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A NOTE ON PORTFOLIO MANAGEMENT
UNDER NON-GAUSSIAN LOGRETURNS

FRED ESPEN BENTH, KENNETH HVISTENDAHL KARLSEN, AND KRISTIN REIKVAM

Abstract. We calculate numerically the optimal allocation and consnmption strategies
for Merton’s optimal portfolio management problem when the risky asset is modelled by
a geometric normal inverse Gaussian Lévy process. We compare the computed strategies
to the ones given by the standard asset model of geometric Brownian motion. To have
realistic parameters in our studies, we choose Norsk Hydro quoted on the New York Stock
Exchange as the risky asset. We hnd that an investor believing in the normal inverse Gaussian
model puts a greater fraction of wealth into the risky asset. We also investigate the limiting
investment rate when the volatility increases. We observe different behaviour in the two
models depending on which parameters we vary in the normal inverse Gaussian distribution.

1. Introduction

In this paper we study MertoiTs classical problem [l3] of optimal portfolio selection and
consnmption when the risky asset has non-Gaussian price increments. Based on recent results
in Benth, Karlsen and Reikvam [s] (see also Bank and Riedel [2], Framstad, Øksendal, and
Snlem [lo], and Kallsen [l2] for similar results), our objective of is to investigate from a more
practical point of view the effects of using non-Gaussian models in portfolio management.

In the mathematical finance literature, a frequently used model for asset price dynamics
is the so called geometric Brownian motion. A major concern with geometric Brownian
motion as a model for asset prices is that it predicts logarithmic price changes (known as the
logreturns) to be normally distributed. This holds on all time spans in question. Looking into
stock prices, for example, empirical studies reject the normal hypothesis for daily or weekly
logreturns. Monthly logreturn data, on the other hand, seem to be fitted well by a normal
distribution (see, e.g., the studies made by Eberlein and Keller [B] on German data). Daily
or weekly logreturns show non-Gaussian effects like heavy tails and skewness. The normal
inverse Gaussian distribution has proven to be a flexible and yet simple statistical model
which fit empirical logreturns on all time scales extremely well. This family of distributions
was introduced by Barndorff-Nielsen [3], and later used in finance by Barndorff-Nielsen [4],
Rydberg [l6], Prause [ls], to mention afew. Taking the normal inverse Gaussian distribution
as the starting point, one is lead to a geometric Lévy process as the model for the stock price
dynamics.
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Merton showed in [l3] that the investor should keep a constant fraction of her wealth in
the risky asset when the asset dynamics are modelled by geometric Brownian motion. In
fact, he proved that this fraction is proportional to the expected rate of return from the
stock and inverse proportional to its volatility. The question raised in this paper is how the
portfolio selection and consumption is affected by changing the dynamic of the asset to a
more realistic modeh We will compare the optimal portfolio and consumption policies where
the price of the asset follows the geometric normal inverse Gaussian Lévy process with that
of geometric Brownian motion. Unfortunately, we do not have an explicit formula for the
optimal portfolio selection and consumption choice in the former case. However, as is seen
from the results in Benth, Karlsen, and Reikvam [s] (see also Section 3), it is still optimal to
keep a constant fraction of the wealth in the risky asset. The fraction is a solution to a rather
complicated integral equation which has to be solved numerically. We have implemented
standard numerical techniques in order to hnd the optimal portfolio selection for concrete
parameter values of the normal inverse Gaussian distribution. As for the geometric Brownian
motion, the optimal consumption is given as a fraction of the wealth. In this paper we shall
devote most of our time on the study of the optimal portfolio plans, and less on consumption.

To have a financially realistic comparison we have chosen to fit both models to Norsk Hydro
quoted on the New York Stock Exchange. Based on these parameters, an investor believing in
the normal inverse Gaussian model would allocate more of her wealth in the risky asset than
adviced by the geometric Brownian motion model. For risk averse investors the difference is
small, however, but grows to become significant for investors willing to take greater risk. One
may conclude from this that the stock is considered by the investor to be less risky under
the normal inverse Gaussian model. By varying some of the parameters we shall see that
the opposite can happen as well. The uncertainty in parameter estimates will be great for
small sets of data and therefore signihcantly influence the investor’s portfolio choices. It is
of interest to study the variation of the optimal portfolio selection and consumption coming
from parameter uncertainty. This is, however, outside the scope of the present paper. We
can not, of course, conclude on a general basis from this study. But our findings indicate
that there may be significant differences in portfolio choices when going from a normal to a
non-Gaussian market dynamic which shows the importance of håving realistic models for the
asset dynamics.

Here is an outline of the paper: In Section 2 we introduce the two models for the stock price
dynamics that will be used throughout the paper. We also present the normal inverse Gaussian
distribution and some properties related to this. In Section 3 the optimal portfolio selection
and consumption problem is stated together with the corresponding Solutions, followed by a
section where we fit the geometric Brownian motion and Lévy model to Norsk Hydro data.
Sections 4 and 5 contain the main contribution of this paper, namely the investigations of
portfolio and consumption choice under the two models. Different experiments and their
results are presented. In Section 7 we discuss the numerical methods that were used. Finally,
in Section 8 we make some concluding remarks.

