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A MATHEMATICAL MODEL FOR BATCH AND CONTINUOUS
THICKENING OF FLOCCULENT SUSPENSIONS IN

VESSELS WITH VARYING GROSS SECTION

R. burgera -*, j.j.r. damasceno b , and k.h. karlsenc

Abstract, The phenomenological theory of continuous thickening of flocculated suspensions

in an ideal cylindrical thickener is extended to vessels håving varying cross-section, including
divergent or convergent conical vessels. The purpose of this contribution to draw attention to

the corresponding mathematical model, whose key ingredient is a strongly degenerate parabolic
partial differential equation. For ideal (non-floccuiated) suspensions, which do not form com

pressible sediments, the mathematical model reduces to the kinematic approach by Anestis,
who developed a method of construction of exact solution by the method of characteristics. The
difficulty lies in the fact that characteristics and iso-concentration lines, unlike the conventional
Kynch model for cylindrical vessels, do not coincide, and one has to resort to numerical methods

to simulate the thickening process. A numerical algorithm is presented and employed for simu
lations of continuous thickening. Implications of the mathematical model are also demonstrated

by steady-state calculations, which lead to new possibilities in thickener design.

1. Introduction

In a series of papers it was shown that the phenomenological theory of sedimentation-consoli
dation processes provides a robust mathematical framework for modelling solid-liquid separation
processes of flocculated suspensions, including batch and continuous thickening in cylindrical ves
sels (Biirger et ah, 1999; Bustos et al, 1999), batch centrifugation (Biirger and Concha, 2001) and
pressure filtration (Biirger et al, 2001). In this contribution we extend the theory to batch and
continuous thickening in vessels with non-constant cross section. This application is of significant
practical interest since most industrial thickeners have a conically shaped bottom (to facilitate
sediment removal), and thickeners whose cross-sectional area varies substantially over the entire
effective height (‘deep cone thickeners’) are known to operate more efficiently (i.e., occupy less
volume and permit faster fill-up and transitions between steady states) than cylindrical ones.

This paper is organized as follows. In Section 2 we formulate the mathematical model, which
can be expressed as a nonstandard strongly degenerate parabolic-hyperbolic partial differential
equation for the local solids concentration together with initial and boundary conditions. We recall
some basic results of the mathematical analysis of such equations and consider the special case of
steady states, i.e. stationary Solutions representing normal operating conditions of the continuous
thickener. The steady State analysis is in the compression zone equivalent to previous work by
Resende et al. (1995). In Section 3 we present a working finite difference numerical algorithm for
the numerical solution of the partial differential equation and thus for the simulation of batch and
continuous thickening in vessels with varying cross section. A numerical algorithm has to be used
since even in the compression-free case, in which the model reduces to a first-order equation, it is
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BURGER, DAMASCENO, AND KARLSEN2

in general not difficult (unlike the cylindrical case) to construct weak Solutions by the method of
characteristics. To elucidate this problem we consider in Section 4 the sub-case of batch settling of
an ideal (non-flocculated) suspension in a conical vessel and outline, following Anestis (1981), the
basic transformations that have to be made to apply the method of characteristics. A collection
of sample numerical Solutions for ideal suspensions is presented.

Obviously, the steady-state analysis of the model of thickening in vessels with varying cross
section permits including the shape of a thickener as a new design factor, and the numerical
algorithm of the time-dependent partial differential equation allows to simulate the dynamic be
haviour of the thickener. This is demonstrated in Section 5 by two calculated stationary and
transient examples. Thus a more systematic analysis similar to that of Tiller and Chen (1988)
would be warranted. Conclusions that can be drawn from this paper are collected in Section 6.

2. Mathematical model

2.1. Continuity equations. We consider a vertical settling vessel with a variable cross-sectional
area s (x), where o<x< L is the height variable. We assume that the volumetric solids concen
tration ø is constant across each horizontal cross-section, i.e. ø = ø(x,t). Then the conservation
of mass equation for the solids is given by

where t is time and vs is the solids phase velocity. The analogue conservation equation for the
fluid reads

where Vf is the fluid phase velocity. The mixture flux, that is the volume average flow velocity
appropriately weighted with the cross-sectional area at height x, is given by

Q(x,t) := s(x)(øxs + (1 - ø)uf ). (3)

The sum of (1) and (2) produces the continuity equation of the mixture,

Equation (4) implies that Q{-, t ) is constant as a function of x. Since this quantity suffers no jump
across a discontinuity of ø, we obtain that

where Q D (t) < 0 is the prescribed signed volumetric suspension discharge rate at x = 0.
Equation (5) is equivalent to one of the mass balance equations. We let (5) replace the fluid

mass balance equation (2) and rewrite the solids balance equation (1) in terms of the flow rate
Qd(£) and the solid-fluid relative velocity or slip velocity vx vs V{, for which a constitutive
equation will be formulated. Observing that

2.2. Closure relationship for the slip velocity. The well-known kinematic sedimentation
theory by Kynch (1952) is based on the assumption that the solid-fluid relative velocity or slip
velocity vT is a function of the local solids concentration ø only, vT = ry(ø). The slip velocity is
usually expressed in terms of the Kynch batch flux density function /bk . In the framework of the
kinematic theory we have

S{x) +[S{x)(f)vs ) =O, o<x<L, t > 0, (1)ot ox

-s(x)- + 1 - <f>)v{ ) =O, o<x<L, t > 0, (2)ot ox

—Q{x,t)= 0, o<x<L, f > 0. (4)ox

Q{x,t)=Q{o,t) = Q D {t), 0 < x < L, t > 0, (5)

4>vs = {(f)Vs + (1 - (f>)V{)(f) + </>(! - </>)(fs - Vf) - + 0(1 ~

we obtain from (1) the equation

(Qd(*)ø + S{x)(f){l - 4>) vt) —O. (6)

i7\
vM = {)
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The function /bk is usually assumed to be piecewise differentiable with /bk (ø) = 0 for ø < 0
or ø > ømax , where ømax is the maximum solids concentration, /bk (ø) < 0 for 0< ø < ømax ,
/bk (0) < 0 and /bk (ømax) > 0. A typical example is due to Michaels and Bolger (1962):

where u00 is the settling velocity of a single floc in pure fluid. There exists a vast body of
literature related to the determination of appropriate functions fhk from theoretical insight (Davis
and Acrivos, 1985), experiments (Pranga et ah, 1999; Pranga, 2000; Garrido et ah, 2000; Biirger
et ah, 2000a) and discrete simulation (Quispe et ah, 2000).

The held equation of the kinematic model, Equation (8), is a first-order hyperbolic partial
differential equation. As is well known, its Solutions are in general discontinuous due to the
propagation of the solution along characteristics, which are straight lines in the case S const.
However, most suspensions are flocculent and thus form compressible sediment layers, which are
characterized by curved iso-concentration lines and can therefore not be predicted by the kinematic
theory. Rather, an extended dynamic model including the concepts of pore pressure and effective
solids stress has to be used.

