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Abstract 

The global need for energy is predicted to double by 2050 and triple by the end of the 21st 

century. Today, fossil fuels are the primary source for energy supply in the world. However, 

the excessive consumption of fossil fuels has led to global warming and has resulted in severe 

environmental impacts. Growing population demands a lot of energy in the future, and there 

will be limited fossil fuels resources available. Thus, alternative clean energy resources will 

be the hour of need. 

Solar energy is probably the most promising source of clean and abundant energy that we have 

now. An enormous technological and political effort has been undertaken to harness the solar 

energy more directly. However, the challenge is that solar energy technologies should become 

cheaper, flexible, energy effective and harmless to the environment. This research focuses on 

materials for new generation solar cell technologies that fulfil these demands. Third generation 

solar cells such as intermediate band solar cells and non-silicon solar cells are a newer type of 

solar cells. They have attained considerable attention in the last two decades, as a potentially 

cost-effective alternative to conventional costly silicon solar cells. Intermediate band solar 

cells and non-silicon solar cells are complex devices, which is relied on the interplay of several 

key components. The unique architecture of intermediate band solar cells provides balance-

limiting efficiencies of 63.2%. As a result, an extensive and increasing amount of research 

effort has been devoted to design and synthesize novel materials. However, most of such 

efforts have been expensive and time-consuming synthesis procedure. To overcome this 

drawback, modelling and simulation of new materials is a better method to study and verify 

the properties of the materials for photovoltaic applications. 

This thesis has focussed on a theoretical calculation of properties like structural prediction, 

electronic structure, optical properties, structural stability and mechanical stability behaviour 

of photovoltaic materials. The aim of the study is fivefold: The first is to study and gain 

knowledge on the fundamental properties of the matter governed by the electronic structure of 

a variety of bulk materials. The second is to study novel materials and determine the 

adaptability and the applicability of theoretical calculation as an accompaniment to 

experiments for the material scientist in his/her search for novel photovoltaic materials. The 

third is to investigate materials numerically with intermediate bandgaps that could pave the 

way for higher cell efficiencies than the theoretically limited efficiency of 32%. Fourth is to 

carry out an in-depth analysis of low-cost, direct band gap, non-silicon materials for PV 
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applications. Fifth is to implement efficient approximations, methods and algorithms to derive 

accurate numerical results for electronic and optical properties of a variety of novel materials 

for PV applications. We expect these findings of novel materials in this thesis will lead to 

immediate concern and interest to an extensive audience in the scientific society.  
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Chapter 1 

 Introduction 
“When the sun is shining I can do anything; 

No mountain is too high, no trouble too difficult to overcome.” Wilma Rudolph 

1.1 Energy requirements and the role of renewable energy 

sources 

World population is steadily increasing. Ensuring the standard of the living and energy 

security are the two main challenges humanity faces today. Energy demand has increased by 

50% in the last ten years. More than 80% of energy needs are satisfied by non-renewable energy 

sources such as fossil fuels. The fossil fuels as the energy source have been used for so long is 

perishable. Non-renewable fossil fuels take around a million years to form and store under the 

earth surface. Fossil fuels that create air pollutants such as nitrogen oxides, sulphur dioxide, 

volatile organic compounds. These are major contributors to global warming. This is one of the 

major demerits of fossil fuels. Today, about 20X1012 kg of carbon dioxide is put into the 

atmosphere every year, mainly by burning fossil fuels[1]. The plants are unable to absorb this 

vast amount of extra carbon dioxide (CO2). As a result, the enormous amounts of CO2 is 

released into the earth's atmosphere, intensifying the greenhouse effect. The greenhouse effect 

arises when certain gases accumulate in the earth's atmosphere known as greenhouse gases 

(GHG). As shown in Figure 1.1, 68 % use of energy indicates by far the largest source of GHG 

emissions [2]. By far the biggest of these anthropogenic GHGs are carbon dioxide from the 

energy portion. Smaller shares of GHG emissions correspond to industrial processes, 

agriculture, and others (biomass burning, post-burn decay, peat decay). Figure 1.2 demonstrates 

the increasing trend in the yearly CO2 emissions [2]. Therefore, it is clear that something needs 

to be done in order to avoid the increasing trend in CO2 emissions.  

This is an alarming trend, it will not only continue reliance on these non-renewable 

resources harming the climate, but it will eventually run out. Because of this, renewable energy 

sources become important. The term renewable energy is applied to all the energy sources that 

will not exhaust or change significantly in millions of years to come. There are several  
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renewable energy sources existing today such as wind hydroelectric, biomass, geothermal, and 

solar.  

Figure 1.1. Estimated shares of global anthropogenic GHG. The figure is taken from 

[2].  

Figure 1.2. Historical data of CO2 emissions per year, divided by sources. The figure 

is taken from [2]. 
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Today, wind energy is one of the significant candidates to the world energy production. 

Turbines located in windy areas can adventure the atmospheric kinetic energy with the benefit 

of being a straightforward implementation. Due to some issues like noise, landscape damage 

and wind fickleness, wind energy are not likely to able to reach that enormous amount of power 

even if a substantial increase in marine plants and wind farms. The predictions in the DNV GL 

report [3], shown in Figure 1.3 and Figure 1.4, indicates that wind energy will become one of 

the most significant sources of electricity after 2020. 

Another renewable is hydroelectric energy, and it is already a primarily used buffering 

mechanism where water basins or high flow rivers are available. Due to there is no demand to 

start a thermal engine, but it is sufficient to let the waterfall then drive turbines for generating 

electrical energy. Therefore, hydroelectric energy looks more like a kind of gravitational storage 

mechanism than other resources. From Figure 1.3 and Figure 1.4, the usage of hydroelectric 

power was the dominant renewable resource in the year 2000. The prediction in the DNV GL 

report [3] indicates that hydroelectric energy will become insignificant than wind and solar 

energy as shown in Figure 1.3 and Figure 1.4. It is due to the risk of hydrogeological instability 

and need of building huge plants. However, it needs to be acknowledged that carbon emissions 

are not attributed to hydroelectric energy. Biomass and waste burning are inherent to the life 

cycle of our planet and the human activity itself, and sometimes, they are included among the 

renewable energy. As of 2013, they contribute more to the source of electricity shown in Figure 

1.3 and Figure 1.4 [3]. However, it cannot be treated as the clean energy source since it produces 

CO2 in the burning process. Geothermal energy could be an exciting source in countries with 

significant sub-volcanic and volcanic activity. Geothermal energy is related to the presence of 

high-temperature regions. The exploitation of the internal heat capacity of the earth seems to 

have no time constraints. As discussed among the renewable sources, solar is the most abundant 

source of clean energy that is readily available.  

Solar energy is probably the most promising source of clean and abundant energy that 

we have now. Solar energy dramatically surmounts all the other energy sources. An enormous 

technological and political effort has been undertaken to harness the solar energy more directly. 

Therefore, there are intense efforts in the scientific community to find new and more efficient 

ways of maximising its potential. Solar energy is utilized in three different ways, namely as 

passive heat, solar thermal and photovoltaic energy. Passive heat is the form where the sunlight 

is used without a mechanical system. Sunlight is directly converted into usable heat. There are 

applications related to passive heat such as solar water heating, solar cookers, and earth 
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sheltering. Solar thermal energy is another way to exploit solar energy. It is a technology for 

harnessing solar energy to produce thermal energy or electrical energy. With a high 

concentration in sunlight regions, it is easily possible to heat water to several tens of degrees, 

and the heat is saved as thermal energy. Thermal energy produces high pressure that can be 

used to power up turbines and generate electricity. The third way is to use the solar energy on 

PV structures such that sunlight is converted into electric current.   

Now, we have entered a new photovoltaic age. The predictions in the DNV GL report 

[3], shown in Figure 1.3 and Figure 1.4, indicates that photovoltaic energy will become one of 

the most significant sources of electricity after 2020. Furthermore, in 2050, renewable energy 

will beat fossil fuels as the main supplier of primary energy, and it will be by far the most 

significant electricity source. If these predictions prove right, photovoltaic energy will play a 

significant role in supplying primary energy and in mollifying climate change. Photovoltaics 

effect deals with the direct conversion of photons into electrical energy. Solar cells exploit this 

photovoltaic effect, thanks to its competence of generating and collecting electric charges when 

illuminated with light. This electric charge flow constitutes a direct current flow through 

photovoltaic (PV) cell as long as the illumination is steady. The current flow and potential 

difference are strongly related to the absorption spectrum and material, respectively. Hence, PV 

cells act as DC generators without any demand for additional thermal cycles to generate 

electricity and photovoltaic solar energy. It has several merits over the other renewable energy 

sources.  

Photovoltaic energy sources which neither run out nor have any significant harmful 

effects on our environment. Photovoltaic solar cells have gone through drastic improvements 

and developments thanks to its reliability, convenience, and versatility to comply with the 

different needs of power generation. This Ph.D. thesis is dedicated to studying novel 

photovoltaic materials that can be used mainly in the so-called ‘third generation’ solar cells.   
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Figure 1.3. Forecast of the world’s electricity generation by source. The figure is 

taken from [3]. 

Figure 1.4. Forecast of the world’s primary energy supply by source. The figure is 

taken from [3].  

1.2 Historical Development of Photovoltaic solar cell 

In 1839, Edmond Becquerel discovered that when a semiconductor device is exposed 

to light, it will result in the generation of voltage, and this effect is called photovoltaic (PV) 

effect  [4] [5]. Until 1940, there was not much development on PV effects.  First in 1941 Ohl 

[6] investigated the PV effect in silicon and Benzer in germanium in 1946 [7]. Until 1954, the

solar cell research received limited interest among the researchers. Chapin et al.,[8] discovered 

the first single-crystal silicon solar cells and then Reynolds et al., [9] investigated the cadmium 

sulphide solar cell. Growth in space research made the research community to look for 
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alternatives to conventional resources like fuel, high field batteries because the spacecraft 

needed continues fuel and energy supply for an extended period away from the earth.  Scientists 

began looking for alternative sources including solar energy [5].  

Bell Laboratories were the first to develop the practical photovoltaic solar cell based 

in 1954, and they observed an initial conversion efficiency of 6% [5, 10]. After this, using solar 

cells for practical applications, especially in the space industry gathered momentum.  Solar 

energy was accepted as a reliable power source for satellites or spacecraft. Polycrystalline, 

monocrystalline and amorphous thin-film silicon have been dominating the solar cell 

technologies for a long time. Gallium Arsenide (GaAs) is another material that is suitable for 

PV applications because of its light absorption coefficient. This makes GaAs solar cell more 

efficient than the Si-based solar cells, but GaAs require epitaxial crystal growth techniques that 

make it more expensive than Si.  

Research community has been taken considerable interest in developing solar cell 

technologies that become compatible with fossil energy sources. For a long period, oil and coal 

have been much cheaper than solar cell technologies. The environmental issues related to coal 

and oil has forced people to realize the importance of alternative energy resources like solar 

energy. Considering the catastrophic impact on the environment, the use of fossil fuels has to 

be minimized. For the past 25 years, the nations and organizations have started supporting the 

development of clean energy resources, and this has helped the solar energy research to go 

forward.   In the last ten years, the solar energy industry as has exponential growth. High-quality 

research and market developments have now made the solar energy technologies to be very 

attractive and competitive compared to fossil fuels. Research community is striving to develop 

better solar energy technologies that can be cheap, flexible and efficient.  

Green [11] has described the three generations of solar cells with characteristic cell 

costs and efficiency. The different photovoltaic technologies can be divided into three 

generations [11, 12] as shown in Figure 1.5. The first generation includes single-crystalline, 

multicrystalline Si-wafers, primarily made of silicon. Crystalline silicon has touched a record 

efficiency of 25 % [12, 13]. The second generation is thin film technologies. Thin film solar 

cells have comparable and lower efficiency to first-generation cells. Green forecasts first and 

second generation solar cells are cheap to fabricate, but it is very hard to achieve high efficiency 

due to the detailed balance limit [13]. The third generation of PVs is a compilation of all new 

concepts that aim for higher efficiency by capturing more photons that are available according 
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to the Shockley-Queisser [14]. Green forecasts first and second generation solar cells are cheap 

to fabricate, but it is very hard to achieve high efficiency. These have fundamentally different 

designs that the first and second generation, each harvesting a more significant fraction of the 

sunlight, and thus achieve efficiencies above 30 % [15]. They are currently too expensive to be 

used with normal sunlight intensity (1 sun illumination). To achieve the predicted cost 

reduction, they are mounted at the focus of cheap lenses or mirrors known as concentrators or 

collectors that maximize the amount of sunlight harvested by each cell, effectively increasing 

the cell efficiency. One can then allow for expensive solar cells since a smaller cell area is 

needed.   

One of the proposed third generation solar cell concepts that could result in higher cell 

efficiency is intermediate band solar cell (IBSC). This is one of the focus areas of this PhD 

study. In this study, we also focus on non-conventional solar cell materials that can be flexible 

and cheap.  

 

Figure 1.5.  The cost and efficiency of the first, second and third-generation solar 

cells. The figure is taken from [11] 
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1.3  Working Principle of Photovoltaic solar cell 

The general working principle of PV solar cells is described in this section. A PV cell 

exploits electromagnetic radiation in the form of photons to produce electrical energy through 

the photovoltaic effect. This photovoltaic effect is created by arranging a semiconductor 

material in a junction and combining it with an external circuit. The majority of PV cells use a 

PN junction [16]. When the PV solar cell is exposed to the solar spectrum (sunlight), if the 

photon has less energy than the energy band gap, no electron will be emitted. If the photon has 

more energy than the energy band gap, the electron will be exited from the valence band to 

conduction band and create a negatively charged carrier and a positively charged carrier 

referred to an electron-hole pair [5]. The electron-hole pair will then move in different 

directions due to the electric field in the PV cell that drives the hole towards the anode contact 

and the electron towards the cathode contact. Then the electron arriving at the cathode will 

travel through the external circuit or load. A cross-section of the basic silicon solar cell is shown 

in Figure 1.6 [16].    

Figure 1.6. Cross-section of basic silicon solar cell. The figure is taken from [16] 

A semiconductor is a material with specific electrical characteristics, semiconductors act as an 

insulator at low temperature, and it acts as conductor at room temperature. As it is well known, 

when the semiconductor material is doped acceptor impurities, it is said to be a p-type 

semiconductor, whereas when it is doped with donor impurities materials, then the material is 
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called as n-type semiconductor. A p-n junction is formed when p-type and n-type 

semiconductors are connected.   

Figure 1.7. Schematic diagram of PN junctions 

1.4  Limits of PV solar cells. 

Solar cells are not 100% efficient. Loss mechanism exists, and it decreases the energy 

available for extraction. If an incoming photon has less energy than the energy band gap of the 

material, there are no allowed states for electrons to be excited to the valence band. Therefore, 

the photon is not absorbed. The semiconductor material is effectively transparent for photon 

energies less than the energy band gap. This means that the part of the solar spectrum 

(effectively visible light region) cannot be used for energy production. 

Conversely, if the photon has energy higher than the band gap of the material, the 

excess kinetic energy is lost in collisions with the crystal lattice. Energy losses in the PV solar 

cells are attributed to thermalisation loss, junction loss, contact loss, and recombination loss. 

Recombination is the process in which an excited electron falls to the valence band. This type 

of loss can be divided into radiative recombination and non-radiative recombination. Radiative 

recombination is band-to-band recombination where electron releases energy as a photon. This 

process is unavoidable; emitted photons can be reabsorbed. Non-radiative recombination is a 

process where an electron releases energy as heat in collisions with crystal lattice. By tuning 

single junction solar cells to one specific wavelength of light, these losses are minimised [17].  

Detailed balanced model is one of the models for calculating theoretical solar cell 

efficiency. By detailed balance arguments, Shockley-Queisser could account for the entropy 

generation mechanism in solar cells and calculated the ultimate theoretical efficiency limit of 
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nearly 32% for the irradiance level to AM (air mass) 1.5 and 41% for fully concentrated sunlight 

[14, 18, 19]. PV solar cells do not only absorb photons but also emit photons. For example, in 

the dark, the absorbed and emitted photon flux is the same with no applied voltage. Single 

junction PV devices poorly match the sunlight for all the reasons mentioned above. So-called 

third generation PV solar cell technology is a collection of new physical concepts such as 

nanotechnology and photonic approach to overcome the Shockley-Queisser limit. 

1.5  Solutions for the detailed balance limit 

As the basis of the versatile PV solar cell, the nanomaterials have attracted huge 

attention due to its exclusive ability to employ light and control energy flow at approximately 

the atomic level. The energy density of fossil fuels (measured per unit mass) is higher than the 

energy density of sunlight (measured per unit area). It is essential to cover massive areas with 

PV devices to produce suitable current levels for large-scale applications. Therefore, the 

production and implementation cost of PV solar cells is high. As mentioned earlier, the other 

challenge with the conventional solar cells is the efficiency limit of 32%.  To overcome the 

high cost of PV solar cells, stability issues, and the efficiency limits, there are three ways how 

appropriate nanomaterials can contribute to the betterment of solar cell technologies. First, the 

fabrication of thin film solar cells of a few microns will decrease the amount of the materials 

used in solar cells. Second, semiconductor materials with lattice dynamic stability and 

mechanical stability will increase the stability and life cycle of the PV device. Third, the 

fabrication of multi-junction and intermediate band solar cells will lead to increase in the 

efficiency of the devices.  

Rapid development in the field of nanotechnology has paved the way for the synthesis 

of advanced nanomaterials that can be used in a variety of new type of solar cell technologies. 

Doing a trial and error method on experimental counts in checking the suitability of materials 

for PV applications is rather time-consuming, costly and ineffective.  Theoretical modelling 

and simulation will give enough information on the properties of the materials, and the 

experimental variation of the applicability of these materials can then be verified using the 

experimental methods.  Rapid growth in computer processing and the use of parallel computing 

has allowed higher and more complex numerical simulations to be viable. After experiment and 

theory, computer simulation methods have now become a reliable and effective way to explore 

nature. In nanomaterial research, numerical simulations can lead the way to identify the 

appropriate materials for relevant purposes. Numerical simulations can provide a connection 
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between the perceiving of experimental data and theoretical models while remaining 

interdependent to both.  

This thesis will focus on the application of numerical simulations in investigating 

photovoltaic properties in condensed matter systems. Specifically, we will emphasize density 

functional theory (DFT), one of the most common methods for solving the many-electron 

problem. We can apply DFT to study the physical properties of matter from first principles, 

providing accurate simulations of matter without intolerance from expectations associated with 

the understanding of experimental results.  As mentioned, the merit of such simulation is that 

bulk material that may be acutely expensive to yield for the experiment can be investigated 

computationally. Also, some physical conditions that cannot be produced in the laboratory can 

be simulated. 

1.6  Thesis Objectives 

Today, it is possible to accomplish ab initio calculation to study the behaviour of materials for 

specific applications. This thesis copes with the theoretical calculation of properties like 

structural prediction, electronic structure, optical, structural stability and mechanical stability 

behaviour of photovoltaic materials. The aim of the study is fivefold: The first is to study and 

gain knowledge on the fundamental properties of the matter governed by the electronic structure 

of a variety of bulk materials. The second is to study novel materials and determine the 

adaptability and the applicability of theoretical calculation as an accompaniment to experiments 

for the material scientist in his/her search for novel photovoltaic materials. The third is to 

investigate materials numerically with intermediate band gaps that could pave the way for 

higher cell efficiencies than the theoretically limited efficiency of 32% [14]. Fourth is to carry 

out an in-depth analysis of low-cost, direct band gap, non-silicon materials for PV applications. 

Fifth is to implement efficient approximations, methods and algorithms to derive accurate 

numerical results for electronic and optical properties of a variety of novel materials for PV 

applications. We expect these findings of novel materials in this thesis will lead to immediate 

concern and interest to an extensive audience in the scientific society.  

1.7 Summary 

The whole study has resulted in seven research articles. In order to make it easier for 

the reader to follow, the thesis is divided into two essential parts. The first part is of general 

nature where we discuss state of the art, the motivation factors, and shed light on theoretical 
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methodology, computational methods, fundamental properties of materials for photovoltaic 

applications. In this part, we also present a literature review on intermediate band solar cells 

and non-silicon solar cells. The second part comes with an accumulation of individual research 

articles resulting from our entire study on novel materials for intermediate band solar cells and 

non-silicon solar cells. Because of the page strain in publishing journal articles, these research 

articles are written in a compact manner avoiding additional information and confirming results 

obtained during the study. We have included such supporting information at the end of each 

article.  

The organization of the thesis is as follows: Chapter 2 presents the theoretical 

methodology related to the solid-state physics and materials science. Specifically, it will focus 

on one of the more popular approaches, density functional theory (DFT), for solving the many-

body problem. This method is utilised to study or investigate the physical properties of matter 

from first principles, yielding more accurate simulations of matter without bias from belief 

related to knowledge of experimental results. It is a conventional method that can be practiced 

on many condensed matter systems of interest. This contains, but it is not limited to, 

semiconductors, pharmaceuticals, biological chemistry, and magnetic materials.  

Precisely, the theoretical methodology for the solar cell bulk materials through density 

functional theory is thoroughly discussed in chapter 2.  Our emphasis in this whole study is 

restricted to bulk materials. This means that possible surface effects are excluded, and the 

research considered the bulk to be an infinite crystal. To study the properties of a given material, 

the so-called Schrödinger equation has become the primary tool that the solid-state theorists 

work with. The Hamiltonian for the whole bulk system is tough to solve. In order to deal with 

the real bulk system (which contains the substantial number of particles), we have to make some 

approximations and simplifications. This chapter discusses a different type of approximations 

such as the Hartree approximation, Hartree-Fock approximation, and density functional theory 

in order to solve the Hamiltonian.  

Chapter 3 outlines a brief note on the computational methods. It is essential to be aware 

that there are limitations to the applicability of DFT or exchange-correlation function in which 

is discussed in chapter 2. It brings the main problem into the forefront. The solving of the 

equations given from density functional theory (DFT) is not as straightforward as may be 

presumed. In chapter 3, we briefly explain some of the mechanics of solving the single-particle 

equations in a crystal and outline the difference between the methods that have been used in 
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this thesis to solve the Schrödinger equations. Further, we discus different methods such as 

electronic structure method, linear-muffin-tin orbital (LMTO), full potential LMTO and 

projected augmented wave method.  

Chapter 4 presents a brief introduction to the photovoltaic properties, both electronic 

and optical properties of the semiconductor materials. Since the efficiency of solar cell is highly 

dependent on the band gap of material, it is important to employ accurate and efficient methods 

to calculate the band gap accurately, and this will present a promising opportunity for 

engineering the material for the photovoltaic applications.  We discuss the need for accurate 

and complicated calculation methods to investigate the electronic and optical properties of 

photovoltaic materials. Details of the hybrid functional method, the so-called Heyd-Scuseria-

Ernzerhof (HSE06) that we employ for investigating the electronic band structures, and Bethe-

Salpeter equation (BSE) based calculations for the optical properties (dielectric functions) of 

the materials are discussed.  In general, the inclusion of excitonic effects treated within the BSE 

framework provides results in better agreement with the experimental absorption spectra.  This 

chapter also describes the basics of effective mass (EM) calculation and its relevance to the 

detailed study of the energy levels in solar devices.   

The research carried out in this study has resulted in seven research articles. Three of 

the articles deal with the novel bulk materials with intermediate band gap and four with the low 

cost, non-silicon, direct band gap materials. In chapter 5, we give a brief introduction to 

intermediate band solar cells. Multi-band gap materials offer the possibility of increasing the 

efficiency of solar cells beyond the limit of traditional single band gap solar-cell materials. 

Intermediate-band (IB) materials are characterised by the splitting of the main band gaps into 

two or more sub-band gaps by narrow IBs and have been the focus of recent studies. It is shown 

that balance-limiting efficiencies of 63.2% can be achieved for IB solar cells, whereas 41% for 

single-band gap solar cells could be achieved at a concentration of 46 050 suns at earth and sun 

temperatures of 300 and 6000 K, respectively [20]. 

Chapter 5 discusses the types of intermediate band solar cells; there are quantum dots 

IB and bulk IB solar cells. In our search for novel intermediate band gap materials for PV 

applications, we carried out a comprehensive electronic structure study on 2100 different 

compounds. Because of the very high computational cost, we mainly focused on the electronic 

band structure, the density of states and effective mass calculations for 17 acceptable IB 

materials using generalized gradient approximation (GGA) [21]. The optimal band gap is of 
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importance in selecting the materials for solar cell applications. Publication I [22] listed in 

Chapter 7 presents the computational modelling on these novel bulk IB materials.  

Although the GGA approximation is time efficient to investigate the electronic 

structure of a material, it underestimates the band gap. After the initial scanning of the bulk 

materials, we went for an accurate analysis of the electronic band structure of these materials 

by employing the HSE06 method.  Our in-depth analysis of these seventeen intermediate band 

gap materials in Publication I revealed that four materials, namely, Au2Cs2I6, Ag2GeBaS4, 

Ag2ZnSnS4, and AgCuPO4 had a total band gap of less than 4 eV. Publication II listed in chapter 

8 presents hybrid electronic and optical properties of these four IB compounds. We verified the 

applicability of these four materials for photovoltaic applications by studying the optical 

properties, structural and the mechanical stability analysis of the materials. Our numerical 

results show that these four materials are promising novel candidates for intermediate band gap 

solar cells.  

Recently, organic-inorganic perovskites have made a lot of success in the recent past 

as a PV material, and the efficiency of perovskite solar cells have reached a record of 22.1% 

[23] in 2017. The perovskite material used in these solar cells are mostly methylammonium 

lead trihalide (CH3NH3PbX3, where X :  Cl, I, Br). The research community has been focusing 

on issues like stabilizing the structure in humidity and replacing the toxic lead with other ions.  

Our study of 2100 compounds led us to an interesting perovskite material Cs2SnI6 that had an 

intermediate band. Although the total band gap of this material is 4.98 eV, since it has an 

intermediate band,  according to Green [6], cells representing VB to IB and IB to CB transitions 

can be regarded as two cells in series, and the VB to CB transition can be represented as a 

parallel cell. This unique feature of the intermediate band and the perovskite structure make 

this material an interesting candidate for PV applications. The detailed analysis of Cs2SnI6 is 

presented in Publication III [24] in chapter 8. 

Chapter 6 non-conventional (so-called non-silicon) solar cells are discussed. Silicon 

solar cells are currently the dominating technology for photovoltaic devices. More than 80% of 

the solar cell modules installation worldwide are based on either mono or multi-crystalline 

silicon [7]. However, researchers are making considerable efforts in developing solar cells 

based on alternative materials (non-silicon materials). This is due to several reasons including 

the fact that silicon has an indirect band gap of 1.1 eV, resulting in low absorption coefficients. 

An optimum band gap of 1.4 eV results in an efficiency of 32% for an ideal solar cell [14]. 
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Factors like high cost in material and production and the flexibility issue tends the research 

community to search alternative materials that have direct band gaps and better absorption 

properties compared to Silicon.  Novel materials considered for PV applications include copper 

zinc tin sulphide (CZTS), ternary, binary and multinary compounds with a direct band gap, 

enabling high absorption properties. The desired features of these non-silicon materials are high 

photon conversion efficiency and low production cost. In another comprehensive study, we 

analyse electronic band structures of 1000 non-silicon based materials extensively in search for 

optimum band gaps and high absorption coefficients. We carry out less-accurate, but time 

efficient GGA based analysis in order to identify candidates that have a band gap between 0.5 

eV and 1.1 eV. We performed band gap calculations on a database of 1000 non-silicon materials 

and identified 27 compounds with band gap values in the required range.  We carried out the 

more accurate, but time-consuming HSE06 method for the analysis of the electronic structure 

of these 27 candidates. Among these 27 candidates, only four compounds namely TlBiS2, 

Ba3BiN, Ag2BaS2, and ZrSO revealed to exhibit direct band gap that is highly desirable for 

photovoltaic applications. We present the complete study in Publication IV [25] that is listed in 

chapter 10.  

Our detailed study showed that the two compounds, namely, TlBiS2 and Ba3BiN have 

high absorption coefficients in the visible region. This led to our in-depth analysis of TlBiS2 in 

Publication V [26] presented in chapter 11.  TlBiS2 has strong absorption coefficient with an 

optimum band gap that can result in high efficiency for the photovoltaic process.  

There is a lot of research interest in the family of so-called dichalcogenide, ternary 

compounds with general formula III-III-VI2 (where III=Al, Ga, In, Tl; VI=Se, Te, S) in a variety 

of fields, including solar energy field. Dichalcogenide-TlGaTe2 is an interesting material to be 

considered, but only a limited number of work is done on this material theoretically. TlGaTe2 

is considered as an indirect band gap material, but our accurate analysis of the electronic 

structure of the material reveals that it possesses both a direct and an indirect band gap. The 

material has to be defined as direct band gap material since the difference in the photon energy 

between the k-points is 20 meV. Our finding is further confirmed by the analysis of optical 

properties of the material, and these results will highlight for the very first time TlGaTe2 as a 

strong candidate for PV applications. The study is presented in Publication VI in chapter 12.  

Our search for a new novel stabilized materials led us to study a material combining 

two different perovskites, CsPbI3 and CsSnI3 for PV applications. Our results show that through 
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band gap engineering, we can obtain higher absorption and efficiencies for non-silicon solar 

cells based on perovskites. Publication VII [27] presents the electronic and optical properties 

of CsSnxPb(1-x)I3 (x=0,0.5,1) [27] and is listed in chapter 13. 
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Chapter 2

Theoretical Methodology 

2.1 Many body problems 

The state of matter depends on the behaviour of the almost massless electrons which 

revolve around the heavier nuclei of atoms under normal conditions. Describing the motion of 

the electrons around a nucleus, was one of the big questions in physics at the beginning of the 

20th century. Many researchers contributed to the solution of this problem, among them 

Schrödinger, Dirac, Heisenberg, and Bohr made large contributions to the progress of a theory 

they named quantum Mechanics. Today, quantum Mechanics has become the fundamental tool 

employed by solid state theorists. When modelling a certain material, we require to the interplay 

between of a very large number of particles, in most macroscopic cases of the order of many 

moles, 𝑖. 𝑒 1023 electrons. This means that in order to model a realistic system some 

approximations and several simplifications have to be taken. In this work, our emphasis is 

restricted to bulk materials. This means that possible surface effects are excluded and that we 

considered the bulk to be an infinite crystal. To study the properties of a given quantum system, 

the so-called Schrödinger Equation has to be solved. The time-independent Schrödinger 

equation has the form [28], 

𝐻𝜓 = 𝐸𝜓 (2.1) 

where H is the Hamiltonian operator, E is the energy and 𝜓 is the wave function. This equation  

can be solved analytically only in a few simple cases, including the case of a hydrogen atom (  

one nucleus and one electron). However, for a solid, the system is described by the many-

electron wave function 𝜓(r 1,r 2,...r 𝑁), where r 𝑖 denotes the position and spin of particle 𝑖. In 

a solid, typically, we are dealing with 10 23 particles and which make the problem very

complicated. The Hamiltonian for the whole bulk system has been described as follows. 

𝐻 = −
ℏ

2
∑

𝑘

∇2

2𝑀𝑘
+
1

2
∑

𝑘≠𝑙

𝑍𝑘𝑍𝑙𝑒
2

|𝑅𝑘 − 𝑅𝑙|
−
ℏ2

2𝑚
∑

𝑖

∇𝑖
2 +

1

2
∑

𝑖≠𝑗

𝑒2

|𝑟𝑖 − 𝑟𝑗|
−∑

𝑖,𝑘

𝑍𝑘𝑒
2

|𝑟𝑖 − 𝑅𝑘|

        (2.2)           
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In this Hamiltonian, ℏ is the Planck constant ℎ divided by 2𝜋, 𝑚 and r 𝑘 denotes the 

electron mass and coordinates, 𝑀𝑘 and  R 𝑘 nuclear masses and coordinate. 𝑍 is the charge of 

the constituent nuclei. The indiced 𝑖 and 𝑗 number the electrons and 𝑘 and 𝑙 the nuclei. The first 

term in Eq. (2.2) is the kinetic energy term for the nuclei, the second term is the Coulomb energy 

term between the nuclei (VNN), the third term is the kinetic energy term for the electrons, the 

forth term is the interaction between the electrons (Vee) and the last term is the coulombic 

interaction between the electrons and the nuclei and could be regarded as an external potential, 

(Vext) acting upon the electrons. Since the nuclei are much heavier, and therefore slower than 

the electrons, we can make the so-called "Born-Oppenheimer approximation" and regard the 

nuclei as stationary. The nuclei positions can therefore be considered a fixed parameter while 

solving the electronic problem and Eq.(2.2)will be solved for the electrons around these 

stationary nuclei. This allows us to remove the first term in the Eq.(2.2). The second term is 

only a constant (since the nuclear positions are known) and is not considered until we calculate 

the total energy. Now, the Hamiltonian of the electronic problem can be expressed as 

𝐻𝑒𝑙 = −∑

𝑖

∇𝑖
2 +∑

𝑖≠𝑗

1

|𝑟𝑖 − 𝑟𝑗|
−∑

𝑖,𝑘

2𝑍𝑘
|𝑟𝑖 − 𝑅𝑘|

(2.3)

Here we have also introduced Rydberg atomic units, i.e., 𝑒2 = 2, ℏ = 1, and 𝑚 = 
1

2
. 

2.1.1 The Hartree approximation 

 In order to simplify the Eq.(2.2), we have introduced the Hartree approximation which 

we can solve easily. In Eq.(2.2), the potential which certain electrons feel depends upon all the 

other electron’s positions. However, this potential can be obtained by an average single-particle 

potential 

𝑉𝑑(𝑟𝑖) = 𝑒
2∑

𝑗≠𝑖

𝑛𝑗
|𝜓𝑗(𝑟𝑗)|

2

|𝑟𝑖 − 𝑟𝑗|

          (2.4) 

where 𝑛𝑗  are the orbital occupation numbers and 𝜓𝑗(r 𝑗) is a singleparticle wave-

equation,  i.e. a solution to the one-particle wave-equation, 
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[−
ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡 + 𝑉𝑑(𝑟𝑖)]𝜓𝑖(𝑟𝑖) = 휀𝑖𝜓𝑖(𝑟𝑖) (2.5) 

with this simplification the set of equations now become separable. However, the 

equations are still non-linear and have to be solved self-consistently by iteration. 

The two electrons cannot be in the same quantum state according to the Pauli exclusive 

principle. However, the wave function in Hartree theory 

Ψ(𝑟1𝜎1, 𝑟2𝜎2, . . . , 𝑟𝑁𝜎𝑁) =∏

𝑁

𝑖

𝜓𝑖(𝑟𝑖, 𝜎𝑖) 

          (2.6) 

Eq. (2.6) is not antisymmetric under the interchange of electron coordinates and 

accordingly does not follow the Pauli principle. Furthermore, the Hartree approximation fails 

to represent how the configuration of the 𝑁 −1 electrons affectes the remaining electrons. This 

problem has been rectified by Hartree-Fock theory. 

2.1.2 Hartree-Fock approximation 

We assert that a solution to 𝐻Ψ = 𝐸Ψ is given by any state Ψ that makes the following 

quantity stationary: 

𝐸 =
〈Ψ |H|Ψ〉

〈Ψ |Ψ〉
(2.7) 

From the ground-state wave function Ψ, the normalized expectation value of energy is 

minimized according to the variational principle [29].  

 A better explanation is to take over from the wave function in Eq.(2.6) by a Slater 

determinant of one-electron wave functions  

Ψ(𝑟1𝜎1, 𝑟2𝜎2, … , 𝑟𝑁𝜎𝑁) =
1

√𝑁!
|

Ψ1(𝑟1𝜎1) Ψ1(𝑟2𝜎2) … Ψ1(𝑟𝑁𝜎𝑁)
Ψ2(𝑟2𝜎2) Ψ2(𝑟2𝜎2) … Ψ2(𝑟𝑁𝜎𝑁)
⋮ ⋮ ⋱ ⋮
Ψ𝑁(𝑟𝑁𝜎𝑁) Ψ𝑁(𝑟𝑁𝜎𝑁) … Ψ𝑁(𝑟𝑁𝜎𝑁)

| (2.8) 

This is a linear combination of products of the form given by of Eq. (2.6) moreover, 

all other products achievable from the permutation of the r 𝑖𝜎𝑖 amoung themselves. The 

Hartree-Fock equation which follows from an energy-minimization is given by: 
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[−
ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡 + 𝑉𝑑(𝑟𝑖)]𝜓𝑖(𝑟𝑖) −∑

𝑗

∫ 𝑑′
𝑒2

|𝑟 − 𝑟′|
𝜓𝑗
∗(𝑟′)𝜓𝑖(𝑟′)𝜓𝑗(𝑟)𝛿𝑠𝑖𝑠𝑗 = 휀𝑖𝜓𝑖(𝑟𝑖)

(2.9) 

The last term on the left side due to exchange originates from the wave function (Slater 

determinant). This term only operates between electrons having the same spin; this is called the 

exchange term. In addition to this, there should also be a correlation interaction between 

electrons, which is not admitted here. Therefore, the correlation energy can be explained as the 

difference between the exact energy and the Hartree-Fock energy. Another more competent 

approach to treat the electrons in a solid will be introduced in the following sections. 

2.1.2 Density functional theory 

One of the most fruitful modern theories for scheming the properties of matter, the 

author was awarded the Nobel prize in 1998, is the Density Functional Theory (DFT) [30]. In 

DFT the primary variable is the electron charge density 𝑛( r). The Theory was initially 

formulated by the theorems by Hohenberg and Kohn, but has since grown and is now one of 

the main theoretical tools for understanding the properties of matter. The idea to use the electron 

density as the basic variable when describing the properties of matter did not originate with 

Hohenberg and Kohn. Thomas-Fermi theory (Fermi 1928) proposes a scheme based on 𝑛( r) 

but assumes uncorrelated motion of the electrons, this theory was latter improved by Dirac 

(1930) to include exchange by a term derived from the exchange energy in a homogeneous 

system. The exchange potential in a system of variable density can be approximated by a term 

[𝑛( r)] 
1

3, 𝑛( r) being the local density. This [𝑛( r)] 
1

3 dependence is a consequence of the 

“exchange hole" or “Fermi hole". This hole is the region near an electron which is avoided by 

electrons of the same spin. Modern DFT approximates the full non-local exchange with a term 

based on the local density, hence called the  Local Density Approximation (LDA). The LDA is 

widespread in solid state physics, but there are more modern approximations with which to treat 

the full non-local exchange such as the Generalized Gradient Approximation (GGA), where the 

term is more complex based on contributions also from the gradients of the local density or 

higher orders of derivatives such as the Laplacians, the being known as meta-GGAs [31]. The 

main motivation of these approximations (LDA, GGA, meta-GGA, LDA+U etc.) is that they 

allow us to solve Schrödinger type equations with local effective potentials. 
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 One can speculate why DFT is so successful, one of the main reason that DFT and 

local approximations to the exchange term endeavour can be that in solid and another 

explanation to the benefit is that the approximations built in the LDA and GGAs to the non-

local exchange are quite good. 