2. Stock price dynamics and the normal inverse Gaussian distribution

A stock price modelled by geometric Brownian motion is given by

Sf 50 6Xp "f" &Btj ,
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where Bt is a standard Brownian motion and Pghm and a is the drift and volatility parameters
respectively. From here on, geometric Brownian motion will be referred to as the standard
model.

As the alternative stock price dynamics we introduce the geometric Lévy process

where Lt is a normal inverse Gaussian Lévy process, i.e., L t has stationary and independent
increments with L\ normally inverse Gaussian distributed. The density for the (centred)
normal inverse Gaussian distribution is given by

where K\ is the modified Bessel function of third kind with index 1 (see [l, Ch. 9]). The
parameters of the distribution centred around zero have the following meaning: a is the steep
ness, /3 is the asymmetry, and 6 is the scale parameter. The hrst two moments (expectation
and variance) are

This means that the logreturns have expectation /xnig + E[Ti] and variance (or volatility)
VarfTi] when they are modelled as i.i.d. variables that are normally inverse Gaussian dis
tributed. We have the following connection between the parameters in the standard and
normal inverse Gaussian models

In the symmetric case (i.e., when /3 = 0), we have /igbm - /Tiig and a 2 = S/a.
The Lévy-Kintchine representation of L t is

where N{dt,dz ) is a Poisson random measure and N[di,dz) = N{dt,dz) dt x n[dz) is the
compensated Poisson random measure associated to L t . The Lévy measure of L t is

It follows from the Lévy-Kintchine representation that the normal inverse Gaussian Lévy
process is a pure jump process. Furthermore, L t is a martingale with respect to its own
hltration when E[Ti] = =O, which is equivalent to f 3 —O. We will exclusively consider this
case in our numerical study of Merton’s problem for the normal inverse Gaussian distribution.

3. MeRTON’S PORTFOLIO MANAGEMENT PROBLEM

3.1. The stochastic control problem. Let X^’n,x denote the investor’s wealth at time t
with consumption rate c ( ct ) and portfolio selection 7r = (ttG- The initial wealth is given
as X^,x =x> 0. In the standard model, the dynamics of the wealth process reads

(3.1)

St Sq exp(/inig/ ,

£ , oca Sa /c AT 7r> ,a \ Kl{aVfi 2 + X 2)
f (x; a, (3, S) = —exp (Sy/a2 - (5 2 + (3x) —,

7T VO 2 +X 1

Sli _
/tgbm “ MniB + v^rp’

Lt = £t+ f f zN{dt,dz ), £ = E[£i],
Jo Jr\{o}

bo.
n{dz ) = —— exp{/3z)Ki(a\z\) dz.

7T\Z\

dX°t^' x =r + (/igbm + \v2 - rj7rt X^ ,7r,x dt -ctdt + cKtX^'x dWt ,
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while for the normal inverse Gaussian model it reads

{ez - 1 )N{dt,dz),

where

Denote by Ax the set of all admissible consnmption plans and portfoho allocations when the
initial wealth is x. More precisely, (c,tt) G Åx if the following conditions hold:

(A.l) Cf is a positive and adapted process such that Jlq E[cs ] ds oo for all t 0.
(A.2) 7rt is adapted, right-continuous with left limits and with values in [o,l].
(A.3) ct is such that X^,7T,x > 0 almost surely for all t> 0.

Note that we have assumed TT t G [o,l], thns ruhng out borrowing of money in the bank
and short-sehing of stocks. In the standard framework, one can allow tt to be bigger than
1, meaning that the investor borrows a fraction tt 1 of her wealth in the bank in order to
speculate in the stock. Here one assumes that the interest is the same for borrowing and
investing money. Similarly, one can allow for short-sehing of stocks, which means that tt may
be negative. For different parameter choices, one may obtain optimal (constant) fractions
being either greater than one or negative. It is important to notice that the wealth remains
nonnegative in the standard model also for these cases of optimal strategies.

The sitnation in the normal inverse Gaussian model is more complicated than in the stan
dard model. Since the normal inverse Gaussian process has jumps of all sizes (between —oo
and +oo), the wealth is nonnegative if and only if the jump term

(e z 1) N(dt, dz )Xt .7Tt-
M\{o}

has the property 7r(e z —1) > —1 (see, e.g., Frotter [ls]). But this implies tt G [o,l] since
ez 1 > 1 and zis arbitrary.

If we insist on allowing borrowing of money in the bank, for example, we must impose
certain restrictions on the jumps of the Lévy process. Assume for instance that tt G [o,tt],
where tt is some constant strictly greater than one. In order for the wealth to stay positive for
all consumption policies we need z>ln(l 4), which implies that the Lévy process cannot
have jumps smaller than ln(l 4) (note that ln(l 4) < 0). This rules out the possibility
to model the stock price dynamics with the normal inverse Gaussian distribution. However,
it is possible to use a truncated version of it.