Such a model is provided by the phenomenological theory of sedimentation (Biirger et al. 1999,
2000d), which is based on the mass and linear momentum balance equations for the solid and fluid
components. By introducing constitutive assumptions, performing a dimensional analysis and
considering one space dimension only, this theory leads to the following equation for the relative
velocity vr , which plays the role of one of the linear momentum balances:

-iShfiS)-
where A g > 0 denotes the solid-fluid density difference, g the acceleration of gravity and cre'(ø) is
the derivative of the effective solid stress function cre (ø), which is the second constitutive function
(besides /bk ) describing the material behaviour of the suspension. This function is assumed to
satisfy cre (ø) > 0 for all ø and

° UD
dø [> 0 for ø > øc ,

where øc is the critical concentration or gel point at which the solid flocs start to touch each other.

2.3. Final form of the governing equation. Inserting (10) into (6) and defining

a(å] ._ fhkitKW a, n f* , w
’ m--= jo a{s)ds,

we obtain the held equation

(12)

(13)

The numerical discretization (see Section 3) is based on the conservative form (14).
Eq. (8) corresponds to a special case of the mathematical model studied in this paper, namely

that of ae = 0. In fact, the case of batch sedimentation (Qd = 0) of ideal suspension in closed
vessels, which corresponds to the equation

dt + S(x) gx ( 0, (15)

such that Eq. (6) takes the form

+ W)^mt),t,+six)fbM]=o'(B)

/bk(0) wooØ(l Ø/Ømax)  > uoo 0, C> 1, (9)

W + skå(Q°m+ = -- (sW“W-).
which can also be written as

a +-^(QD {t)4, + S{x)fbk {4,)) = £ (s(i)^—-). (14)
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was thoroughly studied by Anestis (1981). Eq. (15), together with suitable boundary conditions,
permits the construction of exact Solutions by the method of characteristics. These Solutions
provide some qualitative insight into the structure of Solutions of the parabolic-hyperbolic model
equation (13). For this reason we have included in this paper a brief review of the method of
characteristics applied to (15), see Section 4.

2.4. Initial and boundary conditions. We consider Eq. (13) for 0 < x < L and 0 < t < T. At
t 0, an initial concentration distribution is given,

Being well aware that identifying the feed and discharge mechanisms is a strong simplification, we
assume that at x = L the vessel is fed with fresh suspension of concentration øp (£) at a volumetric
rate QP (t) <O. In terms of the coefficients of Eq. (13) or (14), this can be expressed as

At x—o, we require that the solids flux fas reduces to its convective part Qd(^)ø(o, t), and that
ø(-,t) is continuous across x = 0. This implies the boundary condition

2.5. Properties of the mathematical model. Observe that a fa), and thus the right-hand part
of Equation (13), vanishes for ø < øc or ø > ømax . Thus Eq. (13) is of first-order hyperbolic type
for ø < fa, when it degenerates into (8), and of second-order parabolic type for fa < (p < ømax .
The hyperbolic and parabolic zones will also be referred to as hindered settling and compression
zones, respectively. The location of the type-change interface (p = fa, that is the suspension
sediment interface, is not known beforehand. Since the equation degenerates form parabolic to
hyperbolic type on the interval of (and not at isolated) solution values [o,øc], it is called strongly
degenerate. Moreover, the diffusion coefficient a fa) does not only vanish for ø < fa, but is under
most circumstances even discontinuous at (p fa, i.e. jumps at ø = øc from zero to a positive
value. This is due to the particular forms of effective solid stress function ae fa) proposed iri the
literature.

These unusual features of Equation (13) and similar sedimentation-consolidation equations aris
ing, for example, in the cases of batch centrifugation and (slightly simpler) batch and continuous
sedimentation in vessels with S const., gave rise to recent research in the mathematical and
numerical analysis of certain strongly degenerate convection-diffusion equations, which lead to
existence and uniqueness results as well as to appropriate numerical methods (see the discussion
below). The most obvious difficulty in the treatment of Eq. (13) is caused by degeneration into a
nonlinear first-order conservation law, since it is well known that Solutions of such equations are
discontinuous and have to be defined as weak Solutions where an additional entropy condition has
to be considered in order to single out the physically relevant solution.

The use of entropy conditions goes back to Kruzkov (1970) and Vol pert and Hudjaev (1969).
Existence, uniqueness and stability results for entropy Solutions of strongly degenerate parabolic
equations can be found in Bénilan and Touré (1995), Carrillo (1999), Chen and Dißenedetto
(1999), Karlsen and Risebro (2000), Karlsen and Ohlberger (2001), Mascia et al. (2000), Rouvre
and Gagneux (1999), Vohpert and Hudjaev (1969), Vohpert (2000) and Wu and Yin (1989). This
literature treats both initial value and initial-boundary value problems. Mathematical theory for
sedimentation-consolidation processes can be found in Biirger and Mendland (1998a,b), Biirger et
ah (2000b) and Biirger and Karlsen (2001b).

Strictly speaking, the existing literature does not cover Eq. (14). However, by combining the
methods by Carrillo (1999), Karlsen and Risebro (2000), and Karlsen and Ohlberger (2001) with
those of Biirger et al. (2000b) and Biirger and Karlsen (2001b), one can prove existence and
uniqueness of an entropy solution for Eq. (14) with initial and boundary conditions (16)-(18).

Regarding numerical methods, several different methods have been proposed and analyzed al
ready in the literature. Let us mention the operator splitting methods by Evje and Karlsen (1999b)

ø(x,o) = 0 < x < L. (16)

+ S{L) /bk(ø) {L.t) = QF {t)(f)F {t), 0 <t<T. (17)

(/bkW " (M =O. 0 <t<T. (18)
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and Holden et al. (2001), the finite difference schemes by Evje and Karlsen (1999a,2000), the fi
nite volume schemes in Ohlberger (2001) and Eymard et al. (2000), the kinetic BGK schemes by
Bouchut et al. (2000). For a partial overview of mathematical and numerical theory for degenerate
parabolic equations based on “hyperbolic” techniques, see Espedal and Karlsen (2000). Numeri
cal methods for sedimentation-consolidation processes can be found in Biirger et al. (2000c) and
Biirger and Karlsen (2001a).

