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Abstract

Two nonoverlapping domain decomposition algorithms are proposed for convection dom-
inated convection-diffusion problems. In each subdomain, Dirichlet boundary condition is
used on the inflow boundary and an artificial boundary condition is used on the outflow
boundary. If the flow is simple, each subdomain problem only needs to be solved once. If
there are closed streamlines, an iterative algorithm is needed and the convergence is proved.
Analysis and numerical tests reveal that the methods are advantageous when the diffusion
parameter € is small. In such cases, the error introduced by the domain decomposition
methods is neglectable in comparison with the error in the singular layers, and it allows
easy and efficient grid refinement in the singular layers.

Key words. advection dominated problem, domain decomposition.

1. Introduction

Domain decomposition methods have been intensively studied for partial differential
equations. When they are used for elliptic diffusion problems, they give two benefits. First,
domain decomposition methods are iterative methods. In the iteration procedure, they pro-
duce good preconditioners. So, in order to reach a certain accuracy, the iteration number
can be greatly reduced. Second, domain decomposition methods reduce a large problem
into many smaller size problems on the subdomains, and the computation of the subdomain
problems can be done by parallel processors. Convection-diffusion problems with a dominat-
ing convection term is still an elliptic equation. However, the dominating convection feature
has a hyperbolic nature. When domain decomposition are used for convection dominated
problems, the flow directions must be carefully considered. Some of the good properties
of domain decomposition methods for diffusion problems are not anymore enjoyed by the
convection dominated problems.

In literature, results of domain decomposition methods for convection dominated prob-
lems are not as rich as for diffusion dominated problems. In Wang and Yan [9], a nonover-
lapping domain decomposition method combined with a mixed finite element method was
proposed. In Tai, Johansen, Dahle and Espedal [7], a characteristic method is used for the
convection term and a domain decomposition method is used for the diffusion problem, and
so it enjoys the good properties of both of the methods. In Rannacher and Zhou [5, 12],
streamline-diffusion finite element methods (SDFEM) were used with an overlapping domain
decomposition. In Rognes and Tai [6], a general space decomposition method is proposed
for convection dominated problems. In Kapurkin and Lube [3], a modified Schwarz iteration



methods was discussed. Compared with the literature results, the proposed methods of this
work are easy to implement and easy to do local refinement.

This work is inspired by [4] and [12]. Two nonoverlapping domain decomposition methods
are proposed. When the flow is very simple, the noniterative domain decomposition can be
used. The subdomains in the upwind side shall be computed first and the subdomains
in downwind direction are computed one after another. For each subdomain, Dirichlet
condition is used on the inflow boundary and an artificial boundary condition is used on the
outflow boundary. When the flow is complicated, then it is not possible to use this marching
process in the flow direction for the subdomains. Instead, an iterative method is proposed in
§3. Both methods are suitable for problem (2.1) when the diffusion parameter e is relatively
small. In this case, the error introduced by the domain decomposition is small, and one
can easily use finer meshes in the subdomains that intersect with singular layers. When the
proposed methods are used for time dependent problems, the convergence properties are
even better, see §4 for details.

For works related to diffusion dominated convection diffusion problems, we refer to Cai
and Widlund [2], Wang [8], Cai and Xu [11], Xu [10], ect.

2. The Noniterative Domain Decomposition Method
Consider the advection diffusion problem:

—div(e v u) + div(Bu) + au = f, in 9, (2.1)
U= 0’ on 69, ’

where a, f are bounded functions, f is a vector-valued function. For simplicity, it is assumed
that € is a small constant, all results can be extended to the case that € is a symmetric and
positive definite matrix-valued function with small entries ¢;;.

The standard Galerkin method for (2.1) is to seek u € SP such that

(e 7 ul, wv) + (div(Buh) + au?,v) = (f,v), Yve Sk, (2.2)

where S € H}(Q) is the finite element space on ). It can be proved that when o+ %divﬁ >
¥>0,

lu—u"llo < Cllu—w!|ly, (2.3)
where u! € S! is the interpolation of u, and C is a constant. Here and also later, the
constant C' always denotes a positive constant that is independent of h, € and u, but could
differ from context to context.

