Department of

APPLIED MATHEMATICS

```
A NOTE ON THE STABILITY OF STEADY INVISCID HELICAL GAS FLOWS
```

```
        by
```

 by
 Leiv Storesletten*)

```
Leiv Storesletten*)
```

Leiv Storesletten*)

```

\section*{UNIVERSITY OF BERGEN \\ Bergen, Norway}


\title{
A NOTE ON THE STABILITY OF STEADY INVISCID HELICAL GAS FLOWS
}
\[
\begin{gathered}
\text { by } \\
\text { Leiv Storesletten*) }
\end{gathered}
\]

Report No. 61
January 1975

\section*{Nasjonalbibllotaket \\ Depotblblloteket}

\section*{Abstract.}

The stability of steady shear flow of an inviscid compressible fluid rotating between two coaxial sylinders is investigated. We consider flows where the streamines are helical paths depending on the radial distance only. A necessaxy condition for stability is obtained.

The method applied is based on a study of the transport equations similar to those appearing in geometrical acoustics.

76 EO2
St

14

monal lathion

\section*{Introduction.}

The stability of rotating fluids has earlier been investigated by several authors (see the references quoted in [3]).

Most of the earlier work has considered incompressible fluids. The literature on compressible fluids is in fact rather small.

In this paper we study the stability properties of steady shear flow of an inviscid compressible fluid rotating between two coaxial sylinders. We considex flows where the streamlines are helical paths depending on the radial distance only (i.e. the rotating fluid has an axial velocity depending on the radial distance). A necessary condition for stability is obtained.

The method applied is developed by Eckhoff [I] and is based on a study of the transport equations similar to those appearing in geometrical acoustics.

The stability problem studied in this paper has also been investigated by warren [5]. By a different method warren deduced a sufficient condition for stability.

In the last section our results are compared with Warren's criterion It is proved, as should be expected, that his criterion in general is more restrictive than ours. For some velocity profiles the criteria coincide, an equation determining these profiles is found.


\(\qquad\)












\(\qquad\)

\(\qquad\)

\section*{1. Formulation of the problem.}

We consider an ideal compressible adiabatic fluid. The basic equations are:
\[
\begin{align*}
& \frac{\partial v}{\partial t}+\underline{v} \cdot \nabla \underline{v}=-\frac{1}{\rho} \nabla \rho+\nabla V \\
& \frac{\partial \rho}{\partial t}+\underline{v} \cdot \nabla \rho+\rho \nabla=\underline{v}=0  \tag{1.1}\\
& \frac{\partial}{\partial t}\left(p \rho^{-\gamma}\right)+v \cdot \nabla\left(p \rho^{-\gamma}\right)=0
\end{align*}
\]

Here \(v, \rho, p, t\) and \(v\) denote velocity, density, pressure, time and potential for the external forces, respectively, and \(\gamma\) is a constant.

We want to investigate the stability properties of a fluid (gas) rotating between two coaxial sircular sylinders (radii \(x_{2}\) and \(\left.r_{2}, 0<r_{1}<r_{2}\right)\). Like Warren [5] we assume steady flows where the velocity is of the form
\[
\begin{equation*}
\underline{U}=v_{0}(x) e_{\phi}+W_{0}(x) e_{z} \tag{1.2}
\end{equation*}
\]
and where the density, pressure and potential also are functions of the radius only, ine.
\[
\begin{equation*}
\rho_{0}=\rho_{0}(x), \quad p_{0}=p_{0}(x), \quad V=V(x) \tag{1,3}
\end{equation*}
\]

Here \((r, \phi, z)\) are syindrical coordinates and \(\Theta_{r}: \underline{e}_{\phi}, \underline{e}_{z}\) are the unit vectors in these coordinates.

It follows from (I.2) that the streamines are sircuiar heiixes depending on the radial distance \(r\).

It is readily seen that (1.2,1.3) is a solution of (1.1) for axbitrary functions \(v_{0}{ }^{*} W_{0}, \rho_{0}\) and \(V\) dis and only if the function \(p_{0}\) satisfies the equation:
\[
\begin{equation*}
\frac{d p_{0}}{d r}=\rho_{0}\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right) \tag{1,4}
\end{equation*}
\]
\[
\begin{aligned}
& \square+
\end{aligned}
\]

\begin{abstract}

\end{abstract}
 : \(2: 3\)




\[
\begin{equation*}
\therefore(x+0+2+2+x)+x+1 \tag{3}
\end{equation*}
\]










For given \(v_{0}, p_{0}\) and \(v\) this equation determines the function \(P_{0}\) up to an additive constant.