The investor is assumed to derive her utility from the present consumption rate with a
HARA (Hyperbolic Absolute Risk Aversion) shaped utility function. The stochastic control
problem consists of hnding optimal portfolio allocation and consumption strategies which
optimize the expected discounted utility of consumption over an infinite investment horizon,
i.e., to hnd tt* and c* such that

(3.3)

where 77 >0 is the discount factor. In (3.3), I 7 G (0,1) is known as the risk aversion
coefficient. It should be observed that the functional in (3.3) implicitly depends on the
portfoho allocation tt through the consumption strategy c. Due to condition (A.3) this is a

(3.2) dXt ,7T,x =[r + (/inig - r)7rt ] X^'x dt - ct dt + irt_X^'x f
JR\{o>

Anig Mnig (e 1 ~l|z|<l) n{dz).
Jr\{0}

r f°° P 1 r f°° (r*V
V{x)= sup E / e~'nt —dt =E / e~ ??t —— dt

{c,tt)eAx  'o 7 '-Jo 7



NON-GAUSSIAN PORTFOLIO MANAGEMENT 5

control problem with a state space constraint. If r is the first exit time of the wealth process
from the set (0, oo), it is easily seen that

(3.4)

After the wealth process has reached zero, it will remain there forever. Therefore consumption
(and hence utility) will be zero from this time on and it is sufhcient to consider the control
problem up to the stopping time r, i.e., (3.3) and (3.4) coincide.

3.2. The Hamilton-Jacobi-Bellman equation. Using the optimality principle of dynamic
programming, the Hamilton-Jacobi-Bellman (HJB) equations for the two models are easily
derived. For the standard model we have the well-known HJB (nonlinear differential) equation

(3.5)
v(0) = 0,

where the nonlinear functions Egbm, G take the form

Let us introduce the so-called Merton constant

(3.6)

Under the condition

(3.7) h-^gbm(7)>o,

it is well-known that the unique solution of this equation is Vgbm(x) = Kghmxl , where

Moreover, Ug coincides with the value function, see Merton [l3] for details.
In the normal inverse Gaussian case, the HJB equation is actually a nonlinear integro-

differential equation [s];

where the nonhnear function Fn-lg takes the form

In [s] (see also the discussion below), it is proved that the function

(3.9)

r f T r 7 i
V{x)= sup E / e~ 7]t —dt

{c^)EAx 7 0 7

— Vxi ) “f" G ( Vx ') IXVx( 2) j, Vx 0,

Fghia{x,v,vx ,vxx ) = max 2 7r 2 x 2 vxx {x) + (Vgbm + ~& 2 - ,
7rG[o,l] l Z \ Z /

r c 7]
G'(vx.) = max -cvx {x) + .

c>o L 7 J

_i ( i-7
6b“ 7 V-

Tjv(x) = Fnig {x, vx ,n{dz)) + G{vx ) + rxvæ (x ), Va; >O,

(3 - 8) „(0) = 0,

Fjåz{x,v,vx ,n{dz))

= max [(/inig r^7rxvx {x) + f (v{x + irx{ez - 1)) - v{x) - Txxvx [x)[ez - 1)) n{dz)7re[o,l]L ' J

~ K™*X''’ Anie “ 7i V - kjg { 7))



6 BENTH, KARLSEN, AND REIKVAM

is the unique solution of (3.8) and that it coincides with the valne function (3.3). Here,

(3.10)

fcnig(7)= max |7(r + (/tnig - r)jr)+ / ((1 + r{ez - l))1 -1 - 7ir(e2 - 1))
ttG[o,l] t Jr\{o} V J J

with the assumption

(3.11) 7 7) 0-

Among other things, condition (3.11) ensures that the valne function (3.3) is hnite and non
negative. Contrary to fcgbm , it is not clear whether knig is non-negative and non-decreasing
for 7 G [o,l].

Remark. We remark that the main topic in [s] is the study of MertonT problem with Hindy-
Huang-Kreps intertemporal preferences. The investoFs utility is derived through an averaging
of present and past consumption. For the special case of HARA utility, we are able to produce
an explicit solution to the control problem for the normal inverse Gaussian case. This solution
is similar to the one in the normal Gaussian case, which has been calculated by Hindy and
Huang [ll]. We refer to [s] for further details and references to relevant literature. In the
passing, we mention that in a future paper we will compare numerically our results with theirs
for this more general optimization problem.

3.2.1. Viscosity Solutions. For the technically oriented reader, we mention that the method
of analysis in [s] relies on the newly developed theory of viscosity Solutions of HJB equations.
The survey paper by Crandall, Ishii, Lions [7] provides a good overview of this theory, see
also the book by Fleming and Soner [9] for applications to stochastic control problems.