For convection dominated problem (2.1), the finite element scheme (2.2) is stable only if
the mesh size h is small enough, i.e. h << e. For practically usable h, stabilised finite element
methods, like streamline-diffusion, upwinding, or characteristic type of methods should be
used. However, to avoid to confine our analysis for a specific stabilised method, we shall
present our analysis for the standard finite element method and in practical computations,
the solution in each subdomain shall be computed by a stabilised finite element method.

To describe the domain decomposition algorithms, we first divide the domain 2 into
some subdomains §; satisfying

Q=UQ,‘, Qiﬂﬂj=0, 1#]

Let S"(©%;) C H*(f;) be the finite element space on §);, we define
V; = {v € S"(); v=00n 80:( )00},



= zVi = {v e S"Q;), Vi, v=0o0n0Q}.

Notice that functions from 5‘(’} can have jumps along the interfaces. Bilinear form A4;(-, ") is
defined as:

Ai(w,v) = (e 7w, Vo), + (div(fw) + aw,v)q, — / w v, 7fds, (2.4)
Cloke

where 7 is the unit outer normal vector on 0f); and

() = si%i w(z+s8), (w,v)e, = /Q wvdz,

0, = {z € 8%, f(z)-ii(z) < 0}.

Our hybrid domain decomposition finite element solution is to find " = Y 4" such that
ﬁf =01in Q\ Q;, and in Q;, ﬁf € V; satisfies

Aat,) = (fyo)a, - [

(@")_vy@Bds, Vv e Vi, (2.5)
a9,

where (4")_ is the boundary value of the solution of the adjacent subdomains in the upwind
direction.

In order to solve the subdomain problem (2.5) to get @?, the inflow boundary condition
ﬂhlm,— must be known. Therefore, we need to assume that the flow is simple so that the
domain Q) can be divided into subdomains and when the subdomain problems are solved
one after another in the flow direction, the inflow boundary condition is always known from
the neighbouring subdomains. If the flow does not have closed streamlines, this kind of
division is always possible. By suitably organising the subdomains, the computation of the
subdomains in the crosswind direction can be done by parallel processors. This respect is
similar as Zhou [12].

In the domain decomposition scheme (2.5), an artificial boundary condition on the out-
flow boundary is introduced, and so an error will be produced by the artificial boundary
condition. In the next theorem we shall prove that when e is small, the effect from the
artificial boundary condition is small. This is also confirmed in our numerical experiments.

Theorem 2.1 Suppose u is the solution of (2.1), @” is the hybrid domain decomposition
finite element solution of (2.5), a + %div,@ >~ > 0in Q, and |76 > 71 > 0 on inner
boundaries 92, \052, Vi, then

Ju =@l < Cll = w'll + €3 I 30l sny0a) (26)

where u’ € S} is the interpolation of the solution u.
Proof. Define for any w, v € S,

A(w,v) = ZAi(w,v) + Z /B.Q_ w_v,iifds

= Z(e v w,Vv)a, + Z(dw(ﬁw) + aw,v)q, — Z [w]vy7ids,

897
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where
[w] = wy —w_.

By (2.5),
A(@",v) = (f,v), Voe Sk

Integrating by part, it can be proved that for all w € 5'6‘,

(V(Ew), Vw)o, = —(w,ﬁ- vw)a, +/ w+nﬁds +/ w? fifds.
897

oaf

Note that . B .
div(fw) = [ - Jw + wdivg.