In order to study the stability properties of the solution U. \(\rho_{0}, p_{0}\), we perturbate it by introducing into (I.I) the following expressions:
\[
\begin{align*}
& \underline{v}=\underline{U}+\frac{I}{F} \underline{W} \quad p=p_{0}+\frac{\rho_{0} c}{D} s_{2} \\
& \rho=\rho_{0}+\frac{F}{\rho_{0} E C} s_{1}+\frac{\rho_{0}}{E C} s_{2} \tag{1,5}
\end{align*}
\]

Here \(F\) and \(E\) are arbitrary weightsunctions depending on \(x\), we only assume that \(F \neq 0, E \neq 0\) everywhere. The quantity \(c\) is the local sound speed given by:
\[
\begin{equation*}
c=\sqrt{\frac{Y \rho_{0}}{\rho_{0}}} \tag{1,6}
\end{equation*}
\]

The transformation (1.5) is essentially the one applied in [3] a [4]. The linearized version of the perturbation equations (given in [3] \& [4]) is a system of linear symmetric hyperbolic p.d.e. \({ }^{2}\) s.

We now write
\[
\begin{equation*}
\underline{W}=W_{Y} \underline{e}_{Y}+W_{\phi} \underline{e}_{\phi}+W_{Z} \underline{e}_{Z} \tag{1,7}
\end{equation*}
\]
and we introduce the 5 -dimensional vector
\[
\begin{equation*}
\left(\omega=\left(w_{1} ; w_{\phi}, w_{z}, s_{1}, s_{2}\right) .\right. \tag{1,8}
\end{equation*}
\]

The perturbation equations in sylinderical coordinates can be written:
\[
\begin{equation*}
\frac{\partial \omega}{\partial t}+A^{1} \frac{\partial \omega}{\partial r}+A^{2} \frac{\partial \omega}{\partial \phi}+A^{3} \frac{\partial \omega}{\partial z}+B \omega=0 \tag{1.9}
\end{equation*}
\]

Here \(A^{1}, A^{2}, A^{3}\) and \(B\) are \(5 \times 5\) matrices and \(\omega\) is treated as a column vector. These matrices are calculated from (1.2, 1.3 \& 1.5) and the perturbation equations to be:





(2. 27
\[
+x+\frac{2}{2}+
\]


:



に
\(\because \quad\). \(+2+2+2+2+3\)

: 8

~ \(\cdot 3 \cdot\)


 ..... a. 
\(A^{2}=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & c \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0\end{array}\right], A^{2}=\left[\begin{array}{ccccc}\frac{1}{x} v_{0} & 0 & 0 & 0 & 0 \\ 0 & \frac{2}{x} v_{0} & 0 & 0 & \frac{1}{x} c \\ 0 & 0 & \frac{1}{x} v_{0} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{x} v_{0} & 0 \\ 0 & \frac{1}{x} c & 0 & 0 & \frac{1}{r} v\end{array}\right]\)
(i. 1
\(A^{3}=\left[\begin{array}{ccccc}W_{0} & 0 & 0 & 0 & 0 \\ 0 & W_{0} & 0 & 0 & 0 \\ 0 & 0 & W_{0} & 0 & c \\ 0 & 0 & 0 & W_{0} & 0 \\ 0 & 0 & 0 & 0 & W_{0}\end{array}\right], B=\left[\begin{array}{ccccc}0 & -2 v_{0} & 0 & B & H \\ \frac{V_{0}}{x}+\frac{d v_{0}}{d x} & 0 & 0 & 0 & 0 \\ \frac{d w_{0}}{d x} & 0 & 0 & 0 & 0 \\ \alpha & 0 & 0 & 0 & 0 \\ G & 0 & 0 & 0 & 0\end{array}\right]\)
where the quantities \(\alpha, \beta, G\) and \(H\) are:
