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A FAST LEVEL SET METHOD FOR RESERVOIR SIMULATION

K. HVISTENDAHL KARLSEN, K.-A. LIE, AND N. H. RISEBRO

ABSTRACT. We present a level set method for reservoir simulation based on a fractional flow
formulation of two-phase, incompressible, immiscible flow in two or three space dimensions.
The method uses a fast marching level set approach and is therefore considerably faster
than conventional finite difference methods. The level set approach compares favourably
with a front tracking method what regards both efficiency and accuracy, but maintains the
advantage of being able to handle changing topologies of the front structure.

1. INTRODUCTION

The objective of oil reservoir simulation is to understand complex fluid flow processes in a
reservoir and to optimize the recovery of hydrocarbons. In other words, one must be able to
match production history and predict the flow pattern under various enhanced oil recovery
strategies, e.g., water flooding, polymer flooding, thermal flooding, etc. To this end, accurate
numerical simulation of appropriate mathematical models is a crucial task. Mathematical
flow models typically consist of a strongly coupled system of nonlinear partial differential
equations (3, 7, 28].

One such model for two-phase, incompressible, immiscible flow will be considered in this
paper. In this model the basic unknowns are a fluid pressure and the saturation of the non-
wetting phase. The fluid pressure is described by an elliptic equation and the saturation by
a convection-diffusion equation. The equations are coupled through the total Darcy velocity.
Enhanced recovery displacement processes are dominated by convective flow from injection
to production wells and therefore mathematical models must have strong transport terms.
Consequently, it is reasonable in many situations to neglect capillary forces to obtain a first-
order hyperbolic equation for the saturation variable. A common strategy for solving such
models is to decouple the equations, that is, first solve the pressure equation to generate a
velocity field. Next, the velocity field is held fixed and the saturation is advanced forward a
small time step. Then the pressure is recalculated, and so on. In this way, one can devise
efficient numerical strategies that exploit the different mathematical properties of the model,
thus taking properly care of the completely different nature of the equations in the system.

Due to the nonlinearity inherent in the saturation equation, a sharp fluid interface will
arise between the injected fluid (water) and the resident fluid (oil). When the saturation is
described by a hyperbolic equation, the interface will be a discontinuous shock front that
develops even for smooth initial data. An important aspect of numerical simulations is to
resolve the location and structure of the sharp fluid interface. The location of this interface
indicates how much of and where the oil is left in the reservoir as a function of time. Knowledge
of front location is crucial for determining infield drilling and new production strategies with
the purpose of optimizing the oil recovery. In recent years, a variety of sophisticated numerical
methods have been proposed which all have in common the ability to accurately represent
such fronts, both for hyperbolic models and for more complex models involving nonlinear
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2 KARLSEN, LIE, AND RISEBRO

diffusion. We refer the reader to, e.g., [12, 22, 25] for a general introduction of modern
numerical methods for nonlinear partial differential equations possessing solutions with large
gradients (shocks).

For many of the numerical methods for hyperbolic equations currently in use, including
some of the methods mentioned above, a sophisticated one-dimensional solver constitutes the
core of the overall numerical method and extensions to several space dimensions is carried out
by means of dimensional splitting. In most cases dimensional splitting works very well and it
is well known that numerical methods based on dimensional splitting are very efficient, espe-
cially those based on one-dimensional, large time step solvers, see, e.g., [4, 5, 19, 24]. However,
in some situations inaccuracies are introduced at shock fronts propagating obliquely to the
splitting directions. Furthermore, for unstable displacements such instabilities can be magni-
fied by the decoupling of the pressure and saturation equations and grow uncontrollably with
time [16]. It is therefore natural to search for alternative ways to treat the multidimensional
case. One particular approach that has received a lot of (renewed) attention in the petroleum
community lately is the streamline method, which is well suited for problems without gravity.
Equipped with one’s favourite one-dimensional solver, this approach is based on integrating
the saturation equation along the streamlines defined by the velocity field, see, e.g., [5, 6, 20]
(and the references cited therein), thus avoiding the use of dimensional splitting. When grav-
ity is present, the streamline method can be used as part of an operator splitting strategy,
where the effect of gravitation is solved separately, see, e.g., [6].