2.6. Steady states. As was shown elsewhere (Bustos et ah, 1999), the analysis of steady states
in a continuous thickener provides a method for thickener design. We show here that Eq. (13),
together with its boundary conditions, provides a method for the construction of steady states. To
this end, select Qp, = const. and consider Solutions of (13) which are stationary, i.e. independent
of time. Such Solutions satisfy the ordinary differential equation

where C is a constant of integration. Taking into account the boundary condition (18) and
assuming that ød > øc is the desired solids discharge concentration, we obtain C = Q D øD .
Inserting this into (19), we obtain the equation

For the compression zone, where ø varies between øc and øD , we have a(ø) > 0 and a{(/>) =0 at
the critical height xc , the sediment level, at which the critical concentration value øc is attained.
For the corresponding concentration profile ø = ø(z), we obtain the following initial-value problem
(with respect to the independent variable x):

Equation (21a) is integrated from x = oto xc , that is until the critical concentration øc is
attained. Assume that 0< xc <L. The steady State concentration profile in the interval {xc , L] is
determined by the condition that the solids volume feed flux Fp should equal the solids discharge
flux, i.e., Fp = Qføf = Qdød- Then the algebraic equation

obtained from (20) for ø < øc , is consistent with the boundary condition (17). To determine the
concentration in the interval (xc ,L], Eq. (22) has to be solved for <j>{x) for each x G (xc ,L\. We
assume here that the parameters Qp and øD are chosen in such a way that Eq. (22) has a unique
solution for all x G {xc ,H], Eq. (22) is equivalent to

which has a unique solution øif the solids volume feed flux Qføf is sufficiently small.
Moreover, a steady State will be called admissible if the concentration increases downwards in

the compression zone;

dø
—< 0 for 0< x < xc . (24)

Consequently, we require that the right-hand part of (21a) is nonnegative for 0 < x < xc , or
equivalently, that

Unlike the case S const., where an easy geometric construction applies (see Biirger and Concha,
1998, Biirger et ah, 1999, Bustos et ah, 1999), it is not possible to State here precise a priori
conditions under which (25) is satisfied. We will not discuss this problem in detail here but refer
to Section 5.2 for a specific example.

QdHx) + S{x)fhk {ø) = S{x) +c, (19)

Qd{<l>{x) - (f> D ) + S{x)fhk {(J){x)) = S{x)——. (20)

t = dfjW^-^l+AkWl))). *>« (21a)
0(0) = ød • (21b)

Qd(ø(z) - <h) + S{x)fhk =O, (22)

QrxKx) + S{x)fbk {<f>) = Qd Ød = QF (j)F , (23)

Qv(<t>{x) - ød) + S{x)fhk [(p{x)) < 0 for 0< x < xc . (25)
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2.7. Consistency with alternate formulations. The phenomenological theory of sedimenta
tion-consolidation processes, which leads to the present model of continuous thickening, stipulates
that a unique continuous function fhk is given for the entire range of concentration values [O, ømax ],
including the compression zone, where ø > øc . Semi-empirical formulae such as (9) are usually
based on the assumption of absence of compressive stress, i.e. ae = 0, and therefore their use
seems to be appropriate in the hindered settling region (where ø < øc ) only. This restriction is
not necessary in order to obtain a well-posed mathematical model. However, a very instructive
interpretation of the flux density function fhk for ø > øc is related to permeability.

Reverting to the linear momentum balances of the solid and the fluid, comparing the phe
nomenological approach with that of flow in porous media (Biirger et ah, 2000a; Garrido et ah,
2000) and assuming that the local permeability K of the sediment layer is a function of the porosity
or, equivalently, of the solids concentration ø only, one can easily deduce that

(26)

where /i f is the dynamic viscosity of the pure fluid. Inserting (26) into (21a) and using (12), we
obtain the ordinary differential equation

(27)

or

(28)

used in some of our previous papers (Resende et al. 1995, Freitas et al. 2000). The present paper is
therefore an extension of our previous studies, in which only stationary Solutions were considered,
to the transient case.

For the relationship of the permeability and the effective stress to the local solids concentration,
the following pair of model functions (usually attributed to Tiller and Leu, 1980) has frequently
been utilized:

ø = øc (l + K = Ko {l + ae /a0) s for ø > øc , (29)

where /3 > 0 and S > 0 are parameters and K 0 and a 0 denote the permeability and effective
stress, respectively, at ø = øc . In view of (26), these equations can be converted into the following
portion of the Kynch batch flux density function:

(30)

Note that the function cre ' is discontinuous at ø = øc -

3. NUMERICAL METHOD FOR TRANSIENT SIMULATIONS

To simulate transient (non-stationary) batch and continuous sedimentation-consolidation pro
cesses in vessels with varying cross-sectional area, we solve the initial-boundary value problem
of Eq. (14) together with the initial and boundary conditions (16)-(18) numerically using the
generalized upwind method. This method is presented in detail by Biirger and Karlsen (2001),
where the case of sedimentation in a cylindrical vessel is considered. Suitable modifications have
been employed to simulate centrifugation (Biirger and Concha, 2001) and pressure filtration of
flocculated suspensions (Biirger et ah, 2001), so the presentation is very concise here.

On the computational domain [O,L] x [O,T] we introduce a standard rectancular grid håving
the mesh widths Ax := L/J and At := T/N , where J and A are integers. We set Xj := j Ax,

X K{(l))Agget)2 r
fhkW) = for 0 > Øc

Mf

d(f> 1 \QDØD [M (1 1A . A ,1 n//—= —; + SXpqø , o<x < xc
dx ae {(p) [ S{x) K{(f>) \(p 4>b J

S = *w) [w^S"£) +Ae9*]  

/bkW - - K°AQa^/e f-W for > <f>c

and into the effective solid stress function

f° for ø < øc , t/ / \ \ 0 for ø < øc ,

170 ~|cto [(^c ) 1//3 -1] for ø > øc , 1" 5 °”e |<Jo øc" 1//3 /5 -1 ø 1//3 ~ 1 for ø > øc .
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tn := nAt and Sj S{xj ) and let denote the approximate solution valne at (x,j,tn ). The
computation starts by setting := (po (xj) for j = 0,, J.

Assume then that the solution values ø”, j = 0,..., Jat the time level tn have been calculated.

The interior solution values (pj +1 , j = I,J 1 are then given by the formula

where the numerical Kynch batch flux density function / is given by

according to the Engquist-Osher numerical scheme (Engquist and Osher, 1980). To derive update
formulae for the boundary solution values øq and cp 7}, we approximate the boundary conditions
(17) and (18) by the respective expressions

(34)

Inserting (33) and (34) into Eq. (32), we obtain the desired update formulae

r/ 1 =« -J-[^[QT(tn)Mtn)-QT,(t„)rj-Sj. lld^(rJ Anj- l )\

To ensure convergence of the resulting scheme to the entropy (i.e. the physically relevant) solution
of the initial-boundary value problem (14), (16)-(18), the following CFL stability criterion must
be satisfied:

(35)

where Smm mino<x <h S{x) and Smax maxo< x <// S{x). To ensure (35) in the numerical
examples, Ax is selected freely and At is determined by

4. Batch sedimentation of ideal suspensions in closed conical vessels

To appropriately put the mathematical model into the perspective of existing results, most
notably the kinematic wave theory developed in Anestis’ thesis (Anestis, 1981), we briefly recall
the basic ideas of the method of characteristics as applied to Eq. (15), with an emphasis on the
differences to the constant cross-section case. Similar considerations apply to models of batch
centrifugation of ideal suspensions (Anestis and Schneider, 1983; Biirger and Concha, 2001).