2.1.2 Single-particle equations 

For the physics of many-electron systems, we are now in the position where we can 

define the main principle of density functional theory, which is based on two fundamental 

theorems introduced by Hohenberg and Kohn [32], and later extended by Kohn and Sham [33]. 

 Theorem 1  

The ground state expectation value of any observable, including the total energy, is a 

unique functional of the exact ground state density n(r). 

 Theorem 2  

The exact ground state density minimizes the total energy functional E[n]. The total 

energy functional that needs to be minimized in order to find the true ground-state is [33]: 

 𝐸[𝑛] = 𝑇0[𝑛] + ∫ 𝑑𝑟
3𝑛(𝑟)[𝑉𝑒𝑥𝑡 +Φ(𝑟)] + 𝐸𝑋𝐶[𝑛], (2.10) 

where 𝑇0[𝑛] is the kinetic energy of a non-interacting electron system with density 

𝑛(𝑟), 𝑉𝑒𝑥𝑡 is the potential from the nuclei, Φ(𝑟) is the Coulomb potential from the electron and 

𝐸𝑋𝐶is the exchange-correlation energy. We can thus look at this as if we have an effective 

potential, which must enter in the one-particle Schrödinger equations. Important to note here is 

that 𝐸𝑋𝐶  requires approximations in the practical implementation of the Kohn-Sham scheme. 

 𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡 +Φ(𝑟) +
𝛿𝐸𝑋𝐶[𝑛]

𝛿𝑛(𝑟)
 (2.11) 

As an effect, the calculation of the energy in terms of charge density is reduced to the self-

consistent solution of a system of coupled, non-linear, one-particle Schrödinger equations. 

            [−
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝐫) + ∫

𝜌(𝐫′)

|𝐫−𝐫′|
𝑑𝐫′ +

𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌(𝐫)
] 𝜙𝑖(𝐫) = 휀𝑖𝜙𝑖(𝐫)                    (2.12) 

This is so called Khon-Sham (KS) wave functions, 𝜙𝑖are single-particle 

eigenfunctions that are meaningful only for determining charge density. For more general 
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systems the spin is also included in the formulation above in a manner that is, at least 

conceptually, quite simple. The charge density 𝑛(𝑟) is replaced as the variable by the density 

matrix 𝜌𝛼𝛽(𝑟) defined by: 

𝜌𝛼𝛽(𝑟) = 〈Ψ|𝜓𝛽
†(𝑟)𝜓𝛼

†(𝑟)|Ψ〉 (2.13) 

where 

∑𝛼 ∫ 𝑑𝑟𝜌𝛼𝛼 = 𝑁 (2.14) 

and N is the number of electrons. All ground state properties are now functional of  the 

energy 𝐸 , which is needed to be stationary with respect to variations in 𝜌𝛼𝛽 and the density 

matrix 𝜌𝛼𝛽. The potentials are also allowed to be spin dependent so 

𝑉𝑒𝑥𝑡 → 𝑉𝑒𝑥𝑡
𝛼𝛽

(2.15) 

and 

𝑉𝑋𝐶
𝛼𝛽
=
𝛿𝐸𝑋𝐶

𝛿𝜌𝛼𝛽
. (2.16) 

This is called Local Spin Density Approximation (LSDA). 

2.1.2 Exchange-correlation energy and the electron-hole 

The exchange-correlation functional term in the Eq (2.10) is some way approximated 

in the current theoretical framework. Since the electrons interact with each other: “the 

probability of finding another electron at  r ′ reduces by an electron at  r ", and every electron

is surrounded by a hole in the electron density of equal and opposite charge [34]. In LDA 

(LSDA) the exchange-correlation energy can be written as 

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫ 𝑑𝑟𝑛(𝑟)휀𝑋𝐶[𝑛↑(𝑟), 𝑛↓(𝑟)], (2.17) 

where 휀𝑋𝐶 is the exchange-correlaton energy per particle in a homogeneous spin-

polarized electron gas. We can also write an exact term for the exchange-correlation energy 

using exchange correlation hole [34]: 

𝐸𝑋𝐶
1

2
∫ 𝑑(𝑟)𝑛(𝑟) ∫ 𝑑𝑟′

1

|𝑟−𝑟′
𝑛𝑋𝐶(𝑟, 𝑟

′ − 𝑟), (2.18) 
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where 𝑛𝑋𝐶(𝑟, 𝑟
′ − 𝑟) is the exchange correlation hole and obeys the sum rule (charge =

−1):

∫ 𝑑𝑟′𝑛𝑋𝐶(𝑟, 𝑟
′ − 𝑟) = −1. (2.19) 

It can now be displayed that making a variable substitution 𝑅 = 𝑟′ − 𝑟, 𝐸𝑋𝐶 can be

written as : 

𝐸𝑋𝐶
1

2
∫ 𝑑(𝑟)𝑛(𝑟) ∫

∞

0
𝑑𝑅𝑅2

1

𝑅
∫ 𝑑Ω𝑋𝐶(𝑟, 𝑅), (2.20) 

this implies the exchange depends only on the spherical average of 𝑛𝑋𝐶 . Here in lies the 

answer to why the LDA approximation works so well: even if LDA doesn’t gives the right form 

for the exchange-correlation hole it does give a spherical average which is very close to the real 

one [34]. 

2.1.2 Limits of Density Functional Theory 

There are fundamental limits to what a theoretical exact density functional, in 

combination with the Kohn-Sham approach can predict in terms of ground-state properties. For 

instance, the true Fermi and exact KS eigenvalue surfaces are generally not identical for both 

interacting and inhomogeneous systems [35]. It is at present an open question whether the 

DFT+KS approach is in principle valid for interacting systems with inhomogeneous density. 

DFT only burdens the electronic ground-state structure, and underestimate the band gap, in 

semiconductors, comes out incorrect by several factors. A famous error is also found in 

transition metal oxides that are predicted to be metallic when they are in fact insulators. Other 

traditional short-coming of DFT have later been attributed to the failure of the specific 

exchange-correlation functions used, for example, the failure to anticipate the ground-state 

structure of Fe (being bcc) has been found to be rectified when using a GGA instead of LDA. 

In practice, it is a complicated matter to single out the exact reason for a failure of a certain type 

of calculation, since there are so many approximations involved. It is substantial to be known 

that there are limitations to the propriety of DFT (the exchange-correlation functions used), one 

should perhaps not to be too despondent, and alternatively view these processes as an 

experimental computational set-up and simply attempt to push the limits of the theory, of course 

always looking to validate ones findings in experiment. 
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Chapter 3 

The computational methods 

    At this is the stage we enter into the real problem. Solving the equations given from 

Density Functional Theory (DFT) is not as straight-forward as may be presumed. Many choices 

on various level of approximation and technical details have to be made along the way. Like in 

many other modern computational research disciplines, this means solving the equations using 

large computer clusters and massive computational power. In this chapter, we will briefly 

explain some of the mechanics of solving the single-particle equations in a crystal and outline 

the difference between the methods that have been used in this thesis to solve the equations. In 

the previous chapter, we have obtained an effective one-electron equation which can be solved 

in a self-consistent way, 

[−∇2 + 𝑉𝑒𝑓𝑓(𝑟)]𝜓𝑖(𝑟) = 휀𝜓𝑖(𝑟) (3.1) 

from this equation we can find, the electron charge density 𝑛(𝑟) since: 

𝑛(𝑟) = ∑𝑁𝑗=1 |𝜓𝑗|
2 (3.2) 

Because of both Φ and V 𝑋𝐶 depend on 𝑛(𝑟)we can calculate a new V 𝑒𝑓𝑓𝑛(𝑟) using the 

local density approximation, GGA, etc, for the exchange-correlation and the Poisson equation 

for the electrostatic contribution: 

∇2Φ(𝑟)𝑖 = −4𝜋∑𝑗=1,𝑗≠𝑖 |𝜓𝑗|
2. (3.3) 

We repeat/reiterate this process until self-consistency (the difference between V 𝑒𝑓𝑓 in 

the m and m-1 iterations is almost the same – the difference is only in the chosen convergence 

criterion) is reached. When self-consistency has been reached we calculate the total energy of 

the system of electrons and nuclei using the total energy expression of the functional (Eq. 

(2.10)). 
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3.1 Periodicity and symmetry of the crystal 

It would be difficult to solve the equations if we had to calculate them for all the 

electrons in the material. For an infinite crystal, the potential is periodic, i.e., invariant under 

lattice translation T, solving the equations in some shortened part of the system will solve the 

entire system since this solution will necessarily repeat themselves on the lattice of the crystal. 

For a monoatomic solid we have 

𝑉(𝑟 + 𝑇) = 𝑉(𝑟) (3.4) 

where T is defined as 

𝑇 = 𝑚1𝑎1 +𝑚2𝑎2 +𝑚3𝑎3. (3.5) 

 The vectors {𝑎𝑖} are the real-space Bravais lattice vectors that span the crystal cell and 

{m 𝑖} are integers. According to the Bloch’s theorem, the eigenstates can be chosen to take the 

form of a plane wave times a function with the periodicity of the Bravais latice; 

𝜓𝑘(𝑟 + 𝑇) = 𝑒
𝑖𝑘.𝑇𝜓𝑘(𝑟) (3.6)

where 𝑘 is the Block wave vector. The phase factor will be unit a for some electronic 

states. 

Now, the one-electron function can be distinguished by the Bloch vector k. As an effect, 

Eq. (3.1) can be rewritten as 

𝐻𝑒𝑓𝑓(𝑟)𝜓𝑛(𝑘; 𝑟) = 휀𝑛(𝑘)𝜓𝑛(𝑘; 𝑟), (3.7) 

where the index 𝑖 in Eq. (3.1) has been substituted by the quantum number 𝑛, and the 

band index. The one-electron wave function 𝜓𝑛 and the corresponding eigenvalues, 휀𝑛 are now 

be characterized by the Bloch wave vector k. 

This happens when the wave-vector corresponds to a 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 lattice vector defined 

by 

𝑔 = 2𝜋(𝑛1𝑏1 + 𝑛2𝑏2 + 𝑛3𝑏3) (3.8) 

the 𝑛𝑖 are integers and 𝑏𝑖 are the basis vectors of the reciprocal lattice, 𝑖. 𝑒 
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 (𝑎𝑖. 𝑏𝑗) = 𝛿𝑖𝑗 (3.9) 

for 𝑘 = g 

 𝑒𝑖𝑘.𝑇 = 𝑒𝑖𝑔.𝑇 = 𝑒2𝜋𝑖𝑚𝑖𝑛𝑖 = 1. (3.10) 

From this one can understand that the periodicity in real space also introduces a 

periodicity in reciprocal 𝑘-space and that an electron state with wave vector 𝑘′ = 𝑘 + 𝑔 will 

also satisfy the Block condition. When we consider the electronic structure of a solid it is thus 

not necessary to consider all the vectors. We have to consider only the wave vectors contained 

inside the region of reciprocal space known as Brillouin Zone (BZ). In addition to the translation 

symmetry, the crystal is also symmetric under rotations, this meaning that there are symmetries 

which transform one wave vector into another wave vector which reduced our problem further. 

The smallest possible zone which defines a complete set of wave vectors is called the 

irreducible part of the BZ. For example, in a cubic lattice, the irreducible part of the BZ is only 

1/48 of the full BZ which is the only part we need to solve the electronic structure problem. 

 Following the energy principle (minimize the total energy), and the Pauli exclusion 

principle, the eigenstates with eigenvalues  휀𝑖 (𝑘) are filled starting from the lowest eigenvalue 

and up. The energy value of the highest filled eigenstate is called Fermi energy (E 𝐹). The Fermi 

energy is defined by 

 𝑁 = ∫
𝐸𝐹

−∞
𝐷(휀)𝑑휀, (3.11) 

where N denotes the number of valence electrons and, D(E) is the density of the states 

(DOS), 

 𝐷(𝐸) =
2

8𝜋3
∫
𝑠( )

𝑑𝑆

|∇ (𝐾)|
 (3.12) 

This integration is carried out all over a surface of constant energy, S(E), in the first BZ. 

The one-electron states most appropriate for physical properties are those with energies around 

the Fermi level. These one-electron states are substantial for the stability of the crystal structure, 

susceptibility, transport properties 𝑒𝑡𝑐. 
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3.2 Electronic structure methods 

 In order to solve Eq. (3.7), we need to expand by other known wave-functions into a 

certain basis set. To solve the problem, we need to resort to one of the many available electronic 

structure methods. 

 The choice of basis-functions is essential for the efficiency of the computational 

method, and the first step is to find suitable basis-set in the implementation of a DFT.  

The first set of methods obey the Bloch condition explicitly. That is, in the expansion 

𝜓(𝑟) = ∑𝑛 𝑐𝑛𝜙𝑛(𝑟) (3.13) 

the basis functions are fixed and the coefficients 𝑐𝑛 are chosen to minimize the energy. One 

disadvantage of this method is that the wave functions are fixed. This often leads to great 

difficulty in obtaining a sufficiently converged a basis set. 

 In the second set of methods, the wave functions are varied. This is performed by 

introducing energy dependent wave functions 𝜙𝑛(휀, 𝑟). The wave functions are energy 

dependent and have the form of 

𝜓(휀, 𝑟) = ∑𝑛 𝑐𝑛𝜙𝑛(휀, 𝑟), (3.14) 

However, the Bloch conditions are automatically fulfilled. The solutions in one unit cell 

are chosen to fit smoothly to those of the neighbour cells, thus fulfilling the Bloch condition 

“indirectly". As the wave function can be modified with the problem at hand, these techniques 

converge very fast in the number of required basis functions. In APW and KKR, the price for 

doing so is the additional parameter 휀. At every k-point of the band structures must be solved 

for a large number of 휀. Solutions only exist for those 휀 that are actual eigenvalues. While these 

methods are accurate, they are also time/consuming. The solution to this problem is to linearize 

the energy dependent orbitals basis done in LAPW, LMTO, and ASW. They are expanded as a 

Taylor expansion in 휀 so that the orbitals themselves are energy independent, although the 

expansion retains the energy dependence. The variational equation (Eq.(3.7)) thus has to be 

solved only once for each k-point. These methods are extremely rapid and only slightly less 

accurate than the other non-linear methods. 
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3.3 The LMTO method 

During the last decades, the linear-muffin-tin-orbital (LMTO) [36] method has become 

very popular for the calculation of the electronic structure of crystalline systems. The LMTO 

method associates the following advantages are: (a) it uses a minimal basis, which gives high 

efficiency and creates calculations possible for large unit cell, (b) it treats all elements in the 

same way, so that 𝑑 and 𝑓 metals, as well as atoms with a large number of core states, can be 

considered, (c) it is very accurate, due to the augmentation procedure which gives the wave 

function the correct shape near the nuclei, (d) it uses atom-centered basis functions of well-

defined angular momentum, which makes the calculated properties transparent [37]. 

3.2.1  Muffin-tin orbitals 

 The crystal is divided into an interstitial region outside the spheres and non-overlapping 

muffin-tin spheres surrounding the atomic sites. Inside the muffin-tin sphere, the potential is 

defined to be spherically symmetric while in the interstitial region of the potential 𝑉𝑀𝑇𝑍 is taken 

to be constant or slowly varying. Because the potential in the interstitial is constant, we can 

shift the energy scale so as to set it to zero. In the following case, we have considered a crystal 

with only one atom per primitive cell. Within a single muffin-tin well we define the potential 

𝑉𝑀𝑇(𝑟) = {
𝑉(𝑟) − 𝑉𝑀𝑇𝑍 ,  |𝑟|   <   𝑆𝑀𝑇 
0 ,  |𝑟|   >   𝑆𝑀𝑇 

(3.15) 

Here 𝑉(𝑟) is the spherically symmetric part of the crystal potential. The radii of the 

muffin-tin spheres are chosen so that they do not touch each other. In following, 𝑆𝑀𝑇 is 

expressed by 𝑆. 

Now we try to solve the Schödinger equation for muffin-tin potential, 

[−∇2 + 𝑉𝑀𝑇]𝜓(휀, 𝑟) = (휀 − 𝑉𝑀𝑇𝑍)𝜓𝑛(𝑟) (3.16) 

We define the kinetic energy 𝜅2 in the interstitial region by

𝜅2 = (휀 − 𝑉𝑀𝑇𝑍) (3.17) 

For an electron moving in the potential well entrenched in the flat potential 𝑉𝑀𝑇𝑍 from 

an isolated muffin-tin, the spherical symmetry can extend throughout all space and the wave 

functions are 
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𝜓𝐿(휀, 𝑟) = 𝑖
𝑙𝑌𝑙
𝑚(�̂�)𝜓𝑙(휀, 𝑟) (3.18) 

where we use the convention that 𝑟 = |𝑟| and �̂� is the direction of 𝑟. A phase factor 𝑖𝑙 is

included. 

 To get basis functions which are nearly independent of energy, reasonably localized, 

and normalisable for all values of 𝜅2, Anderson [38]accomplished these by muffin-tin orbitlas.

A spherical Bessel function that cancels the divergent part of 𝜓𝑙(휀, 𝑘, 𝑟) and simultaneously 

reduces the energy and potential dependence of the tails, we have the muffin-tin orbitals in form 

of 

𝜒𝑙𝑚(휀, 𝑟) = 𝑖
𝑙𝑌𝑙
𝑚(�̂�) {

𝜓𝑙(휀, 𝑟) + 𝑃𝑙(휀)
(𝑟/𝑆)𝑙

2(2𝑙+1)
,  |𝑟|   <   𝑆 

(𝑟/𝑆)−𝑙−1 ,  |𝑟|   >   𝑆 
(3.19) 

where 𝜓𝑙(휀, 𝑟) is a solution of the radial Schrödinger equation inside the atomic sphere. 

The potential function 

𝑃𝑙(휀) = 2(2𝑙 + 1)
𝐷𝑙( )+𝑙+1

𝐷𝑙( )−𝑙
(3.20) 

moreover, the normalization of 𝜓𝑙(휀, 𝑟) is determined by satisfying differentiability and 

continuity of the basis function on the sphere boundary. Here the D 𝑙(휀) is the logarithmic 

derivative of the wave function. The tail of the basis function, 𝑖. 𝑒. the part outside the muffin-

tin sphere can in general, be written as Neumann function. But in Eq. (3.17) the kinetic energy 

of this tail, known as 𝑘2, is chosen to be zero. Therefore, the Neumann function has a simple

form like this. 

3.2.2 The LMTO-ASA method 

In the atomic sphere approximation, LMTO-ASA, the muffin-tin spheres are 

overlapping in such a way that the total volume of a muffin-tin sphere is the same as the atomic 

volume. This means that the muffin-tin radius 𝑆 is equal to the Wigner-Seitz radius 𝑆𝑊𝑆 where 

the total volume per atom is given by 𝑉 = (4𝜋/3)𝑆𝑊𝑆
3 . In the ASA, the potential is also assumed

to be spherically symmetric inside each muffin-tin sphere and the kinetic energy of the basis 

functions defined in the interstitial is restricted to be constant, actually zero in the calculation.  
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 In order to construct a linear method, the energy-dependent terms in the muffin-tin 

spheres of the Eq. (3.19) are replaced by the energy independent function Φ. The function is 

defined as a combination of radial functions and their energy derivative 

Φ(𝐷, 𝑟) = 𝜙𝑙(𝑟) + 𝜔(𝐷)�̇�𝑙(𝑟), (3.21) 

where 𝜔(𝐷) is a function of the logarithmic derivative and 𝜔(𝐷) should make the 

energy dependent orbitals 𝜒𝑙𝑚(휀, 𝑟) defined in the Eq. (3.19) continuous and differentiable at 

the sphere boundary 𝑆. The boundary condition determines 𝐷 = −𝑙 − 1. The so obtained energy 

independent orbital can now be written as 

𝜒𝑙𝑚(휀, 𝑟) = 𝑖
𝑙𝑌𝑙
𝑚(�̂�) {

Φ𝑙(𝐷, 𝑟) ,  |𝑟|   <   𝑆 

(𝑟/𝑆)−𝑙−1 ,  |𝑟|   >   𝑆 
(3.22) 

3.4 Full potential LMTO method 

 The FP-LMTO calculations are fully relativistic, all electrons, without shape 

approximation to the charge density or potential. The crystal is divided into an interstitial region 

outside the spheres and a non-overlapping muffin-tin sphere. The wave function is then 

expressed differently in the two types of regions. The basis functions and inside a muffin-tin 

sphere are as in the LMTO-ASA method. They are Bloch sum of linear muffin-tin orbitals and 

are expanded by structure constant, 𝜙𝜈(𝑟) and �̇�𝜈(𝑟). However, the kinetic energy is not, as in 

the ASA approximation, restricted to the zero in the interstitial region. For simplicity, here we 

only consider a monoatomic solid and suppress the atomic site index. The 𝜅 dependent linear 

muffin-tin orbitals can now be written as 

𝜓𝑘𝑙𝑚(𝑘, 𝑟) = 𝜒𝑘𝑙𝑚(𝑟) + ∑𝑙𝑚 𝐽𝑘𝑙𝑚(𝑟)𝑆𝑘𝑙𝑚, 𝑙
′𝑚′(𝑟), (3.23) 

where 

𝜒𝑙𝑚(𝑟) = 𝑖
𝑙𝑌𝑙
𝑚(�̂�) {

−𝑖𝑙ℎ𝑙(𝜅𝑆)
Φ(𝐷ℎ,𝑟)

Φ(𝐷ℎ,𝑆)
,  |𝑟|   <   𝑆 

−𝑖𝑘ℎ𝑙(𝜅𝑟) ,  |𝑟|   >   𝑆 
(3.24) 

and 

𝐽𝑘𝑙𝑚(𝑟) = 𝑖
𝑙𝑌𝑙
𝑚(�̂�) {

𝐽𝑙(𝜅𝑆)(𝜅𝑆)
Φ(𝐷𝑗,𝑟)

Φ(𝐷𝑗,𝑆)
,  |𝑟|   <   𝑆 

𝐽𝑙(𝜅𝑟) ,  |𝑟|   >   𝑆 
(3.25) 
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Inside the muffin-tin at 𝜏, we can also expand the electron densities and potential in 

spherical harmonics times a radial function, 

𝑛𝜏(𝑟)|𝜏 = ∑ℎ 𝑛𝜏(ℎ; 𝑟𝜏)𝐷ℎ(�̂�𝜏), (3.26) 

𝑉𝜏(𝑟)|𝜏 = ∑ℎ 𝑉𝜏(ℎ; 𝑟𝜏)𝐷ℎ(�̂�𝜏), (3.27) 

where 𝐷ℎ are linear combinations of spherical harmonics, 𝑌𝑙
𝑚( �̂�). 𝐷ℎ are chosen here

because we need an invariant representation of the local point group of the atomic site contained 

in the muffin-tin. The expansion coefficients 𝑛𝜏(ℎ; 𝑟𝜏) and 𝑉𝜏(ℎ; 𝑟𝜏) are numerical functions 

given on a radial mesh. 

 In the interstitial region, the basis function, charge densities and potential are 

represented as Fourier series, 

𝜓(𝑘; 𝑟)|𝐼 = ∑𝐺 𝑒
𝑖(𝑘+𝐺).𝑟𝜓(𝑘 + 𝐺), (3.28) 

𝑛𝐼(𝑟)|𝐼 = ∑𝐺 𝑛𝐺𝑒
𝑖(𝑘+𝐺).𝑟 , (3.29) 

𝑉𝐼(𝑟)|𝐼 = ∑𝐺 𝑉𝐺𝑒
𝑖((𝑘+𝐺)𝑟 , (3.30) 

where G is reciprocal lattice vectors spanning the Fourier space. 

3.3.1 The basis set 

Envelope function is the basis function in the interstitial region. By choosing appropriate 

envelope functions, such as plane waves, Gaussians, and spherical waves (Hankel functions), 

we can generate various electronic structure methods (LAPW, LCGO, LMTO, etc.). The 

LMTO envelope function is represented as below, 

𝐾𝑙𝑚(𝜅; 𝑟) = −𝜅
𝑙+1𝑖𝑙𝑌𝑙

𝑚(�̂�) {
(𝜅, 𝑟) ,  𝜅2   ≤   0 

𝑛𝑙(𝜅, 𝑟) ,  𝜅2   >   0
(3.31) 

where 𝑛𝑙 is a spherical Neumann function and ℎ𝑙
+ is a spherical Hankel function of the

first kind. The envelope function is a singular Hankel or Neumann functions with regards to the 

sign of the kinetic energy. This introduces a 𝜅 dependence for the basis functions inside the 

muffin-tin sphere through the matching conditions at the sphere boundary. This is not a 
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problem. Using the variational method, the ground state still has several basic functions with 

the same quantum numbers, 𝑛, 𝑙, and 𝑚, but different 𝜅2. This is called the double basis.

 The basis set can always contain different bases corresponding to the atomic quantum 

number 𝑙 but with different principle quantum numbers n. A basis constructed in this way form 

a fully hybridizing basis set, not a set of separate energy panels. 

 To illustrate the way the basis set is constructed, we take fcc Ce [39] (we used the 

similar configuration for our study in the Publications) as an example. The ground state 

configuration is 4𝑓1 5𝑑16𝑠2. Thus we include the 6𝑠, 6𝑝, 5𝑑, 4𝑓 as valence states. To reduce

the core leakage at the sphere boundary, we also treat the core states 5𝑠 and 5𝑝 as semi-core 

states. By this kind of construction, the basis set become more complete. 

3.3.2 The LMTO matrix 

We now propose an appropriate notation for the basis functions: 

|𝜒𝑖(𝑘)〉 = |𝜙𝑖(𝑘)〉, (3.32) 

where |𝜙〉 is the basis function inside the muffin-tin spheres and |𝜓𝑖(𝑘)〉 denotes the basis 

functions, outside the spheres, tails.  

We construct a wave function Ψ𝑘𝑛(𝑘) by a linear combination of the LMTO basis 

functions, 𝜒𝑖. Hence the linear combination can be written as 

|Ψ𝜒〉 = ∑𝑖 𝐴𝑖|𝜒𝑖〉 (3.33) 

The Hamiltonian operator is 

�̂� = 𝐻0 + 𝑉𝑛𝑚𝑡 + 𝑉𝐼 (3.34) 

where 𝐻0 is the Hamiltonian operator containing the kinetic operator and the spherical 

part of the muffin-tin potential, 𝑉𝑛𝑚𝑡 represents the non-spherical part of the muffin-tin 

potential, and 𝑉𝐼 is the interstitial potential. Then by using the variational principle for the one-

electron Hamiltonian, the LMTO secular matrix follow as 

∑𝑗 [〈𝑐ℎ𝑖𝑖(𝑘)|𝐻0 + 𝑉𝑚𝑛𝑡 + 𝑉𝐼𝜒𝑗(𝑘)〉 − 휀(𝑘)〈𝜒𝑖(𝑘)|𝜒𝑗(𝑘)〉]𝐴𝑗 = 0 (3.35) 

We can reduce it to 
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∑𝑗 [𝐻𝑖𝑗
0 + 𝐻𝑖𝑗

1 − 휀(𝑘)𝑂𝑖𝑗]𝐴𝑗 = 0 (3.36) 

where 

𝐻𝑖𝑗
0 = 〈𝜙𝑖(𝑘)|𝐻0|𝜙𝑗(𝑘)〉 (3.37) 

𝑂𝑖𝑗 = 〈𝜙𝑖(𝑘)|𝜙𝑗(𝑘)〉 + 〈𝜓𝑖(𝑘)|𝑝𝑠𝑖𝑗(𝑘)〉 (3.38) 

𝐻𝑖𝑗
1 = 〈𝜙𝑖(𝑘)|𝑉𝑛𝑚𝑡|𝜙𝑗(𝑘)〉 +

1

2
(𝐾𝑖

2 + 𝐾𝑗
2)〉𝜓𝑖(𝑘)|𝜓𝑗(𝑘)〉 + 〈𝜓𝑖(𝑘)|𝑉𝐼|𝜓𝑗(𝑘)〉

(3.39) 

where |𝜓𝑗(𝑘)〉is an eigenfunction to ∇2 with eigen value 𝜅𝑗
2. 𝐻𝑖𝑗

0  is the spherical

muffin-tin part of the Hamiltonian matrix. 𝑂𝑖𝑗 is the overlap between the orbitals inside the 

sphere as well as in the interstitial. 𝐻𝑖𝑗
1  contains the corrections to the Hamiltonian matrix

coming from the muffin-tin and interstitial region. The first term in Eq. (3.39) is the non-

spherical potential matrix. The next term is the expectation value of the kinetic energy operator 

in the interstitial region. The last term is the interstitial potential matrix. 

3.3.3 Total energy 

The total energy for the whole crystal can be expressed as [40] 

𝐸𝑡𝑜𝑡 = 𝑇𝑣𝑎𝑙 + 𝑇𝑐𝑜𝑟 + 𝐸𝑐 + 𝐸𝑥𝑐 (3.40) 

where 𝑇𝑣𝑎𝑙 and 𝑇𝑐𝑜𝑟 are the kinetic energy for the valence and core electrons, 𝐸𝑐 is 

electrostatic energy including electron-electron, electron-nucleus, and nucleus-nucleus energy, 

and 𝐸𝑥𝑐 is the exchange energy term. The kinetic energy is usually expressed as the expectation 

value of the kinetic operator −∇2. By using the eigenvalue equation, the expectation value can

be expressed as the sum over one electron energies minus the effective potential energy. The 

core eigenvalues 휀𝑖𝜏 are obtained as an exact solution to the Dirac equation with the spherical 

part of the muffin-tin potential. 

𝐸𝑡𝑜𝑡 = ∑
𝑜𝑐𝑐
𝑘𝑛 𝑤𝑛𝑘휀𝑘𝑛 + ∑𝜇𝜏 𝑓𝑖𝜏휀𝑖𝜏 + ∫𝑉𝑐 𝑛𝑟 [

1

2
𝑉𝑐(𝑟) − 𝑉𝑖𝑛(𝑟)] 𝑑𝑆𝑟 −

1

2
∑𝑗 𝑍𝜏𝑗𝑉𝑐(𝜏𝑗; 0) +

∫
𝑉𝑐
𝑛(𝑟)휀xc(𝑛(𝑟))𝑑𝑟, (3.41) 
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where the integral is over the unit cell [38]. The sum 𝑗 is over the core states. The density 

𝑛(𝑟) is the total charge density, valence as well as core electrons. 𝑉𝑖𝑛 is the input potential 

obtained from LDA. Madelung term 𝑉𝑐(𝜏; 0) is the Coulomb potential at the nucleus less the 

𝑍/𝑟 self contribution and 휀xc is the excahnge-correlation energy. 

3.5 Projected Augmented Wave Method 

Blöchl [41]  developed the projected augmented wave method (PAW) by combining the 

ideas from pseudopotentials and linear augmented-plane-wave (LAPW) methods. PAW 

method is an all-electron electronic structure method. It describes the wave functions by a 

superposition of different terms: expansions into atomic and pseudo-atomic orbitals at each 

atom and the plane wave part, the so-called pseudo wave function. 

 On the one hand, the plane wave part has the flexibility to describe the bonding and tail 

region of the wave functions, but if it is used alone, it requires prohibitive large basis sets to 

explain accurately all the oscillations of the wave function near the nuclei. Otherwise, the 

expansions into atomic orbitals can explain accurately the nodal structure of the wave function 

near the nucleus but lack the variational degrees of freedom for the tail regions and bonding. 

The PAW method connects the virtues of both numerical representations in one well-defined 

basis set. 

 To avoid the dual efforts by performing two electronic structure calculations, both plane 

waves and atomic orbitals, the PAW method does not determine the coefficients of the atomic 

orbitals variationally. Instead, they are unique functions of the plane wave coefficients. The 

total energy and most other observable quantities can be broken into three almost independent 

contributions: one from the plane wave part and a pair of expansions into atomic orbitals on 

each atom. The contributions from the atomic orbitals can be broken down furthermore into 

contributions from each atom so that strictly no overlap between atomic orbitals on different 

sites need to be computed. 

 In principle, if plane wave and atomic orbital expansions are complete, then the PAW 

method can reclaim literally the density-functional total energy. This supports us with a 

systematic way to enhance the basis set errors. The present implementation uses the frozen core 

approximation, which provides wave functions and correct densities, and thus permits us to find 

other parameters of the system. The limitations of the plane wave basis set to periodic systems 
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(crystals) can easily be overcome by making the unit cell sufficiently large and decoupling the 

long-range interactions. Thus, this method can be used to study solids, surfaces and molecules 

within the same approach. 

3.4.1 Wave function 

Firstly, we will introduce a transformation matrix 𝜏. There are two Hilbert space, one 

called all electron (AE) Hilbert, and other called pseudo (PS) Hilbert. We need to map the AE 

valence wave functions onto to the PS wave functions. 

Every PS wave function can be expanded into PS partial waves 

|Ψ̃〉 = ∑𝑖 |�̃�𝑖〉𝑐𝑖 (3.42) 

The equivalent AE wave function is of the form 

|Ψ〉 = 𝜏|Ψ̃〉 = ∑𝑖 |𝜙𝑖〉𝑐𝑖 (3.43) 

From the above two equations, we derive 

|Ψ〉 = |Ψ̃〉 − ∑𝑖 |�̃�𝑖〉𝑐𝑖 + ∑𝑖 |𝜙𝑖〉𝑐𝑖 (3.44) 

because we need the transformation 𝜏 to be linear, the coefficients must be linear 

functions of the PS wave functions. Therefore the coefficients are scalar products of PS wave 

function with  projector functions 〈𝑝𝑖|, 〈𝑝𝑖|Ψ̃〉. The projector functions must fulfill the condition 

∑𝑖 |�̃�𝑖〉〈𝑝𝑖| = 1 (3.45) 

within the augmentation region Ω𝑅, which implies that 

〈𝑝𝑖|�̃�𝑗〉 = 𝛿𝑖𝑗. (3.46) 

Finally, the transformation matrix can be derived from Eq. (3.43) and Eq. (3.44) with 

the definition 𝑐𝑖 = 〈𝑝𝑖|Ψ̃〉 

𝜏 = 1 + ∑𝑖 (|𝜙𝑖〉 − |�̃�𝑖〉)〈�̃�𝑖|. (3.47) 
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Using this transformation matrix, the AE valence wave functions can be derived from 

PS wave function by 

|Ψ〉 = |Ψ̃〉 + ∑𝑖 (|𝜙𝑖〉 − |�̃�𝑖〉)〈�̃�𝑖|Ψ̃〉 (3.48) 

The core states wave functions |Ψ〉𝑐 are decomposed in a way similar to the valence

wave functions. They are decomposed into three contributions: 

|Ψ〉𝑐 = |Ψ̃〉𝑐 + |𝜙〉𝑐 − |�̃�〉𝑐 (3.49) 

Here |Ψ̃〉𝑐 is a PS core wave function, |𝜙〉𝑐 is AE core potential wave and lastly |�̃�〉𝑐 is

the PS core partial wave. Compared to the valence wave functions no projector functions are 

needed to be defined for the core states, and the coefficients of the one-centre expansion are 

always unity. 

3.4.2 Charge density 

The charge density at point 𝑟 in space is composed of three terms: 

𝑛(𝑟) = �̃�(𝑟) + 𝑛′(𝑟) − �̃�′(𝑟) (3.50) 

The soft pseudo charge density ñ( r is the expectation value of real-space projection 

operator | r〉〈 r| on the pseudo-wave-functions. 

�̃�(𝑟) = ∑𝑛 𝑓𝑛〈Ψ̃𝑛|𝑟〉 + 〈𝑟|Ψ̃〉 (3.51) 

The onsite charge densities 𝑛1 and ñ 1 are treated on a radial support grid. They are

given as : 

𝑛′(𝑟) = ∑𝑛 𝑓𝑛〈Ψ̃𝑛|𝑝𝑖〉〈𝜙𝑖|𝑟〉〈𝑝𝑗|Ψ̃𝑛〉 = 𝜌𝑖𝑗〈𝜙𝑖|𝑟〉〈𝑟|𝜙𝑗〉 (3.52) 

 here 𝜌𝑖𝑗 is the occupancies of each augmentation channel (𝑖, 𝑗) and they are calculated from the 

pseudo-wave-functions applying the projector function: 𝜌𝑖𝑗 = ∑𝑛 𝑓𝑛〈Ψ̃𝑛|𝑝𝑖〉〈𝑝𝑗|Ψ̃𝑛〉. Similarly

for 

�̃�′(𝑟) = ∑𝑛 𝑓𝑛〈Ψ̃𝑛|𝑝𝑖〉〈�̃�𝑖|𝑟〉〈𝑝𝑗|Ψ̃𝑛〉 = 𝜌𝑖𝑗〈�̃�𝑖|𝑟〉〈𝑟|�̃�𝑗〉 (3.53) 

We will target the frozen core case, 𝑛,̃ �̃�′ and 𝑛′ are restricted to the valence quantities.

Besides that, we introduce four quantities what will be used to describe the core charge density: 
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𝑛𝑐, ñ 𝑐, n 𝑍𝑐, ñ 𝑍𝑐. 𝑛𝑐 denote the charge density of the frozen core all-electron wave function in 

the reference atom. The partial core density ñ is introduced to calculate nonlinear core 

corrections. n 𝑍𝑐 is defined as the sum of the point charge of nuclei 𝑛𝑧 and frozen core AE 

charge density n 𝑐: n 𝑍𝑐 = n 𝑧 + n 𝑐, 

At final, the pseudized core density is a charge distribution that is equivalent to n 𝑍𝑐 

outside the core radius and have the same moment as the n 𝑍𝑐 inside the core region. 

∫
Ω𝑟
𝑛𝑍𝑐(𝑟)𝑑

3𝑟 = ∫
Ω𝑟
�̃�𝑍𝑐(𝑟)𝑑

3𝑟 (3.54) 

The total charge density 𝑛𝑇 [42]is decomposed into three terms: 

𝑛𝑇 = 𝑛 + 𝑛𝑍𝑐 = (�̃� + �̂� + �̃�𝑍𝑐) + (𝑛
′ + 𝑛𝑍𝑐) − (�̃�

1 + �̂� + �̃�𝑍𝑐) = �̃�𝑇 + 𝑛𝑇
′ − �̃�𝑇

′

(3.55) 

A compensation charge n̂ is added to the soft charge densities ñ + �̃�𝑍𝑐 and �̃�′+ �̃�𝑍𝑐  to

reproduced the correct multipole moments of the AE charge density n′+ 𝑛𝑍𝑐  that is located in 

each augmentation region. Because n 𝑍𝑐 and  have exactly the same monopole −Z𝑖𝑜𝑛 (charge 

of an electron is +1), the compensation charge must be chosen so that �̃�′+ 𝑛 ̂has the same

moments as the AE valence charge density 𝑛′ within each augmentation sphere.