In this paper we present a new numerical method for simulating two-phase flow in oil
reservoirs. Our method is inspired by the level set idea of Osher and Sethian [27] (see Section 2
for more details) and is especially well suited to keep track of the front location in, e.g., a
water flooding scenario. The method works in any number of dimensions, handles changing
topologies of the front structure naturally, and is easy to program. We demonstrate that the
level set approach compares favourably with a (large time step) front tracking method with
respect to computational efficiency and accuracy. Our approach is to employ a sequential time
stepping procedure to separate the elliptic pressure equation and the hyperbolic saturation
equation. We then attack the saturation equation with a level set type approach; that is, we
reformulate the saturation equation as a boundary value problem for a stationary Eikonal
equation. The Eikonal equation is then solved by numerical methods based on the fast
marching approach suggested by Sethian [29, 31].

The level set method proposed here can be viewed as a sort of streamline method. Stream-
line methods and the level set method are both based on one-dimensional solutions along
streamlines (or approximate streamlines) of the total velocity field. The level set method is
however much simpler to implement and consequently more robust.

Although different from our approach, we mention that Aslam [2] recently has proposed a
level set algorithm for tracking discontinuities in hyperbolic conservation laws.

The outline of the paper is as follows. In Section 2 we briefly describe the original level
set idea [27]. The reservoir model is described in Section 3 and our novel level set method
is introduced in Section 4. The method is investigated numerically in Section 5 for several
standard test problems. Moreover, the the efficiency and accuracy of our method is com-
pared with a front tracking method based on dimensional splitting. Finally, we make some
concluding remarks in Section 6.
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2. THE ORIGINAL LEVEL SET APPROACH

For completeness, we now describe the original level set method of Osher and Sethian [27]
for tracking the evolution of an initial front ['y as it propagates in a direction normal to itself
with a given speed function F. The main idea is to match the one-parameter family of fronts
{Ft} +>0» Where I'; is the position of the front at time ¢, with a one-parameter family of moving
surfaces in such a way that the zero level set of the surface always yields the moving front. To
determine the front propagation, we then need to find and solve a partial differential equation
for the motion of the evolving surface. To be more precise, let I’y be an initial front in R¢,
d > 2 and assume that the so-called level set function u : R? x R, — R is such that at time
t > 0 the zero level set of u(z,t) is the front I';. We further assume that

ulz, O) =ted(z),

where d(z) is the distance from z to the curve I'y. We use plus sign if z is inside 79 and minus
if z is outside. Let each level set of u flow along its gradient field with speed F. This speed
function should match the desired speed function for the zero level set of u. Now consider
the motion of, e.g., the level set

{2: e R : u(z,t) = 0}.
Let z(t) be trajectory of a particle located at this level set so that
)=

The particle speed % in the direction n normal to the level set is given by the speed function
F', and hence

or
E'TL—F,

where the normal vector n is given by
Vu
_W_
This is a vector pointing outwards, giving our initialization of u. By the chain rule

Oou Oz
—8;+*a*t~VU—O.

Therefore u(z,t) satisfies the partial differential equation (the level set equation)

ou
(1) o FIvul =0,

n=

and the initial condition
aulst —i=cEdi(z):

This is called an Eulerian formulation of the front propagation problem because it is written
in terms of a fixed coordinate system in the physical domain.

Summing up, the central mathematical idea is to view the moving front I'; as the zero
level set of the higher-dimensional level set function u(z,t). Depending on the form of the
speed function F', the propagation of the level set function u(z,t) is described by the initial
value problem for a nonlinear Hamilton—Jacobi type partial differential equation (1) of first
or second order [27, 30]. Because of the nonlinear nature of the governing partial differential
equation (1), solutions are not smooth enough to satisfy this equation in the classical sense
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(the level set function is typically only Lipschitz). Furthermore, generalized solutions, i.e.,
Lipschitz continuous functions satisfying the equations almost everywhere, are not uniquely
determined by their data and additional selection criteria (entropy conditions) are needed to
pick out the (physically) correct generalized solutions. The correct framework for treating
Hamilton-Jacobi type equations is provided by the notion of viscosity solutions [10, 9].

After its introduction, the level set approach has been successfully applied to a wide collec-
tion of problems that arise in geometry, fluid mechanics, computer vision, and manufacturing
processes, see [30] for details. Numerous advances have been made to the original technique,
including the adaptive narrow band methodology [1] and the fast marching method for solving
the static Eikonal equation [29, 31]. For further details and summaries of level set techniques
for numerical purposes, see [30, 31].