Hence

(div(fw), w)q, = %((diuﬁ)w,w)g, = %/89_ w? ifds + -;-/3 wiifds.  (2.7)

G

Then, by using (2.7), and noticing that w = 0 on 9Q; (99, for all w € Sk, we get

Alw,w) = Z(ve Yw)a, + Z (div(Bw) + aw, w)q, — Z/ w+n,3ds

: 097

= Z(ﬁ Vv w, Vw)ﬂ‘ + % Z(d“)(g)wa w)ﬂi + % Z/ wiﬁgds

- - 80T
+Z%/@ wzﬁﬂds+z aw, w)q, —Z/ wlw Gds

= Yevw g, + (o + gdivdw,w) - 3 ) / LA 2s)

33 e B+ 3 [ v
—— w” nfds + wyw_nAds
221: o0; Z o0;

= Z(E v w,Vw)o, + ((a+ %divﬁ)w,w)

= ]nﬂlds > 0.
72 [

Let |[w||} = A(w,w), u! € S} be the interpolation of the solution u and e" = a" —u’.



Using the fact that [u1]|695 = 0, there comes
”eh”2.4 = A(U’} - u , € ) (f7 ) A(ulveh)

= (—div(eyu)+ div(ﬁu) + au,e?) — A(ul,eh)

= - =2 € — v u = ny
- Z/OQG +Z(vu ul), el Q+Zd'l} u’)), "),
Z< (w—u8)ePia. +Z/ ulleh ftfds

N

= - hds + e (u—ul), veha, + (div(s u—ul) eMq,
Z/an \an n Z Z he)a

ar Z(a(u = UI),Ch)Qi

<

8“ 4 1 1
fz “a—n“agi—\aQ” [eh] ”ag;\an + ”“ - u1”1(62 ||e’ ”1 alx ||€’ “0) .
By (2.8), when [if] > m > 0 on | 897 \00,

S el onrron <95 2 3 Il enl Bl llo o0- < 207 *llenlla,

and when a + édivﬁ > >0,

1 _1
€[lenlls +llenllo < v~ llenll a-

Hence, combing them with (2.9), one deduces

Ou
llenlla < C |3 lim-llanron) + lu =l

which proves theorem 2.1.

Remark 2.1 Compare (2.6) with (2.3), one sees that the error resulted from the artificial

boundary condition is only
Ju
f)(z ||%l|o,am\an) :
i

For convection dominated problems, boundary layer and transient layers can appear
inside the domain €). However, the width of the singular layers are at most of the order
O(e). The singularity of the solution is stronger in the crosswind direction. At a point z
inside the singular layers, let n. be the unit vector in the crosswind direction, then it is
known that

ou
< =1y
5] < O™




For a subdomain §);, let H; be its diameter. If the boundary 0€2; is parallel to the stream-
lines, i.e. ﬁﬁ: 0, then

ou ou 14k
Ha*nno,ani— = ”a_n‘”o,aQ; =0(e lHi Ji

In this case, the error produced by the artificial boundary condition is

0 1
€| é%“o’agi" = O(Hf )s

which is very large.

The above calculation explains one of the practical implications of the condition fiﬁ >
v1 > 0. In getting the subdomains, we shall avoid the situation that the subdomain bound-
aries are parallel to the streamlines in the singular layers. Outside the singular layers, there
is no problem. Due to the reason that the boundary layers are always narrow, i.e. of width
O(e), we can construct the subdomains in such a way that the part of 0Q; contained in
the singular layers is only of the size O(e). For example, if the streamlines and 0Q; in the
singular layers are all straight lines, and |ﬁﬁ | > v > 0, then there exists a positive constant
0 such that the angle between 0, and the streamlines is larger than 6. So, the size of the

part of 0€); contained in the singular layers is O(;55) = O(e€). As a consequence,

Ou ., Ou Ou ., 1_ ;
/6( )eds = /( )d+/aﬂ\l( )2ds < C(=)? +C < Ce™

Q- On on on €’ sinf

Above, [ denotes the part of 092, that is contained in the singular layers. Therefore, in the
worst case, the summation of the error from all the subdomains is

Z” ~lloa: \aQ<C€Z(€ By = 0(ed).