As it turns out, the HJB equation is a consequence of the dynamic programming principle
and one expects the value function to satisfy this equation [9]. However, due to degeneracy
as well as market imperfections such as trading constraints (see (A,3)) and transaction costs,
to mention only a few, the value function might not satisfy the HJB equation in the classical
sense, that is, the value function might not possess all the continuous derivatives occurring
in the HJB equation and thus not satisfy this equation pointwise everywhere. It therefore
becomes important to relax the notion of classical solution of HJB equations so as to allow
functions that are not necessarily smooth as (generalized) Solutions. This has been achieved
successfully by the introduction of the notion of viscosity solution which allows merely con
tinuous functions to be Solutions of fully nonlinear first and second order HJB equations.

As already mentioned, the HJB equation (3.8) associated with our control problem is
a nonlinear integro-differential equation which contains a non-local operator with a highly
singular Lévy measure n{dz). Although the HJB equation (3.8) contains only first order
derivatives, if we insist on interpreting (3.8) in the classical sense, we have to consider twice
continuously diflferentiable functions because of the (singular) Lévy measure n{dz ), see [SJ. We
point out that it is not easy to show directly that the value function (3.3) is twice continuously
differentiable, although we can prove quite easily that it is continuous and sublinearly growing
[s]. However, if we interpret (3.8) in the viscosity sense, it is sufficient to consider continuous
functions, and one can indeed show that the value function (3.3) is a viscosity solution of (3.8).
Moreover, one can prove that there exists only one viscosity solution of the integro-differential
equation (3.8) which is continuous and sublinearly growing, see [s] for details.

In [s], we prove that the candidate solution (3.9) is a viscosity solution of (3.8). This
can be done by simply inserting the expression for VAig(m) into (3.8). Then, thanks to our
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characterization of the value function (3.3) as the unique viscosity solution of (3.8), we con
clude that the candidate solution Vn[g (x) must coincide with the value function and hence the
latter is obtained in closed form. We recall that such verification of a candidate solution is

usually done by a so-called verification theorem stating that if the HJB equation has a unique
classical solution, then it must coincide with the value function, see [9] for further details. As
already mentioned, for our problem it is difficult to show directly that the value function (3.3)
is smooth, and thus this classical verification technique is not easy to apply to the problem
at hand, a fact that clearly demonstrates the power of the viscosity solution approach.

3.3. Optimal portfolio allocation. In the standard model (see, e.g., Merton [l3]), the
optimal portfolio allocation strategy is known to be

(3.12)

From Benth, Karlsen, and Reikvam [s], we know that the optimal allocation strategy in the
normal inverse Gaussian case, which is denoted by solves the integral equation

(3-13) Anig I A

Equation (3.13) tells us that also for the normal inverse Gaussian model the optimal allocation
is given as a fixed (time independent) fraction of wealth. Note that the left-hand side of (3.13)
is decreasing as a function in 7r. This is seen from its derivative

(7 - 1)

which is always negative since 7 G (0,1). Thus, if the parameters of the problem are such
that

Artig A I'

and

(1 - e^~^z ){ez - 1 )n{dz),Anig 1 f
M\{o>

there exists a unique portfolio strategy 7rnig G [o,l] solving (3.13). Unfortunately, it is hard
to see directly from (3.12) and (3.13) which of the two rnodels giving the highest fraction of
wealth to be invested in the risky stock. Depending on the parameters in the problem, we
shall later see that can be both below and above the fraction 7rgbm . We have developed
numerical routines for calculating 7r riig . These routines will be described in Section 7.

3.4. Optimal consumption plans. The optimal consumption rate in the standard model
is known to be

see, e.g., Merton [l3]. As shown in Benth, Karlsen and Reikvam [s], the normal inverse
Gaussian model gives an optimal consumption plan which is a constant fraction of wealth:
Namely, we have

(3.15)

Mgbm ~t“ 2
7rgbm =

/ ((l + 7r(e z - l)) 7 1 - \)(ez -1) n{dz) =O.
JR\{o}

/ (l + ?r(e~ l)) 7 2 [e z l) 2 n{dz),
J]R\{o}

(3.14) egbm = ? fcsbm(7>
1-7

_ rl 7 )
“* - 1- 7
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FIGURE 1. Daily quotes and logreturns for Norsk Hydro

We have developed numerical routines for calcnlating fcnig(7) to obtain Cnig, see Section 7 for
a description of these routines.

4. Analysis of the logreturn data

Our investigations are based on a data series of daily closing prices for Norsk Hydro on
the New York Stock Exchange. The data series contained a total of 2274 prices, lasting from
January 2, 1990 until December 31, 1998. The empirical logreturns are derived from the price
series through the transformation yl = ln(aq+i/aq), i 1,.. ~2273, where {ar} are the daily
prices. In Figure 1 we can see how the valne of Norsk Hydro has developed over the period
of the dataset. Also plotted in the same figure is the logreturns of Norsk Hydro. We have
fitted both the standard and the normal inverse Gaussian model to the logreturn data.