To outline the main ideas, we rewrite Eq. (15) as

(37)

4>T' = </>] --{-[eD(ij(«;+ , - r,) + sj+l/2 /bE°(^,^+1 ) - sJ _ 1/2 /bEk°(^>,^_ I )

- 0 [Sj+l/2 (A(4,J+I ) - -4(0-)) - Sj-i/2 [A{4>j) - j = (32)

fhk°iu , v)  = /bk(°) + [ max {/bk ( s ); 0} ds + f min{/b' k (s), 0} ds,Jo Jo

A(d>n ) A((bn y
Ql){t n )(f)j+l + Sj+ i/2 /bk°(ØJ 5 <t>J+l) ~ QF{tn)4>F{t n ) = Fp{tn ), (33)

+ J. l/2 (AW)- A(ff_ l ))j,

«+1 =«--«)+ Si /2 /bEk°(«.«)] - si/2(a«)5i/2 (a«) - Aus)) }.

—s ( max lQ D (t)| + smax5max max |/b'k (ø)| ) + 2 max <l
Smin [\o<t<T' Ax o<^<Ø max VVV Ax2 J ~

_ O.QSffminAa:

max 1Q d (£)1 + Smax max |/b'k (ø)| +

9<P 3/t.kW ... S'(x)fbM
dt dx Slx) ' W

It is now convenient to regard

/Om) ; = -/bk (øOM))
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as dependent variable. We assume that there exists a function g such that ø = g{f). Then (36)
can be rewritten as

nr.df df S'{x)f
9 dt ~ dx~ S{x ) ' (38)

We now assume that S is a monotonous function of x , such that there exists an inverse function
h with x = h{S{x)). Moreover, we define the function pby p{S) := S'{h{S)).

The application of the method of characteristics to Eq. (38) yields that the solution f = f {x, t)
of Eq. (38) has the representation

(39)

where the parameter £ is constant along characteristics and has been selected in such a way that
£ = x for t = 0. Note that it is the parameter £ and not the solution ø which is constant along
characteristics, and thus characteristics are in general not iso-concentration lines, except in the
cylindrical case S = const..

Eq. (39) holds wherever the solution is continuous. However, intersections of characteristics
cause Solutions of (36) to be discontinuous in general. The propagation speed speed a of a
discontinuity S at a point {x,t) G E in the (x, f)-plane, which separates two concentration values
ø“ and ø+ , is given by the Rankine-Hugoniot condition

(40)

In terms of the independent variable /, Eq. (40) can be rewritten as

(41)

Using the total differentials

(42)

we obtain

(43)

Rearranging the right equation in (43) we obtain the following ordinary differential equation:

(44)

The solution £ = E{f) of (44) represents the discontinuity E in the (£, /)-plane, that is the
characteristic plane. We can transform the solution £ = H(/) from the characteristic plane into
the physical (x, t)-plane by determining for each point (£, /) of the characteristic plane its physical
coordinates x <?(£,/) and t r(£, /) by making use of (39). The curves £ = const. and
f = const. in the physical (x,f)-plane are given by (39) if one coordinate is kept fixed and the
other is considered as a parameter.

The method of characteristics permits in principle the construction of exact discontinuous
Solutions to Eq. (15) by analytical means. However, curved shock trajectories occur, which can be
computed only by integrating numerically an ordinary differential equation. We refer to Chapter 3
of Anestis (1981) for detailed constructions of such weak Solutions by the method of characteristics
but present here Solutions of Eq. (15) obtained by the numerical method described in Section 3,
and setting ae = 0.

X = q{f,o := h(fo S{£)/f), t = T{f,t) := fo S{£) [Jfo y~P[foS{o/y)

/,+ ,-N dX /bk(<^+ ) - /bk(ø )
° {* A)=* E = '

+.n = 5(/+ .n = - (/C)lJ(r) .

dx = Ytdf+ %di'

dq ~ dq„
dx df df aij d\_ f+ - r

dt * ~%df+ %di ~9U+)- su-rdf d£

de Ifon

|^(/+ - /“) - T-{g{f+ ) - 9if~))
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FIGURE 1. Examples of the vessels (here with circular cross-sectional area for
every height) considered for batch sedimentation of ideal {L is an arbitrary height)
or flocculated suspensions (L = Im).

We choose the function /bk given by (9) with the parameters ømax =l, according to the well
known Richardson and Zaki equation (Richardson and Zaki, 1954), and n 5 as in Anestis (1981),
Anestis and Schneider (1983) and Biirger and Concha (2001) in order to make results comparable.
The solution is independent of the constant u00 if we consider a vessel of height L and refer tto
the time T L/u^ , which is the time a single particle needs to travel through the vessel.

We consider five different cylindrical or conical vessels, see Figure 1. As in the centrifugation
examples discussed in Section 4.2 of Biirger and Concha (2001), the initial concentration ø 0 = 0.07
is chosen. This valne corresponds to a Mode of Sedimentation MS-1 (Bustos et ah, 1999; Biirger
and Tory, 2000) in a closed settling column with S = const. Figure 2(a) shows this solution, which
consists at first of one descending discontinuity (or kinematic shock) separating the suspension at
intial concentration from the supernatant clear liquid and one rising discontinuity separating the
suspension from the sediment, where (f) ømax . At the so-called critical time tc these shocks meet
and form a third stationary shock separating the sediment from the clear liquid. The corresponding
concentration profiles, which are simply structured, are shown in Figure 2(b).

In Figure 2(c) and (d), we consider the same initial concentration, vessel height and flux density
function, but assume now that the vessel is of conical shape, with the top cross-sectional area being
four times as large as that of the bottom. We observe that the propagation speed of the downwards
propagating suspernate-suspension interface continuously decreases (in absolute value), producing
a discontinuity curve of convex shape. Below that interface the concentration no longer remains
constant, but increases, and the sediment is no longer separated from the suspension by a simple
concentration discontinuity, as in an MS-1, but by a composition of waves emerging from the origin.
All these features are even more pronounced in Figure 2(e) and (f), where the ratio between top
and bottom cross-sectional area is 16. Observe in Fig. 2(e) that some of the numerically calculated
iso-concentration lines, e.g. that for (f) 0.4, are clearly curved, and that the concentration profiles
plotted in Fig. 2(f) indicate that this is not a case of a true curved shock. Curved iso-concentration
lines are, however, impossible in the cylindrical case, in which iso-concentration lines are always
straight characteristics.