3.4.3 Total energy 

 The final expression can also be split into three terms for the total energy: 

𝐸(𝑟) = �̃�(𝑟) + 𝐸1(𝑟) − �̃�(𝑟). (3.56) 

where �̃�(𝑟), 𝐸1(𝑟), �̃�(𝑟) are given by

�̃�(𝑟) = ∑𝑛 𝑓𝑛〈Ψ̃𝑛| −
1

2
Δ|Ψ̃𝑛〉 + 𝐸𝑥𝑐[�̃� + �̂� + �̃�𝑐] + 𝐸𝐻[�̃��̂�] + ∫ 𝑣𝐻[�̃�𝑍𝑐][�̃�(𝑟) +

�̂�(𝑟)]𝑑𝑟 + 𝑈(𝑅, 𝑍𝑖𝑜𝑛 (3.57) 

𝑈(𝑅, 𝑍𝑖𝑜𝑛) is the electrostatic energy of point charges 𝑍𝑖𝑜𝑛 in an uniform electrostatic 

background, 

𝐸′(𝑟) = ∑𝑖𝑗 𝜌𝑖𝑗〈𝜙𝑖| −
1

2
Δ|𝜙𝑗〉 + 𝐸𝑥𝑐[𝑛

1 + 𝑛𝑐] + 𝐸𝐻[𝑛
′] + ∫ 𝑣𝐻[�̃�𝑍𝑐]𝑛

′(𝑟)𝑑𝑟  (3.58)
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Here ∫  v 𝐻[ñZ 𝑐]n 
1( r)d r is the electrostatic interaction between core and valence

electrons and 𝐸𝐻 is electrostatic energy 

𝐸𝐻[𝑛] =
1

2
(𝑛)(𝑛) =

1

2
∫ 𝑑𝑟 ∫ 𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
(3.59) 

�̃�1(𝑟) = ∑𝑖𝑗 𝜌𝑖𝑗 〈�̃�𝑖 |−
1

2
Δ| �̃�𝑗〉 + 𝐸𝑥𝑐[�̃�′ + �̂� + �̃�𝑐] + 𝐸𝐻[�̃�′ + �̂�] + ∫ 𝑣𝐻[�̃�𝑍𝑐][�̃�

′(𝑟) +

�̂�(𝑟)]𝑑𝑟 (3.60) 

The overline means that the corresponding terms must be evaluated on the radial grid 

with each augmentation region. 

3.6 Ultrasoft pseudopotential 

It is unaffordable to treat first-row elements, transition metals, and rare-earth elements 

by standard Norm-conserving Pseudopotentials (NC-PP). Therefore, various attempts have 

been made to create the so-called soft potentials, and Vanderbilt [43] ultrasoft pseudopotentials 

(US-PP) has been proved to be the most successful one among them. There is a number of 

improvements in the US-PP method: 1) nonlinear core corrections were included in the US-PP. 

2) Lower cut-off energy, namely reduced number of plane waves, was required in US-PP than

NC-PP. This enables us to perform molecular dynamics simulations for systems containing 

first-row elements and transition metals. 

Because �̃� is exactly the same in the PAW method and US-PP method, we only need to 

consider the linearization of 𝐸1 and �̃�1. We obtain 𝐸1 to the first order by linearization of the

𝐸1 in the PAW total energy functional around atomic reference occupancies 𝜌𝑖𝑗

𝐸′ ≈ 𝐶 + ∑𝑖𝑗 𝜌𝑖𝑗〈𝜙𝑖| −
1

2
Δ + 𝑣𝑒𝑓𝑓

𝑎 |𝜙𝑗〉 (3.61) 

with 𝑣𝑒𝑓𝑓
𝑎  = 𝑣𝐻[𝑛𝑎

′  + 𝑛𝑍𝑐] + 𝑉𝑥𝑐[�̃�𝑎
′ + 𝑛𝑐] and C is a constant. A similar linearization

can also be done for �̃�′

𝐸1 ≈ �̃� + ∑𝑖𝑗 [𝜌𝑖𝑗〈�̃�𝑖| −
1

2
Δ + �̃�𝑒𝑓𝑓

𝑎 |�̃�𝑗〉 + ∫ �̂�𝑖𝑗
𝐿 (𝑟)�̃�𝑒𝑓𝑓

𝑎 (𝑟)𝑑𝑟] (3.62) 

with 
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 �̃�𝑒𝑓𝑓
𝑎 = 𝑣𝐻[(�̃�𝑎

′ + �̂�𝑎 + �̃�𝑍𝑐)] + 𝑣𝑥𝑐[(�̃�𝑎
′ + �̂�𝑎 + �̃�𝑍𝑐)] (3.63) 

�̂�𝑖𝑗
𝐿 (𝑟) is a pseudized augmentation charge in the US-PP approaches. Given �̂�𝑖𝑗

𝐿 (𝑟) = 

𝑄𝑖𝑗
𝐿 (𝑟) = 𝜙𝑖

∗(𝑟)𝜙𝑗(𝑟)- �̃�𝑖
∗(𝑟)�̃�𝑗(𝑟), 

 𝐸1 − �̃�1 = ∑𝑖𝑗 𝜌𝑖𝑗(〈𝜙𝑖| −
1

2
Δ|𝜙𝑗〉 − 〈�̃�𝑖| −

1

2
Δ|�̃�𝑗〉). (3.64) 

Now, we compare the PAW functional with the US-PP functional. In the PAW method, 

if the sum of the compensation charge and pseudo charge density, �̃�′+�̂�, is corresponding to the 

onsite AE charge density 𝑛′, and �̃�𝑍𝑐 = 𝑛𝑍𝑐, �̃�𝑐 = 𝑛𝑐, we can derive the same 𝐸1 - �̃�1 from Eq. 

(3.58) and Eq. (3.60). In this limiting case, the PAW method is equivalent to the US-PP method. 

3.7 PAW and US-PP 

The general rule in Vienna ab initio simulation package (VASP) [44]is to use PAW 

potential wherever possible; the PAW potentials are specially generated for improving the 

accuracy for magnetic materials, alkali and alkali earth elements, 3𝑑 transition metals, 

lanthanides and actinides. For these materials, the treatment of semicores states as valence states 

are desirable. The PAW method is as efficient as the FLAPW method, it is easy to unfreeze of 

low lying core states, only one partial wave (and project) for the semicore states is included. 

Difference between PAW and US-PP are only related to the pseudization of the 

augmentation charges. The discrepancies of both methods can be removed by choosing a very 

accurate pseudized augmentation function. However, augmentation charges must be denoted 

on a regular grid with the US-PP approach. Therefore, hard and accurate pseudized 

augmentation charges are expensive regarding computer time and memory. The PAW method 

avoids these problems (computer time and memory) by introducing a radial support grid. The 

rapidly varying functions can be elegantly and efficiently treated on radial support grids. 

The PAW potentials are marginally harder than US-PP, and they retain similar hardness 

across the periodic table. Vice versa, the US-PP Potential become progressively softer when 

moving down in the periodic table. For multi-species compounds with very different covalent 

radii mixed, the PAW potentials are superior, except for one component system, the US-PP 

might be slightly faster at the price of reduced precision. Most PAW potential was optimised 

to work at a cut-off of 250-300 eV, which is only slightly higher than in the US-PP. 
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Chapter 4 

Photovoltaic Properties 

4.1 Electronic Properties 

Since the efficiency of a solar cell is highly dependent on the band gap of the material, 

calculating the band structure using first-principle methods based on hybrid functional presents 

itself as a promising technique for designing a material suitable for the photovoltaic 

applications. In this section, we discuss the importance of hybrid functional for the accurate 

band gap calculation [45] [46].  

We discussed the limitation of density functional theory in chapter 2 and 3. The use of 

the Hartree-Fock method leads to significantly underestimating the atomization energies, 

whereas local exchange and correlation functional overestimates these quantities. Therefore, it 

is expected that a hybrid treatment, combining both approaches in a suitable way, might yield 

to more accurate atomization energies, vibrational frequencies, and bond length.  

4.1.1 Hybrid functional 

It is also possible to advance some theoretical arguments based on the adiabatic 

connection formula in favour of using a  hybrid functional for the exchange-correlation energy.  

A more refined method for improving the band gap value is to incorporate a certain amount of 

the Hartree-Fock  (exact) exchange to the standard DFT exchange. This is a so-called hybrid 

functional. Becke et al., firstly introduced the hybrid functional Becke three-parameter Perdew 

Wang 91 (B3PW91) and its successor Becke three-parameter Lee-Yang-Parr (B3LYP) in 1993 

[47-49]. The ratio between contributions to the exchange functional (exact or GGA)  is 

determined by fitting to experimental atomization energies. In this work, we have utilized 

HSE06 (within the Heyd, Scuseria and Ernzerhof functional), a hybrid functional constructed 

following a similar approach, although the fraction of exact and density functional 

approximation exchange are calculated by the conceptual model (Perdew et al.,) [50]. 

Following the work of Becke, the adiabatic connection formula (i.e. the rigorous ab 

initio formula describing the exchange-correlation energy within the Kohn-Sham theory) is 

presented here as the starting point for the theory of hybrid functionals [47, 48].  
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𝐸𝑥𝑐 = ∫
1

0
𝑑𝜆𝐸𝑥𝑐,𝜆 (4.1) 

where 𝐸𝑥𝑐  is the exchange-correlation energy, 𝜆 parametrizes the strength of the

inter-electronic coupling. 

|𝐸𝑥 =< Ψ0|𝑉𝑒𝑒|Ψ0 > −
𝑒2

2
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′

𝛿(𝐫)𝛿(𝐫′)

|𝐫−𝐫′|
(4.2) 

The lambda-dependent exchange-correlation term would be 

𝐸𝑥,𝜆 =< Ψ𝜆|𝑉𝑒𝑒|Ψ𝜆 > −
𝑒2

2
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′

𝛿(𝐫)𝛿(𝐫′)

|𝐫−𝐫′|
(4.3) 

The Khon-Sham non-interacting system is recovered at 𝜆=0. A model for the coupling 

constant dependence proposed by Perdew et al., [50] 

𝐸𝑥𝑐,𝜆
ℎ𝑦𝑏
(𝑛) = 𝐸𝑥𝑐,𝜆

𝐷𝐹𝐴 + (𝐸𝑥 − 𝐸𝑥
𝐷𝐹𝐴)(1 − 𝜆)𝑛−1 (4.4) 

where 𝐸ℎ𝑦𝑏𝑥, 𝜆 = 0 decreases to include the exact exchange and 𝐸𝑐
𝐷𝐹𝐴 = 𝐸𝑥𝑐

𝐷𝐹𝐴 −

𝐸𝑥
𝐷𝐹𝐴

 and 𝑛 ≥ 0 is an integer, which controls how rapidly the correction to the density

functional approximations vanishes.  The optimal n  is the lowest order of the perturbation  

providing a realistic description of the shape or 𝜆-dependence of the exact 𝐸𝑥𝑐,𝜆argued by

Perdew et al. It can be written as, 

𝐸𝑥𝑐,𝜆 ≈ 𝑒
2(𝑐0 + 𝑐1𝜆 +⋯+ 𝑐𝑛−1𝜆

𝑛−1) (4.5) 

Perdew et al., found that n=4 delivered good agreement amongst a dataset of molecules 

between 𝐸𝑥𝑐
ℎ𝑦𝑏

and 𝐸𝑥
𝐷𝐹𝐴 both in the value, slope and second derivative. Thus, the hybrid

exchange-correlation  is written as (for n=4 and 0<lambda<1) 

𝐸𝑥𝑐
ℎ𝑦𝑏

= ∫
1

0
𝑑𝜆𝐸𝑥𝑐,𝜆

ℎ𝑦𝑏
= 𝐸𝑥𝑐,𝜆

𝐷𝐹𝐴 +
1

4
(𝐸𝑥 − 𝐸𝑥

𝐷𝐹𝐴) (4.6) 

Since the exact exchange decays very slowly, PBE0 calculation is very challenging in 

terms of computations [51]. Because of the existence of this problem in PBE0 band structure 

calculations, Marsman et al., [52] suggested that the hybrid functional could be decomposed 

into a short-range and a long-range part. A density functional approximation could then replace 

the long-range contribution of the exact exchange 𝐸𝑥
𝐷𝐹𝐴,𝑙𝑟,𝜇

, the finalized equation was



Chapter 4           44 

obtained by Heyd, Scuseria and Ernzerhof [53] [54], who introduced the hybrid functional HSE 

defined as,  

𝐸𝑥𝑐
𝐻𝑆𝐸 =

1

4
𝐸𝑥
𝑠𝑟,𝜇

+
3

4
𝐸𝑥
𝐷𝐹𝐴,𝑠𝑟,𝜇

+ 𝐸𝑥
𝐷𝐹𝐴,𝑙𝑟,𝜇

+ 𝐸𝑐
𝐷𝐹𝐴 (4.7) 

where 𝐸𝑐
𝐷𝐹𝐴 is the density functional approximation correlation energy, 𝐸𝑥

𝑠𝑟,𝜇
 is the short range

exact exchange energy and 𝜇 is the partition into short-range and long-range parts, which is 

related to the characteristic distance. In practice, the short and long reange parts are separated 

by a decomposition of the Coloumb kernel by means of error functions,  

1

𝑟
=
𝑒𝑟𝑓𝑐(𝜇𝑟)

𝑟
+
𝑒𝑟𝑓(𝜇𝑟)

𝑟
(4.8) 

Figure 4.1. Comparison of PBE, HSE03 and PBE0 band gaps. The figure is taken from [52] 

From Figure 4.1, we report the comparison of PBE, HSE03 and PBE0  band gaps. The 

HSE03 screened hybrid functional predicts results in better agreement with experiments for the 

electronic band gap. More recently, the HSE06 have been extensively applied to calculate the 

atomization energy, band gaps, lattice parameters and bulk moduli. The difference between 

HSE03 [53] and HSE06 [55] is the mixing parameter of the hybrid functional.  
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The electronic band structure of silicon using GGA and HSE06 method presented in 

Figure 4.2. We noted that the GGA band gap of silicon is 0.55 eV, which is an underestimation 

of the experimental band gap. However, the HSE06 band gap value of silicon is 1.15 eV, which 

is good agreement with the experimental value [56]. 

Figure 4.2. Calculated electronic band structure for Silicon using (a) GGA (b) HSE06 

4.2 Optical Properties 

The optical response of a compound has a major impact on its properties for 

photovoltaic applications. The optical dielectric function i is the fundamental 

quantity describing the optical properties. It is defined as the linear response of the system to 

electromagnetic radiation, and it describes the propagation of radiation in a medium. Here, 

is connected with the interaction between photons and electrons Its imaginary part 

can be derived from the inter-band optical transitions by  summing  over the unoccupied 

states using the equation[57, 58], 

휀2
(𝛼𝛽)(𝜔) =

4𝜋2𝑒2

Ω
 lim
𝑞→0

 ∑ 2 𝑤𝑘𝛿(𝜖𝑐𝒌𝒌,𝑣,𝑐 − 𝜖𝑣𝒌 −  )  ×

𝑢𝑐𝒌+𝑒𝛼𝑞 | 𝑢𝑣𝒌 𝑢𝑐𝒌+𝑒𝛽𝑞|𝑢𝑣𝒌
∗

(4.9) 
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where the indices α, β are the Cartesian components, Ω is the volume of the primitive cell, q 

denotes the Bloch vector of the incident wave, c and v are the conduction and valence band 

states respectively, k is the Bloch wave vector, wk denotes the k-point weight, 𝛿 is a Dirac delta 

function, uck is the cell periodic part of the orbital at k-point k, 𝜖𝑐𝒌 refers to the energy of

conduction band and 𝜖𝑣𝒌refers to the energy of valence band. The real part of the

dielectric function can be derived from   using the Kramer-Kronig relationship[57, 58] 

휀1
(𝛼𝛽)

= 1 + 
2

𝜋
 P ∫

𝛼𝛽
2 (𝜔′) 𝜔′

𝜔′2 −𝜔2+𝑖

∞

0
 𝑑𝜔′   (4.10) 

where P indicates the principal value,  is the complex shift. All the frequency 

dependent linear optical properties such as the absorption coefficients  can be calculated 

from and   

𝛼(𝜔) =
√2𝜔

𝑐
[(휀1

2() + 휀2
2())

1

2 -휀1(𝜔)]     (4.11) 

In general, the inclusion of excitonic effects treated within the Bethe-Salpeter equation (BSE) 

framework is in better agreement with the experimental absorption spectra [59-61]. The 

calculated dielectric functions can be further improved by averaging over multiple grids using 

BSE. 

4.2.1 The Bethe-Salpeter equation 

Within the GW approach, the propagation of an electron or hole is explained by the 

one-particle Green’s function. A higher order of Green’s function permits to calculate the 

distribution of two or more particles. As in the case of optical absorption, electron energy loss, 

or inelastic X-ray scattering (neutral excitations), one has to deal with the interaction between 

the electron and the hole which is introduced in the material after an excitation. These electron-

hole pairs are called excitons. Taking into account these interactions, it leads to the Bethe-

Salpeter equation. Salpeter and Bethe derived the equation of motion for two-particle Green’s 

function for bound state problems in 1951 [62, 63] and it is later extended to excitons by Sham 

et al. Afterwards, it is used to study the optical spectra of diamond and silicon. Afterward, it is 

used to study the optical spectra of diamond and silicon [64] [65]. In 1961, an exact formula 

was proposed by Baym and Kadanoff [66], and Strinati proposed to determine the excitons 

based on BSE, the GW method and Baym-Kadanoff theory [67]. Strinati’s approach was used 

in 1995 by Onida et al., to study the excitons on the sodium tetramer [68]. In recent years,  
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driven by the improvement of computational resources and theoretical methodology, the GW 

approximation and BSE  have been applied to investigate the optical absorption spectra [69]. 

From Figure 4.3, we observed that schematic diagram of DFT, GW and BSE calculations. The 

DFT band gap calculation is an underestimation of the fundamental band gap, GW improves 

the calculated value of the fundamental gap, and BSE presents the exciton binding energies to 

obtain the optical band gap. 

Figure 4.3. Schematic diagram of DFT, GW and BSE calculation 

In order to couple the electrons and holes, the Green function has to be converted into 

an electron-hole Green function. These Green function G and the screened Coulomb interaction 

W are used to calculate the quasi-particle energies. The electron-hole interaction can then be 

included by adding the vertex corrections to get improved dielectric functions by solving the 

four-point BSE equation. The main aim of BSE is to find the value for the macroscopic 

dielectric function iwhich is directly linked to some measurable quantity. If 

we only examine the resonant part of the excitonic Hamiltonian, the macroscopic dielectric 

function can be written as, 

휀𝑀(𝜔) = 1 − lim
𝐪→0
𝑣0(𝐪)∑𝜆

|∑(𝑛1,𝑛2) ⟨𝑛1|𝑒
−𝑖𝐪⋅𝐫|𝑛2⟩𝐴𝜆

(𝑛1𝑛2)|
2

𝐸𝜆
𝑒𝑥𝑐−𝜔−𝑖𝜂

(4.12) 

where 𝐴𝜆
(𝑛1𝑛2) and 𝐸𝜆

𝑒𝑥𝑐 are the eigenvectors and eigenvalues of the two-particle Hamiltonian

𝐻(𝑛1𝑛2)(𝑛3𝑛4)
2𝑝,𝑟𝑒𝑠𝑜

𝐴𝜆
(𝑛3𝑛4) = 𝐸𝜆

𝑒𝑥𝑐𝐴𝜆
(𝑛1𝑛2) (4.13) 

In the system, we calculate everything in the frequency domain, transition basis and 

reciprocal space. Thus, the excitonic Hamiltonian can be written as,   

𝐻(𝑣𝑐𝑘)(𝑣′𝑐′𝑘′)
𝑟𝑒𝑠𝑜 = (𝐸𝑐𝐤 − 𝐸𝑣𝐤)𝛿𝑣𝑣′𝛿𝑐𝑐′𝛿𝐤𝐤′ + 2𝑣𝑣𝑐𝐤

𝑣′𝐤′ −𝑊𝑣𝑐𝐤
𝑣′𝑐′𝐤′ (4.14) 
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where the indices v, c, k are an index of the valence band, index of the conduction band 

and k-vector, respectively. The spin has been summed up. The Hamiltonian is a collection of 

three parts and the diagonal part contains the quasi-particle energies,  

𝐻(𝑣𝑐𝑘)(𝑣𝑐𝑘)
𝑑𝑖𝑎𝑔

= (𝐸𝑐𝑘 − 𝐸𝑣𝑘)𝛿𝑣𝑣′𝛿𝑐𝑐′𝛿𝑘𝑘′ (4.15) 

The electron-hole exchange Hamiltonian can be written as, 

𝐻(𝑣𝑐𝑘)(𝑣′𝑐′𝑘′)
𝑒𝑥𝑐ℎ = 2

4𝜋

Ω
∑𝐆≠0

1

|𝐆|2
⟨𝑐𝐤|𝑒𝑖𝐆⋅𝐫|𝑣𝐤⟩⟨𝑣′𝐤′|𝑒−𝑖𝐆⋅𝐫|𝑐′𝐤′⟩ (4.16) 

Finally, the screened electron-hole interaction part is given by, 

𝐻(𝑣𝑐𝑘)(𝑣′𝑐′𝑘′)
𝑠𝑐𝑟 = −

4𝜋

Ω
∑𝐆𝐆′

𝐆𝐆′
−1 (𝐪)

|𝐪+𝐆|2
⟨𝑐𝐤|𝑒𝑖(𝐪+𝐆)⋅𝐫|𝑐′𝐤′⟩⟨𝑣′𝐤′|𝑒−𝑖(𝐪+𝐆)𝐫|𝑣𝐤⟩𝛿𝐪,𝐤−𝐤′

(4.17) 

In principle, the ingredients of BSE calculation include two-particle correlation and 

provide a better explanation of the absorption spectra. BSE calculations are performed 

following these steps: (i) find the ground state energies and states.  (ii) calculate the quasi-

particle energies using the GW approximation, S and (iii) construct the four-point BSE Kernel 

and diagonalise  the BSE Hamiltonian. For comparison, we plotted the experimental and BSE 

calculated optical absorption coefficient of silicon in Figure 4.4. It can be seen that similar 

absorption coefficient of silicon for both the experiment [70] and the theoretical calculation[71]. 
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Figure 4.4. The calculated absorption coefficient for Silicon. Source: experimental 

data from  [70], calculated data from [71] 

4.3  Effective Mass calculation 

The calculation of the effective mass is important for a detailed study of the energy 

levels in solar devices. The conductivity effective masses of electrons and holes describe the 

mobility, electrical resistivity, and free-carrier optical response of photovoltaic applications 

[72]. To investigate the electron/hole conduction properties of photovoltaic materials, we have 

computed the electron/hole effective mass (EM) at the VB/CB. For an excellent IB, a low 

effective mass corresponds to the high mobility of the electrons/holes at the VB/CB and 

consequently high conductivity. For the EM calculation, we have employed the effective mass 

calculator (EMC) [73]. EMC implements the calculation of the effective masses at the bands 

extreme using a finite difference method (FDM) (not a  band-fitting method). The following 

equations are implemented in the effective mass calculator. The  mobility within the Drude 

model is given by, 

𝜇 =
𝑞𝜏

𝑚∗
      (4.18) 
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where q is the charge, τ is the relaxation time of a charge carrier and m* is the EM of 

the charge carrier. Effective masses are derived from a materials band structure. The effective 

mass tensor is a determination of the band curvature near valence band maximum (VBM) and 

conduction band minimum(CBM) in different directions. Under an external electric field, the 

effective mass (m*) of charge carriers or effective mass tensor is defined as, 

(
1

𝑚∗
)
𝑖𝑗
=

1

ℏ2
∂2𝐸𝑛(�⃗� )

∂𝑘𝑖𝑘𝑗
, 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (4.19) 

where indices i and j indicate reciprocal constituents and En(k) is the dispersion relation 

for the n-th band. A paraboloid can express the dispersion relation at the VBM or CBM for the 

covalently bonded group semiconductors. 

𝐸𝑛(�⃗� ) = 𝛼1𝑘𝑥
2 + 𝛼2𝑘𝑦

2 + 𝛼3𝑘𝑧
2 (4.20) 

Hence, constituents of the effective mass of charge carriers are just the inverse 

coefficients in front of the quadratic form. 

𝑚𝑥𝑥
∗ =

ℏ

2𝛼1
; 𝑚𝑦𝑦

∗ =
ℏ

2𝛼2
; 𝑚𝑧𝑧

∗ =
ℏ

2𝛼3
(4.21) 

It is not always possible to fit the band into a quadratic polynomial for organic 

semiconductors. Therefore, the effective masses calculated using this finite difference method 

are in good agreement with experimentally obtained values for both group III-IV and organic 

semiconductors. In this case, derivatives can bcomputed numerically, using finite difference 

method. The explicit form of the right-side symmetric tensor in (2) is: 
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(4.22) 

where second and mixed derivatives are calculated on the five-point stencil (h is step 

size), with an error of the order of O(h4) [2]: 
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∂2𝑓

∂𝑥2
≈

1

12ℎ2
(

−(𝑓−2 + 𝑓2) +

16(𝑓−1 + 𝑓1) +
−30(𝑓)

) (4.23) 

∂2𝑓

∂𝑥 ∂𝑦
≈

1

600ℎ2

(

 
 

−63(𝑓1,−2 + 𝑓2,−1 + 𝑓−2,1 + 𝑓−1,2) +

63(𝑓−1,−2 + 𝑓−2,−1 + 𝑓1,2 + 𝑓2,1) +

44(𝑓2,−2 + 𝑓−2,2 − 𝑓−2,−2 − 𝑓2,2) +

74(𝑓−1,−1 + 𝑓1,1 − 𝑓1,−1 − 𝑓−1,1) )

(4.24) 

Following equations 4.19 and 4.22-4.24, the effective mass components are the inverse 

of the eigenvalues of equation 4.19 and the principal directions correspond to the eigenvectors. 

Since the EMC calculation obtained excellent agreement with previous results [74] (for 

example GaAs and InP) 

Table 4.1 Comparison of the EMC with previous results 

In this chapter, we discussed efficient methods to model photovoltaic properties. We 

used the hybrid functional (HSE06) for the electronic structure calculation. Since this hybrid 

functional is in good agreement with experimental values, we have used the HSE06 method for 

all papers except Publication I. In the case of optical properties, we have used BSE method to 

explore the dielectric functions. We have used the BSE  method for the non-silicon solar cells 

papers. We have used the effective mass calculator for all papers except Publication II.  

GaAs InP 

Band Description Kresse EMC Kresse EMC 

4 electron 0.030 0.029 0.054 0.054 

3 heavy hole 0.320 0.318 0.435 0.371 

2 light hole 0.036 0.035 0.073 0.074 

1 split-off hole 0.108 0.109 0.139 0.139 
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Chapter 5 

Intermediate Band solar cells 

5.7 Introduction 

The possibility of increasing the efficiency of photovoltaic solar cells through 

absorption of photons in a material without impurity has a relatively long history. Starting with 

the photovoltaic solar cell with an impurity in 1960, where the sequential absorption of the 

photon is suggested to proceed through defect levels. This concept gained renewed interest with 

the proposal of the intermediate band solar cell (IBSC) in the mid-1990s. The compelling 

difference between the impurity band and the IB concept is that forming an IB should, in 

principle, reduce the non-radiative transition rate that is likely to dominate when carriers are 

localised onto isolated impurities. However, the principal challenge to establish an IB within a 

semiconductor material that supports strong optical transitions with relatively low non-radiative 

recombination in comparison to the rate of photo-generation by solar photons has remained. 

This requirement places some fundamental constraints on the nature of the IB that are discussed 

from a theoretical standpoint in this chapter. 

Multi-band gap materials offer the possibility of raising the efficiency of solar cells 

beyond the limit of traditional single band gap materials. Intermediate band (IB) materials are 

characterised by the splitting of the main band gaps into two or more sub-band gaps by narrow 

intermediate bands and have been the focus of several recent studies [75] [76]. In the 

intermediate band solar cell, an IB material is sandwiched between two ordinary p-type and n-

type semiconductors, and deed as discriminating contacts to the valence band (VB) and 

conduction band (CB), respectively. In IB materials, an electron is promoted from the VB to 

CB through the intermediate band. Upon absorption of sub-band gap energy photons, the 

electrons transit from VB to CB, and later from IB to CB. It will add up to the electrons 

transition from VB to CB through conventional VB to CB photon absorption [75] [76]. By 

adopting hypothesis of Shockley and Queisser [14], it was shown in 1997 [20] that a balance-

limiting efficiencies of 63,1% for IB solar cells and 41% for single-gap solar cells could be 

achieved at a concentration of 46,050 suns at earth temperatures of 300 K and sun temperatures 

of 6,000 K. 
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The IB should be partially filled, to permit the comparable rates for the low sub-

bandgap energy photons absorption processes and should not overlap with either the VB or the 

CB to avoid fast transitions through thermalization [77]. We can consider the IB solar cells as 

a combination of three cells.  Cells representing VB to IB and IB to CB transition can be 

regarded as two cells in series, and the VB to CB transition can represent a parallel cell. The 

cell will have a high tolerance to changes in the solar spectrum [78]. 

   In the mid-twentieth century, the researchers [79-82] suggested the concept of creating 

intermediate levels in the middle of a forbidden gap to increase the maximum photocurrent by 

doping the semiconductor with a large concentration of impurities. At an early stage, it was 

believed that these IBs would cause non-radiative recombination. It has been later shown that 

the non-radiative recombination can be suppressed by using a sufficiently high concentration 

of dopants [82-85].  

5.2 Types of IBSC 

Two major approaches are considered in fabricating the intermediate band solar cells, 

namely, quantum dot IBs (QDIB) and bulk IB solar cells. By using quantum dots with different 

shape and sizes, the intermediate band levels can be tuned. The first QDIB was produced in 

2004 based on the InAs/GaAs QD material with an efficiency of 15.3%. Energy levels of the 

confined states in a quantum dot can be used as IB in QDIBs. However, there are many 

challenges with QDIBs as quantum dots are very small and do not absorb a significant amount 

of light. With an increasing number of QDs, the cell structure can be damaged, and strain will 

cause severe damages. At room temperature, Shockley-Read-Hall recombination is a dominant 

mechanism that causes low efficiency in QD-IB solar cells due to deeper impurities. Several 

research groups have produced QD-IB solar cells [86-94], and efficiencies over 18% are 

reported by Blokin et al [92]. 

The second type of IB solar cells is based on bulk materials. IB was detected through 

photo reflectance measurements in some bulk materials, and this formation was credited to band 

anticrossing and heavily mismatched alloys [95]. The first of these bulk materials, ZnMnTeO, 

was developed by Walukiewicz and co-workers [95]. Later, numerous quantum-accurate 

calculations have been performed on VInS bulk material, characterised by an IB containing the 

Fermi levels. Philips and co-workers developed bulk IB solar cells using ZnTe doped with an 

oxygen atom and obtained higher efficiencies and short circuit current than QD-IB solar cells 
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[96, 97]. The band gap properties of bulk materials are widely studied, and the technologies are 

well verified by researchers [77, 98-105]. However, the search for intermediate band gap 

materials continues, in order to model high efficient intermediate band solar cells. In Figure 

5.1, the band diagram of an IB solar cell showing the band gap Eg is band gap between the top 

of the valence band and bottom of the conduction band. Evi is the energy gap between the top 

of the valence band to bottom of an intermediate band, Eci is the energy gap between the top of 

the intermediate band to bottom of the conduction band, and ∆Ei- is the width of the 

intermediate band. In Figure 5.1 the electronic transitions of (V, I), (I, I), (I, C) and (V, C) is 

schematically depicted. 

Figure 5.1. Band diagram of bulk IB Solar Cell 

5.3 Publications related to Intermediate band solar cells 

The main aim of the study is to identify potential candidates for photovoltaic purpose 

using advanced atomistic modelling techniques based on Density functional theory. The 

theoretical investigations have been of a cross-disciplinary nature and the research has 

addressed the photovoltaic properties of a selection of novel semiconductors. The theoretical 

studies presented in this thesis span over a number of topics and systems. A brief outline of the 
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research conducted is here presented, in a logical order, to provide the readers with some basic 

understanding of the motivation behind the study, the data analysis and the outcome of the 

investigation.  We have carried out a comprehensive study of the electronic band structures of 

2100 bulk compounds using first-principle DFT calculations (Publication I) [22]. From the first 

screening, we observed 312 compounds having an intermediate band with the maximum of the 

valence band at the Fermi level. Among these, 282 compounds were selected for further 

analysis and 30 compounds were found as heavy elements. After carrying out detailed analysis, 

we found out that only 17 compounds among the starting 282 would be acceptable 

semiconductor materials for photovoltaic applications. The rest were found to be perfect 

insulators, with band gap values larger than 3.51eV. These compounds could be potentially 

used as photovoltaic materials based on the detailed studies of band structure, the DOS and 

effective mass calculations. Our effective mass calculations show that these compounds have 

high electron/hole conduction properties, which make them suitable for PV applications. 

Although we have studied a large number of compounds (2100 entries from the ICSD database), 

our investigation cannot be considered exhaustive by any means, as novel materials are 

continuously discovered and classified, and the resulting data is uploaded onto a variety of 

databases. 

In Publication II, we have carried out a comprehensive study of the structural, 

mechanical, and optical properties of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4 and AgCuPO4 by 

employing the range-separated hybrid functional, Heyd–Scuseria–Ernzerhof (HSE06). Our 

results revealed that HSE06 is capable of providing a more accurate description of the electronic 

band structure compared to the GGA+U approach, previously employed for the investigation 

of these materials. The calculation of the density of states of vibrational modes (phonons) 

revealed that Au2Cs2I6, Ag2GeBaS4, and Ag2ZnSnS4 compounds are dynamically stable, as no 

imaginary frequency was observed. The zero-point energy for all the dynamically stable 

compounds is calculated. The mechanical properties such as Young’s modulus, the bulk 

modulus, the shear modulus and the Poisson’s ratio are calculated from the values of the elastic 

constants. Our elastic constant calculations illustrate that all four compounds are mechanically 

stable. The calculated G/B values are lower than 0.5 for these compounds, confirming the 

ductile nature of these materials. Numerical results for the static and the dynamic dielectric 

functions are provided using GGA and HSE06 methods. As expected, GGA overestimates the 

static dielectric constant. Interestingly, we also observe additional absorption peaks appear in 

the optical spectra of these four IBs compounds, accompanied by a broadened light absorption 

energy range and high absorption intensity. Our detailed studies of the electronic and optical 
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properties identify these materials as excellent potential candidates for photovoltaic application, 

especially for the development of third-generation intermediate band solar cells. 

In Publication III [24], first-principle calculations employing the hybrid HSE06 

method are undertaken to compute the electronic structures, effective mass and optical 

properties of the Cs2SnI6 compound. The calculated electronic structures and absorption 

coefficient confirmed that Cs2SnI6 contains an intermediate band. Furthermore, we calculated 

the phonons frequencies and the elastic constants, confirming Cs2SnI6 as dynamically and 

mechanically stable. 
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Chapter 6 

Non-Silicon solar cells 

6.1 Introduction 

The solar energy reaching the earth amounts approximately to ten thousand times the 

primary energy usage by the world population. Solar photovoltaic cells are among the most 

important technologies for clean energy production. It is predicted that in the future the power 

from solar photovoltaic modules will reach the terawatt level [106]. Photovoltaic (PV) 

technology is currently dominated by silicon solar cells. If we look at the worldwide scenario 

more than 80% of the installed PV modules are mainly mono or multi-crystalline silicon-based 

[106]. However, researchers are making considerable efforts in developing solar cells based on 

alternative materials, the fact that silicon is an indirect band gap material that leads to low 

absorption coefficient. Novel materials considered for PV applications include copper zinc tin 

sulfide (CZTS), ternary, binary and multinary compounds with a direct band gap, enabling high 

absorption properties. High photon conversion efficiency and low production cost are the other 

desired features of these alternative materials. There is also considerable interest in the research 

community to find ways to develop solar cells that can have efficiencies greater than the 

Shockley-Queisser limit of 32% [14].  

The development of non-silicon materials is a very active field, and several significant 

signs of progress have been recently made [106]. In the future, non-silicon materials will be 

most likely produced using thin film technologies, with a resulting device thickness of the order 

of 2 m. Despite the crucial role played by these compounds for the next generation of energy 

materials, the current knowledge of the optical and electronic properties of these compounds is 

inadequate. Non-silicon materials such as organic semiconductors may become the main 

candidates for future photovoltaic devices even though they have low stability [107]. To be a 

promising solar cell material, a semiconductor should have a direct band gap with an 

appropriate band gap value resulting in efficient absorption of the solar spectrum. 

Furthermore, it can be used in junction formation appropriate for guiding the electrical 

processes involved in energy conversion [108]. Variety of basic materials, GaAs, InP, CdTe, 

CuInSe2 to name a few and large band gap materials such as ZnO, CdS, ZnCdS used as window 
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layers in creating heterojunctions have been studied extensively [108]. Reducing production 

cost is one of the focused areas in selecting materials for PV technologies. Compared to mono-

crystalline Silicon solar cells, the production cost for poly-crystalline Silicon solar cells is 

lower, but the efficiency is lower [109]. According to Mitchell [110], materials that require only 

a few micrometer thicknesses to absorb the solar spectrum and photo-carriers effectively are 

created close to the electrical junction. One way to minimize the materials usage is to choose 

direct band gap materials over indirect band gap since direct band gap solar cells could be made 

substantially thinner [111]. Due to the low absorption, polycrystalline silicon solar cells 

structures must have a thickness in the range of 200m that makes the overall cost higher.  

6.2 Photoconversion Limits 

The efficiency of solar cells device is limited to several losses. 1) The loss of low-

energy photon is due to the absorption threshold related to the band gap of materials produce 

the loss of low-energy photons. 2)  The thermalization losses are due to excited electrons by 

photons larger than the optical band gap. 3) The radiative and nonradiative recombination of 

photoexcited carriers occurs in the solar cell device.  4) There are some reflection losses of the 

incident photons. The first three losses are fundamental to the photoconversion process and 

cannot be skipped, thereby leading to the so-called detailed balance limit by Shockley-Queisser. 
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Figure 6.1. Theoretically achievable efficiencies versus band gap of solar cells. Values are 

taken from [110, 112, 113] 

6.3 Material Issue 

In principle, a vast variety of semiconductor materials may be used as functional layers 

or absorbers in photovoltaic solar cells. However, to maximize the solar conversion efficiency, 

the material should have stability, abundance and environmental aspects [106]. The material 

must exhibit stability in various aspects. The defect formation and diffusion of components 

have to be self-stabilising besides heterostructures under all operating conditions and chemical 

stability of layers. Metastable changes can arise from the light-induced changes in the charge 

density [114]. Hence, these effects have to be considered when photovoltaic materials and 

devices are evaluated. 

Figure 6.2. The abundance of the chemical elements in Earth’s upper continental crust 

versus atomic number. The figure is taken from [115] 

Next, the photovoltaic material always depends on the availability of material [115]. 

The extraction of elements from the Earth’s crust is difficult because it depends on some factors. 

Additionally, the production rate of some elements is currently extracted only as by-products 

within the mining operation of other elements. For a direct comparison of the availability of 
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elements to be used in photoconversion, the abundance of the elements in the Earth’s upper 

continental crust as a function of atomic number is shown in Figure 6.2. As a general trend, the 

abundance of the materials decreases exponentially with increasing atomic number of the 

elements. The final material issue is the environmental aspects; several factors have to be 

considered. Regarding toxicity, certain elements like Cd are toxic, which is accumulate in 

organisms and the food chain. The compound used in solar cells, such as CdTe, are stable and 

contained encapsulation, even after fires [116]. The solar cells production on the terawatt scale 

will involve material handling and material flow on a healthy, very large scale and 

environmental concerns. It will become a major issue for any photovoltaic technology. 