To estimate the drift and volatility in the standard model, we used maximum likelihood to
obtain /igbm = 0.000101 and o = 0.0166. For the normal inverse Gaussian model, we simplified
our considerations to the symmetric case, i.e., when /3 =O, which implies /i := /rgbm =l1nig-
To perform maximum likelihood estimation for the normal inverse Gaussian distribution one
needs highly sophisticated numerical optimization routines. It is outside the scope of this
paper to develop such numerical routines, and we resort to the much simpler (but also highly
unstable) method of moments. The parameters a and S can be estimated through the second
(7722) and fourth (7774) empirical moments by

(4.1)

In general one is not even guaranteed that the data is viable (e.g., that the expression under
the square root sign of a is positive) for these equations. However, it turned out that the
method of moments worked fine for Norsk Hydro. The estimated parameters are a = 51.7
and S = 0.0143. Note that S/a æ a 2.

The empirical logreturn density is plotted together with both the fitted normal and normal
inverse Gaussian densities in Figure 2. We used standard routines from S-PLUS (see e.g.
Venables and Ripley [l7]) to hnd the empirical density. We have used a log-scale on the

/ 3m2 r
° = \ nu- i = a™2 'y II i4 O 111<2
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Fig uRE 2. Log-density of daily Norsk Hydro data toget her with the htted
normal and normal inverse Gaussian distributions. The empirical log-density
is plotted with dots, while the normal is the thin line and the normal inverse
Gaussian the fatter line.

y - axis to demonstrate that the normal distribution fails to fit the tails of the logreturn
data. The normal distribution will go like a parabola which we see heavily underestimates
the tail uncertainty compared to the empirical distribution. The normal inverse Gaussian
distribution explains much better the tail behaviour of the data. We also see that the normal
inverse Gaussian distribution reflects the data better around the centre, i.e., there is a higher
probability for price movements around the mean than described by the normal distribution.
This plot confirms visually that the method of moments worked successfully for Norsk Hydro.

In order to fit into the framework of [s], the Lévy measure n{dz) (see Section 2) must
satisfy some integrability conditions. For the normal inverse Gaussian model a > 1 is shown
to be a sufficient condition, which is clearly satisfied for Norsk Hydro.

5. Optimal portfolio allocation for Norsk Hydro

We will in this section calculate the optimal portfolio allocation strategy for different risk
aversion coefhcients 7 and interest rates. Two different interest rates will be chosen. The
first is “far below” the expected rate of return on the stock, while the second is roughly the
same. Note that the interest rates we use are not necessarily relevant for the NYSE-market,
but simply chosen for the sake of illustration. In order to investigate the sensitivity on model
parameters, we will consider varying volatility (i.e., varying <7).

In the standard model the expected rate of return for an investment in Norsk Hydro is
fj -f fer 2 = 0.00023878, or 5.9695% annually if we assume there are 250 trading days in a year.
For the normal inverse Gaussian model the rate of return will be fi = 0.00023923, or 5.9807%
annually. The normal inverse Gaussian model gives a slightly expected rate of return.

5.1. Experiment 1: The case of “low” animal interest rate. We first consider an
annual interest rate of 5%, i.e., r = 0.0002. In the calculations we let the risk aversion
coefficient 7 vary between 0.1 and 0.95 with a step length of 0.05. The results are listed
for the standard and the normal inverse Gaussian models in Table 1, Appendix A. We see
that for 7 > 0.85 the optimal strategy is to invest all the money in the stock. Even though
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FIGURE 3. Investment profile as a function of risk aversion 7 for the normal
inverse Ganssian and standard cases. Here V denotes the standard case, while
’+’ denotes the normal inverse Ganssian case. Annual interest rate is 5.96%.

the difference between the two models are marginal, it is noteworthy that the normal inverse
Ganssian investor consistently place more money in the stock than the “standard” investor.
Since there is a big difference between the interest rate of the market and the expected stock
returns, the investor will in both models have an incentive to place money in the stock. As
seen from the nnmerical calculations, even investors with a very low tolerance towards risk
will place as much as 15% of their wealth in shares.

5.2. Experiment 2: The case of “high” annual interest rate. Let the annual interest
rate be 5.96% (i.e., r = 0.000238), which is considerably closer to the expected rate of return
for Norsk Hydro stocks in the standard model than in Experiment 1. In this case we calculated
the optimal allocation strategies for 7 between 0.5 and 0.95 with a step length of 0.05. For
7 below 0.5, the obtained values for the optimal portfolio allocation tt were very small and
thus suppressed. The results are listed for both models in Table 1 Appendix A. Note that for
7 dose to one, we get a signihcant difference between the normal inverse Ganssian investor
and standard. To really emphasise the difference, we also simulated the allocation strategies
for 7 between 0.96 and 0.99 with step length 0.01. The normal inverse Ganssian investor will
put more than twice as much of her wealth in the risky stock than the “standard” investor
when she has a high tolerance towards risk (7 dose to one). Observe that for the highest level
7 = 0.99, the normal inverse Ganssian investor will put nearly 1/3 of her wealth into Norsk
Hydro shares, while the “standard” investor puts the more conservative fraction of 15%. In
Figure 3 we have plotted the optimal fraction of wealth in stock against the risk aversion
factor 7.