The mathematical theory of the level set approach, which is based on the theory of viscosity
solutions [10, 9], was extensively developed independently by Evans and Spruck [13] for the
motion by mean curvature and by Chen, Giga, and Goto [8] for more general geometric
motions. Various generalizations were subsequently obtained by several authors, see the
lecture notes [32] for-an overview.

3. THE RESERVOIR FLOW MODEL

We start our discussion by deriving the equations for a black oil reservoir model, contain-
ing two immiscible phases, denoted by n (non-wetting) and w (wetting). A more general
formulation is given in, e.g., [3, 7, 28].

In the following all quantities are assumed to be functions of the spatial location x, and
some also of the time ¢, and V denotes the gradient operator with respect to the spatial
variables.

The velocity of each phase is assumed to obey the experimentally verified Darcy’s law

(2) v; = =X (VP — pigVD),
where the mobility of phase ¢ is defined as
ki
Ai=K—.
Hi

Here, K denotes the absolute permeability (tensor) of the rock, k; denotes the relative perme-
ability of phase i, and p; the viscosity of phase ¢. Furthermore, p; denotes the density of phase
i, g the gravitational acceleration, and D measures vertical distance in the reservoir. The
index i in (2) and subsequent equations is n and w. Hereafter, we will ignore the capillary
pressure and assume that P = Py, = Py,

Conservation of mass for each phase now reads

®) ~V (apivi) + ags = s (9051)

where « denotes the cross section of the reservoir if the dimension is 1 or 2, and a =1 if we
consider a three-dimensional model. The porosity, i.e., the available pore volume, is denoted
by ¢, and S; denotes the saturation of phase i. The term ¢; denotes sources or sinks present
in the reservoir. The saturation of phase 7 is defined to be the percentage of the available
pore volume occupied by this phase. Hence
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Carrying out the differentiation in (3) yields

o¢ Opn 0Sn
shie o A4

e T
and similarly for the wetting phase. If we divide the two equations by ap; for ¢ = n, w, and
add the results using (4), we eliminate the saturations and are left with

It 1
6 =V (apavn) = =V (@pwin) + Q1 = 2 + (Saca + Sucw) $ -

Qpn APw ot
Here, Q1 = qn/pn + gw/pw is the total volumetric injection or production rate, and the phase
compressibilities ¢; are given by

(5) —V (apnvn) + agn = @ (an,,

1 dp;
C; = TD—ZF
We now introduce 1 dg
CT = "d—)d—P o SnCn aF Swa

and define the total velocity vr by
UT = Un + Vw-
Using this notation (6) reads
oR
(7) =V (avr) + aQr = ad)C’T—a—t + a (vpcn + vwew) VP.
Using Darcy’s law (2) and the last equations we find

aP
(8) V(aArVP)+aQr = CY(/J’CTE‘? + a (vncn + vwew) VP + V [a (Anpn + Awpw) 9V D],

which is called the pressure equation. Here, we have introduced the total mobility Ar =
An + Aw. In this paper, we will concentrate on the incompressible flow, i.e., the densities and
the porosities are assumed to be independent of the pressure. This assumption reduces the
pressure equation considerably

(9) V (adrVP) + aQr = V [@ (Anpn + Awpw) gV D].

Note that in this case the divergence of « times the total velocity is zero away from sources
or sinks, i.e.,

V(avr) = 0.
Adding and subtracting the two equations of (2) we find that
Un = fn (U + Aw (Pn — pw) gV D),
Vw = fw (v7 + An (pw — pn) gV D),

where f; is the fractional flow function for phase 4;

i
- s
Using this in (3) gives the saturation equation
0Sn
(11) oz(ﬁw + V(aFa(Sn)) = —gna,

where
Fn = fa (v7 + Aw (pn — pw)gVD).
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We shall be primarily interested in the case where the reservoir is horizontal, or the two
densities are equal, in this case the flux function reduces to F,, = fnVr, where Vr = avr.
Summing up, we have arrived at the following model

08y
(12) ¢ B e Vvan (Sn) G Oa
V (aArgpV D) if pn = pw = p,
13 T P
o CE ks {0 VD =0,

In this case the total velocity Vr is given by

{—a/\T (VP — gpVD) if pn = pw = p,
=

(14) :
—aArVP i /D) = (0}

In applications, these equations are coupled with boundary and initial conditions. We will
concentrate on water injection. This is a process of injection of water at some locations in
the reservoir, in order to maintain the pressure, thereby forcing more oil out. This situation
is usually modelled by setting the initial saturation S, (if water is the non-wetting phase) to

1 HoTH e = B

(15) 5(x,0) = {

0 otherwise,

where X;,; are the locations of the water injection, and rg is some (small) radius.