Figure 3 presents calculations for the same vessels turned upside-down, i.e. the cross-sectional
area increases by factors four (Fig. 3(a,b)) and 16 (Fig. 3(c,d)) downwards. We observe effects
that are contrary to those of Fig. 2: the propagation velocity of the suspension-supernate interface
increases (in absolute value) downwards and the concentration of the bulk suspension decreases.
Moreover the suspension is separated from the sediment by a discontinuity.

Figures 2 and 3 illustrate that the structures of Solutions to the problem of sedimentation of
an initially homogeneous ideal suspension in conical vessels are more complicated than in the
cylindrical case, and that the downwards increase (decrease) of diameter accelerates (retards) the
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FiGURE 2. Sedimentation of an ideal suspension in conical vessels with (a,b)
S = const , (c,d) S{x)/S{o) =(1 + x/L) 2 and (e,f) S{x)/S{o) =(1 + 3x/L) 2 .

completion of the sedimentation process observed in a cylindrical vessel of the same height. These
properties were already observed by Anestis (1981), who determined exact Solutions to the same
problem by the methods of characteristics but considered the simpler quadratic Kynch batch flux
density function (9) with ømax = 1 and n= 1. The different final sediment heights in Figures 2
and 3 are, of course, a trivial consequence of the vessel geometry.

5. Numerical EXAMPLES: batch and continuous sedimentation of flocculent
SUSPENSIONS

5.1. Application to a hypothetical flocculated suspension. We consider a flocculent sus
pension with Ag 1660 kg/m3 whose model functions /bk and ae are given by Eq. (9) with the
parameters ømax =I,C 5 (as before) and u 00 = —l.O x 10~ 4 m/s and Eq. (31) with øc 0.1,
a 0 = 5.7 Pa and = 1/9. The parameters of the effective stress function correspond to a slurry
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Figure 3. Sedimentation of an ideal suspension in conical vessels with (a,b)
S{x)/S{o) =(1 0.5x/L) 2 and (c,d) S{x)/S{o) =(1 0.75x/L)2 . The dashed
lines correspond to the kinematic shocks of Figure 2(a).

used by Damasceno et al. (1992). The same constituve functions /bk and ae are also used for cen
trifugation sample calculations by Biirger and Concha (2001), such that results may be compared.

5.1.1. Simulation of batch settling. We consider the settling of an initially homogeneous suspension
of the initial concentration ø 0 = 0.07 in five different vessels of height L = Im. Note that due
to the dynamic effects, Solutions are no longer dimensionless. Figure 4 shows the settling plots
(left column) and sequences of concentration profiles (right column) for a cylindrical tank (a,b)
and conical vessels with S{l)/S{o) = 4 (c,d) and 5(1)/S(0) = 16 (e,f). Observe that the iso
concentration lines become horizontal, and thus the consolidation process terminates earlier, as the
opening angle of the cone widens. Conversely, the consolidation process terminates later in conical
vessels with downward-facing walls, as seen in the simulations of Figure 5, where S(l)/5(0) = 1/4
(a,b) and 5(l)/5(0) = 1/16 (c,d). Note that the shape of the final concentration stationary
concentration profile is the same (up to vertical shifts) for all five cases of Figures 4 and 5,
independent of their shape. This is an easy consequence of the ordinary differential equation for
steady State profiles (21a), in which the term containing the area function S{x) disappears if we set
Q d 0 corresponding to batch settling. This observation was also stated by Freitas et al. (2000).

5.1.2. Analysis of steady states. Consider a flocculated suspension defined by the model functions
stated at the beginning of this section. The feed concentration is assumed to satisfy øF > 0.05.
Assume that the desired discharge concentration is ød = 0.235 and that the solids volume feed
rate is Fp = Qføf = —0.0000235 m/s. We are now interested in the height and the volume of
a cylindrical or conical thickener that is able to handle the thickening problem in conventional
operation.
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FiGURE 4. Simulation of sedimentation of a flocculated suspension in conical
vessels with L= Im and (a,b) S const , (c,d) S{x)/S{o) =(1 +x/L)~ and (e,f)
S{x)/S{o) = (1 + 3x/L) 2 .

The data of the problem are chosen such that the volume discharge rate of concentrated sediment
is Qd = -0.0001 m3 /s. We now consider three different vessels and attempt to construct steady
states for various discharge concentrations </>d •

(a) Cylindrical thickener of cross-sectional area S = lm2 . For cylindrical vessels, the flux
function relevant for the conventional steady State analysis (Biirger et al. 1999, Bustos et
al. 1999) is

An admissible stationary concentration profile can according to condition (25) (with S _
const.) exist only if

< q4 for (j)c <(p < (pr>- ( 4^)

f{(f>) = q<f> + fhk (ø); Q = Qd/S.
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0 0.05 0.1 0.15 0.2 (/)[-]

Figure 5. Sedimentation of a flocculated suspension in conical vessels with (a,b)
s(x)/5(0) = (1 - 0 .5x/L) 2 and (c,d) s(x)/5(0) = (1 - 0.75x/L) 2 .

The flux plot in Figure 6 (a) with q= q 1 = Qo/Um2 ) reveals that condition (45) is
satisfied only for ød = 0.12 or ød = 0.14, but not for the selected values ød = 0.16 to
0.235. Figure 6 (b) shows the two admissible steady states and the attempts to calculate
steady states in the inadmissible cases (ød = 0.16,..., 0.235), which results in vertical
asymptotic concentration lines corresponding to the intersections of the dashed lines in
Figure 6 (a) with the flux plot. Obviously this cylindrical thickener can not handle the
thickening problem. (It could if we chose ød = 0.12 or 0.14.)

(b) We now successively increase the area 5 or reduce (in absolute valne) q Qu/S. This will
increase the range of values of ød that lead to admissible steady states. Taking into account
that the feed suspension should be diluted to the steady state concentration valid above
the sediment level, we seek the largest (in absolute valne) q such that ød = 0.235 produces
an admissible steady state with ø| x>Xc < 0.05. This occurs for q = q 2 —2.09 x 10~ s ra/s.
The flux plot in Figure 6 (a) confirms that the steady states for all values of ød considered
are admissible. Figure 6 (c) shows the corresponding concentration profiles. We can see
that the required height of the corresponding thickener (not taking into account safety
factors) is x£yl = 4.1 m. The area necessary to treat the thickening problem is given by

Consequently, the thickener volume required is

(c) Conical thickener with S{x) =1 + Cx2 [m2 ], C = 0.16, i.e. 5(0) = lm2 , 5(5m) = 5m2 .
Figure 6 (d) shows the steady state concentration profiles for this vessel and the discussed
values of ød- Obviously, these profiles are all admissible, and the concentrations in the

10000 t[s] 15000 0 0.05 0.1 0.15 0.2 </>[-]

c _Qd -0.0001 m3 /s , or 2
S= ~ = -0.0000209 m/s = 4 ' 785 m  

ycyi =xcy\. S= 19-617m3
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Figure 6. Steady states in cylindrical and conical vessels. (a) Flux plot for a
cylindrical vessel at the bulk flow velocities q\ Qb/S = —l.O x 10~ 4 m/s and
q 2 = - -2.09 x 10“ 5 m/s. The horizontal solid and dashed lines correspond
to admissible and inadmissible steady states, respectively. (b.c) Steady states in
a cylindrical vessel at (b) Qb/S Qi and (c) Qb/S qo- (d) Steady states in a
conical vessel.

hindered settling zones are not constant, as a consequence of Eq. (23). We performed
calculations with different shape factors C and chose C so small that the steady State
concentration at height x = 5m does not exceed 0.05, such that the required dilution of
the feed suspension is possible.