Remark 2.2 The streamline diffusion finite element method is stable and shall be used
to compute the subdomain solutions preferably. Then, on every subdomain §2;, problem
(2.5) shall be revised to find @"|q, = @? € V; such that

A;j(ah,v) = (f,v+h div(Av))a, — / (1+ ha)avififds Vo € Vi,
Clohy

Ay(af,v) = (e il, vv)a, + (div(Bil) + il v+h div(Fv))e, — / (1+ ah)(@l) vy 7iBds.
o0,

Using similar analyses as used in theorem 2.1, it can be proved that when a+ %divﬁ >v>0,
and h is small enough (such that a+ %divﬁ%—%(adivﬁ—ﬁ-va) >4 >0and 1+ah >4 > 0),

then

la"—ully < C ZH ~Jlg.0r \aa+€h22|l"|f29 (b + hh)u—ull + A F = ul o,

where the error

1 Il — il
eht 3 lullza, + (e} +A)llu —w/ s + h=F fu = u!llo
7



is the same as the standard error comes from the SDFEM scheme. So that, the error comes
from the artificial boundary condition is still O(e)(3_; H%”aﬂ.‘\an) .

3. The Iterative Domain Decomposition Method

When the flow is complicated and there are closed streamlines, it could be difficult to
construct the subdomains in such a way that the subdomain solutions can be computed in the
flow direction and inflow boundary condition is always available when we come to compute
the solution of a new subdomain. In this case, we only need to construct the subdomains to
guarantee ﬁ'ﬁ > v > 0on 09, Vi. Now, the subdomain solutions are all coupled to each
other. An iterative scheme is needed. During the iteration, the inflow boundary condition
is taken from the previous iterative step, and the algorithm can be written as:

Step 1. Choose initial value 4j;

Step 2. For n > 1, in every subdomain Q;, find 4} |, = 12?“ € V; such that

A (Al v) = (f,v) —/ (ap)_vyiifds, Vv € Vi; (3.1)
Elok

Step 3. Go to the next iteration.

For the above scheme, we can prove that it is convergent, and the spectral radius for the
iteration operator can be estimated as in theorem 3.2.

Theorem 3.1 Let 4" be the solution of (2.5), 47 be the solution of (3.1) and a+ %divﬁ >
0, then the iterative scheme (3.1) is convergent, i.e.

lah — 4l = 0 asn — oo.

Proof. Let é” = @4} — @*. By (3.1) and (2.5), for any v € S}(1),

Z(e v e, V), + Z(div(ﬁé") + aé™,v)g,

1

- Z/ éiv+ﬁ,§ds + Z e"~ 1o, wfds = 0.
i Jo9; i

o9
Take v = é" € §(), then

D (e e, véMa, + Y (div(Be") + ae™,éM)q,

1

3 ) (3.2)
_ Z /80,-‘ (e")?7ifBds + El: /697 &n=1en ifids = 0.
Let E" = E(€"), where
i Z /an; e (3.3)

Using the fact that |78] = -3 on 09, equality (3.2) and relation (2.7), it can be shown



that

Er = Z/ nﬁds-{_Z/ it nﬁds—ZZeVe €")a,
—22 (div(Be™) + ae™, é™)q, +22/ +)273,311L~;-2Z/ eer—tifds
P o)
- i 1+Z/ nﬁd3+z An 1 nﬂds—?Z fve ;ven)ﬂ

BQ‘

—Z((divﬁ-{— 20)€™, €™ )q, —Z/ (ei) nﬁds—Z/ )?7i3ds

¢

+2Z/

o0

nﬁds -2 Z/ efels 158ds

o0

= - zz(fve ,ve"a, - Z((dz‘vﬁ +20)¢", "),

+Z (er 1 nﬂds—?Z/ ellets 1nﬁd5+2/ n,[;ds

BQ_ N

= =il g Z(e \V4 el \V én)Q;‘ — Z((dw[§+ 2a)én7 én)Qi

0

+ Z‘/ — e Y2i3ds

Eloky
— En—l s 7D ,
(3.4)
where
F”:2Z(evé”e Q+Z (divB + 20)é™, é" Q+Z/ )2|73|ds > 0.
- aa;
(3:5)

By (3.4) and (3.5), {E™} is a decreasing sequence of nonnegative numbers and
ZF" < 00,

thus
F*" —0, as n— oc.