4. THE NUMERICAL ALGORITHM

The governing equations (12)—(14) constitute a coupled system of nonlinear partial differen-
tial equations. A sequential time stepping procedure is used to decouple the equations, which
essentially consists of solving one equation at the time, starting with the pressure equation
to generate a velocity field. Subsequently, this velocity field is used as input in the saturation
equation, and so on. This strategy reflects the different nature of the elliptic pressure equation
and the convection dominated parabolic saturation equation.

Let T, be the final computing time, and choose sequential time steps At, and a positive
integer N such that Zan=1 Aty = Ts. Let (P™, V], S™) denote the approximate solution of
the reservoir flow model (12)—(14) at time t, = >, _, Atp, for some n =0,...,N — 1. The

approximate solution at the next time level is computed in the following two steps:

1. Pressure: We use the saturation field from the previous time level in the coefficients
of the pressure-velocity equation (13)-(14). Let now (P"'!, VT"H) be the approximate
solution of the following pressure-velocity equations:

V (A\r(8™)gpVD) if pn = pw = p,

V (A (SM)VP™ ) + Qr =
(e (57) ) +Qr {0 7 i,

P L5 . —aAr(S™) (vpn+1 i QPVD) if pn = pw = p,
4 —aAr(S™) VP if VD = 0.

The pressure equation is solved by a Galerkin method with piecewise linear (on triangles
in the numerical grid) elements. Hence the velocity derived from the Darcy equation is
piecewise constant on triangles.
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2. Saturation: Equipped with the velocity VT"+1 calculated in the previous step, let S™t!

be an approximate solution of the saturation equation
o Sn+1
¢ ot
A good treatment of the saturation equation is essential for obtaining an accurate solution

of the reservoir flow model (12)-(14). We propose to use a level set method to solve the
saturation equation (12) numerically. In what follows, we present the algorithm in detail.

LY TRR NGO A= S e 5T )

4.1. The level set method. As a result of the sequential solution strategy outlined above,
we need only consider the case where the velocity is stationary (in time) and independent of
the saturation. In this case the saturation equation is a conservation law of type

(16) H) 2 4 v(x)Vf () =0,

where u(x,t) is the unknown function, ¢ is strictly positive, and the divergence of v is zero.
We are interested in the initial value problem where u(x,0) is given. In general, (16) possesses
discontinuous solutions and must thus be interpreted in the weak sense. Furthermore, as is
well known, weak solutions are not uniquely determined by their initial data and an entropy
condition is used to pick out the physically correct weak solution. In the following, we use
the term entropy weak solutions when referring to solutions of the initial value problem for
(16) defined in the sense of Kruzkov [21], see also Oleinik [26].

We first show that in an important special case, the initial value problem for the conserva-
tion law (16) can be reformulated as an Eikonal equation. If the solution of (16) is smooth,
then it can be found by the method of characteristics, i.e., let x(7) and ¢(7) be solutions of
the ordinary differential equations

x = v(x)f'(u(x,t), x(0)=x0
o b =
where * denotes d/d7. In this case
d ou ou

Eu(x,t)quat +vf'(u)Vu=¢p— +v-Vf(u) =0.

at

Consequently, u(x,t) = u(xp). Consider now the contour given by ug(x) = k, and let the
‘front’ Ei(t) be defined as

(18) S0 ) e 1 o B
Now the above calculations imply that Z;(¢) will move with a speed given by
f'(k)
Villz)F=tvi(es .
(@) = vix) 25

Let Tj(x) be the time Zi () crosses the point x. The crossing time satisfies (in the viscosity
solution sense [10]) the Eikonal equation