Note that due to the varying concentrations in the hindered settling zone, the minimum
height Hcon of this conical vessel is not identical to the sediment height and larger than
that of the cylindrical; we may take here Hcon =5 m. However, the volume of this conical
vessel is given by

i rcon , \ r
V'con = -y- + \/S{o)S{Hcon ) + S{Hcon ) j = -(1 + \/5 + 5)m3 = 13.727 m 3.
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(discharge level)

Figure 7. Scale plot of the steady states of Figures 6 (c) (left) and (d) (right)

Figure 8. Simulation of continuous thickening in a conical thickener (Case (c)
in Sect. 5.1.2): transition between steady states. The iso-concentration lines
correspond to the annotated values. The spatial discretization parameter is J
200.

We conclude that the volume of a conical thickener needed to handle the thickening problem is
30% smaller than the volume of the smallest cylindrical vessel designed for the same task. Figure 7
shows scale diagrams of the cylindrical and the conical tank operating at steady state.

5.1.3. Simulation of the transient behaviour of a conical continuous thickener. We continue to
discuss the thickening problem of Sect. 5.1.2 and employ the numerical algorithm described in

,r;:yi = 4.1 in
(feed level)

for <f>D = 0.235.
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FIGURE 9. High-accuracy resimulation (J = 400) of the first 100000 seconds of
the fill-up of the conical thickener shown in Figure 8. The iso-concentration lines
correspond to the annotated values.

FIGURE 10. Simulation of the fill-up of the cylindrical continuous thickener
(Case (b) in Sect. 5.1.2) at q —2.09 x 10~°m/s and fp Q ' 0.2 = —4.18 x
10~ 6 m/s. The discretization parameter is J 200.

Sect. 3 to simulate the processes of filling up the conical vessel of Case (c), transitions between
steady states and emptying it. To this end, we assume that the conical thickener is initially full of
water, i.e. =O, and that during the whole simulated time interval of 1.8 x 10 6 s it is discharged
at the constant volume rate of Qp> —O.OOOl m3 /s. Thus the only control actions taken are
changes of the solids volume feed rate Fp = Qp<j)p.

At t=o we start filling up the vessel by setting Fp m3 /s.
As can be seen in the settling plot showing the numerical solution of the problem (Figure 8), the

5 1 1 T —I I T I I 1

x [m] i

4

3 - (/> = 0.04097

 ' o.o4

2 " 0.05,0.06,..., </) c = 0.1,0.11,0.12 (lines almost coincide)

° 0 200 400 600 800 t[l03 s] 1000
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vessel starts to fill up at t = 0. A high-accuracy resimulation of the first 100000 seconds of the
fill-up process is shown in Figure 9.

The choice of the feed rate corresponds to the steady State profile of Figure 6 (d) with ød = 0.2.
The numerical simulation of the transient problem indicates that the transient solution indeed
becomes stationary and has converged to this steady state by t = 350000 s. At this time we wish
to attain a new steady State with ød = 0.22. To this end the feed rate Fp is changed from Fp to
the value Fp = 0.22 •Qd = —2.2 x 10“ 5 m3 /s. We observe that this change produces rapidly a
change of the concentration profile in the hindered settling zone and an almost immediate slight
rise of the sediment level. The solids continue to accumulate in the vessel and the additional
compression effect causes an increase of the concentration at the discharge level x = 0. At about
t 1080000 s all iso-concentration lines have become horizontal again and the stationary profile
is that corresponding to ød = 0.22 of Figure 6 (d).

At t 1400000 s we proceed to a third steady State by changing the feed rate Fp again from
Fp to Fp = 0.18 • Qd = —l.B x 10“ 5 m 3 /s. This corresponds to a steady state with a discharge
concentration of ød = 0.18. We observe that again a new stationary concentration distribution
appears in the hindered settling zone, and that the sediment level decreases at almost constant
speed until the height of the corresponding steady state (again, see Figure 6 (d)) is reached.
Observe that the ‘kink’ in the sediment level visible at about t = 1520000 s, where the correct
level corresponding to the desired steady state is attained almost accurately, appears as a feature
of the approximate numerical solution and is not produced by a particular control action. Finally,
at t = 1700000 s the simulated feed mechanism is turned off by changing Fp from Fp to zero.
Given that the discharge flow persists, the conical thickener empties rapidly.

The simulated evolution of the sediment composition is at a first look similar to that calculated
for several examples of continuous sedimentation of flocculated suspensions in cylindrical vessels
(Biirger et ah, 2000c; Biirger and Karlsen, 2001). However, besides the non-constant concentra
tions in the hindered settling zone there are some distinctive properties of the sediment visible.
Due to the conical shape, the total sediment volume is relatively small as compared to the con
sidered cylindrical vessel operating at equivalent flow conditions. Thus one should expect that
starting from an empty vessel, the conical thickener reaches a steady state more rapidly than
its cylindrical equivalent. In fact, while the simulation of Figure 8 shows that the first steady
state is reached after about 350000 s, a simulation of the cylindrical thickener under equivalent
flow conditions predicts a fill-up time which is nearly three times as large as that, see Figure 10.
Comparing Figures 9 and 10 reveals that in the selected example, the solution structure during
the initial phase of the fill-up process is entirely different in the conical and cylindrical cases. In
particular observe that in Figure 9 the shape and location of the iso-concentration line øc = 0.1 is
a continuation of the sequence of iso-concentration lines for ø = 0.04 to 0.09. This line formally
denotes the sediment level, at which the type change of the governing equation from hyperbolic
parabolic type takes place, but is (at least for small times) parallel to the iso-concentration lines
of the hindered settling region ad its location is related to kinematic effects and the shape of the
vessel, but initially not to the formation of the sediment layer.