\(\alpha=\frac{E \rho_{0}}{F} c\left[\frac{d \rho_{0}}{d r}-\frac{I}{c^{2}} \frac{d p_{0}}{d r}\right]=\frac{E \rho_{0}^{2}}{F} c\left[\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d r}-\frac{1}{c^{2}}\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\right]\)
\(B=-\frac{E^{2}}{E \rho_{0}^{3}} \frac{1}{c} \frac{d p_{0}}{d x}=-\frac{F^{2}}{E p_{0}^{2}} \frac{1}{c}\left(\frac{V_{0}^{2}}{x}+\frac{d V}{d r}\right)\)
\(G=\frac{1}{c}\left(\frac{Y}{2}-1\right)\left[\frac{V_{0}^{2}}{r}+\frac{d V}{d r}\right]+\frac{c}{2 \rho_{0}} \frac{d \rho_{0}}{d r}-\frac{c}{F} \frac{d F}{d r}\)
\(H=\frac{c}{I}+\frac{1}{c}\left(\frac{V_{0}^{2}}{r}+\frac{d V}{d r}\right)-\frac{c}{F} \frac{d F^{r}}{d r}\)



\[
\begin{array}{lll}
40 & 8 & 8
\end{array}
\]
\[
\because \% \frac{6}{3} \text { a }
\]

The characteristic equation associated with (1.9) is:
\[
\begin{align*}
& \operatorname{det}\left(\xi^{1} A^{1}+\xi^{2} A^{2}+\xi^{3} A^{3}-\lambda I \mid\right. \\
& \quad=\left[\frac{1}{x} \xi^{2} v_{0}+\xi^{3} W_{0}\right]\left[\left(\frac{1}{I} \xi^{2} v_{0}+\xi^{3} W_{0}\right)^{2}-c^{2} k^{2}\right]=0
\end{align*}
\]
where
\[
k=\sqrt{\left(\xi^{1}\right)^{2}+\left(\frac{1}{x} \xi^{2}\right)^{2}+\left(\xi^{3}\right)^{2}}
\]

The characteristic roots and the associated orthonormal eigenvectors are easily obtained (cf. [3]) from (1.10) and (1.13):
\[
\begin{aligned}
& \Omega^{1}=\frac{1}{r} \xi^{2} v_{0}+\xi^{3} w_{0} \quad \text { (triple root) } \\
& \Omega^{2}=\frac{1}{r} \xi^{2} v_{0}+\xi^{3} w_{0}+c k \quad \text { (simple root) } \\
& \Omega^{3}=\frac{1}{x} \xi^{2} v_{0}+\xi^{3} w_{0}-c k \quad \text { (simple root) } \\
& r^{11}=\frac{1}{k}\left(\frac{1}{x} \xi^{2},-\xi^{1}, 0, \xi^{3}, 0\right) \\
& r^{12}=\frac{1}{k}\left(0, \xi^{3},-\frac{1}{r} \xi^{2}, \xi^{1}, 0\right) \\
& r^{13}=\frac{1}{k}\left(-\xi^{3}, 0, \xi^{1}, \frac{1}{x} \xi^{2}, 0\right) \\
& r^{21}=\frac{1}{\sqrt{2} k}\left(\xi^{1}, \frac{1}{r} \xi^{2}, \xi^{3}, 0, k\right) \\
& r^{31}=\frac{1}{\sqrt{2} k}\left(\xi^{1}, \frac{1}{r} \xi^{2}, \xi^{3}, 0,-k\right)
\end{aligned}
\]



The stationary solution \(U, P_{0}: p_{0}\) of (1.I) corresponds to the null solution \(\omega=0\) of (1.9). In this paper we are going to study the stability properties of the latter by the method developed in [1]. The discussion of the acoustic waves corresponding to the simpie roots \(\Omega^{2}\) and \(\Omega^{3}\) is completely analogues to the discussion in [2]. In our problem these waves never give rise to any instabilities for realistic physical flows (cf. [3]). Thus we shall limit our further discussion to the mass waves ("gravity" waves) corresponding to the triple root \(\Omega^{I}\).

\[
\begin{aligned}
& =10<0<10 \quad 30
\end{aligned}
\]
4.4
\[
\therefore<\operatorname{Z}
\]


\[
\begin{array}{cccc}
10 \% & \therefore & \ddots & \ddots
\end{array}
\]
\[
0,0+0+0
\]


 C...
 a. . 3 . .... \(\because .0\).