Therefore, as a principal goal for photovoltaic technology, material usage in PV modules and 

production processes should be reduced as far as possible.  

6.4 Publications related to non-silicon solar cells 

The main aim of the study is to identify potential candidates for photovoltaic purpose 

using advanced density-functional tools. The theoretical investigations have been of a cross-

disciplinary nature and the research has addressed the photovoltaic properties of selective novel 

non-silicon semiconductors. The theoretical studies presented in this thesis spans over a number 

of topics and systems. A brief outline of the research conducted is presented in a logical order 

to the readers to understand how and why the studies were made in the order that is found. This 

study is to propose non-silicon based direct band gap materials with efficient photovoltaic 

properties.  

In Publication IV, the most effective and accurate computational methods for 

modelling atomistic systems, density functional theory (DFT) has been widely applied in this 

work to extensively analyze the electronic band structure of thousand non-silicon based 

materials in order to identify candidates that have a band gap between 0.5 eV and 1.1 eV. 

Among these thousand non-silicon compounds, we considered twenty-seven of them with GGA 

band gap values in the range of 0.5–1.1 eV. Among these twenty-seven compounds, we 

identified fourteen compounds as direct band gap semiconductors and thirteen as indirect band 

gap semiconductors. We carried out a study on both the electronic and optical properties of 

twenty-seven semiconductors (both direct and indirect). Our study of the optical properties of 

semiconductor materials showed that four direct band gaps among the twenty-seven materials 

had higher absorption coefficients in the visible region. We have presented a set of first-
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principle calculations employing the hybrid functional HSE06, utilized to compute the 

electronic structures, effective masses of the four chosen materials, namely, TlBiS2, Ba3BiN, 

Ag2BaS2 and ZrSO. The BSE method was employed to calculate the optical properties. Our 

study provided rational insights into the electronic structure and optical properties of these four 

non-silicon materials. These four materials exhibit a direct band gap in the range of 1.10 eV to 

2.60 eV. Interestingly, TlBiS2, Ba3BiN and Ag2BaS2 have shown to exhibit a larger absorption 

coefficient than silicon in the visible region. The phonon calculations revealed that TlBiS2, 

Ba3BiN, Ag2BaS2 and ZrSO are dynamically stable, as no imaginary frequencies were 

observed. Our elastic constant calculations illustrate that the compounds are mechanically 

stable. The calculated G/B values are greater than 0.5, confirming the brittle nature of these 

materials. Our detailed studies of electronic, structural stability, mechanical stability and optical 

properties of these four materials reveal them as potential candidates for photovoltaic 

application, especially for the development of non-silicon multi-junction solar cells.  

In Publication V [26], the first-principle calculations employing the hybrid HSE06 and 

BSE method were utilized to compute the electronic structures, effective masses and optical 

properties of the TlBiS2 compound. The calculated HSE06 electronic structures without and 

with SOC effect confirmed that the TlBiS2 exhibits a direct band gap, with a value of 1.10 eV 

and 0.67 eV respectively, at the k-point.  The calculated HSE06 electronic structures without 

and with SOC effect confirmed that the TlBiS2 exhibits a direct band gap, with a value of 1.42 

eV and 1.16 eV respectively, at the Fk-point. Thus, the absorption peaks exhibited a high 

absorption intensity in the visible region. For the very first time, absorption spectra of TlBiS2 

based on BSE without and with SOC effects calculation is reported in this paper. It is shown 

that TlBiS2 is more efficient absorption material than silicon. Our detailed studies of electronic 

and optical properties of the ternary chalcogenide material reveal that TlBiS2 is a potential 

candidate for photovoltaic application, especially for the development of multi-junction solar 

cells. 

In Publication VI [25], In summary, we investigated the electronic band structure 

and optical properties of TlGaTe2 with accurate first-principle calculations. The calculated 

HSE06 electronic structures confirmed that the TlGaTe2 exhibits an indirect band gap, with a 

value of 1.109 eV, at the k-point. However, TlGaTe2 also exhibits a direct band gap, with a 

value of 1.129 eV, at the Z k-point. This is further confirmed by the first absorption peak at a 

photon energy of 1.13 eV. Hence, we proved that the only 20 meV difference of direct and 
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indirect band gap exhibits effective absorption coefficient.  Thus, the small energy difference 

between the direct and indirect band gaps has led to claims that the fundamental gap is direct. 

For the first time, the absorption spectra of TlGaTe2 is reported here and, by using BSE 

calculation, shown to be more efficient than silicon. TlGaTe2 has gained interest because of its 

optical absorption peaks attended high absorption intensity in the visible region. 

Moreover, the phonon calculations revealed that TlGaTe2 is dynamically stable, as no 

imaginary frequency was observed. Our elastic constant calculations illustrate that the TlGaTe2 

is mechanically stable. We simulated and compared Raman spectra and infrared spectra with 

previous results. Our detailed studies of electronic and optical properties of the ternary 

dichalcogenide material revealed that TlGaTe2 is a potential candidate for photovoltaic 

application. 

In Publication VII [27], we demonstrated that CsSnI3 could be stabilized in four 

different polymorphs, three of which contain a direct band gap ideal for photovoltaic 

applications. By adding Pb to the perovskite to create CsSn0.5Pb0.5I3, we found that although 

this the new perovskite has an indirect band gap, it could work as a direct band gap material 

due to the lower electron-hole distance in the Z-D k-points region. In general, we found that by 

combining CsSnI3 and CsPbI3 we got a new compound with different electronic and optical 

structure in addition to different chemical bonding. Based on this it could be viable to combine 

various compounds in an attempt to end up with an optimal compound for photovoltaic 

applications. 
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ABSTRACT: Research communities have been studying
materials with intermediate bands (IBs) in the middle of the
band gap to produce efficient solar cells. Cells based on these
materials could reach theoretical efficiencies up to 63.2%. In
this comprehensive study, we investigate by means of accurate
first-principle calculation the electronic band structure of 2100
novel compounds (bulk materials) to discover whether the IB
is present in these materials. Our calculations are based on the
density functional theory, using the generalized-gradient
approximation for exchange and correlation terms and
focusing on the band structure, the density of states, and the
electron effective masses of the structures in the database. The
IB structures are obtained by adding metallic or semimetallic atoms in the bulk material. By means of these calculations, we have
clearly identified a number of compounds that may having high potential to be used as photovoltaic materials. We present here
the numerical results for 17 novel IB materials, which could theoretically prove to be suitable for photovoltaic applications.

■ INTRODUCTION

Multi-band gap materials offer the possibility of increasing the
efficiency of solar cells beyond the limit of traditional single-
band gap solar-cell materials. Intermediate-band (IB) materials
are characterized by the splitting of the main band gaps into
two or more sub-band gaps by narrow IBs and have been the
focus of recent studies.1,2 In IB solar cells, an IB material is
sandwiched between two ordinary p-type and n-type semi-
conductors and deed as discriminating contacts to the valence
band (VB) and the conduction band (CB), respectively. In IB
materials, an electron is promoted from the VB to the CB
through the IB. Upon absorption of sub-band gap-energy
photons, the electrons transit from VB to CB and later from IB
to CB. It will add up to the transition of electrons from VB to
CB through conventional VB-to-CB photon absorption.1,2 By
adopting a hypothesis similar to that of Shockley and Queisser,3

it was shown in 19974 that balance-limiting efficiencies of
63.2% for IB solar cells and 41% for single-band gap solar cells
can be achieved at a concentration of 46 050 suns at earth and
sun temperatures of 300 and 6000 K, respectively.
The IB should be partially filled to permit the comparable

rates for the low sub-band gap-energy photon absorption
processes and should not overlap with either the VB or the CB
to avoid fast transitions through thermalizations.5 We can
consider the IB solar cells as a combination of three cells. Cells
representing VB-to-IB and IB-to-CB transitions can be
regarded as two cells in series, and the VB-to-CB transition

can represent a parallel cell. The cell will have a high tolerance
to changes in the solar spectrum.6

In the mid-20th century, researchers7−10 suggested the
concept of creating intermediate levels in the middle of a
forbidden band gap to increase the maximum photocurrent by
doping the semiconductor with a large concentration of
impurities. At an early stage, it was believed that these IBs
would cause nonradiative recombination. It has been later
shown that the nonradiative recombination can be suppressed
by using a sufficiently high concentration of dopants.10−13

Two major approaches are considered in fabricating IB solar
cells, namely, quantum-dot IBs (QDIBs) and bulk IB solar cells.
By using quantum dots with different shapes and sizes, the IB
levels can be tuned. The first QDIB was produced in 2004 on
the basis of the InAs/GaAs QD material with an efficiency of
15.3%. Energy levels of the confined states in a quantum dot
can be used as IB in QDIBs. However, there are many
challenges with QDIBs as quantum dots are very small and do
not absorb a significant amount of light. With an increasing
number of QDs, the cell structure can be damaged, and strain
will cause severe damages. At room temperature, the Shockley−
Read−Hall recombination is a dominant mechanism that leads
to low efficiency in QDIB solar cells due to deeper impurities.

Received: December 21, 2016
Accepted: March 31, 2017
Published: April 13, 2017

Article

http://pubs.acs.org/journal/acsodf

© 2017 American Chemical Society 1454 DOI: 10.1021/acsomega.6b00534
ACS Omega 2017, 2, 1454−1462

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

. 



Several research groups have produced QDIB solar cells,14−22

and efficiencies over 18% have been reported by Blokhin et al.20

The second type of IB solar cells is based on bulk materials.
The IB was detected through photoreflectance measurements
in some bulk materials, and this formation was attributed to
band anticrossing and heavily mismatched alloys.23 The first of
these bulk materials, ZnMnTeO, was developed by Walukie-
wicz and co-workers.23 Later, numerous quantum-accurate
calculations have been performed on VInS bulk material,
characterized by an IB containing Fermi levels. Phillips and co-
workers developed bulk IB solar cells using ZnTe doped with
an oxygen atom and obtained higher efficiencies and short-
circuit current than QDIB solar cells.24,25 The band gap
properties of bulk materials are widely studied, and the
technologies are well verified by researchers.5,26−33 However,
the search for intermediate-band gap materials continues, to
model high-efficiency IB solar cells. Figure 1 shows the band
diagram of an IB solar cell with Eg, the total band gap between
the top of the VB and the bottom of the CB. In the figure, Evi is
the energy gap between the top of the VB to the bottom of an
IB, Eci is the energy gap between the top of the IB to the
bottom of the CB, and ΔEi is the width of the IB. Furthermore,

the electronic transitions of (V, I), (I, I), (I, C), and (V, C) are
schematically depicted in the figure.
In the present work, we study 2100 structures with the aim of

identifying ideal candidates for solar-cell materials. We employ
density functional theory (DFT) calculations to verify the
presence of an IB, isolated in the band gap of the
semiconductor compounds of bulk material compounds with
different substitutional impurities forming ternary alloys. The
calculated band gap values are used to identify the most suitable
compounds for solar-cell applications. We also present density
of states (DOS) and effective mass calculations for the selected
IB materials.

■ RESULTS AND DISCUSSION

The main focus of the present work is to find the potential IB
materials from the selected 2100 compounds. Because of the
very high computational cost, we mainly focused on the
electronic structure, the DOS and effective mass calculations.
The hybrid electronic structure and optical properties of the
selected IB compounds are under investigation, and the results
will be published in a forthcoming work. We employ the DFT
method to elucidate the band structure arrangement of 2100

Figure 1. Band diagram of bulk IB solar cell; Evienergy gap between the top of the VB and the bottom of an IB, Ecienergy gap between the top
of the IB and the bottom of the CB, ΔEiwidth of the IB, Egtotal band gap between the top of the VB and the bottom of the CB. The electronic
transitions (V, I), (I, I), (I, C), and (V, C) are also explained.

Table 1. Calculated Selected Narrow-Band Gap Semiconductors with IBs and Band Gap Type

serial no. chemical formula Pearson symbol space group number band gap (Evi) band gap (Eci) width of IB (ΔEi) total band gap (Eg) band gap type

1. K6C60 cI132 204 0.61 0.28 0.39 1.28 ID
2. Au2Cs2I6 tI20 139 0.64 1.01 0.7 2.35 ID
3. Ag2GeBaS4 tI16 121 0.90 0.35 1.16 2.41 ID

Table 2. Wide-Band Gap 1 Semiconductors with IB Ranging from 2.62 to 3.15 eV

serial no. chemical formula Pearson symbol space group number band gap (Evi) band gap (Eci) width of IB (ΔEi) total band gap (Eg) band gap type

1. CuAgPO4 oP56 61 1.27 0.61 0.74 2.62 DB
2. Ag2ZnSnS4 tI16 121 0.47 0.57 1.66 2.70 DB
3. Au2Cs2Br6 tI20 139 0.67 1.23 0.81 2.71 DB
4. Ag3AsS4 oP16 31 0.73 1.04 1.00 2.77 DB
5. Ag2KSbS4 tI16 121 0.81 1.08 0.94 2.93 ID
6. Na3Se4Sb cI16 217 1.02 1.24 0.71 2.97 DB
7. AgK2SbS4 oP32 118 1.52 1.03 0.47 2.97 DB
8. AsRb3Se4 oP32 62 1.32 0.98 0.97 3.15 DB
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bulk materials, vital for the interaction of IB and could be
potent solar cells with sufficient band gap. The DFT
approaches to reveal the significant and computational features
of the bulk materials and these features can be used as virtual
screenings of band structures of the 2100 compounds to
identify the novel IB compounds. From the first screening, we
observed 312 compounds having an IB with the maximum of
the VB at the Fermi level. Among these, 282 compounds were
selected for further analysis and 30 compounds were found as
heavy elements. After carrying out a detailed analysis, we found
out that only 17 compounds among the starting 282 would be
acceptable semiconductor materials for photovoltaic applica-
tions. The rest were found to be perfect insulators, with band
gap values larger than 3.51 eV.34 The electronic properties of
these 17 compounds are presented in Tables 1−3. It is well

known that the band gap (Eg) values of solids obtained from
usual DFT calculations are systematically underestimated due
to discontinuity in the exchange-correlation potential. Thus, the
calculated Eg values are typically 30−50% smaller than those
measured experimentally.35 It is recognized that the theoret-
ically calculated Eg for semiconductors and insulators are
strongly dependent on the approximations used, particularly on
the exchange and correlation terms of the potential. In the
present work, because of the large number compounds involved
in the screening process, we have used only generalized-
gradient approximation. However, the overall structure is not
going to change except the band gap value irrespective of the
approximation.
We have chosen to divide the 17 compounds with IBs into

three groups depending on the magnitude of their band gap
values. The first group of three compounds is named as narrow-
band gap semiconductors, which is characterized by band gaps
varying from 1.2 to 2.5 eV. The second group of eight
compounds is named wide-band gap 1 semiconductors, which
includes materials with band gaps varying from 2.6 to 3.15 eV.
Finally, the third group is named as wide-band gap 2
semiconductors. In this case, the band gap values vary from
3.15 to 3.5 eV. The band structures of these compounds are
presented in Figures 2a−c, 3a−d, 4a−d, and 5a−f, and we
calculate the total band gaps, band gaps Evi, Eci, and the widths
of the IB (ΔEi) bands for all of the compounds. The electronic
structure properties of these compounds are presented in
Tables 1, 2, and S1.
As presented in Table 1, narrow-band gap semiconductors

K6C60 (alkali fullerides), Au2Cs2I6, and Ag2GeBaS4 had total
indirect band gaps of 1.28, 2.35, and 2.41 eV, respectively.
From Figure 2a, the calculated values for K6C60 are: The total

indirect band gap is 1.28 eV, band gaps Evi and Eci are 0.61 and
0.28 eV, respectively, and the width of the IB is 0.39 eV. The
band gap of 1.28 eV makes an optimal compound for the PV
applications as their light responses are in the infrared region.
Also, the IB will help the material to absorb additional photons
with lower energy. It should be noted that K6C60 is already

known as a semiconductor and the nature of the band structure
is not well explained about the IB. However, they explained that
the electronic structure of crystalline K6C60 is indirect band gap
of 0.48 eV.36 The DOS around the VB maximum is very similar
to that of the isolated C60 molecule, and the K atoms are almost
completely ionized.36

Similarly, from Figure 2b, the calculated values for Au2Cs2I6
are as follows: The total indirect band gap is 2.35 eV, band gaps
Evi and Eci are 0.64 and 1.01 eV, respectively, and the width of
the IB, ΔEi is 0.70 eV. The band gap of 2.35 eV for Au2Cs2I6
shows that the material has its response to light in the visible

Table 3. Calculated Effective Masses of Narrow-Band Gap
Compounds; Light Holes (m*lh), Heavy Holes (m*hh), and
Electrons (m*e)

serial no. plane directions compound m*lh·me m*hh·me m*e·me

1. 110 K6C60 0.092 0.164 0.216
2. 110 Au2Cs2I6 0.096 0.265 0.095
3. 110 Ag2GeBaS4 0.059 0.114 0.021

Figure 2. Calculated electronic band structures of (a) K6C60, (b)
Au2Cs2I6, (c) and Ag2GeBaS4. The Fermi level is set to zero.
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region. For Au2Cs2I6, the IB region has the optimal thickness to
balance the absorption rate and recombination rate.37 In Figure
2b, Au2Cs2I6 has a broad band dispersion of IB, enough to
produce an optical depth for subgap light, ensuring the
compound to absorb subgap light so that it can be considered
as a potential PV material.37

From Figure 2c, the calculated values for Ag2GeBaS4 are:
The total indirect band gap is 2.41 eV, band gaps Evi and Eci are
0.90 and 0.35 eV, respectively, and the width of the IB is 1.16
eV. The band gap of 2.35 eV for Ag2GeBaS4 shows that the
material has its response to light in the visible region. Here, we
observe that the width of the IB, ΔEi, in Ag2GeBaS4 is much
higher than Eci and Evi. Because of the broadness of the IB,
photons can also be absorbed by the electrons from lower-
energy states of the IB to excite to higher-energy states of IB.
When the IB broadens, the absorption of photons for the
transition of electrons from the VB to lower-energy states of IB
as well as from the higher-energy states of IB to CB will be
reduced. These effects will lead to lower efficiencies of the solar
cell based on Ag2GeBaS4. It has been shown that the efficiency
limit for an IB solar cell is reduced from higher to lower
efficiencies if the width is infinitesimally significant.38 It is
important to note that all of these three materials, K6C60,
Au2Cs2I6, and Ag2GeBaS4, present indirect band gaps.

As presented in Table 2, the wide-band gap semiconductors
CuAgPO4, Ag2ZnSnS4, Au2Cs2Br6, Ag3AsS4, Ag2KSbS4,
Na3Se4Sb, AgK2SbS4, and AsRb3Se4 had the total band gaps
of 2.62, 2.70, 2.71, 2.77, 2.93, 2.97, 2.97, and 3.15 eV,
respectively. Figures 3a−d and 4a−d show the calculated band
structures of CuAgPO4, Ag2ZnSnS4, Au2Cs2Br6, Ag3AsS4,
Ag2KSbS4, Na3Se4Sb, AgK2SbS4, and AsRb3Se4 with IB,
respectively. The calculated values of Evi, Eci, and ΔEi, and
the total band gaps are presented in Table 2. The band gap type
of the above eight compounds is direct band gap except for
Ag2KSbS4 (indirect band gap). From Figure 2c, the calculated
values for Ag2ZnSnS4 are: The total direct band gap is 2.70 eV,
band gaps Evi and Eci are 0.47 and 0.57 eV, respectively, and the
width of the IB is 1.66 eV. The band gap of 2.70 eV for
Ag2ZnSnS4 shows that the material has its response to light in
the visible region. Here, we observe that the width of the IB,
ΔEi, in Ag2ZnSnS4 is much higher than Eci and Evi. The increase
in the IB width leads to a decrease in efficiency; however, it is
still significantly higher than that of a single-band gap solar
cell.39 The band gaps associated with optimum efficiencies are
constant for all IB solar cells when the IB width exceeds 2 eV.39

Because of the display of the small amount of data, we added
the remaining six compounds in the Supporting Information.
In general, the electrochemical potentials of the electrons in

the different bands are close to the edges of the bands. The

Figure 3. Calculated electronic band structures of (a) CuAgPO4 (up and down spin bands; upblack, downred), (b) Ag2ZnSnS4, (c) Au2Cs2Br6,
and (d) Ag3AsS4. The Fermi level is set to zero.
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open-circuit voltage of any solar cell is the difference between
the CB minimum at the electrode in contact with the n-type
side and the VB maximum at the electrode in contact with the
p-type side. Thus, the maximum photovoltage of IB solar cells
on the materials presented in Tables 1 and S1 is limited to 2.41

and 3.51 eV, respectively. Ag2GeBaS4 is still capable of

absorbing energy photons above 0.28 eV in Table 1 and

Ag6SiSO8 of 0.47 eV in Table 2. IB solar cells can deliver a

maximum photovoltage by absorbing two sub-band gap

Figure 4. Calculated electronic band structures of (a) Ag2KSbS4, (b) Na3Se4Sb, (c) AgK2SbS4, and (d) AsRb3Se4. The Fermi level is set to zero.

Figure 5. Total and site-projected DOS of Au2Cs2I6. The Fermi level is set to zero and marked by a vertical dotted line.
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photons to produce one high-energy electron; the laws of
thermodynamics would be violated if this were not the case.1

All of the 17 semiconductor compounds presented in this
work have properties that make them suitable for PV
applications; we show here the DOS analysis for three
compounds, namely, Au2Cs2I6, Ag2GeBaS4, and Ag2ZnSnS4.
The band gaps of 1.28 and 2.41 eV, respectively, make Au2Cs2I6
and Ag2GeBaS4 optimal PV materials. Solar cells based on
Ag2ZnSnS4 materials are interesting as a high efficiency gain for
these types of cells has been recently observed.40 There are also
reports on the possibilities to integrate Ag2ZnSnS4 in the Cu-
based solar cells as an additional absorption layer.40 The total
DOS of Au2Cs2I6 in Figure 5 shows that the IB is formed in the
energy region between 0.64 and 1.34 eV. The IB composed of I
2p are described by the projected density of states (PDOS), as
shown in Figure 5. Figure 6 shows that the IB is formed in the

energy region between 0.90 and 2.06 eV of the total DOS of
Ag2GeBaS4. We have also plotted the PDOS at the IB mainly
composed of the S 2p band and the Ge 4s band as well as the
smaller mixing of the Ba 4d band. For Ag2ZnSnS4, the IB is
formed in the energy region between 0.47 and 2.13 eV, and the
electron density, as shown in Figure 7 better describes the
states. The PDOS of Ag2ZnSnS4 at the IB mainly composed of
the Sn 5s band and the S 2p band is shown in Figure 7. The
Ag2ZnSnS4 has an energy gap of 2.62 eV. We found the
excellent IB peaks between CB and VB in the three materials,
namely, Au2Cs2I6, Ag2GeBaS4, and Ag2ZnSnS4. We observed
that the p and s states play a vital role in the band structure for
the applicability of semiconductor for PV applications.
In Figures 5−7, broadening of IB indicates a highly parabolic

dispersion relationship that induces lower values for the DOS.41

From Tables 3 and 4, the electron effective masses of Au2Cs2I6,
Ag2GeBaS4, and Ag2ZnSnS4 are 0.095me, 0.021me, and 0.025me,
respectively. Lower values for the electron effective mass are as
expected because the effective mass is directly related to the
values of DOS. In addition, the IB region has the optimal
thickness to balance the absorption rate and the recombination
rate.37 We may expect the effective IBSC to have IB thickness
enough to ensure these materials to absorb sufficient subgap

light. We conclude that the conversion efficiency of bulk IBSC
strongly depends not only on the band gap but also on the
position and thickness of IB and DOS.37,41

■ EFFECTIVE MASS CALCULATION
The calculation of the effective mass is important for a detailed
study of energy levels in solar devices. The conductivity
effective masses of electrons and holes affect the mobility,
electrical resistivity, and free-carrier optical response of
photovoltaic applications.42 To investigate the electron/hole
conduction properties of the identified IB materials, we have
computed the electron/hole effective mass at the VB/CB. For
an excellent IB, a low effective mass corresponds to a high
mobility of the electrons/holes at the VB/CB and consequently
high conductivity. For the EM calculation, we have employed
the effective mass calculator (EMC).43 EMC implements the
calculation of the effective masses at the bands extreme using
the finite difference method (FDM) (not the band-fitting
method). The effective mass (m*) of charge carriers is defined
as43
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Figure 6. Total and site PDOS of Ag2GeBaS4. The Fermi level is set to
zero and marked by a vertical dotted line.

Figure 7. Total and site PDOS of Ag2ZnSnS4. The Fermi level is set to
zero and marked by a vertical dotted line.

Table 4. Effective Mass of Wide-Band Gap IB Compounds

serial no. plane directions compound m*lh·me m*hh·me m*e·me

1. 100 CuAgPO4 3.875 4.969 14.229
2. 110 Ag2ZnSnS4 0.033 0.237 0.025
3. 110 Au2Cs2Br6 0.870 1.810 0.806
4. 100 Ag3AsS4 0.200 0.234 0.012
5. 110 Ag2KSbS4 0.125 0.526 0.034
6. 110 Na3Se4Sb 0.377 0.381 0.085
7. 100 AgK2SbS4 1.524 12.025 1.007
8. 100 AsRb3Se4 6.213 84.330 2.595
9. 100 AsCs3Se4 8.213 24.794 3.561
10. 110 Al2HgSe4 0.070 0.255 0.021
11. 110 PdPbF4 0.391 0.592 0.094
12. 100 C2Te2F4 3.293 5.165 7.659
13. 100 AlMoVO7 1.680 2.756 1.959
14. 110 Ag6SiSO8 0.145 2.634 0.053
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where x, y, and z are the directions in the reciprocal Cartesian
space (2π/A), En(k) is the dispersion relation for the nth
electronic band, and indices i and j denote reciprocal
components. The explicit form of the symmetric tensor in
the right-hand side of eq 1 is43
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The effective mass components are the inverse of the
eigenvalues of eq 2, and the principal directions correspond
to the eigenvectors.43

To better understand the effective mass of semiconductors, it
is not possible to fit the band to the quadratic polynomial. In
this case, the results from the parabolic fitting can be
reproduced with the FDM.43 The FDM employed to solve
the effective mass approximation equations because the
spurious solutions can be included in the formalism, and the
FDM can be solved by the hard equation having a high degree
of polynomial.44 This approach is quite reliable, and it was
successfully applied for several classes of materials in the
literature.43 We present the effective masses of 14 compounds
in Tables 3 and 4. The effective mass of an electron was
computed from the minimum of the CB; the effective mass of
the heavy hole was computed from the maximum of the first
VB curvature, whereas the second VB curvature was used for
the light hole. In the case of materials presented in Tables 3 and
4, the PBE functional predicts the effective masses of the light
hole, heavy hole, and electron, which are parabolic-fitted values
with a step size of 0.05 (1/bohr). The three narrow-band gap
compounds, K6C60, Au2Cs2I6, and Ag2GeBaS4, have low
effective masses, as presented in Table 3.
The thirteen wide-band gap compounds in Table 4 have

effective masses of electron lower than those of light holes and
heavy holes except for CuAgPO4. The effective masses of
electron of photovoltaic materials silicon (Si), germanium
(Ge), and gallium arsenide (GaAs) are 0.26me, 0.067me, and
0.12me, respectively.45,46 The above three photovoltaic
materials are single-band gap materials. It is well known that
the band gaps of Si, Ge, and GaAs are 1.12, 0.66, and 1.424 eV,
respectively. The maximum energy conversion of silicon and
GaAs solar cells can reach 30% efficiency.48 We can use
germanium as the doping material in silicon solar cells because
of its low band gap. We noticed that the effective masses of the
electron for the silicon and GaAs are low.45 From our results,
we observed that the effective masses of electron for K6C60,
Au2Cs2I6, and Ag2GeBaS4 are 0.216me, 0.095me, and 0.021me,
respectively.
From Table 4, we noted that the effective masses of electron

for Ag2ZnSnS4, Au2Cs2Br6, Ag3AsS4, Ag2KSbS4, Na3Se4Sb,
Al2HgSe4, PdPbF4, Ag6SiSO8 are 0.025me, 0.806me, 0.012me,
0.034me, 0.085me, 0.021me, 0.094me, and 0.053me, respectively.
Hence, the effective masses of electron of our narrow-band gap
and wide-band gap materials are approximately equal to those
of the photovoltaic materials. From Table 4, the effective mass
of an electron is 0.025me for Ag2ZnSnS4 in [110] plane

direction. We observed from Jing et al. that the effective mass of
an electron is 0.16me for Ag2ZnSnS4 in [100] plane direction.42

Hence, we found a lower effective mass in [110] direction than
in [100] direction. These effective masses are better described
by the band structures of the most curved parabolic band, as
shown in Figures 3−5. Because of the effective masses for the
presented materials, in this article, the electron mobility from
VB to CB will be higher and the recombination effect will be
lower.

■ CONCLUSIONS

We have carried out a comprehensive study of the electronic
band structures of 2100 new bulk compounds using first-
principle calculations with the DFT. Among these compounds,
we have found that only 17 compounds have IBs. These
compounds could be potentially used as photovoltaic materials
based on the detailed studies of band structure, the DOS and
effective mass calculations. Our effective mass calculations show
that these compounds have high electron/hole conduction
properties, which make them suitable for PV applications.
Although we have studied 2100 new compounds from the
ICSD database, our study clearly demonstrates the possibility of
having more IB materials from the list of currently known
compounds from the database. Thus, we are in the process of
investigating more IB-compounds and results of the detailed
analysis will be published in a forthcoming article.

■ COMPUTATIONAL DETAILS

Total energies have been calculated by the projected
augmented plane-wave (PAW) implementation of the Vienna
ab initio simulation package.47 Ground-state geometries were
determined by minimizing stresses and the Hellman−Feynman
forces using the conjugate-gradient algorithm with a force
convergence threshold if 10−3 eV Å−1. Brillouin-zone
integration was performed using the Monkhorst−Pack k-
meshes with a Gaussian broadening of 0.1 eV. A 600 eV kinetic
energy cutoff was used for the plane-wave expansion. All of
these calculations usually set to use approximately the same
density of k-points in the reciprocal space for all structures.
Because a large variety of structures was considered in this
study, both metallic and insulating, we ensured that the k-points
mesh was dense enough to determine the total energy with
meV/atom accuracy. All structures containing transition
elements are treated using the spin-polarized approach. In
some cases, the starting magnetization vanished as self-
consistency was reached. For all of these computations, the
starting structures were directly taken from the ICSD database
and input parameters, and file generation was done automati-
cally by locally developed code “Tool”. For the calculation of
band structure, the k-point files were generated again with the
help of locally developed code “KPATH”. The information
about the high symmetric points of the k-vector in the Brillouin
zone was taken from the Bilbao Crystallographic Server.48−50

All of the calculated electronic structures of the studied systems
are documented in the DFTBD database. For the transition
metals, we have used exchange-correlation functional with the
Hubbard parameter correction (GGA+U), following the
rotationally invariant form. The full details about the computed
U and J values are presented in the DFTBD database
website.51−54

ACS Omega Article

DOI: 10.1021/acsomega.6b00534
ACS Omega 2017, 2, 1454−1462

1460



■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsomega.6b00534.

Tables, list of computed compounds and figures (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: rmu@hvl.no.

ORCID
Murugesan Rasukkannu: 0000-0002-2167-3242
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge the Bergen University
College for financially supporting M.R. P.V. and D.V.
acknowledge the NOTUR computing facilities of project.
numbers NN2867K and NN2875K, which have been used to
conduct the calculations presented in this article, and further
acknowledge Dr.Vishnu for fruitful discussions.

■ REFERENCES
(1) Luque, A.; Marti, A.; Stanley, C. Understanding Intermediate-
Band Solar Cells. Nat. Photonics 2012, 6, 146−152.
(2) Luque, A.; Marti, A. A metallic intermediate band high efficiency
solar cell. Prog. Photovoltaics 2001, 9, 73−86.
(3) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency
of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510−519.
(4) Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by
photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997,
78, 5014.
(5) Palacios, P.; Aguilera, I.; Sańchez, K.; Conesa, J.; Wahnoń, P.
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The wide-bandgap semiconductors AsCs3Se4, Al2HgSe4, C2Te2F4, PdPbF4, AlMoVO7 

and Ag6SiSO8 have the total bandgap vary from 3.26 to 3.51 eV (see Table S1). Figure S1(a-

f) shows the calculated band structure with IB of AsCs3Se4, Al2HgSe4, C2Te2F4, PdPbF4, 

AlMoVO7 and Ag6SiSO8 respectively. The calculated values of Evi, Eci, ∆Ei and the total 

bandgaps are presented in . The bandgap types of over six compounds are the direct bandgap 

except for the indirect bandgap of   C2Te2F4 and PdPbF4. From figure S5b, the calculated 

values for Al2HgSe4 are: total direct bandgap is 3.28 eV, whereas the bandgap Evi is 1.41 eV. 

The transition between IB to CB is fast because the bandgap Eci is 0.04 eV. However, the 

width of IB is 1.83 eV, ∆Ei in Al2HgSe4, which is much higher than Eci and Evi.    



 S2 

Figure S1. Calculated electronic band structure of (a) AsCs3Se4, (b) Al2HgSe4, (c) C2Te2F4

and (d) PdPbF4. (e) AlMoVO7 and (f) Ag6SiSO8. The Fermi level is set to zero.  



 S3 

Table S1. Wide-bandgap 2 semiconductors with intermediate band ranging from 3.15 eV to 

3.51 eV 

Serial 

no. 

Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 

Bandgap 

(Eci) 

Width of 

IB 

∆Ei

Total 

Bandgap 

(Eg) 

Bandgap 

type 

1. AsCs3Se4 oP32 62 1.49 1.04 0.73 3.26 DB 

2. Al2HgSe4 tI14 121 1.41 0.04 1.83 3.28 DB 

3. C2Te2F4 mP32 4 1.67 1.08 0.58 3.33 ID 

4. PdPbF4 tI24 140  1.92 0.8 0.61 3.33 ID 

5. AlMoVO7 oP40 62 2.31 0.72 0.46 3.49 DB 

6. Ag6SiSO8 tI64 141 0.16 0.71 2.64 3.51 DB 

Ground state structure of Ag2ZnSnS4: 

In literature two types of tetragonal structures I-4 (kesterite-type; space group 82) and I-42m 

(stannite-type; space group 121) are described for Ag2ZnSnS4. Both of these two 

modifications are having similar atomic arrangement (see Figure S2) and are highlighted by 

square box in Figure S. Our total energy calculation predicted that kesterite-type structure is 

energetically favourable for Ag2ZnSnS4 compound (see Figure S3). This finding is 

consistence with the recent experimental findings by Gong et al. [1] The calculated structural 

parameters and atomic positions are well fitted with the experimental findings. The involved 

energy difference between the two structures is 0.14 eV/f.u.  
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Figure S2 Crystal structures of tetragonal Ag2ZnSnS4 in I-4and I-42m structure viewed along 

[001]. Both of these two modifications are having similar atomic arrangement and are 

highlighted by square box. The atomic label for the different kinds of atoms is given in the 

illustration. 

Figure S3 Calculated unit cell volume vs. total energy (per formula unit; f.u.) curves for 

Ag2ZnSnS4 in I-4and I-42m structure arrangements; structure types are labelled on the 

illustration.   
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Figure S4 Band structure of tetragonal Ag2ZnSnS4 in I-4 space group. The Fermi level is set 

to zero. 
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Figure S5 Band structure of tetragonal Ag2ZnSnS4 in I-42m space group. The Fermi level is 

set to zero. 

We observed 312 compounds having an intermediate band with the maximum of the valence 

band at the Fermi level. Among these, 282 compounds (listed below) were selected for further 

analysis and 30 compounds were found as heavy elements. After carrying out detailed 

analysis, we found out that only 17 compounds among the starting 282 would be acceptable 

semiconductor materials for photovoltaic applications. The rest were found to be perfect 

insulators, with bandgap values larger than 3.51eV 
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Table S2 List of Compounds with Intermediate band considered in this study are listed 

bellow. The chemical formula, pearson symbol, space group number, Evi- Energy gap 

between top of the valence band to bottom of an intermediate band, Eci- Energy gap between 

top of the intermediate band to bottom of the conduction band, Ei1-Ei2- gap between two IBs, 

∆Ei1 and ∆Ei2- bandwidth of the intermediate bands , Eg-total bandgap between top of the 

valence band and bottom of the conduction band, ID-indirect bandgap type, DB-direct 

bandgap type are listed  

Serial 

no. 
Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 

Bandgap 

(Eci) 

Multibands 

gap 

(Ei1-Ei2) 

Width of 

IBss 

∆Ei1, ∆Ei2 

Total 

Bandgap 

(Eg) 

Band 

gap type 

1. AgAsSe2 hR4 166 0.13 0.02 - 3.66 3.81 ID 

2. AgClO4 tI12 121 3.60 0.57 0.13 2.59, 2.28 9.17 ID 

3. AgPXe2F10 tI56 140 2.48 0.72 2.39 0.99, 1.12 7.7 DB 

4. AgF2 oP12 61 1.03 1.15 - 1.43 3.61 DB 

5. AgF3 hP24 178 1.24 4.13 - 0.77 6.14 DB 

6. AgKF4 tI24 140 2.13 4.12 - 0.19 6.44 DB 

7. AgNaF4 tI24 140 1.78 4.01 - 0.36 6.15 DB 

8. AgIO4 tI24 88 0.77 1.27 1.59 2.13, 3.26 9.02 ID 

9. AgTcO4 tI24 88 2.34 0.35 0.8 0.98, 3.45 7.92 ID 

10. Ag2GeBaS4 tI16 121 0.90 0.35 - 1.16 2.41 ID 

11. Ag2HgI4 tI14 121 1.43 1.31 - 0.89 3.63 DB 

12. Ag2KSbS4 tI16 121 0.81 1.08 - 0.94 2.93 ID 

13. Ag2ZnSnS4 tI16 121 0.47 0.57 - 1.66 2.70 DB 

14. Ag4TeSO4 cP40 198 1.06 0.44 - 2.17 3.67 DB 

15. Ag6SiSO8 tI64 141 0.16 0.71 - 2.64 3.51 DB 

16. AlAsO4 tI12 121 4.22 1.82 - 1.92 7.96 DB 

17. AlH12N3O15 cI248 206 3.38 1.22 - 0.58 5.18 DB 
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18. Al2HgS4 tI14 121 2.0 0.03 - 1.64 3.64 ID 

Serial 
no. 

Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 

Bandgap 

(Eci) 

Multibands 
gap 

(Ei1-Ei2) 

Width of IBs 

∆Ei1, ∆Ei2 

Total 
Bandgap 

(Eg) 

Band 
gap type 

19. AsBiO4 tI24 88 2.81 0.6 - 4.08 7.49 ID 

20. Al2HgSe4 tI14 121 1.41 0.04 - 1.83 3.28 DB 

21. AsBO4 tI12 82 4.25 1.72 - 1.48 7.45 ID 

22. AsCsF4 mP12 4 4.62 0.39 - 1.04 6.05 DB 

23. AsCsF6 hR8 148 5.11 3.49 - 0.67 9.27 DB 

24. AsCuF7 oI36 74 2.18 2.06 1.01 0.85, 1.17 7.27 DB 

25. AsDyO4 tI24 141 3.61 0.65 - 2.04 6.30 DB 

26. AsF3 oP16 33 5.15 0.28 - 2.79 8.22 ID 

27. AsF5 hP12 194 4.55 3.82 - 0.88 9.25 DB 

28. AsF6I5 mS48 15 1.39 2.11 1.22 0.59, 0.27 5.58 DB 

29. AsInF6 hR8 148 3.33 2.25 1.53 0.65, 1.26 9.02 ID 

30. AsK1F6 hR8 166 4.76 3.63 - 0.90 9.29 DB 

31. AsRbF6 hR8 166 4.94 3.60 - 0.75 9.29 DB 

32. AsTlF6 hR8 148 4.56 1.55 - 0.64 6.75 ID 

33. AsKrF7 mP36 14 2.44 3.79 2.32 0.17, 0.48 9.20 DB 

34. AsH6NO4 tI48 122 4.12 1.16 - 1.9 7.18 ID 

35. AsHoO4 tI24 141 3.60 0.73 - 2.04 6.37 DB 

36. AsLuO4 tI24 141 3.50 0.89 - 2.06 6.45 DB 

37. AsTbO4 tI24 141 3.64 0.63 - 2.04 6.31 DB 

38. AsYO4 Ti24 141 3.65 0.54 - 1.93 6.12 DB 

39. As2Cl4F6 tP24 85 2.84 2.34 2.35 0.22, 0.75 8.50 ID 
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Serial 

no. 
Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 

Bandgap 

(Eci) 

Multibands 

gap 

(Ei1-Ei2) 

Width of IBs 

∆Ei1, ∆Ei2 

Total 

Bandgap 

(Eg) 

Band 

gap type 

40. As4C4F12 tP40 137 3.31 0.43 - 2.84 6.58 DB 

41. As3Mg4NaO12 tI80 122 3.19 1.13 - 2.60 6.92 DB 

42. As2KF7 mP40 14 4.78 0.28 - 2.92 7.98 DB 

43. AuLiF4 mP24 15 2.59 0.41 2.41 0.37, 2.84 8.62 DB 

44. AuLiF4 mS24 15 2.60 0.45 2.36 0.43, 2.9 8.74 ID 

45. AuKF6 hR8 166 2.20 4.43 - 0.39 7.02 ID 

46. AuTlF6 tP64 92 1.80 0.41 1.17 3.4, 1.94 8.72 ID 

47. Au2BaO4 tI28 88 1.69 0.11 - 1.77 3.57 ID 

48. Au2Cs2Br6 tI20 139 0.67 1.23 - 0.81 2.71 DB 

49. Au2CaF12 tP15 99 1.72 4.31 - 0.84 6.87 DB 

50. Au2CaO4 tI28 88 1.81 0.18 - 1.65 3.64 ID 

51. Au2CdF12 mS60 12 2.0 2.72 - 0.36 5.08 DB 

52. Au2CdF8 tP22 127 2.33 1.2 - 0.72 4.25 DB 

53. Au2Cs2Cl6 tI20 xx 0.93 1.72 - 0.73 3.38 DB 

54. Au2CsF7 mS40 15 2.29 2.07 0.38 0.21, 0.12 5.07 DB 

55. Au2Cs2I6 tI20 139 0.64 1.01 - 0.7 2.35 ID 

56. Au2HgF8 tP22 127 2.1 0.21 1.21 2.88, 2.25 8.65 DB 

57. Au2MgF8 mP22 14 2.45 0.79 2.26 0.5, 2.94 8.94 DB 

58. Au2NiF8 mP22 14 2.24 0.41 1.58 0.63, 3.57 8.43 DB 

59. Au2ZnF8 mP22 14 2.24 0.02 1.85 0.65, 3.25 8.01 DB 

60. Au3LaF12 hR32 167 2.55 0.39 2.59 0.22, 1.95 7.70 ID 

61. BClF6 mP32 14 3.32 4.37 - 0.65, 8.34 DB 
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Serial 

no. 
Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 

Bandgap 

(Eci) 

Multibands

gap 

(Ei1-Ei2) 

Width of IBs 

∆Ei1, ∆Ei2 

Total 

Bandgap 

(Eg) 

Band 

gap type 

62. BSF7 oP36 62 4.94 1.22 1.75 0.34, 0.43 8.68 DB 

63. BN1F8 oP40 57 2.91 3.34 1.4 0.18, 0.16 7.99 DB 

64. B2F4 mP12 14 4.9 2.01 - 0.09 7.00 DB 

65. Co4B6O13 cI46 217 3.72 0.89 - 2.25 6.86 ID 

66. Zn4B6O13 cI46 217 4.04 1.97 - 1.12 7.13 ID 

67. BiF5 tI12 87 1.98 3.73 - 1.38 7.09 ID 

68. BrF3 oS16 36 2.17 3.08 0.8 0.49, 0.7 7.24 ID 

69. BrF5 oS24 63 3.47 3.35 1.36 0.39, 0.49 9.06 ID 

70. Ca2U6K8O24 cI40 229 2.95 0.37 - 1.90 5.22 ID 

71. Ca3Te2Zn3O12 cI160 230 2.46 1.74 - 1.68 5.88 ID 

72. CdPdF6 aP8 148 2.27 1.72 2.26 0.52, 1.91 8.69 ID 

73. CdPtF6 hR8 148 2.74 0.95 0.68 0.66, 2.33 7.36 DB 

74. CdSnF6 hR8 148 3.59 0.76 0.95 2.01, 1.93 9.24 ID 

75. CdTiF6 hR8 148 4.92 0.98 0.79 0.24, 2.55 9.48 ID 

76. Cd4OF6 tP22 137 2.09 0.36 - 5.28 7.73 DB 

77. Cd4P6N12S cI46 217 3.08 0.42 - 0.87 4.37 ID 

78. CeZrF7 mP18 4 4.24 1.05 - 0.28 5.57 ID 

79. SnClF oP12 62 3.47 1.58 - 3.09 8.14 DB 

80. ClF mP8 14 2.13 3.87 - 1.07 7.07 DB 

81. ClF3 oP16 62 2.59 2.77 1.58 0.3, 0.73 7.97 ID 

82. SbClF8 aP20 2 3.17 3.46 0.97 0.81, 0.72 9.13 ID 

83. Hg3 Se2Cl2 cI28 199 1.75 0.65 - 1.92 4.32 ID 
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Serial 

no. 
Chemical 

Formula 

Pearson 

symbol 

Space 

group 

number 

Bandgap 

(Evi) 
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(Eci) 

Multibands 
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∆Ei1, ∆Ei2 

Total 

Bandgap 

(Eg) 

Band 

gap type 

84. Hg3Te2Cl2 cI28 199 1.90 0.41 - 1.6 3.91 DB 

85. Li2ZnCl4 cF56 227 4.56 0.58 - 1.73 6.87 DB 

86. CoF3 hR8 167 1.49 2.44 - 3.10 7.03 ID 

87. CrNbF6 tI16 139 1.34 0.19 - 1.26 2.79 DB 

88. CsCuF4 tI24 140 1.82 4.60 - 0.11 6.53 ID 

89. CsHgF3 cP5 221 0.75 1.00 - 4.61 6.36 DB 

90. Cs2HgF4 tI14 139 2.05 0.88 - 2.56 5.49 ID 

91. Cs2GeF6 cF36 225 6.01 1.64 - 1.08 8.73 DB 

92. Cs3Tl F6 tI20 139 3.34 1.78 - 0.78 5.90 ID 

93. CuF2 mP6 14 1.75 0.98 - 1.38 4.11 DB 

94. HOF oP12 19 3.23 2.91 - 0.66 6.80 ID 

95. PbIF tP6 129 2.17 0.53 - 3.45 6.15 DB 

96. NOF oP12 19 3.21 3.06 1.78 0.24, 0.64 8.93 ID 

97. TcO3F mP20 14 2.48 1.06 1.74 1.09, 1.55 7.92 ID 

98. HNF2 oP16 29 4.41 0.88 - 1.62 6.91 DB 

99. PHF2 oP16 19 3.83 0.36 0.73 2.43, 1.64 8.99 ID 

100. HgF2 cF12 225 0.98 3.21 - 4.08 8.27 DB 

101. KrF2 tP6 136 2.79 4.13 - 0.59 7.51 ID 

102. KrF2 tI6 139 2.89 4.08 - 0.80 7.77 ID 

103. Pb2OF2 tP20 105 0.89 0.36 - 6.3 7.55 ID 

104. SeOF2 oP16 29 4.15 0.88 0.99 1.63, 1.00 8.65 DB 

Serial 

no. 
Chemical 

Formula 

Pearson 

symbol 

Space 

group 

Bandgap 
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Bandgap Multibands 

gap 
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number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

105. XeF2 tI6 139 2.74 3.60 - 0.88 7.22 ID 

106. FeF3 cF64 227 2.80 1.34 - 2.26 6.40 ID 

107. FeF3 hR8 167 2.71 1.14 - 2.44 6.29 DB 

108. FeF3 hR32 167 2.77 1.19 - 2.40 6.36 DB 

109. IF3 oP16 62 1.78 2.10 0.39 1.36, 1.58 7.21 ID 

110. NiF3 hR8 167 1.24 2.54 2.84 0.62, 0.17 7.41 ID 

111. RhF3 hP12 150 1.30 1.61 0.16 1.00, 1.56 5.63 ID 

112. N2H8F4 hR14 166 5.27 1.27 - 0.53 7.07 ID 

113. HfF4 mS60 15 5.39 0.31 - 1.50 7.20 ID 

114. K2PdF4 mS14 12 3.09 1.48 - 0.19 4.76 ID 

115. NaSbF4 mP24 14 4.34 0.33 - 2.40 7.07 ID 

116. Na2PdF4 mP14 14 2.67 1.46 - 0.13 4.26 ID 

117. TcOF4 hP36 176 1.97 1.49 1.35 0.59, 1.44 6.84 DB 

118. PdF4 oF40 109 1.05 4.67 - 1.28 7.00 ID 

119. SnF4 tI10 139 2.74 1.47 - 3.77 7.98 ID 

120. VF4 mP10 14 1.92 1.74 - 3.61 7.27 DB 

121. XeF4 mP10 14 2.81 4.10 0.04 0.57, 0.26 7.78 DB 

122. KTeF5 oP28 57 5.24 1.14 - 1.20 7.58 DB 

123. NaTeF5 oP28 62 5.25 1.21 - 1.36 7.82 ID 

124. Sn2OF5 mS32 12 1.56 1.10 0.25 1.51, 1.32 5.74 ID 

125. PdRb3F5 tP18 127 2.87 1.51 - 0.05 4.43 ID 

126. SbSrF5 oP28 57 4.77 0.70 - 2.02 7.49 ID 

Serial 

no. 
Chemical 
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number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

127. Rb2GeF6 hP9 164 5.77 2.30 - 1.10 9.17 ID 

128. Rb2GeF6 cF36 225 5.94 1.96 - 1.22 9.12 DB 

129. KNbF6 tP16 116 5.60 2.22 - 0.12 7.94 ID 

130. LiNbF6 hR8 148 5.48 2.60 - 0.21 8.29 DB 

131. Li2TiF6 tP18 136 4.88 1.58 1.54 0.16, 0.31 8.47 DB 

132. MoF6 oP28 62 4.06 1.06 3.84 0.11, 0.16 9.23 DB 

133. MoF6 cI14 229 4.10 0.49 3.78 0.12, 0.38 ID 

134. P3N3F6 oP48 62 5.69 0.24 - 1.51 7.44 DB 

135. NiSrF6 hR8 166 1.65 5.88 - 0.44 7.97 DB 

136. Sn2F6 cF32 221 2.26 0.54 1.01 2.06, 1.20 7.07 ID 

137. TeF6 oP28 62 4.37 4.58 - 0.54 9.49 DB 

138. WF6 oP28 62 5.04 3.79 - 0.14 8.97 DB 

139. Xe2F6 mP16 14 2.56 3.97 0.51 0.22, 0.29 7.55 ID 

140. K2NbF7 mP40 62 4.93 0.68 1.48 0.10, 0.13 7.32 DB 

141. K2PaF7 mS40 15 3.99 2.84 - 0.64 7.47 ID 

142. K2TaF7 oP40 62 5.68 1.05 - 0.17 6.90 DB 

143. NiRb3F7 tP22 127 0.78 4.91 - 0.15 5.84 ID 

144. Pb2RhF7 mP40 14 2.85 1.06 1.27 0.38, 3.01 8.57 DB 

145. TiRb3F7 tP22 127 3.52 1.80 - 0.04 5.36 DB 

146. SbXeF7 mP36 14 2.79 3.44 1.69 0.27, 0.56 8.75 DB 

147. SnTlF7 mP36 14 1.63 1.93 - 3.69 7.25 DB 

148. SrTaF7 mP18 11 5.66 0.21 1.46 0.19, 0.25 7.77 ID 
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no. 
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number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

149. Pb5I2F8 hR15 160 2.90 0.87 - 3.53 7.30 ID 

150. K3TaF8 hP24 186 3.98 0.09 1.48 0.06, 0.30 5.91 DB 

151. Sn3F8 mP22 14 2.70 0.83 0.85 0.95, 3.06 8.39 DB 

152. NbSeF9 hR44 146 5.53 1.99 0.68 0.62, 0.09 8.91 DB 

153. Na3Ga3Te2O12 cI160 230 1.91 0.97 - 2.00 4.88 DB 

154. Hg3TeO6 CI160 230 0.59 0.39 - 3.90 4.88 DB 

155. LiO3I tP40 86 3.59 0.68 - 3.11 7.38 DB 

156. LiO3I hP10 173 3.65 2.04 - 2.53 8.22 ID 

157. K3SbS4 cI16 217 2.14 1.58 - 0.39 4.11 ID 

158. Li2WO4 tI12 141 4.12 1.43 - 0.97 6.52 DB 

159. Li3NbO4 cI64 197 4.03 1.65 - 1.17 6.85 DB 

160. Li3Nd3W2O12 cI160 230 3.28 0.22 - 0.96 4.46 DB 

161. Li3TaO4 mS64 15 4.66 0.69 - 1.18 6.53 ID 

162. Li3VO4 oP16 31 4.02 0.59 0.49 0.20, 0.80 6.10 ID 

163. Li6Zr2O7 mS60 15 3.92 0.50 - 2.40 6.82 DB 

164. Li7TaO6 aP14 146 4.56 0.25 - 0.64 5.45 ID 

165. Zn8P12N24O2 cI46 217 3.44 0.57 - 0.25 4.26 ID 

166. Na3SbS4 cI16 217 1.92 1.27 - 0.42 3.61 ID 

167. Na3SbSe4 cI16 217 1.02 1.24 - 0.71 2.97 DB 

168. ZnSr2WO6 cF40 225 3.05 1.31 - 1.01 5.37 ID 

169. AgBiSe2 hR4 166 0.44 0.08 - 3.36 3.88 ID 

170. AgBiTe2 hR4 166 0.17 0.09 - 3.27 3.53 ID 

Serial 

no. 
Chemical 
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number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

171. AgCN3O2 oP28 57 3.18 0.61 - 0.46 4.25 DB 

172. AgCuPO4 oP56 61 1.27 0.61 - 0.74 2.62 DB 

173. AgK2SbS4 oP32 118 1.52 1.03 - 0.47 2.97 DB 

174. AgN3O4 oP64 61 2.67 1.19 1.04 0.28, 2.18 7.36 DB 

175. AgP4TaO13 oP76 19 3.41 0.70 - 0.49 4.60 DB 

176. Ag3AsS4 oP16 31 0.73 1.04 - 1.00 2.77 DB 

177. AlAsH4O6 oP96 61 3.66 1.2 - 2.19 7.05 DB 

178. AlCl4NS2 oP32 62 2.14 0.13 2.88 0.10, 0.4 5.65 DB 

179. AlCsSiO4 oP28 36 1.21 2.07 - 1.39 4.54 DB 

180. AlMoVO7 oP40 62 2.31 0.72 - 0.46 3.49 DB 

181. Al2Ca2Sn2O9 oP60 60 2.45 0.78 - 2.91 6.14 DB 

182. Al5NaTi2O12 oP40 55 3.13 0.54 - 1.27 4.94 DB 

183. AsCl3 oP16 19 4.04 1.97 - 0.84 6.85 ID 

184. AsCoSe oP24 61 0.46 0.30 - 4.43 5.19 ID 

185. AsCs3Se4 oP32 62 1.49 1.04 - 0.73 3.26 DB 

186. AsZn2HO5 oP36 58 2.65 1.01 - 2.71 6.37 ID 

187. AsLiZnH2O5 oP40 33 3.41 0.83 - 2.22 6.46 DB 

188. AsNaH4O5 oP44 19 3.87 1.33 - 1.92 7.12 ID 

189. AsNH6O4 oP48 19 3.41 1.00 - 1.71 6.12 DB 

190. AsLiMgO4 oP28 62 3.46 1.28 - 2.00 6.74 DB 

191. AsLiNiO4 oP28 62 2.79 1.03 - 2.35 6.17 DB 

192. AsLi2NaO4 oP16 31 3.92 1.51 - 1.82 7.25 ID 
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 S16 

number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

193. AsRbSnO5 oP64 33 1.83 0.72 - 3.94 6.49 DB 

194. AsSbO5 oP28 19 1.77 1.00 - 4.22 6.99 DB 

195. AsRb3Se4 oP32 62 1.32 0.98 - 0.97 3.15 DB 

196. As2MgXe2F16 oP42 55 2.98 3.27 0.93 0.44, 0.6 8.22 DB 

197. As2O5 oP28 92 1.46 1.17 - 6.65 9.28 DB 

198. Au K1C4 N4H2O oP52 19 4.29 1.17 0.3 0.05, 0.36 5.87 DB 

199. BaTe2F10 mS52 15 4.90 1.93 1.15 7.98 ID 

200. BaZr2F10 mS52 15 5.75 0.37 1.47 7.59 ID 

201. BaSb2F12 aP15 1 4.07 2.65 1.06 0 7.78 DB 

202. BaSbF5 oP28 57 4.73 0.22 1.84 6.79 ID 

203. BaGeF6 hR8 166 5.55 3.11 0 8.66 DB 

204. BaNiF6 hR8 166 1.72 6.01 0.37 8.09 DB 

205. BaPbF6 hR8 166 2.86 5.02 0 7.88 DB 

206. BaSnF6 hR8 148 4.98 3.52 0 8.50 DB 

207. BaTeF6 oF128 43 4.79 1.67 1.26 7.72 ID 

208. BaTiF6 hR8 166 4.80 0.94 1.6 0.14, 0.33 7.81 ID 

209. BaZrF6 mP32 14 6.32 0.41 0.274 0.53, 0.146 7.68 DB 

210. BaZrF6 oS32 67 6.26 0.35 - 0.64 7.25 ID 

211. BaTm2F8 mS22 12 1.98 5.36 0 7.34 ID 

212. Ba2PdF6 oS36 64 2.84 2.04 - 4.88 9.76 ID 

213. Ba2ZrF8 oP44 62 5.95 1.1 - 0 7.05 DB 

214. Ba2SrTeO6 hR10 225 3.16 1.96 - 5.12 10.24 ID 
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 S17 

number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

215. Ba3In2F12 tP34 127 4.70 0.9 0.52 1.1, 0.28 7.50 DB 

216. BiClF8 aP20 2 2.22 4.12 0.82 0.36, 0.83 8.35 DB 

217. BiCsF6 hR8 148 2.92 5.5 - 0 5.5 DB 

218. BiKF6 tP16 116 2.90 5.2 - 0.35 8.45 DB 

219. BiLiF6 hR8 148 2.75 6.14 - 0 8.89 DB 

220. BiNaF6 hR8 148 2.89 5.74 - 0 8.63 ID 

221. BiRbF6 hR8 148 2.79 5.61 - 0 8.40 DB 

222. BiKrF7 mP36 14 2.438 5.11 0.38 0.212, 0.41 8.55 DB 

223. BiNa3O3 cI56 217 2.89 0.37 0.65 1.3, 1.58 6.79 DB 

224. Bi24Pb2O40 cI66 197 1.52 1.4 0.73 5.63 9.28 ID 

225. Bi4Si3O12 cI76 220 3.93 1.59 - 2.1 7.62 DB 

226. CsBrF6 hR8 148 4.03 3.34 - 0.31 7.68 DB 

227. PbBrF tP6 129 2.72 0.33 3.82 6.75 DB 

228. Sn3BrF5 mP36 14 3.21 0.3 - 3.96 7.47 DB 

229. CsBr2F tP4 123 1.77 1.34 - 1.41 4.52 DB 

230. GeBr2F10 mP26 14 2.85 2.73 1.85 0.8,0.19 8.42 ID 

231. Hg3Te2Br2 cI28 199 1.73 0.47 - 1.48 3.68 DB 

232. CBr3F oP20 62 3.27 0.23 1.13 0.37, 0.92 5.92 DB 

233. C12SeF10 mP46 4 2.78 0.54 - 1.74 5.06 DB 

234. C12Ru4Se4 O12 cI64 217 2.19 1.32 0.93 0, 1.33 5.77 ID 

235. CClF3 oS20 36 6.55 0.7 - 0.47 7.72 ID 

236. CCl2F2 oF40 43 4.73 0.57 - 0.66 5.96 DB 
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number (Eci) (Ei1-Ei2) ∆Ei1, ∆Ei2 (Eg) 

237. CCl3F oP40 61 4.91 0.26 0.76 0.33, 0.62 6.88 DB 

238. CF3I oS40 64 3.71 1.78 - 0.37 5.86 ID 

239. CIF7 mP36 14 4.65 2.41 - 1.22 8.28 DB 

240. C2O3F2 oP56 19 5.27 0.68 - 0.47 6.42 DB 

241. C2Te2F4 mP32 4 1.67 1.08 - 0.58 3.33 ID 

242. C2Te2F6 mP40 14 2.41 1.01 0.22 0.35, 0.83 4.82 DB 

243. K6C60 cI132 0.61 0.28 - 0.39 1.28 ID 

244. CaPdF6 hR8 148 2.62 4.51 - 0.24 7.37 ID 

245. CaPtF6 hR8 148 3.17 2.77 - 0.25 6.19 ID 

246. CaSnF6 hR8 148 4.85 4.07 - 0 8.92 DB 

247. AgAsF7 P36 62 1.46 1.35 1.83 0.92,1.27 6.83 DB 

248. AgSbF6 cI64 206 3.37 1.29 0.94 1.92, 1.45 8.97 DB 

249. AgTiF6 aP8 2 1.46 0.89 2.64 0.52, 0.20 5.73 DB 

250. AsNaF6 cF32 225 4.93 3.42 - 0.87 9.22 DB 

251. As2MnF12 tI60 141 4.01 1.4974 - 1.2119 6.7258 DB 

252. AuTh2F11 tI56 139 2.59 0.24 3.00 0, 1.67 7.51 DB 

253. PbF4 tI10 139 1.86 3.31 - 3.15 8.32 ID 

254. AuKF4 tI24 140 2.88 2.24 - 0.2614 5.39 DB 

255. AuNaF4 tI24 140 2.61 2.03 - 0.401 5.05 DB 

256. AuRbF4 tI24 140 2.96 2.227 - 0.23 5.42 DB 

257. Au2BaF12 cP60 224 1.79 1.03 3.12 0.7, 0.5 7.14 DB 
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258. Au2BaF8 tI44 82 2.96 0.41 2.29 0.25, 2.38 8.29 ID 

259. BaPdF4 tI24 140 2.56 1.74 - 0.39 4.69 ID 

260. BaTaF7 cP72 205 5.79 1.49 - 0.21 7.49 DB 

261. BiKF4 cF96 225 3.25 0.45 - 3.30 6.55 DB 

262. BiKF6 cI64 206 2.90 5.07 - 0.58 8.55 ID 

263. BrKF4 tI24 140 3.12 2.52 - 0.85 6.49 ID 

264. BrRbF4 tI24 140 3.31 1.92 - 0.85 6.08 DB 

265. Cs2Br2F2 tI12 139 2.52 2.05 - 0.26 4.83 ID 

266. CaPdF4 tI24 140 2.22 1.89 - 0.49 4.60 DB 

267. CaPbF6 cF32 225 3.41 4.63 - 0.64 8.68 DB 

268. CaSnF6 cF32 225 4.82 3.28 - 0.8 8.9 DB 

269. TaCl4F tI48 82 3.21 0.49 1.72 0.58, 0.54 6.54 ID 

270. Cs3TlF6 tI20 139 3.32 1.73 - 0.8 5.85 ID 

271. KYb3F10 cF112 225 0.96 0.39 6.27 0.07, 0.81 8.5 DB 

272. KSb4F13 tI36 82 4.66 0.9 - 2.91 8.47 ID 

273. Rb2HgF4 tI14 139 1.96 0.37 - 2.81 5.14 DB 

274. PbPdF4 tI24 140 1.92 0.8 - 0.61 3.33 ID 

275. PdSrF4 tI24 140 2.37 1.8 - 0.43 4.60 DB 

276. Rb2GeF6 cF36 225 5.92 1.96 - 1.20 9.08 DB 

277. K2NiF6 cF36 225 2.22 5.2 - 0.33 7.75 ID 

278. NaSbF6 cP32 225 4.86 3.38 - 0.9 9.14 DB 

279. NiRb2F6 cF36 225 2.29 4.90 - 0.24 7.43 ID 
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280. PdRb2F6 cF36 225 2.84 3.69 - 0.29 6.82 DB 

281. Rb3TlF6 tI20 139 3.16 1.63 - 0.97 5.76 ID 

282. Pb2F6 tP16 116 1.96 1.10 2.40 1.23, 1.89 8.58 DB 
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Abstract 

We present a comprehensive study on structural, electronic, mechanical and optical 

properties of four promising candidates namely Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and 

AgCuPO4 for the intermediate band (IB) solar cells. We employ the hybrid functional of Heyd 

-Scuseria -Erhzerhof (HSE06) within the density functional theory framework. Calculations

reveal that IBs are present in all proposed compounds at unoccupied states in the range 0.34-

2.19 eV from the Fermi level. Additional absorption peaks are present in the optical spectra of 

these compounds, characterised by a broadened energy range and high intensity for light 

absorption. The structural and mechanical stability of these four materials are also 

systematically investigated. Our findings, reported in this work, may provide a substantial 

breakthrough on the understanding of these materials, thus help the design of more efficient 

intermediate band solar cell. 

Keywords: HSE06, intermediate bands, bulk solar cell materials, PV materials, hybrid 

density functional 

* Electronic address: rmu@hvl.no, vdh@hvl.no, ponniah.vajeeston@kjemi.uio.no,

1. Introduction

Multi-bandgap materials offer the prospect of increasing the efficiency of standard

solar cells that are based on single bandgap materials.  Intermediate band (IB) materials are 

identified by their energy bands where the main bandgap are split into two or more sub-

bandgaps 1-2. The IB material is inserted between the two ordinary p-type and n-type 

semiconductors and acts as contacts between the conduction band (CB) and valence band (VB). 
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In IB materials, an electron is excited from the VB to CB through IB. The electrons transit from 

the VB to the IB, and later from the IB to the CB by the absorption of sub-bandgap energy 

photons. It will add up together to the current of conventional photons absorbed through  VB 

to CB transition 1-2. Based on Shockley and Queisser 3, Luque et al.,4 showed that the balance-

limiting efficiencies of 63.2% for IB solar cells and 41% for single-gap solar cells could be 

achieved at a concentration of 46,050 suns at earth temperatures of 300 K and sun temperatures 

of 6,000 K. 

IB solar cells can be considered as a combination of three cells, where VB to IB and 

IB to CB transitions can be regarded as two cells in series and the VB to CB transition can be 

regarded a parallel cell. The IB should not overlap with either the VB or the CB to get rid of 

fast transitions and should be partially filled to allow the comparable rates for the low sub-

bandgap energy photons absorption processes 5. The IB solar cell will have a high tolerance to 

changes in the solar spectrum 6. Further increasing the number of IBs will increase the 

efficiency to nearly 80% 7-8. Both theoretical and experimental reports have verified that IB 

materials could efficiently increase the optical absorption 9-12. 

IBs can be formed through appropriate doping of bulk host semiconductors 13. In a 

previous work 14, we carried out a comprehensive study on the electronic band structures of 

2100 new bulk compounds to identify promising candidates for IB solar cells. For the initial 

screening of IB compounds, we employed GGA+U approximation, which is demands less 

computing resource compared to other more accurate methods. Based on these calculations, we 

found only 17 compounds to have IBs among the 2100 bulk materials. We reported the band 

structure, the density of states and the electron effective masses of these compounds in 14. 

In this work, we employ a a more accurate method, namely, a screened–exchange 

hybrid density functional Heyd-Scuseria-Ernzerhof (HSE06) for the density functional 

calculation of the band structure and the density of states to identify the best candidates among 

the 17 compounds reported in 14 basd on GGA+U aproximation. The band structure of these 

materials showed a more substantial bandgap compared to the previous DFT results within the 

GGA+U scheme. Optimal bandgap is of importance in selecting the materials for solar cell 

applications. Although higher bandgaps give a high open-circuit voltage, but it gives less short-

circuit current affecting the efficiency of the cell. Considering this fact, we analysed 17 indirect 

bandgap materials and found out that only four materials, namely, Au2Cs2I6, Ag2GeBaS4, 

Ag2ZnSnS4, and AgCuPO4 had a total bandgap less than 4 eV.   
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Here we report in-depth analysis of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4

by employing a more accurate and computer rosource demanding HSE06 method. The 

calculated density of states for these four compounds helps to understand the origin of IB further 

and to identify the higher density of IB states. For one of the four materials, namely Ag2ZnSnS4 

experimental results were reported by 15, and we carry out a comparison of numerical results 

based on HSE06 with these results. To our knowledge, there are still no experimental results 

reported for either Au2Cs2I6, Ag2GeBaS4 or AgCuPO4. In this article, we verify the applicability 

of these four materials in photovoltaic applications by studying the optical properties, structural 

and the mechanical stability of the materials. 

2. Computational details

Total energies of compounds Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 have

been calculated using the projected augmented plane-wave (PAW) implementation of the 

Vienna ab initio simulation package (VASP) 16.  

The Perdew–Burke–Ernzerhof (PBE) functional is used to treat exchange and 

correlation within the GGA approach 17. For the transition metals, we have used exchange-

correlation functional with the Hubbard parameter correction (GGA+U), following the 

rotationally invariant form 18-20. The full details of the computed U and J values are presented 

in the DFTBD database website 21. These GGA+U calculations are used for the structural 

optimisation of the considered compounds, as the relaxation using HSE06 is time-consuming 

and has no significant effect on the structural properties. Ground-state geometries are calculated 

by minimizing the stress tensor and the Hellman-Feynman forces using the conjugate-gradient 

algorithm with a force convergence threshold of 10-3eV Å-1. The hybrid nonlocal exchange-

correlation functional of Heyd–Scuseria–Ernzerhof (HSE06) is used to calculate the electronic 

structure and the optical properties. In the HSE06 method, the screened parameter is set to 0.2 

A-1, and 30% of the screened Hartree-Fock (HF) exchange is mixed with the PBE exchange

functional 22.  The cut-off energy for the plane-wave basis set is set to 600 eV, and we use a 6 

x 6 x 6 -centered Monkhorst-pack k-point mesh for Brillouin zone integration. This setting is 

used in both PBE and HSE06 calculations.  

The PAW methodology is used for the calculation of the macroscopic dielectric matrix 

including local field effects in density functional approximation 23. For the optical calculation, 

we used GGA and HSE06 for calculating the static dielectric constant. Moreover, we used 

HSE06 for calculating the dynamic dielectric functions. The optical properties such as the 
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optical spectra and the absorption of these compounds are evaluated using the calculated 

dynamic dielectric functions. The static dielectric constants are calculated using density 

functional perturbation theory with local field effects approaches in GGA 23 and HSE06 24. A 

12 x 12 x 12 -centered Monkhorst-pack k-point mesh is used for these calculations of optical 

properties. To get a more accurate peak position and intensities in optical spectra, the optical 

calculation counts the contribution from 400 electronic bands. For all of these computations, 

the initial structures are directly taken from the ICSD database 25. The input parameters and file 

generation are done automatically using locally developed code. For the calculation of band 

structure, the k-point files are generated again with the help of locally developed code. The 

information about the high symmetric points of the k-vector in the Brillouin zone was taken 

from the Bilbao Crystallographic Server 26-28.  

A frozen phonon calculation was performed on suitable supercells of the relaxed 

structures, generated using the phonopy program 29. This software is also used to obtain the 

phonon dispersion curve and the phonon density of states from the converged calculations 30. 

The atomic displacement of 0.0075 Å was used, with symmetry considerations to obtain the 

force constants for the phonon calculations. The displacements in opposite directions along all 

possible axes were incorporated in the calculations to improve the precision. The force 

calculations were made using the VASP code (with GGA+U correction), and the resulting data 

were imported into the Phonopy program.  The dynamical matrices were calculated from the 

force constants, and phonon DOS curves were computed using the Monkhorst-Pack scheme 31. 

3. Results and Discussion

3.1 Structural properties 

AgCuPO4: 

There are two structural forms of AgCuPO4 (i.e., the high-temperature form, -

AgCuPO4 and the low-temperature form, -AgCuPO4) and an irreversible phase transition from 

the - to the -form takes place at 848 K 32. The structure consists of Cu2P2O8 layers parallel 

to the (100) plane which are separated by silver double layers. The local environment of Cu2+ 

is a distorted square pyramid with four Cu to basal O atom (Cu-Oba) distances in the range of 

1.88-2.03 Å and a Cu to apical O atom (Cu-Oap) distance of 2.58 Å (Fig. 1a,  
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Table 1). The average of the four Cu-Oba distances is 1.96 Å, which is close to the 

ionic radii sum 14. The bond valence sum 15 for Cu is calculated to be 1.98, in good agreement 

with the +2 oxidation state expected for Cu. Every two CuO5 distorted square pyramids share 

one common basal edge to form a Cu2O8 dimer (Fig. 1a) with a Cu-Cu distance of 3.05 Å and 

the Cu-O-Cu bridging angle of 101.1°. The Cu2O8 dimers are corner-shared with PO4 

tetrahedral to form Cu2P2O8 layers parallel to the (100) plane. Every two nearest-neighbor Cu 

atoms are connected either by two Cu-O-Cu bridges, as in the Cu2O8 dimers, or by one Cu-O-

Cu bridge. The silver atom is surrounded by five oxygen atoms with Ag-O distances ranging 

between 2.32 and 2.66 Å.  The local environment of Ag+ is a distorted trigonal bipyramid, 

which is axially compressed along the pseudo-3-fold rotational axis with the average Ag to 

axial O distance of 2.38 Å and an average Ag to equatorial O distance of 2.56 Å. 

Ag2GeBaS4: 

The Ag2GeBaS4 is crystalizing in a tetragonal structure with the space group I-42m 

(Fig. 1b). Among the four compounds considered in this study, Ag2GeBaS4 is the less studied 

in the literature. Only one structure is reported 33, and the physical and chemical properties of 

this phase are unknown. Ag2BaGeS4 is one of the homologous tin compound corresponding 

tetrahedron construct-like construction type with Ba in anti-prismatic, Ge in tetrahedral and Ag 

in strongly deformed tetrahedral coordination sphere.  A particularly striking feature of the 

structure is the four equidistant distances of Ag-S in 2.60Å in the much-flattened AgS4-

tetrahedra. This type of the structure feature is sporadic in sulfidic Ag compounds.  

Au2Cs2I6: 

The Au2Cs2I6 compound adopts a distorted perovskite structure (Fig. 1c). Although 

simple charge counting arguments might indicate a single gold valence AuII, and hence a 

metallic state, the materials are in fact found to be non-metallic, comprising two distinct Au 

sites with different formal valences AuI and AuIII, and form linear AuI2
- and square AuI4

-

molecules. These two kinds of molecules align alternately in the tetragonal lattice. However, 

hydrostatic pressure can induce a coupled first-order structural and valence transition at 5.5 

GPa, spurring considerable recent interest in the associated changes in the electronic behaviour 

34-35. The Au2Cs2I6 structure comprises of a distorted perovskite structure in which linearly 

coordinated AuI2 and square-planar coordinated AuI4 complexes alternate through the crystal 

lattice. As previously suggested 34, the coordination is typical of AuI and AuIII formal valences 
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respectively. The ratios of short-to-long Au–I bonds (Au- I)/(Au-I2) and (Au2 -I2) is slightly 

closer to unity   0.7631 and 0.8017 respectively. 

Fig. 1. Crystal structures for (a) AgCuPO4; (b) Ag2GeBaS4; (c) Au2Cs2I6; and (d) Ag2ZnSnS4 (in 

I-4; kesterite-type). The legends for the different kinds of atoms shown in the illustration. 

Ag2ZnSnS4: 

In literature, two types of tetragonal structures I-4 (kesterite-type; space group 82) and 

I-42m (stannite-type; space group 121) are described for Ag2ZnSnS4. Both modifications

present a similar atomic arrangement 14. Our total energy calculation predicted that kesterite-

type structure is energetically favorable for Ag2ZnSnS4 compound 14
 (Fig. 1d). Both structures, 

the kesterite type, and the stannite type consist of a ccp array of anions, with cations occupying 
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one-half of the tetrahedral voids. Thus, the structures are closely related but assigned to 

different space groups due to different distributions of the cations.  The kesterite type structure 

characterized by alternating cation layers of AgSn and AgZn.  Thus one Ag occupies the 2a (0, 

0, 0) position with zinc and the remaining Ag ordered at 2c (0, 1/2, 1/4) and 2d (0, 1/2, 3/4) 

resulting in the space group I-4. On the other hand, in the stannite type structure ZnSn layers 

alternate with Ag layers. The structure is consistent with the symmetry of the space group I-

42m, with the divalent cation located at the origin (2a) and the monovalent cation at the 

4d position (0,1/2,1/4). Sn is located at the 2b site (0, 0, 1/2) in both structures. The anion lies 

on the (1 1 0) mirror plane at 8i (x,x,z) for the stannite type and 8g (x,y,z) for the kesterite type 

structure. 

Table 1. Calculated structural parameters and atomic positions of AgCuPO4, Ag2GeBaS4,

Au2Cs2I6, and Ag2ZnSnS4.  