5.2. Application to experimental results.

5.2.1. Constitutive equations. In this paper we consider experimental results of batch and con
tinuous sedimentation of an aqueous calcium carbonate suspension of density difference A g
1652 kg/m3 . The constitutive equations for the compression zone were chosen according to the
approach by Tiller and Leu (1980), Eq. (29), with the parameters øc = 0.14, a 0 = 11.0 Pa,
/3 0.12, S 0.5196 and K 0 = 2.4 x 10~ 13 m2 (Damasceno, 1992; Freitas et al. 2000). Assuming
the parameter values g = 9.81m/s2 and /if = 0.001 Pa -s, we obtain from these values the effective
solid stress function

(46)Jo for ø < øc = 0.14,
Jll [(ø/<?!)c ) 8 - 33 -l] Pa for (f) > cpc .
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l{t) [rn]

FiGURE 11. Supernate-suspension interfaces l{t) measured for batch sedimenta
tion of aqueous calcium carbonate suspensions (Damasceno, 1992). The solid
straight lines with slopes uo approximate the parts of the data showing nearly
constant settling velocity.

and, using Eq. (30), the following portion of the Kynch batch flux density function:

/bk (ø) = -7.8095 xlO 1(V 233 m/s for ø > 0.14. (47)

Note that the information of Eqns. (46) and (47) is already sufhcient for the determination of
the sediment profiles of steady states. To find a reasonable choice for the hindered settling part
of /bk , we utilize data obtained from batch settling experiments with the same calcium carbonate
suspension at the initial concentrations </>o = 0.007, 0.009 and 0.013 in vessels of heights 0.40 m,
0.55 m and 0.75 m and constant cross-sectional area, see Tables 8.4 to 8.6 of Damasceno (1992).
The measured supernate-suspension interface height values l = l{t) are plotted in Figure 11. All
of these nine runs include a portion in which the settling velocity is nearly constant. We have
calculated least-squares straight-lined approximations these portions. The slopes of these segments
are the velocities uo listed in the table included in Figure 11.

To estimate values of /bk from these velocities, we recall that discontinuities of Solutions to the
first-order conservation law

d± dfhk {(j>) _
dt dx

[inj ’ 1 1 i 1 1 1 1
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FIGURE 12. Kynch batch flux density function fhk{4>) for a calcium carbonate
suspension (Damasceno, 1992). The open circles denote the data points of the
interpolating cubic spline function S3 {(p).

to which (13) or (14) reduces for S = const., Qd = 0 and wherever (p < øc , travel at the speed
cr(ø~, (p+ ) given by the Rankine-Hugoniot condition (40). Consequently, with cp~ = (po and (p+ =O,
the settling rate or suspension-supernate interface velocity uq of an initially homogeneous suspen
sion of concentration (po satisfies uq ~ a((po,0) = /bk (øo)/øo- Thus the values (polio computed
from the experimental data (see the last column of the table in Figure 11) represent approximate
values of /bk (øo)- It turns out that these values are within the same range for all runs. This
observation suggests that fhk has a local minimum between (p = 0.007 and 0.013. In fact, we have
chosen here the flux density function fhk as the unique piecewise cubic interpolating natural spline
function S 3 satisfying *S3 (0) =O, <S3 (0.007) = -2.6 x 10~ 6 m/s and <S3 (0.013) = —2.5 x 10~ 6 m/s
in order to be consistent with the table of Figure 11,

<S3 (0.14) = -7.8095 x RT 10 x 0.14- 2 33 m/s = -7.6233 x 10“ B m/s

to connect continuously with the segment of /bk given by (47), and S3 {(pi ) =G{ for nine particular
values (pi e [0.02,0.12], i = 3,..., 11, where the choice of these points is discussed below.

The segment of /bk for (p between 0.013 and 0.14 is, of course, speculative, since no settling
experiments with initial concentrations in this range have been conducted. However, some qual
itative information is available from the experimental settling plots of Figure 11. For example,
consider the run with cpo 0.013 and /(0) = 0.75 m. An upper bound of the sediment height
xc results from the assumption that all the solids are contained in the sediment; and that the
sediment is of the uniform concentration (p = (pc . Consequently, for this run

However, the last data point o plotted in Figure 11 corresponds to a supernate-suspension height
of 0.097 m attained at t = 7871 s (Table 8.6 of Damasceno, 1992).

Assuming that 0.14 is the correct value of (pc , we conclude that at that time the critical time tc ,
at which the supernate-suspension and suspension-sediment interfaces merge, is not yet reached.
Therefore the curved shape of the supernate-suspension interface for the run considered represents
a curved kinematic shock, that is a discontinuity separating varying but subcritical concentration
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FIGURE 13. Simulation of batch sedimentation of a homogeneous suspension
(øo = 0.013) in a closed column: (a) iso-concentration lines and (b) concentration
profiles. The iso-concentration lines correspond to the annotated values of ø. The
symbols o denote the measured supernate-suspension interface for øo = 0.013 and
/(0) = 0.75 m, see Fig. 11.

values from the clear liquid zone where ø = 0. As is well known from the incompressible (kine
matic) case, where ae = 0, these curved shocks are related to the presence of lower rarefaction
waves, which are zones of continuous (vertical) transitions between concentration values located
between the rising sediment and the bulk suspension at its initial concentration, see Bustos et
al. (1999) and Biirger and Tory (2000) for details. A necessary requirement for the presence of
a lower rarefaction wave, say ranging from a concentration value øi to ø 2, is that /bk (ø) < 0 for
øi < ø < 02, as can be inferred from the construction of the settling plot as an entropy solution
using the method of characteristics (Bustos and Concha, 1988; Bustos et ah, 1999). These con
siderations have led us to choose the control points in such a way that the resulting segment of
S 3 between 0.013 and (roughly) 0.05. Similar arguments were used by Diplas and Papanicolaou
(1997) for determining the flux density function fhk for a settling experiment by Tiller and Khatib
(1984), see also Garrido et al. (2001), and by Biirger at al. (2001) in order to determine the model
function for a kaolin suspension. Flux density functions of similar shape (with three inflection
points) wrere also used by Scott (1968) and Font et al. (1998).

The graph of the resulting flux density function /bk , as well as the data points determining the
spline function S 3, are plotted in Figure 12.

5.2.2. Batch sedimentation in a closed cylindrical vessel. To show that the mathematical model,
complemented by the choices of the functions /bk and <re , leads to a reasonable approximation
of the observed settling behaviour, the numerical algorithm outlined in Section 3 is employed to
simulate the batch sedimentation (Qd = 0) of a suspension of initially homogeneous concentration
øo = 0.013 in a column of constant cross-sectional area {S = const.) and height L = 0.75 m. The
spatial discretization parameter is J = 600. Figure 13 displays the numerical result both as a
settling plot, showing iso-concentration lines, and as a sequence of concentration profiles. \\e
observe that due to the construction of /bk , the simulated supernate-suspension interface settles
slightly faster than the observed, and that the the curved supernate-suspension interface is well
reproduced. Furthermore, the compression zone is relatively thin.