2. The transport equations associated with \(\Omega_{8}^{1}\).

For the mass waves the stability equations are identical with the transport equations associated with \(\Omega^{1}\) (cfo [1], [3] \& [4]). Therefore we have to study the stability properties of these equations. Applying the general formulas given in [1] we deduce the transport equations from (1.10, 1.15, 1.16) to be:
\[
\begin{align*}
& \frac{d r}{d t}=0, \frac{d \phi}{d t}=\frac{1}{r} v_{0}, \frac{d z}{d t}=w_{0} \\
& \frac{d \xi^{1}}{d t}=\frac{1}{x} \xi^{2}\left(\frac{v_{0}}{x}-\frac{d v_{0}}{d r}\right)-\xi^{3} \frac{d w_{0}}{d r}  \tag{2.1}\\
& \frac{d \xi^{2}}{d t}=0, \frac{d \xi^{3}}{d t}=0
\end{align*}
\]
\[
\begin{align*}
\frac{d \sigma_{1}^{1}}{d t} & =\frac{1}{k^{2}}\left[-\frac{1}{r} \xi^{1} \xi^{2}\left(\frac{v}{r}-\frac{d v_{0}}{d r}\right)-\frac{1}{r} \xi^{2} \xi^{3}(\alpha+B)\right] \sigma_{1}^{1} \\
& +\frac{I}{k^{2}}\left[-\frac{1}{r} \xi^{2} \xi^{2} \beta+\frac{1}{r} \xi^{2} \xi^{3}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)+\left(\xi^{3}\right)^{2} \frac{d w_{0}}{d r}\right] \sigma_{2}^{1}  \tag{2.2}\\
& +\frac{I}{k^{2}}\left[-\xi^{1} \xi^{3}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)-\left(\frac{1}{r} \xi^{2}\right)^{2} \beta+\left(\xi^{3}\right)^{2} \alpha\right] \sigma_{3}^{I}
\end{align*}
\]
\[
\begin{aligned}
\frac{d \sigma_{2}^{1}}{d t} & =\frac{1}{k^{2}}\left[-\frac{1}{x} \xi^{1} \xi^{2} \alpha+\left(\frac{1}{x} \xi^{2}\right)^{2} \frac{d w_{0}}{d x}-\frac{1}{x} \xi^{2} \xi^{3} 2 \frac{d v_{0}}{d r}-\left(\xi^{3}\right)^{2} \frac{d w_{0}}{d r}\right] \sigma_{1}^{1} \\
& +\frac{1}{k^{2}}: 0
\end{aligned}
\]
\[
+\frac{1}{k^{2}}\left[\xi^{1} \xi^{3} a+\left(\frac{1}{r} \xi^{2}\right)^{2}\left(\frac{v_{0}}{r}-\frac{d v_{0}}{d r}\right)-\frac{1}{r} \xi^{2} \xi^{3} 2 \frac{d w_{0}}{d r}+\left(\xi^{3}\right)^{2}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)\right] \sigma_{3}^{1}
\]




\[
=0
\]
\[
2-\frac{1}{5} \frac{5}{5 x}+
\]
\[
\begin{align*}
\frac{d \sigma_{3}^{1}}{d t} & =\frac{1}{k^{2}}\left[-\frac{1}{x} \xi^{1} \xi^{2} \frac{d w_{0}}{d r}+\xi^{1} \xi^{3} 2 \frac{v_{0}}{x}-\left(\frac{1}{x} \xi^{2}\right)^{2} \alpha\left(\xi^{3}\right)^{2} B\right] \sigma_{1}^{1} \\
& +\frac{1}{k^{2}}\left[\xi^{1} \xi^{3} \beta-\left(\frac{1}{x} \xi^{2}\right)^{2}\left(\frac{v_{0}}{x}-\frac{d v_{0}}{d x}\right)+\frac{1}{r} \xi^{2} \xi^{3} \frac{d w_{0}}{d r}+\left(\xi^{3}\right)^{2} \cdot 2 \frac{v_{0}}{r}\right] \sigma_{2}^{1}  \tag{2.4}\\
& +\frac{1}{k^{2}}\left[\xi^{1} \xi^{3} \frac{d w_{0}}{d x}+\frac{1}{r} \xi^{2} \xi^{3}(\alpha+\beta)\right] \sigma_{3}^{1}
\end{align*}
\]

The bicharacteristic equations (2.1) can be integrated directly, the solutions are:
\[
\begin{align*}
& r=r_{0}, \phi=\phi_{0}+\frac{v_{0}\left(r_{0}\right)}{r_{0}} t, z=z_{0}+w_{0}\left(r_{0}\right) t  \tag{2.5}\\
& \xi^{I}=\xi_{0}^{1}+\left\{\frac{1}{r_{0}} \xi_{0}^{2}\left(\frac{v_{0}}{r_{0}}-\frac{d v_{0}}{d r}\right)-\xi_{0}^{3} \frac{d w_{0}}{d r}\right\} t, \quad \xi^{2}=\xi_{0}^{2}, \xi^{3}=\xi_{0}^{3}
\end{align*}
\]
whexe \(r_{0}, \phi_{0}=z_{0}{ }^{2} \xi_{0}^{2} \xi_{0}^{2} \xi_{0}^{3}\) axe initiai vaiues at \(t=0\).