Phase Lattice parameter  Atomic positions 

a b c β(deg) 

AgCuPO4- P21/c; 14 8.010(7.8365a) 5.6438(5.6269a) 7.6480 (7.4938a) 98.15(99.07a) aAg(4e): 0.9287, 0.1093, 0.1909 

aCu(4e): 0.5834, 0.1205, 0.8533 

aP(4e): 0.2754, 0.1150, 0.4925 

aO1(4e): 0.3150, -0.0490, 

0.6480,  

aO2(4e): 0.2760, -0.0130, 0.3120 

aO3(4e): 0.0990, 0.2370, 0.4920 

aO4(4e): 0.4280, 0.3050, 0.5200 

Ag2BaGeS4- I-42m 

121 

6.9327 (6.8280b) 8.1705(8.0170b) 90 bBa(2a): 0,0,0 

bAg(4d): 0,1/2, 1/4 

bGe(2b): 0,0,1/2 

bS(8i): 0.1883, 0.1883, 0.3440 

Au2Cs2I6- I4/mmm; 

139 

 8.4089 (8.2847c) 12.301(12.0845c) 90 cCs(4d): 0, ½, ¼  

cAu1(2a): 0,0,0 

cAu2(2b):1/2, ½, 0 

cI1(8h):0.2258, 0.2285, 0 

cI2(4e):1/2, ½, 0.2131  

Ag2ZnSnS4- I-4m; 121 5.703(5.693d) 11.350(11.342d) 90 dZn(2d): ½, 0, ¼  

dSn(2b): ½, ½, 0 

dAg(2c): 0, ½, ¼ 
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dAg(2a): 0, 0, 0 

dS(8g):0.249, 0.240, 0.128 

Ag2ZnSnS4- I-42m 5.6503(5.7860e) 11.4884(10.8290e) 90 eZn(2a): 0, 0, 0 

eSn(2b): ½, ½, 0 

eAg(4d): 0, ½, ¼  

eS(8i):0.7560, 0.7560, 0.8700 

aReference 36; bReference 33; cReference 37; dReference 15; eReference 38. 

3.2 Electronic properties 

The bandgap of the photoactive semiconductors determines the upper bound on the 

short-circuit current and open-circuit voltage. A large-bandgap cell has a larger open-circuit 

voltage, and lower short-circuit current than a small-bandgap cell, it absorbs fewer solar 

photons than a small-bandgap cell. However, the detailed-balance limiting efficiency of an ideal 

solar cell of optimal bandgap Eg = 1.4 eV is 32% 3. In real cells, thermalization loss occurs 

because of the solar resource used has a broad energy spectrum, and it poorly matches the 

bandgap, resulting in lower efficiencies below the detailed-balance limit 3. Since, the efficiency 

of solar cell is highly dependent on the bandgap of material, the use of electronic band structure 

presents itself as a promising opportunity for engineering the material for the photovoltaic 

application. The band structures of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4 and AgCuPO4 are 

presented in Fig. 2 and total and site projected density of states (PDOS) of Au2Cs2I6 is presented 

in Fig. 3. The calculated values of the main bandgap and the sub-bandgap for the four compounds 

are reported in Table 2. As we explained in 14, all the four compounds have indirect bandgaps 

materials between VB and CB. However, Ag2ZnSnS4 and AgCuPO4 have direct bandgap 

between VB and IB. 

The HSE06 band structure of Au2Cs2I6 exhibits a bandgap of 2.92 eV, significantly 

larger than the bandgap calculated with less accurate GGA+U method (2.35 eV) 14. The direct 

bandgap between the top of the VB and the bottom of the IB (Evi) is 0.89 eV, and the energy 

gap between the top of the IB and the CB (Eci) is 1.13eV. The width of the IB (∆Ei) is 0.90 eV. 

The intermediate band minimum corresponds to the Cs-5p and the Au-6s states, the valence 

band maximum to the Au-5p and the Cs-6s state, and the conduction band minimum to the Au-

6s and Cs-6s states, as shown in Fig. 2a and Fig. 3. The dispersion of IB of Au2Cs2I6 is high (as 

shown in Fig. 2a) and it is of the great significance for high electron mobility. For Au2Cs2I6, the 
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IB located at 0.89 eV, it is mainly derived from the Cs-5p state, and little contribution from Au-

6s state presented in Fig. 3.  

The band structure of Ag2GeBaS4 is presented in Fig. 2b and the total indirect bandgap 

at the point is 3.33 eV (2.41 eV using GGA+U 14), whereas bandgap Evi is 2.08 eV and Eci is 

0.34eV. From Fig. 2b and supporting information from Fig.S1, the intermediate band minimum 

is mainly derived from the Ge-4s and Ag-5s with little contribution from state Ba -6s states. 

The S-3p states contribute to the VB maximum, and the CB is derived from the Ag-5s and the 

Ge-4s states. The dispersion of Ag2GeBaS4 IB is very high at  -point (as shown in Fig. 2b), 

resulting in high electron mobility.  

The band structure of Ag2ZnSnS4 shows a direct bandgap at the  point of 3.34 eV 

(2.70 eV using GGA+U 14),  whereas bandgap Evi is 1.15eV, Eci is 0.34eV, and 1.85eV IB width, 

as shown in Fig. 2c. From Fig. 2c and supporting information Fig.S2, we observe that the IB 

minimum corresponds to the Sn-5s states, the VB maximum to the S-3p state and the CB 

minimum to the Sn-4d state. The dispersion of Ag2ZnSnS4 IB is very high at  -point as shown 

in Fig. 2c, resulting in Ag2ZnSnS4 in high electron mobility.  Our total energy calculation 

predicted that the kesterite-type structure is energetically favorable for Ag2ZnSnS4 phase. We 

found the IB at 1.15 eV for the kesterite-type structure. According to Gong et al.,  the energy 

gap between VB and CB is 2.01 eV for Ag2ZnSnS4 kesterite-type [35]. From Fig. 2d, the HSE06 

calculated values for AgCuPO4 are as follows: the total direct bandgap is  2.96 eV, more 

significant than the previous GGA+U study (2.35 eV) 14,  whereas bandgap Evi is 0.33 eV, Eci 

is 2.19 eV, and width of the IB is 0.44 eV. From Fig. 2d and supporting information Fig.S3, we 

directly observe that the IB minimum corresponds to the Ag-4d and the Cu-3d states. The VB 

maximum extracted from O-2p, Ag-4d and Cu-3d states and CB derived from Ag-5s and P-3s 

states. The dispersion of AgCuPO4 is low when compared to other compounds, resulting in low 

electron mobility. 
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Fig. 2. Calculated electronic band structure of (a) Au2Cs2I6, (b) Ag2GeBaS4, (c) Ag2ZnSnS4 and 

d) AgCuPO4. Colour code: red line – s states, green line – p states, blue –d states). The Fermi

level is set to zero

Table 2. Calculated HSE06 total bandgap (Eg; in eV), bandgap between the top of the VB and 

the bottom of the IB (Evi; in eV), energy gap between the top of the IB and the bottom of the 

CB (Eci; in eV) and the width of the IB (∆Ei; in eV)  are listed here for Au2Cs2I6, Ag2GeBaS4, 

Ag2ZnSnS4, and AgCuPO4.     

Compounds               Bandgap (Evi)       Bandgap (Eci)    Width of IB 

(∆Ei)       

Total Bandgap 

(Eg)     

Au2Cs2I6 0.89 1.13 0.90 2.92 

Ag2GeBaS4 2.08 0.34 0.91 3.33 

Ag2ZnSnS4 1.15 0.34 1.85 3.34 

AgCuPO4 0.33 2.19 0.44 2.96 
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Fig. 3.  Total and site projected density of states (PDOS) of Au2Cs2I6. The Fermi level is set to 

zero and marked by a vertical dotted line. 

3.3 Lattice dynamical stability 

To identify the dynamical stability of the studied systems, the total phonon density of 

states is calculated at the equilibrium volumes for Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4 and 

AgCuPO4. The results are presented in Fig. 4. For all these compounds, no imaginary 

frequencies were observed (with the only exception of AgCuPO4), indicating that all the 

compounds are stable or at least dynamically stable at ambient conditions. In the AgCuPO4,

phase the ambient condition phonon soft modes are not disappearing even at the high pressure. 

In some selected cases, for example in Li2FeSiO4, the stable high-pressure phase has soft modes 
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at ambient condition, but they are disappearing at pressures above the phase transition point 39. 

This finding indicates that this phase may not be dynamically stable even at high pressure, or 

the considered supercell size (2x1x2; 32 formula unit with a total number of atoms 224) might 

not be sufficient. The other possible reason is that this compound has an antiferromagnetic 

ordering in both low temperature and high-temperature modification 37, 40. However, due to a 

large number of atoms involved in this theoretical simulation the magnetic ordering is not taken 

into account.  Since AgCuPO4 is least dynamically stable at ambient conditions, we present the 

projected phonon density of states for Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4 in Fig. 5. For Au2Cs2I6 

phase, the vibrational modes spread over the 0 to 60 THz range. The Au-I stretching modes are 

present between  53-61 THz and the lattice vibrational mode for the Au, Cs, and I are present 

in between 15-25, 2-10, and 2-20 THz, respectively.   

Fig. 4.  Calculated total phonon density of states for a) Au2Cs2I6, b) Ag2ZnSnS4, c) 

Ag2GeBaS4 and d) AgCuPO4 phases. 

For Ag2GeBaS4, the vibrational modes spread over 1 to 13 THz. The Ge-S stretching 

and bending modes are present at 11-13 THz and 6-8 THz, respectively. The lattice vibrational 

modes for Ag, Ge, Ba, S presented in between 1 to 5 THz. For Ag2ZnSnS4, the calculated 

vibrational modes spread over 2 to 35THz and the Ag-S, Sn-S stretching modes are present 

between 27 to 35 THz. In the phonon spectra, the combined bending and stretching modes of 
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Zn-S, Sn-S, and Ag-S presented in between the 18-25 THz region, and below 12 THz region 

the lattice translational modes of Ag, S, Sn, and Zn are presented.  The calculated zero-point 

energy (ZPE) for the studied phases varies from 0.24 to 0.84 eV/f.u. (see Table 4 ) and following 

the sequence Ag2GeBaS4 < Ag2ZnSnS4 < Au2Cs2I6 < AgCuPO4.  However, the calculated ZPE 

for the all the dynamically stable compounds are very close to each other.  

Fig. 5. Calculated site projected phonon density of states for (a) Au2Cs2I6, (b) Ag2ZnSnS4, (c) 

Ag2GeBaS4 phases 

3.4 Mechanical stability 

Single crystal elastic constants and mechanical stability 

To verify the mechanical stability of the considered phases, we have calculated the 

single-crystal elastic constants using the finite strain technique. The elastic constants of a 
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material describe its response to applied stress or conversely the stress required to maintain a 

given deformation. Both stress and strain have three tensile and three shear components, giving 

six components in total. The linear elastic constants form a 6 × 6 symmetric matrices, having 

27 different components, such that sij = Cij εj (sij is stress tensor, Cij is elastic constant, εj (j 

denotes 1,6 in Voigt index) is strain tensor, i index denotes 1 to 6)  for small stresses σ and 

strains ε 41. Any symmetry present in the structure may make some of these components equal, 

and others may be fixed to zero. Thus, a cubic crystal has only three different symmetry 

elements (C11, C12, and C44), each of which represents three same elastic constants 

(C11=C22=C33; C12=C23=C31; C44=C55=C66). In this present study monoclinic AgCuPO4 has 13 

independent elastic constants, and the other three compounds Ag2GeBaS4, Au2Cs2I6 and 

Ag2ZnSnS4 have a tetragonal structure with type (I) that has six independent elastic constants. 

All the computed elastic constants are presented in  

Table 3.  

The mechanical stability criteria for the monoclinic phase are given by 42: 

C11 > 0, C22 > 0, C33 > 0, C44 > 0,C55 > 0, C66 > 0,  (1) 

[C11 + C22 + C33 + 2(C12 + C13 + C23)] > 0, (2) 

(C35·C55 – C2
35) > 0, (C44·C66 − C2

46) > 0, (C22 + C33 − 2C23) > 0, (3) 

[C22(C33·C55 − C2
35) + 2C23·(C25·C35 − C2

23·C55−C2
25·C33) ]> 0, (4) 

{2[C15·C25(C33·C12 − C13·C23) + C15·C35(C22·C13 − C12·C23) 

+C25·C35(C11·C23 − C12·C13)]−[C2
15(C22·C33 − C2

23)+C2
25(C11·C33 − C2

13) + C2
35(C11·C22 − C2

12)

+ C55(C11·C22·C33 − C11·C2
23− C22·C2

13− C33·C2
12+2C12·C13·C23)]}> 0, (5) 

The thirteen computed independent single crystalline elastic stiffness constants for 

monoclinic AgCuPO4 at the equilibrium volume are shown in  

Table 3. In P21/n monoclinic polymorph, the most significant component is C22, 

corresponding to the in-plane strain. The second largest component, C33 is just a few tens of 

GPa smaller than C22. It is also evident that there is a significant degree of elastic anisotropy 

among the three principal directions due to C11 C22C33. All the five conditions given in 
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Equations (1-5) are simultaneously satisfied, and this indicates that AgCuPO4 is a mechanically 

stable phase.   

The mechanical stability criteria for the tetragonal (type I) phase 42 are given by: 

C11>∣C12| (6) 

2C2
13<C33(C11+C12)         (7) 

C44>0, C66>0        (8) 

All the six calculated independent single crystalline elastic stiffness constants for 

tetragonal Ag2GeBaS4, Au2Cs2I6, Ag2ZnSnS4-I and Ag2ZnSnS4-II are given in  

Table 3. All the three conditions for mechanical stability given in Equations (6-8) are 

simultaneously satisfied for all these structures, and this finding clearly indicates that these 

tetragonal phases are mechanically stable. This outcome is consistent with the phonon 

calculations; we presented in section 3.3.  

Like the elastic constant tensor, the bulk (Bv, BR) and shear moduli (Gv, GR) contain 

information related to the hardness of material under various types of deformation. Properties 

such as bulk moduli, shear moduli, Young’s moduli and Poisson’s ratios can be computed from 

the values of elastic constants, and the calculated values are tabulated in  

Table 3. All these polymorphs present a very scattered Young’s (varying from 9 to 63 

GPa) and shear modulus (vary from 3.4 to 23 GPa). The compressibility value of these 

polymorphs suggests that these compounds are very soft materials. A parameter G/B 

introduced, in which B indicates the bulk modulus and G represent the shear modulus. The bulk 

(Bv, BR) and shear moduli (Gv, GR) are calculated from the Voigt–Reuss–Hill approximations 

43-44. Calculated values for Lame Constant, longitudinal (L; in m/s), transverse (T; in m/s), and 

average  sound velocity (̅, in m/s) for all four compounds are listed in Table 3 for the sake of 

completeness. The high/low G/B value is associated with ductility/brittleness, and the critical 

value which separates ductile and brittle materials is higher than 0.5 45. The calculated G/B 

values of all these compounds are lower than 0.5, implying the ductile characteristics of 

materials.  

Table 3. The calculated single-crystal elastic constants Cij (in GPa), bulk modulus B (in GPa), 

shear modulus G (in GPa), Poisson's ratio (), Young’s modulus E (in GPa), compressibility 

(GPa-1), Ductility, Lame constant, longitudinal (L; in m/s), transverse (T; in m/s), and average  

sound velocity (̅, in m/s), and Debye temperature (D) for AgCuPO4, Ag2GeBaS4, Au2Cs2I6,

and Ag2ZnSnS4 phases. Subscript V indicates the Voigt bound, R indicates the Reuss bound 

and VRH indicates the Hill average.
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Properties Phase 

AgCuPO4 Ag2GeBaS4 Au2Cs2I6 Ag2ZnSnS4 

P21/n I-42m I4/mmm I-4 I-42m

Cij 

BV 

BR 

BVRH 

GV 

GR 

GVRH

E 

Compressibility 

Ductility  

Lame Constant 



L

C11 = 86 

C12 = 66 

C13 = 52 

C16=18 

C22 = 162 

C23 = 72 

C26=9 

C33 = 110 

C36=23 

C44 = 21 

C45=5 

C55 = 18 

C66 = 19 

82 

52 

67 

27 

20 

23 

63 

0.02 

0.35 

51.4 

0.34 

4366 

2129 

C11 = 74  

C12 = 48 

C13 = 33 

C33 = 47  

C44 = 22 

C55 = 18  

47 

43 

44.5 

17 

16 

16.7 

45 

0.02 

0.38 

33 

0.33 

3777 

1888 

C11 = 18 

C12 = 11 

C13 =3 

C33 = 21 

C44 = 7 

C55 =1 

10 

10 

10 

4.5 

2.3 

3.4 

9 

0.10 

0.34 

8 

0.35 

1632 

792 

C11 =   67 

C12 =   44 

C13 =  43 

C33 =  63 

C44 =  28 

C55 =  25 

51 

51 

51 

20 

17 

18.3 

49 

0.02 

0.36 

39 

0.34 

4073 

2007 

C11 =  63 

C12 =  45 

C13 = 44 

C33 = 74  

C44 =  29 

C55 = 27 

52 

52 

52 

21 

17 

18.5 

50 

0.02 

0.36 

39 

0.34 

4086 

2011 
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̅ 

D 

2391 

771  

2118 

592 

891 

150 

2253 

634 

2258 

637 

3.5 Optical properties 

The optical properties have a high impact on the solar cell materials. To investigate 

the optical behavior of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4, we used the optical 

dielectric function iThe optical dielectric function is the fundamental 

quantity of the optical properties. It is defined as the linear response of the system to 

electromagnetic radiation, which controls the propagation behavior of radiation in a medium. 

Here, is connected with the interaction of photons and electronsThe imaginary part 

of the dielectric function  can be derived from the inter-band optical transitions by 

calculating summation over unoccupied states using the equation 23, 

휀2
(𝛼𝛽)(𝜔) =

4𝜋2𝑒2

Ω
 lim
𝑞→0

 ∑ 2 𝑤𝑘𝛿(𝜖𝑐𝑘𝑘,𝑣,𝑐 − 𝜖𝑣𝑘 −  )  ×

𝑢𝑐𝑘+𝑒𝛼𝑞 | 𝑢𝑣𝑘 𝑢𝑐𝑘+𝑒𝛽𝑞|𝑢𝑣𝑘
∗  (9) 

where the indices α, β are the Cartesian components, Ω is the volume of the primitive cell, q 

denotes Bloch vector of the incident wave, c and v are the conduction and valance band states 

respectively, k is the Bloch wave vector, wk denotes the k-point weight, 𝛿 is Dirac delta 

function, uck is the cell periodic part of the orbital at k-point k, 𝜖𝑐𝑘 refers to energy of conduction 

band and 𝜖𝑣𝑘 refers to energy of valence band.  

The real part of dielectric function can be derived from the by Kramer-Kronig 

relationship 23, 46, 

휀1
(𝛼𝛽)

(𝜔) = 1 + 
2

𝜋
 P ∫

𝜀𝛼𝛽
2 (𝜔′) 𝜔′

𝜔′2 −𝜔2+𝑖

∞

0
 𝑑𝜔′  (10) 

where P indicates the principal value,  is the complex shift. All the frequency dependent 

linear optical properties such as absorption coefficients , reflectivity R( can be 

calculated from and 
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𝛼(𝜔) =
√2𝜔

𝑐
[(휀1

2() + 휀2
2())

1

2 -휀1(𝜔)]   (11) 

𝑅(𝜔) = |
√𝜀1(𝜔)+𝑖𝜀2 (𝜔) −1

√𝜀1(𝜔)+𝑖𝜀2 (𝜔) +1
| 

The calculated imaginary part of the dielectric function and absorption coefficients of 

Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 compounds are presented in Fig. 6 and Fig. 7. 

In general, hybrid functional produce better results than semi-local functional for the 

semiconductor or small gap insulator materials due to the separation of the exchange energy 

into a short-range nonlocal and orbital-dependent exchange term 24. Numerical results of 

for the four compounds are calculated using the HSE06 method.  

In Fig. 6, both real and imaginary part of the dielectric function of tetragonal phases 

Au2Cs2I6 and Ag2GeBaS4 are plotted against photon energy. From directional dependency of 

 and we clearly see the anisotropic characteristics of these two materials. In 

particular, sharp peaks that are present in x and y-direction are equal. However, these sharp 

peaks are less pronounced in the z-direction. We observe clearly that large anisotropy is present 

in the lower-energy region due to tetragonal distortion. The peaks at 0.84 and 1.12 eV for  

along x and y-directions confirm the earlier results presented for energy gap VB-IB and IB-CB 

in Fig. 2a. For photovoltaic purposes, it is of interest to study the transitions that contribute to 

each peak in the spectra and influence of the intermediate band on absorption. The electronic 

transition from Cs-6s to Cs-5p and Cs-5p to Cs-6s states in Fig. 3 clearly demonstrate this. From 

Fig. 6b, we observe that optical absorption for Au2Cs2I6 begins at 0.3 eV, and it is mainly 

extending from infrared region to the ultraviolet region of the solar spectrum. Absorption starts 

to increase from the infrared region due to the formation of intermediate states in between VB 

and CB. The overall optical absorption intensity presents a high peak at 1.32 eV, attributed to 

the states Au-5p to Au-6s transition as shown in Fig. 3. The peak at 2.5 eV is attributed to the 

states from the 6s orbitals of the substitutional Cs as shown in Fig. 3. In Fig. 6b where the 

absorption coefficient is plotted against the energy for Au2Cs2I6, we clearly see the peaks at 2.7 

and 3.2 eV along the z-direction. Until 3.5 eV, the absorption coefficient of Au2Cs2I6 in x, y 

directions is more pronounced, and from 3.5 eV the absorption coefficient in the z-direction is 

higher.  

Optical reflectivity plays a vital role in the selection of efficient photovoltaic materials. 

We present results from our study in which first principle calculation is carried out employing 
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hybrid functional HSE06 to calculate the optical reflectivity of the materials of interest. In 

supporting information Fig. S4, we show reflectivity of Au2Cs2I6 as a function of photon energy 

in all directions. As compared to other three compounds, anisotropy is more pronounced in 

Au2Cs2I6. We notice that the reflectivity is 0.35 – 0.5 in the infrared region and the value drops 

in the high energy region along x and y directions. In the z-direction, we notice that the 

reflectivity is 0.185 in the infrared region and 0.165-0.24 in the visible region with some peaks. 

It is also noticed that the reflectivity of Au2Cs2I6 is less in visible region, which indicates 

Au2Cs2I6 can be a good candidate for photovoltaic applications.  

We present and of the dielectric function and the absorption coefficients 

of Ag2GeBaS4 in Fig. 6(c, d). Despite the tetragonal phase, the dielectric function and absorption 

coefficient of Ag2GeBaS4 show that the anisotropy features in this material are less pronounced 

than other three compounds as shown in Fig. 6(c, d). For Ag2GeBaS4 along the x-direction, 

absorption peaks at 2.56 eV (resulting from the transition from the VB to the empty IB states) 

and 3.56 eV are attributed to the states S-3p to Ge-4s transition and S-3p to Ag-5s transition 

respectively are presented in the supporting information Fig. S1. However, this curve fails to 

show the IB to CB transition. We observe the absorption starts to increase after 2 eV and it is 

mostly extending to the visible region presented in Fig. 6d. We clearly notice that the peaks are 

present at 3 and 3.6 eV along the z-direction. From 0-6 eV, the absorption coefficient of 

Ag2GeBaS4 along z-direction is less pronounced than x and y directions. The appearance of 

absorption peaks in the visible region makes Ag2GeBaS4 a promising candidate for photovoltaic 

applications. We present reflectivity of Ag2GeBaS4 as a function of photon energy in x, y and z 

directions in the supporting information Fig.S5. We notice that the reflectivity is in the range of 

0.165 to 0.24 in the infrared region and low-energy side of the visible region along the z-

direction. At 3 eV, the reflectivity drops by small values and then the value increases in the 

high energy region along the z-direction. In x and y-direction, we notice that the reflectivity is 

around 0.22-0.32 in the infrared region and visible region. The reflectivity of Ag2GeBaS4 is 

little high in the visible region along x, y and z directions. 

The real and imaginary parts of the dielectric function of tetragonal phase Ag2ZnSnS4 

and monoclinic phase AgCuPO4 have more optical anisotropic characteristics than other two 

compounds as shown in Fig. 7. The calculated real and imaginary parts of the dielectric function 

and absorption coefficients of Ag2ZnSnS4 are presented in Fig. 7(a, b).  At 0-2 eV photon energy, 

the , and absorption peaks for z-direction are more pronounced than x and y 
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directions(x and y-direction are same). From 3-3.8 eV photon energy, and along x-

direction are more pronounced than z-direction. For Ag2ZnSnS4 along x-direction, absorption 

peaks seen at 1.08 eV (resulting in the electronic transition from the IB-CB) are attributed to 

the states Sn-5s to Sn-3d transition and the results are presented in the supporting information 

Fig.S2. Next absorption peaks are noticed at 1.45 eV (electronic transition from the occupied 

VB to the empty IB state) corresponding to states S-3p to Sn-5s transition. The absorption peak 

at 1.94 eV (resulting in electronic transition within IB) is due to the contribution from states S-

3p to Zn-3d transition and 3.27 eV (VB to CB transition) for S-3p to Sn-4d transition as shown 

in the supporting information Fig.S2. We observed that the absorption peaks start to increase 

from the infrared region due to the intermediate state, and it is greatly extended to the visible 

region. The reflectivity of Ag2ZnSnS4 is high at 0.6 and 2 eV photon energy and very low at 3 

eV photon energy for z-direction as shown in supporting information Fig.S6. However, the 

reflectivity is very low at 1.5 – 2 eV along x and y directions, which indicates this material, can 

be used for photovoltaic applications.  

We present both and of the dielectric function and the absorption 

coefficients for AgCuPO4 in Fig. 7(c, d). The calculated values for and of the 

dielectric function and absorption coefficients indicate that monoclinic AgCuPO4 phase has 

more optical anisotropic characteristics than other compounds. After 2 eV photon energy, the 

absorption coefficient of AgCuPO4 is quite similar to y and z directions. However, the 

along x-direction are more pronounced than y and z directions. From Fig. 7d, we observe 

that the absorption peaks at 0.57 eV, 1.2 eV, 3 eV and 4eV along x-direction. In supporting 

information Fig. S7, we show reflectivity of the AgCuPO4 as a function of photon energy in all 

direction. We notice that the reflectivity 0.1 to 0.59 in the infrared region and the value drops 

in the visible region along x, y and z directions. This validates that AgCuPO4 can be used in 

photovoltaic applications. Overall, from the numerical results for the dielectric function, 

absorption coefficient and reflectivity conclude that all four compounds exhibit three-level 

optical transitions. This will lead to enhanced light absorption in the extended visible region. 

The static dielectric constant (0) is given by the low energy limit of () and are 

presented for all four compounds in Table 4. Here, we use both GGA and HSE06 to calculate 

the static dielectric constant and presented in Table 4. As expected [45], we observe that the 

static dielectric constant are overestimated when GGA is employed. This can be explained by 

the fact that the bandgap values are underestimated when GGA is employed. The bandgap 
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between VB and IB is smaller in AgCuPO4, so the static dielectric constant is very high 

compared to other three compounds.  

Fig. 6. Calculated dielectric function (a and c) and optical absorption coefficients (b and d) of 

Au2Cs2I6 and Ag2GeBaS4, respectively along x, y and z directions. 
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Fig. 7. Calculated dielectric function (a and c) and absorption coefficients (b and d) of AgCuPO4 

and Ag2ZnSnS4, respectively along x, y and z directions.   

Table 4. Calculated static dielectric constants from optical studies for Au2Cs2I6, Ag2GeBaS4, 

Ag2ZnSnS4 and AgCuPO4. Supercell size used for the phonon study and the calculated zero-

point energy (ZPE) for the studied compounds also listed below.  

Compounds GGA HSE Supercell size ZPE 

Au2Cs2I6 14.04 11.09 3X3 X 3 0.3     

Ag2GeBaS4 7.48 7.09 3 X 3 X 2 0.24 
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Conclusions 

In summary, we have carried out a comprehensive study of the structural, mechanical, 

and optical properties of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4 and AgCuPO4 by employing the 

range-separated hybrid functional, Heyd–Scuseria–Ernzerhof (HSE06). Our results revealed 

that HSE06 could give a more accurate description of the electronic band structure compared 

to GGA+U that was employed earlier on these materials. The phonon calculations revealed that 

Au2Cs2I6, Ag2GeBaS4, and Ag2ZnSnS4 compounds are dynamically stable, as no imaginary 

frequency was observed. Zero-point energy for all the dynamically stable compounds are 

calculated. The mechanical properties such as Young’s modulus, the bulk modulus, the shear 

modulus and the Poisson’s ratio are calculated from the values of the elastic constants. Our 

elastic constant calculations illustrate that all four compounds are mechanically stable. The 

calculated G/B values are lesser than 0.5 for these compounds, and this confirms the ductile 

nature of the materials. 

Numerical results for the static and the dynamic dielectric functions are provided using 

GGA and HSE06 methods. As expected, GGA overestimates the static dielectric constant. 

Interestingly, we also observe additional absorption peaks appear in the optical spectra of these 

four IBs compounds, accompanied by a broadened light absorption energy range and high 

absorption intensity. Our detailed studies of electronic and optical properties of these four 

materials reveal of them are potential candidates for photovoltaic application, especially for the 

development of third-generation intermediate band solar cells. 
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From Fig. S1, Ag2GeBaS4 IB is mainly contributed from the S-3p and small extraction 

from Ag-5s and Ba-6s states at 0.9 eV.  The calculated DOS and PDOS values of Ag2ZnSnS4 

presented in Fig. S2, Ag-5s and Sn-5p states contribute the IB. From Fig.S3, we observed that 

the calculated DOS and PDOS of AgCuPO4. The IB derived from Ag-4d and Cu-3d states.     

Fig. S1. Calculated total and site projected density of states of Ag2GeBaS4. The Fermi level is 

set to zero and marked by a vertical dotted line. 
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Fig. S2. Calculated  total and site projected density of states of Ag2ZnSnS4. The Fermi level is 

set to zero and marked by a vertical dotted line. 
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Fig. S3. Calculated total and site projected density of states of AgCuPO4. The Fermi level is 

set to zero and marked by a vertical dotted line. 
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Fig. S4. Reflectivity of Au2Cs2I6 along x, y and z directions. 

In the quest of an efficient photovoltaic material, its optical reflectivity plays also vital 

role. We present results from our study in which first principle calculation is carried out 

employing hybrid functional HSE06 to calculate the optical reflectivity of the materials of 

interest. In Fig. S4, we show reflectivity of Au2Cs2I6 as function of photon energy in all 

directions. As compared to other three compounds, anisotropy is more pronounced in  Au2Cs2I6. 

We notice that the reflectivity is 0.35 – 0.5 in the infrared region and the value drops in the high 

energy region along x and y directions. In the z-direction, we notice that the reflectivity is 0.185 

in the infrared region and 0.165-0.24 in the visible region with some peaks. It is also noticed 

that the reflectivity of Au2Cs2I6 is less in visible region, which indicates Au2Cs2I6 can be used 

as photovoltaic applications.  
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Fig. S5. Reflectivity of Ag2GeBaS4 along x, y and z directions. 

We show reflectivity of Ag2GeBaS4 as function of photon energy in x, y and z 

directions in the Fig.S5. We notice that the reflectivity 0.165 – 0.24 present in the infrared region 

and low-energy of visible region along z-direction. At 3 eV, the reflectivity drops by small 

values and then the value increases in the high energy region along z-direction. In x and y 

direction, we notice that the reflectivity 0.22-0.32 present in the infrared region and visible 

region with some peaks. It is also noticed that the reflectivity of Ag2GeBaS4 is little high in 

visible region along x, y and z directions. 
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Fig. S6. Reflectivity of Ag2ZnSnS4 along x, y and z directions. 

The reflectivity of Ag2ZnSnS4 is high at 0.6 and 2 eV photon energy and very low at 

3 eV photon energy for z-direction as shown in Fig.S6. However, the reflectivity is very low at 

1.5 – 2 eV along x and y directions, which indicates this material, can be used as photovoltaic 

applications.  
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Fig. S7. Reflectivity of AgCuPO4 along x, y and z directions. 

In Fig. S7, we show reflectivity of the AgCuPO4 as function of photon energy in all 

direction. We notice that the reflectivity 0.1–0.59 present in the infrared region and the value 

drops in the visible region along x, y and z directions. It is also noticed that the reflectivity of 

AgCuPO4 is less in visible region in all directions, which indicates this material can be used as 

photovoltaic applications. From the imaginary part of the dielectric function, absorption 

coefficients and electronic band structures, we can conclude that all four compounds exhibit 

three-level optical transitions. This will lead to enhanced light absorption in the extended visible 

region. 
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a b s t r a c t

The power conversion of perovskite solar cells has increased steadily and reached 22.1%, recently. This
has led the researchers to study lead-free halide perovskite materials like Cs2SnI6 due to the toxic nature
of lead used in the record-breaking organic-inorganic perovskite structures. Since the presence of an
intermediate band in semiconductors leads to enhancement of efficiency of the solar cells, we have also
investigated the electronic structure of Cs2SnI6, to find whether the intermediate band is likely to exist in
the middle of the band gap. The computational results for the electronic band structure and density of
states indicate that Cs2SnI6 contains an intermediate band (IB). Additional absorption peaks that appear
in the optical spectra of this material presented in this paper explicitly confirm this. All these studies and
the presence of an IB that we identified in Cs2SnI6 suggests that Cs2SnI6 may have high potential used as
intermediate band solar cell material.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The intermediate band solar cells (IBSCs) are designed to pro-
vide superior energy efficiency. Initially, IBSCs were suggested by
Wolf [1]. Later, Luque and Marti revealed that IBSCs could achieve
very high solar power efficiencies conversion [2]. The well-
designed of the IBSC concept has encouraged researchers to search
for novel materials with an intermediate band (IB) that would
satisfy the requirements regarding photon absorption and charge
collection. In general, IB materials are identified by the splitting
of the bandgap into two or more sub-bandgaps [3]. In IB materials,
an electron is excited from the valence band (VB) to the conduction
band (CB) through IB. The electrons transit from VB to IB, later from
IB to CB by the absorption of sub-bandgap energy photons. It will
add up to the electrons transition from VB to CB by conventional
VB to CB photon absorptions. Prominent examples of bulk interme-
diate bands are previously studied [4].

Recently, the power conversion of inorganic perovskite material
Cs2SnI6 has received attention as an alternative to the Pb-based
halide perovskite due to the toxicity of lead and poor chemical
stability of Cs2PbI6. Cs2SnI6 has shown to feature enhanced stability

and efficiency in ambient environments compared with lead-based
perovskite materials [5]. In this present work, we study the elec-
tronic properties of halide perovskite material Cs2SnI6 with the
aim of identifying IB candidate for solar cell materials by employ-
ing density functional theory (DFT). In this work, we employ a
screened–exchange hybrid density functional Heyd-Scuseria-
Ernzerhof (HSE06) within the density functional calculation of
electronic structure and density of states for Cs2SnI6. Furthermore,
we study its dynamical and mechanical stability. All the results
obtained in this work indicate that Cs2SnI6 perovskite material is
a suitable candidate for IBSC application.

2. Computational details

Calculations were carried out by employing Heyd–Scuseria–Ern
zerhof (HSE06). The Perde–Burke–Ernzerhof (PBE) version of the
generalized gradient approximation(GGA) based DFT methods
using the projector augmented plane-wave (PAW) [6] implementa-
tion of the Vienna ab initio simulation package (VASP) [7]. The
ionic coordinates are optimised with an energy convergence
threshold of 10�6 eV per atom. The structural relaxations were
undertaken until forces were 0.05 eV Å�1. In the HSE06 method,
the screened parameter is set to 0.2 A�1 and 30% of the screened
Hartree-Fock(HF) exchange is mixed with the PBE exchange func-
tional [8]. The cut-off energy for the plane-wave basis set is 600

https://doi.org/10.1016/j.matlet.2018.02.034
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eV, and we use a 12 � 12 � 12C-centered Monkhorst-pack k-point
mesh for sampling the Brillouin zone (BZ).

A frozen phonon calculation is used within the supercell
approach, as implemented in the phonopy program, to obtain the
phonon dispersion curve and phonon density of states [9]. The
dynamical matrices were calculated from the force constants,
and phonon DOS curves were computed using a Monkhorst-Pack
scheme for BZ sampling. The PAW methodology is used for the cal-
culation of macroscopic dielectric matrix including local field
effects in density functional approximation [10].

3. Results and discussions

3.1. Structural properties

Cs2SnI6 stabilizes into the face-centered-cubic (fcc) with the
space group Fm–3 m (the anti-fluorite structure) and the structure
type of K2PtCl6. The lattice parameter of this crystal is a = 11.65 Å
[10]. As shown in Fig. 1a, the unit cell is composed of eight Cs2+

cations at the tetragonal interstitials and four [SnI6]2� octahedra
at the corners and at the face centres. Alternatively, Cs2SnI6 can
form a defective variant of the perovskite CsSnI3 as can be observed
by comparing Fig. 1a and 1b. Fig. 1b shows a 2 � 2 � 2 supercell of
CsSnI3 in which the [SnI6]2� octahedra bond to each other by shar-
ing corners. The Cs2SnI6 structure is obtained by removing half of
the Sn atoms at each centre of the [SnI6]2� octahedron at intervals
(i.e., the edge centres and the body centre in Fig. 1b), and hence the
corner-shared [SnI6]2� octahedra in Fig. 1b become isolated in Cs2-
SnI6 (Fig. 1a). After the half of the Sn atoms are removed, the
[SnI6]2� octahedra shrink slightly, leading to the smaller intra-
octahedral I@I bond lengths and the smaller Sn@I bond lengths
[11] in Cs2SnI6 than that in CsSnI3. According to the survey of
perovskite-based compounds in the ICSD database [11], Cs2SnI6 is
cubic(Fm-3 m) due to higher radius ratio and higher octahedral
factor. It is important to note that the Cs2SnI6 is one of the stable
compound than the CsSnI3 phase.

3.2. Electronic structure and effective mass calculation

From the electronic structure (see Fig. 2a and Fig. 2b), we found
that Cs2SnI6 could have an intermediate band even if a second band
of the CB minimum extents to 4.98 eV from VB maximum. Accord-
ing to Green [12], cells representing VB to IB and IB to CB transi-
tions can be regarded as two cells in series, and the VB to CB

transition can represent a parallel cell. Therefore, we could use
the VB to IB and IB to CB transitions for Cs2SnI6 and hence obtain
a higher performance than a single bandgap solar cell. From
Fig. 2a, the band structure of Cs2SnI6 exhibits a VB to IB transition
as a direct bandgap at the C k-point of 1.48 eV (experimental band
gap varies from 1.3 to 1.6 eV [13]). The indirect band gap between
the top of the IB to bottom of CB is 2.13 eV and width of IB is 1.35
eV. From Fig. 2b, the intermediate band minimum is mainly
derived from the Sn-5 s and I-5p states. The VB maximum con-
tributed by I-5p states and the CB is derived from Sn-4d and I-5p
states. The dispersion of Cs2SnI6 IB is very high at Ck-point (as
shown in Fig. 2b).