(19) [VTi|F(x) =1,

where F(x) is the outward normal velocity of the propagating front, which in our case reads
F(x) = (V-n)(x). The normal vector of the front is given by n = VT}/|VT;|. We now
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assume that f’(k) > 0 for all k, which is the case in the reservoir model (12). Then the
Eikonal equation for the unknown 7} reads

(20) RS e

I8 (k) = 0; then T ()= 100
In the model considered here, the flux function f is of the form

A1(u)
(1) =
where \i(u) is a non-decreasing and concave function such that A;(0) = 0, and A\(1) = 1.
Similarly A is convex with A2(0) = 1 and Ag(1) = 0. The prototypes for these functions are
A1 (u) = u? and Aa(u) = (1 — u)?, leading to the flux function

2
(22) f(u)

i u
T w24 (1-u)?’
In general, the properties of \; ensure that the flux function is s-shaped, i.e., non-decreasing
with one inflection point and f(0) =0, f(1) = 1.
We now assume that the velocity field v is given by the solution of (13) via (14), and that
Q7 is a sum of localized Dirac masses, i.e.,

(23) Q)= bierdiles; iy

J

where d(x) denotes the Dirac mass localized at x. This is commonly used to model injection
wells located at those x; where ¢; > 0 and production wells where ¢; < 0. In this case v is
such that the characteristic curves x(7) given by (17) connect x; and X, where ¢,; > 0 and
@ < [0k

Now consider (16) and the special initial value (15) i.e.,

(24)

(x.0) i if|seq — /i <imp and ¢ 20,
u =
; 0 otherwise.

In this case the solution will not be smooth, and to use (20) we must solve the Riemann
problem

ov  Of(v) 1 T it
25 vl £ 05 70 =
{25) ot g oz A {0 o an = (0,

where f is given by (22). The solution is found by taking the upper convex envelope of f
between 0 and 1. Since f is s-shaped, the solution is of the form

(f')_l Gt e

0 otherwise,

(26) v(z,t) =

where f denotes the upper convex envelope, and ( f’ )~! the inverse of its derivative. Further-
more, % is the solution of
f (@)

Play ="
u
If f is given by (22), then @ = v/2/2 ~ 0.707.

s
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Due to the special form of the initial value function (15) and the velocity field v, the
solution u will take values in the set [a,1](J{0}. Let now Tk(x) be the time that u(x,t) =k
for k € [@,1]. Since Zx(0) = {x| |x — x;| = 7o and ¢; > 0} for all such k, T equals T/f'(k),
where T solves the equation

(27) L % =0
with the boundary condition 7' = 0 for x € E¢(0). Consequently, the unique weak solution of
(16) and (24) is given by

(28) u(x,t) = {0 if ¢ < Tﬁ(:xz, ) 0 if tf' (2) < T(x),

k if Ty (x) (f’) y (T_(tij) otherwise.

Hence, solving the Eikonal equation (27) is equivalent to solving the initial value problem
(24) for (16).

4.2. The fast marching method. So far, we have defined a semi-discrete approximation
of (16), where (27) is solved exactly. The next step is then to compute (27) numerically. To
this end, we use a fast marching method. For simplicity, we use a regular grid with m x n
cells in this study. Our implementation of this fast marching method is taken from Sethian
[29, 30, 31]. The basic observation underlying the fast marching method is that all waves have
finite speed of propagation. Since the flow is directed out from injection wells and towards
production wells (unless wells are shut off), information will flow from regions with smaller
arrival times towards regions with higher arrival times. In other words, the arrival time T,
cf. (27), at a certain point in the grid depends only on points having smaller values.

Rather than solving equation (27) simultaneously at all points of the domain, we can use an
iterative approach based on the above observations in which we gradually march the solution
outwards from the injection wells. To this end, we divide the nodes into three categories: alive
nodes, narrow-band nodes, and far-away nodes. Assume that the solution has been computed
for all alive nodes. The narrow-band nodes consist of all nodes lying within a certain distance
in time from the alive nodes. At each narrow-band node an estimate of the arrival time has
been computed during the previous steps. The far-away nodes consist of the remaining nodes
in the grid. To march the solution one step forward, we pick the node in the narrow band
having the lowest arrival time and update its value using an upwind discretization of the
Eikonal equation. Since the calculation at the node point uses only nodes with lesser arrival
times, the arrival time at the current node can not increase. The node is then tagged as alive
and removed from the narrow band, and we update the arrival time of all neighbouring nodes
that are not alive. If a neighbour is a far-away node, the node is added to the narrow band.
We continue the algorithm until either all nodes are visited or a certain prescribed maximum
arrival time is reached.