By (3.5), if a + 3 dwﬁ>~y>0
1
l€*lo < =F* -0 as n— oo,
g/
else, if only o + %divﬁ > 0 is satisfied, it still can be proved that

©
le™llo < Cle™h < :F" -0 as n— oo,



which proves theorem 3.1. X X
Let T, be the affine mapping from S{ to itself such that, for any 6 € S%, ¢ = Ty(9) is
the solution of the following equation:

Z(e Vv ¥, VV)a; + Z(div(ﬁw) + a,v)q, — Z /BQ‘ w+v+ﬁgds

(2

(3.6)
= —Z/ 6_v,7if3ds, vo € Sk
A e

Then, the spectral radius of this iteration operator 7y will be discussed in the next theorem.
Theorem 3.2 Let p(Tp) is the spectral radius of Ty, which is defined in (3.6), suppose

a+ %divg >~ >0, then

o=

<5 S —
o(To) < <1 +Ce+ C’yh)
Proof. Let A be an eigenvalue of T, and € be the corresponding eigenvector, so that
To(0) = A6.
It follows from (3.3) that
E(Ty(8)) = [\ E(8). (3.7)

Also, by (3.4) and (3.5),

E(To(8)) = E(6) — F(To(6),6), (3.8)

where

F(To(6),0) = 2) (e To(6), vTo(0))a, + Y _((div +2a)T5(8), To(6))a,

(2 1

+3 /8 . (Tl0). ~ 0 jidlds

I\

ell 7 To(O)II5 + VI To(0)lI5 = [AI*(ell 7 81I5 + vIIO1E)

Y

CINPe+ k(X [ (8- Pldlas)

= C(e+ hy)|A\?E(9).
Hence, by (3.7), (3.8), (3.9),
IAPE(8) < E(0)(1 = C(e + hy)[AP),

and so,
A <1-C(e+ hy)| A2,

That is

1
2

Al < <—1—— :
1+ Ce+ Chy

which proves theorem 3.2.



Remark 3.1 When € is not small, different kinds of boundary condition on the outflow
boundary should be used to improve the accuracy. For example, Lagrange multiplier can be
used on the inner boundaries, see [9] for the details.

4. Application to Time Dependent Problems
Consider the time dependent convection-diffusion problem:

uy — div(e 7 u) + div(fu) = f, in Qx [0,T7],
u(z,t) =0, on 0N x[0,T], (4.1)
u(z,0) = uo(x) in S

Let us use the backward difference scheme:

ﬂk+1 _ ak .
ST div(e v @**1) + div(BaFt) = f, in  Q,
a**1(z,t) = 0, on 09, (42)
a(z) = uo(x), in ,
In every time step, we just need to solve the problem
- ghtt a*
—div(e 7 @) + div(futt) + — = f+ —, in Q,
At At
(4.3)
ﬂk+1 = 0, on 897

which is same as (2.1) with @ = ==. So, the noniterative and iterative domain decomposition
scheme (2.5) or (3.1) can be used to solve (4.3).
Similar as in theorem 2.1, it can be proved that

kg ou
2~ afllo < Clev/BE Y (15 lonmon) + At Il = 'l + llu=w/llo), VE,  (4.4)

where 4} is the domain decomposition solution of (4.3). When At is small (for example,
At ~ h or At ~ h?), the convergence is better than (2.6).

If the iterative domain decomposition is used to solve (4.3), because a = -+

Lt
a+ %divﬁ > 0, so the iteration is convergent, and the spectral radius of the iteration operator
is:

is large,

1 3
p(To) < (1 ok Ch(At)—1> ' &)

Hence, when At = O(h),
p(TU) S C< 13

i.e. the error reduction of the iteration is uniform. Especially, when At = O(h?),

p(To) < CVh,

10



therefore only a few iteration steps are required at every time level.