Substituting (2.5) into the amplitude equations (2.2, 2.3. 2.4) we obatain a closed linear system of ordinary differential equations for the amplitudes \(\sigma_{1}^{1}, \sigma_{2}^{2}, \sigma_{3}^{1}\) of the mass waves:
\[
\begin{equation*}
\frac{d \sigma}{d t}=A(t) \sigma \tag{2.6}
\end{equation*}
\]

Where \(A(t)\) is a \(3 \times 3\) matrix and \(\sigma\) is a 3-dimensional column vector with components \(\sigma_{1}^{1}, \sigma_{2}^{1}, \sigma_{3}^{1}\), respectively.
\[
\begin{aligned}
& 2+2+2+2+2+2+2 \\
& 2 \cdot+20+20+2
\end{aligned}
\]

\section*{3. Discussion of stability.}

According to the theory of stability developed in [1], the steady flow \(U, \rho_{0}, p_{0}\) is stable only if \((2,6)\) is stable at the origin (i.e. \(\sigma=0\) is stable) for all possible values of the parameters \(r_{0}, \phi_{0}, z_{0}, \xi_{0}^{2}, \xi_{0}^{2}, \xi_{0}^{3}\). Thus we have to study the stability properties of the null solution of (2.6) for different choices of the parameters.

It is easily seen from (2.5) that \((2.6)\) is autonomous if and - only if:
\[
\begin{equation*}
\frac{1}{r_{0}} \xi_{0}^{2}\left(\frac{v_{0}}{I_{0}} \cdots \frac{d v_{0}}{d r}\right)-\xi_{0}^{3} \frac{d w_{0}}{d r}=0 \tag{3.1}
\end{equation*}
\]

For all possible values of \(I_{0} ; \xi_{0}^{2} \xi_{0}^{3}\) which satisfy (3.1), the stability properties of (2.6) at the origin are thus determined by the eigenvalues of the coefficient matrix. \(A\). These eigenvalues are found to be:
\[
\begin{equation*}
\lambda_{1}=0, \quad \lambda_{2}=i \frac{1}{k_{0}} D, \quad i_{3}=\cdots \lambda_{2} \tag{3.2}
\end{equation*}
\]
where i. is the imaginary unit.
\[
\begin{equation*}
k_{0}=\sqrt{\left(\xi_{0}^{1}\right)^{2}+\left(\frac{1}{x_{0}} \xi_{0}\right)^{2}+\left(\xi_{0}^{3}\right)^{2}} \tag{3,3}
\end{equation*}
\]
and
\[
D^{2}=-\left(\frac{1}{r_{0}} \xi_{0}^{2}\right)^{2} \alpha \beta-\frac{1}{x_{0}} \xi_{0}^{2} \xi_{0}^{3} 2 \frac{v_{0}}{x_{0}} \cdot \frac{d w_{0}}{d r}-\left(\xi_{0}^{3}\right)^{2}\left[\alpha \beta-2 \frac{v_{0}}{r_{0}}\left(\frac{v_{0}}{r_{0}}+\frac{d v_{0}}{d r}\right)\right]
\]

From (3.2) we concIude that a necessary condition for (2.6) to be stable at the origin for all values of \(z_{0}, \psi_{0}, z_{0}, \xi_{0}^{1}, \xi_{0}^{2}, \xi_{0}^{3}\) is that \(D\) is a real quantity when (3.1) is satisfied. Thus a necessary condition for stability is that the quadratic form \(D^{2}\) given by (3.4) is non-negative. The general discussion of the quadratic form is done below in connection with the non-autonomous case. Here we only consider the marginal case \(D^{2}=0\). Since \(D^{2}=0\) implies that \(\lambda=0\) is a triple eigenvalue, stability of

 ध为
 \%







\[
\vdots\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right.