5.3. Experiment 3: Varying volatility. From the formula for 7rgbm we see that when
the volatility cr tends to infmity, 7rgh,m tends to the fixed number For 7 G (0, |) this
number will be between 0 and 1, and the investor will in the standard model put a fraction

of her wealth dose to 2^1 I_7)1_ 7 ) when investing in a highly volatile stock. We want to investigate
numerically if the same is true for the normal inverse Ganssian investor, and if so, does it

351 1 1 1 1 1 1 1 1 1

30 - +-

o 25 -

£ 20 -

i
o 15 - + -

§ O

10 - +

‘f o
+

5- O -

+

gC L it i å $ 9 ? I
0.6 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0,9 0.95 1

Risk aversion



NON-GAUSSIAN PORTFOLIO MANAGEMENT 11

FIGURE 4. The investment profiles for increasing volatility with 7 = 0.25 and
7 = 0.45 in Experiment 3b. The normal inverse Gaussian case is plotted with
’-f ’ and the standard case with V.

tend to the same fraction. It turns out that the conclusion depends on whether we increase
the scale parameter or decrease the steepness of the normal inverse Gaussian distribution.

We assume that the standard model and the normal inverse Gaussian model have the same
variance, i.e., cr 2 = -. In this experiment we let the volatility o increase from 0.02 to 0.3
with a step length of size 0.01. The drift /x is chosen similar to the drift for the Norsk Hydro
stock. For instance, note that a 0.1 is an unrealistic case since the expected return in
the standard model is above 100% annually. Motivated from the results in Experiment 2 we
choose the annual interest rate to be 5.96%. The risk aversion coefficients are set to 7 = 0.25
and 7 = 0.45. In the former case 7rgbm will converge to 2/3 when a goes to infinity, while in
the latter the limit is 0.9091. In the normal inverse Gaussian model we can vary both the
steepness and the scale in order to increase a. We have thus split Experiment 3 into (two
sub) Experiments 3a and 3b. In Experiment 3a we let a be fixed and 6 vary according to the
relation 6 = acr 2 . In Experiment 3b, 6is held fixed while a vary according to a = -j.

The results from. the two subexperiments are listed in Tables 2 and 3, Appendix A. Ex
periment 3a shows that the normal inverse Gaussian model has the same convergence rate
towards the limits 2/3 and 0.9091 as the standard model. The two models give in fact (nearly)
identical allocation strategies for the chosen sequence of <j’s. Experiment 3b, on the other
hand, indicates that the normal inverse Gaussian model converges to different limits than 2/3
and 0.9091, see Figure 4. When 7 = 0.25 the limit is dose to the number 62.7%, while for
7 = 0.45 it is 85.5%.

It is worth noticing that in Experiment 3b the normal inverse Gaussian investor will put less
money in the risky asset than the “standard” investor. In Experiments 1 and 2 the opposite
were the case, and in Experiment 3a the models gave nearly identical results. The shape
triangle (see, e.g., Rydberg [l6]) may shed some fight on the differences between Experiment
3a and 3b: Introduce the parameters (x,C) by

C=(l + «VA -W) \ x =

100 r 1 1 1 1 1 1

90- qoooooooooooooooooooo

+ +++++++++++ + + + + + + + + + +

80 - 9 + +

9

i 70  

•§ 00 0000000000000000000

I ® 0 0° +++++++++++ + + + + + + + + + + +
I 60 - 9 + +

I 9

I 50 -

5 ®
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30 - m©

20 ——® —1 —1 1 L 1 1
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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The domain of variation of the parameters (x, C) 18 0 < |xl < C < 1? thus motivating the
name shape triangle. The coordinates for a normal distribution is (0,0), while for a centered
normal inverse Gaussian they are (0,(1 + a'#)”" 1 ). Note that Norsk Hydro has coordinates
(0, 0.575) in the shape triangle, thus being far from a normal distribution. In Experiment 3a,
a is fixed and 6 = ao2 with a increasing. We see that aS = a 2a 2 oo as o —* 00, and hence

This shows that in Experiment 3a the normal inverse Gaussian model will converge to the
standard model and therefore reaching the same investment rate in the limit. When 6 is hxed,
we have a = 6/a 2 and aS = S 2/a 2 oasa —> 00. Hence

and we see that the normal inverse Gaussian distribution converges to a symmetric Cauchy
distribution, which is on the opposite end of the normal distribution in the shape triangle.
This explains the different limits of the normal inverse Gaussian model in Experiment 3b.

6. Optimal consumption plans for Norsk Hydro

We calculate the optimal consumption plans for the Norsk Hydro stock, that is, we tind
the fractions of wealth which the investor should take out for consumption in each of the two
models. Since we are working with an infinite time horizon, one expects the consumption
ratio to be very small, which indeed is confirmed by our numerical results.