5.3. Steady state computations. Calcium carbonate suspensions are frequently used for labo
ratory sedimentation, thickening and filtration experiments. On the other hand, the size (height
and diameter) of laboratory equipment is usually smaller than are thickeners used in industrial
plants. For example, Freitas et al. (2000) report experiments with three different laboratory-scale
conical and cylindrical continuous thickeners of approximately 20 cm height. We here calculate

—I I V' ' —rp , ,—| , , 1 , , 1 1 , , , ,
0.7 -

t = o
0.6 -

0.5 -

°- 4

0.3 - 1

—4OOO s

o 9 - 'y /OOOOs
01“ . “ IK .3000, 10000 20000 s

V 6 0.1

1I Ur —:..

15 f [103 s] 20 0 0.05 0.1 0.15 0 [

•r H \i.oi

jj / /T^/0 026/). 028. 0.03 oiT
// / a/ z 0 04 o.is



THICKENING IN VESSELS WITH VARYING CROSS-SECTION 21

FIGURE 14. Steady states for continuous thickening of a calcium carbonate sus
pension in three different cylindrical and conical laboratory vessels. (a) Flux
plot for the cylindrical vessel. The horizontal solid and dashed lines correspond
to admissible and inadmissible steady states, respectively. Steady concentration
profiles in (b) a cylindrical vessel, and (c,d) conical vessels with (c) upward-facing
and (d) downward-facing lateral wall. The profiles in diagram (c) for ød > 0.2
are part of steady states with sediment heights greater than the vessel height.

first steady state profiles for three different ideal conical thickeners. The height is always L = 0.2 m
and the volume of the three vessels is identical. The conical vessels are assumed to be formed by
a section of a cone of opening angle 60° cut in distances of 0.1366 m and 0.3366 m to its vertex,
where shape of the conical-diverging vessel (with the cross-sectional area increasing downwards)
is obtained by turning the conical-converging vessel upside down. Thus we consider (a) a cylin
drical thickener with constant cross-sectional area S = 0.062113576m2 , (b) a conical-converging
thickener with S{x) = tt(0.05 + (0.05 + x)/\/3) 2 m 2 and (c) a conical-diverging thickener with
S{x) = tt(0.05 + (0.25 - x)/y/3) 2 m 2. For a given volume discharge rate Qd = —l.O xlO 7 m3 /s,
steady states for several discharge concentrations ød have been calculated, see Figure 14, which is
similar to Figure 6. We here observe that only the conical-converging vessel is able to operate at
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steady State producing a sediment of concentration ød 0.19. The corresponding solids volume
feed rate is Fp = Q føf = ødQd = —l-9 x 10“ 8 m 3 /s. The calculated steady states illustrate

that the mathematical model predicts significant differences in the response of the vessels even at
laboratory scale.

5.4. Transient simulations. Finally, we simulate the fill-up process of the three thickeners. We
assume that the vessels are initially full of water and at t 0 start to feed them at a solids
volume feed rate of Fp = 0.175 •Q d = —1.75 x 10“ 8 m 3 /s. The discharge opening is held open

during the fill-up process at the volume discharge rate Q d = —l.O x 10“' m/s. Figure 15 shows
the numerical result. The concentration values for which iso-concentration lines have been plotted
start at cj) = 0.1. since we are mainly interested in the formation of the sediment here, and the

concentrations in the hindered settling zone are extremely small.
We observe that the three vessels need roughly the same time to attain their steady states.

Particular attention should be drawn to the simulated sediment formation in the conical-converging
vessel (Figure 15 (c)). We observe that for small times, the sediment is not separated from the
dilute suspension above by a discontinuity between some small value and ø c ; rather, we observe
the formation of a concentrated suspension laver corresponding to the plotted iso-concentration
lines between 0.1 and 0.135.

6. CONCLUSIONS

Mathematical models for batch and continuous sedimentation of ideal (non-flocculated) suspen
sions in vessels with varying cross section were proposed and analyzed by several authors (Anestis,

1981; Diehl, 1997; Chancelier et ah, 1997; White and Verdone, 2000). In this paper we combine
these quasi-one dimensional formulations with the phenomenological model of sedimentation-con

solidation processes of flocculated suspensions (Concha et ah, 1996; Biirger et ah, 2000 d; see also
Auzerais et ah, 1988; Landman and White, 1994), which includes the concept of effective solid
stress. The resulting governing equation, determining the local solids concentration as a function
of height and time, is a scalar strongly degenerate parabolic-hyperbolic partial differential equa

tion. It can be easily solved numerically to produce transient simulations of continuous thickening
in conical vessels. The existing mathematical analysis of strongly degenerate parabolic equations
implies that the model is well-posed (a solution exists, is unique and depends continously on
the data of the problem), while a similar mathematical model for settling in closed vessels with
downward-facing walls which is based on the the theory of kinematic waves is not well-posed, as

shown by Biirger and Kunik (2001).
Traditional methods of thickener design, such as those by Coe and Clevenger (1916), Talmage

and Fitch (1955) and Adorjån (1975, 1977) and as reviewed by Concha and Barrientos (1993),
Schubert (1998) or in Chapter 11 of Bustos et al. (1999), usually refer to cylindrical settling tanks.

The parameters determined are usually the unit area of the equipment needed to treat a given solids
handling rate and the height of the equipment necessary to accommodate the sediment. To this
end, properties of steady State concentration profiles, determined from the ordinary differential
equation obtained from the governing partial differential equation in the stationary case under

continuous flow conditions, can be utilized. Such calculations were performed for a large number
of materials by Tiller and Chen (1988), whose consolidation model is equivalent to ours in the

relevant zone determining the thickener height, i.e. in the compression zone, where 4> > ø c -
It should also be interesting to go even a step further and ask for the optimal area function S{x)

which minimizes the thickener volume for a given material and operating conditions (we here only
demonstrate that a particular conical ‘solution’ outperforms the cylindrical one). This should also
open new possibilities of design for units known as ‘deep thickeners' (Chandler, 1982; Tiller and

Tarng, 1995) or ‘deep cone thickeners’ (Rushton et ah, 2000).
In the transient numerical examples of Section 5.1.3 the initial steady State is attained more

rapidly in a conical than in a comparable cylindrical thickener. This is in qualitative agreement
with experimental observations stated elsewhere (Freitas et ah, 2000), and the numerical algorithm

should be employed to examine systematically the dynamics of continuous thickening in non
cylindrical vessels.
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FiGURE 15. Simulation of filling up (a) the cylindrical, (b) the diverging and (c)
the converging conical continuous thickeners (of Figure 14) at solids volume feed
rate Fp = 0.175 •Qd = —1.75 x 10~ 8 m3 /s. The discretization parameter is
J = 600.
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