The points in the narrow band are organized in a complete binary three. Hence retrieving
the node with the smallest T-value is trivial, and inserting new nodes is an O (log N) opera-
tion, where N is the number of nodes in the narrow band. Typically, N is of the same order
as the number of grid blocks in one dimension, i.e., of order m or n. Solving the Eikonal
equation for the whole grid usually means ‘marching’ the narrow band across the entire grid.
Consequently, solving the Eikonal equation by the fast marching method, storing the narrow-
band points in a binary three, is an O (N log N) operation. This means that it will be much
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faster than other methods for solving the Eikonal equation which are typically O (N 2), see,
e.g., [15]. The algorithm is described in more detail in Sethian [29, 30, 31].

To discretize the Eikonal equation, we can use one of several upwind methods. One choice
is to square the equation (27)

2
(29) (VT : v) =
Then we can use the five-point difference stencil
2
(30) [(ma.x(D;T, 0) + min(D; T, 0)) v + (max(D; T,0) + min(D; T, 0)) vy] il

where

g Lt Ll IR I Sl 1
(31) D = 4e T 5 Dy ==+ e :
Inserting the discretization into (30) gives a nonlinear equation for 7} ; in terms of its four
closest neighbours T;+1 ;,T; j+1 that can be solved by, e.g., Newton iteration. The advantage
of this method is that it is very fast, typically we only require two or three Newton iterations
until numerical convergence. However, squaring the equation means that we no longer differ
between ‘uphill’ and ‘downhill’. Hence this scheme works only in the case where sign (VT - v)
is constant. Since there are potentially five points in the stencil, we call this scheme a ‘five-
point scheme’.

A better alternative is to use (27) directly, and compute local streamlines around each
point x; ; = (iAz, jAy), and use these to update T; ;. These approximate streamlines can be
defined in several ways; we use the following simple strategy. Let w;; consist of the points
around Xx; ;, i.e.,

wij ={(z,y)|z = (£ 1)Az, y = (j £ 1)Ay}.
Assume that the calculated velocity at x; ; is v; ;. Then let 8; ; be the point on w; ; such that
0 = Xi;j +0i,jvij,

for some positive 6; ;. Then let Tp, ; be defined by linear interpolation between the points T
on w; j. Now we can discretize (27) as

Ti,j —Tgi,j ]V‘ | = ¢; ;
Pt et i

where ¢; ; is the porosity at x; ;. Hence
(32) Tij = Tp, ; + 0i5¢i;-

Since there are eight neighbours that can contribute to T; ; (but at most two actually will),
we call this scheme a ‘nine-point scheme’.

Presumably, higher-order approximate streamlines, using the velocity field and T' values
from more grid points would give better results, but we found that this simple approach
worked well. Also, as we used a finite element method with piecewise linear elements for the
pressure equation, this results in a piecewise constant velocity field, so it fits with our discrete
local streamlines. If one uses a higher-order method for the pressure equation, one should
modify the local streamline computation accordingly.

Note that the values 8;; can be computed at the beginning of the calculation, once the
velocity field is known.
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4.3. Restarting. The initial data will not generally be of the simple form (24). This form
applies only for the first step in a sequential time stepping procedure for (12)-(14). For
subsequent steps, the initial data will be given by the saturation at the end of the previous
time step, i.e.,

0 if T!L,] Z TZ)

& g (f’) 1 (7—34—> otherwise,
]

where Ty = t,f'(a), and tp is the time after £ time steps. This saturation is then used
as coefficients in the pressure equation (13) and the velocity for the next time interval is
computed. To solve the saturation equation again, we could fix some small number As and
make an initial narrow-band where s; ; in the interval [4,% + As], and tag as far-away points
and alive points those where s; ; = 0 and s; j > @ + As respectively. This would update the
region around the discontinuity in s. To update the rest of the saturations we could define
narrow bands in intervals [@ + (k — 1)As, @ + kAs] for k such that @ + kAs < 1, and update
the saturation in those intervals.