The consumption ratio is in both models dependent on the discounting factor rj. We need
to choose one rj such that condition (3.7) is satisfied. In this experiment, which we call
Experiment 4, we have chosen r/ to be 6% annually. Condition (3.7) is then met for all 7 up
to 0.99 at least. The annual interest rate is 5.96%. Furthermore, the risk aversion constant
7 is ranging between 0.1 and 0.95 with step length 0.05. The results are listed in Table 4,
Appendix A. We have in addition calculated the consumption ratios for 7 = 0.99. As can
be seen from the calculations, both models give very low consumption fractions ranging from
0.024% to 0.0453%. We observe that the normal inverse Gaussian model suggests a slightly
bigger consumption rate than the standard.

7. Discussion of the numerical methods

It is seen from equations (3.13) and (3.15) that in order to calculate 7rnig and cnig we must
solve an integral equation and perform three integrations over R\{o} with respect to the
Lévy measure n(dz). We have used standard numerical techniques to solve these problems
approximately.

To calculate 7rnig from equation (3.13) we used the method of bisection (see e.g. [6]).
The bisection approach turned out to be more efficient for our purposes than the usually
preferred Newton’s method. Newton’s method will move very slowly since the derivative of
the function in question is considerably bigger than the function itself. Thus, very small moves
are made in each iteration of Newtoi+s method. We iterated the bisection method 14 times,
which means that the distance between the approximated solution and the exact was less
than 0,0001. In each iteration we calculated two integrals over M\{o} with respect to n{dz).
The numerical integration was performed using Simpson’s rule with 20000 equidistant points
between —0.5 and 0.5, leaving out the origin (see, e.g., [6]). By simple numerical testing we
found this subpartition of IR\{o} to have a sufficient degree of accuracy and efficiency for our

(0, (1 + a6) > (0, 0) as <7 —> 00.

(0, (1 + ab) *) — (0,1) as a—r co,
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problem. We point out, however, that no rigorous error analysis has been carried through for
the mimerical integration procedure.

After håving found an approximation to the optimal portfolio allocation, the calculation of
cnig involves only integration, as is seen from (3.15). Again we approximated the integrals by
Simpson’s rule using 20000 equidistant points between —0.5 and 0.5, leaving out the origin.

Our algorithms were implemented in Matlab, allowing us to use the built-in Bessel func
tions in the mimerical integration procedure. The algorithms we used were not optimized
in any way, and thus computationally demanding and slow. It was not the intention of this
study to develop fast algorithms. However, the need for efficient and accurate algorithms are
substantial, since we are dealing with functions which have most of their mass concentrated
near zero and with a singularity at zero. These issues must be treated effectively and accu
rately if one wants to develop general software for solving Merton’s problem in the normal
inverse Gaussian case.

8. Conclusions

Based on the mathematical equations derived by Benth, Karlsen, and Reikvam [s], we
have implemented mimerical routines which enabled us to solve MertoiTs problem when the
risky asset is modelled as a geometric normal inverse Gaussian Lévy process. The Norsk
Hydro stock quoted on the New York Stock Exchange was taken to be the risky asset, and
we compared the normal inverse Gaussian model to the geometric Brownian motion model.
It was demonstrated that an investor believing in the normal inverse Gaussian model would
consistently invest more in Norsk Hydro shares than a “standard” investor. Due to an infinite
investment horizon, the optimal consumption plans in the two models became very low. The
normal inverse Gaussian model assigned a slightly higher fraction of wealth to be taken out
as consumption than the normal Gaussian model.

When there was a big difference between the risk-free interest rate and the rate of return
on Norsk Hydro shares, the two models gave almost identical investment strategies. We
observed, on the other hand, significant differences when the interest rate and rate of return
were dose. The normal inverse Gaussian investor would allocate more than twice as much of
her fortune in the risky asset compared to the standard investor in our example. In fact, for
high risk aversion factors (i.e., 7 dose to one) the normal inverse Gaussian investor will put
nearly 30% of her wealth in Norsk Hydro shares, while the standard model assigns only 15%.
This may be explained by the fact that the normal inverse Gaussian model predicts a higher
rate of return than Merton.

We also studied the effect of increasing volatility. For the normal inverse Gaussian model,
both scale and steepness can be varied to produce increasing volatility. When we increased
the scale, both models converged to the same investment strategy. This was as expected
since the normal inverse Gaussian distribution will converge to the normal distribution. For
decreasing steepness, however, the normal inverse Gaussian distribution converges to a Cauchy
distribution, which resulted in a signihcantly lower limiting investment rate than the standard
model.
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ÅPPENDIX A: Tables OF RESULTS

All the imrnbers are rounded to one decimal of accuracy except in the table for Experiment
4, where we have used 4 decimals of accuracy. When we say “> 100” in the tables, we mean
that the numerical calculation gave a figure above 100%, which means that we are adviced to
place all our money in the risky asset.

Table 1. Results from Experiment 1 and 2. The last two columns relates to
Experiment 2.