\]

\(\qquad\)







(2.6) at the origin requires the coefficient matrix \(A\) to be zero If \(\xi_{0}^{2}=\xi_{0}^{3}=0\), it is easily seen from the amplitude equations that \(A=0\). On the other hand, if \(\left(\xi_{0}^{2}\right)^{2}+\left(\xi_{0}^{3}\right)^{2} \neq 0, A=0\) for all possible values of the parameters only if
\[
\begin{equation*}
\alpha=\beta=v_{0}=\frac{d v_{0}}{d x}=\frac{d w_{0}}{d r}=0 \tag{3.5}
\end{equation*}
\]

Then we consider all values of \(r_{0}, \xi_{0}^{2}, \xi_{0}^{3}\) such that (3.1) is not satisfied. In this case the system (2.6) is seen to be a non-autonomous system where all the coefficients tend to zero as \(t \rightarrow+\infty\). Introducing \(\tau=\ln t \quad(\ln =\) nat. \(\log )\) as a new variable in (2.6) (Cf. [2]), this system is transformed into an equivalent system with respect to stability at the origin. Asymptotically as \(\tau \rightarrow+\infty\) the transformed system tends to a system with constant coefficients. The coefficient matrix of the lattex is seen to be:
\[
B_{0}=\lim _{t \rightarrow+\infty} t A(t)=\frac{1}{e}\left[\begin{array}{lll}
\frac{1}{r_{0}} \xi_{0}^{2}\left(\frac{v}{r}-\frac{d v_{0}}{d r}\right) & -\frac{1}{r_{0}} \xi_{0} \beta & -\xi_{0}^{3}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right) \\
\frac{1}{r_{0}} \xi_{0}^{2} \alpha & 0 & \xi_{0}^{3} \alpha \\
-\frac{1}{r_{0}} \xi_{0}^{2} \frac{d w}{d r}+\xi_{0}^{3} & 2 \frac{v_{0}}{r} & \xi_{0}^{3} B \\
\text { Where }
\end{array}\right]
\]
where
\[
\begin{equation*}
e=\frac{1}{r_{0}} \xi_{0}^{2}\left(\frac{v_{0}}{r}-\frac{d v_{0}}{d x}\right)-\xi_{0}^{3} \frac{d w_{0}}{d r} * 0 \tag{3.7}
\end{equation*}
\]

The eigenvalues are;
\[
\begin{align*}
\lambda_{1}=0, \quad \lambda_{2} & =-\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{e^{2} D^{2}}}  \tag{3.8}\\
\lambda_{3} & =-\frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{e^{2} D^{2}}}
\end{align*}
\]

From results proved in the appendix of [2], it follows that (2.6) is stable at the origin (when \(e \neq 0\) ) if the autonomous system with coefficient matrix \(B_{0}\) is stable at the origin. Thus it is seen from (3.8) that (2.6) must be stable at the origin for all\(\because\)




(.. .
\[
\ldots \quad \because \quad \because \quad \because \quad \because \quad \because
\]







 \(\cdots \quad \because\)

\[
\begin{aligned}
& 20 \quad \because \quad
\end{aligned}
\]




possible values of \(r_{0}, \phi_{0}, z_{0}, \xi_{0}^{1}, \xi_{0}^{2}, \xi_{0}^{3}\) when the quadratic form \(D^{2}\) is positive definite. Consequently, we are not led to any additional conditions for stability considering values \(r_{0}, \xi_{0}^{2}, \xi_{0}^{3}\) such that \(e \neq 0\) 。

Combining the results from the autonomous and non-autonomous case, we conclude that the linear system (2.6) is stable at the origin for all possible values of \(I_{0}, \Phi_{0}, z_{0}, \xi_{0}^{1}, \xi_{0}^{2}, \xi_{0}^{3}\) if and only if \(D^{2}\) is positive definite or \((3.5)\) is satisfied.

Finally we discuss the defindte properties of the quadratic form. Obviously \(D^{2}\) can be transformed to a diagonal form
\[
\begin{equation*}
D^{2}=x_{1} x^{2}+x_{2} y^{2} \tag{3.9}
\end{equation*}
\]
by an orthogonal transformation \(\left(\xi_{0}^{1}, \xi_{0}^{2}\right) \rightarrow(x, y)\). The coefficients \(x_{1}\) and \(x_{2}\) are the eigenvalues of the symmetric matrix associated with the quadratic form and are found to be:
\[
\begin{array}{r}
x_{n}=-\alpha B+\frac{v_{0}}{r_{0}}\left(\frac{v_{0}}{r_{0}}+\frac{d v_{0}}{d r}\right)+(-1)^{n} \sqrt{\left(\frac{v_{0}}{r_{0}}\right)^{2}\left\{\left(\frac{v_{0}}{r_{0}} \frac{d v_{0}}{d r}\right)^{2}+\frac{d w_{0}}{d r}\right\}}  \tag{3.10}\\
n=1,2
\end{array}
\]

For \(D^{2}\) to be positive definite everywhere it is necessary and sufficient that \(u_{1}>0\) and \(x_{2}>0\) for all values of \(r_{0}\) \(\left(\alpha, \beta, v_{0} \frac{d v_{0}}{d r}, \frac{d w_{0}}{d r}\right.\) are all functions of \(\left.r_{0}\right)\). This is satisfied if
\[
\begin{equation*}
\alpha B<\frac{v_{0}}{x_{0}}\left(\frac{v_{0}}{r_{0}}+\frac{d v_{0}}{d r}\right)-\sqrt{\left(\frac{v_{0}}{I_{0}}\right)^{2}\left\{\left(\frac{v_{0}}{r_{0}}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d w_{0}}{d r}\right)^{2}\right\}} \tag{3,11}
\end{equation*}
\]
for all values of \(r_{0}\).