It is however more convenient to use the T' values directly. Fix some small number AT and
tag as narrow-band those points where T; ; is in the interval [Ty — kAT, T; — (k — 1)AT]. The
far-away points and the alive point are those where T; ; > Ty — (k—1)AT and T; ; < T, —kAT.
The solution with this as initial values is stopped when the smallest largest alive point has a
T value of Ty, 1 — (k— 1)AT. This is repeated until T, — kAT = 0. Then we can set £ = £+ 1
and use (33) to update the saturation for the next time step.

This means that we have to solve the Eikonal equation K = Tp/AT times each time we
restart. But each narrow band will typically pass only a correspondingly small region of the
grid. Therefore solving K times does not take longer time than solving once with a larger
‘time step’.

5. NUMERICAL EXAMPLES

In this section we present four numerical examples that highlight the features of the method.
The first two examples are quarter five-spots with homogeneous and heterogeneous perme-
ability, respectively. The third example describes flow in a channel system. The last example
studies flow around a low-permeable barrier. In all three examples, we use the fractional flow
function defined in (10) with Ap(S) = S%/un and Aw(S) = (1 — 5)?/pw-

The level set method is compared with a large time step, front tracking method based on
dimensional splitting with Dafermos method [11, 18, 17] for each one-dimensional problem.
The efficiency of this method has been documented in previous studies [4, 5, 19, 23, 24].

Regarding the pressure equation, wells are represented as point sources (23), and we use
homogenous Neumann boundary conditions at the boundaries of the reservoir. As mentioned
above, we use a first-order element method to solve the pressure equation (13), where the basis
functions are piecewise linear on triangles. To solve the resulting linear system of equations
we use a conjugate gradient method.

5.1. Homogeneous quarter five-spot. The first example is the well-known quarter five-
spot test case. The test case consists of a repeated pattern of squares. In each square there
is an injection well at the origin and production wells at the corners (£1, +1). All wells have
rates equal unity and we use mobility ratio equal one. Since the velocity field is slowly varying
in this case, we use only one (initial) pressure update.
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FIGURE 1. Saturation profiles computed by the level set method with five-point
(left) and nine-point scheme (middle) and by the front tracking method (right).
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FIGURE 2. Saturation profiles for the nine-point scheme on 2 x 2* grids for k = 5,...,9.

Figure 1 shows the saturation profile at time ¢t = 0.59 computed on a 256 x 256 grid by
the level set method with the five-point and the nine-point scheme and by the front tracking
method. The front tracking method was run with CFL number 32.0 up to time 0.5 and then
4.0 afterwards. The five-point scheme is obviously the most diffusive, giving a much too
broad finger. The front tracking method gives accurate resolution of the finger, but has some
numerical diffusion along the leading front due to repeated projections onto a uniform grid.
The sharpest resolution is obtained by the nine-point scheme which has very little numerical
diffusion. Table 1 gives the mass balance errors and the runtimes measured on a dual 400
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TABLE 1. Relative mass balance error and runtime for homogeneous quarter five-spot.
I five-point nine-point front tracking

runtime |s] 1.8 2.6 24.6
mass error [%)] 0.84 -0.29 -0.19

TABLE 2. Runtimes, mass error, and self-convergence for a grid refinement study in
Figure 2. The discrete L'-errors are measured relative to the solution computed on
the 512 x 512 grid and normalized by the corresponding L*-norm.

N | runtime [s] mass [%] rate L!error rate
32 0.02 -0.77 — ozl @ =
64 0.10 -1.93 1.58 0.0176 1.56
128 0.48 -0.85 LY. 000E L2
256 2.58 -0.29 1.56 0.0028 1.41
512 15.43 -0.11 1.45 e —

MHz Pentium II processor. We remark that the runtimes reported here are for the saturation
equation only. The mass balance error is defined as

BeAgSEG(EE s o)),
ij
where the time t equals the number of injected pore volumes. Notice that compared with
front tracking, the level set method uses only around 1/10th of the runtime. With a CFL
number 1.0 for front tracking, the factor becomes 1/20.

Figure 2 and Table 2 display the result of a grid refinement study of the saturation profile
at time ¢ = 0.59 for the nine-point scheme. The convergence is of order one both with respect
to mass balance error and L! error. The runtime increases with an exponent 2.4-2.6 in the
number of grid blocks in one direction.