7 7rnig in % Tfgbm in % TTnig in % in %
0.10 15.8 15.6 - -

0.15 16.7 16.6 - -

0.20 17.7 17.6 - -

0.25 18.9 18.8 - -

0.30 20.3 20.1 - -

0.35 21.8 21.7 - -

0.40 23.6 23.5 - -

0.45 25.7 25.6 - -

0.50 28.4 28.1 0.6 0.3
0.55 31.5 31.3 0.7 0.3
0.60 35.4 35.2 0.8 0.3
0.65 40.5 40.2 0.9 0.4
0.70 47.2 46.9 1.0 0.5
0.75 56.7 56.3 1.2 0.7
0.80 70.9 70.4 1.5 0.7
0.85 94.6 93.8 2.0 0.9
0.90 >100 >100 3.0 1.4

0.95 >100 >100 6.0 2.8
0.96 - - 7.5 3.5
0.97 - - 10.1 4.6
0.98 - - 15.1 6.9
0.99 - - 30.2 13.8
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Table 2. Results from Experiment 3a.

<7 7 = 0.25 7 = 0.45 7 = 0.25 7 = 0.45
0.02 20.8 28.4 20.9 28.5
0.03 46.3 63.2 46.3 63.2
0.04 55.2 75.3 55.2 75.3
0.05 59.4 80.9 59.3 80.9
0.06 61.6 84.0 61.6 84.0
0.07 63.0 85.8 62.9 85.8
0.08 63.8 87.0 63.8 87.0
0.09 64.4 87.9 64.4 87.8
0.10 64.9 88.4 64.8 88.4
0.11 65.2 88.9 65.1 88.8
0.12 65.4 89.2 65.4 89.2
0.13 65.6 89.5 65.6 89.4
0.14 65.8 89.7 65.7 89.6
0.15 65.9 89.8 65.8 89.8
0.16 66.0 90.0 66.0 89.9
0.17 66.0 90.1 66.0 90.0
0.18 66.1 90.2 66.1 90.1
0.19 66.2 90.2 66.2 90.2
0.20 66.2 90.3 66.2 90.3
0.21 66.3 90.4 66.3 90.3
0.22 66.3 90.4 66.3 90.4
0.23 66.3 90.5 66.3 90.4
0.24 66.4 90.5 66.3 90.5
0.25 66.4 90.5 66.4 90.5
0.26 66.4 90.6 66.4 90.5
0.27 66.4 90.6 66.4 90.6
0.28 66.5 90.6 66.4 90.6
0.29 66.5 90.6 66.4 90.6
0.30 66.5 90.7 66.5 90.6
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Tab LE 3. Results from Experiment 3b.

a 7 = 0.25
TTnig

7 = 0.45 7 - 0.25
TTgbm

7 = 0.45
0.02 20.8 28.4 20.9 28.5
0.03 46.3 63.1 46.3 63.2
0.04 54.9 75.0 55.2 75.3
0.05 58.6 79.9 59.3 80.9
0.06 60.3 82.2 61.6 84.0
0.07 61.1 83.4 62.9 85.8
0.08 61.7 84.1 63.8 87.0
0.09 62.0 84.5 64.4 87.8
0.10 62.2 84.8 64.8 88.4
0.11 62.3 85.0 65.1 88.8
0.12 62.4 85.1 65.4 89.2
0.13 62.5 85.2 65.6 89.4
0.14 62.5 85.3 65.7 89.6
0.15 62.6 85.3 65.8 89.8
0.16 62.6 85.4 66.0 89.9
0.17 62.6 85.4 66.0 90.0
0.18 62.6 85.4 66.1 90.1
0.19 62.6 85.4 66.2 90.2
0.20 62.7 85.5 66.2 90.3
0.21 62.7 85.5 66.3 90.3
0.22 62.7 85.5 66.3 90.4
0.23 62.7 85.5 66.3 90.4
0.24 62.7 85.5 66.3 90.5
0.25 62.7 85.5 66.4 90.5
0.26 62.7 85.5 66.4 90.5
0.27 62.7 85.5 66.4 90.6
0.28 62.7 85.5 66.4 90.6
0.29 62.7 85.5 66.4 90.6
0.30 62.7 85.5 66.5 90.6
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Table 4. Results from Experiment 4
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7 cnig in % £gbm in %
0.10 0.0241 0.0240
0.15 0.0241 0.0240
0.20 0.0241 0.0240
0.25 0.0242 0.0241
0.30 0.0242 0.0241
0.35 0.0243 0.0241
0.40 0.0244 0.0241
0.45 0.0245 0.0241
0.50 0.0247 0.0242
0.55 0.0249 0.0242
0.60 0.0252 0.0242
0.65 0.0257 0.0243
0.70 0.0264 0.0244
0.75 0.0277 0.0245
0.80 0.0300 0.0246
0.85 0.0350 0.0249
0.90 0.0371 0.0254
0.95 0.0386 0.0270
0.99 0.0453 0.0396
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