whether the
subsequent droplets hit the same location, or were slightly off from that location. Therefore, it was
expected that the standard deviations experienced for the droplets impacting onto the aluminum discs
would be lower than for the stainless steel discs.

6. Discussion

A method for measuring the cooling efficiency of water droplets impinging onto hot metal
surfaces was developed. The test apparatus was described, measurements were performed on stainless
steel and aluminum discs, and the recordings were processed to reveal the cooling efficiency in the
temperature range between 85–400 ◦C. It was also investigated whether the method can reveal any
differences in the cooling efficiency as a function of the surface roughness. Therefore, the 50-mm
diameter and 10-mm thick metal discs tested were prepared with roughnesses of Ra 0.4 and Ra 3 for
both materials. The test setup was validated by droplets (with a 2.4-mm diameter) generated by the
acceleration of gravity from a hypodermic injection needle impacting onto the disc center at a speed of
2.2 m/s and a rate of 0.02 g/s, i.e., about three droplets per second.

The horizontally aligned disc was suspended by four thermocouples penetrating the disc 15-mm
radially, along the horizontal symmetry plan. This solution minimized contact between the disc and
other objects, and allowed for recording the disc temperature during the cooling phase with and
without cooling the disc by water droplets. Several researchers placed a thermocouple junction either
flush with or 0.5 mm below the droplets’ impact point [11,14]. This allowed them to record the surface
temperature at the impact point. The thermocouple then induces a disturbance in the metal exactly at
the point where the droplets hit the surface. The present method aimed at recording the temperature
within the metal disc, with four symmetrically located thermocouples giving minimal disturbances to
the droplet impact point. This gave a better representation of the water-cooling process of metallic
objects, as such, during the cooling process. The tradeoff by losing information about the impact point
surface temperature was thus outweighed by the possibility for better determining the water droplet
cooling efficiency.

For the aluminum discs, the water droplet cooling efficiency associated with the critical heat flux,
i.e., at about 125 ◦C, was in the range of 80% to 85%. The lowest water droplet cooling efficiency, i.e., in
the range of 6% to 10%, was observed at a disc temperature of about 230 ◦C. Since this temperature was
associated with a minimum in the cooling efficiency, it may be defined as the Leidenfrost temperature.
The cooling efficiency then slightly increased with increasing temperature up to 400 ◦C due to the
increasing temperature difference between the disc surface and the evaporating levitated droplet.

For stainless steel discs, at the recorded temperatures associated with the critical heat flux, i.e.,
about 150 ◦C to 180 ◦C, the droplet cooling efficiency was found to be in the range of 70% to 80%.
The reason for this slightly lower maximum cooling efficiency compared to aluminum is likely due to
the differences in thermal properties, i.e., a thermal conductivity of 150 W/mK for aluminum versus
15 W/mK for stainless steel.

For aluminum, the surface temperatures recovered more between each droplet impact compared
to stainless steel, i.e., the impingement point was more thermally disturbed by the time the next droplet
hit the stainless steel surface. Small variations in droplet impact point and droplet movements just after
impact likely explained the higher standard deviations in the recorded efficiency for the stainless steel
discs. Large standard deviations in measurements from the temperature regions near the temperature
associated with the critical heat flux are also reported in other studies [16], although those researchers
did not focus on droplet cooling efficiency.

Clear differences in cooling efficiency were demonstrated between aluminum and stainless steel
(same roughness for both metal disc surfaces). It was more challenging to reveal the differences in
cooling efficiency within the same material, i.e., for the two different roughnesses studied (Ra 0.4



Appl. Sci. 2018, 8, 953 14 of 16

and Ra 3). The Student’s t-test (alpha < 0.05) was applied to indicate whether there were statistically
significant differences between the water droplet cooling efficiency obtained for Ra 0.4 and Ra 3. The
observed water droplet cooling efficiency differences for Ra 0.4 and Ra 3 were for the aluminum
discs significant (alpha > 0.05) only for temperatures between 220–310 ◦C, where the higher surface
roughness (Ra 3) gave a slightly higher cooling efficiency. This may be explained by the better
possibilities for the water vapor generated to escape through the crevices below the droplet, i.e.,
resulting in less distance between the droplet and the aluminum surface peaks.

Due to the larger standard deviation in cooling efficiency observed for the stainless steel discs,
any observed differences between the surface roughnesses of Ra 0.4 and Ra 3 were not statistically
significant, i.e., Student’s t-test alpha > 0.05. Indeed, for temperatures above 265 ◦C, the cooling
efficiency was practically equal for stainless steel surface roughnesses of Ra 0.4 and Ra 3. It is more
difficult to explain this observation. However, many parameters do control the heat and mass transfer
in the film boiling regime [7]. For stainless steel, the influence of crevices and peaks may be less
prominent due to the heat transfer capacity being 10 times lower than that of similar peaks on the
aluminum surface.

The results indicate that the application of fire water early in a fire scenario is very important,
i.e., while the water cooling will likely be most efficient and thereby may prevent further temperature
increase past the temperature associated with a boiling crisis. Upon reaching the film boiling regime,
the cooling efficiency of the stainless steel discs was shown to become as low as about 12% to 14% due
to the stable vapor film below the droplet. Even with application of the recommended 10 L/min·m2,
i.e., 0.167 kg/s·m2 recommended by NORSOK [19], the spray would only be able to withdraw
50–60 kW/m2 from the fire exposed surface. This is significantly lower than the heat flux that objects
may be exposed to in industrial fires, i.e., 250 kW/m2 to 350 kW/m2. This is a paradox for fire
safety engineering.

The literature study did not reveal research papers investigating the absolute cooling efficiency of
water droplets applied to hot metal surfaces of e.g., 10-mm wall thickness. Therefore, the present work
may be the first to attempt quantifying this for objects of representative wall thicknesses. However,
it should be noted that a variety of metal qualities are used in process plants, and that the present
study is limited to horizontally aligned stainless steel discs of 10-mm thickness. In the process industry,
equipment and pipe work may also be thermally insulated and shielded by stainless steel cladding.
Such cladding, with thicknesses of 0.5 mm or 0.7 mm, is unfortunately too thin to be analyzed by the
presented setup.

Omitting the fine mesh screen and moving the core setup to the classroom for demonstrating
water droplet behavior and cooling efficiency worked well for demonstrating the mentioned physical
phenomena to BSc and MSc students in fire safety engineering. The students expressed an increased
understanding of water droplets’ cooling efficiency as a function of substrate temperature. The
potential of very low water cooling efficiency in fire scenarios was noted. Therefore, it can be concluded
that this simple setup serves both scientific and educational purposes.
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