According to the general stability theory [1], we now can summarize our results as follows (using the relations (1.11):





 +



\[
\because \because \quad \because \quad \because
\]


\(\therefore\).
\[
\begin{aligned}
& \text { : . }:=
\end{aligned}
\]



?
\(\qquad\)

\footnotetext{


}

\section*{Theorem.}

A necessary condition for stability of the flow (1.2, 1.3) is that
\[
\begin{align*}
& \left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\left[\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d r}-\frac{1}{c^{2}}\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\right] \geq  \tag{3.12}\\
& -\frac{v_{0}}{r}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)+\sqrt{\left(\frac{v_{0}}{r}\right)^{2}\left(\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d W_{0}}{d r}\right)^{2}\right)}
\end{align*}
\]
holds everywhere in the fluid.

If equality holds in (3.12) on some set of positive measure, it is necessary for stability that
\[
\begin{equation*}
\frac{d \rho_{0}}{d r}=\frac{d V}{d r}=0 \quad \& \quad v_{0}=\frac{d v_{0}}{d r}=\frac{d W_{0}}{d r}=0 \tag{3.13}
\end{equation*}
\]
hold almost everywhere on this set.

\section*{Remarks.}

It follows from (3.12) that the shear in the axial velocity (i.e. \(\frac{d w_{o}}{d r}\) ) may give rise to instabilities. Stability is obtainable only if this shear is not too large.

If \(\frac{d w_{0}}{d r}=0\) everywhere in the fluid, we get a special case treated in [3]. The condition (3.12) then simplifies to
\[
N^{2} \geq\left\{\begin{array}{cll}
-2 \frac{v_{0}}{r}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right) & \text { if } & \frac{v_{0}}{r}\left(\frac{\dot{v}_{0}}{r}+\frac{d v_{0}}{d r}\right)<0  \tag{3.14}\\
0 & \text { if } & \frac{v_{0}}{r}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right) \geq 0
\end{array}\right.
\]
here \(N\) is the analogue of the local Brunt-väisälä frequency

(asemen
 +.



\[
+\frac{1}{2}+\frac{1}{8}+
\]
which is determined by
\[
\begin{align*}
N^{2}=-\alpha \beta & =\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\left\{\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d r}-\frac{1}{c^{2}}\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\right\} \\
& =\left(\frac{v_{0}^{2}}{r}+\frac{d V}{d r}\right)\left\{\frac{1}{\rho_{0}} \frac{d \rho_{0}}{d r}-\frac{1}{c^{2} \rho_{0}} \frac{d \rho_{0}}{d r}\right\} \tag{3.15}
\end{align*}
\]

The condition (3.14) agrees with the results obtained in [3].
4. A comparison with Warren's stability criterion.

Introducing the Brunt-väisälä frequency given by (3.14), our necessary stability condition (3.12) can be written
\[
\begin{equation*}
\mathrm{N}^{2}+\frac{v_{0}}{r}\left(\frac{v_{0}}{x}+\frac{d v_{0}}{d r}\right) \geq \sqrt{\left(\frac{v_{0}}{x}\right)^{2}\left\{\left(\frac{v_{0}}{x}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d w_{0}}{d r}\right)^{2}\right\}} \tag{4.1}
\end{equation*}
\]

If \(N=0\) on some set of positive measure, it is necessary that (3.13) is satisfied. At the points where \(N \neq 0\), (4.1) has to be a strict inequality almost everywhere.

Now let us compare our results with the stability criterion of Warren [5]. His sufficient condition for stability of the flow (1.2, 1.3) is that
\[
N^{2}=\frac{1}{4}\left\{\left(\frac{d v_{0}}{d r}-\frac{v_{0}}{r}\right)^{2}+\left(\frac{d w_{0}}{d r}\right)^{2}\right\}
\]
ox equivalently
\[
\begin{equation*}
N^{2}+\frac{v_{0}}{r}\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)>\frac{1}{4}\left\{\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d w_{0}}{d r}\right)^{2}\right\}+\left(\frac{v_{0}}{r}\right)^{2} \tag{4.2}
\end{equation*}
\]
everywhere in the fluid.