The calculation of the effective mass (EM) is crucial for a
detailed study of energy levels in solar devices. The conductivity
of the effective masses of electrons and holes affect the mobility,
electrical resistivity, and free-carrier optical response of photo-
voltaic applications [14]. For the EM calculation, we have
employed the effective mass calculator (EMC) [14]. EMC imple-
ments the calculation of the effective masses at the bands extreme
using finite difference method (not the band fitting method). Effec-
tive masses of Cs2SnI6 calculated by GGA and HSE06 are listed in
Table 1. We noted that the EM of holes is found to be heavier than
EM of electrons. This result can be understood from the fact that
the VB is derived from unhybridized I-p state, which is less dis-
persed compared with the CB that is derived from antibonding I
anions and Sn site cations. The EM of electron photovoltaic mate-
rials such as silicon (Si) and gallium arsenide (GaAs) are 0.26me

and 0.12me [15] respectively. The calculated EM of electrons of
the Cs2SnI6 is 0.152me (GGA calculation), the EM of the electron
is low for Cs2SnI6 compare to Si. However, the difference between
Si and Cs2SnI6 is 0.04me for HSE06 calculation. Still, this perovskite
material can have high electron mobility due to more dispersed in
IB and CB.

3.3. Optical properties

The optical property has a high influence on the solar cell mate-
rials. To investigate the optical behavior of Cs2SnI6, we have calcu-
lated the optical dielectric function e(x) = e1(x) + ie2(x). The
absorption coefficients of Cs2SnI6 are presented in Fig. 3a. The
peaks are observed are 1.48 eV, 3.7 eV and 5.7 eV. The correspond-
ing electronic transition from VB to IB is at around 1.5 eV (direct
band gap from the band structure), IB to CB is at around 3.7 eV.
According to Wang et al. [16], Cs2SnI6 exhibits an absorption

Fig. 1. Crystal structures for (a) Cs2SnI6, (b) CsSnI3. The legends for the different kinds of atoms are given in the illustration.
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coefficient at a photon energy of 1.5 eV and Cs2SnI6 also exhibits a
remarkable absorption peak at 1.48 eV, reported by Qiu et al. [17].
From Fig. 3b, the absorption peak is also observed at a photon
energy of 1.48 eV and additional peaks are observed from 2 eV to
6 eV. We noted the VB to CB transition is at 5.7 eV, but it is well

suited for solar cell application. According to the PDOS in Fig. 2b,
the sub-bandgaps 1.4 eV attributed to the states Sn-5 s and I-5p
states. We observed that the absorption starts to increase from
the low energy region due to the formation of intermediate states
in between VB and CB. Besides, the optical absorption begins at 0.5

Table 1
The calculated effective mass of Cs2SnI6, effective masses of light holes (m*

lh), heavy holes (m*
hh) and electrons (m*

e).

Compound Plane Directions GGA HSE06

m*
lh�me m*

hh�me m*
e�me m*

lh�me m*
hh�me m*

e�me

Cs2SnI6 100 0.534 1.4173 0.152 0.643 1.491 0.306

Fig. 3. (a) The calculated optical absorption coefficients of Cs2SnI6, (b) Calculated site projected phonon density of states of Cs2SnI6.

Fig. 2. Calculated electronic band structure of (a) Cs2SnI6. Colour code: red line – s states, green line – p states, blue – d states, (b) total and site projected density of states of
Cs2SnI6. The Fermi level is set to zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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eV, and it fails to show the IB to CB transition by the HSE06
method. Hence, the additional absorption peaks that appear in
the optical spectra of this material presented in this study con-
firmed that Cs2SnI6 contains an IB.

3.4. Lattice dynamic stability and mechanical stability

The Cs2SnI6 site projected phonon density of states, calculated
at the equilibrium volumes, is presented in Fig. 3b. From Fig. 3.
(a) The calculated optical absorption coefficients of Cs2SnI6, (b)
Calculated site projected phonon density of states of Cs2SnI6. The
vibrational modes are spread over from 0 to 5.5 THz. The Cs-I
stretching modes are present between 4.5 and 5.4 THz and the lat-
tice vibrational modes for the Cs, Sn are present in the 1 to –1.8
THz range and in the 4.5 to –5.4 THz range respectively. To under-
stand the mechanical stability of the Cs2SnI6 phase, we have calcu-
lated the single-crystal elastic constants using the finite strain
technique. The elastic constants of a material characterise its
response to applied stress or, conversely, the stress required to
maintain a given deformation. The cubic crystal system has the
simplest form of an elastic matrix, with only three independent
constants: C11 = 17.7 GPa, C12 = 11.8 GPa, and C44 = 8.99. The three
Born stability criteria for the cubic system are well known and sat-
isfied for Cs2SnI6, C11 � C12 > 0, C11 + 2C12 > 0 and C44 > 0. Proper-
ties such as bulk-moduli(B) = 13.72 GPa, shear moduli(G) = 7.55
GPa, Young’s moduli(E) = 19.14 GPa and Poisson’s ratio(r) = 0.27
can be calculated from the values of elastic constants. The calcu-
lated compressibility value = 0.07(GPa�1) of this polymorph
suggested that this compound is very soft material. The calculated
G/B value of this compound is lower than 0.55, suggesting Cs2SnI6
is ductile characteristics.

Conclusion

In summary, first-principle calculations employing the hybrid
HSE06 method have undertaken to compute the electronic struc-
tures, effective mass and optical properties of the Cs2SnI6 com-
pound. The calculated electronic structures and absorption
coefficient confirmed that Cs2SnI6 contains intermediate band. Fur-
thermore, we calculated the lattice stability and mechanical stabil-
ity that confirmed Cs2SnI6 is dynamically stable and mechanically
stable respectively. Hence, this compound could be used as an effi-
cient photovoltaic material.
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Abstract: Due to the low absorption coefficients of crystalline silicon-based solar cells, researchers
have focused on non-silicon semiconductors with direct band gaps for the development of novel
photovoltaic devices. In this study, we use density functional theory to model the electronic
structure of a large database of candidates to identify materials with ideal properties for photovoltaic
applications. The first screening is operated at the GGA level to select only materials with a sufficiently
small direct band gap. We extracted twenty-seven candidates from an initial population of thousands,
exhibiting GGA band gap in the range 0.5–1 eV. More accurate calculations using a hybrid functional
were performed on this subset. Based on this, we present a detailed first-principle investigation of
the four optimal compounds, namely, TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO. The direct band gap of
these materials is between 1.1 and 2.26 eV. In the visible region, the absorption peaks that appear in
the optical spectra for these compounds indicate high absorption intensity. Furthermore, we have
investigated the structural and mechanical stability of these compounds and calculated electron
effective masses. Based on in-depth analysis, we have identified TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO
as very promising candidates for photovoltaic applications.

Keywords: HSE06; non-silicon; non-conventional solar cells; PV materials; hybrid density
function; BSE

1. Introduction

The solar energy reaching the earth amounts to approximately ten thousand times the primary
energy usage by the world population. Solar photovoltaic cells are among the most important
technologies for clean energy production. It is predicted that in future, the power from solar
photovoltaic modules will reach the terawatt level [1]. Photovoltaic (PV) technology is currently
dominated by silicon solar cells. If we look at the worldwide scenario, more than 80% of the installed
PV modules are mainly mono or multi-crystalline silicon based [1]. However, researchers are making
considerable efforts to develop solar cells based on alternative materials because silicon is an indirect
band gap material with a low absorption coefficient. Novel materials considered for PV applications
include copper zinc tin sulfide (CZTS), ternary, binary, and multinary compounds with a direct band
gap, enabling high absorption properties. High photon conversion efficiency and low production
cost are the other desired features of these alternative materials. There is also considerable interest
in the research community to find ways to develop solar cells that have efficiencies greater than the
Shockley-Queisser limit of 32% [2].

Materials 2018, 11, 2006; doi:10.3390/ma11102006 www.mdpi.com/journal/materials



Materials 2018, 11, 2006 2 of 17

The development of non-silicon materials is a very active field, and several significant signs of
progress have been made recently [1]. In the future, non-silicon materials will most likely be produced
using thin film technologies, with a resulting device thickness in the order of 2 µm. Despite the crucial
role played by these compounds for the next generation of energy materials, the current knowledge of
the optical and electronic properties of these compounds is inadequate. Non-silicon materials such
as organic semiconductors may become the main candidates for future photovoltaic devices, even
though they have low stability [3]. To be a promising solar cell material, a semiconductor preferably
have a direct band gap with an appropriate band gap value resulting in efficient absorption of the
solar spectrum.

Furthermore, it can be used in a junction formation, which is appropriate for guiding the electrical
processes involved in energy conversion [4]. A variety of basic materials, GaAs, InP, CdTe, CuInSe2

to name a few, and large band gap materials such as ZnO, CdS, ZnCdS used as window layers in
creating heterojunctions have been studied extensively [4]. Reducing production cost is one of the
priorities in selecting materials for PV technologies. Compared to mono-crystalline Silicon solar cells,
the production cost for poly-crystalline Silicon solar cells is lower, but the efficiency is lower [5].
According to Mitchell [6], materials that require only a few micrometers of thickness to absorb the
solar spectrum and photo-carriers effectively are created close to the electrical junction. One way
to minimize material usage is to choose direct band gap materials over indirect band gap materials,
since direct band gap solar cells could be made substantially thinner [7]. Due to the low absorption,
polycrystalline silicon solar cell structures must have a thickness in the range of 200 µm, which makes
the overall cost higher. We have earlier reported several non-silicon intermediate band gap materials
that can be used for solar cell applications [8,9]. Our main aim in this study is to propose non-silicon
based direct band gap materials with highly efficient photoelectric properties such that material costs
become lower.

As one of the most effective and accurate computational methods for modelling atomistic systems,
density functional theory (DFT) has been widely applied in this work to extensively analyze the
electronic band structure of thousand non-silicon based materials in order to identify candidates that
have a band gap between 0.5 eV and 1.1 eV. The band structure calculation for these presented materials
is based on the generalized gradient approximation (GGA) that underestimates the value of the band
gap. However, this technique is efficient and time-effective in terms of computational resources,
and it can be used for an initial screening of a large number of compounds. The initial structural
parameters of thousand compounds were directly taken from the ICSD database [10], and then the
GGA band gap for thousands of non-silicon compounds were calculated in our DFTB database [11].
These are multinary compounds including conductors, semiconductors, and insulators. Among
these thousand non-silicon compounds, we considered twenty-seven of them with GGA band gap
values in the range of 0.5–1.1 eV (Table S1 of Supplementary Materials). Among these twenty-seven
compounds, we identified fourteen compounds as direct band gap semiconductors and thirteen as
indirect band gap semiconductors. We carried out a study on both the electronic and optical properties
of twenty-seven semiconductors (both direct and indirect). Our study of the optical properties of
semiconductor materials showed that four direct band gaps among the twenty-seven materials had
higher absorption coefficients in the visible region. Due to the space constraint, the optical properties
of all the twenty-seven semiconductors are not presented in the supporting information.

We carry out a comprehensive study on these four materials, namely TlBiS2, Ba3BiN,
Ag2BaS2, and ZrSO, and report accurate electronic structure results for these four compounds by
employing a more accurate calculation based on the screened–exchange hybrid density functional
Heyd-Scuseria-Ernzerhof (HSE06). HSE06 helps to identify the contributions of individual elements
to the electronic structure of the compounds. We also study the structural and mechanical stability
and the optical properties of these four materials to verify the applicability of these four materials for
photovoltaic applications. In a recently published article, we focused on TlBiS2, and have presented
electronic band structure and optical spectra based on spin-orbit coupling (SOC) [12].
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2. Computational Details

We employed DFT analysis using Vienna ab initio simulation package (VASP, 5.4.1. Feb. 16) with
the projected augmented plane-wave (PAW) approach [13] to study the electronic structures of TlBiS2,
Ba3BiN, Ag2BaS2, and ZrSO. The Perdew–Burke–Ernzerhof (PBE) functional is used to treat exchange
and correlation within the GGA approach [14]. To obtain an improved description of the interaction
between oxygen and the transition metal atoms, we used the Hubbard parameter correction (DFT+U),
following the rotationally invariant form [15–17]. The full details about the computed U and J values
are presented in the DFTBD database website [11]. These DFT+U calculations are used for the structural
optimisation of the considered compounds, as the relaxation using HSE06 is time-consuming and has
no significant effect on the structural properties. Ground-state geometries are calculated using the
conjugate-gradient algorithm with a force convergence threshold of 10−3 eV Å−1, and minimizing the
stress tensor and the Hellman-Feynman forces. In order to achieve better and detailed band structures,
we used the hybrid functional of Heyd–Scuseria–Ernzerhof (HSE06). For the standard HSE06 functional,
the screened parameter was assigned to 0.2 A−1, and the screened Hartree-Fock (HF) exchange was
set to 30% mixing with the PBE exchange functional [18]. The cut-off energy for the plane-wave
basis expansion was set to 600 eV, and for Brillouin zone integration we used a 6 × 6 × 6 Г-centered
Monkhorst-pack k-point mesh. In both calculations (i.e., PBE and HSE06), this setting is used.

Solving the Casida’s equation is one of the best approaches for determining the dielectric
function [19]. We have summed the contributions over a number of 8 × 8 × 8 k-points grids, shifted
with respect to each other to reproduce16 × 16 × 16 Г-centered k-points mesh, using a plane-wave
cut-off of 410 eV for both GW and Bethe-Salpeter equation (BSE). To get a more accurate peak position
and intensities in optical spectra, the optical calculation counts the contribution from 200 electronic
bands. For all of these computations, the initial structural parameters were taken directly from the
ICSD database [10]. The information about the high symmetric points of the k-vector in the Brillouin
zone was taken from the Bilbao Crystallographic Server [20–22].

A frozen phonon calculation was performed on suitable supercells of the relaxed structures,
generated using the phonopy program (1.9.2). This software is also used to obtain the phonon dispersion
curve and the phonon density of states from the converged calculations [23,24]. The atomic displacement
of 0.0075 is used, with symmetry considerations to obtain the force constants for the phonon calculations.
The displacements in opposite directions along all the axes were incorporated into the calculations to
improve the precision. The force calculations were performed using the VASP code (DFT+U level), and
the resulting data were imported into PHONOPY. The dynamical matrices were derived from the force
constants, and phonon DOS curves were computed using the Monkhorst-Pack scheme [25].

3. Results and Discussion

3.1. Structural Properties

TlBiS2: TlBiS2 has rhombohedral structures with space group D5 3d (R-3m, Space group No. 166),
similar to Bi2Te3. There are four atoms, namely, 1-Tl, 1-Bi, and 2-S positioned in layers normal to the
three-fold axis in the arrangement Tl-S-Bi-S, as shown in Figure 1a. Each Tl/Bi layer is placed between
two S layers, which indicates a strong interlayer coupling so that the crystal structure is substantially
three-dimensional. Tl, Bi, and S are placed at the (0, 0, 0), (0.5, 0.5, 0.5), and (±u,±u,±u) sites, respectively.
This structure has inversion symmetry where both Bi and Tl represent inversion centers. The basic TlBiS2

structure is a simple NaCl-type lattice. It is similar to ABQ2-type compounds (A, B and Q are monovalent
atom, trivalent atom and chalcogen respectively). The TlBiS2 structure is rhombohedral along the cubic
[111] direction and matching to the c axis of the primitive hexagonal arrangement. The sum of the
ionic radii for a coordination number (CN) of 6 is 2.87 Å for Bi3+/S2− and 3.34 Å for Tl+/S2− [26]. The
experimentally-determined and theoretically-derived bond length matches well for Bi-S, but for the Tl-S
distance the value is about 5.3% smaller. Our calculated lattice parameters and the positional parameters
all fitted well with the experimental findings (see Table S2) [26].
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Figure 1. Crystal structures for (a) TlBiS2; (b) Ba3BiN; (c) Ag2BaS2; (d) Tetragonal-ZrSO. The illustration
shows the legends for the different type of atoms.

Ba3BiN: (Ba3N)Bi crystallizes in a hexagonal anti-perovskite variant of the BaNiO3 structure type
(P63/mmc, space group No. 194, Z = 2). This phase consists of Ba6N octahedral units sharing faces
formed with three Ba ions according to a rod-like structure along [001] (see Figure 1b). The calculated
Ba-N distance is 2.677 Å which compares well with those in sub-nitrides with nitrogen species in
octahedral coordination [27,28]. Hexagonal perovskite crystal structures can only be expected for
compounds containing alkaline-earth metal species with large radii. Hence, the resulting distance
d (N-N) and the Coulomb repulsion between N3− in face-sharing octahedra has to be formed. The
resulting distance N-N is 3.3218 Å is sufficiently large.

Ag2BaS2: Ag2BaS2 crystallises in the trigonal CaA12Si2-type structure, a = 4.386 (1) A, c = 7.194
(2) A, space group P3m1, Z = 1, where S and Ag atoms are arranged in the chemically ordered
double-corrugated hexagonal layers and Ca atoms are intercalated between them [29], as shown in
Figure 1c. These layers can, in turn, be described as being made up from two stacked AgS layers, with
each layer being a two-dimensional infinite net of chair-like six-membered rings. Every atom in the
Ag2S2 layer is four-coordinate, but the coordination environment is very different for Ag and S. Each
Ag is surrounded by four S atoms, forming a distorted tetrahedron. The S is also four-coordinate in
Ag, but the environment is most unusual, a flipped tetrahedron or umbrella shape.

ZrSO: ZrSO crystalizes in cubic (P213, space group No. 198) and tetragonal (P4/nmm, space
group No. 129) form [30,31]. Tetragonal ZrSO crystallises in the PbFCl-type structure. The form of
this phase has not yet been synthesized [31]. All preparations techniques proved that the tetragonal
phase was always accompanied by considerable proportions of cubic ZrSO, and in some cases, even
by ZrO2. It seemed likely, therefore, that the tetragonal phase also contains oxygen [31]. According to
our theoretical energy volume curve (see Figure S1), the cubic form is more stable than the tetragonal
form and the energy difference between these two structures is very small (36 meV/f.u.). Moreover,
it is clear from Figure S1 that the energy minima for these two structures are well separated, and the
energy well is deep enough to stabilize the individual phases. We can thus conclude that this phase
can be experimentally stabilized using a high-pressure technique.

There are four S and three O atoms surround each Zr atom in the cubic phase. The S atoms form
a stretched tetrahedron with one Zr-S separation of 2.61 Å and three of 2.63 Å. The O atoms form
an equilateral triangle centered at the Zr site, in such a way that there is an O atom in each of the
stretched faces of the S atoms tetrahedron. At a distance of 2.13 Å from each oxygen atom, the Zr atom
is slightly out of the plane of the oxygen triangle. The configuration may be regarded as a distorted
octahedron consisting of three S atoms and three O atoms, with an extra sulfur atom above the center
of the face of the octahedron driven by the oxygen atoms. From this point of view, the co-ordination
of zirconium is quite similar to that observed in K3ZrF7. The separations of S-S and S-O are 3.59 and
2.96 Å, respectively. These separations are shorter than the sum of the radii (3.68 Å for S-S and 3–24 Å
for S-O) owing to the sharing of edges between the coordination polyhedra [30].
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3.2. Electronic Properties

In order to investigate the potential applicability of non-silicon semiconductors as a
light-harvesting medium, the band gap of these materials is a crucial factor that needs to be further
explored. Both short-circuit current and open-circuit voltage is regulated by the band gap of the
photoactive semiconductors. Broader band gap leads to higher open-circuit voltage but fewer excited
electrons, which results in lower short-circuit current. Narrower band gap leads to low open circuit
voltage but more excited electrons, which result in larger short-circuit current. The ideal solar cell is
theoretically shown to have a maximum of 32% efficiency with an optimal band gap Eg = 1.4 eV is [2].
In real cells, the solar spectrum is a broad energy spectrum and it does not match the band gap well
where thermalisation loss occurs, which eventually results in efficiencies below the detailed-balance
limit [2]. Band gap calculation using electronic band structures gives a promising opportunity to
identify suitable PV materials. The calculated band structure of trigonal-TlBiS2, hexagonal-Ba3BiN,
trigonal-Ag2BaS2 and tetragonal-ZrSO crystals along a high-symmetry path in the first Brillouin zone
are presented in Figure 2. For electronic structure calculations, we employ hybrid functional (HSE06)
and estimate the band gap values for these materials. The results of electronic structure calculations,
listed in Table 1, span the in the range from 1.10 to 2.6 eV. The four compounds exhibit a direct band
gap at the Г k-point, as shown in Figure 2.
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Figure 2. Calculated electronic band structure (using HSE06) of (a) TlBiS2(Colour code: red line—Bi,
green line—S, blue—Tl), (b) Ba3BiN (Colour code: red line—Ba, green line—Bi, blue—N), (c) Ag2BaS2

(Colour code: red line—S, green line—Ag, blue—Ba) and (d) ZrSO (Colour code: red line—O, green
line—S, blue—Zr). The Fermi level is set to zero.

The HSE06 band structure of TlBiS2 is shown in Figure 2a. Both the valence band maximum
(VBM) and the conduction band minimum (CBM) are well placed at the Г k-point. This clearly shows
that TlBiS2 is a direct band gap semiconductor with valence bands derived from Bi-s, S-p, and Tl-s
states, and conduction bands derived from S-s, Bi-p, and Bi-d states (Figure 3). The HSE06 band



Materials 2018, 11, 2006 6 of 17

gap is 1.1 eV for TlBiS2, which is nearly equal to that of Silicon. Bahadur Singh et al., showed that
TlBiS2 has GGA band gap of 0.64 eV with direct band gap type at Г k-point [32]. It is important to
note that we employed a more accurate HSE06 method compared to the GGA calculation method
used by Bahadur Singh et al. [32] and the difference is approximately 0.46 eV. This is as expected
because it is well known that calculations using GGA underestimate the band gap value, while the
HSE06 screened hybrid functional is very successful in precisely calculating the band gap value. Our
calculation shows that we have a band gap of 1.42 eV at F k-point TlBiS2 as shown in Figure 2a. This
shows that TlBiS2 well suited for PV applications as optimal band gap for the best performance is
1.4 eV as mentioned earlier [12].

Table 1. Calculated GGA and HSE06 band gap values, type of band gap for TlBiS2, Ba3BiN, Ag2BaS2,
and ZrSO phases.

Compounds GGA (eV) HSE06 (eV) Type of Band Gap

TlBiS2 0.505 1.10 direct
Ba3BiN 0.679 1.29 direct

Ag2BaS2 0.716 1.95 direct
ZrSO 0.891 2.60 direct
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In the case of Ba3BiN, the VBM and CBM are located at Г k-point. Thus, the calculated HSE06 band
structure in Figure 2b shows that Ba3BiN is a direct band gap semiconductor with a band gap of
1.29 eV. From the Figure S3 of Supplementary Materials, the valence band derived from Bi-p and
hybridized Ni-d states and conduction bands are mainly composed of Bi-s and Ba-s states. According
to Imran Ullah et al., Ba3BiN is a direct band gap semiconductor with a band gap of 0.64 eV at Г
k-point [33]. The comparison between the present results using HSE06 with the previous results using
GGA [33] reveals that the band gap of Ba3BiN is previously underestimated by 0.79 eV. To the best
of our knowledge, no HSE06 or experimental studies have been previously reported on Ba3BiN. For
Ag2BaS2, the calculated HSE06 band structure in Figure 2c shows that the VBM and CBM are located at
the Г k-point. Thus, Ag2BaS2 is a direct band gap semiconductor with a band gap of 1.95 eV. Note that
our direct band gap value of 1.95 eV calculated with HSE06 closely matches the previous HSE06 band
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gap value of 2.01 eV [34] calculated by Aditi Krishnapriyan et al. To the best of our knowledge, no
experimental study has been previously reported on Ag2BaS2. From Figure 2b and the Figure S4 of
Supplementary Materials, the valence band maximum is derived from S-p states and conduction band
derived from Ag-s states. In the case of ZrSO, both the VBM and the CBM are located at Г. Thus, ZrSO
is a direct band gap semiconductor with valence bands derived from S-p states, and conduction bands
derived from O-s states (Figure S5). The calculated HSE06 band gap between VBM and CBM is 2.60 eV.
To the best of our knowledge, no HSE06 and experimental study have previously reported on ZrSO.

3.3. Effective Mass Calculation

We calculate the conductivity effective masses for all four materials; calculated values are listed
in Table 2. To study of energy levels in solar devices, calculations of the effective mass (EM) play a
crucial role. The conductivity effective masses of electrons and holes deal with the mobility, electrical
resistivity, and free-carrier optical response in the semiconductor material used in PV applications.
For EM calculation, we have used a finite difference method as implemented in the effective mass
calculator (EMC) [35]. For TlBiS2, Ba3BiN, and Ag2BaS2, the EM of holes was found to be heavier than
the EM of electrons. This result can be ascribed to the fact that the VBM is less dispersed than the CBM.
Prominent PV materials Silicon (Si) and gallium arsenide (GaAs) have EMs of 0.26 me and 0.12 me [36]
respectively for electrons. The calculated EM of electrons are 0.154 me, 0.092 me, and 0.149 me for
TlBiS2, Ba3BiN, and Ag2BaS2 respectively. Compared to Si, for TlBiS2, Ba3BiN, and Ag2BaS2, the EM
of the electron is lower. Hence, the electron mobility in these three compounds is better than that of
silicon. However, in the case of ZrSO, the EM of the hole is lighter than the EM of electrons; this is due
to CBM being less dispersed than VBM in ZrSO.

Table 2. The calculated effective mass of non-silicon compounds. m*lh, m*hh and m*e are the effective
masses of light holes, heavy holes and electrons, respectively. me is the mass of the electron.

Serial No. Plane Directions Compound m*lh × me m*hh × me m*e × me

1. 110 TlBiS2 0.182 0.224 0.154
2. 110 Ba3BiN 0.016 0.165 0.092
3. 110 Ag2BaS2 0.150 0.728 0.149
4. 110 ZrSO 0.308 0.482 0.361

3.4. Lattice Dynamic Stability

Lattice dynamic calculations have also been performed on TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO
under ambient conditions. To validate the dynamical stability of these compounds, the total phonon
density of states is calculated at the equilibrium volume. In Figure 4, we displayed their total phonon
density of states. No imaginary frequencies were observed, revealing that TlBiS2, Ba3BiN, Ag2BaS2,
and ZrSO are dynamically stable. We present the site projected phonon density of states for TlBiS2,
Ba3BiN, Ag2BaS2, and ZrSO in Figure 5. The vibrational modes spread over the 2 to 50 THz range
in the case of TlBiS2 phase. In the low frequencies region, Tl is dominant over Bi and S. The lattice
vibrational modes for the Tl, S, and Bi are present between 3–10, 5–21, and 18–50 THz, respectively.
In the case of Ba3BiN, the vibrational modes spread over 0 to 52 THz. The lattice vibrational modes for
N, Bi, and Ba are present between 0–19, 2–20 and 3–51 THz, respectively. For Ag2BaS2, the vibrational
modes spread over 0.3 to 7.5 THz. The Ag-S and Ba-S stretching modes are present between 1–3 THz.
Other Ag-Ba, S-Ag, and S-Ba stretching modes are present between 5–6.5, 5–6.5 and 4.3–7 THz,
respectively. The lattice vibrational modes for Ag, Ba, and S are present between 0.3–3.6, 0.3–3.6, and
4.3–7.5 THz, respectively.
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In the case of ZrSO, the vibrational modes spread over 2 to 74 THz. The Zr-O and S-O stretching
modes are present between 5–30 THz. Other O-Zr and O-S stretching modes are present at 40–65 and
47–60 THz, respectively. The lattice vibrational modes for Zr, S, and O are present between 2–35, 2–35,
and 35–74 THz, respectively. The calculated zero-point energy (ZPE) for the TlBiS2, Ba3BiN, Ag2BaS2,
and ZrSO phases varies from 0.10 to 1.3 eV/f.u. (see Table 3), and the following ZPE sequence are:
Ag2BaS2 < TlBiS2 < ZrSO < Ba3BiN.

Table 3. Computational details for the phonon calculation (supercell size, number of atoms), calculated
zero-point energy (ZPE) and information on dynamical stability based on phonon density of states for
TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO phases.

Compounds Supercell Size Number of Atoms ZPE (eV) Dynamical Stability

TlBiS2 2 × 2 × 2 32 0.4045 stable
Ba3BiN 2 × 2 × 2 80 1.3050 stable

Ag2BaS2 2 × 2 × 2 40 0.1093 stable
ZrSO 2 × 2 × 2 48 1.2100 stable

In addition to the dynamic stability, we employ the vibrational density of states to compute the
specific heat capacity (Cv) of TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO at constant volume and pressure.
The Cv as a function of temperature presented in Figure 6 in the temperature range from 0 K to 1000 K.
For TlBiS2, the specific heat capacity increases rapidly below 500 K. The value of Cv is almost constant
at 90 J/K/mol for above 500 K. In the case of Ba3BiN, the Cv increases rapidly up to 1000 K. The specific
heat capacity increases rapidly below 100 K for Ag2BaS2. The Cv is almost constant at 125 J/K/mol for
above 100 K. For ZrSO, the Cv increases from 100 K to 1000 K. The following Cv sequence are: TlBiS2 <
ZrSO < Ag2BaS2 < Ba3BiN.
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3.5. Mechanical Stability

The mechanical stability of a system is an essential condition to validate the existence of a
compound in a given crystalline structure. The elastic constants are typically used to describe the
mechanical properties of a system and to estimate its hardness. To validate the mechanical stability of
TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO, we calculated the single-crystal elastic constant tensor using the
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finite strain technique. The elastic constants describe the ability of materials to deform, or conversely,
the stress required to maintain a given deformation. Both stresses and strains have three tensile
and three shear components. The linear elastic constants form a 6 × 6 symmetric matrices, with
27 independent components, so that (si only) sij = Cij εj (si is stress tensor, Cij is elastic constant matrix,
εj (j = 1, 6 in Voigt index) is the strain tensor, and i = 1, . . . , 6) for small stresses and strains [37].

The stiffness of a crystal against an externally applied strain can be determined from its elastic
constants. Any symmetry present in the structure may make some of these components equal, while
others may be fixed to zero. The calculated elastic constants of four non-silicon materials listed in
Table 4. The elastic constant C44 is a crucial parameter, indirectly describing the indentation hardness
of the materials. As shown in Table 4, all the examined compounds have a small C44 value, indicating
these materials possess a relatively weak shear strength.

Table 4. The calculated single-crystal elastic constants Cij (in GPa), bulk modulus B (in GPa), shear
modulus G (in GPa), Poisson’s ratio (σ), Young’s modulus E (in GPa), compressibility (GPa−1), Ductility
for TlBiS2, Ba3BiN, Ag2BaS2 and ZrSO phases. Subscript V illustrates the Voigt bound, R indicates the
Reuss bound and VRH indicates the Hill average.

Properties TlBiS2 Ba3BiN Ag2BaS2 ZrSO

Cij

C11 = 63.47
C12 = 34.68
C13 = 27.49
C14 = 0.608
C33 = 88.90
C44 = 28.90

C11 = 56.604
C12 = 14.1

C13 = 7.947
C33 = 75.35
C44 = 21.20

C11 = 84.61
C12 = 31.538
C13 = 34.611
C14 = 0.0732
C33 = 89.994
C44 = 26.642
C66 = 14.590

C11 = 293.04
C12 = 133.66
C13 = 118.96
C33 = 303.06
C44 = 100.64
C66 = 91.94

BV 44.85 27.762 51.59 181.407
BR 44.46 27.5620 51.28 181.39

BVRH 44.65 27.662 51.34 181.403
GV 54.99 47.7264 53.45 194.92
GR 21.08 5.70729 19.24 90.88

GVRH 38.04 26.716 36.35 142.90
Ductility 0.852 0.96 0.708 0.7877

σ 0.168 0.1346 0.213 0.188
E 89 61 29 339

compressibility 0.022 0.04 0.02 0.0055

For trigonal structures, the mechanical stability criteria at zero pressure are as follows [38]:

C11 > |C12|, C11 > 0, C33 > 0, C44 > 0 (1)

[(C11 + C12) C33 − 2C2
13] > 0 (2)

[(C11 − C12) C44 − 2C2
14] > 0 (3)

In this study, trigonal TlBiS2 and Ag2BaS2 have six independent elastic constants. All the three
mechanical stability conditions given in Equations (1)–(3) are satisfied for the TlBiS2 and Ag2BaS2

phases. Hence, this indicates that these two trigonal phase materials are mechanically stable.
For the hexagonal system, the Born stability criteria are [38]:

C44 > 0 (4)

C11 − |C12| > 0 (5)

[(C11 + C12) C33 − 2C2
13] > 0 (6)
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The hexagonal-Ba3BiN has five independent elastic constants. All three conditions for the
mechanical stability given in equations 4 to 6 are satisfied for this structure, and this finding indicates
that hexagonal-Ba3BiN phases are mechanically stable.

The mechanical stability criteria for the tetragonal phase are given by [38]:

C11 − C12 (7)

2(C11 + C12) + C33 + 4C13 (8)

C44 > 0, C66 > 0 (9)

C11 + C12 − 2C13 > 0 (10)

ZrSO has a tetragonal structure, and thus, six independent elastic constants. All three conditions
for mechanical stability given in Equations (7)–(10) are satisfied for this structure. Hence, the
tetragonal-ZrSO phase is mechanically stable at ambient conditions. Equations (1)–(9) and Table 4
validated the mechanical stability criteria for the crystal under ambient conditions. This outcome is
consistent with the phonon calculations presented in Section 3.4.

From the calculated elastic constants, the bulk (Bv, BR) and shear moduli (Gv, GR) are calculated
from Voigt–Reuss–Hill approximations [39,40]. The bulk and shear moduli contain information related
to the hardness of the material under various types of deformation. Generally, very hard materials
hold very large bulk and shear moduli to support the volume decrease and to restrict deformation,
respectively [41]. From Table 4, it can be identified that the listed TlBiS2, Ba3BiN, and Ag2BaS2 phases
have a smaller bulk modulus than ZrSO (181.403 GPa). This indicates that ZrSO is more difficult to
compress than the other three materials. Among these compounds, the bulk modulus sequence is:
ZrSO > Ag2BaS2 > TlBiS2 > Ba3BiN. As we know, the shear modulus is more closely-connected to
hardness than the bulk modulus. From Table 4, the shear modulus of ZrSO is higher than the other
three compounds. Hence, the hardness of the tetragonal-ZrSO phase is higher than trigonal-TlBiS2,
hexagonal-Ba3BiN, and trigonal-Ag2BaS2. Among these compounds, the shear modulus trend is ZrSO
> TlBiS2 > Ag2BaS2 > Ba3BiN. Seemingly, the bulk and shear moduli of Ba3BiN are smaller than other
compounds. Thus, Ba3BiN is easy to compress and is the softest of the examined materials.

The parameter G/B can be introduced, in which G indicates the shear modulus and B the bulk
modulus. The low/high of G/B value is connected with the ductility or brittleness of the materials.
The critical G/B value that separates the ductile and brittle materials is 0.5 [41]. If the G/B value of
materials is smaller than 0.5, then those materials are ductile; otherwise they are brittle. From Table 4, the
calculated G/B values of all four materials are greater than 0.5, indicating that these materials are ductile.
Next, the value of Poisson’s ratio is indicative of the degree of directionality of the covalent bonding.
Among these compounds, the small Poisson’s ratio (0.13) for hexagonal-Ba3BiN indicates a high degree
of covalent bonding. All these phases present a very scattered Young’s (varying from 29 to 339 GPa). The
compressibility value of these phases suggests that these compounds, with the exception of ZrSO, are
very soft materials. The compressibility sequence is ZrSO < Ag2BaS2 < TlBiS2 < Ba3BiN.

3.6. Optical Properties

The optical behavior of a compound has a major impact on its properties for photovoltaic
applications. Optical dielectric function ε(ω) = ε1(ω) + ιε2(ω) is the fundamental quantity that
describes the optical properties of a material. It describes the response of a material to a radiated
electromagnetic field and the propagation of the field inside the material. The dielectric function is
dependent on the frequency of electromagnetic field, and it is connected to the interaction between
photons and electrons. The absorption coefficient of the material is dependent on the imaginary part,
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ε2(ω), and it can be derived from the inter-band optical transitions by summing over the unoccupied
states, using the equation [42,43],

ε
(αβ)
2 (ω) = 4π2e2

Ω lim
q→0

∑
k,v,c

2wkδ(εck − εvk −ω)

×〈uck+eαq|uvk〉〈uck+eβq|uvk〉∗
(11)

where the indices α, β are the Cartesian components, Ω is the volume of the primitive cell, q denotes
the Bloch vector of the incident wave, c and v are the conduction and valence band states respectively,
k is the Bloch wave vector, wk denotes the k-point weight, δ is a Dirac delta function, uck is the cell
periodic part of the orbital at k-point k, εck refers to the energy of the conduction band, and εvk refers
to the energy of the valence band. The real part ε1(ω) of the dielectric function can be derived from
ε2(ω) using the Kramer-Kronig relationship [42,43]

ε
(αβ)
1 = 1 +

2
π

P
∫ ∞

0

ε2
αβ(ω

′)ω′

ω′2 −ω2 + iη
dω′ (12)

where P indicates the principal value, η is the complex shift. All the frequency dependent linear optical
properties, such as the absorption coefficients α(ω), can be calculated from ε1(ω) and ε2(ω) [42,43].

α(ω) =

√
2ω

c
[
(

ε2
1(ω) + ε2

2(ω)
) 1

2 − ε1(ω)] (13)

Experimental absorption spectra are in agreement with the inclusion of excitonic effects treated
within the Bethe-Salpeter equation (BSE) in general [44–46]. By averaging multiple grids using BSE,
the calculated the dielectric function of these four materials can be further improved. The calculated
ε2(ω) of the dielectric function and the absorption coefficients of TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO
are presented in Figures 7 and 8, respectively. From the directional dependency of ε1(ω) and ε2(ω),
trigonal-TlBiS2 is highly isotropic, whereas hexagonal-Ba3BiN, trigonal-Ag2BaS2, and tetragonal-ZrSO
are less anisotropic. We present the average of the real and imaginary parts of the dielectric function
for the four examined compounds.