5.2. Heterogeneous quarter five-spot. In the next example we add a stochastically gen-
erated permeability field to the above case and change the viscosity ratio to pn : pw =
4:1. The permeability is realized from a log-Gaussian distribution, with values in the range
from 4.8 mD to 4.2 D. Figure 3 shows saturation profiles at time ¢ = 0.35 computed by the
nine-point scheme and front tracking (with CFL number 16). The fingers are very sharply
represented and are almost identical for both methods. However, notice the small oscillations
in the front tracking plot. For lower CFL numbers in the front tracking method, these oscilla-
tions disappear and the fingers become slightly longer due to added numerical diffusion. The
runtimes for the methods are 3.0 seconds for the nine-point scheme and 25.0 seconds for the
front tracking method. Both methods used a 256 x 256 grid.

5.3. A channel problem. To investigate further preservation of symmetries and dissipation
properties of the level set scheme, we consider flow in a channel system in the form of a cross.
The permeability is set equal 0.1D in the beams of the cross and 0.0lmD outside. Water
is injected at a uniform rate at the bottom and on the left, and oil is produced at the top
and on the right. Due to the symmetry of the problem (about a diagonal from the lower left
to the upper right corner), the advancing water fronts should not intersect, but can come
arbitrary close along the diagonal as time increases, see Figure 4. For comparison, Figure 5
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FIGURE 3. Saturation profiles computed by the nine-point scheme (left) and front
tracking (right).

shows the solution computed by front tracking with CFL number 8.0 on a 513 x 513 grid.
Even on this fine grid, the two water fronts collapse into a single front due to the numerical
diffusion introduced by the projection in that scheme. The fact that the two water fronts will
not intersect in the level set method can easily be seen from the T; ;, which is plotted for the
100 x 100 grid in Figure 6. In the corresponding simulation, the fast marching method was
run only until time T' = 1.0/ f'(a).

Figure 7 gives the result of a grid refinement study for the channel flow at time ¢ = 0.15.
On the coarsest grids, some grid blocks along the diagonal have been partially flooded by
both injection wells, as can be seen from the wiggles in the contour lines. Still, the two water
fronts are clearly separated on all grids. Continuing the refinement to a 400 x 400 grid gave
no visual changes compared with the 200 x 200 grid.

5.4. Reservoir with a barrier. In the next example we consider a reservoir with a hor-
izontal low-permeability barrier with a narrow passage at each end. The barrier is centred
around (0.5,0.5) and has width 0.9 and height 0.1. Inside the barrier the permeability is 0.01
mD, in the left passage it is 0.5 D and 1.0 D elsewhere. The injection well is in the lower left
corner and the production well is in the upper right corner.

Figure 8 shows saturation profiles computed by the level set and the front tracking method
on a 129 x 129 grid. In the left column, the pressure was computed only once and in the
right column it was computed 9 times. For equal number of pressure updates, the solutions
computed by the two methods are quite similar. The front tracking solutions are more
diffusive, while the level set method has sharper fingers. This is particularly evident in the
right column and is in correspondence with the observations for the homogeneous quarter
five-spot simulations.

6. CONCLUDING REMARKS

The level set method presented above is very accurate and efficient for numerical reservoir
simulation. In the level set formulation, the saturation equation is recast to a set of stationary
Eikonal equations that can be solved by a fast marching method. This gives very high
efficiency of the computer code and extensions to three dimensions (disregarding gravity) is
straightforward.
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FIGURE 5. Advancing water fronts computed by front tracking on a 513 x 513 grid.

Even though the method can be viewed as a streamline method, it operates on a grid and
does not explicitly compute streamlines. Thus, the method is easy to program and avoids
most of the numerical difficulties associated with streamline methods.

Furthermore, it is straightforward to extend the level set method to more general models
where one knows the solution of the one-dimensional Riemann problem for the saturation
equation, e.g., polymer flow. Other obvious extensions are computations of tracer injection
and drainage and seepage areas.

Also, the level set method discussed here can be used as one ingredient in numerical methods
for solving related reservoir models with capillary pressure. A simple way to do this would
be to use operator splitting as in [14].
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FIGURE 6. T;; computed on a 100 x 100 grid. The height represents the time a
water front with unit velocity takes to reach the point (z,y).

100 x 100 200 x 200

FIGURE 7. The result of a convergence study for the channel problem.
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