\[
\frac{\square}{\square}+\frac{1}{6}+\frac{1}{6}
\]

 \(\ldots \ldots+\cdots, \ldots+\cdots\),




 0 \% \% . . \%
\[
\text { : } \because=\frac{\square}{4}
\]


Let us denote the right hand side of (4.1) and (4.2), A and \(B\), respectively. Both \(A\) and \(B\) are non-negative and
\[
\begin{equation*}
B^{2}-A^{2}=\left[\frac{1}{4}\left\{\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d w_{0}}{d x}\right)^{2}\right)-\left(\frac{v_{0}}{r}\right)^{2}\right]^{2} \geq 0 \tag{4.3}
\end{equation*}
\]

This implies that (4.1) and (4.2) become exactly the same relation if and only if
\[
\begin{equation*}
\left(\frac{v_{0}}{r}+\frac{d v_{0}}{d r}\right)^{2}+\left(\frac{d w_{0}}{d r}\right)^{2}=4\left(\frac{v_{0}}{I}\right)^{2} \tag{4.4}
\end{equation*}
\]

For all the solutions (1.2, 1.3) not satisfying (4.4), it follows from (4.3) that (4.2) is a more restrictive condition than (4.1). This conclusion is of course not unexpected since Warren's criterion is sufficient for stability.

Finally let us consider velocity profiles satisfying (4.4), i.e. profiles where the criteria coincide
(i) If the shear of the axial velocity vanishes (1.e. \(\frac{d w_{0}}{d r}=0\) everywhere) the equation (4.4) has two classes of solutions
\[
\begin{aligned}
& v_{0}=c_{0} \frac{1}{r^{3}} \text { and } v_{0}=c_{0}^{i} r \quad\left(c_{0}, c_{0}^{\prime}\right. \text { real } \\
& \text { constants })
\end{aligned}
\]
(ii) If the axial velocity is of the form
\[
w_{0}=c_{1} r^{n}+c_{2}, \quad\left(c_{1}, c_{2}, n \text { real constants }\right),
\]
the equation ( 4.4 ) determines \(v_{0}\) and \(n\) to be
\[
v_{0}=c_{0} r^{n}, \quad n=\left\{\begin{array}{l}
-q+\sqrt{q^{2}+3} \\
-q-\sqrt{q^{2}+3}
\end{array}\right.
\]
where \(c_{0}\) is a real constant and \(q=\frac{c_{0}{ }^{2}}{c_{0}{ }^{2}+c_{1}{ }^{2}}\)





\[
\because \quad \frac{\square}{\square}
\]







0
©
\[
\begin{aligned}
& \text { (iii) Similarly, if } v_{0}=c_{0} r^{n} \quad\left(c_{0}, n\right. \text { real constants). } \\
& \text { the equation }(4.4) \text { determines } w_{0} \text { and } n \text { to be } \\
& \qquad w_{0}=c_{1} x^{n}+c_{2}, \quad n=\left\{\begin{array}{l}
-q+\sqrt{q^{2}+3} \\
-q-\sqrt{q^{2}+3}
\end{array}\right. \\
& \text { where } c_{1} \text { and } c_{2} \text { are real constants and } q=\frac{c_{0}^{2}}{c_{0}^{2}+c_{1}}
\end{aligned}
\]

Acknowledgements.

The author is grateful for the stimulating contact he has had with the staffmembers at The Departement of Applied Mathematics, University of Bergen, where he stayed in his sabbatical year 1973/74.

Specially he wishes to thank K.S. Eckhoff for many valuable comments in connection with this work.

\section*{REFERENCES}
[1] K.S. Eckhoff:
Stability problems for linear hyperbolic systems.
Report No. 54, Dept. of Appl. Math. Univ. of Bergen (1975).
[2] K.S. Eckhoff:
On stability in ideal compressible hydrodynamics.
Report No. 55, Deot. of Appl. Math. Univ. of Bergen (1975).
[3] K.S. Eckhoff and L. Storesletten:
On the stability of shear flow in a rotating compressible and inviscid fluid.

Report No. 57, Dept. of Appl. Math., Univ. of Bergen (1975).
[4] L. Storesletten:
A note on the stability cis horizontal shear flow of an inviscid compressible fluid.

Report No. 56, Dept. of Appl. Math., Univ. of Bergen (1....
[5] F.W. Warxen:
A comment on Gan's stability criterion for steady inviscir helical gas flows.
J. Fluid Mech. 68, pp 413 - 415 (1975).
\[
\begin{aligned}
& 76 \text { U } 05 \\
& 76 \text { E } 99
\end{aligned}
\]

\section*{Depotbiblioteket \\  93uk 43502}
bnr: 10043550
```