5. Numerical Experiments
As a test example, we calculate the model problem

—eAu+yu+2u=f, in
(5.1)
m =1 on 0N,

with Q@ = [0,1] x [0,1], and

f=Ci(e1®) 4 e2170)) 4 Cy(eb172) 4 A1) 4 9,

1l =@ a1 — il 4L /AT
o it N Y =__~:7

eb__ea

b= —1—+/1+4e

_— a
el —ea’ 2¢ 2¢ ’
which has an analytical solution

u = (C1e®17%) + Cpe?17%) 1+ 1)(C1e?~¥) + Coe? =) 1 1).

In computations, the domain 2 is divided into 5 x 5 subdomains, and the piecewise
linear function on uniform triangular meshes is used. In each subdomain, a first order
upwind approximation is used for the convection term and the inflow boundary condition is
realised exactly which is taken from the subdomains in the upwind direction. Let i=1,2,3.4,5,
and j=1,2,3,4,5 be the numbers associated with the subdomains in the x- and y-directions.
We solve the subdomain problems by first sweeping over i=1,2,3,4,5 and then sweeping over
j=1,2,3.4,5. By solving the subdomain problems in this order, the inflow boundary condition
is always available when we come to compute a subdomain solution.

In table 1, some numerical results for different ¢ and different mesh sizes h are shown,
where ||eg||o and ||eq||o represent the error of the global finite element solution and the error
of the domain decomposition solution for problem (5.1) in L?-norm, respectively.

Figure 1 shows the computed solutions and their errors for ¢ = 0.01 and h = 0.025,
where u, uhg and ud represent the exact solution, the global finite element solution and the
domain decomposition solution of (5.1), respectively.

From table 1 and figure 1, one observes that when e is small, the error of the domain
decomposition solution is of the same order as the global finite element solution (see table
1 for e =0.01, 0.001, 0.00001). From figure 1, one finds that the large errors both for
the global FEM solution and the domain decomposition solution are concentrated in the
neighbourhood of the outflow boundary. Due to the relative large mesh size used near the
outflow boundary, the boundary layer is not properly resolved. Here comes the advantage
of the proposed domain decomposition methods. Once we know that which subdomain
contains the singular layers, we can use finer mesh in this subdomain. By doing so, the error
introduced by the artificial boundary condition does not increase, but the singular layers
can be efficient resolved by using the known boundary conditions from the neighbouring
subdomains and a sufficient fine mesh in this subdomain. Different examples have been
tested by the proposed algorithms. The numerical results always show that when € is small,
the domain decomposition solution and the global finite element solution have similar errors
and the large errors are in the singular layers. To do grid refinement for the global problem

11



is not easy, but it is very easy to use fine meshes for the subdomains that contains the
singular layers.

e=01 €= 0.01 e = 0.001 e = 0.00001
llegllo | Neallo | llegllo | Neallo | Negllo | lleallo | llegllo | lleallo
h=0.1 [ 0.0155 | 0.0354 | 0.0126 | 0.0200 | 0.0066 | 0.0095 | 0.0061 | 0.0084
h=0.05 || 0.0085 | 0.0323 | 0.0131 | 0.0186 | 0.0038 | 0.0051 | 0.0029 | 0.0035
h=0.025 || 0.0045 | 0.0297 | 0.0122 | 0.0165 | 0.0029 | 0.0037 | 0.0014 | 0.0016
h=0.0125 || 0.0023 | 0.0280 | 0.0082 | 0.0122 | 0.0032 | 0.0036 | 0.0007 | 0.0007

Table 1. L?-error of the global solution and the domain decomposition solution.

uhg u(x,y) uhg-u

Figure 1: The global FEM solution and the domain decomposition solution for € = 0.01, A =
0.025 and the corresponding errors.

12



6. Conclusion
Both theoretical analysis and numerical tests reveal that the proposed algorithms are

suitable for problems with small e. When the diffusion parameter is small, the singular
layers are very narrow. In order to resolve the singular layers, the ratio between the mesh
size in the singular layers and the mesh size in the part of the domain where the solution is
smooth shall be very large. In this case, the error introduced by the domain decomposition
algorithms are neglectable in comparison with the errors in the singular layers. However, the
domain decomposition algorithms allow easy and efficient grid refinement in the subdomains
that contain the singular layers.
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