In Figure 7, we plotted both real and imaginary part of the dielectric function of (a) TlBiS2,
(b) Ba3BiN, (c) Ag2BaS2, and (d) ZrSO is plotted against the photon energy. The optical absorption
coefficients of all these materials were calculated using BSE and plotted in Figure 8. For a comparison,
we have also plotted both the experimentally-verified [47] and the BSE-calculated [19] values for the
optical absorption coefficient of silicon in the same Figure 8. Absorption in a material take place only
when the incident photon has more energy than energy band gap of the material. Since TlBiS2 is
a direct band gap material with a band gap of 1.10 eV, we notice the absorption to occur when the
energy of the photon is around 1.08 eV, as shown in Figure 8. It is clearly seen in Figure 8 that there
are absorption peaks at 1.32 eV, 1.93 eV, 2.45 eV, and 3.6 eV. The absorption coefficient of TlBiS2 has a
maximum value when the photon energy is about 3.6 eV. For silicon, the absorption coefficient becomes
appreciably different from zero after 2.5 eV, and it is still not very large up to 3 eV. This phenomenon
can be attributed to the indirect band gap of silicon that leads to low absorption in the visible region.
We observe that the absorption coefficient of TlBiS2 is superior to silicon in the visible region. This is
due to the direct band gap at Г and F k-points that prevails in the TlBiS2.
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In the case of hexagonal-Ba3BiN, the dielectric function is calculated at the BSE level (Figure 7b).
Due to the narrow band gap, Ba3BiN can absorb photons mostly in the visible region. The HSE06 band
gap is 1.29 eV, and it is direct. Therefore, Ba3BiN exhibits an absorption which rapidly increases after
1.26 eV. It can be observed that the absorption peaks of Ba3BiN are at 2.08 eV, 3.21 eV, and 3.5 eV
(Figure 8). The absorption coefficient of Ba3BiN reaches its maximum when the photon energy is
about 3.5 eV. From Figure 8, it can be noted that the optical absorption of Ba3BiN occurs in the visible
region, with higher values compared to other materials considered. The reason behind the high optical
absorption of Ba3BiN is due to the direct band gap of 1.29 eV. From Figure 8, it can be observed that
absorption peaks of Ag2BaS2 are at 1.94 eV, 2.24 eV, 2.7 eV, and 3.6 eV. Ag2BaS2 seems to have a lower
absorption coefficient than TlBiS2 and Ba3BiN in the visible region. However, Ag2BaS2 exhibits better
optical absorption than silicon in the visible region. In the same Figure 8, we notice that absorption
peaks of ZrSO start at 2.5 eV. The absorption peaks of ZrSO are also observed at 2.6 eV, 3 eV, and
3.59 eV. Among these four non-silicon materials, the absorption coefficient of ZrSO is smaller than
those of the other three; this is due to the wideband gap of ZrSO.

4. Conclusions

We employed band gap calculations based on GGA on a pool of 1000 materials in order to
identify twenty-seven possible candidates for photovoltaic applications. Among these candidates,
four promising materials that had direct band gaps were chosen, and in-depth analysis was carried
out to check the utility of these compounds for photovoltaic applications. We have presented a
set of first-principle calculations employing the hybrid functional HSE06 and utilized to compute
the electronic structures and effective masses of the four chosen materials, namely, TlBiS2, Ba3BiN,
Ag2BaS2, and ZrSO. The BSE method was employed to calculate the optical properties. Our study
provided rational insights into the electronic structure and optical properties of these four non-silicon
materials. These four materials exhibit a direct band gap in the range of 1.10 eV to 2.60 eV.

The main advantage with TlBiS2, Ba3BiN, and Ag2BaS2 is that all three materials have direct
band gaps and higher absorption coefficients than the widely-used photovoltaic material silicon in
the visible region. Among these three materials, TlBiS2 and Ba3BiN have better optical properties
than Ag2BaS2. ZrSO is the least preferable photovoltaic material because of the fact that its absorption
properties are inferior to those of silicon. Nevertheless, we have shown that there is a significant
difference in the GGA and HSE06 calculation for ZrSO. The phonon calculations revealed that TlBiS2,
Ba3BiN, Ag2BaS2, and ZrSO are dynamically stable, as no imaginary frequencies were observed. Our
elastic constant calculations illustrate that the compounds are mechanically stable. The calculated G/B
values are greater than 0.5, confirming the brittle nature of these materials. Our detailed studies of the
electronic, structural stability, mechanical stability and optical properties of these four materials show
them to be potential candidates for photovoltaic application.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/10/2006/
s1, Table S1: Calculated GGA band gap values for 30 compounds with lattice parameters; Table S2: Calculated
structural parameters and atomic positions of TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO; Figure S1: Calculated total
energy as a function of unit cell volume for cubic- and tetragonal-ZrSO; Figure S2: Crystal structures for
(a) cubic-ZrSO; (b) tetragonal-ZrSO. The legends for the different kinds of atoms shown in the illustration;
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vertical dotted line; Figure S4: Total and site projected density of states of Ag2BaS2. The Fermi level is set to zero
and marked by a vertical dotted line; Figure S5: Total and site projected density of states of ZrSO. The Fermi level
is set to zero and marked by a vertical dotted line.
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Table S1. Calculated GGA band gap values for 30 compounds with lattice parameters. 

S.No Chemical formula Space group Pearson symbol
Lattice Parameter(computed) Energy 

gap (in 
eV) 

Type 
of band 

gap a b c 

1 TlBiS2 R-3m(166)  hR4 7.817  0.5055 Direct 
2 BaGe2 Pnma (62) oP24 6.860 9.196 11.678 0.5235 Indirect 
3 Gd2S3 Pnma (62) oP20 3.930 10.580 10.790 0.526 Direct 
4 GaTlTe2 I4/mcm (140) tI16 7.020 0.5618 Indirect 
5 GeP C2/m (12) mS24 7.990 9.350 0.5719 Direct 
6 Ca2CuFeO3S P4/nmm (129) tP16 3.88 14.94 0.6339 Indirect 
7 Fe2Ga2S5 P-3m1 (164) hP9 3.690 15.570 0.6558 Indirect 
8 Ca2Fe2O5 Pnma (62) oP36 5.538 5.6589 14.885 0.6614 Direct 
9 Ba3BiN P63/mmc(194) hP10 7.770 6.805 0.6705 Direct 

10 Cu2GeZnS4 I-42m (121) tI16 6.552 0.6729 Direct 
11 CdCu2GeS4 Pmn21 (31) oP16 6.359 6.627 7.779 0.6863 Direct 
12 CdGeP2 I-42d (122) tI16 6.838 0.6942 Direct 
13 ZnSnP2 I-42d (122) tI16 7.0146 0.6984 Direct 
14 CdMn2O4 I41/amd (141) tI28 6.5092 0.7017 Indirect 
15 Ag2BaS2 P-3m1 (164) hP9 4.4251 7.2810 0.7161 Direct 
16 CuKZrS3 Cmcm (63) oS24 7.3557 9.8515 0.7388 Direct 
17 CuFeO3SSr2 P4/nmm (129) tP16 3.9557 15.7502 0.7516 Indirect 
18 KMnNaO2 Cccm (66) oS40 6.8241 7.1011 0.7749 Direct 
19 Cu2GeS4Zn Pmn21 (31) oP16 6.2223 6.5706 7.4744 0.7798 Direct 
20 Fe2MnO4 Fd-3m (227) cF56 6.1012 0.7842 Indirect 
21 MnO3Sr P63/mmc(194) hP20 5.5350 9.2802 0.8325 Indirect 
22 Cu2GeMnS4 Pmn21 (31) oP16 6.2986 6.5754 7.6952 0.886 Indirect 
23 ZrSO P4/nmm (129) tP6 3.6280 6.4154 0.8964 Direct 
24 Mn2Na14O9 P-3 (147) hP25 6.7098 9.4004 0.9245 Indirect 
25 FeGeO3 C2/c (15) mS40 6.7799 5.2895 0.9459 Indirect 
26 K3Ni2O4 Cmcm (63) oS36 5.5013 10.6834 1.0845 Indirect 
27 MnNaO2 Pmmn (59) oP8 5.8575 6.7005 1.1331 Indirect 

The initial structural parameters of a thousand compounds were directly taken from the ICSD 
database[1], and then GGA band gap for thousand non-silicon compounds were calculated in our 
DFTB database[2]. These are multinary compounds including conductors, semiconductors, and 
insulators. Among these thousand non-silicon compounds we considered twenty-seven of them with 
GGA band gap values in the range of 0.5–1.1 eV (Table S1). Among these twenty-seven compounds, 
we identified fourteen compounds as direct band gap semiconductors and thirteen as indirect band 
gap semiconductors. We carried out a study on both electronic and optical properties of twenty-seven 
semiconductors (both direct and indirect). Our study on the optical properties of the semiconductor 
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materials showed that four direct band gaps among the twenty-seven materials had higher 
absorption coefficients in the visible region. Due to the space constraint, the optical properties of all 
the twenty-seven semiconductors are not presented in the supporting information part 

Table S2. Calculated structural parameters and atomic positions of TlBiS2, Ba3BiN, Ag2BaS2, and 
ZrSO. 

Phase 
Lattice parameter 

 Atomic positions a b c  
α(deg)  β(deg) γ(deg)

TlBiS2 -R-3m ;166 7.817(7.711a) 30.83 30.83 30.83 

aBi(3a): 0.000 0.000 0.000 
aTl(9d): ½   ½   ½ 

aS(36i) : 0.237  0.237 
0.237 

Ba3BiN-
P63/mmc;194 

7.770 
(7.6128b ) 

6.805 
(6.6805b) 90 90 120 

bBa(6h): 0.1605  -0.1605 
¼ 

bBi(2d): 1/3  2/3  ¾ 
bN(2a): 0.000  0.000 

0.000 

Ag2BaS2- P-3m1
;164 4.4251(4.3861c) 7.2810(7.1942c) 90 90 120 

cS(2d) : 1/3  2/3  0.25296 
cBa(1a) : 0.000  0.000 

0.000 
cAg(2d) : 1/3 2/3 0.62252 

ZrSO-P4/nmm; 129 3.6280 6.4154 90 90 90 
 dZr(2c): 0, ½, 0.1950 

dS(2c): 0, ½, 0.6330 
dO(2a): 0, 0, 0 

ZrSO-P213; 198 5.6960 

eZr(4a): 0.071, 0.071, 0.071 
eS(4a): 0.3335, 0.3335, 

0.3335  
eO(4a): 0.6535, 0.6535, 

0.6535 
aReference [3]; bReference [4]; cReference [5]; dReference [6]; eReference [7]. 

Figure S1. Calculated total energy as a function of unit cell volume for cubic- and tetragonal-ZrSO. 
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Figure S2. Crystal structures for (a) cubic-ZrSO; (b) tetragonal-ZrSO. The legends for the different 
kinds of atoms shown in the illustration. 

Figure S3. Total and site projected density of states of Ba3BiN. The Fermi level is set to zero and 
marked by a vertical dotted line. 
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The total and site projected density of states of Ba3BiN, Ag2BaS2, and ZrSO are presented in 
Figure S3, S4 and S5 respectively. From S3, we observe that the valence band derived from Bi-
p and hybridized Bi-d states and conduction bands are mainly composed of Bi-s and Ba-s 
states. From Figure S4, we observe that the valence band maximum is derived from S-p states 
and the conduction band derived from Ag-s states. In the case of ZrSO, we observe that the 
valence bands derived from S-p states, and conduction bands derived from O-s states as shown in 
Figure S5. 

Figure S4. Total and site projected density of states of Ag2BaS2. The Fermi level is set to zero and 
marked by a vertical dotted line. 
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Figure S5. Total and site projected density of states of ZrSO. The Fermi level is set to zero and marked 
by a vertical dotted line. 
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We demonstrate by means of first-principle calculations that the band structure of TlBiS2 characterizes this ma-
terial as a promising candidate for photovoltaic applications. Two calculation hybrid functional models are used,
one including the spin-orbit coupling and one neglecting it. These calculations show that TlBiS2 has a direct band
gap of 1.10 eV in the absence of spin-orbit coupling and 0.67 eV for spin-orbit coupling. The absorption peaks ap-
pear in the visible regionwith a consequently high absorption intensity for bothwithout andwith spin-orbit cou-
pling. We show how computational modeling of TlBiS2 can substantially enrich the understanding of
photovoltaic properties.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Silicon devices are currently the dominating technology for photo-
voltaic applications. More than 80% of the solar cell modules installed
worldwide are based on either mono or multi-crystalline silicon. How-
ever, silicon exhibits an indirect band gap, resulting in a low absorption
coefficient [1]. The research community has thus beenmaking efforts in
studying alternativematerials for photovoltaic applications. Ternary, bi-
nary, multinary materials and compounds such as copper zinc tin sul-
fide, characterized by direct band gap and high absorption coefficient,
are of utmost interest for photovoltaic application. The desirable fea-
tures of alternative materials are high photon conversion efficiencies
and low production cost. The chalcogenide-structured narrow band
semiconducting compounds with general valence types III-V-VI2, V2-
VI3 (where III = Al, Ga, In, Tl; V = P, As, Sb, Bi; VI = Se, Te, S) have
been investigated due to their application as topological insulator
[2–6] and have not beenwidely investigated in solar cell. Topological in-
sulators are innovative materials represent an ideal platform for
nanoelectronics, optoelectronics and photonics [5–9].

The relative cost and scarcity of Ga and In havemotivated a drive for
alternative materials for photovoltaic applications. Thallium-bearing
ternary semiconductors have been investigated in optoelectronics
[10], but not extensively studied in photovoltaics due to the toxicity of
thallium. However, TlBiS2 have strong absorption coefficient with an
optimumband gap, resulting in high efficiency for the photovoltaic pro-
cess. TlBiS2 crystallizes with a chalcogenide-structure, and it exhibits a

narrow band gap with valence band and conduction bands located at
Γ and F-point of the Brillouin zone [2]. The electronic properties of
TlBiS2 are already well studied using ab initio calculations under the
generalized gradient approximation (GGA) [2, 11]. However, accurate
Heyd-Scuseria-Ernzerhof (HSE06) and Bethe-Salpeter equation (BSE)
calculation have not yet been used to explore its photovoltaic proper-
ties. This is addressed here by calculating the electronic band structure
and optical properties of III-V-VI2 compound (III = Tl, V = Bi, VI = S),
as well as the effective masses.

Total energies have been calculated by the projected augmented
plane-wave (PAW) implementation of the Vienna ab initio simulation
package (VASP) [12, 13]. Structural optimization calculations are per-
formed using the Perdew-Burke-Ernzerhof (PBE) version of the gener-
alized gradient approximation (GGA) of the exchange-correlation
functional [14]. The convergence threshold for self-consistent calcula-
tions is set to 10−6 eV, the atomic positions and lattice were fully opti-
mized by minimizing the stress tensor and the Hellman-Feynman
forces using the conjugate-gradient algorithmwith a force convergence
threshold of 10−3 eV Å−1. We used the hybrid non-local exchange-
correlation functional of Heyd-Scuseria-Ernzerhof (HSE06) to calculate
the electronic structure [15]. The spin-orbit coupling was included in
the calculations with non-collinear spins. In the HSE06 method, the
screened parameter is set to 0.2 Å−1, and 30% of the screened Hartree-
Fock (HF) exchange is mixed with the PBE exchange functional [16].
The cut-off energy for the plane-wave basis set is 600 eV, and we use
a 10 × 10 × 10 Γ-centered Monkhorst-pack k-point mesh to sample
the Brillouin zone [17]. This setup is maintained for both PBE and
HSE06 calculations. Solving of the Casida's equation is an alternative,
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well-established approach for calculating the dielectric function [18].
For both GW and the Bethe-Salpeter equation (BSE), we have summed
the contributions over a number of 8 × 8 × 8 k-points grids, shiftedwith
respect to each other to reproduce 16 × 16 × 16 Γ-centered grid. For all
these calculations, a plane-wave cutoff of 410 eV has been used.

The structure of TlBiS2 is closely related to ABQ2-type compounds (A
=monovalent atom, B=trivalent atom andQ=chalcogen) and can be
derived from a simple NaCl-type lattice by a rhombohedral distortion
along the [111] direction, corresponding to the c axis of the primitive
hexagonal arrangement. The sum of the ionic radii for a coordination
number (CN) of 6 is 2.87 Å for Bi3+/S2− and 3.34 Å for Tl+/S2− [r(Bi3
+)=1.03 Å, r(Tl+)=1.50Å and r(S2−)=1.84Å] [19]. The experimen-
tally determined and the theoretically derived values of the bond length
are in good agreement for Bi\\S, but for the Tl\\S distance is
underestimated by about 5.3%. The considered system has a rhombohe-
dral crystal structure with four atoms in the primitive unit cell. The
space group is D5 3d (R-3m, SG no. 166). The conventional hexagonal
unit cell has 12 atoms corresponding to three formula units in which
the layers are stacked in the order Tl-S-Bi-S along the z-axis. Each Tl
(Bi) layer is sandwiched between the two S layers so that the bonding
between all the layers is strong, and the material is essentially three-
dimensional. Our calculated lattice parameters and the atomic positions
are in good agreement with the experimental findings. The crystal
structure of TlBiS2 is presented in Fig. 1.

The band gap of the photoactive semiconductors determines the
upper bound on the short-circuit current and open-circuit voltage. A
large-band gap cell has a larger open-circuit voltage, and lower short-
circuit current than a small-band gap cell. Thus, it absorbs fewer solar
photons than a small-band gap cell. However, the detailed-balance lim-
iting efficiency of an ideal solar cell of optimal band gap Eg = 1.4 eV is
32%. In real cells, thermalization loss occurs because the solar resource
used has a broad energy spectrum, and it poorly matches the band
gap, resulting in lower efficiencies below the detailed-balance limit
[20]. Since the efficiency of solar cell is highly dependent on the band
gap of material, the use of electronic band structure presents itself as a
promising opportunity for engineering thematerial for photovoltaic ap-
plications. Fig. 2a shows the HSE06 band structure of TlBiS2 without
spin-orbit coupling. The valence band maximum (VBM) and the con-
duction band minimum (CBM) are located at the Γ k-point,
characterising TlBiS2 as a direct band gap semiconductor. The calculated
HSE06 band gap between VBM and CBM is 1.1 eV. It is approximately
equal to the silicon band gap, but of a different type. Bahadur Singh
et al., used GGA calculation and showed that TlBiS2 is a direct band
gap semiconductor at Γ k-point, with a band gap of 0.64 eV [11]. The
comparison between the present results using HSE06 with these previ-
ous GGA results [11] suggests that band gap of TlBiS2 is larger by ap-
proximately 0.46 eV. It is well known that calculations using GGA
underestimate the band gap value, while the HSE06 screened hybrid
functional is very successful in accurately calculating it. At the F k-
point, the band gap between VBM and CBM is 1.42 eV. The electronic
structure studies of TlBiS2 are identified, the direct band gap and
1.1 eV band gap for the solar cell application.

The spin-orbit coupling (SOC) is strongest for heavy elements,
where the electrons acquire large velocities in the proximity of the nu-
cleus. It may be suspected that a strong SOC effect, characteristic of
heavy Bi, might be involved in affecting the properties of the material
under examination. Therefore, we compare our previously obtained
HSE06 band structure with results including the SOC. We may expect
that the effect of SOC is of major importance for the distributions of
thenear-Fermi electronic states. Fig. 2b shows theHSE06 band structure
of TlBiS2 with spin-orbit coupling. In TlBiS2, both the valence bandmax-
imum (VBM) and conduction bandminimum (CBM) are located at the Γ
k-point. Thus, TlBiS2 is once again found to be a direct band gap semi-
conductor. The calculated HSE06 band gap between VBM and CBM is
0.67 eV. When we include SOC, the band gap shrinks significantly, and
a similarly large energy shift is obtained for all bands throughout the
Brillouin zone. Similar phenomena were observed by Bahadur Singh
et al., when they band structure calculation including SOC, where the
band gap was shown to shrink from 0.64 eV to 0.26 eV at Γ [11]. At
the F k-point, the band gap between VBM and CBM is 1.16 eV. From
Fig. 2a and Fig. 2b, we observe that the presence of SOC introduces
large energy shift for all band, and the band gap values shrink

Fig. 2. Calculated HSE06 electronic band structure of TlBiS2 (a) without spin-orbit coupling (b) with spin-orbit coupling. The Fermi level is set to zero.

Fig. 1. Crystal structures for TlBiS2. The labels for the different kinds of atoms are shown in
the illustration.
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significantly at the Γ and F k-points.We found that the effect of SOC is of
major importance for the distributions of the near-Fermi electronic
states. The accurate HSE06 band structure calculations revealed that
the inducing of SOC significantly reduces the band gap, thus influencing
the optical properties.

The calculation of the effective mass (EM) is crucial in a detailed
study of the energy levels in solar devices. The conductivity of the effec-
tivemasses of electrons and holes perturbs themobility, electrical resis-
tivity, and free-carrier optical response in photovoltaic applications. To
this end, we have employed the effective mass calculator (EMC) [21].
This algorithm is based on a finite difference method, and it is not a
fitting band algorithm [21]. The effective masses of TlBiS2 calculated
by HSE06 are listed in Table 1. We noted that the EM holes are heavier
than the EM of electrons. This result can be understood from the fact
that the VB is derived from S-p state, less dispersed compared to the
CB derived from Bi-p states. The EM of electron photovoltaic materials
such as silicon (Si) and gallium arsenide (GaAs) are 0.26me and
0.12me [22] respectively. The calculated EM of electrons of the TlBiS2
is 0.154me, the EM of the electron is low for TlBiS2 compare to Si.
Hence, TlBiS2 have remarkably large electron mobility.

The knowledge of the optical properties is crucial for the study of
solar cell materials, as it allows describing their absorption properties.
To investigate the optical behavior of TlBiS2, we used the optical dielec-
tric function ε(ω) = ε1(ω) + iε2(ω), the fundamental quantity of the
optical properties. It is defined as the linear response of the system to
electromagnetic radiation, which controls the propagation of radiation
in a medium. Here, ε(ω) is connected to the interaction between pho-
tons and electrons. Its imaginary part ε2(ω) can be derived from the
inter-band optical transitions by summing over unoccupied states
using the equation [23], the real part ε1(ω) of dielectric function can
be derived from the ε2(ω) by the Kramer-Kronig relationship [23, 24].
The absorption coefficients α(ω) can be calculated from ε1(ω) and ε2
(ω) [23, 24]. The calculated imaginary part of the dielectric function
and absorption coefficients of TlBiS2 compound is presented in Figs. 3
and 4 respectively. In general, the inclusion of excitonic effects treated

within the Bethe-Salpeter equation (BSE) framework is in better agree-
ment with the experimental absorption spectra [25] [26] [27]. The cal-
culated dielectric functions can be further improved by averaging over
multiple grids using BSE without and with SOC [27].

According to the directional dependency of ε1(ω) and ε2(ω), TlBiS2
is a highly isotropic medium. This is due to same lattice parameters
along all directions. In Fig. 4, the dielectric function of the TlBiS2 without
and with SOC is plotted against the photon energy. These results illus-
trate the shift of the optical band gapdue to spin-orbit effects.Moreover,
the slope of ε2(ω) near the band gap is smaller for SOC effect. This is due
to reduced number of critical states in the CB and split bands in the CB
when SOC is considered (as shown in Fig. 2b). The main band gap is lo-
cated at the Γ k-point, but the secondary band gap at the F k-point ob-
served independently from the presence of SOC, leads to further
contributions to the optical absorption of TlBiS2. In comparison, the op-
tical absorption ε2(ω) of TlBiS2 for BSE with SOC is higher than ε2(ω) of
TlBiS2 for BSE without SOC calculation in the infrared region. This is due
to the low electronic band gap of TlBiS2 with SOC effect at Γ k-point.

Fig. 4. Calculated absorption coefficient of TlBiS2. (Colour code: red – BSE absorption
coefficient of TlBiS2 without SOC, light blue – BSE absorption coefficient of TlBiS2 with
SOC, green – experimental absorption coefficient of Silicon, blue – BSE absorption
coefficient of Silicon.) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. The calculated dielectric function of TlBiS2 (a) without SOC, (b) with SOC.

Table 1
The calculated effective mass of TlBiS2, effective masses of light holes (m*lh), heavy holes
(m*hh) and electrons (m*e).

Compound Plane directions HSE06

m*lh·me m*hh·me m*e·me

TlBiS2 110 0.182 0.224 0.154
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However, the calculated BSE with SOC optical absorption of TlBiS2 is
lower than optical absorption of TlBiS2 for BSE without SOC in the ultra-
violet region. This is due to the large electronic band gap of TlBiS2 with-
out SOC effect at Γ and F k-points.

The absorption coefficients α(ω) can be calculated from ε1(ω) and
ε2(ω) [23, 24]. Fig. 4 shows the optical absorption coefficient for TlBiS2
calculated using the BSEwithout SOCmethod. For comparison, we plot-
ted the experimental and the BSE absorption coefficient of silicon. It can
be seen that the absorption coefficient of silicon presents similar values
for both experiment [28] and theoretical calculation [18]. The absorp-
tion can occur only when the photon energy is larger than the band
gap of the material. Since the electronic band gap of TlBiS2 without
SOC effects is 1.10 eV and it is a direct band gap, TlBiS2 exhibits an ab-
sorption starting at 1.08 eV. From Fig. 4, the absorption peaks of TlBiS2
are observed at 1.08 eV, 1.32 eV, 2 eV, 2.45 eV and 3.6 eV for BSE calcu-
lation without SOC. When the photon energy is about 3.6 eV, the α of
TlBiS2 reaches themaximum. Since the electronic band gapwith SOC ef-
fect of TlBiS2 is 0.67 eV and it is direct band gap, TlBiS2 exhibits an ab-
sorption starting at 0.71 eV. From Fig. 4, the absorption peaks of TlBiS2
are observed at 1.17 eV, 1.81 eV, 2.32 eV, 3.116 eV and 3.78 eV for BSE
calculation with SOC. These results illustrate the redshift of the optical
band gap of TlBiS2 with spin-orbit effects due to the reduced number
of critical states and split bands in the CB. However, the absorption co-
efficient of TlBiS2 with SOC effects is higher than the absorption coeffi-
cient of TlBiS2 without SOC effects in the visible region. This is due to
the secondary band gap of 1.16 eV at F k-point, shrinks band gap and
split bands in the CB.

For silicon, theα values become significant only after 2.5 eV and be-
come large enough only at 3.3 eV. This is because silicon has an indirect
band gap, resulting in a low absorption coefficient in the visible region.
However, it can be seen that absorption coefficient of TlBiS2 is perfectly
matched to the visible region for both BSEwithout andwith SOC effects.
The reason behind the high absorption coefficient of TlBiS2 without SOC
effect is the direct band gap at the Γ and the F k-points with optimum
band gap. Hence, we proposed that the TlBiS2 exhibit large absorption
for both without and with SOC in the visible region across the solar
spectrum, thus meeting one of the important prerequisites for efficient
solar to electrical energy conversion.

In summary, first-principle calculations employing the hybrid
HSE06 and BSE method were utilized to compute the electronic struc-
tures, effective masses and optical properties of the TlBiS2 compound.
The HSE06 calculated electronic structures without and with SOC effect
confirmed that the TlBiS2 exhibits a direct band gap, with a value of
1.10 eV and 0.67 eV respectively, at the Γ k-point. The HSE06 calculated
electronic structures without and with SOC effect confirmed that the
TlBiS2 exhibits a direct band gap, with a value of 1.42 eV and 1.16 eV re-
spectively, at the F k-point. Thus, the absorption peaks exhibited a high
absorption intensity in the visible region. For the very first time, absorp-
tion spectra of TlBiS2 based on BSE without and with SOC effects

calculation is reported in this paper. It is shown that TlBiS2 is more effi-
cient absorption material than silicon. Our detailed studies of electronic
and optical properties of the ternary chalcogenide material reveal that
TlBiS2 is a potential candidate for photovoltaic application, especially
for the development of multi-junction solar cells.
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a b s t r a c t

We present first-principle computational modelling of the perovskite CsSnxPb(1�x)I3 (x = 0, 0.5 and 1),
aimed at increasing the efficiency of perovskite photovoltaics. Using density functional theory calcula-
tions with a hybrid functional, we predict that both CsPbI3 and CsSnI3 are stable structures with direct
bandgaps, suitable for photovoltaic application. On the other hand, the stable structure of
CsSn0.5Pb0.5I3 exhibits an indirect bandgap, which could work as a direct bandgap due to the short
electron-hole distance. The results of this study demonstrates that through bandgap engineering, we
can obtain larger photon absorption ranges and higher efficiencies for perovskite based photovoltaics.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years perovskite-based photovoltaics has
emerged as a possible solution to the world’s energy problem, hav-
ing now reached efficiencies as high as 22.1% [1]. The current
research is focused on methylammonium lead trihalide per-
ovskites (MAPbX3; MA = CH3NH3

+, X = Cl, Br, I) and metal halide
perovskites (ABX3; A = Cs, Rb, B = Sn, Pb, Ge, X = Cl, Br, I), with
the aim of increasing the efficiency and solve the instability issue
of perovskites [2,3]. Especially CsPbI3 and the lead free CsSnI3 have
shown great potential. One of the main solutions for increasing
efficiency is the doping of the perovskites, as this can have a major
effect on many electronic properties. However, bandgap engineer-
ing in combination with theoretical simulations of perovskites
seems to gather little attention from the research community.

With this in mind, this article proposes a new perovskite
configuration, which combines CsPbI3 and CsSnI3 to improve
the bandgap and the absorption range. The idea is to utilise
simultaneously the two different absorption ranges, 675–750 nm
and 875–1050 nm for CsPbI3 and CsSnI3 respectively, to achieve a
higher absorption efficiency. We show through density functional
theory (DFT) simulations that bandgap engineering of
CsSnxPb(1�x)I3 is possible in a solid solution. Furthermore, we
investigate and compare the structural stability of CsPbI3, CsSnI3
and CsSn0.5Pb0.5I3.

2. Methods and approaches

The total energies have been calculated by the projected aug-
mented plane-wave (PAW) implementation of the Vienna ab initio
simulation package (VASP) [4]. For the exchange-correlation func-
tional part, we used the Perde-Burke-Ernzerhof (PBE) version of the
generalized gradient approximation (GGA) [5]. The ionic coordi-
nates are fully optimised using an energy converged threshold of
a 10�6 eV per atom. We used the hybrid nonlocal exchange-
correlation functional of Heyd-Scuseria-Ernzerhof (HSE06) to cal-
culate the electronic structure and optical properties. In the
HSE06 method, the screened parameter is set to 0.2 Å�1 and 30%
of the screened Hartree-Fock (HF) exchange is mixed with the
PBE exchange functional [6]. The cut-off energy for the plane-
wave basis set is set to 600 eV, and we use a 10 � 10 � 10 C-cent
red Monkhorst-pack k-point mesh for sampling the Brillouin zone.
These settings are used in both PBE and HSE06 calculations for
a-CsSnI3. We used a similar density of k-points and energy
cut-off to estimate total energy as a function of volume for all
the structures considered in the present study.

3. Results and discussion

3.1. Structural description and relative stability

CsSnI3 is a unique phase-change material that exhibits four
polymorphs [7]. Two polymorphs are stable at room temperature:
one has a one-dimensional double-chain structure and is yellow in

https://doi.org/10.1016/j.matlet.2018.02.021
0167-577X/� 2018 Elsevier B.V. All rights reserved.
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color (Y-CsSnI3; Sn2S3-type), and another has a three-dimensional
perovskite structure (see Fig. 1b) and is black in color (c-CsSnI3).
When heated above 425 K, the Y phase transforms to a black cubic
perovskite phase (a-CsSnI3), which, on subsequent cooling, con-
verts to a black tetragonal phase (b-CsSnI3) at 426 K (instead of
Y) and a black orthorhombic phase (c-CsSnI3) at 351 K. In order
to understand the relative stability of these four phases we have
calculated the total energy as a function of unit-cell volume, which
are displayed in Fig. 1a. Among the considered structures, the
Sn2S3-type atomic arrangement is found to have the lowest total
energy. The calculated ionic positions and lattice parameters for
the four phases are found to be in good agreement with experi-
mental findings [3]. It is interesting to note that the energy differ-
ence between a-, b-, c- and Y-CsSnI3 is very small, and hence, one
can easily modify one polymorph into another by application of
moderate temperature or pressure. This is in agreement with the
work of Chung et al. [3] who found that CsSnI3 stabilize in four dif-
ferent structures depending upon the synthesis method/condition
and temperature. Similarly, for the CsPbI3 and CsSn0.5Pb0.5I3
phases, our theoretical energy-volume curves shows that both of
them stabilize in orthorhombic structures with the Pnma space
group (a-phase; Sn2S3-type). At ambient conditions CsPbI3 crystal-
lize in an orthorhombic structure, which at high temperature is

transformed into a cubic (CaTiO3-type) structure [8]. The energy
difference between the two phases of CsPbI3 is 0.15 eV and the cal-
culated structural parameters are in good agreement with the
experimental findings [8]. The crystal structure of CsSn0.5Pb0.5I3
is currently unknown and the present study predict that at ambi-
ent conditions CsSn0.5Pb0.5I3 crystallizes in an orthorhombic
Sn2S3-derived structure.

3.2. Nature of electronic structure and related properties

The calculated band structures for the low-energy structures
are shown in Fig. 2, highlighting the relevant points in reciprocal
space. CsSnI3 is found to have three polymorphs with direct band-
gaps (Y-, a- and b-CsSnI3) and one with an indirect bandgap
(c-CsSnI3). The polymorphs with direct bandgaps are suitable for
photovoltaic application due to the efficient electron-hole
transport. For CsPbI3 we observe a direct bandgap at the C point,
indicating the reason why it is a successful perovskite solar cell
material. For CsSn0.5Pb0.5I3 an indirect bandgap is observed, due
the valence band maximum (VBM) being found between Y-H and
C-X while the conduction band minima (CBM) is between Z-D.
However, we found that the electron/hole jump distance is mini-
mum at Z-D. Furthermore, the energy difference between the

Fig. 1. (a) Calculated total energy (per formula unit; f.u.) as a function of the volume of the unit cell for the different polymorphs of CsSnI3. The involved energy differences
between the different polymorphs are indicated. (b) Crystal structure of CsSnI3 polymorphs. The illustration contains legends for the different atoms.

Fig. 2. Calculated band structures at the HSE06 level of the stable orthorhombic structures of (a) CsSnI3, (b) CsPbI3 and (c) CsSn0.5Pb0.5I3.
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VBM and the band energy in the Z-D is ca 0.001 eV. This makes it
possible for this compound to function as a direct bandgap mate-
rial. This bandgap properties require further research to under-
stand how it works in the real condition. Table 1 summarizes the
band parameters obtained from the calculated band structures of
studied compounds.

3.3. Optical properties

Fig. 3 shows the absorption coefficients and the imaginary part
of the dielectric function for the three perovskites and their stable
polymorphs. The peak for Y- CsPbI3 seen at 3.5 eV is in agreement

with experimental literature. When lead is substituted with Sn, we
get the expected red shift in absorption coefficient [9]. For
CsSn0.5Pb0.5I3 we anticipated an absorbance coefficient with a max-
imum in between the other two. However, we found the maximum
peak to be blue shifted compared to that of both CsSnI3 and CsPbI3.
In addition, we found the maximum peak value for CsSn0.5Pb0.5I3 to
be higher than that of the other two perovskites.

Moving on to the imaginary part of the dielectric function, we
see once again that by combining CsSnI3 and CsPbI3 into
CsSn0.5Pb0.5I3 the maximum peak position is shifted towards
higher energies (blue shifted) instead of being found in between
the maximum peaks of CsSnI3 and CsPbI3 respectively. The

Table 1
Calculated bandgap values, space groups, Mulliken population and BOP for the perovskites based on the two different approximations.

Phase Space group Bandgap (eV) Type of bandgap Mulliken population charges BOP

GGA HSE06

a-CsSnI3 Pm-3m 0.500 0.870 Direct Cs: 0.61, Sn: 0.08,
I: �0.23

0.47 (Sn-I)

Y-CsSnI3 Pnma 0.650 1.017 Direct Cs: 0.66, Sn: 0.26,
I1: �0.39, I2: �0.17, I3: �0.17

�0.56 (Sn-I)
0.33 (Sn-i)
�1.69 (Cs-I)

b-CsSnI3 P4/mbm 0.671 1.060 Direct Cs: 0.66, Sn: 0.19,
I1: �0.23, I2: �0.31

0.16 (Sn-I)

c-CsSnI3 Pnma 2.030 2.670 Indirect Cs: 0.58, Sn: 0.25,
I1: �0.35, I2: �0.24

�0.10 (Sn-I)
�0.30 (Cs-I)

CsPbI3 Pnma 1.500 2.170 Direct Cs: 0.69, Pb: 0.47,
I1: �0.25, I2: �0.42, I3: �0.49

�0.64 (Pb-I)
�0.62 (Cs-I)

CsPbI3 Pm-3m 1.503 2.0934 Direct Cs: 0.67, Pb: 0.48,
I: �0.34

�0.58 (Pb-I)
�0.81 (Cs-I)

CsSn0.5Pb0.5I3 Pnma 2.05 2.713 Indirect/direct Cs: 0.68 to 0.71,
Sn: 0.25, Pb: 0.47,
I: �0.26 to �0.48

0.25 (Sn-I)
0.08 (Sn-I)
�0.73 (Pb-I)
�1.37 (Cs-I)
�1.05 (Cs-Pb)

Fig. 3. Calculated absorption coefficients for (a) different polymorphs of CsSnI3, (b) CsPbI3 and (c) CsSn0.5Pb0.5I3, and imaginary part of the complex dielectric function for (d)
different polymorphs of CsSnI3, (e) CsPbI3 and (f) CsSn0.5Pb0.5I3. We used HSE06 for these calculations.
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maximum value rises from 7.6 x and 8.5 x for CsSnI3 and CsPbI3
respectively to 9.2 x for CsSn0.5Pb0.5I3. This indicates that electro-
magnetic radiation will travel further into the material before
being absorbed.

3.4. Chemical bonding

Based on the charge distribution plots for CsSnI3 reported in
Fig. 4, it is clear that the electrons resides around the individual
atoms. Furthermore, the spherically-shaped charge distribution
indicates that the bonding between Sn – I, Sn – Cs and Cs – I is pri-
marily ionic. The charge transfer map reveals a polar character to
the compound with depletion of charge around the Cs and Sn
atoms. Although Mulliken analysis is more qualitative than quan-
titative it has proven useful in the analysis of chemical bonds
[10]. Our bond overlap population (BOP) values are low, which
supports our findings of ionic binding. CSPbI3 displays the same
ionic trend, with an even stronger charge depletion around the
Cs and Pb atoms. The BOP analysis confirms the ionic bonding with
its low values. However, for CsSn0.5Pb0.5I3 we have the charge pri-
marily distributed around the Sn and I atoms with little charge
around Cs and Pb. Once again, we get low BOP values indicating
an ionic nature of the bonds. The charge transfer plot indicates
towards a slight polar character as charge gathers around the I
atoms, however in general the atoms share the charge.

The Mullikan population charges for the Cs site is around +0.65e
for all three compounds, confirming what is seen in the charge dis-
tribution plot that Cs does not fully donate its one valence electron
to I, Pb or Sn in any of the configurations. For I the charges varies
from �0.17e to �0.49e depending on the configuration, while Pb
and Sn is consistent over the various configurations with charges

of around 0.47e and 0.25e respectively. In other words, Cs, Pb
and Sn all donate parts of their valence electrons to the I atoms.

4. Conclusion

In conclusion, we demonstrated that CsSnI3 could be stabilized
in four different polymorphs, three of which contain a direct band-
gap ideal for photovoltaic applications. By adding Pb to the per-
ovskite to create CsSn0.5Pb0.5I3, we found that although this the
new perovskite has an indirect bandgap, it could work as a direct
bandgap material due to the lower electron-hole distance in the
Z-D region. In general, we found that by combining CsSnI3 and
CsPbI3 we got a new compound with different electronic and opti-
cal structure in addition to different chemical bonding. Based on
this it could be viable to combine various compounds in an attempt
to end up with an optimal compound for photovoltaic applications.
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